Index: third_party/sqlite/src/test/dbselftest.c |
diff --git a/third_party/sqlite/src/test/dbselftest.c b/third_party/sqlite/src/test/dbselftest.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..3a238bce169bab4d6676ea5547c471c23fba3b1b |
--- /dev/null |
+++ b/third_party/sqlite/src/test/dbselftest.c |
@@ -0,0 +1,786 @@ |
+/* |
+** 2017-02-07 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** |
+** This program implements an SQLite database self-verification utility. |
+** Usage: |
+** |
+** dbselftest DATABASE ... |
+** |
+** This program reads the "selftest" table in DATABASE, in rowid order, |
+** and runs each of the tests described there, reporting results at the |
+** end. |
+** |
+** The intent of this program is to have a set of test database files that |
+** can be run using future versions of SQLite in order to verify that |
+** legacy database files continue to be readable. In other words, the |
+** intent is to confirm that there have been no breaking changes in the |
+** file format. The program can also be used to verify that database files |
+** are fully compatible between different architectures. |
+** |
+** The selftest table looks like this: |
+** |
+** CREATE TABLE selftest ( |
+** id INTEGER PRIMARY KEY, -- Run tests in ascending order |
+** op TEXT, -- "test", "regexp", "print", etc. |
+** cmdtxt TEXT, -- Usually the SQL to be run |
+** expected TEXT -- Expected results |
+** ); |
+** |
+*/ |
+#include <assert.h> |
+#include <string.h> |
+#include <stdarg.h> |
+#include <stdio.h> |
+#include <stdlib.h> |
+#include "sqlite3.h" |
+ |
+static const char zHelp[] = |
+ "Usage: dbselftest [OPTIONS] DBFILE ...\n" |
+ "\n" |
+ " --init Create the selftest table\n" |
+ " -q Suppress most output. Errors only\n" |
+ " -v Show extra output\n" |
+; |
+ |
+ |
+/****************************************************************************** |
+** The following code from ext/misc/sha1.c |
+** |
+** Context for the SHA1 hash |
+*/ |
+typedef struct SHA1Context SHA1Context; |
+struct SHA1Context { |
+ unsigned int state[5]; |
+ unsigned int count[2]; |
+ unsigned char buffer[64]; |
+}; |
+ |
+ |
+#if __GNUC__ && (defined(__i386__) || defined(__x86_64__)) |
+/* |
+ * GCC by itself only generates left rotates. Use right rotates if |
+ * possible to be kinder to dinky implementations with iterative rotate |
+ * instructions. |
+ */ |
+#define SHA_ROT(op, x, k) \ |
+ ({ unsigned int y; asm(op " %1,%0" : "=r" (y) : "I" (k), "0" (x)); y; }) |
+#define rol(x,k) SHA_ROT("roll", x, k) |
+#define ror(x,k) SHA_ROT("rorl", x, k) |
+ |
+#else |
+/* Generic C equivalent */ |
+#define SHA_ROT(x,l,r) ((x) << (l) | (x) >> (r)) |
+#define rol(x,k) SHA_ROT(x,k,32-(k)) |
+#define ror(x,k) SHA_ROT(x,32-(k),k) |
+#endif |
+ |
+ |
+#define blk0le(i) (block[i] = (ror(block[i],8)&0xFF00FF00) \ |
+ |(rol(block[i],8)&0x00FF00FF)) |
+#define blk0be(i) block[i] |
+#define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15] \ |
+ ^block[(i+2)&15]^block[i&15],1)) |
+ |
+/* |
+ * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1 |
+ * |
+ * Rl0() for little-endian and Rb0() for big-endian. Endianness is |
+ * determined at run-time. |
+ */ |
+#define Rl0(v,w,x,y,z,i) \ |
+ z+=((w&(x^y))^y)+blk0le(i)+0x5A827999+rol(v,5);w=ror(w,2); |
+#define Rb0(v,w,x,y,z,i) \ |
+ z+=((w&(x^y))^y)+blk0be(i)+0x5A827999+rol(v,5);w=ror(w,2); |
+#define R1(v,w,x,y,z,i) \ |
+ z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=ror(w,2); |
+#define R2(v,w,x,y,z,i) \ |
+ z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=ror(w,2); |
+#define R3(v,w,x,y,z,i) \ |
+ z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=ror(w,2); |
+#define R4(v,w,x,y,z,i) \ |
+ z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=ror(w,2); |
+ |
+/* |
+ * Hash a single 512-bit block. This is the core of the algorithm. |
+ */ |
+void SHA1Transform(unsigned int state[5], const unsigned char buffer[64]){ |
+ unsigned int qq[5]; /* a, b, c, d, e; */ |
+ static int one = 1; |
+ unsigned int block[16]; |
+ memcpy(block, buffer, 64); |
+ memcpy(qq,state,5*sizeof(unsigned int)); |
+ |
+#define a qq[0] |
+#define b qq[1] |
+#define c qq[2] |
+#define d qq[3] |
+#define e qq[4] |
+ |
+ /* Copy p->state[] to working vars */ |
+ /* |
+ a = state[0]; |
+ b = state[1]; |
+ c = state[2]; |
+ d = state[3]; |
+ e = state[4]; |
+ */ |
+ |
+ /* 4 rounds of 20 operations each. Loop unrolled. */ |
+ if( 1 == *(unsigned char*)&one ){ |
+ Rl0(a,b,c,d,e, 0); Rl0(e,a,b,c,d, 1); Rl0(d,e,a,b,c, 2); Rl0(c,d,e,a,b, 3); |
+ Rl0(b,c,d,e,a, 4); Rl0(a,b,c,d,e, 5); Rl0(e,a,b,c,d, 6); Rl0(d,e,a,b,c, 7); |
+ Rl0(c,d,e,a,b, 8); Rl0(b,c,d,e,a, 9); Rl0(a,b,c,d,e,10); Rl0(e,a,b,c,d,11); |
+ Rl0(d,e,a,b,c,12); Rl0(c,d,e,a,b,13); Rl0(b,c,d,e,a,14); Rl0(a,b,c,d,e,15); |
+ }else{ |
+ Rb0(a,b,c,d,e, 0); Rb0(e,a,b,c,d, 1); Rb0(d,e,a,b,c, 2); Rb0(c,d,e,a,b, 3); |
+ Rb0(b,c,d,e,a, 4); Rb0(a,b,c,d,e, 5); Rb0(e,a,b,c,d, 6); Rb0(d,e,a,b,c, 7); |
+ Rb0(c,d,e,a,b, 8); Rb0(b,c,d,e,a, 9); Rb0(a,b,c,d,e,10); Rb0(e,a,b,c,d,11); |
+ Rb0(d,e,a,b,c,12); Rb0(c,d,e,a,b,13); Rb0(b,c,d,e,a,14); Rb0(a,b,c,d,e,15); |
+ } |
+ R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); |
+ R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); |
+ R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); |
+ R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); |
+ R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); |
+ R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); |
+ R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); |
+ R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); |
+ R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); |
+ R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); |
+ R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); |
+ R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); |
+ R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); |
+ R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); |
+ R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); |
+ R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); |
+ |
+ /* Add the working vars back into context.state[] */ |
+ state[0] += a; |
+ state[1] += b; |
+ state[2] += c; |
+ state[3] += d; |
+ state[4] += e; |
+ |
+#undef a |
+#undef b |
+#undef c |
+#undef d |
+#undef e |
+} |
+ |
+ |
+/* Initialize a SHA1 context */ |
+static void hash_init(SHA1Context *p){ |
+ /* SHA1 initialization constants */ |
+ p->state[0] = 0x67452301; |
+ p->state[1] = 0xEFCDAB89; |
+ p->state[2] = 0x98BADCFE; |
+ p->state[3] = 0x10325476; |
+ p->state[4] = 0xC3D2E1F0; |
+ p->count[0] = p->count[1] = 0; |
+} |
+ |
+/* Add new content to the SHA1 hash */ |
+static void hash_step( |
+ SHA1Context *p, /* Add content to this context */ |
+ const unsigned char *data, /* Data to be added */ |
+ unsigned int len /* Number of bytes in data */ |
+){ |
+ unsigned int i, j; |
+ |
+ j = p->count[0]; |
+ if( (p->count[0] += len << 3) < j ){ |
+ p->count[1] += (len>>29)+1; |
+ } |
+ j = (j >> 3) & 63; |
+ if( (j + len) > 63 ){ |
+ (void)memcpy(&p->buffer[j], data, (i = 64-j)); |
+ SHA1Transform(p->state, p->buffer); |
+ for(; i + 63 < len; i += 64){ |
+ SHA1Transform(p->state, &data[i]); |
+ } |
+ j = 0; |
+ }else{ |
+ i = 0; |
+ } |
+ (void)memcpy(&p->buffer[j], &data[i], len - i); |
+} |
+ |
+/* Compute a string using sqlite3_vsnprintf() and hash it */ |
+static void hash_step_vformat( |
+ SHA1Context *p, /* Add content to this context */ |
+ const char *zFormat, |
+ ... |
+){ |
+ va_list ap; |
+ int n; |
+ char zBuf[50]; |
+ va_start(ap, zFormat); |
+ sqlite3_vsnprintf(sizeof(zBuf),zBuf,zFormat,ap); |
+ va_end(ap); |
+ n = (int)strlen(zBuf); |
+ hash_step(p, (unsigned char*)zBuf, n); |
+} |
+ |
+ |
+/* Add padding and compute the message digest. Render the |
+** message digest as lower-case hexadecimal and put it into |
+** zOut[]. zOut[] must be at least 41 bytes long. */ |
+static void hash_finish( |
+ SHA1Context *p, /* The SHA1 context to finish and render */ |
+ char *zOut /* Store hexadecimal hash here */ |
+){ |
+ unsigned int i; |
+ unsigned char finalcount[8]; |
+ unsigned char digest[20]; |
+ static const char zEncode[] = "0123456789abcdef"; |
+ |
+ for (i = 0; i < 8; i++){ |
+ finalcount[i] = (unsigned char)((p->count[(i >= 4 ? 0 : 1)] |
+ >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */ |
+ } |
+ hash_step(p, (const unsigned char *)"\200", 1); |
+ while ((p->count[0] & 504) != 448){ |
+ hash_step(p, (const unsigned char *)"\0", 1); |
+ } |
+ hash_step(p, finalcount, 8); /* Should cause a SHA1Transform() */ |
+ for (i = 0; i < 20; i++){ |
+ digest[i] = (unsigned char)((p->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255); |
+ } |
+ for(i=0; i<20; i++){ |
+ zOut[i*2] = zEncode[(digest[i]>>4)&0xf]; |
+ zOut[i*2+1] = zEncode[digest[i] & 0xf]; |
+ } |
+ zOut[i*2]= 0; |
+} |
+ |
+/* |
+** Implementation of the sha1(X) function. |
+** |
+** Return a lower-case hexadecimal rendering of the SHA1 hash of the |
+** argument X. If X is a BLOB, it is hashed as is. For all other |
+** types of input, X is converted into a UTF-8 string and the string |
+** is hash without the trailing 0x00 terminator. The hash of a NULL |
+** value is NULL. |
+*/ |
+static void sha1Func( |
+ sqlite3_context *context, |
+ int argc, |
+ sqlite3_value **argv |
+){ |
+ SHA1Context cx; |
+ int eType = sqlite3_value_type(argv[0]); |
+ int nByte = sqlite3_value_bytes(argv[0]); |
+ char zOut[44]; |
+ |
+ assert( argc==1 ); |
+ if( eType==SQLITE_NULL ) return; |
+ hash_init(&cx); |
+ if( eType==SQLITE_BLOB ){ |
+ hash_step(&cx, sqlite3_value_blob(argv[0]), nByte); |
+ }else{ |
+ hash_step(&cx, sqlite3_value_text(argv[0]), nByte); |
+ } |
+ hash_finish(&cx, zOut); |
+ sqlite3_result_text(context, zOut, 40, SQLITE_TRANSIENT); |
+} |
+ |
+/* |
+** Run a prepared statement and compute the SHA1 hash on the |
+** result rows. |
+*/ |
+static void sha1RunStatement(SHA1Context *pCtx, sqlite3_stmt *pStmt){ |
+ int nCol = sqlite3_column_count(pStmt); |
+ const char *z = sqlite3_sql(pStmt); |
+ int n = (int)strlen(z); |
+ |
+ hash_step_vformat(pCtx,"S%d:",n); |
+ hash_step(pCtx,(unsigned char*)z,n); |
+ |
+ /* Compute a hash over the result of the query */ |
+ while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
+ int i; |
+ hash_step(pCtx,(const unsigned char*)"R",1); |
+ for(i=0; i<nCol; i++){ |
+ switch( sqlite3_column_type(pStmt,i) ){ |
+ case SQLITE_NULL: { |
+ hash_step(pCtx, (const unsigned char*)"N",1); |
+ break; |
+ } |
+ case SQLITE_INTEGER: { |
+ sqlite3_uint64 u; |
+ int j; |
+ unsigned char x[9]; |
+ sqlite3_int64 v = sqlite3_column_int64(pStmt,i); |
+ memcpy(&u, &v, 8); |
+ for(j=8; j>=1; j--){ |
+ x[j] = u & 0xff; |
+ u >>= 8; |
+ } |
+ x[0] = 'I'; |
+ hash_step(pCtx, x, 9); |
+ break; |
+ } |
+ case SQLITE_FLOAT: { |
+ sqlite3_uint64 u; |
+ int j; |
+ unsigned char x[9]; |
+ double r = sqlite3_column_double(pStmt,i); |
+ memcpy(&u, &r, 8); |
+ for(j=8; j>=1; j--){ |
+ x[j] = u & 0xff; |
+ u >>= 8; |
+ } |
+ x[0] = 'F'; |
+ hash_step(pCtx,x,9); |
+ break; |
+ } |
+ case SQLITE_TEXT: { |
+ int n2 = sqlite3_column_bytes(pStmt, i); |
+ const unsigned char *z2 = sqlite3_column_text(pStmt, i); |
+ hash_step_vformat(pCtx,"T%d:",n2); |
+ hash_step(pCtx, z2, n2); |
+ break; |
+ } |
+ case SQLITE_BLOB: { |
+ int n2 = sqlite3_column_bytes(pStmt, i); |
+ const unsigned char *z2 = sqlite3_column_blob(pStmt, i); |
+ hash_step_vformat(pCtx,"B%d:",n2); |
+ hash_step(pCtx, z2, n2); |
+ break; |
+ } |
+ } |
+ } |
+ } |
+} |
+ |
+/* |
+** Run one or more statements of SQL. Compute a SHA1 hash of the output. |
+*/ |
+static int sha1Exec( |
+ sqlite3 *db, /* Run against this database connection */ |
+ const char *zSql, /* The SQL to be run */ |
+ char *zOut /* Store the SHA1 hash as hexadecimal in this buffer */ |
+){ |
+ sqlite3_stmt *pStmt = 0; /* A prepared statement */ |
+ int rc; /* Result of an API call */ |
+ SHA1Context cx; /* The SHA1 hash context */ |
+ |
+ hash_init(&cx); |
+ while( zSql[0] ){ |
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zSql); |
+ if( rc ){ |
+ sqlite3_finalize(pStmt); |
+ return rc; |
+ } |
+ sha1RunStatement(&cx, pStmt); |
+ sqlite3_finalize(pStmt); |
+ } |
+ hash_finish(&cx, zOut); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Implementation of the sha1_query(SQL) function. |
+** |
+** This function compiles and runs the SQL statement(s) given in the |
+** argument. The results are hashed using SHA1 and that hash is returned. |
+** |
+** The original SQL text is included as part of the hash. |
+** |
+** The hash is not just a concatenation of the outputs. Each query |
+** is delimited and each row and value within the query is delimited, |
+** with all values being marked with their datatypes. |
+*/ |
+static void sha1QueryFunc( |
+ sqlite3_context *context, |
+ int argc, |
+ sqlite3_value **argv |
+){ |
+ sqlite3 *db = sqlite3_context_db_handle(context); |
+ const char *zSql = (const char*)sqlite3_value_text(argv[0]); |
+ sqlite3_stmt *pStmt = 0; |
+ int rc; |
+ SHA1Context cx; |
+ char zOut[44]; |
+ |
+ assert( argc==1 ); |
+ if( zSql==0 ) return; |
+ hash_init(&cx); |
+ while( zSql[0] ){ |
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zSql); |
+ if( rc ){ |
+ char *zMsg = sqlite3_mprintf("error SQL statement [%s]: %s", |
+ zSql, sqlite3_errmsg(db)); |
+ sqlite3_finalize(pStmt); |
+ sqlite3_result_error(context, zMsg, -1); |
+ sqlite3_free(zMsg); |
+ return; |
+ } |
+ if( !sqlite3_stmt_readonly(pStmt) ){ |
+ char *zMsg = sqlite3_mprintf("non-query: [%s]", sqlite3_sql(pStmt)); |
+ sqlite3_finalize(pStmt); |
+ sqlite3_result_error(context, zMsg, -1); |
+ sqlite3_free(zMsg); |
+ return; |
+ } |
+ sha1RunStatement(&cx, pStmt); |
+ sqlite3_finalize(pStmt); |
+ } |
+ hash_finish(&cx, zOut); |
+ sqlite3_result_text(context, zOut, 40, SQLITE_TRANSIENT); |
+} |
+/* End of ext/misc/sha1.c |
+******************************************************************************/ |
+ |
+/* How much output to display */ |
+#define VOLUME_MIN 0 |
+#define VOLUME_OFF 0 |
+#define VOLUME_ERROR_ONLY 1 |
+#define VOLUME_LOW 2 |
+#define VOLUME_ECHO 3 |
+#define VOLUME_VERBOSE 4 |
+#define VOLUME_MAX 4 |
+ |
+/* A string accumulator |
+*/ |
+typedef struct Str { |
+ char *z; /* Accumulated text */ |
+ int n; /* Bytes of z[] used so far */ |
+ int nAlloc; /* Bytes allocated for z[] */ |
+} Str; |
+ |
+/* Append text to the Str object |
+*/ |
+static void strAppend(Str *p, const char *z){ |
+ int n = (int)strlen(z); |
+ if( p->n+n >= p->nAlloc ){ |
+ p->nAlloc += p->n+n + 100; |
+ p->z = sqlite3_realloc(p->z, p->nAlloc); |
+ if( z==0 ){ |
+ printf("Could not allocate %d bytes\n", p->nAlloc); |
+ exit(1); |
+ } |
+ } |
+ memcpy(p->z+p->n, z, n+1); |
+ p->n += n; |
+} |
+ |
+/* This is an sqlite3_exec() callback that will capture all |
+** output in a Str. |
+** |
+** Columns are separated by ",". Rows are separated by "|". |
+*/ |
+static int execCallback(void *pStr, int argc, char **argv, char **colv){ |
+ int i; |
+ Str *p = (Str*)pStr; |
+ if( p->n ) strAppend(p, "|"); |
+ for(i=0; i<argc; i++){ |
+ const char *z = (const char*)argv[i]; |
+ if( z==0 ) z = "NULL"; |
+ if( i>0 ) strAppend(p, ","); |
+ strAppend(p, z); |
+ } |
+ return 0; |
+} |
+ |
+/* |
+** Run an SQL statement constructing using sqlite3_vmprintf(). |
+** Return the number of errors. |
+*/ |
+static int runSql(sqlite3 *db, const char *zFormat, ...){ |
+ char *zSql; |
+ char *zErr = 0; |
+ int rc; |
+ int nErr = 0; |
+ va_list ap; |
+ |
+ va_start(ap, zFormat); |
+ zSql = sqlite3_vmprintf(zFormat, ap); |
+ va_end(ap); |
+ if( zSql==0 ){ |
+ printf("Out of memory\n"); |
+ exit(1); |
+ } |
+ rc = sqlite3_exec(db, zSql, 0, 0, &zErr); |
+ if( rc || zErr ){ |
+ printf("SQL error in [%s]: code=%d: %s\n", zSql, rc, zErr); |
+ nErr++; |
+ } |
+ sqlite3_free(zSql); |
+ return nErr; |
+} |
+ |
+/* |
+** Generate a prepared statement using a formatted string. |
+*/ |
+static sqlite3_stmt *prepareSql(sqlite3 *db, const char *zFormat, ...){ |
+ char *zSql; |
+ int rc; |
+ sqlite3_stmt *pStmt = 0; |
+ va_list ap; |
+ |
+ va_start(ap, zFormat); |
+ zSql = sqlite3_vmprintf(zFormat, ap); |
+ va_end(ap); |
+ if( zSql==0 ){ |
+ printf("Out of memory\n"); |
+ exit(1); |
+ } |
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); |
+ if( rc ){ |
+ printf("SQL error in [%s]: code=%d: %s\n", zSql, rc, sqlite3_errmsg(db)); |
+ sqlite3_finalize(pStmt); |
+ pStmt = 0; |
+ } |
+ sqlite3_free(zSql); |
+ return pStmt; |
+} |
+ |
+/* |
+** Construct the standard selftest configuration for the database. |
+*/ |
+static int buildSelftestTable(sqlite3 *db){ |
+ int rc; |
+ sqlite3_stmt *pStmt; |
+ int tno = 110; |
+ char *zSql; |
+ char zHash[50]; |
+ |
+ rc = runSql(db, |
+ "CREATE TABLE IF NOT EXISTS selftest(\n" |
+ " tno INTEGER PRIMARY KEY, -- test number\n" |
+ " op TEXT, -- what kind of test\n" |
+ " sql TEXT, -- SQL text for the test\n" |
+ " ans TEXT -- expected answer\n" |
+ ");" |
+ "INSERT INTO selftest" |
+ " VALUES(100,'memo','Hashes generated using --init',NULL);" |
+ ); |
+ if( rc ) return 1; |
+ tno = 110; |
+ zSql = "SELECT type,name,tbl_name,sql FROM sqlite_master ORDER BY name"; |
+ sha1Exec(db, zSql, zHash); |
+ rc = runSql(db, |
+ "INSERT INTO selftest(tno,op,sql,ans)" |
+ " VALUES(%d,'sha1',%Q,%Q)", tno, zSql, zHash); |
+ tno += 10; |
+ pStmt = prepareSql(db, |
+ "SELECT lower(name) FROM sqlite_master" |
+ " WHERE type='table' AND sql NOT GLOB 'CREATE VIRTUAL*'" |
+ " AND name<>'selftest'" |
+ " ORDER BY 1"); |
+ if( pStmt==0 ) return 1; |
+ while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
+ zSql = sqlite3_mprintf("SELECT * FROM \"%w\" NOT INDEXED", |
+ sqlite3_column_text(pStmt, 0)); |
+ if( zSql==0 ){ |
+ printf("Of of memory\n"); |
+ exit(1); |
+ } |
+ sha1Exec(db, zSql, zHash); |
+ rc = runSql(db, |
+ "INSERT INTO selftest(tno,op,sql,ans)" |
+ " VALUES(%d,'sha1',%Q,%Q)", tno, zSql, zHash); |
+ tno += 10; |
+ sqlite3_free(zSql); |
+ if( rc ) break; |
+ } |
+ sqlite3_finalize(pStmt); |
+ if( rc ) return 1; |
+ rc = runSql(db, |
+ "INSERT INTO selftest(tno,op,sql,ans)" |
+ " VALUES(%d,'run','PRAGMA integrity_check','ok');", tno); |
+ if( rc ) return 1; |
+ return rc; |
+} |
+ |
+/* |
+** Return true if the named table exists |
+*/ |
+static int tableExists(sqlite3 *db, const char *zTab){ |
+ return sqlite3_table_column_metadata(db, "main", zTab, 0, 0, 0, 0, 0, 0) |
+ == SQLITE_OK; |
+} |
+ |
+/* |
+** Default selftest table content, for use when there is no selftest table |
+*/ |
+static char *azDefaultTest[] = { |
+ 0, 0, 0, 0, |
+ "0", "memo", "Missing SELFTEST table - default checks only", "", |
+ "1", "run", "PRAGMA integrity_check", "ok" |
+}; |
+ |
+int main(int argc, char **argv){ |
+ int eVolume = VOLUME_LOW; /* How much output to display */ |
+ const char **azDb = 0; /* Name of the database file */ |
+ int nDb = 0; /* Number of database files to check */ |
+ int doInit = 0; /* True if --init is present */ |
+ sqlite3 *db = 0; /* Open database connection */ |
+ int rc; /* Return code from API calls */ |
+ char *zErrMsg = 0; /* An error message return */ |
+ char **azTest; /* Content of the selftest table */ |
+ int nRow = 0, nCol = 0; /* Rows and columns in azTest[] */ |
+ int i; /* Loop counter */ |
+ int nErr = 0; /* Number of errors */ |
+ int iDb; /* Loop counter for databases */ |
+ Str str; /* Result accumulator */ |
+ int nTest = 0; /* Number of tests run */ |
+ |
+ for(i=1; i<argc; i++){ |
+ const char *z = argv[i]; |
+ if( z[0]=='-' ){ |
+ if( z[1]=='-' ) z++; |
+ if( strcmp(z, "-help")==0 ){ |
+ printf("%s", zHelp); |
+ return 0; |
+ }else |
+ if( strcmp(z, "-init")==0 ){ |
+ doInit = 1; |
+ }else |
+ if( strcmp(z, "-a")==0 ){ |
+ if( eVolume>VOLUME_MIN) eVolume--; |
+ }else |
+ if( strcmp(z, "-v")==0 ){ |
+ if( eVolume<VOLUME_MAX) eVolume++; |
+ }else |
+ { |
+ printf("unknown option: \"%s\"\nUse --help for more information\n", |
+ argv[i]); |
+ return 1; |
+ } |
+ }else{ |
+ nDb++; |
+ azDb = sqlite3_realloc(azDb, nDb*sizeof(azDb[0])); |
+ if( azDb==0 ){ |
+ printf("out of memory\n"); |
+ exit(1); |
+ } |
+ azDb[nDb-1] = argv[i]; |
+ } |
+ } |
+ if( nDb==0 ){ |
+ printf("No databases specified. Use --help for more info\n"); |
+ return 1; |
+ } |
+ if( eVolume>=VOLUME_LOW ){ |
+ printf("SQLite %s\n", sqlite3_sourceid()); |
+ } |
+ memset(&str, 0, sizeof(str)); |
+ strAppend(&str, "\n"); |
+ for(iDb=0; iDb<nDb; iDb++, sqlite3_close(db)){ |
+ rc = sqlite3_open_v2(azDb[iDb], &db, |
+ doInit ? SQLITE_OPEN_READWRITE : SQLITE_OPEN_READONLY, 0); |
+ if( rc ){ |
+ printf("Cannot open \"%s\": %s\n", azDb[iDb], sqlite3_errmsg(db)); |
+ return 1; |
+ } |
+ rc = sqlite3_create_function(db, "sha1", 1, SQLITE_UTF8, 0, |
+ sha1Func, 0, 0); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3_create_function(db, "sha1_query", 1, SQLITE_UTF8, 0, |
+ sha1QueryFunc, 0, 0); |
+ } |
+ if( rc ){ |
+ printf("Initialization error: %s\n", sqlite3_errmsg(db)); |
+ sqlite3_close(db); |
+ return 1; |
+ } |
+ if( doInit && !tableExists(db, "selftest") ){ |
+ buildSelftestTable(db); |
+ } |
+ if( !tableExists(db, "selftest") ){ |
+ azTest = azDefaultTest; |
+ nCol = 4; |
+ nRow = 2; |
+ }else{ |
+ rc = sqlite3_get_table(db, |
+ "SELECT tno,op,sql,ans FROM selftest ORDER BY tno", |
+ &azTest, &nRow, &nCol, &zErrMsg); |
+ if( rc || zErrMsg ){ |
+ printf("Error querying selftest: %s\n", zErrMsg); |
+ sqlite3_free_table(azTest); |
+ continue; |
+ } |
+ } |
+ for(i=1; i<=nRow; i++){ |
+ int tno = atoi(azTest[i*nCol]); |
+ const char *zOp = azTest[i*nCol+1]; |
+ const char *zSql = azTest[i*nCol+2]; |
+ const char *zAns = azTest[i*nCol+3]; |
+ |
+ if( eVolume>=VOLUME_ECHO ){ |
+ char *zQuote = sqlite3_mprintf("%q", zSql); |
+ printf("%d: %s %s\n", tno, zOp, zSql); |
+ sqlite3_free(zQuote); |
+ } |
+ if( strcmp(zOp,"memo")==0 ){ |
+ if( eVolume>=VOLUME_LOW ){ |
+ printf("%s: %s\n", azDb[iDb], zSql); |
+ } |
+ }else |
+ if( strcmp(zOp,"sha1")==0 ){ |
+ char zOut[44]; |
+ rc = sha1Exec(db, zSql, zOut); |
+ nTest++; |
+ if( eVolume>=VOLUME_VERBOSE ){ |
+ printf("Result: %s\n", zOut); |
+ } |
+ if( rc ){ |
+ nErr++; |
+ if( eVolume>=VOLUME_ERROR_ONLY ){ |
+ printf("%d: error-code-%d: %s\n", tno, rc, sqlite3_errmsg(db)); |
+ } |
+ }else if( strcmp(zAns,zOut)!=0 ){ |
+ nErr++; |
+ if( eVolume>=VOLUME_ERROR_ONLY ){ |
+ printf("%d: Expected: [%s]\n", tno, zAns); |
+ printf("%d: Got: [%s]\n", tno, zOut); |
+ } |
+ } |
+ }else |
+ if( strcmp(zOp,"run")==0 ){ |
+ str.n = 0; |
+ str.z[0] = 0; |
+ zErrMsg = 0; |
+ rc = sqlite3_exec(db, zSql, execCallback, &str, &zErrMsg); |
+ nTest++; |
+ if( eVolume>=VOLUME_VERBOSE ){ |
+ printf("Result: %s\n", str.z); |
+ } |
+ if( rc || zErrMsg ){ |
+ nErr++; |
+ if( eVolume>=VOLUME_ERROR_ONLY ){ |
+ printf("%d: error-code-%d: %s\n", tno, rc, zErrMsg); |
+ } |
+ sqlite3_free(zErrMsg); |
+ }else if( strcmp(zAns,str.z)!=0 ){ |
+ nErr++; |
+ if( eVolume>=VOLUME_ERROR_ONLY ){ |
+ printf("%d: Expected: [%s]\n", tno, zAns); |
+ printf("%d: Got: [%s]\n", tno, str.z); |
+ } |
+ } |
+ }else |
+ { |
+ printf("Unknown operation \"%s\" on selftest line %d\n", zOp, tno); |
+ return 1; |
+ } |
+ } |
+ if( azTest!=azDefaultTest ) sqlite3_free_table(azTest); |
+ } |
+ if( eVolume>=VOLUME_LOW || (nErr>0 && eVolume>=VOLUME_ERROR_ONLY) ){ |
+ printf("%d errors out of %d tests on %d databases\n", nErr, nTest, nDb); |
+ } |
+ return nErr; |
+} |