Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(2)

Side by Side Diff: third_party/sqlite/src/src/build.c

Issue 2751253002: [sql] Import SQLite 3.17.0. (Closed)
Patch Set: also clang on Linux i386 Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « third_party/sqlite/src/src/btreeInt.h ('k') | third_party/sqlite/src/src/callback.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* 1 /*
2 ** 2001 September 15 2 ** 2001 September 15
3 ** 3 **
4 ** The author disclaims copyright to this source code. In place of 4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing: 5 ** a legal notice, here is a blessing:
6 ** 6 **
7 ** May you do good and not evil. 7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others. 8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give. 9 ** May you share freely, never taking more than you give.
10 ** 10 **
11 ************************************************************************* 11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser 12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the 13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax: 14 ** following kinds of SQL syntax:
15 ** 15 **
16 ** CREATE TABLE 16 ** CREATE TABLE
17 ** DROP TABLE 17 ** DROP TABLE
18 ** CREATE INDEX 18 ** CREATE INDEX
19 ** DROP INDEX 19 ** DROP INDEX
20 ** creating ID lists 20 ** creating ID lists
21 ** BEGIN TRANSACTION 21 ** BEGIN TRANSACTION
22 ** COMMIT 22 ** COMMIT
23 ** ROLLBACK 23 ** ROLLBACK
24 */ 24 */
25 #include "sqliteInt.h" 25 #include "sqliteInt.h"
26 26
27 /*
28 ** This routine is called when a new SQL statement is beginning to
29 ** be parsed. Initialize the pParse structure as needed.
30 */
31 void sqlite3BeginParse(Parse *pParse, int explainFlag){
32 pParse->explain = (u8)explainFlag;
33 pParse->nVar = 0;
34 }
35
36 #ifndef SQLITE_OMIT_SHARED_CACHE 27 #ifndef SQLITE_OMIT_SHARED_CACHE
37 /* 28 /*
38 ** The TableLock structure is only used by the sqlite3TableLock() and 29 ** The TableLock structure is only used by the sqlite3TableLock() and
39 ** codeTableLocks() functions. 30 ** codeTableLocks() functions.
40 */ 31 */
41 struct TableLock { 32 struct TableLock {
42 int iDb; /* The database containing the table to be locked */ 33 int iDb; /* The database containing the table to be locked */
43 int iTab; /* The root page of the table to be locked */ 34 int iTab; /* The root page of the table to be locked */
44 u8 isWriteLock; /* True for write lock. False for a read lock */ 35 u8 isWriteLock; /* True for write lock. False for a read lock */
45 const char *zName; /* Name of the table */ 36 const char *zLockName; /* Name of the table */
46 }; 37 };
47 38
48 /* 39 /*
49 ** Record the fact that we want to lock a table at run-time. 40 ** Record the fact that we want to lock a table at run-time.
50 ** 41 **
51 ** The table to be locked has root page iTab and is found in database iDb. 42 ** The table to be locked has root page iTab and is found in database iDb.
52 ** A read or a write lock can be taken depending on isWritelock. 43 ** A read or a write lock can be taken depending on isWritelock.
53 ** 44 **
54 ** This routine just records the fact that the lock is desired. The 45 ** This routine just records the fact that the lock is desired. The
55 ** code to make the lock occur is generated by a later call to 46 ** code to make the lock occur is generated by a later call to
56 ** codeTableLocks() which occurs during sqlite3FinishCoding(). 47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
57 */ 48 */
58 void sqlite3TableLock( 49 void sqlite3TableLock(
59 Parse *pParse, /* Parsing context */ 50 Parse *pParse, /* Parsing context */
60 int iDb, /* Index of the database containing the table to lock */ 51 int iDb, /* Index of the database containing the table to lock */
61 int iTab, /* Root page number of the table to be locked */ 52 int iTab, /* Root page number of the table to be locked */
62 u8 isWriteLock, /* True for a write lock */ 53 u8 isWriteLock, /* True for a write lock */
63 const char *zName /* Name of the table to be locked */ 54 const char *zName /* Name of the table to be locked */
64 ){ 55 ){
65 Parse *pToplevel = sqlite3ParseToplevel(pParse); 56 Parse *pToplevel = sqlite3ParseToplevel(pParse);
66 int i; 57 int i;
67 int nBytes; 58 int nBytes;
68 TableLock *p; 59 TableLock *p;
69 assert( iDb>=0 ); 60 assert( iDb>=0 );
70 61
62 if( iDb==1 ) return;
63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
71 for(i=0; i<pToplevel->nTableLock; i++){ 64 for(i=0; i<pToplevel->nTableLock; i++){
72 p = &pToplevel->aTableLock[i]; 65 p = &pToplevel->aTableLock[i];
73 if( p->iDb==iDb && p->iTab==iTab ){ 66 if( p->iDb==iDb && p->iTab==iTab ){
74 p->isWriteLock = (p->isWriteLock || isWriteLock); 67 p->isWriteLock = (p->isWriteLock || isWriteLock);
75 return; 68 return;
76 } 69 }
77 } 70 }
78 71
79 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); 72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
80 pToplevel->aTableLock = 73 pToplevel->aTableLock =
81 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); 74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
82 if( pToplevel->aTableLock ){ 75 if( pToplevel->aTableLock ){
83 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; 76 p = &pToplevel->aTableLock[pToplevel->nTableLock++];
84 p->iDb = iDb; 77 p->iDb = iDb;
85 p->iTab = iTab; 78 p->iTab = iTab;
86 p->isWriteLock = isWriteLock; 79 p->isWriteLock = isWriteLock;
87 p->zName = zName; 80 p->zLockName = zName;
88 }else{ 81 }else{
89 pToplevel->nTableLock = 0; 82 pToplevel->nTableLock = 0;
90 pToplevel->db->mallocFailed = 1; 83 sqlite3OomFault(pToplevel->db);
91 } 84 }
92 } 85 }
93 86
94 /* 87 /*
95 ** Code an OP_TableLock instruction for each table locked by the 88 ** Code an OP_TableLock instruction for each table locked by the
96 ** statement (configured by calls to sqlite3TableLock()). 89 ** statement (configured by calls to sqlite3TableLock()).
97 */ 90 */
98 static void codeTableLocks(Parse *pParse){ 91 static void codeTableLocks(Parse *pParse){
99 int i; 92 int i;
100 Vdbe *pVdbe; 93 Vdbe *pVdbe;
101 94
102 pVdbe = sqlite3GetVdbe(pParse); 95 pVdbe = sqlite3GetVdbe(pParse);
103 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ 96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
104 97
105 for(i=0; i<pParse->nTableLock; i++){ 98 for(i=0; i<pParse->nTableLock; i++){
106 TableLock *p = &pParse->aTableLock[i]; 99 TableLock *p = &pParse->aTableLock[i];
107 int p1 = p->iDb; 100 int p1 = p->iDb;
108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, 101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
109 p->zName, P4_STATIC); 102 p->zLockName, P4_STATIC);
110 } 103 }
111 } 104 }
112 #else 105 #else
113 #define codeTableLocks(x) 106 #define codeTableLocks(x)
114 #endif 107 #endif
115 108
116 /* 109 /*
117 ** Return TRUE if the given yDbMask object is empty - if it contains no 110 ** Return TRUE if the given yDbMask object is empty - if it contains no
118 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() 111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
119 ** macros when SQLITE_MAX_ATTACHED is greater than 30. 112 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
(...skipping 28 matching lines...) Expand all
148 return; 141 return;
149 } 142 }
150 143
151 /* Begin by generating some termination code at the end of the 144 /* Begin by generating some termination code at the end of the
152 ** vdbe program 145 ** vdbe program
153 */ 146 */
154 v = sqlite3GetVdbe(pParse); 147 v = sqlite3GetVdbe(pParse);
155 assert( !pParse->isMultiWrite 148 assert( !pParse->isMultiWrite
156 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); 149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
157 if( v ){ 150 if( v ){
158 while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){}
159 sqlite3VdbeAddOp0(v, OP_Halt); 151 sqlite3VdbeAddOp0(v, OP_Halt);
160 152
161 #if SQLITE_USER_AUTHENTICATION 153 #if SQLITE_USER_AUTHENTICATION
162 if( pParse->nTableLock>0 && db->init.busy==0 ){ 154 if( pParse->nTableLock>0 && db->init.busy==0 ){
163 sqlite3UserAuthInit(db); 155 sqlite3UserAuthInit(db);
164 if( db->auth.authLevel<UAUTH_User ){ 156 if( db->auth.authLevel<UAUTH_User ){
157 sqlite3ErrorMsg(pParse, "user not authenticated");
165 pParse->rc = SQLITE_AUTH_USER; 158 pParse->rc = SQLITE_AUTH_USER;
166 sqlite3ErrorMsg(pParse, "user not authenticated");
167 return; 159 return;
168 } 160 }
169 } 161 }
170 #endif 162 #endif
171 163
172 /* The cookie mask contains one bit for each database file open. 164 /* The cookie mask contains one bit for each database file open.
173 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are 165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
174 ** set for each database that is used. Generate code to start a 166 ** set for each database that is used. Generate code to start a
175 ** transaction on each used database and to verify the schema cookie 167 ** transaction on each used database and to verify the schema cookie
176 ** on each used database. 168 ** on each used database.
177 */ 169 */
178 if( db->mallocFailed==0 170 if( db->mallocFailed==0
179 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) 171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
180 ){ 172 ){
181 int iDb, i; 173 int iDb, i;
182 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); 174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
183 sqlite3VdbeJumpHere(v, 0); 175 sqlite3VdbeJumpHere(v, 0);
184 for(iDb=0; iDb<db->nDb; iDb++){ 176 for(iDb=0; iDb<db->nDb; iDb++){
177 Schema *pSchema;
185 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; 178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
186 sqlite3VdbeUsesBtree(v, iDb); 179 sqlite3VdbeUsesBtree(v, iDb);
180 pSchema = db->aDb[iDb].pSchema;
187 sqlite3VdbeAddOp4Int(v, 181 sqlite3VdbeAddOp4Int(v,
188 OP_Transaction, /* Opcode */ 182 OP_Transaction, /* Opcode */
189 iDb, /* P1 */ 183 iDb, /* P1 */
190 DbMaskTest(pParse->writeMask,iDb), /* P2 */ 184 DbMaskTest(pParse->writeMask,iDb), /* P2 */
191 pParse->cookieValue[iDb], /* P3 */ 185 pSchema->schema_cookie, /* P3 */
192 db->aDb[iDb].pSchema->iGeneration /* P4 */ 186 pSchema->iGeneration /* P4 */
193 ); 187 );
194 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); 188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
195 VdbeComment((v, 189 VdbeComment((v,
196 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); 190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
197 } 191 }
198 #ifndef SQLITE_OMIT_VIRTUALTABLE 192 #ifndef SQLITE_OMIT_VIRTUALTABLE
199 for(i=0; i<pParse->nVtabLock; i++){ 193 for(i=0; i<pParse->nVtabLock; i++){
200 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); 194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
201 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); 195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
202 } 196 }
(...skipping 27 matching lines...) Expand all
230 224
231 /* Get the VDBE program ready for execution 225 /* Get the VDBE program ready for execution
232 */ 226 */
233 if( v && pParse->nErr==0 && !db->mallocFailed ){ 227 if( v && pParse->nErr==0 && !db->mallocFailed ){
234 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ 228 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */
235 /* A minimum of one cursor is required if autoincrement is used 229 /* A minimum of one cursor is required if autoincrement is used
236 * See ticket [a696379c1f08866] */ 230 * See ticket [a696379c1f08866] */
237 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; 231 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
238 sqlite3VdbeMakeReady(v, pParse); 232 sqlite3VdbeMakeReady(v, pParse);
239 pParse->rc = SQLITE_DONE; 233 pParse->rc = SQLITE_DONE;
240 pParse->colNamesSet = 0;
241 }else{ 234 }else{
242 pParse->rc = SQLITE_ERROR; 235 pParse->rc = SQLITE_ERROR;
243 } 236 }
244 pParse->nTab = 0;
245 pParse->nMem = 0;
246 pParse->nSet = 0;
247 pParse->nVar = 0;
248 DbMaskZero(pParse->cookieMask);
249 } 237 }
250 238
251 /* 239 /*
252 ** Run the parser and code generator recursively in order to generate 240 ** Run the parser and code generator recursively in order to generate
253 ** code for the SQL statement given onto the end of the pParse context 241 ** code for the SQL statement given onto the end of the pParse context
254 ** currently under construction. When the parser is run recursively 242 ** currently under construction. When the parser is run recursively
255 ** this way, the final OP_Halt is not appended and other initialization 243 ** this way, the final OP_Halt is not appended and other initialization
256 ** and finalization steps are omitted because those are handling by the 244 ** and finalization steps are omitted because those are handling by the
257 ** outermost parser. 245 ** outermost parser.
258 ** 246 **
259 ** Not everything is nestable. This facility is designed to permit 247 ** Not everything is nestable. This facility is designed to permit
260 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use 248 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
261 ** care if you decide to try to use this routine for some other purposes. 249 ** care if you decide to try to use this routine for some other purposes.
262 */ 250 */
263 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ 251 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
264 va_list ap; 252 va_list ap;
265 char *zSql; 253 char *zSql;
266 char *zErrMsg = 0; 254 char *zErrMsg = 0;
267 sqlite3 *db = pParse->db; 255 sqlite3 *db = pParse->db;
268 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) 256 char saveBuf[PARSE_TAIL_SZ];
269 char saveBuf[SAVE_SZ];
270 257
271 if( pParse->nErr ) return; 258 if( pParse->nErr ) return;
272 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ 259 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
273 va_start(ap, zFormat); 260 va_start(ap, zFormat);
274 zSql = sqlite3VMPrintf(db, zFormat, ap); 261 zSql = sqlite3VMPrintf(db, zFormat, ap);
275 va_end(ap); 262 va_end(ap);
276 if( zSql==0 ){ 263 if( zSql==0 ){
277 return; /* A malloc must have failed */ 264 return; /* A malloc must have failed */
278 } 265 }
279 pParse->nested++; 266 pParse->nested++;
280 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); 267 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
281 memset(&pParse->nVar, 0, SAVE_SZ); 268 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
282 sqlite3RunParser(pParse, zSql, &zErrMsg); 269 sqlite3RunParser(pParse, zSql, &zErrMsg);
283 sqlite3DbFree(db, zErrMsg); 270 sqlite3DbFree(db, zErrMsg);
284 sqlite3DbFree(db, zSql); 271 sqlite3DbFree(db, zSql);
285 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); 272 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
286 pParse->nested--; 273 pParse->nested--;
287 } 274 }
288 275
289 #if SQLITE_USER_AUTHENTICATION 276 #if SQLITE_USER_AUTHENTICATION
290 /* 277 /*
291 ** Return TRUE if zTable is the name of the system table that stores the 278 ** Return TRUE if zTable is the name of the system table that stores the
292 ** list of users and their access credentials. 279 ** list of users and their access credentials.
293 */ 280 */
294 int sqlite3UserAuthTable(const char *zTable){ 281 int sqlite3UserAuthTable(const char *zTable){
295 return sqlite3_stricmp(zTable, "sqlite_user")==0; 282 return sqlite3_stricmp(zTable, "sqlite_user")==0;
(...skipping 18 matching lines...) Expand all
314 301
315 /* All mutexes are required for schema access. Make sure we hold them. */ 302 /* All mutexes are required for schema access. Make sure we hold them. */
316 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 303 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
317 #if SQLITE_USER_AUTHENTICATION 304 #if SQLITE_USER_AUTHENTICATION
318 /* Only the admin user is allowed to know that the sqlite_user table 305 /* Only the admin user is allowed to know that the sqlite_user table
319 ** exists */ 306 ** exists */
320 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ 307 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
321 return 0; 308 return 0;
322 } 309 }
323 #endif 310 #endif
324 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 311 while(1){
325 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 312 for(i=OMIT_TEMPDB; i<db->nDb; i++){
326 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; 313 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
327 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 314 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){
328 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); 315 assert( sqlite3SchemaMutexHeld(db, j, 0) );
329 if( p ) break; 316 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
317 if( p ) return p;
318 }
319 }
320 /* Not found. If the name we were looking for was temp.sqlite_master
321 ** then change the name to sqlite_temp_master and try again. */
322 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break;
323 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break;
324 zName = TEMP_MASTER_NAME;
330 } 325 }
331 return p; 326 return 0;
332 } 327 }
333 328
334 /* 329 /*
335 ** Locate the in-memory structure that describes a particular database 330 ** Locate the in-memory structure that describes a particular database
336 ** table given the name of that table and (optionally) the name of the 331 ** table given the name of that table and (optionally) the name of the
337 ** database containing the table. Return NULL if not found. Also leave an 332 ** database containing the table. Return NULL if not found. Also leave an
338 ** error message in pParse->zErrMsg. 333 ** error message in pParse->zErrMsg.
339 ** 334 **
340 ** The difference between this routine and sqlite3FindTable() is that this 335 ** The difference between this routine and sqlite3FindTable() is that this
341 ** routine leaves an error message in pParse->zErrMsg where 336 ** routine leaves an error message in pParse->zErrMsg where
342 ** sqlite3FindTable() does not. 337 ** sqlite3FindTable() does not.
343 */ 338 */
344 Table *sqlite3LocateTable( 339 Table *sqlite3LocateTable(
345 Parse *pParse, /* context in which to report errors */ 340 Parse *pParse, /* context in which to report errors */
346 int isView, /* True if looking for a VIEW rather than a TABLE */ 341 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */
347 const char *zName, /* Name of the table we are looking for */ 342 const char *zName, /* Name of the table we are looking for */
348 const char *zDbase /* Name of the database. Might be NULL */ 343 const char *zDbase /* Name of the database. Might be NULL */
349 ){ 344 ){
350 Table *p; 345 Table *p;
351 346
352 /* Read the database schema. If an error occurs, leave an error message 347 /* Read the database schema. If an error occurs, leave an error message
353 ** and code in pParse and return NULL. */ 348 ** and code in pParse and return NULL. */
354 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 349 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
355 return 0; 350 return 0;
356 } 351 }
357 352
358 p = sqlite3FindTable(pParse->db, zName, zDbase); 353 p = sqlite3FindTable(pParse->db, zName, zDbase);
359 if( p==0 ){ 354 if( p==0 ){
360 const char *zMsg = isView ? "no such view" : "no such table"; 355 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
361 #ifndef SQLITE_OMIT_VIRTUALTABLE 356 #ifndef SQLITE_OMIT_VIRTUALTABLE
362 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){ 357 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
363 /* If zName is the not the name of a table in the schema created using 358 /* If zName is the not the name of a table in the schema created using
364 ** CREATE, then check to see if it is the name of an virtual table that 359 ** CREATE, then check to see if it is the name of an virtual table that
365 ** can be an eponymous virtual table. */ 360 ** can be an eponymous virtual table. */
366 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName); 361 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
362 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
363 pMod = sqlite3PragmaVtabRegister(pParse->db, zName);
364 }
367 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ 365 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
368 return pMod->pEpoTab; 366 return pMod->pEpoTab;
369 } 367 }
370 } 368 }
371 #endif 369 #endif
372 if( zDbase ){ 370 if( (flags & LOCATE_NOERR)==0 ){
373 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); 371 if( zDbase ){
374 }else{ 372 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
375 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); 373 }else{
374 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
375 }
376 pParse->checkSchema = 1;
376 } 377 }
377 pParse->checkSchema = 1;
378 } 378 }
379 379
380 return p; 380 return p;
381 } 381 }
382 382
383 /* 383 /*
384 ** Locate the table identified by *p. 384 ** Locate the table identified by *p.
385 ** 385 **
386 ** This is a wrapper around sqlite3LocateTable(). The difference between 386 ** This is a wrapper around sqlite3LocateTable(). The difference between
387 ** sqlite3LocateTable() and this function is that this function restricts 387 ** sqlite3LocateTable() and this function is that this function restricts
388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be 388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
389 ** non-NULL if it is part of a view or trigger program definition. See 389 ** non-NULL if it is part of a view or trigger program definition. See
390 ** sqlite3FixSrcList() for details. 390 ** sqlite3FixSrcList() for details.
391 */ 391 */
392 Table *sqlite3LocateTableItem( 392 Table *sqlite3LocateTableItem(
393 Parse *pParse, 393 Parse *pParse,
394 int isView, 394 u32 flags,
395 struct SrcList_item *p 395 struct SrcList_item *p
396 ){ 396 ){
397 const char *zDb; 397 const char *zDb;
398 assert( p->pSchema==0 || p->zDatabase==0 ); 398 assert( p->pSchema==0 || p->zDatabase==0 );
399 if( p->pSchema ){ 399 if( p->pSchema ){
400 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); 400 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
401 zDb = pParse->db->aDb[iDb].zName; 401 zDb = pParse->db->aDb[iDb].zDbSName;
402 }else{ 402 }else{
403 zDb = p->zDatabase; 403 zDb = p->zDatabase;
404 } 404 }
405 return sqlite3LocateTable(pParse, isView, p->zName, zDb); 405 return sqlite3LocateTable(pParse, flags, p->zName, zDb);
406 } 406 }
407 407
408 /* 408 /*
409 ** Locate the in-memory structure that describes 409 ** Locate the in-memory structure that describes
410 ** a particular index given the name of that index 410 ** a particular index given the name of that index
411 ** and the name of the database that contains the index. 411 ** and the name of the database that contains the index.
412 ** Return NULL if not found. 412 ** Return NULL if not found.
413 ** 413 **
414 ** If zDatabase is 0, all databases are searched for the 414 ** If zDatabase is 0, all databases are searched for the
415 ** table and the first matching index is returned. (No checking 415 ** table and the first matching index is returned. (No checking
416 ** for duplicate index names is done.) The search order is 416 ** for duplicate index names is done.) The search order is
417 ** TEMP first, then MAIN, then any auxiliary databases added 417 ** TEMP first, then MAIN, then any auxiliary databases added
418 ** using the ATTACH command. 418 ** using the ATTACH command.
419 */ 419 */
420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ 420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
421 Index *p = 0; 421 Index *p = 0;
422 int i; 422 int i;
423 /* All mutexes are required for schema access. Make sure we hold them. */ 423 /* All mutexes are required for schema access. Make sure we hold them. */
424 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); 424 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
425 for(i=OMIT_TEMPDB; i<db->nDb; i++){ 425 for(i=OMIT_TEMPDB; i<db->nDb; i++){
426 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ 426 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
427 Schema *pSchema = db->aDb[j].pSchema; 427 Schema *pSchema = db->aDb[j].pSchema;
428 assert( pSchema ); 428 assert( pSchema );
429 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; 429 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue;
430 assert( sqlite3SchemaMutexHeld(db, j, 0) ); 430 assert( sqlite3SchemaMutexHeld(db, j, 0) );
431 p = sqlite3HashFind(&pSchema->idxHash, zName); 431 p = sqlite3HashFind(&pSchema->idxHash, zName);
432 if( p ) break; 432 if( p ) break;
433 } 433 }
434 return p; 434 return p;
435 } 435 }
436 436
437 /* 437 /*
438 ** Reclaim the memory used by an index 438 ** Reclaim the memory used by an index
439 */ 439 */
(...skipping 48 matching lines...) Expand 10 before | Expand all | Expand 10 after
488 ** db->aDb[] structure to a smaller size, if possible. 488 ** db->aDb[] structure to a smaller size, if possible.
489 ** 489 **
490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) 490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
491 ** are never candidates for being collapsed. 491 ** are never candidates for being collapsed.
492 */ 492 */
493 void sqlite3CollapseDatabaseArray(sqlite3 *db){ 493 void sqlite3CollapseDatabaseArray(sqlite3 *db){
494 int i, j; 494 int i, j;
495 for(i=j=2; i<db->nDb; i++){ 495 for(i=j=2; i<db->nDb; i++){
496 struct Db *pDb = &db->aDb[i]; 496 struct Db *pDb = &db->aDb[i];
497 if( pDb->pBt==0 ){ 497 if( pDb->pBt==0 ){
498 sqlite3DbFree(db, pDb->zName); 498 sqlite3DbFree(db, pDb->zDbSName);
499 pDb->zName = 0; 499 pDb->zDbSName = 0;
500 continue; 500 continue;
501 } 501 }
502 if( j<i ){ 502 if( j<i ){
503 db->aDb[j] = db->aDb[i]; 503 db->aDb[j] = db->aDb[i];
504 } 504 }
505 j++; 505 j++;
506 } 506 }
507 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
508 db->nDb = j; 507 db->nDb = j;
509 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ 508 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
510 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); 509 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
511 sqlite3DbFree(db, db->aDb); 510 sqlite3DbFree(db, db->aDb);
512 db->aDb = db->aDbStatic; 511 db->aDb = db->aDbStatic;
513 } 512 }
514 } 513 }
515 514
516 /* 515 /*
517 ** Reset the schema for the database at index iDb. Also reset the 516 ** Reset the schema for the database at index iDb. Also reset the
(...skipping 52 matching lines...) Expand 10 before | Expand all | Expand 10 after
570 ** Table.aCol[] array). 569 ** Table.aCol[] array).
571 */ 570 */
572 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ 571 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
573 int i; 572 int i;
574 Column *pCol; 573 Column *pCol;
575 assert( pTable!=0 ); 574 assert( pTable!=0 );
576 if( (pCol = pTable->aCol)!=0 ){ 575 if( (pCol = pTable->aCol)!=0 ){
577 for(i=0; i<pTable->nCol; i++, pCol++){ 576 for(i=0; i<pTable->nCol; i++, pCol++){
578 sqlite3DbFree(db, pCol->zName); 577 sqlite3DbFree(db, pCol->zName);
579 sqlite3ExprDelete(db, pCol->pDflt); 578 sqlite3ExprDelete(db, pCol->pDflt);
580 sqlite3DbFree(db, pCol->zDflt);
581 sqlite3DbFree(db, pCol->zType);
582 sqlite3DbFree(db, pCol->zColl); 579 sqlite3DbFree(db, pCol->zColl);
583 } 580 }
584 sqlite3DbFree(db, pTable->aCol); 581 sqlite3DbFree(db, pTable->aCol);
585 } 582 }
586 } 583 }
587 584
588 /* 585 /*
589 ** Remove the memory data structures associated with the given 586 ** Remove the memory data structures associated with the given
590 ** Table. No changes are made to disk by this routine. 587 ** Table. No changes are made to disk by this routine.
591 ** 588 **
592 ** This routine just deletes the data structure. It does not unlink 589 ** This routine just deletes the data structure. It does not unlink
593 ** the table data structure from the hash table. But it does destroy 590 ** the table data structure from the hash table. But it does destroy
594 ** memory structures of the indices and foreign keys associated with 591 ** memory structures of the indices and foreign keys associated with
595 ** the table. 592 ** the table.
596 ** 593 **
597 ** The db parameter is optional. It is needed if the Table object 594 ** The db parameter is optional. It is needed if the Table object
598 ** contains lookaside memory. (Table objects in the schema do not use 595 ** contains lookaside memory. (Table objects in the schema do not use
599 ** lookaside memory, but some ephemeral Table objects do.) Or the 596 ** lookaside memory, but some ephemeral Table objects do.) Or the
600 ** db parameter can be used with db->pnBytesFreed to measure the memory 597 ** db parameter can be used with db->pnBytesFreed to measure the memory
601 ** used by the Table object. 598 ** used by the Table object.
602 */ 599 */
603 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ 600 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
604 Index *pIndex, *pNext; 601 Index *pIndex, *pNext;
605 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ 602 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
606 603
607 assert( !pTable || pTable->nRef>0 );
608
609 /* Do not delete the table until the reference count reaches zero. */
610 if( !pTable ) return;
611 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
612
613 /* Record the number of outstanding lookaside allocations in schema Tables 604 /* Record the number of outstanding lookaside allocations in schema Tables
614 ** prior to doing any free() operations. Since schema Tables do not use 605 ** prior to doing any free() operations. Since schema Tables do not use
615 ** lookaside, this number should not change. */ 606 ** lookaside, this number should not change. */
616 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? 607 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
617 db->lookaside.nOut : 0 ); 608 db->lookaside.nOut : 0 );
618 609
619 /* Delete all indices associated with this table. */ 610 /* Delete all indices associated with this table. */
620 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ 611 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
621 pNext = pIndex->pNext; 612 pNext = pIndex->pNext;
622 assert( pIndex->pSchema==pTable->pSchema ); 613 assert( pIndex->pSchema==pTable->pSchema
623 if( !db || db->pnBytesFreed==0 ){ 614 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
615 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
624 char *zName = pIndex->zName; 616 char *zName = pIndex->zName;
625 TESTONLY ( Index *pOld = ) sqlite3HashInsert( 617 TESTONLY ( Index *pOld = ) sqlite3HashInsert(
626 &pIndex->pSchema->idxHash, zName, 0 618 &pIndex->pSchema->idxHash, zName, 0
627 ); 619 );
628 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 620 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
629 assert( pOld==pIndex || pOld==0 ); 621 assert( pOld==pIndex || pOld==0 );
630 } 622 }
631 freeIndex(db, pIndex); 623 freeIndex(db, pIndex);
632 } 624 }
633 625
634 /* Delete any foreign keys attached to this table. */ 626 /* Delete any foreign keys attached to this table. */
635 sqlite3FkDelete(db, pTable); 627 sqlite3FkDelete(db, pTable);
636 628
637 /* Delete the Table structure itself. 629 /* Delete the Table structure itself.
638 */ 630 */
639 sqlite3DeleteColumnNames(db, pTable); 631 sqlite3DeleteColumnNames(db, pTable);
640 sqlite3DbFree(db, pTable->zName); 632 sqlite3DbFree(db, pTable->zName);
641 sqlite3DbFree(db, pTable->zColAff); 633 sqlite3DbFree(db, pTable->zColAff);
642 sqlite3SelectDelete(db, pTable->pSelect); 634 sqlite3SelectDelete(db, pTable->pSelect);
643 sqlite3ExprListDelete(db, pTable->pCheck); 635 sqlite3ExprListDelete(db, pTable->pCheck);
644 #ifndef SQLITE_OMIT_VIRTUALTABLE 636 #ifndef SQLITE_OMIT_VIRTUALTABLE
645 sqlite3VtabClear(db, pTable); 637 sqlite3VtabClear(db, pTable);
646 #endif 638 #endif
647 sqlite3DbFree(db, pTable); 639 sqlite3DbFree(db, pTable);
648 640
649 /* Verify that no lookaside memory was used by schema tables */ 641 /* Verify that no lookaside memory was used by schema tables */
650 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); 642 assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
651 } 643 }
644 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
645 /* Do not delete the table until the reference count reaches zero. */
646 if( !pTable ) return;
647 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
648 deleteTable(db, pTable);
649 }
650
652 651
653 /* 652 /*
654 ** Unlink the given table from the hash tables and the delete the 653 ** Unlink the given table from the hash tables and the delete the
655 ** table structure with all its indices and foreign keys. 654 ** table structure with all its indices and foreign keys.
656 */ 655 */
657 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ 656 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
658 Table *p; 657 Table *p;
659 Db *pDb; 658 Db *pDb;
660 659
661 assert( db!=0 ); 660 assert( db!=0 );
(...skipping 30 matching lines...) Expand all
692 } 691 }
693 return zName; 692 return zName;
694 } 693 }
695 694
696 /* 695 /*
697 ** Open the sqlite_master table stored in database number iDb for 696 ** Open the sqlite_master table stored in database number iDb for
698 ** writing. The table is opened using cursor 0. 697 ** writing. The table is opened using cursor 0.
699 */ 698 */
700 void sqlite3OpenMasterTable(Parse *p, int iDb){ 699 void sqlite3OpenMasterTable(Parse *p, int iDb){
701 Vdbe *v = sqlite3GetVdbe(p); 700 Vdbe *v = sqlite3GetVdbe(p);
702 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); 701 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME);
703 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); 702 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
704 if( p->nTab==0 ){ 703 if( p->nTab==0 ){
705 p->nTab = 1; 704 p->nTab = 1;
706 } 705 }
707 } 706 }
708 707
709 /* 708 /*
710 ** Parameter zName points to a nul-terminated buffer containing the name 709 ** Parameter zName points to a nul-terminated buffer containing the name
711 ** of a database ("main", "temp" or the name of an attached db). This 710 ** of a database ("main", "temp" or the name of an attached db). This
712 ** function returns the index of the named database in db->aDb[], or 711 ** function returns the index of the named database in db->aDb[], or
713 ** -1 if the named db cannot be found. 712 ** -1 if the named db cannot be found.
714 */ 713 */
715 int sqlite3FindDbName(sqlite3 *db, const char *zName){ 714 int sqlite3FindDbName(sqlite3 *db, const char *zName){
716 int i = -1; /* Database number */ 715 int i = -1; /* Database number */
717 if( zName ){ 716 if( zName ){
718 Db *pDb; 717 Db *pDb;
719 int n = sqlite3Strlen30(zName);
720 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ 718 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
721 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) && 719 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
722 0==sqlite3StrICmp(pDb->zName, zName) ){ 720 /* "main" is always an acceptable alias for the primary database
723 break; 721 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
724 } 722 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
725 } 723 }
726 } 724 }
727 return i; 725 return i;
728 } 726 }
729 727
730 /* 728 /*
731 ** The token *pName contains the name of a database (either "main" or 729 ** The token *pName contains the name of a database (either "main" or
732 ** "temp" or the name of an attached db). This routine returns the 730 ** "temp" or the name of an attached db). This routine returns the
733 ** index of the named database in db->aDb[], or -1 if the named db 731 ** index of the named database in db->aDb[], or -1 if the named db
734 ** does not exist. 732 ** does not exist.
(...skipping 25 matching lines...) Expand all
760 */ 758 */
761 int sqlite3TwoPartName( 759 int sqlite3TwoPartName(
762 Parse *pParse, /* Parsing and code generating context */ 760 Parse *pParse, /* Parsing and code generating context */
763 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ 761 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
764 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ 762 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
765 Token **pUnqual /* Write the unqualified object name here */ 763 Token **pUnqual /* Write the unqualified object name here */
766 ){ 764 ){
767 int iDb; /* Database holding the object */ 765 int iDb; /* Database holding the object */
768 sqlite3 *db = pParse->db; 766 sqlite3 *db = pParse->db;
769 767
770 if( ALWAYS(pName2!=0) && pName2->n>0 ){ 768 assert( pName2!=0 );
769 if( pName2->n>0 ){
771 if( db->init.busy ) { 770 if( db->init.busy ) {
772 sqlite3ErrorMsg(pParse, "corrupt database"); 771 sqlite3ErrorMsg(pParse, "corrupt database");
773 return -1; 772 return -1;
774 } 773 }
775 *pUnqual = pName2; 774 *pUnqual = pName2;
776 iDb = sqlite3FindDb(db, pName1); 775 iDb = sqlite3FindDb(db, pName1);
777 if( iDb<0 ){ 776 if( iDb<0 ){
778 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); 777 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
779 return -1; 778 return -1;
780 } 779 }
781 }else{ 780 }else{
782 assert( db->init.iDb==0 || db->init.busy ); 781 assert( db->init.iDb==0 || db->init.busy || (db->flags & SQLITE_Vacuum)!=0);
783 iDb = db->init.iDb; 782 iDb = db->init.iDb;
784 *pUnqual = pName1; 783 *pUnqual = pName1;
785 } 784 }
786 return iDb; 785 return iDb;
787 } 786 }
788 787
789 /* 788 /*
790 ** This routine is used to check if the UTF-8 string zName is a legal 789 ** This routine is used to check if the UTF-8 string zName is a legal
791 ** unqualified name for a new schema object (table, index, view or 790 ** unqualified name for a new schema object (table, index, view or
792 ** trigger). All names are legal except those that begin with the string 791 ** trigger). All names are legal except those that begin with the string
(...skipping 56 matching lines...) Expand 10 before | Expand all | Expand 10 after
849 int isVirtual, /* True if this is a VIRTUAL table */ 848 int isVirtual, /* True if this is a VIRTUAL table */
850 int noErr /* Do nothing if table already exists */ 849 int noErr /* Do nothing if table already exists */
851 ){ 850 ){
852 Table *pTable; 851 Table *pTable;
853 char *zName = 0; /* The name of the new table */ 852 char *zName = 0; /* The name of the new table */
854 sqlite3 *db = pParse->db; 853 sqlite3 *db = pParse->db;
855 Vdbe *v; 854 Vdbe *v;
856 int iDb; /* Database number to create the table in */ 855 int iDb; /* Database number to create the table in */
857 Token *pName; /* Unqualified name of the table to create */ 856 Token *pName; /* Unqualified name of the table to create */
858 857
859 /* The table or view name to create is passed to this routine via tokens 858 if( db->init.busy && db->init.newTnum==1 ){
860 ** pName1 and pName2. If the table name was fully qualified, for example: 859 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */
861 ** 860 iDb = db->init.iDb;
862 ** CREATE TABLE xxx.yyy (...); 861 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
863 ** 862 pName = pName1;
864 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if 863 }else{
865 ** the table name is not fully qualified, i.e.: 864 /* The common case */
866 ** 865 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
867 ** CREATE TABLE yyy(...); 866 if( iDb<0 ) return;
868 ** 867 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
869 ** Then pName1 is set to "yyy" and pName2 is "". 868 /* If creating a temp table, the name may not be qualified. Unless
870 ** 869 ** the database name is "temp" anyway. */
871 ** The call below sets the pName pointer to point at the token (pName1 or 870 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
872 ** pName2) that stores the unqualified table name. The variable iDb is 871 return;
873 ** set to the index of the database that the table or view is to be 872 }
874 ** created in. 873 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
875 */ 874 zName = sqlite3NameFromToken(db, pName);
876 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
877 if( iDb<0 ) return;
878 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
879 /* If creating a temp table, the name may not be qualified. Unless
880 ** the database name is "temp" anyway. */
881 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
882 return;
883 } 875 }
884 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
885
886 pParse->sNameToken = *pName; 876 pParse->sNameToken = *pName;
887 zName = sqlite3NameFromToken(db, pName);
888 if( zName==0 ) return; 877 if( zName==0 ) return;
889 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 878 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
890 goto begin_table_error; 879 goto begin_table_error;
891 } 880 }
892 if( db->init.iDb==1 ) isTemp = 1; 881 if( db->init.iDb==1 ) isTemp = 1;
893 #ifndef SQLITE_OMIT_AUTHORIZATION 882 #ifndef SQLITE_OMIT_AUTHORIZATION
894 assert( (isTemp & 1)==isTemp ); 883 assert( isTemp==0 || isTemp==1 );
884 assert( isView==0 || isView==1 );
895 { 885 {
896 int code; 886 static const u8 aCode[] = {
897 char *zDb = db->aDb[iDb].zName; 887 SQLITE_CREATE_TABLE,
888 SQLITE_CREATE_TEMP_TABLE,
889 SQLITE_CREATE_VIEW,
890 SQLITE_CREATE_TEMP_VIEW
891 };
892 char *zDb = db->aDb[iDb].zDbSName;
898 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ 893 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
899 goto begin_table_error; 894 goto begin_table_error;
900 } 895 }
901 if( isView ){ 896 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
902 if( !OMIT_TEMPDB && isTemp ){ 897 zName, 0, zDb) ){
903 code = SQLITE_CREATE_TEMP_VIEW;
904 }else{
905 code = SQLITE_CREATE_VIEW;
906 }
907 }else{
908 if( !OMIT_TEMPDB && isTemp ){
909 code = SQLITE_CREATE_TEMP_TABLE;
910 }else{
911 code = SQLITE_CREATE_TABLE;
912 }
913 }
914 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
915 goto begin_table_error; 898 goto begin_table_error;
916 } 899 }
917 } 900 }
918 #endif 901 #endif
919 902
920 /* Make sure the new table name does not collide with an existing 903 /* Make sure the new table name does not collide with an existing
921 ** index or table name in the same database. Issue an error message if 904 ** index or table name in the same database. Issue an error message if
922 ** it does. The exception is if the statement being parsed was passed 905 ** it does. The exception is if the statement being parsed was passed
923 ** to an sqlite3_declare_vtab() call. In that case only the column names 906 ** to an sqlite3_declare_vtab() call. In that case only the column names
924 ** and types will be used, so there is no need to test for namespace 907 ** and types will be used, so there is no need to test for namespace
925 ** collisions. 908 ** collisions.
926 */ 909 */
927 if( !IN_DECLARE_VTAB ){ 910 if( !IN_DECLARE_VTAB ){
928 char *zDb = db->aDb[iDb].zName; 911 char *zDb = db->aDb[iDb].zDbSName;
929 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 912 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
930 goto begin_table_error; 913 goto begin_table_error;
931 } 914 }
932 pTable = sqlite3FindTable(db, zName, zDb); 915 pTable = sqlite3FindTable(db, zName, zDb);
933 if( pTable ){ 916 if( pTable ){
934 if( !noErr ){ 917 if( !noErr ){
935 sqlite3ErrorMsg(pParse, "table %T already exists", pName); 918 sqlite3ErrorMsg(pParse, "table %T already exists", pName);
936 }else{ 919 }else{
937 assert( !db->init.busy || CORRUPT_DB ); 920 assert( !db->init.busy || CORRUPT_DB );
938 sqlite3CodeVerifySchema(pParse, iDb); 921 sqlite3CodeVerifySchema(pParse, iDb);
939 } 922 }
940 goto begin_table_error; 923 goto begin_table_error;
941 } 924 }
942 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ 925 if( sqlite3FindIndex(db, zName, zDb)!=0 ){
943 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); 926 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
944 goto begin_table_error; 927 goto begin_table_error;
945 } 928 }
946 } 929 }
947 930
948 pTable = sqlite3DbMallocZero(db, sizeof(Table)); 931 pTable = sqlite3DbMallocZero(db, sizeof(Table));
949 if( pTable==0 ){ 932 if( pTable==0 ){
950 db->mallocFailed = 1; 933 assert( db->mallocFailed );
951 pParse->rc = SQLITE_NOMEM; 934 pParse->rc = SQLITE_NOMEM_BKPT;
952 pParse->nErr++; 935 pParse->nErr++;
953 goto begin_table_error; 936 goto begin_table_error;
954 } 937 }
955 pTable->zName = zName; 938 pTable->zName = zName;
956 pTable->iPKey = -1; 939 pTable->iPKey = -1;
957 pTable->pSchema = db->aDb[iDb].pSchema; 940 pTable->pSchema = db->aDb[iDb].pSchema;
958 pTable->nRef = 1; 941 pTable->nTabRef = 1;
959 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 942 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
960 assert( pParse->pNewTable==0 ); 943 assert( pParse->pNewTable==0 );
961 pParse->pNewTable = pTable; 944 pParse->pNewTable = pTable;
962 945
963 /* If this is the magic sqlite_sequence table used by autoincrement, 946 /* If this is the magic sqlite_sequence table used by autoincrement,
964 ** then record a pointer to this table in the main database structure 947 ** then record a pointer to this table in the main database structure
965 ** so that INSERT can find the table easily. 948 ** so that INSERT can find the table easily.
966 */ 949 */
967 #ifndef SQLITE_OMIT_AUTOINCREMENT 950 #ifndef SQLITE_OMIT_AUTOINCREMENT
968 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ 951 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
(...skipping 28 matching lines...) Expand all
997 ** set them now. 980 ** set them now.
998 */ 981 */
999 reg1 = pParse->regRowid = ++pParse->nMem; 982 reg1 = pParse->regRowid = ++pParse->nMem;
1000 reg2 = pParse->regRoot = ++pParse->nMem; 983 reg2 = pParse->regRoot = ++pParse->nMem;
1001 reg3 = ++pParse->nMem; 984 reg3 = ++pParse->nMem;
1002 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); 985 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
1003 sqlite3VdbeUsesBtree(v, iDb); 986 sqlite3VdbeUsesBtree(v, iDb);
1004 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); 987 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
1005 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? 988 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
1006 1 : SQLITE_MAX_FILE_FORMAT; 989 1 : SQLITE_MAX_FILE_FORMAT;
1007 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); 990 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
1008 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3); 991 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
1009 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
1010 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
1011 sqlite3VdbeJumpHere(v, addr1); 992 sqlite3VdbeJumpHere(v, addr1);
1012 993
1013 /* This just creates a place-holder record in the sqlite_master table. 994 /* This just creates a place-holder record in the sqlite_master table.
1014 ** The record created does not contain anything yet. It will be replaced 995 ** The record created does not contain anything yet. It will be replaced
1015 ** by the real entry in code generated at sqlite3EndTable(). 996 ** by the real entry in code generated at sqlite3EndTable().
1016 ** 997 **
1017 ** The rowid for the new entry is left in register pParse->regRowid. 998 ** The rowid for the new entry is left in register pParse->regRowid.
1018 ** The root page number of the new table is left in reg pParse->regRoot. 999 ** The root page number of the new table is left in reg pParse->regRoot.
1019 ** The rowid and root page number values are needed by the code that 1000 ** The rowid and root page number values are needed by the code that
1020 ** sqlite3EndTable will generate. 1001 ** sqlite3EndTable will generate.
(...skipping 38 matching lines...) Expand 10 before | Expand all | Expand 10 after
1059 1040
1060 1041
1061 /* 1042 /*
1062 ** Add a new column to the table currently being constructed. 1043 ** Add a new column to the table currently being constructed.
1063 ** 1044 **
1064 ** The parser calls this routine once for each column declaration 1045 ** The parser calls this routine once for each column declaration
1065 ** in a CREATE TABLE statement. sqlite3StartTable() gets called 1046 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1066 ** first to get things going. Then this routine is called for each 1047 ** first to get things going. Then this routine is called for each
1067 ** column. 1048 ** column.
1068 */ 1049 */
1069 void sqlite3AddColumn(Parse *pParse, Token *pName){ 1050 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){
1070 Table *p; 1051 Table *p;
1071 int i; 1052 int i;
1072 char *z; 1053 char *z;
1054 char *zType;
1073 Column *pCol; 1055 Column *pCol;
1074 sqlite3 *db = pParse->db; 1056 sqlite3 *db = pParse->db;
1075 if( (p = pParse->pNewTable)==0 ) return; 1057 if( (p = pParse->pNewTable)==0 ) return;
1076 #if SQLITE_MAX_COLUMN 1058 #if SQLITE_MAX_COLUMN
1077 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1059 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1078 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); 1060 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1079 return; 1061 return;
1080 } 1062 }
1081 #endif 1063 #endif
1082 z = sqlite3NameFromToken(db, pName); 1064 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2);
1083 if( z==0 ) return; 1065 if( z==0 ) return;
1066 memcpy(z, pName->z, pName->n);
1067 z[pName->n] = 0;
1068 sqlite3Dequote(z);
1084 for(i=0; i<p->nCol; i++){ 1069 for(i=0; i<p->nCol; i++){
1085 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ 1070 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1086 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); 1071 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1087 sqlite3DbFree(db, z); 1072 sqlite3DbFree(db, z);
1088 return; 1073 return;
1089 } 1074 }
1090 } 1075 }
1091 if( (p->nCol & 0x7)==0 ){ 1076 if( (p->nCol & 0x7)==0 ){
1092 Column *aNew; 1077 Column *aNew;
1093 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); 1078 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1094 if( aNew==0 ){ 1079 if( aNew==0 ){
1095 sqlite3DbFree(db, z); 1080 sqlite3DbFree(db, z);
1096 return; 1081 return;
1097 } 1082 }
1098 p->aCol = aNew; 1083 p->aCol = aNew;
1099 } 1084 }
1100 pCol = &p->aCol[p->nCol]; 1085 pCol = &p->aCol[p->nCol];
1101 memset(pCol, 0, sizeof(p->aCol[0])); 1086 memset(pCol, 0, sizeof(p->aCol[0]));
1102 pCol->zName = z; 1087 pCol->zName = z;
1103 sqlite3ColumnPropertiesFromName(p, pCol); 1088 sqlite3ColumnPropertiesFromName(p, pCol);
1104 1089
1105 /* If there is no type specified, columns have the default affinity 1090 if( pType->n==0 ){
1106 ** 'BLOB'. If there is a type specified, then sqlite3AddColumnType() will 1091 /* If there is no type specified, columns have the default affinity
1107 ** be called next to set pCol->affinity correctly. 1092 ** 'BLOB'. */
1108 */ 1093 pCol->affinity = SQLITE_AFF_BLOB;
1109 pCol->affinity = SQLITE_AFF_BLOB; 1094 pCol->szEst = 1;
1110 pCol->szEst = 1; 1095 }else{
1096 zType = z + sqlite3Strlen30(z) + 1;
1097 memcpy(zType, pType->z, pType->n);
1098 zType[pType->n] = 0;
1099 sqlite3Dequote(zType);
1100 pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst);
1101 pCol->colFlags |= COLFLAG_HASTYPE;
1102 }
1111 p->nCol++; 1103 p->nCol++;
1104 pParse->constraintName.n = 0;
1112 } 1105 }
1113 1106
1114 /* 1107 /*
1115 ** This routine is called by the parser while in the middle of 1108 ** This routine is called by the parser while in the middle of
1116 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has 1109 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1117 ** been seen on a column. This routine sets the notNull flag on 1110 ** been seen on a column. This routine sets the notNull flag on
1118 ** the column currently under construction. 1111 ** the column currently under construction.
1119 */ 1112 */
1120 void sqlite3AddNotNull(Parse *pParse, int onError){ 1113 void sqlite3AddNotNull(Parse *pParse, int onError){
1121 Table *p; 1114 Table *p;
(...skipping 25 matching lines...) Expand all
1147 ** 'DOUB' | SQLITE_AFF_REAL 1140 ** 'DOUB' | SQLITE_AFF_REAL
1148 ** 1141 **
1149 ** If none of the substrings in the above table are found, 1142 ** If none of the substrings in the above table are found,
1150 ** SQLITE_AFF_NUMERIC is returned. 1143 ** SQLITE_AFF_NUMERIC is returned.
1151 */ 1144 */
1152 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ 1145 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1153 u32 h = 0; 1146 u32 h = 0;
1154 char aff = SQLITE_AFF_NUMERIC; 1147 char aff = SQLITE_AFF_NUMERIC;
1155 const char *zChar = 0; 1148 const char *zChar = 0;
1156 1149
1157 if( zIn==0 ) return aff; 1150 assert( zIn!=0 );
1158 while( zIn[0] ){ 1151 while( zIn[0] ){
1159 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; 1152 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1160 zIn++; 1153 zIn++;
1161 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ 1154 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1162 aff = SQLITE_AFF_TEXT; 1155 aff = SQLITE_AFF_TEXT;
1163 zChar = zIn; 1156 zChar = zIn;
1164 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ 1157 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1165 aff = SQLITE_AFF_TEXT; 1158 aff = SQLITE_AFF_TEXT;
1166 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ 1159 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1167 aff = SQLITE_AFF_TEXT; 1160 aff = SQLITE_AFF_TEXT;
(...skipping 37 matching lines...) Expand 10 before | Expand all | Expand 10 after
1205 } 1198 }
1206 }else{ 1199 }else{
1207 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ 1200 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1208 } 1201 }
1209 } 1202 }
1210 } 1203 }
1211 return aff; 1204 return aff;
1212 } 1205 }
1213 1206
1214 /* 1207 /*
1215 ** This routine is called by the parser while in the middle of
1216 ** parsing a CREATE TABLE statement. The pFirst token is the first
1217 ** token in the sequence of tokens that describe the type of the
1218 ** column currently under construction. pLast is the last token
1219 ** in the sequence. Use this information to construct a string
1220 ** that contains the typename of the column and store that string
1221 ** in zType.
1222 */
1223 void sqlite3AddColumnType(Parse *pParse, Token *pType){
1224 Table *p;
1225 Column *pCol;
1226
1227 p = pParse->pNewTable;
1228 if( p==0 || NEVER(p->nCol<1) ) return;
1229 pCol = &p->aCol[p->nCol-1];
1230 assert( pCol->zType==0 || CORRUPT_DB );
1231 sqlite3DbFree(pParse->db, pCol->zType);
1232 pCol->zType = sqlite3NameFromToken(pParse->db, pType);
1233 pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst);
1234 }
1235
1236 /*
1237 ** The expression is the default value for the most recently added column 1208 ** The expression is the default value for the most recently added column
1238 ** of the table currently under construction. 1209 ** of the table currently under construction.
1239 ** 1210 **
1240 ** Default value expressions must be constant. Raise an exception if this 1211 ** Default value expressions must be constant. Raise an exception if this
1241 ** is not the case. 1212 ** is not the case.
1242 ** 1213 **
1243 ** This routine is called by the parser while in the middle of 1214 ** This routine is called by the parser while in the middle of
1244 ** parsing a CREATE TABLE statement. 1215 ** parsing a CREATE TABLE statement.
1245 */ 1216 */
1246 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ 1217 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1247 Table *p; 1218 Table *p;
1248 Column *pCol; 1219 Column *pCol;
1249 sqlite3 *db = pParse->db; 1220 sqlite3 *db = pParse->db;
1250 p = pParse->pNewTable; 1221 p = pParse->pNewTable;
1251 if( p!=0 ){ 1222 if( p!=0 ){
1252 pCol = &(p->aCol[p->nCol-1]); 1223 pCol = &(p->aCol[p->nCol-1]);
1253 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){ 1224 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
1254 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", 1225 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1255 pCol->zName); 1226 pCol->zName);
1256 }else{ 1227 }else{
1257 /* A copy of pExpr is used instead of the original, as pExpr contains 1228 /* A copy of pExpr is used instead of the original, as pExpr contains
1258 ** tokens that point to volatile memory. The 'span' of the expression 1229 ** tokens that point to volatile memory. The 'span' of the expression
1259 ** is required by pragma table_info. 1230 ** is required by pragma table_info.
1260 */ 1231 */
1232 Expr x;
1261 sqlite3ExprDelete(db, pCol->pDflt); 1233 sqlite3ExprDelete(db, pCol->pDflt);
1262 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE); 1234 memset(&x, 0, sizeof(x));
1263 sqlite3DbFree(db, pCol->zDflt); 1235 x.op = TK_SPAN;
1264 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart, 1236 x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1265 (int)(pSpan->zEnd - pSpan->zStart)); 1237 (int)(pSpan->zEnd - pSpan->zStart));
1238 x.pLeft = pSpan->pExpr;
1239 x.flags = EP_Skip;
1240 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1241 sqlite3DbFree(db, x.u.zToken);
1266 } 1242 }
1267 } 1243 }
1268 sqlite3ExprDelete(db, pSpan->pExpr); 1244 sqlite3ExprDelete(db, pSpan->pExpr);
1269 } 1245 }
1270 1246
1271 /* 1247 /*
1272 ** Backwards Compatibility Hack: 1248 ** Backwards Compatibility Hack:
1273 ** 1249 **
1274 ** Historical versions of SQLite accepted strings as column names in 1250 ** Historical versions of SQLite accepted strings as column names in
1275 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: 1251 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
(...skipping 35 matching lines...) Expand 10 before | Expand all | Expand 10 after
1311 ** index for the key. No index is created for INTEGER PRIMARY KEYs. 1287 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1312 */ 1288 */
1313 void sqlite3AddPrimaryKey( 1289 void sqlite3AddPrimaryKey(
1314 Parse *pParse, /* Parsing context */ 1290 Parse *pParse, /* Parsing context */
1315 ExprList *pList, /* List of field names to be indexed */ 1291 ExprList *pList, /* List of field names to be indexed */
1316 int onError, /* What to do with a uniqueness conflict */ 1292 int onError, /* What to do with a uniqueness conflict */
1317 int autoInc, /* True if the AUTOINCREMENT keyword is present */ 1293 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1318 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ 1294 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1319 ){ 1295 ){
1320 Table *pTab = pParse->pNewTable; 1296 Table *pTab = pParse->pNewTable;
1321 char *zType = 0; 1297 Column *pCol = 0;
1322 int iCol = -1, i; 1298 int iCol = -1, i;
1323 int nTerm; 1299 int nTerm;
1324 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; 1300 if( pTab==0 ) goto primary_key_exit;
1325 if( pTab->tabFlags & TF_HasPrimaryKey ){ 1301 if( pTab->tabFlags & TF_HasPrimaryKey ){
1326 sqlite3ErrorMsg(pParse, 1302 sqlite3ErrorMsg(pParse,
1327 "table \"%s\" has more than one primary key", pTab->zName); 1303 "table \"%s\" has more than one primary key", pTab->zName);
1328 goto primary_key_exit; 1304 goto primary_key_exit;
1329 } 1305 }
1330 pTab->tabFlags |= TF_HasPrimaryKey; 1306 pTab->tabFlags |= TF_HasPrimaryKey;
1331 if( pList==0 ){ 1307 if( pList==0 ){
1332 iCol = pTab->nCol - 1; 1308 iCol = pTab->nCol - 1;
1333 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1309 pCol = &pTab->aCol[iCol];
1334 zType = pTab->aCol[iCol].zType; 1310 pCol->colFlags |= COLFLAG_PRIMKEY;
1335 nTerm = 1; 1311 nTerm = 1;
1336 }else{ 1312 }else{
1337 nTerm = pList->nExpr; 1313 nTerm = pList->nExpr;
1338 for(i=0; i<nTerm; i++){ 1314 for(i=0; i<nTerm; i++){
1339 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1315 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1340 assert( pCExpr!=0 ); 1316 assert( pCExpr!=0 );
1341 sqlite3StringToId(pCExpr); 1317 sqlite3StringToId(pCExpr);
1342 if( pCExpr->op==TK_ID ){ 1318 if( pCExpr->op==TK_ID ){
1343 const char *zCName = pCExpr->u.zToken; 1319 const char *zCName = pCExpr->u.zToken;
1344 for(iCol=0; iCol<pTab->nCol; iCol++){ 1320 for(iCol=0; iCol<pTab->nCol; iCol++){
1345 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ 1321 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1346 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY; 1322 pCol = &pTab->aCol[iCol];
1347 zType = pTab->aCol[iCol].zType; 1323 pCol->colFlags |= COLFLAG_PRIMKEY;
1348 break; 1324 break;
1349 } 1325 }
1350 } 1326 }
1351 } 1327 }
1352 } 1328 }
1353 } 1329 }
1354 if( nTerm==1 1330 if( nTerm==1
1355 && zType && sqlite3StrICmp(zType, "INTEGER")==0 1331 && pCol
1332 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0
1356 && sortOrder!=SQLITE_SO_DESC 1333 && sortOrder!=SQLITE_SO_DESC
1357 ){ 1334 ){
1358 pTab->iPKey = iCol; 1335 pTab->iPKey = iCol;
1359 pTab->keyConf = (u8)onError; 1336 pTab->keyConf = (u8)onError;
1360 assert( autoInc==0 || autoInc==1 ); 1337 assert( autoInc==0 || autoInc==1 );
1361 pTab->tabFlags |= autoInc*TF_Autoincrement; 1338 pTab->tabFlags |= autoInc*TF_Autoincrement;
1362 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; 1339 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1363 }else if( autoInc ){ 1340 }else if( autoInc ){
1364 #ifndef SQLITE_OMIT_AUTOINCREMENT 1341 #ifndef SQLITE_OMIT_AUTOINCREMENT
1365 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " 1342 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1366 "INTEGER PRIMARY KEY"); 1343 "INTEGER PRIMARY KEY");
1367 #endif 1344 #endif
1368 }else{ 1345 }else{
1369 Index *p; 1346 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1370 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 1347 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1371 0, sortOrder, 0);
1372 if( p ){
1373 p->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
1374 }
1375 pList = 0; 1348 pList = 0;
1376 } 1349 }
1377 1350
1378 primary_key_exit: 1351 primary_key_exit:
1379 sqlite3ExprListDelete(pParse->db, pList); 1352 sqlite3ExprListDelete(pParse->db, pList);
1380 return; 1353 return;
1381 } 1354 }
1382 1355
1383 /* 1356 /*
1384 ** Add a new CHECK constraint to the table currently under construction. 1357 ** Add a new CHECK constraint to the table currently under construction.
(...skipping 98 matching lines...) Expand 10 before | Expand all | Expand 10 after
1483 ** changes. When a process first reads the schema it records the 1456 ** changes. When a process first reads the schema it records the
1484 ** cookie. Thereafter, whenever it goes to access the database, 1457 ** cookie. Thereafter, whenever it goes to access the database,
1485 ** it checks the cookie to make sure the schema has not changed 1458 ** it checks the cookie to make sure the schema has not changed
1486 ** since it was last read. 1459 ** since it was last read.
1487 ** 1460 **
1488 ** This plan is not completely bullet-proof. It is possible for 1461 ** This plan is not completely bullet-proof. It is possible for
1489 ** the schema to change multiple times and for the cookie to be 1462 ** the schema to change multiple times and for the cookie to be
1490 ** set back to prior value. But schema changes are infrequent 1463 ** set back to prior value. But schema changes are infrequent
1491 ** and the probability of hitting the same cookie value is only 1464 ** and the probability of hitting the same cookie value is only
1492 ** 1 chance in 2^32. So we're safe enough. 1465 ** 1 chance in 2^32. So we're safe enough.
1466 **
1467 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
1468 ** the schema-version whenever the schema changes.
1493 */ 1469 */
1494 void sqlite3ChangeCookie(Parse *pParse, int iDb){ 1470 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1495 int r1 = sqlite3GetTempReg(pParse);
1496 sqlite3 *db = pParse->db; 1471 sqlite3 *db = pParse->db;
1497 Vdbe *v = pParse->pVdbe; 1472 Vdbe *v = pParse->pVdbe;
1498 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 1473 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1499 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); 1474 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1500 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1); 1475 db->aDb[iDb].pSchema->schema_cookie+1);
1501 sqlite3ReleaseTempReg(pParse, r1);
1502 } 1476 }
1503 1477
1504 /* 1478 /*
1505 ** Measure the number of characters needed to output the given 1479 ** Measure the number of characters needed to output the given
1506 ** identifier. The number returned includes any quotes used 1480 ** identifier. The number returned includes any quotes used
1507 ** but does not include the null terminator. 1481 ** but does not include the null terminator.
1508 ** 1482 **
1509 ** The estimate is conservative. It might be larger that what is 1483 ** The estimate is conservative. It might be larger that what is
1510 ** really needed. 1484 ** really needed.
1511 */ 1485 */
(...skipping 61 matching lines...) Expand 10 before | Expand all | Expand 10 after
1573 zSep2 = ","; 1547 zSep2 = ",";
1574 zEnd = ")"; 1548 zEnd = ")";
1575 }else{ 1549 }else{
1576 zSep = "\n "; 1550 zSep = "\n ";
1577 zSep2 = ",\n "; 1551 zSep2 = ",\n ";
1578 zEnd = "\n)"; 1552 zEnd = "\n)";
1579 } 1553 }
1580 n += 35 + 6*p->nCol; 1554 n += 35 + 6*p->nCol;
1581 zStmt = sqlite3DbMallocRaw(0, n); 1555 zStmt = sqlite3DbMallocRaw(0, n);
1582 if( zStmt==0 ){ 1556 if( zStmt==0 ){
1583 db->mallocFailed = 1; 1557 sqlite3OomFault(db);
1584 return 0; 1558 return 0;
1585 } 1559 }
1586 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); 1560 sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1587 k = sqlite3Strlen30(zStmt); 1561 k = sqlite3Strlen30(zStmt);
1588 identPut(zStmt, &k, p->zName); 1562 identPut(zStmt, &k, p->zName);
1589 zStmt[k++] = '('; 1563 zStmt[k++] = '(';
1590 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ 1564 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1591 static const char * const azType[] = { 1565 static const char * const azType[] = {
1592 /* SQLITE_AFF_BLOB */ "", 1566 /* SQLITE_AFF_BLOB */ "",
1593 /* SQLITE_AFF_TEXT */ " TEXT", 1567 /* SQLITE_AFF_TEXT */ " TEXT",
(...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after
1626 ** Resize an Index object to hold N columns total. Return SQLITE_OK 1600 ** Resize an Index object to hold N columns total. Return SQLITE_OK
1627 ** on success and SQLITE_NOMEM on an OOM error. 1601 ** on success and SQLITE_NOMEM on an OOM error.
1628 */ 1602 */
1629 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ 1603 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1630 char *zExtra; 1604 char *zExtra;
1631 int nByte; 1605 int nByte;
1632 if( pIdx->nColumn>=N ) return SQLITE_OK; 1606 if( pIdx->nColumn>=N ) return SQLITE_OK;
1633 assert( pIdx->isResized==0 ); 1607 assert( pIdx->isResized==0 );
1634 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; 1608 nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1635 zExtra = sqlite3DbMallocZero(db, nByte); 1609 zExtra = sqlite3DbMallocZero(db, nByte);
1636 if( zExtra==0 ) return SQLITE_NOMEM; 1610 if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
1637 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); 1611 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1638 pIdx->azColl = (const char**)zExtra; 1612 pIdx->azColl = (const char**)zExtra;
1639 zExtra += sizeof(char*)*N; 1613 zExtra += sizeof(char*)*N;
1640 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); 1614 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1641 pIdx->aiColumn = (i16*)zExtra; 1615 pIdx->aiColumn = (i16*)zExtra;
1642 zExtra += sizeof(i16)*N; 1616 zExtra += sizeof(i16)*N;
1643 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); 1617 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1644 pIdx->aSortOrder = (u8*)zExtra; 1618 pIdx->aSortOrder = (u8*)zExtra;
1645 pIdx->nColumn = N; 1619 pIdx->nColumn = N;
1646 pIdx->isResized = 1; 1620 pIdx->isResized = 1;
(...skipping 36 matching lines...) Expand 10 before | Expand all | Expand 10 after
1683 return 0; 1657 return 0;
1684 } 1658 }
1685 1659
1686 /* 1660 /*
1687 ** This routine runs at the end of parsing a CREATE TABLE statement that 1661 ** This routine runs at the end of parsing a CREATE TABLE statement that
1688 ** has a WITHOUT ROWID clause. The job of this routine is to convert both 1662 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
1689 ** internal schema data structures and the generated VDBE code so that they 1663 ** internal schema data structures and the generated VDBE code so that they
1690 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. 1664 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1691 ** Changes include: 1665 ** Changes include:
1692 ** 1666 **
1693 ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is 1667 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1668 ** (2) Convert the OP_CreateTable into an OP_CreateIndex. There is
1694 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical 1669 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical
1695 ** data storage is a covering index btree. 1670 ** data storage is a covering index btree.
1696 ** (2) Bypass the creation of the sqlite_master table entry 1671 ** (3) Bypass the creation of the sqlite_master table entry
1697 ** for the PRIMARY KEY as the primary key index is now 1672 ** for the PRIMARY KEY as the primary key index is now
1698 ** identified by the sqlite_master table entry of the table itself. 1673 ** identified by the sqlite_master table entry of the table itself.
1699 ** (3) Set the Index.tnum of the PRIMARY KEY Index object in the 1674 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
1700 ** schema to the rootpage from the main table. 1675 ** schema to the rootpage from the main table.
1701 ** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1702 ** (5) Add all table columns to the PRIMARY KEY Index object 1676 ** (5) Add all table columns to the PRIMARY KEY Index object
1703 ** so that the PRIMARY KEY is a covering index. The surplus 1677 ** so that the PRIMARY KEY is a covering index. The surplus
1704 ** columns are part of KeyInfo.nXField and are not used for 1678 ** columns are part of KeyInfo.nXField and are not used for
1705 ** sorting or lookup or uniqueness checks. 1679 ** sorting or lookup or uniqueness checks.
1706 ** (6) Replace the rowid tail on all automatically generated UNIQUE 1680 ** (6) Replace the rowid tail on all automatically generated UNIQUE
1707 ** indices with the PRIMARY KEY columns. 1681 ** indices with the PRIMARY KEY columns.
1682 **
1683 ** For virtual tables, only (1) is performed.
1708 */ 1684 */
1709 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ 1685 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1710 Index *pIdx; 1686 Index *pIdx;
1711 Index *pPk; 1687 Index *pPk;
1712 int nPk; 1688 int nPk;
1713 int i, j; 1689 int i, j;
1714 sqlite3 *db = pParse->db; 1690 sqlite3 *db = pParse->db;
1715 Vdbe *v = pParse->pVdbe; 1691 Vdbe *v = pParse->pVdbe;
1716 1692
1693 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
1694 */
1695 if( !db->init.imposterTable ){
1696 for(i=0; i<pTab->nCol; i++){
1697 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){
1698 pTab->aCol[i].notNull = OE_Abort;
1699 }
1700 }
1701 }
1702
1703 /* The remaining transformations only apply to b-tree tables, not to
1704 ** virtual tables */
1705 if( IN_DECLARE_VTAB ) return;
1706
1717 /* Convert the OP_CreateTable opcode that would normally create the 1707 /* Convert the OP_CreateTable opcode that would normally create the
1718 ** root-page for the table into an OP_CreateIndex opcode. The index 1708 ** root-page for the table into an OP_CreateIndex opcode. The index
1719 ** created will become the PRIMARY KEY index. 1709 ** created will become the PRIMARY KEY index.
1720 */ 1710 */
1721 if( pParse->addrCrTab ){ 1711 if( pParse->addrCrTab ){
1722 assert( v ); 1712 assert( v );
1723 sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex); 1713 sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex);
1724 } 1714 }
1725 1715
1726 /* Locate the PRIMARY KEY index. Or, if this table was originally 1716 /* Locate the PRIMARY KEY index. Or, if this table was originally
1727 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. 1717 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1728 */ 1718 */
1729 if( pTab->iPKey>=0 ){ 1719 if( pTab->iPKey>=0 ){
1730 ExprList *pList; 1720 ExprList *pList;
1731 Token ipkToken; 1721 Token ipkToken;
1732 ipkToken.z = pTab->aCol[pTab->iPKey].zName; 1722 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
1733 ipkToken.n = sqlite3Strlen30(ipkToken.z);
1734 pList = sqlite3ExprListAppend(pParse, 0, 1723 pList = sqlite3ExprListAppend(pParse, 0,
1735 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); 1724 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1736 if( pList==0 ) return; 1725 if( pList==0 ) return;
1737 pList->a[0].sortOrder = pParse->iPkSortOrder; 1726 pList->a[0].sortOrder = pParse->iPkSortOrder;
1738 assert( pParse->pNewTable==pTab ); 1727 assert( pParse->pNewTable==pTab );
1739 pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0); 1728 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
1740 if( pPk==0 ) return; 1729 SQLITE_IDXTYPE_PRIMARYKEY);
1741 pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY; 1730 if( db->mallocFailed ) return;
1731 pPk = sqlite3PrimaryKeyIndex(pTab);
1742 pTab->iPKey = -1; 1732 pTab->iPKey = -1;
1743 }else{ 1733 }else{
1744 pPk = sqlite3PrimaryKeyIndex(pTab); 1734 pPk = sqlite3PrimaryKeyIndex(pTab);
1745 1735
1746 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master 1736 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1747 ** table entry. This is only required if currently generating VDBE 1737 ** table entry. This is only required if currently generating VDBE
1748 ** code for a CREATE TABLE (not when parsing one as part of reading 1738 ** code for a CREATE TABLE (not when parsing one as part of reading
1749 ** a database schema). */ 1739 ** a database schema). */
1750 if( v ){ 1740 if( v ){
1751 assert( db->init.busy==0 ); 1741 assert( db->init.busy==0 );
1752 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); 1742 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1753 } 1743 }
1754 1744
1755 /* 1745 /*
1756 ** Remove all redundant columns from the PRIMARY KEY. For example, change 1746 ** Remove all redundant columns from the PRIMARY KEY. For example, change
1757 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later 1747 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
1758 ** code assumes the PRIMARY KEY contains no repeated columns. 1748 ** code assumes the PRIMARY KEY contains no repeated columns.
1759 */ 1749 */
1760 for(i=j=1; i<pPk->nKeyCol; i++){ 1750 for(i=j=1; i<pPk->nKeyCol; i++){
1761 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ 1751 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1762 pPk->nColumn--; 1752 pPk->nColumn--;
1763 }else{ 1753 }else{
1764 pPk->aiColumn[j++] = pPk->aiColumn[i]; 1754 pPk->aiColumn[j++] = pPk->aiColumn[i];
1765 } 1755 }
1766 } 1756 }
1767 pPk->nKeyCol = j; 1757 pPk->nKeyCol = j;
1768 } 1758 }
1759 assert( pPk!=0 );
1769 pPk->isCovering = 1; 1760 pPk->isCovering = 1;
1770 assert( pPk!=0 ); 1761 if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
1771 nPk = pPk->nKeyCol; 1762 nPk = pPk->nKeyCol;
1772 1763
1773 /* Make sure every column of the PRIMARY KEY is NOT NULL. (Except,
1774 ** do not enforce this for imposter tables.) */
1775 if( !db->init.imposterTable ){
1776 for(i=0; i<nPk; i++){
1777 pTab->aCol[pPk->aiColumn[i]].notNull = OE_Abort;
1778 }
1779 pPk->uniqNotNull = 1;
1780 }
1781
1782 /* The root page of the PRIMARY KEY is the table root page */ 1764 /* The root page of the PRIMARY KEY is the table root page */
1783 pPk->tnum = pTab->tnum; 1765 pPk->tnum = pTab->tnum;
1784 1766
1785 /* Update the in-memory representation of all UNIQUE indices by converting 1767 /* Update the in-memory representation of all UNIQUE indices by converting
1786 ** the final rowid column into one or more columns of the PRIMARY KEY. 1768 ** the final rowid column into one or more columns of the PRIMARY KEY.
1787 */ 1769 */
1788 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1770 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1789 int n; 1771 int n;
1790 if( IsPrimaryKeyIndex(pIdx) ) continue; 1772 if( IsPrimaryKeyIndex(pIdx) ) continue;
1791 for(i=n=0; i<nPk; i++){ 1773 for(i=n=0; i<nPk; i++){
(...skipping 74 matching lines...) Expand 10 before | Expand all | Expand 10 after
1866 p = pParse->pNewTable; 1848 p = pParse->pNewTable;
1867 if( p==0 ) return; 1849 if( p==0 ) return;
1868 1850
1869 assert( !db->init.busy || !pSelect ); 1851 assert( !db->init.busy || !pSelect );
1870 1852
1871 /* If the db->init.busy is 1 it means we are reading the SQL off the 1853 /* If the db->init.busy is 1 it means we are reading the SQL off the
1872 ** "sqlite_master" or "sqlite_temp_master" table on the disk. 1854 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1873 ** So do not write to the disk again. Extract the root page number 1855 ** So do not write to the disk again. Extract the root page number
1874 ** for the table from the db->init.newTnum field. (The page number 1856 ** for the table from the db->init.newTnum field. (The page number
1875 ** should have been put there by the sqliteOpenCb routine.) 1857 ** should have been put there by the sqliteOpenCb routine.)
1858 **
1859 ** If the root page number is 1, that means this is the sqlite_master
1860 ** table itself. So mark it read-only.
1876 */ 1861 */
1877 if( db->init.busy ){ 1862 if( db->init.busy ){
1878 p->tnum = db->init.newTnum; 1863 p->tnum = db->init.newTnum;
1864 if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
1879 } 1865 }
1880 1866
1881 /* Special processing for WITHOUT ROWID Tables */ 1867 /* Special processing for WITHOUT ROWID Tables */
1882 if( tabOpts & TF_WithoutRowid ){ 1868 if( tabOpts & TF_WithoutRowid ){
1883 if( (p->tabFlags & TF_Autoincrement) ){ 1869 if( (p->tabFlags & TF_Autoincrement) ){
1884 sqlite3ErrorMsg(pParse, 1870 sqlite3ErrorMsg(pParse,
1885 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); 1871 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1886 return; 1872 return;
1887 } 1873 }
1888 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ 1874 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
(...skipping 80 matching lines...) Expand 10 before | Expand all | Expand 10 after
1969 regRowid = ++pParse->nMem; 1955 regRowid = ++pParse->nMem;
1970 assert(pParse->nTab==1); 1956 assert(pParse->nTab==1);
1971 sqlite3MayAbort(pParse); 1957 sqlite3MayAbort(pParse);
1972 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); 1958 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1973 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); 1959 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1974 pParse->nTab = 2; 1960 pParse->nTab = 2;
1975 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 1961 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
1976 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 1962 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
1977 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 1963 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
1978 sqlite3Select(pParse, pSelect, &dest); 1964 sqlite3Select(pParse, pSelect, &dest);
1979 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 1965 sqlite3VdbeEndCoroutine(v, regYield);
1980 sqlite3VdbeJumpHere(v, addrTop - 1); 1966 sqlite3VdbeJumpHere(v, addrTop - 1);
1981 if( pParse->nErr ) return; 1967 if( pParse->nErr ) return;
1982 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); 1968 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1983 if( pSelTab==0 ) return; 1969 if( pSelTab==0 ) return;
1984 assert( p->aCol==0 ); 1970 assert( p->aCol==0 );
1985 p->nCol = pSelTab->nCol; 1971 p->nCol = pSelTab->nCol;
1986 p->aCol = pSelTab->aCol; 1972 p->aCol = pSelTab->aCol;
1987 pSelTab->nCol = 0; 1973 pSelTab->nCol = 0;
1988 pSelTab->aCol = 0; 1974 pSelTab->aCol = 0;
1989 sqlite3DeleteTable(db, pSelTab); 1975 sqlite3DeleteTable(db, pSelTab);
(...skipping 21 matching lines...) Expand all
2011 } 1997 }
2012 1998
2013 /* A slot for the record has already been allocated in the 1999 /* A slot for the record has already been allocated in the
2014 ** SQLITE_MASTER table. We just need to update that slot with all 2000 ** SQLITE_MASTER table. We just need to update that slot with all
2015 ** the information we've collected. 2001 ** the information we've collected.
2016 */ 2002 */
2017 sqlite3NestedParse(pParse, 2003 sqlite3NestedParse(pParse,
2018 "UPDATE %Q.%s " 2004 "UPDATE %Q.%s "
2019 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " 2005 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
2020 "WHERE rowid=#%d", 2006 "WHERE rowid=#%d",
2021 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 2007 db->aDb[iDb].zDbSName, MASTER_NAME,
2022 zType, 2008 zType,
2023 p->zName, 2009 p->zName,
2024 p->zName, 2010 p->zName,
2025 pParse->regRoot, 2011 pParse->regRoot,
2026 zStmt, 2012 zStmt,
2027 pParse->regRowid 2013 pParse->regRowid
2028 ); 2014 );
2029 sqlite3DbFree(db, zStmt); 2015 sqlite3DbFree(db, zStmt);
2030 sqlite3ChangeCookie(pParse, iDb); 2016 sqlite3ChangeCookie(pParse, iDb);
2031 2017
2032 #ifndef SQLITE_OMIT_AUTOINCREMENT 2018 #ifndef SQLITE_OMIT_AUTOINCREMENT
2033 /* Check to see if we need to create an sqlite_sequence table for 2019 /* Check to see if we need to create an sqlite_sequence table for
2034 ** keeping track of autoincrement keys. 2020 ** keeping track of autoincrement keys.
2035 */ 2021 */
2036 if( p->tabFlags & TF_Autoincrement ){ 2022 if( (p->tabFlags & TF_Autoincrement)!=0 ){
2037 Db *pDb = &db->aDb[iDb]; 2023 Db *pDb = &db->aDb[iDb];
2038 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2024 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2039 if( pDb->pSchema->pSeqTab==0 ){ 2025 if( pDb->pSchema->pSeqTab==0 ){
2040 sqlite3NestedParse(pParse, 2026 sqlite3NestedParse(pParse,
2041 "CREATE TABLE %Q.sqlite_sequence(name,seq)", 2027 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2042 pDb->zName 2028 pDb->zDbSName
2043 ); 2029 );
2044 } 2030 }
2045 } 2031 }
2046 #endif 2032 #endif
2047 2033
2048 /* Reparse everything to update our internal data structures */ 2034 /* Reparse everything to update our internal data structures */
2049 sqlite3VdbeAddParseSchemaOp(v, iDb, 2035 sqlite3VdbeAddParseSchemaOp(v, iDb,
2050 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); 2036 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2051 } 2037 }
2052 2038
2053 2039
2054 /* Add the table to the in-memory representation of the database. 2040 /* Add the table to the in-memory representation of the database.
2055 */ 2041 */
2056 if( db->init.busy ){ 2042 if( db->init.busy ){
2057 Table *pOld; 2043 Table *pOld;
2058 Schema *pSchema = p->pSchema; 2044 Schema *pSchema = p->pSchema;
2059 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 2045 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2060 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); 2046 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2061 if( pOld ){ 2047 if( pOld ){
2062 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ 2048 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
2063 db->mallocFailed = 1; 2049 sqlite3OomFault(db);
2064 return; 2050 return;
2065 } 2051 }
2066 pParse->pNewTable = 0; 2052 pParse->pNewTable = 0;
2067 db->flags |= SQLITE_InternChanges; 2053 db->flags |= SQLITE_InternChanges;
2068 2054
2069 #ifndef SQLITE_OMIT_ALTERTABLE 2055 #ifndef SQLITE_OMIT_ALTERTABLE
2070 if( !p->pSelect ){ 2056 if( !p->pSelect ){
2071 const char *zName = (const char *)pParse->sNameToken.z; 2057 const char *zName = (const char *)pParse->sNameToken.z;
2072 int nName; 2058 int nName;
2073 assert( !pSelect && pCons && pEnd ); 2059 assert( !pSelect && pCons && pEnd );
(...skipping 82 matching lines...) Expand 10 before | Expand all | Expand 10 after
2156 ** The Table structure pTable is really a VIEW. Fill in the names of 2142 ** The Table structure pTable is really a VIEW. Fill in the names of
2157 ** the columns of the view in the pTable structure. Return the number 2143 ** the columns of the view in the pTable structure. Return the number
2158 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. 2144 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
2159 */ 2145 */
2160 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ 2146 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2161 Table *pSelTab; /* A fake table from which we get the result set */ 2147 Table *pSelTab; /* A fake table from which we get the result set */
2162 Select *pSel; /* Copy of the SELECT that implements the view */ 2148 Select *pSel; /* Copy of the SELECT that implements the view */
2163 int nErr = 0; /* Number of errors encountered */ 2149 int nErr = 0; /* Number of errors encountered */
2164 int n; /* Temporarily holds the number of cursors assigned */ 2150 int n; /* Temporarily holds the number of cursors assigned */
2165 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ 2151 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
2152 #ifndef SQLITE_OMIT_AUTHORIZATION
2166 sqlite3_xauth xAuth; /* Saved xAuth pointer */ 2153 sqlite3_xauth xAuth; /* Saved xAuth pointer */
2167 u8 bEnabledLA; /* Saved db->lookaside.bEnabled state */ 2154 #endif
2168 2155
2169 assert( pTable ); 2156 assert( pTable );
2170 2157
2171 #ifndef SQLITE_OMIT_VIRTUALTABLE 2158 #ifndef SQLITE_OMIT_VIRTUALTABLE
2172 if( sqlite3VtabCallConnect(pParse, pTable) ){ 2159 if( sqlite3VtabCallConnect(pParse, pTable) ){
2173 return SQLITE_ERROR; 2160 return SQLITE_ERROR;
2174 } 2161 }
2175 if( IsVirtual(pTable) ) return 0; 2162 if( IsVirtual(pTable) ) return 0;
2176 #endif 2163 #endif
2177 2164
(...skipping 25 matching lines...) Expand all
2203 assert( pTable->nCol>=0 ); 2190 assert( pTable->nCol>=0 );
2204 2191
2205 /* If we get this far, it means we need to compute the table names. 2192 /* If we get this far, it means we need to compute the table names.
2206 ** Note that the call to sqlite3ResultSetOfSelect() will expand any 2193 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2207 ** "*" elements in the results set of the view and will assign cursors 2194 ** "*" elements in the results set of the view and will assign cursors
2208 ** to the elements of the FROM clause. But we do not want these changes 2195 ** to the elements of the FROM clause. But we do not want these changes
2209 ** to be permanent. So the computation is done on a copy of the SELECT 2196 ** to be permanent. So the computation is done on a copy of the SELECT
2210 ** statement that defines the view. 2197 ** statement that defines the view.
2211 */ 2198 */
2212 assert( pTable->pSelect ); 2199 assert( pTable->pSelect );
2213 bEnabledLA = db->lookaside.bEnabled; 2200 pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2214 if( pTable->pCheck ){ 2201 if( pSel ){
2215 db->lookaside.bEnabled = 0; 2202 n = pParse->nTab;
2216 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, 2203 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2217 &pTable->nCol, &pTable->aCol); 2204 pTable->nCol = -1;
2218 }else{ 2205 db->lookaside.bDisable++;
2219 pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2220 if( pSel ){
2221 n = pParse->nTab;
2222 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2223 pTable->nCol = -1;
2224 db->lookaside.bEnabled = 0;
2225 #ifndef SQLITE_OMIT_AUTHORIZATION 2206 #ifndef SQLITE_OMIT_AUTHORIZATION
2226 xAuth = db->xAuth; 2207 xAuth = db->xAuth;
2227 db->xAuth = 0; 2208 db->xAuth = 0;
2228 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2209 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2229 db->xAuth = xAuth; 2210 db->xAuth = xAuth;
2230 #else 2211 #else
2231 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); 2212 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2232 #endif 2213 #endif
2233 pParse->nTab = n; 2214 pParse->nTab = n;
2234 if( pSelTab ){ 2215 if( pTable->pCheck ){
2235 assert( pTable->aCol==0 ); 2216 /* CREATE VIEW name(arglist) AS ...
2236 pTable->nCol = pSelTab->nCol; 2217 ** The names of the columns in the table are taken from
2237 pTable->aCol = pSelTab->aCol; 2218 ** arglist which is stored in pTable->pCheck. The pCheck field
2238 pSelTab->nCol = 0; 2219 ** normally holds CHECK constraints on an ordinary table, but for
2239 pSelTab->aCol = 0; 2220 ** a VIEW it holds the list of column names.
2240 sqlite3DeleteTable(db, pSelTab); 2221 */
2241 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); 2222 sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2242 }else{ 2223 &pTable->nCol, &pTable->aCol);
2243 pTable->nCol = 0; 2224 if( db->mallocFailed==0
2244 nErr++; 2225 && pParse->nErr==0
2226 && pTable->nCol==pSel->pEList->nExpr
2227 ){
2228 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel);
2245 } 2229 }
2246 sqlite3SelectDelete(db, pSel); 2230 }else if( pSelTab ){
2247 } else { 2231 /* CREATE VIEW name AS... without an argument list. Construct
2232 ** the column names from the SELECT statement that defines the view.
2233 */
2234 assert( pTable->aCol==0 );
2235 pTable->nCol = pSelTab->nCol;
2236 pTable->aCol = pSelTab->aCol;
2237 pSelTab->nCol = 0;
2238 pSelTab->aCol = 0;
2239 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2240 }else{
2241 pTable->nCol = 0;
2248 nErr++; 2242 nErr++;
2249 } 2243 }
2244 sqlite3DeleteTable(db, pSelTab);
2245 sqlite3SelectDelete(db, pSel);
2246 db->lookaside.bDisable--;
2247 } else {
2248 nErr++;
2250 } 2249 }
2251 db->lookaside.bEnabled = bEnabledLA;
2252 pTable->pSchema->schemaFlags |= DB_UnresetViews; 2250 pTable->pSchema->schemaFlags |= DB_UnresetViews;
2253 #endif /* SQLITE_OMIT_VIEW */ 2251 #endif /* SQLITE_OMIT_VIEW */
2254 return nErr; 2252 return nErr;
2255 } 2253 }
2256 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ 2254 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2257 2255
2258 #ifndef SQLITE_OMIT_VIEW 2256 #ifndef SQLITE_OMIT_VIEW
2259 /* 2257 /*
2260 ** Clear the column names from every VIEW in database idx. 2258 ** Clear the column names from every VIEW in database idx.
2261 */ 2259 */
(...skipping 59 matching lines...) Expand 10 before | Expand all | Expand 10 after
2321 2319
2322 /* 2320 /*
2323 ** Write code to erase the table with root-page iTable from database iDb. 2321 ** Write code to erase the table with root-page iTable from database iDb.
2324 ** Also write code to modify the sqlite_master table and internal schema 2322 ** Also write code to modify the sqlite_master table and internal schema
2325 ** if a root-page of another table is moved by the btree-layer whilst 2323 ** if a root-page of another table is moved by the btree-layer whilst
2326 ** erasing iTable (this can happen with an auto-vacuum database). 2324 ** erasing iTable (this can happen with an auto-vacuum database).
2327 */ 2325 */
2328 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ 2326 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2329 Vdbe *v = sqlite3GetVdbe(pParse); 2327 Vdbe *v = sqlite3GetVdbe(pParse);
2330 int r1 = sqlite3GetTempReg(pParse); 2328 int r1 = sqlite3GetTempReg(pParse);
2329 assert( iTable>1 );
2331 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); 2330 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2332 sqlite3MayAbort(pParse); 2331 sqlite3MayAbort(pParse);
2333 #ifndef SQLITE_OMIT_AUTOVACUUM 2332 #ifndef SQLITE_OMIT_AUTOVACUUM
2334 /* OP_Destroy stores an in integer r1. If this integer 2333 /* OP_Destroy stores an in integer r1. If this integer
2335 ** is non-zero, then it is the root page number of a table moved to 2334 ** is non-zero, then it is the root page number of a table moved to
2336 ** location iTable. The following code modifies the sqlite_master table to 2335 ** location iTable. The following code modifies the sqlite_master table to
2337 ** reflect this. 2336 ** reflect this.
2338 ** 2337 **
2339 ** The "#NNN" in the SQL is a special constant that means whatever value 2338 ** The "#NNN" in the SQL is a special constant that means whatever value
2340 ** is in register NNN. See grammar rules associated with the TK_REGISTER 2339 ** is in register NNN. See grammar rules associated with the TK_REGISTER
2341 ** token for additional information. 2340 ** token for additional information.
2342 */ 2341 */
2343 sqlite3NestedParse(pParse, 2342 sqlite3NestedParse(pParse,
2344 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", 2343 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2345 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); 2344 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1);
2346 #endif 2345 #endif
2347 sqlite3ReleaseTempReg(pParse, r1); 2346 sqlite3ReleaseTempReg(pParse, r1);
2348 } 2347 }
2349 2348
2350 /* 2349 /*
2351 ** Write VDBE code to erase table pTab and all associated indices on disk. 2350 ** Write VDBE code to erase table pTab and all associated indices on disk.
2352 ** Code to update the sqlite_master tables and internal schema definitions 2351 ** Code to update the sqlite_master tables and internal schema definitions
2353 ** in case a root-page belonging to another table is moved by the btree layer 2352 ** in case a root-page belonging to another table is moved by the btree layer
2354 ** is also added (this can happen with an auto-vacuum database). 2353 ** is also added (this can happen with an auto-vacuum database).
2355 */ 2354 */
(...skipping 55 matching lines...) Expand 10 before | Expand all | Expand 10 after
2411 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) 2410 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2412 ** after a DROP INDEX or DROP TABLE command. 2411 ** after a DROP INDEX or DROP TABLE command.
2413 */ 2412 */
2414 static void sqlite3ClearStatTables( 2413 static void sqlite3ClearStatTables(
2415 Parse *pParse, /* The parsing context */ 2414 Parse *pParse, /* The parsing context */
2416 int iDb, /* The database number */ 2415 int iDb, /* The database number */
2417 const char *zType, /* "idx" or "tbl" */ 2416 const char *zType, /* "idx" or "tbl" */
2418 const char *zName /* Name of index or table */ 2417 const char *zName /* Name of index or table */
2419 ){ 2418 ){
2420 int i; 2419 int i;
2421 const char *zDbName = pParse->db->aDb[iDb].zName; 2420 const char *zDbName = pParse->db->aDb[iDb].zDbSName;
2422 for(i=1; i<=4; i++){ 2421 for(i=1; i<=4; i++){
2423 char zTab[24]; 2422 char zTab[24];
2424 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); 2423 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2425 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ 2424 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2426 sqlite3NestedParse(pParse, 2425 sqlite3NestedParse(pParse,
2427 "DELETE FROM %Q.%s WHERE %s=%Q", 2426 "DELETE FROM %Q.%s WHERE %s=%Q",
2428 zDbName, zTab, zType, zName 2427 zDbName, zTab, zType, zName
2429 ); 2428 );
2430 } 2429 }
2431 } 2430 }
(...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after
2464 2463
2465 #ifndef SQLITE_OMIT_AUTOINCREMENT 2464 #ifndef SQLITE_OMIT_AUTOINCREMENT
2466 /* Remove any entries of the sqlite_sequence table associated with 2465 /* Remove any entries of the sqlite_sequence table associated with
2467 ** the table being dropped. This is done before the table is dropped 2466 ** the table being dropped. This is done before the table is dropped
2468 ** at the btree level, in case the sqlite_sequence table needs to 2467 ** at the btree level, in case the sqlite_sequence table needs to
2469 ** move as a result of the drop (can happen in auto-vacuum mode). 2468 ** move as a result of the drop (can happen in auto-vacuum mode).
2470 */ 2469 */
2471 if( pTab->tabFlags & TF_Autoincrement ){ 2470 if( pTab->tabFlags & TF_Autoincrement ){
2472 sqlite3NestedParse(pParse, 2471 sqlite3NestedParse(pParse,
2473 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", 2472 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2474 pDb->zName, pTab->zName 2473 pDb->zDbSName, pTab->zName
2475 ); 2474 );
2476 } 2475 }
2477 #endif 2476 #endif
2478 2477
2479 /* Drop all SQLITE_MASTER table and index entries that refer to the 2478 /* Drop all SQLITE_MASTER table and index entries that refer to the
2480 ** table. The program name loops through the master table and deletes 2479 ** table. The program name loops through the master table and deletes
2481 ** every row that refers to a table of the same name as the one being 2480 ** every row that refers to a table of the same name as the one being
2482 ** dropped. Triggers are handled separately because a trigger can be 2481 ** dropped. Triggers are handled separately because a trigger can be
2483 ** created in the temp database that refers to a table in another 2482 ** created in the temp database that refers to a table in another
2484 ** database. 2483 ** database.
2485 */ 2484 */
2486 sqlite3NestedParse(pParse, 2485 sqlite3NestedParse(pParse,
2487 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", 2486 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2488 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); 2487 pDb->zDbSName, MASTER_NAME, pTab->zName);
2489 if( !isView && !IsVirtual(pTab) ){ 2488 if( !isView && !IsVirtual(pTab) ){
2490 destroyTable(pParse, pTab); 2489 destroyTable(pParse, pTab);
2491 } 2490 }
2492 2491
2493 /* Remove the table entry from SQLite's internal schema and modify 2492 /* Remove the table entry from SQLite's internal schema and modify
2494 ** the schema cookie. 2493 ** the schema cookie.
2495 */ 2494 */
2496 if( IsVirtual(pTab) ){ 2495 if( IsVirtual(pTab) ){
2497 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); 2496 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2498 } 2497 }
(...skipping 12 matching lines...) Expand all
2511 sqlite3 *db = pParse->db; 2510 sqlite3 *db = pParse->db;
2512 int iDb; 2511 int iDb;
2513 2512
2514 if( db->mallocFailed ){ 2513 if( db->mallocFailed ){
2515 goto exit_drop_table; 2514 goto exit_drop_table;
2516 } 2515 }
2517 assert( pParse->nErr==0 ); 2516 assert( pParse->nErr==0 );
2518 assert( pName->nSrc==1 ); 2517 assert( pName->nSrc==1 );
2519 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; 2518 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2520 if( noErr ) db->suppressErr++; 2519 if( noErr ) db->suppressErr++;
2520 assert( isView==0 || isView==LOCATE_VIEW );
2521 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); 2521 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2522 if( noErr ) db->suppressErr--; 2522 if( noErr ) db->suppressErr--;
2523 2523
2524 if( pTab==0 ){ 2524 if( pTab==0 ){
2525 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); 2525 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2526 goto exit_drop_table; 2526 goto exit_drop_table;
2527 } 2527 }
2528 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 2528 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2529 assert( iDb>=0 && iDb<db->nDb ); 2529 assert( iDb>=0 && iDb<db->nDb );
2530 2530
2531 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure 2531 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2532 ** it is initialized. 2532 ** it is initialized.
2533 */ 2533 */
2534 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ 2534 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2535 goto exit_drop_table; 2535 goto exit_drop_table;
2536 } 2536 }
2537 #ifndef SQLITE_OMIT_AUTHORIZATION 2537 #ifndef SQLITE_OMIT_AUTHORIZATION
2538 { 2538 {
2539 int code; 2539 int code;
2540 const char *zTab = SCHEMA_TABLE(iDb); 2540 const char *zTab = SCHEMA_TABLE(iDb);
2541 const char *zDb = db->aDb[iDb].zName; 2541 const char *zDb = db->aDb[iDb].zDbSName;
2542 const char *zArg2 = 0; 2542 const char *zArg2 = 0;
2543 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ 2543 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2544 goto exit_drop_table; 2544 goto exit_drop_table;
2545 } 2545 }
2546 if( isView ){ 2546 if( isView ){
2547 if( !OMIT_TEMPDB && iDb==1 ){ 2547 if( !OMIT_TEMPDB && iDb==1 ){
2548 code = SQLITE_DROP_TEMP_VIEW; 2548 code = SQLITE_DROP_TEMP_VIEW;
2549 }else{ 2549 }else{
2550 code = SQLITE_DROP_VIEW; 2550 code = SQLITE_DROP_VIEW;
2551 } 2551 }
(...skipping 154 matching lines...) Expand 10 before | Expand all | Expand 10 after
2706 } 2706 }
2707 pFKey->isDeferred = 0; 2707 pFKey->isDeferred = 0;
2708 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ 2708 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
2709 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ 2709 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
2710 2710
2711 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); 2711 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2712 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, 2712 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2713 pFKey->zTo, (void *)pFKey 2713 pFKey->zTo, (void *)pFKey
2714 ); 2714 );
2715 if( pNextTo==pFKey ){ 2715 if( pNextTo==pFKey ){
2716 db->mallocFailed = 1; 2716 sqlite3OomFault(db);
2717 goto fk_end; 2717 goto fk_end;
2718 } 2718 }
2719 if( pNextTo ){ 2719 if( pNextTo ){
2720 assert( pNextTo->pPrevTo==0 ); 2720 assert( pNextTo->pPrevTo==0 );
2721 pFKey->pNextTo = pNextTo; 2721 pFKey->pNextTo = pNextTo;
2722 pNextTo->pPrevTo = pFKey; 2722 pNextTo->pPrevTo = pFKey;
2723 } 2723 }
2724 2724
2725 /* Link the foreign key to the table as the last step. 2725 /* Link the foreign key to the table as the last step.
2726 */ 2726 */
(...skipping 45 matching lines...) Expand 10 before | Expand all | Expand 10 after
2772 int tnum; /* Root page of index */ 2772 int tnum; /* Root page of index */
2773 int iPartIdxLabel; /* Jump to this label to skip a row */ 2773 int iPartIdxLabel; /* Jump to this label to skip a row */
2774 Vdbe *v; /* Generate code into this virtual machine */ 2774 Vdbe *v; /* Generate code into this virtual machine */
2775 KeyInfo *pKey; /* KeyInfo for index */ 2775 KeyInfo *pKey; /* KeyInfo for index */
2776 int regRecord; /* Register holding assembled index record */ 2776 int regRecord; /* Register holding assembled index record */
2777 sqlite3 *db = pParse->db; /* The database connection */ 2777 sqlite3 *db = pParse->db; /* The database connection */
2778 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 2778 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2779 2779
2780 #ifndef SQLITE_OMIT_AUTHORIZATION 2780 #ifndef SQLITE_OMIT_AUTHORIZATION
2781 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, 2781 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2782 db->aDb[iDb].zName ) ){ 2782 db->aDb[iDb].zDbSName ) ){
2783 return; 2783 return;
2784 } 2784 }
2785 #endif 2785 #endif
2786 2786
2787 /* Require a write-lock on the table to perform this operation */ 2787 /* Require a write-lock on the table to perform this operation */
2788 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); 2788 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2789 2789
2790 v = sqlite3GetVdbe(pParse); 2790 v = sqlite3GetVdbe(pParse);
2791 if( v==0 ) return; 2791 if( v==0 ) return;
2792 if( memRootPage>=0 ){ 2792 if( memRootPage>=0 ){
2793 tnum = memRootPage; 2793 tnum = memRootPage;
2794 }else{ 2794 }else{
2795 tnum = pIndex->tnum; 2795 tnum = pIndex->tnum;
2796 } 2796 }
2797 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); 2797 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2798 assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2798 2799
2799 /* Open the sorter cursor if we are to use one. */ 2800 /* Open the sorter cursor if we are to use one. */
2800 iSorter = pParse->nTab++; 2801 iSorter = pParse->nTab++;
2801 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) 2802 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2802 sqlite3KeyInfoRef(pKey), P4_KEYINFO); 2803 sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2803 2804
2804 /* Open the table. Loop through all rows of the table, inserting index 2805 /* Open the table. Loop through all rows of the table, inserting index
2805 ** records into the sorter. */ 2806 ** records into the sorter. */
2806 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); 2807 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2807 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); 2808 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2808 regRecord = sqlite3GetTempReg(pParse); 2809 regRecord = sqlite3GetTempReg(pParse);
2809 2810
2810 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); 2811 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2811 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); 2812 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2812 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); 2813 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2813 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); 2814 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2814 sqlite3VdbeJumpHere(v, addr1); 2815 sqlite3VdbeJumpHere(v, addr1);
2815 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); 2816 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2816 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 2817 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2817 (char *)pKey, P4_KEYINFO); 2818 (char *)pKey, P4_KEYINFO);
2818 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); 2819 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2819 2820
2820 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); 2821 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2821 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); 2822 if( IsUniqueIndex(pIndex) ){
2822 if( IsUniqueIndex(pIndex) && pKey!=0 ){
2823 int j2 = sqlite3VdbeCurrentAddr(v) + 3; 2823 int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2824 sqlite3VdbeGoto(v, j2); 2824 sqlite3VdbeGoto(v, j2);
2825 addr2 = sqlite3VdbeCurrentAddr(v); 2825 addr2 = sqlite3VdbeCurrentAddr(v);
2826 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, 2826 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2827 pIndex->nKeyCol); VdbeCoverage(v); 2827 pIndex->nKeyCol); VdbeCoverage(v);
2828 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); 2828 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2829 }else{ 2829 }else{
2830 addr2 = sqlite3VdbeCurrentAddr(v); 2830 addr2 = sqlite3VdbeCurrentAddr(v);
2831 } 2831 }
2832 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); 2832 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2833 sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1); 2833 sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1);
2834 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0); 2834 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2835 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 2835 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2836 sqlite3ReleaseTempReg(pParse, regRecord); 2836 sqlite3ReleaseTempReg(pParse, regRecord);
2837 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); 2837 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2838 sqlite3VdbeJumpHere(v, addr1); 2838 sqlite3VdbeJumpHere(v, addr1);
2839 2839
2840 sqlite3VdbeAddOp1(v, OP_Close, iTab); 2840 sqlite3VdbeAddOp1(v, OP_Close, iTab);
2841 sqlite3VdbeAddOp1(v, OP_Close, iIdx); 2841 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2842 sqlite3VdbeAddOp1(v, OP_Close, iSorter); 2842 sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2843 } 2843 }
2844 2844
(...skipping 36 matching lines...) Expand 10 before | Expand all | Expand 10 after
2881 ** Create a new index for an SQL table. pName1.pName2 is the name of the index 2881 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
2882 ** and pTblList is the name of the table that is to be indexed. Both will 2882 ** and pTblList is the name of the table that is to be indexed. Both will
2883 ** be NULL for a primary key or an index that is created to satisfy a 2883 ** be NULL for a primary key or an index that is created to satisfy a
2884 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable 2884 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
2885 ** as the table to be indexed. pParse->pNewTable is a table that is 2885 ** as the table to be indexed. pParse->pNewTable is a table that is
2886 ** currently being constructed by a CREATE TABLE statement. 2886 ** currently being constructed by a CREATE TABLE statement.
2887 ** 2887 **
2888 ** pList is a list of columns to be indexed. pList will be NULL if this 2888 ** pList is a list of columns to be indexed. pList will be NULL if this
2889 ** is a primary key or unique-constraint on the most recent column added 2889 ** is a primary key or unique-constraint on the most recent column added
2890 ** to the table currently under construction. 2890 ** to the table currently under construction.
2891 **
2892 ** If the index is created successfully, return a pointer to the new Index
2893 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
2894 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY)
2895 */ 2891 */
2896 Index *sqlite3CreateIndex( 2892 void sqlite3CreateIndex(
2897 Parse *pParse, /* All information about this parse */ 2893 Parse *pParse, /* All information about this parse */
2898 Token *pName1, /* First part of index name. May be NULL */ 2894 Token *pName1, /* First part of index name. May be NULL */
2899 Token *pName2, /* Second part of index name. May be NULL */ 2895 Token *pName2, /* Second part of index name. May be NULL */
2900 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ 2896 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2901 ExprList *pList, /* A list of columns to be indexed */ 2897 ExprList *pList, /* A list of columns to be indexed */
2902 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 2898 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2903 Token *pStart, /* The CREATE token that begins this statement */ 2899 Token *pStart, /* The CREATE token that begins this statement */
2904 Expr *pPIWhere, /* WHERE clause for partial indices */ 2900 Expr *pPIWhere, /* WHERE clause for partial indices */
2905 int sortOrder, /* Sort order of primary key when pList==NULL */ 2901 int sortOrder, /* Sort order of primary key when pList==NULL */
2906 int ifNotExist /* Omit error if index already exists */ 2902 int ifNotExist, /* Omit error if index already exists */
2903 u8 idxType /* The index type */
2907 ){ 2904 ){
2908 Index *pRet = 0; /* Pointer to return */
2909 Table *pTab = 0; /* Table to be indexed */ 2905 Table *pTab = 0; /* Table to be indexed */
2910 Index *pIndex = 0; /* The index to be created */ 2906 Index *pIndex = 0; /* The index to be created */
2911 char *zName = 0; /* Name of the index */ 2907 char *zName = 0; /* Name of the index */
2912 int nName; /* Number of characters in zName */ 2908 int nName; /* Number of characters in zName */
2913 int i, j; 2909 int i, j;
2914 DbFixer sFix; /* For assigning database names to pTable */ 2910 DbFixer sFix; /* For assigning database names to pTable */
2915 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ 2911 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
2916 sqlite3 *db = pParse->db; 2912 sqlite3 *db = pParse->db;
2917 Db *pDb; /* The specific table containing the indexed database */ 2913 Db *pDb; /* The specific table containing the indexed database */
2918 int iDb; /* Index of the database that is being written */ 2914 int iDb; /* Index of the database that is being written */
2919 Token *pName = 0; /* Unqualified name of the index to create */ 2915 Token *pName = 0; /* Unqualified name of the index to create */
2920 struct ExprList_item *pListItem; /* For looping over pList */ 2916 struct ExprList_item *pListItem; /* For looping over pList */
2921 int nExtra = 0; /* Space allocated for zExtra[] */ 2917 int nExtra = 0; /* Space allocated for zExtra[] */
2922 int nExtraCol; /* Number of extra columns needed */ 2918 int nExtraCol; /* Number of extra columns needed */
2923 char *zExtra = 0; /* Extra space after the Index object */ 2919 char *zExtra = 0; /* Extra space after the Index object */
2924 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ 2920 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
2925 2921
2926 if( db->mallocFailed || IN_DECLARE_VTAB || pParse->nErr>0 ){ 2922 if( db->mallocFailed || pParse->nErr>0 ){
2923 goto exit_create_index;
2924 }
2925 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
2927 goto exit_create_index; 2926 goto exit_create_index;
2928 } 2927 }
2929 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ 2928 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2930 goto exit_create_index; 2929 goto exit_create_index;
2931 } 2930 }
2932 2931
2933 /* 2932 /*
2934 ** Find the table that is to be indexed. Return early if not found. 2933 ** Find the table that is to be indexed. Return early if not found.
2935 */ 2934 */
2936 if( pTblName!=0 ){ 2935 if( pTblName!=0 ){
(...skipping 88 matching lines...) Expand 10 before | Expand all | Expand 10 after
3025 assert( pName->z!=0 ); 3024 assert( pName->z!=0 );
3026 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ 3025 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3027 goto exit_create_index; 3026 goto exit_create_index;
3028 } 3027 }
3029 if( !db->init.busy ){ 3028 if( !db->init.busy ){
3030 if( sqlite3FindTable(db, zName, 0)!=0 ){ 3029 if( sqlite3FindTable(db, zName, 0)!=0 ){
3031 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); 3030 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3032 goto exit_create_index; 3031 goto exit_create_index;
3033 } 3032 }
3034 } 3033 }
3035 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ 3034 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
3036 if( !ifNotExist ){ 3035 if( !ifNotExist ){
3037 sqlite3ErrorMsg(pParse, "index %s already exists", zName); 3036 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3038 }else{ 3037 }else{
3039 assert( !db->init.busy ); 3038 assert( !db->init.busy );
3040 sqlite3CodeVerifySchema(pParse, iDb); 3039 sqlite3CodeVerifySchema(pParse, iDb);
3041 } 3040 }
3042 goto exit_create_index; 3041 goto exit_create_index;
3043 } 3042 }
3044 }else{ 3043 }else{
3045 int n; 3044 int n;
3046 Index *pLoop; 3045 Index *pLoop;
3047 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} 3046 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3048 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); 3047 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3049 if( zName==0 ){ 3048 if( zName==0 ){
3050 goto exit_create_index; 3049 goto exit_create_index;
3051 } 3050 }
3051
3052 /* Automatic index names generated from within sqlite3_declare_vtab()
3053 ** must have names that are distinct from normal automatic index names.
3054 ** The following statement converts "sqlite3_autoindex..." into
3055 ** "sqlite3_butoindex..." in order to make the names distinct.
3056 ** The "vtab_err.test" test demonstrates the need of this statement. */
3057 if( IN_DECLARE_VTAB ) zName[7]++;
3052 } 3058 }
3053 3059
3054 /* Check for authorization to create an index. 3060 /* Check for authorization to create an index.
3055 */ 3061 */
3056 #ifndef SQLITE_OMIT_AUTHORIZATION 3062 #ifndef SQLITE_OMIT_AUTHORIZATION
3057 { 3063 {
3058 const char *zDb = pDb->zName; 3064 const char *zDb = pDb->zDbSName;
3059 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ 3065 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3060 goto exit_create_index; 3066 goto exit_create_index;
3061 } 3067 }
3062 i = SQLITE_CREATE_INDEX; 3068 i = SQLITE_CREATE_INDEX;
3063 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; 3069 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3064 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ 3070 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3065 goto exit_create_index; 3071 goto exit_create_index;
3066 } 3072 }
3067 } 3073 }
3068 #endif 3074 #endif
3069 3075
3070 /* If pList==0, it means this routine was called to make a primary 3076 /* If pList==0, it means this routine was called to make a primary
3071 ** key out of the last column added to the table under construction. 3077 ** key out of the last column added to the table under construction.
3072 ** So create a fake list to simulate this. 3078 ** So create a fake list to simulate this.
3073 */ 3079 */
3074 if( pList==0 ){ 3080 if( pList==0 ){
3075 Token prevCol; 3081 Token prevCol;
3076 prevCol.z = pTab->aCol[pTab->nCol-1].zName; 3082 sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName);
3077 prevCol.n = sqlite3Strlen30(prevCol.z);
3078 pList = sqlite3ExprListAppend(pParse, 0, 3083 pList = sqlite3ExprListAppend(pParse, 0,
3079 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); 3084 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3080 if( pList==0 ) goto exit_create_index; 3085 if( pList==0 ) goto exit_create_index;
3081 assert( pList->nExpr==1 ); 3086 assert( pList->nExpr==1 );
3082 sqlite3ExprListSetSortOrder(pList, sortOrder); 3087 sqlite3ExprListSetSortOrder(pList, sortOrder);
3083 }else{ 3088 }else{
3084 sqlite3ExprListCheckLength(pParse, pList, "index"); 3089 sqlite3ExprListCheckLength(pParse, pList, "index");
3085 } 3090 }
3086 3091
3087 /* Figure out how many bytes of space are required to store explicitly 3092 /* Figure out how many bytes of space are required to store explicitly
(...skipping 18 matching lines...) Expand all
3106 goto exit_create_index; 3111 goto exit_create_index;
3107 } 3112 }
3108 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); 3113 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3109 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); 3114 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3110 pIndex->zName = zExtra; 3115 pIndex->zName = zExtra;
3111 zExtra += nName + 1; 3116 zExtra += nName + 1;
3112 memcpy(pIndex->zName, zName, nName+1); 3117 memcpy(pIndex->zName, zName, nName+1);
3113 pIndex->pTable = pTab; 3118 pIndex->pTable = pTab;
3114 pIndex->onError = (u8)onError; 3119 pIndex->onError = (u8)onError;
3115 pIndex->uniqNotNull = onError!=OE_None; 3120 pIndex->uniqNotNull = onError!=OE_None;
3116 pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE; 3121 pIndex->idxType = idxType;
3117 pIndex->pSchema = db->aDb[iDb].pSchema; 3122 pIndex->pSchema = db->aDb[iDb].pSchema;
3118 pIndex->nKeyCol = pList->nExpr; 3123 pIndex->nKeyCol = pList->nExpr;
3119 if( pPIWhere ){ 3124 if( pPIWhere ){
3120 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); 3125 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3121 pIndex->pPartIdxWhere = pPIWhere; 3126 pIndex->pPartIdxWhere = pPIWhere;
3122 pPIWhere = 0; 3127 pPIWhere = 0;
3123 } 3128 }
3124 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 3129 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3125 3130
3126 /* Check to see if we should honor DESC requests on index columns 3131 /* Check to see if we should honor DESC requests on index columns
(...skipping 89 matching lines...) Expand 10 before | Expand all | Expand 10 after
3216 } 3221 }
3217 } 3222 }
3218 assert( i==pIndex->nColumn ); 3223 assert( i==pIndex->nColumn );
3219 }else{ 3224 }else{
3220 pIndex->aiColumn[i] = XN_ROWID; 3225 pIndex->aiColumn[i] = XN_ROWID;
3221 pIndex->azColl[i] = sqlite3StrBINARY; 3226 pIndex->azColl[i] = sqlite3StrBINARY;
3222 } 3227 }
3223 sqlite3DefaultRowEst(pIndex); 3228 sqlite3DefaultRowEst(pIndex);
3224 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); 3229 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3225 3230
3231 /* If this index contains every column of its table, then mark
3232 ** it as a covering index */
3233 assert( HasRowid(pTab)
3234 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 );
3235 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
3236 pIndex->isCovering = 1;
3237 for(j=0; j<pTab->nCol; j++){
3238 if( j==pTab->iPKey ) continue;
3239 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue;
3240 pIndex->isCovering = 0;
3241 break;
3242 }
3243 }
3244
3226 if( pTab==pParse->pNewTable ){ 3245 if( pTab==pParse->pNewTable ){
3227 /* This routine has been called to create an automatic index as a 3246 /* This routine has been called to create an automatic index as a
3228 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or 3247 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3229 ** a PRIMARY KEY or UNIQUE clause following the column definitions. 3248 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3230 ** i.e. one of: 3249 ** i.e. one of:
3231 ** 3250 **
3232 ** CREATE TABLE t(x PRIMARY KEY, y); 3251 ** CREATE TABLE t(x PRIMARY KEY, y);
3233 ** CREATE TABLE t(x, y, UNIQUE(x, y)); 3252 ** CREATE TABLE t(x, y, UNIQUE(x, y));
3234 ** 3253 **
3235 ** Either way, check to see if the table already has such an index. If 3254 ** Either way, check to see if the table already has such an index. If
(...skipping 17 matching lines...) Expand all
3253 assert( IsUniqueIndex(pIndex) ); 3272 assert( IsUniqueIndex(pIndex) );
3254 3273
3255 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; 3274 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3256 for(k=0; k<pIdx->nKeyCol; k++){ 3275 for(k=0; k<pIdx->nKeyCol; k++){
3257 const char *z1; 3276 const char *z1;
3258 const char *z2; 3277 const char *z2;
3259 assert( pIdx->aiColumn[k]>=0 ); 3278 assert( pIdx->aiColumn[k]>=0 );
3260 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; 3279 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3261 z1 = pIdx->azColl[k]; 3280 z1 = pIdx->azColl[k];
3262 z2 = pIndex->azColl[k]; 3281 z2 = pIndex->azColl[k];
3263 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; 3282 if( sqlite3StrICmp(z1, z2) ) break;
3264 } 3283 }
3265 if( k==pIdx->nKeyCol ){ 3284 if( k==pIdx->nKeyCol ){
3266 if( pIdx->onError!=pIndex->onError ){ 3285 if( pIdx->onError!=pIndex->onError ){
3267 /* This constraint creates the same index as a previous 3286 /* This constraint creates the same index as a previous
3268 ** constraint specified somewhere in the CREATE TABLE statement. 3287 ** constraint specified somewhere in the CREATE TABLE statement.
3269 ** However the ON CONFLICT clauses are different. If both this 3288 ** However the ON CONFLICT clauses are different. If both this
3270 ** constraint and the previous equivalent constraint have explicit 3289 ** constraint and the previous equivalent constraint have explicit
3271 ** ON CONFLICT clauses this is an error. Otherwise, use the 3290 ** ON CONFLICT clauses this is an error. Otherwise, use the
3272 ** explicitly specified behavior for the index. 3291 ** explicitly specified behavior for the index.
3273 */ 3292 */
3274 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ 3293 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3275 sqlite3ErrorMsg(pParse, 3294 sqlite3ErrorMsg(pParse,
3276 "conflicting ON CONFLICT clauses specified", 0); 3295 "conflicting ON CONFLICT clauses specified", 0);
3277 } 3296 }
3278 if( pIdx->onError==OE_Default ){ 3297 if( pIdx->onError==OE_Default ){
3279 pIdx->onError = pIndex->onError; 3298 pIdx->onError = pIndex->onError;
3280 } 3299 }
3281 } 3300 }
3282 pRet = pIdx; 3301 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
3283 goto exit_create_index; 3302 goto exit_create_index;
3284 } 3303 }
3285 } 3304 }
3286 } 3305 }
3287 3306
3288 /* Link the new Index structure to its table and to the other 3307 /* Link the new Index structure to its table and to the other
3289 ** in-memory database structures. 3308 ** in-memory database structures.
3290 */ 3309 */
3291 assert( pParse->nErr==0 ); 3310 assert( pParse->nErr==0 );
3292 if( db->init.busy ){ 3311 if( db->init.busy ){
3293 Index *p; 3312 Index *p;
3313 assert( !IN_DECLARE_VTAB );
3294 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); 3314 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3295 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 3315 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3296 pIndex->zName, pIndex); 3316 pIndex->zName, pIndex);
3297 if( p ){ 3317 if( p ){
3298 assert( p==pIndex ); /* Malloc must have failed */ 3318 assert( p==pIndex ); /* Malloc must have failed */
3299 db->mallocFailed = 1; 3319 sqlite3OomFault(db);
3300 goto exit_create_index; 3320 goto exit_create_index;
3301 } 3321 }
3302 db->flags |= SQLITE_InternChanges; 3322 db->flags |= SQLITE_InternChanges;
3303 if( pTblName!=0 ){ 3323 if( pTblName!=0 ){
3304 pIndex->tnum = db->init.newTnum; 3324 pIndex->tnum = db->init.newTnum;
3305 } 3325 }
3306 } 3326 }
3307 3327
3308 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the 3328 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3309 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then 3329 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
(...skipping 39 matching lines...) Expand 10 before | Expand all | Expand 10 after
3349 }else{ 3369 }else{
3350 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ 3370 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3351 /* zStmt = sqlite3MPrintf(""); */ 3371 /* zStmt = sqlite3MPrintf(""); */
3352 zStmt = 0; 3372 zStmt = 0;
3353 } 3373 }
3354 3374
3355 /* Add an entry in sqlite_master for this index 3375 /* Add an entry in sqlite_master for this index
3356 */ 3376 */
3357 sqlite3NestedParse(pParse, 3377 sqlite3NestedParse(pParse,
3358 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", 3378 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3359 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), 3379 db->aDb[iDb].zDbSName, MASTER_NAME,
3360 pIndex->zName, 3380 pIndex->zName,
3361 pTab->zName, 3381 pTab->zName,
3362 iMem, 3382 iMem,
3363 zStmt 3383 zStmt
3364 ); 3384 );
3365 sqlite3DbFree(db, zStmt); 3385 sqlite3DbFree(db, zStmt);
3366 3386
3367 /* Fill the index with data and reparse the schema. Code an OP_Expire 3387 /* Fill the index with data and reparse the schema. Code an OP_Expire
3368 ** to invalidate all pre-compiled statements. 3388 ** to invalidate all pre-compiled statements.
3369 */ 3389 */
3370 if( pTblName ){ 3390 if( pTblName ){
3371 sqlite3RefillIndex(pParse, pIndex, iMem); 3391 sqlite3RefillIndex(pParse, pIndex, iMem);
3372 sqlite3ChangeCookie(pParse, iDb); 3392 sqlite3ChangeCookie(pParse, iDb);
3373 sqlite3VdbeAddParseSchemaOp(v, iDb, 3393 sqlite3VdbeAddParseSchemaOp(v, iDb,
3374 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); 3394 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3375 sqlite3VdbeAddOp1(v, OP_Expire, 0); 3395 sqlite3VdbeAddOp0(v, OP_Expire);
3376 } 3396 }
3377 3397
3378 sqlite3VdbeJumpHere(v, pIndex->tnum); 3398 sqlite3VdbeJumpHere(v, pIndex->tnum);
3379 } 3399 }
3380 3400
3381 /* When adding an index to the list of indices for a table, make 3401 /* When adding an index to the list of indices for a table, make
3382 ** sure all indices labeled OE_Replace come after all those labeled 3402 ** sure all indices labeled OE_Replace come after all those labeled
3383 ** OE_Ignore. This is necessary for the correct constraint check 3403 ** OE_Ignore. This is necessary for the correct constraint check
3384 ** processing (in sqlite3GenerateConstraintChecks()) as part of 3404 ** processing (in sqlite3GenerateConstraintChecks()) as part of
3385 ** UPDATE and INSERT statements. 3405 ** UPDATE and INSERT statements.
3386 */ 3406 */
3387 if( db->init.busy || pTblName==0 ){ 3407 if( db->init.busy || pTblName==0 ){
3388 if( onError!=OE_Replace || pTab->pIndex==0 3408 if( onError!=OE_Replace || pTab->pIndex==0
3389 || pTab->pIndex->onError==OE_Replace){ 3409 || pTab->pIndex->onError==OE_Replace){
3390 pIndex->pNext = pTab->pIndex; 3410 pIndex->pNext = pTab->pIndex;
3391 pTab->pIndex = pIndex; 3411 pTab->pIndex = pIndex;
3392 }else{ 3412 }else{
3393 Index *pOther = pTab->pIndex; 3413 Index *pOther = pTab->pIndex;
3394 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ 3414 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3395 pOther = pOther->pNext; 3415 pOther = pOther->pNext;
3396 } 3416 }
3397 pIndex->pNext = pOther->pNext; 3417 pIndex->pNext = pOther->pNext;
3398 pOther->pNext = pIndex; 3418 pOther->pNext = pIndex;
3399 } 3419 }
3400 pRet = pIndex;
3401 pIndex = 0; 3420 pIndex = 0;
3402 } 3421 }
3403 3422
3404 /* Clean up before exiting */ 3423 /* Clean up before exiting */
3405 exit_create_index: 3424 exit_create_index:
3406 if( pIndex ) freeIndex(db, pIndex); 3425 if( pIndex ) freeIndex(db, pIndex);
3407 sqlite3ExprDelete(db, pPIWhere); 3426 sqlite3ExprDelete(db, pPIWhere);
3408 sqlite3ExprListDelete(db, pList); 3427 sqlite3ExprListDelete(db, pList);
3409 sqlite3SrcListDelete(db, pTblName); 3428 sqlite3SrcListDelete(db, pTblName);
3410 sqlite3DbFree(db, zName); 3429 sqlite3DbFree(db, zName);
3411 return pRet;
3412 } 3430 }
3413 3431
3414 /* 3432 /*
3415 ** Fill the Index.aiRowEst[] array with default information - information 3433 ** Fill the Index.aiRowEst[] array with default information - information
3416 ** to be used when we have not run the ANALYZE command. 3434 ** to be used when we have not run the ANALYZE command.
3417 ** 3435 **
3418 ** aiRowEst[0] is supposed to contain the number of elements in the index. 3436 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3419 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the 3437 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
3420 ** number of rows in the table that match any particular value of the 3438 ** number of rows in the table that match any particular value of the
3421 ** first column of the index. aiRowEst[2] is an estimate of the number 3439 ** first column of the index. aiRowEst[2] is an estimate of the number
3422 ** of rows that match any particular combination of the first 2 columns 3440 ** of rows that match any particular combination of the first 2 columns
3423 ** of the index. And so forth. It must always be the case that 3441 ** of the index. And so forth. It must always be the case that
3424 * 3442 *
3425 ** aiRowEst[N]<=aiRowEst[N-1] 3443 ** aiRowEst[N]<=aiRowEst[N-1]
3426 ** aiRowEst[N]>=1 3444 ** aiRowEst[N]>=1
3427 ** 3445 **
3428 ** Apart from that, we have little to go on besides intuition as to 3446 ** Apart from that, we have little to go on besides intuition as to
3429 ** how aiRowEst[] should be initialized. The numbers generated here 3447 ** how aiRowEst[] should be initialized. The numbers generated here
3430 ** are based on typical values found in actual indices. 3448 ** are based on typical values found in actual indices.
3431 */ 3449 */
3432 void sqlite3DefaultRowEst(Index *pIdx){ 3450 void sqlite3DefaultRowEst(Index *pIdx){
3433 /* 10, 9, 8, 7, 6 */ 3451 /* 10, 9, 8, 7, 6 */
3434 LogEst aVal[] = { 33, 32, 30, 28, 26 }; 3452 LogEst aVal[] = { 33, 32, 30, 28, 26 };
3435 LogEst *a = pIdx->aiRowLogEst; 3453 LogEst *a = pIdx->aiRowLogEst;
3436 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); 3454 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3437 int i; 3455 int i;
3438 3456
3439 /* Set the first entry (number of rows in the index) to the estimated 3457 /* Set the first entry (number of rows in the index) to the estimated
3440 ** number of rows in the table. Or 10, if the estimated number of rows 3458 ** number of rows in the table, or half the number of rows in the table
3441 ** in the table is less than that. */ 3459 ** for a partial index. But do not let the estimate drop below 10. */
3442 a[0] = pIdx->pTable->nRowLogEst; 3460 a[0] = pIdx->pTable->nRowLogEst;
3443 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); 3461 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) );
3462 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) );
3444 3463
3445 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is 3464 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3446 ** 6 and each subsequent value (if any) is 5. */ 3465 ** 6 and each subsequent value (if any) is 5. */
3447 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); 3466 memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3448 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ 3467 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3449 a[i] = 23; assert( 23==sqlite3LogEst(5) ); 3468 a[i] = 23; assert( 23==sqlite3LogEst(5) );
3450 } 3469 }
3451 3470
3452 assert( 0==sqlite3LogEst(1) ); 3471 assert( 0==sqlite3LogEst(1) );
3453 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; 3472 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
(...skipping 30 matching lines...) Expand all
3484 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ 3503 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3485 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " 3504 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3486 "or PRIMARY KEY constraint cannot be dropped", 0); 3505 "or PRIMARY KEY constraint cannot be dropped", 0);
3487 goto exit_drop_index; 3506 goto exit_drop_index;
3488 } 3507 }
3489 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); 3508 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3490 #ifndef SQLITE_OMIT_AUTHORIZATION 3509 #ifndef SQLITE_OMIT_AUTHORIZATION
3491 { 3510 {
3492 int code = SQLITE_DROP_INDEX; 3511 int code = SQLITE_DROP_INDEX;
3493 Table *pTab = pIndex->pTable; 3512 Table *pTab = pIndex->pTable;
3494 const char *zDb = db->aDb[iDb].zName; 3513 const char *zDb = db->aDb[iDb].zDbSName;
3495 const char *zTab = SCHEMA_TABLE(iDb); 3514 const char *zTab = SCHEMA_TABLE(iDb);
3496 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ 3515 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3497 goto exit_drop_index; 3516 goto exit_drop_index;
3498 } 3517 }
3499 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; 3518 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3500 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ 3519 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3501 goto exit_drop_index; 3520 goto exit_drop_index;
3502 } 3521 }
3503 } 3522 }
3504 #endif 3523 #endif
3505 3524
3506 /* Generate code to remove the index and from the master table */ 3525 /* Generate code to remove the index and from the master table */
3507 v = sqlite3GetVdbe(pParse); 3526 v = sqlite3GetVdbe(pParse);
3508 if( v ){ 3527 if( v ){
3509 sqlite3BeginWriteOperation(pParse, 1, iDb); 3528 sqlite3BeginWriteOperation(pParse, 1, iDb);
3510 sqlite3NestedParse(pParse, 3529 sqlite3NestedParse(pParse,
3511 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", 3530 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3512 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName 3531 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName
3513 ); 3532 );
3514 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); 3533 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3515 sqlite3ChangeCookie(pParse, iDb); 3534 sqlite3ChangeCookie(pParse, iDb);
3516 destroyRootPage(pParse, pIndex->tnum, iDb); 3535 destroyRootPage(pParse, pIndex->tnum, iDb);
3517 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); 3536 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3518 } 3537 }
3519 3538
3520 exit_drop_index: 3539 exit_drop_index:
3521 sqlite3SrcListDelete(db, pName); 3540 sqlite3SrcListDelete(db, pName);
3522 } 3541 }
(...skipping 122 matching lines...) Expand 10 before | Expand all | Expand 10 after
3645 3664
3646 /* Sanity checking on calling parameters */ 3665 /* Sanity checking on calling parameters */
3647 assert( iStart>=0 ); 3666 assert( iStart>=0 );
3648 assert( nExtra>=1 ); 3667 assert( nExtra>=1 );
3649 assert( pSrc!=0 ); 3668 assert( pSrc!=0 );
3650 assert( iStart<=pSrc->nSrc ); 3669 assert( iStart<=pSrc->nSrc );
3651 3670
3652 /* Allocate additional space if needed */ 3671 /* Allocate additional space if needed */
3653 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ 3672 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3654 SrcList *pNew; 3673 SrcList *pNew;
3655 int nAlloc = pSrc->nSrc+nExtra; 3674 int nAlloc = pSrc->nSrc*2+nExtra;
3656 int nGot; 3675 int nGot;
3657 pNew = sqlite3DbRealloc(db, pSrc, 3676 pNew = sqlite3DbRealloc(db, pSrc,
3658 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); 3677 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3659 if( pNew==0 ){ 3678 if( pNew==0 ){
3660 assert( db->mallocFailed ); 3679 assert( db->mallocFailed );
3661 return pSrc; 3680 return pSrc;
3662 } 3681 }
3663 pSrc = pNew; 3682 pSrc = pNew;
3664 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; 3683 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3665 pSrc->nAlloc = nGot; 3684 pSrc->nAlloc = nGot;
(...skipping 52 matching lines...) Expand 10 before | Expand all | Expand 10 after
3718 ** before being added to the SrcList. 3737 ** before being added to the SrcList.
3719 */ 3738 */
3720 SrcList *sqlite3SrcListAppend( 3739 SrcList *sqlite3SrcListAppend(
3721 sqlite3 *db, /* Connection to notify of malloc failures */ 3740 sqlite3 *db, /* Connection to notify of malloc failures */
3722 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ 3741 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
3723 Token *pTable, /* Table to append */ 3742 Token *pTable, /* Table to append */
3724 Token *pDatabase /* Database of the table */ 3743 Token *pDatabase /* Database of the table */
3725 ){ 3744 ){
3726 struct SrcList_item *pItem; 3745 struct SrcList_item *pItem;
3727 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ 3746 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
3747 assert( db!=0 );
3728 if( pList==0 ){ 3748 if( pList==0 ){
3729 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); 3749 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) );
3730 if( pList==0 ) return 0; 3750 if( pList==0 ) return 0;
3731 pList->nAlloc = 1; 3751 pList->nAlloc = 1;
3752 pList->nSrc = 1;
3753 memset(&pList->a[0], 0, sizeof(pList->a[0]));
3754 pList->a[0].iCursor = -1;
3755 }else{
3756 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3732 } 3757 }
3733 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3734 if( db->mallocFailed ){ 3758 if( db->mallocFailed ){
3735 sqlite3SrcListDelete(db, pList); 3759 sqlite3SrcListDelete(db, pList);
3736 return 0; 3760 return 0;
3737 } 3761 }
3738 pItem = &pList->a[pList->nSrc-1]; 3762 pItem = &pList->a[pList->nSrc-1];
3739 if( pDatabase && pDatabase->z==0 ){ 3763 if( pDatabase && pDatabase->z==0 ){
3740 pDatabase = 0; 3764 pDatabase = 0;
3741 } 3765 }
3742 if( pDatabase ){ 3766 if( pDatabase ){
3743 Token *pTemp = pDatabase; 3767 Token *pTemp = pDatabase;
(...skipping 158 matching lines...) Expand 10 before | Expand all | Expand 10 after
3902 if( p ){ 3926 if( p ){
3903 int i; 3927 int i;
3904 for(i=p->nSrc-1; i>0; i--){ 3928 for(i=p->nSrc-1; i>0; i--){
3905 p->a[i].fg.jointype = p->a[i-1].fg.jointype; 3929 p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3906 } 3930 }
3907 p->a[0].fg.jointype = 0; 3931 p->a[0].fg.jointype = 0;
3908 } 3932 }
3909 } 3933 }
3910 3934
3911 /* 3935 /*
3912 ** Begin a transaction 3936 ** Generate VDBE code for a BEGIN statement.
3913 */ 3937 */
3914 void sqlite3BeginTransaction(Parse *pParse, int type){ 3938 void sqlite3BeginTransaction(Parse *pParse, int type){
3915 sqlite3 *db; 3939 sqlite3 *db;
3916 Vdbe *v; 3940 Vdbe *v;
3917 int i; 3941 int i;
3918 3942
3919 assert( pParse!=0 ); 3943 assert( pParse!=0 );
3920 db = pParse->db; 3944 db = pParse->db;
3921 assert( db!=0 ); 3945 assert( db!=0 );
3922 /* if( db->aDb[0].pBt==0 ) return; */
3923 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ 3946 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3924 return; 3947 return;
3925 } 3948 }
3926 v = sqlite3GetVdbe(pParse); 3949 v = sqlite3GetVdbe(pParse);
3927 if( !v ) return; 3950 if( !v ) return;
3928 if( type!=TK_DEFERRED ){ 3951 if( type!=TK_DEFERRED ){
3929 for(i=0; i<db->nDb; i++){ 3952 for(i=0; i<db->nDb; i++){
3930 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); 3953 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3931 sqlite3VdbeUsesBtree(v, i); 3954 sqlite3VdbeUsesBtree(v, i);
3932 } 3955 }
3933 } 3956 }
3934 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); 3957 sqlite3VdbeAddOp0(v, OP_AutoCommit);
3935 } 3958 }
3936 3959
3937 /* 3960 /*
3938 ** Commit a transaction 3961 ** Generate VDBE code for a COMMIT statement.
3939 */ 3962 */
3940 void sqlite3CommitTransaction(Parse *pParse){ 3963 void sqlite3CommitTransaction(Parse *pParse){
3941 Vdbe *v; 3964 Vdbe *v;
3942 3965
3943 assert( pParse!=0 ); 3966 assert( pParse!=0 );
3944 assert( pParse->db!=0 ); 3967 assert( pParse->db!=0 );
3945 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ 3968 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3946 return; 3969 return;
3947 } 3970 }
3948 v = sqlite3GetVdbe(pParse); 3971 v = sqlite3GetVdbe(pParse);
3949 if( v ){ 3972 if( v ){
3950 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); 3973 sqlite3VdbeAddOp1(v, OP_AutoCommit, 1);
3951 } 3974 }
3952 } 3975 }
3953 3976
3954 /* 3977 /*
3955 ** Rollback a transaction 3978 ** Generate VDBE code for a ROLLBACK statement.
3956 */ 3979 */
3957 void sqlite3RollbackTransaction(Parse *pParse){ 3980 void sqlite3RollbackTransaction(Parse *pParse){
3958 Vdbe *v; 3981 Vdbe *v;
3959 3982
3960 assert( pParse!=0 ); 3983 assert( pParse!=0 );
3961 assert( pParse->db!=0 ); 3984 assert( pParse->db!=0 );
3962 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ 3985 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3963 return; 3986 return;
3964 } 3987 }
3965 v = sqlite3GetVdbe(pParse); 3988 v = sqlite3GetVdbe(pParse);
(...skipping 41 matching lines...) Expand 10 before | Expand all | Expand 10 after
4007 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); 4030 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4008 if( rc!=SQLITE_OK ){ 4031 if( rc!=SQLITE_OK ){
4009 sqlite3ErrorMsg(pParse, "unable to open a temporary database " 4032 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4010 "file for storing temporary tables"); 4033 "file for storing temporary tables");
4011 pParse->rc = rc; 4034 pParse->rc = rc;
4012 return 1; 4035 return 1;
4013 } 4036 }
4014 db->aDb[1].pBt = pBt; 4037 db->aDb[1].pBt = pBt;
4015 assert( db->aDb[1].pSchema ); 4038 assert( db->aDb[1].pSchema );
4016 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ 4039 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4017 db->mallocFailed = 1; 4040 sqlite3OomFault(db);
4018 return 1; 4041 return 1;
4019 } 4042 }
4020 } 4043 }
4021 return 0; 4044 return 0;
4022 } 4045 }
4023 4046
4024 /* 4047 /*
4025 ** Record the fact that the schema cookie will need to be verified 4048 ** Record the fact that the schema cookie will need to be verified
4026 ** for database iDb. The code to actually verify the schema cookie 4049 ** for database iDb. The code to actually verify the schema cookie
4027 ** will occur at the end of the top-level VDBE and will be generated 4050 ** will occur at the end of the top-level VDBE and will be generated
4028 ** later, by sqlite3FinishCoding(). 4051 ** later, by sqlite3FinishCoding().
4029 */ 4052 */
4030 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ 4053 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4031 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4054 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4032 sqlite3 *db = pToplevel->db;
4033 4055
4034 assert( iDb>=0 && iDb<db->nDb ); 4056 assert( iDb>=0 && iDb<pParse->db->nDb );
4035 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); 4057 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 );
4036 assert( iDb<SQLITE_MAX_ATTACHED+2 ); 4058 assert( iDb<SQLITE_MAX_ATTACHED+2 );
4037 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 4059 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) );
4038 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ 4060 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4039 DbMaskSet(pToplevel->cookieMask, iDb); 4061 DbMaskSet(pToplevel->cookieMask, iDb);
4040 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
4041 if( !OMIT_TEMPDB && iDb==1 ){ 4062 if( !OMIT_TEMPDB && iDb==1 ){
4042 sqlite3OpenTempDatabase(pToplevel); 4063 sqlite3OpenTempDatabase(pToplevel);
4043 } 4064 }
4044 } 4065 }
4045 } 4066 }
4046 4067
4047 /* 4068 /*
4048 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each 4069 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4049 ** attached database. Otherwise, invoke it for the database named zDb only. 4070 ** attached database. Otherwise, invoke it for the database named zDb only.
4050 */ 4071 */
4051 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ 4072 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4052 sqlite3 *db = pParse->db; 4073 sqlite3 *db = pParse->db;
4053 int i; 4074 int i;
4054 for(i=0; i<db->nDb; i++){ 4075 for(i=0; i<db->nDb; i++){
4055 Db *pDb = &db->aDb[i]; 4076 Db *pDb = &db->aDb[i];
4056 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){ 4077 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
4057 sqlite3CodeVerifySchema(pParse, i); 4078 sqlite3CodeVerifySchema(pParse, i);
4058 } 4079 }
4059 } 4080 }
4060 } 4081 }
4061 4082
4062 /* 4083 /*
4063 ** Generate VDBE code that prepares for doing an operation that 4084 ** Generate VDBE code that prepares for doing an operation that
4064 ** might change the database. 4085 ** might change the database.
4065 ** 4086 **
4066 ** This routine starts a new transaction if we are not already within 4087 ** This routine starts a new transaction if we are not already within
(...skipping 57 matching lines...) Expand 10 before | Expand all | Expand 10 after
4124 char *p4, /* Error message */ 4145 char *p4, /* Error message */
4125 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ 4146 i8 p4type, /* P4_STATIC or P4_TRANSIENT */
4126 u8 p5Errmsg /* P5_ErrMsg type */ 4147 u8 p5Errmsg /* P5_ErrMsg type */
4127 ){ 4148 ){
4128 Vdbe *v = sqlite3GetVdbe(pParse); 4149 Vdbe *v = sqlite3GetVdbe(pParse);
4129 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); 4150 assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4130 if( onError==OE_Abort ){ 4151 if( onError==OE_Abort ){
4131 sqlite3MayAbort(pParse); 4152 sqlite3MayAbort(pParse);
4132 } 4153 }
4133 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); 4154 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4134 if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg); 4155 sqlite3VdbeChangeP5(v, p5Errmsg);
4135 } 4156 }
4136 4157
4137 /* 4158 /*
4138 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. 4159 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4139 */ 4160 */
4140 void sqlite3UniqueConstraint( 4161 void sqlite3UniqueConstraint(
4141 Parse *pParse, /* Parsing context */ 4162 Parse *pParse, /* Parsing context */
4142 int onError, /* Constraint type */ 4163 int onError, /* Constraint type */
4143 Index *pIdx /* The index that triggers the constraint */ 4164 Index *pIdx /* The index that triggers the constraint */
4144 ){ 4165 ){
4145 char *zErr; 4166 char *zErr;
4146 int j; 4167 int j;
4147 StrAccum errMsg; 4168 StrAccum errMsg;
4148 Table *pTab = pIdx->pTable; 4169 Table *pTab = pIdx->pTable;
4149 4170
4150 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); 4171 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4151 if( pIdx->aColExpr ){ 4172 if( pIdx->aColExpr ){
4152 sqlite3XPrintf(&errMsg, 0, "index '%q'", pIdx->zName); 4173 sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName);
4153 }else{ 4174 }else{
4154 for(j=0; j<pIdx->nKeyCol; j++){ 4175 for(j=0; j<pIdx->nKeyCol; j++){
4155 char *zCol; 4176 char *zCol;
4156 assert( pIdx->aiColumn[j]>=0 ); 4177 assert( pIdx->aiColumn[j]>=0 );
4157 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; 4178 zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4158 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); 4179 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4159 sqlite3XPrintf(&errMsg, 0, "%s.%s", pTab->zName, zCol); 4180 sqlite3XPrintf(&errMsg, "%s.%s", pTab->zName, zCol);
4160 } 4181 }
4161 } 4182 }
4162 zErr = sqlite3StrAccumFinish(&errMsg); 4183 zErr = sqlite3StrAccumFinish(&errMsg);
4163 sqlite3HaltConstraint(pParse, 4184 sqlite3HaltConstraint(pParse,
4164 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY 4185 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4165 : SQLITE_CONSTRAINT_UNIQUE, 4186 : SQLITE_CONSTRAINT_UNIQUE,
4166 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); 4187 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4167 } 4188 }
4168 4189
4169 4190
(...skipping 123 matching lines...) Expand 10 before | Expand all | Expand 10 after
4293 reindexDatabases(pParse, zColl); 4314 reindexDatabases(pParse, zColl);
4294 sqlite3DbFree(db, zColl); 4315 sqlite3DbFree(db, zColl);
4295 return; 4316 return;
4296 } 4317 }
4297 sqlite3DbFree(db, zColl); 4318 sqlite3DbFree(db, zColl);
4298 } 4319 }
4299 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); 4320 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4300 if( iDb<0 ) return; 4321 if( iDb<0 ) return;
4301 z = sqlite3NameFromToken(db, pObjName); 4322 z = sqlite3NameFromToken(db, pObjName);
4302 if( z==0 ) return; 4323 if( z==0 ) return;
4303 zDb = db->aDb[iDb].zName; 4324 zDb = db->aDb[iDb].zDbSName;
4304 pTab = sqlite3FindTable(db, z, zDb); 4325 pTab = sqlite3FindTable(db, z, zDb);
4305 if( pTab ){ 4326 if( pTab ){
4306 reindexTable(pParse, pTab, 0); 4327 reindexTable(pParse, pTab, 0);
4307 sqlite3DbFree(db, z); 4328 sqlite3DbFree(db, z);
4308 return; 4329 return;
4309 } 4330 }
4310 pIndex = sqlite3FindIndex(db, z, zDb); 4331 pIndex = sqlite3FindIndex(db, z, zDb);
4311 sqlite3DbFree(db, z); 4332 sqlite3DbFree(db, z);
4312 if( pIndex ){ 4333 if( pIndex ){
4313 sqlite3BeginWriteOperation(pParse, 0, iDb); 4334 sqlite3BeginWriteOperation(pParse, 0, iDb);
4314 sqlite3RefillIndex(pParse, pIndex, -1); 4335 sqlite3RefillIndex(pParse, pIndex, -1);
4315 return; 4336 return;
4316 } 4337 }
4317 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); 4338 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4318 } 4339 }
4319 #endif 4340 #endif
4320 4341
4321 /* 4342 /*
4322 ** Return a KeyInfo structure that is appropriate for the given Index. 4343 ** Return a KeyInfo structure that is appropriate for the given Index.
4323 ** 4344 **
4324 ** The KeyInfo structure for an index is cached in the Index object.
4325 ** So there might be multiple references to the returned pointer. The
4326 ** caller should not try to modify the KeyInfo object.
4327 **
4328 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object 4345 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4329 ** when it has finished using it. 4346 ** when it has finished using it.
4330 */ 4347 */
4331 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ 4348 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4332 int i; 4349 int i;
4333 int nCol = pIdx->nColumn; 4350 int nCol = pIdx->nColumn;
4334 int nKey = pIdx->nKeyCol; 4351 int nKey = pIdx->nKeyCol;
4335 KeyInfo *pKey; 4352 KeyInfo *pKey;
4336 if( pParse->nErr ) return 0; 4353 if( pParse->nErr ) return 0;
4337 if( pIdx->uniqNotNull ){ 4354 if( pIdx->uniqNotNull ){
(...skipping 44 matching lines...) Expand 10 before | Expand all | Expand 10 after
4382 } 4399 }
4383 } 4400 }
4384 } 4401 }
4385 4402
4386 if( pWith ){ 4403 if( pWith ){
4387 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); 4404 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4388 pNew = sqlite3DbRealloc(db, pWith, nByte); 4405 pNew = sqlite3DbRealloc(db, pWith, nByte);
4389 }else{ 4406 }else{
4390 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); 4407 pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4391 } 4408 }
4392 assert( zName!=0 || pNew==0 ); 4409 assert( (pNew!=0 && zName!=0) || db->mallocFailed );
4393 assert( db->mallocFailed==0 || pNew==0 );
4394 4410
4395 if( pNew==0 ){ 4411 if( db->mallocFailed ){
4396 sqlite3ExprListDelete(db, pArglist); 4412 sqlite3ExprListDelete(db, pArglist);
4397 sqlite3SelectDelete(db, pQuery); 4413 sqlite3SelectDelete(db, pQuery);
4398 sqlite3DbFree(db, zName); 4414 sqlite3DbFree(db, zName);
4399 pNew = pWith; 4415 pNew = pWith;
4400 }else{ 4416 }else{
4401 pNew->a[pNew->nCte].pSelect = pQuery; 4417 pNew->a[pNew->nCte].pSelect = pQuery;
4402 pNew->a[pNew->nCte].pCols = pArglist; 4418 pNew->a[pNew->nCte].pCols = pArglist;
4403 pNew->a[pNew->nCte].zName = zName; 4419 pNew->a[pNew->nCte].zName = zName;
4404 pNew->a[pNew->nCte].zCteErr = 0; 4420 pNew->a[pNew->nCte].zCteErr = 0;
4405 pNew->nCte++; 4421 pNew->nCte++;
(...skipping 11 matching lines...) Expand all
4417 for(i=0; i<pWith->nCte; i++){ 4433 for(i=0; i<pWith->nCte; i++){
4418 struct Cte *pCte = &pWith->a[i]; 4434 struct Cte *pCte = &pWith->a[i];
4419 sqlite3ExprListDelete(db, pCte->pCols); 4435 sqlite3ExprListDelete(db, pCte->pCols);
4420 sqlite3SelectDelete(db, pCte->pSelect); 4436 sqlite3SelectDelete(db, pCte->pSelect);
4421 sqlite3DbFree(db, pCte->zName); 4437 sqlite3DbFree(db, pCte->zName);
4422 } 4438 }
4423 sqlite3DbFree(db, pWith); 4439 sqlite3DbFree(db, pWith);
4424 } 4440 }
4425 } 4441 }
4426 #endif /* !defined(SQLITE_OMIT_CTE) */ 4442 #endif /* !defined(SQLITE_OMIT_CTE) */
OLDNEW
« no previous file with comments | « third_party/sqlite/src/src/btreeInt.h ('k') | third_party/sqlite/src/src/callback.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698