OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2015-04-06 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** |
| 13 ** This is a utility program that computes the differences in content |
| 14 ** between two SQLite databases. |
| 15 ** |
| 16 ** To compile, simply link against SQLite. |
| 17 ** |
| 18 ** See the showHelp() routine below for a brief description of how to |
| 19 ** run the utility. |
| 20 */ |
| 21 #include <stdio.h> |
| 22 #include <stdlib.h> |
| 23 #include <stdarg.h> |
| 24 #include <ctype.h> |
| 25 #include <string.h> |
| 26 #include <assert.h> |
| 27 #include "sqlite3.h" |
| 28 |
| 29 /* |
| 30 ** All global variables are gathered into the "g" singleton. |
| 31 */ |
| 32 struct GlobalVars { |
| 33 const char *zArgv0; /* Name of program */ |
| 34 int bSchemaOnly; /* Only show schema differences */ |
| 35 int bSchemaPK; /* Use the schema-defined PK, not the true PK */ |
| 36 int bHandleVtab; /* Handle fts3, fts4, fts5 and rtree vtabs */ |
| 37 unsigned fDebug; /* Debug flags */ |
| 38 sqlite3 *db; /* The database connection */ |
| 39 } g; |
| 40 |
| 41 /* |
| 42 ** Allowed values for g.fDebug |
| 43 */ |
| 44 #define DEBUG_COLUMN_NAMES 0x000001 |
| 45 #define DEBUG_DIFF_SQL 0x000002 |
| 46 |
| 47 /* |
| 48 ** Dynamic string object |
| 49 */ |
| 50 typedef struct Str Str; |
| 51 struct Str { |
| 52 char *z; /* Text of the string */ |
| 53 int nAlloc; /* Bytes allocated in z[] */ |
| 54 int nUsed; /* Bytes actually used in z[] */ |
| 55 }; |
| 56 |
| 57 /* |
| 58 ** Initialize a Str object |
| 59 */ |
| 60 static void strInit(Str *p){ |
| 61 p->z = 0; |
| 62 p->nAlloc = 0; |
| 63 p->nUsed = 0; |
| 64 } |
| 65 |
| 66 /* |
| 67 ** Print an error resulting from faulting command-line arguments and |
| 68 ** abort the program. |
| 69 */ |
| 70 static void cmdlineError(const char *zFormat, ...){ |
| 71 va_list ap; |
| 72 fprintf(stderr, "%s: ", g.zArgv0); |
| 73 va_start(ap, zFormat); |
| 74 vfprintf(stderr, zFormat, ap); |
| 75 va_end(ap); |
| 76 fprintf(stderr, "\n\"%s --help\" for more help\n", g.zArgv0); |
| 77 exit(1); |
| 78 } |
| 79 |
| 80 /* |
| 81 ** Print an error message for an error that occurs at runtime, then |
| 82 ** abort the program. |
| 83 */ |
| 84 static void runtimeError(const char *zFormat, ...){ |
| 85 va_list ap; |
| 86 fprintf(stderr, "%s: ", g.zArgv0); |
| 87 va_start(ap, zFormat); |
| 88 vfprintf(stderr, zFormat, ap); |
| 89 va_end(ap); |
| 90 fprintf(stderr, "\n"); |
| 91 exit(1); |
| 92 } |
| 93 |
| 94 /* |
| 95 ** Free all memory held by a Str object |
| 96 */ |
| 97 static void strFree(Str *p){ |
| 98 sqlite3_free(p->z); |
| 99 strInit(p); |
| 100 } |
| 101 |
| 102 /* |
| 103 ** Add formatted text to the end of a Str object |
| 104 */ |
| 105 static void strPrintf(Str *p, const char *zFormat, ...){ |
| 106 int nNew; |
| 107 for(;;){ |
| 108 if( p->z ){ |
| 109 va_list ap; |
| 110 va_start(ap, zFormat); |
| 111 sqlite3_vsnprintf(p->nAlloc-p->nUsed, p->z+p->nUsed, zFormat, ap); |
| 112 va_end(ap); |
| 113 nNew = (int)strlen(p->z + p->nUsed); |
| 114 }else{ |
| 115 nNew = p->nAlloc; |
| 116 } |
| 117 if( p->nUsed+nNew < p->nAlloc-1 ){ |
| 118 p->nUsed += nNew; |
| 119 break; |
| 120 } |
| 121 p->nAlloc = p->nAlloc*2 + 1000; |
| 122 p->z = sqlite3_realloc(p->z, p->nAlloc); |
| 123 if( p->z==0 ) runtimeError("out of memory"); |
| 124 } |
| 125 } |
| 126 |
| 127 |
| 128 |
| 129 /* Safely quote an SQL identifier. Use the minimum amount of transformation |
| 130 ** necessary to allow the string to be used with %s. |
| 131 ** |
| 132 ** Space to hold the returned string is obtained from sqlite3_malloc(). The |
| 133 ** caller is responsible for ensuring this space is freed when no longer |
| 134 ** needed. |
| 135 */ |
| 136 static char *safeId(const char *zId){ |
| 137 /* All SQLite keywords, in alphabetical order */ |
| 138 static const char *azKeywords[] = { |
| 139 "ABORT", "ACTION", "ADD", "AFTER", "ALL", "ALTER", "ANALYZE", "AND", "AS", |
| 140 "ASC", "ATTACH", "AUTOINCREMENT", "BEFORE", "BEGIN", "BETWEEN", "BY", |
| 141 "CASCADE", "CASE", "CAST", "CHECK", "COLLATE", "COLUMN", "COMMIT", |
| 142 "CONFLICT", "CONSTRAINT", "CREATE", "CROSS", "CURRENT_DATE", |
| 143 "CURRENT_TIME", "CURRENT_TIMESTAMP", "DATABASE", "DEFAULT", "DEFERRABLE", |
| 144 "DEFERRED", "DELETE", "DESC", "DETACH", "DISTINCT", "DROP", "EACH", |
| 145 "ELSE", "END", "ESCAPE", "EXCEPT", "EXCLUSIVE", "EXISTS", "EXPLAIN", |
| 146 "FAIL", "FOR", "FOREIGN", "FROM", "FULL", "GLOB", "GROUP", "HAVING", "IF", |
| 147 "IGNORE", "IMMEDIATE", "IN", "INDEX", "INDEXED", "INITIALLY", "INNER", |
| 148 "INSERT", "INSTEAD", "INTERSECT", "INTO", "IS", "ISNULL", "JOIN", "KEY", |
| 149 "LEFT", "LIKE", "LIMIT", "MATCH", "NATURAL", "NO", "NOT", "NOTNULL", |
| 150 "NULL", "OF", "OFFSET", "ON", "OR", "ORDER", "OUTER", "PLAN", "PRAGMA", |
| 151 "PRIMARY", "QUERY", "RAISE", "RECURSIVE", "REFERENCES", "REGEXP", |
| 152 "REINDEX", "RELEASE", "RENAME", "REPLACE", "RESTRICT", "RIGHT", |
| 153 "ROLLBACK", "ROW", "SAVEPOINT", "SELECT", "SET", "TABLE", "TEMP", |
| 154 "TEMPORARY", "THEN", "TO", "TRANSACTION", "TRIGGER", "UNION", "UNIQUE", |
| 155 "UPDATE", "USING", "VACUUM", "VALUES", "VIEW", "VIRTUAL", "WHEN", "WHERE", |
| 156 "WITH", "WITHOUT", |
| 157 }; |
| 158 int lwr, upr, mid, c, i, x; |
| 159 if( zId[0]==0 ) return sqlite3_mprintf("\"\""); |
| 160 for(i=x=0; (c = zId[i])!=0; i++){ |
| 161 if( !isalpha(c) && c!='_' ){ |
| 162 if( i>0 && isdigit(c) ){ |
| 163 x++; |
| 164 }else{ |
| 165 return sqlite3_mprintf("\"%w\"", zId); |
| 166 } |
| 167 } |
| 168 } |
| 169 if( x ) return sqlite3_mprintf("%s", zId); |
| 170 lwr = 0; |
| 171 upr = sizeof(azKeywords)/sizeof(azKeywords[0]) - 1; |
| 172 while( lwr<=upr ){ |
| 173 mid = (lwr+upr)/2; |
| 174 c = sqlite3_stricmp(azKeywords[mid], zId); |
| 175 if( c==0 ) return sqlite3_mprintf("\"%w\"", zId); |
| 176 if( c<0 ){ |
| 177 lwr = mid+1; |
| 178 }else{ |
| 179 upr = mid-1; |
| 180 } |
| 181 } |
| 182 return sqlite3_mprintf("%s", zId); |
| 183 } |
| 184 |
| 185 /* |
| 186 ** Prepare a new SQL statement. Print an error and abort if anything |
| 187 ** goes wrong. |
| 188 */ |
| 189 static sqlite3_stmt *db_vprepare(const char *zFormat, va_list ap){ |
| 190 char *zSql; |
| 191 int rc; |
| 192 sqlite3_stmt *pStmt; |
| 193 |
| 194 zSql = sqlite3_vmprintf(zFormat, ap); |
| 195 if( zSql==0 ) runtimeError("out of memory"); |
| 196 rc = sqlite3_prepare_v2(g.db, zSql, -1, &pStmt, 0); |
| 197 if( rc ){ |
| 198 runtimeError("SQL statement error: %s\n\"%s\"", sqlite3_errmsg(g.db), |
| 199 zSql); |
| 200 } |
| 201 sqlite3_free(zSql); |
| 202 return pStmt; |
| 203 } |
| 204 static sqlite3_stmt *db_prepare(const char *zFormat, ...){ |
| 205 va_list ap; |
| 206 sqlite3_stmt *pStmt; |
| 207 va_start(ap, zFormat); |
| 208 pStmt = db_vprepare(zFormat, ap); |
| 209 va_end(ap); |
| 210 return pStmt; |
| 211 } |
| 212 |
| 213 /* |
| 214 ** Free a list of strings |
| 215 */ |
| 216 static void namelistFree(char **az){ |
| 217 if( az ){ |
| 218 int i; |
| 219 for(i=0; az[i]; i++) sqlite3_free(az[i]); |
| 220 sqlite3_free(az); |
| 221 } |
| 222 } |
| 223 |
| 224 /* |
| 225 ** Return a list of column names for the table zDb.zTab. Space to |
| 226 ** hold the list is obtained from sqlite3_malloc() and should released |
| 227 ** using namelistFree() when no longer needed. |
| 228 ** |
| 229 ** Primary key columns are listed first, followed by data columns. |
| 230 ** The number of columns in the primary key is returned in *pnPkey. |
| 231 ** |
| 232 ** Normally, the "primary key" in the previous sentence is the true |
| 233 ** primary key - the rowid or INTEGER PRIMARY KEY for ordinary tables |
| 234 ** or the declared PRIMARY KEY for WITHOUT ROWID tables. However, if |
| 235 ** the g.bSchemaPK flag is set, then the schema-defined PRIMARY KEY is |
| 236 ** used in all cases. In that case, entries that have NULL values in |
| 237 ** any of their primary key fields will be excluded from the analysis. |
| 238 ** |
| 239 ** If the primary key for a table is the rowid but rowid is inaccessible, |
| 240 ** then this routine returns a NULL pointer. |
| 241 ** |
| 242 ** Examples: |
| 243 ** CREATE TABLE t1(a INT UNIQUE, b INTEGER, c TEXT, PRIMARY KEY(c)); |
| 244 ** *pnPKey = 1; |
| 245 ** az = { "rowid", "a", "b", "c", 0 } // Normal case |
| 246 ** az = { "c", "a", "b", 0 } // g.bSchemaPK==1 |
| 247 ** |
| 248 ** CREATE TABLE t2(a INT UNIQUE, b INTEGER, c TEXT, PRIMARY KEY(b)); |
| 249 ** *pnPKey = 1; |
| 250 ** az = { "b", "a", "c", 0 } |
| 251 ** |
| 252 ** CREATE TABLE t3(x,y,z,PRIMARY KEY(y,z)); |
| 253 ** *pnPKey = 1 // Normal case |
| 254 ** az = { "rowid", "x", "y", "z", 0 } // Normal case |
| 255 ** *pnPKey = 2 // g.bSchemaPK==1 |
| 256 ** az = { "y", "x", "z", 0 } // g.bSchemaPK==1 |
| 257 ** |
| 258 ** CREATE TABLE t4(x,y,z,PRIMARY KEY(y,z)) WITHOUT ROWID; |
| 259 ** *pnPKey = 2 |
| 260 ** az = { "y", "z", "x", 0 } |
| 261 ** |
| 262 ** CREATE TABLE t5(rowid,_rowid_,oid); |
| 263 ** az = 0 // The rowid is not accessible |
| 264 */ |
| 265 static char **columnNames( |
| 266 const char *zDb, /* Database ("main" or "aux") to query */ |
| 267 const char *zTab, /* Name of table to return details of */ |
| 268 int *pnPKey, /* OUT: Number of PK columns */ |
| 269 int *pbRowid /* OUT: True if PK is an implicit rowid */ |
| 270 ){ |
| 271 char **az = 0; /* List of column names to be returned */ |
| 272 int naz = 0; /* Number of entries in az[] */ |
| 273 sqlite3_stmt *pStmt; /* SQL statement being run */ |
| 274 char *zPkIdxName = 0; /* Name of the PRIMARY KEY index */ |
| 275 int truePk = 0; /* PRAGMA table_info indentifies the PK to use */ |
| 276 int nPK = 0; /* Number of PRIMARY KEY columns */ |
| 277 int i, j; /* Loop counters */ |
| 278 |
| 279 if( g.bSchemaPK==0 ){ |
| 280 /* Normal case: Figure out what the true primary key is for the table. |
| 281 ** * For WITHOUT ROWID tables, the true primary key is the same as |
| 282 ** the schema PRIMARY KEY, which is guaranteed to be present. |
| 283 ** * For rowid tables with an INTEGER PRIMARY KEY, the true primary |
| 284 ** key is the INTEGER PRIMARY KEY. |
| 285 ** * For all other rowid tables, the rowid is the true primary key. |
| 286 */ |
| 287 pStmt = db_prepare("PRAGMA %s.index_list=%Q", zDb, zTab); |
| 288 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 289 if( sqlite3_stricmp((const char*)sqlite3_column_text(pStmt,3),"pk")==0 ){ |
| 290 zPkIdxName = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 1)); |
| 291 break; |
| 292 } |
| 293 } |
| 294 sqlite3_finalize(pStmt); |
| 295 if( zPkIdxName ){ |
| 296 int nKey = 0; |
| 297 int nCol = 0; |
| 298 truePk = 0; |
| 299 pStmt = db_prepare("PRAGMA %s.index_xinfo=%Q", zDb, zPkIdxName); |
| 300 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 301 nCol++; |
| 302 if( sqlite3_column_int(pStmt,5) ){ nKey++; continue; } |
| 303 if( sqlite3_column_int(pStmt,1)>=0 ) truePk = 1; |
| 304 } |
| 305 if( nCol==nKey ) truePk = 1; |
| 306 if( truePk ){ |
| 307 nPK = nKey; |
| 308 }else{ |
| 309 nPK = 1; |
| 310 } |
| 311 sqlite3_finalize(pStmt); |
| 312 sqlite3_free(zPkIdxName); |
| 313 }else{ |
| 314 truePk = 1; |
| 315 nPK = 1; |
| 316 } |
| 317 pStmt = db_prepare("PRAGMA %s.table_info=%Q", zDb, zTab); |
| 318 }else{ |
| 319 /* The g.bSchemaPK==1 case: Use whatever primary key is declared |
| 320 ** in the schema. The "rowid" will still be used as the primary key |
| 321 ** if the table definition does not contain a PRIMARY KEY. |
| 322 */ |
| 323 nPK = 0; |
| 324 pStmt = db_prepare("PRAGMA %s.table_info=%Q", zDb, zTab); |
| 325 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 326 if( sqlite3_column_int(pStmt,5)>0 ) nPK++; |
| 327 } |
| 328 sqlite3_reset(pStmt); |
| 329 if( nPK==0 ) nPK = 1; |
| 330 truePk = 1; |
| 331 } |
| 332 *pnPKey = nPK; |
| 333 naz = nPK; |
| 334 az = sqlite3_malloc( sizeof(char*)*(nPK+1) ); |
| 335 if( az==0 ) runtimeError("out of memory"); |
| 336 memset(az, 0, sizeof(char*)*(nPK+1)); |
| 337 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 338 int iPKey; |
| 339 if( truePk && (iPKey = sqlite3_column_int(pStmt,5))>0 ){ |
| 340 az[iPKey-1] = safeId((char*)sqlite3_column_text(pStmt,1)); |
| 341 }else{ |
| 342 az = sqlite3_realloc(az, sizeof(char*)*(naz+2) ); |
| 343 if( az==0 ) runtimeError("out of memory"); |
| 344 az[naz++] = safeId((char*)sqlite3_column_text(pStmt,1)); |
| 345 } |
| 346 } |
| 347 sqlite3_finalize(pStmt); |
| 348 if( az ) az[naz] = 0; |
| 349 |
| 350 /* If it is non-NULL, set *pbRowid to indicate whether or not the PK of |
| 351 ** this table is an implicit rowid (*pbRowid==1) or not (*pbRowid==0). */ |
| 352 if( pbRowid ) *pbRowid = (az[0]==0); |
| 353 |
| 354 /* If this table has an implicit rowid for a PK, figure out how to refer |
| 355 ** to it. There are three options - "rowid", "_rowid_" and "oid". Any |
| 356 ** of these will work, unless the table has an explicit column of the |
| 357 ** same name. */ |
| 358 if( az[0]==0 ){ |
| 359 const char *azRowid[] = { "rowid", "_rowid_", "oid" }; |
| 360 for(i=0; i<sizeof(azRowid)/sizeof(azRowid[0]); i++){ |
| 361 for(j=1; j<naz; j++){ |
| 362 if( sqlite3_stricmp(az[j], azRowid[i])==0 ) break; |
| 363 } |
| 364 if( j>=naz ){ |
| 365 az[0] = sqlite3_mprintf("%s", azRowid[i]); |
| 366 break; |
| 367 } |
| 368 } |
| 369 if( az[0]==0 ){ |
| 370 for(i=1; i<naz; i++) sqlite3_free(az[i]); |
| 371 sqlite3_free(az); |
| 372 az = 0; |
| 373 } |
| 374 } |
| 375 return az; |
| 376 } |
| 377 |
| 378 /* |
| 379 ** Print the sqlite3_value X as an SQL literal. |
| 380 */ |
| 381 static void printQuoted(FILE *out, sqlite3_value *X){ |
| 382 switch( sqlite3_value_type(X) ){ |
| 383 case SQLITE_FLOAT: { |
| 384 double r1; |
| 385 char zBuf[50]; |
| 386 r1 = sqlite3_value_double(X); |
| 387 sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1); |
| 388 fprintf(out, "%s", zBuf); |
| 389 break; |
| 390 } |
| 391 case SQLITE_INTEGER: { |
| 392 fprintf(out, "%lld", sqlite3_value_int64(X)); |
| 393 break; |
| 394 } |
| 395 case SQLITE_BLOB: { |
| 396 const unsigned char *zBlob = sqlite3_value_blob(X); |
| 397 int nBlob = sqlite3_value_bytes(X); |
| 398 if( zBlob ){ |
| 399 int i; |
| 400 fprintf(out, "x'"); |
| 401 for(i=0; i<nBlob; i++){ |
| 402 fprintf(out, "%02x", zBlob[i]); |
| 403 } |
| 404 fprintf(out, "'"); |
| 405 }else{ |
| 406 /* Could be an OOM, could be a zero-byte blob */ |
| 407 fprintf(out, "X''"); |
| 408 } |
| 409 break; |
| 410 } |
| 411 case SQLITE_TEXT: { |
| 412 const unsigned char *zArg = sqlite3_value_text(X); |
| 413 int i, j; |
| 414 |
| 415 if( zArg==0 ){ |
| 416 fprintf(out, "NULL"); |
| 417 }else{ |
| 418 fprintf(out, "'"); |
| 419 for(i=j=0; zArg[i]; i++){ |
| 420 if( zArg[i]=='\'' ){ |
| 421 fprintf(out, "%.*s'", i-j+1, &zArg[j]); |
| 422 j = i+1; |
| 423 } |
| 424 } |
| 425 fprintf(out, "%s'", &zArg[j]); |
| 426 } |
| 427 break; |
| 428 } |
| 429 case SQLITE_NULL: { |
| 430 fprintf(out, "NULL"); |
| 431 break; |
| 432 } |
| 433 } |
| 434 } |
| 435 |
| 436 /* |
| 437 ** Output SQL that will recreate the aux.zTab table. |
| 438 */ |
| 439 static void dump_table(const char *zTab, FILE *out){ |
| 440 char *zId = safeId(zTab); /* Name of the table */ |
| 441 char **az = 0; /* List of columns */ |
| 442 int nPk; /* Number of true primary key columns */ |
| 443 int nCol; /* Number of data columns */ |
| 444 int i; /* Loop counter */ |
| 445 sqlite3_stmt *pStmt; /* SQL statement */ |
| 446 const char *zSep; /* Separator string */ |
| 447 Str ins; /* Beginning of the INSERT statement */ |
| 448 |
| 449 pStmt = db_prepare("SELECT sql FROM aux.sqlite_master WHERE name=%Q", zTab); |
| 450 if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 451 fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0)); |
| 452 } |
| 453 sqlite3_finalize(pStmt); |
| 454 if( !g.bSchemaOnly ){ |
| 455 az = columnNames("aux", zTab, &nPk, 0); |
| 456 strInit(&ins); |
| 457 if( az==0 ){ |
| 458 pStmt = db_prepare("SELECT * FROM aux.%s", zId); |
| 459 strPrintf(&ins,"INSERT INTO %s VALUES", zId); |
| 460 }else{ |
| 461 Str sql; |
| 462 strInit(&sql); |
| 463 zSep = "SELECT"; |
| 464 for(i=0; az[i]; i++){ |
| 465 strPrintf(&sql, "%s %s", zSep, az[i]); |
| 466 zSep = ","; |
| 467 } |
| 468 strPrintf(&sql," FROM aux.%s", zId); |
| 469 zSep = " ORDER BY"; |
| 470 for(i=1; i<=nPk; i++){ |
| 471 strPrintf(&sql, "%s %d", zSep, i); |
| 472 zSep = ","; |
| 473 } |
| 474 pStmt = db_prepare("%s", sql.z); |
| 475 strFree(&sql); |
| 476 strPrintf(&ins, "INSERT INTO %s", zId); |
| 477 zSep = "("; |
| 478 for(i=0; az[i]; i++){ |
| 479 strPrintf(&ins, "%s%s", zSep, az[i]); |
| 480 zSep = ","; |
| 481 } |
| 482 strPrintf(&ins,") VALUES"); |
| 483 namelistFree(az); |
| 484 } |
| 485 nCol = sqlite3_column_count(pStmt); |
| 486 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 487 fprintf(out, "%s",ins.z); |
| 488 zSep = "("; |
| 489 for(i=0; i<nCol; i++){ |
| 490 fprintf(out, "%s",zSep); |
| 491 printQuoted(out, sqlite3_column_value(pStmt,i)); |
| 492 zSep = ","; |
| 493 } |
| 494 fprintf(out, ");\n"); |
| 495 } |
| 496 sqlite3_finalize(pStmt); |
| 497 strFree(&ins); |
| 498 } /* endif !g.bSchemaOnly */ |
| 499 pStmt = db_prepare("SELECT sql FROM aux.sqlite_master" |
| 500 " WHERE type='index' AND tbl_name=%Q AND sql IS NOT NULL", |
| 501 zTab); |
| 502 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 503 fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0)); |
| 504 } |
| 505 sqlite3_finalize(pStmt); |
| 506 } |
| 507 |
| 508 |
| 509 /* |
| 510 ** Compute all differences for a single table. |
| 511 */ |
| 512 static void diff_one_table(const char *zTab, FILE *out){ |
| 513 char *zId = safeId(zTab); /* Name of table (translated for us in SQL) */ |
| 514 char **az = 0; /* Columns in main */ |
| 515 char **az2 = 0; /* Columns in aux */ |
| 516 int nPk; /* Primary key columns in main */ |
| 517 int nPk2; /* Primary key columns in aux */ |
| 518 int n = 0; /* Number of columns in main */ |
| 519 int n2; /* Number of columns in aux */ |
| 520 int nQ; /* Number of output columns in the diff query */ |
| 521 int i; /* Loop counter */ |
| 522 const char *zSep; /* Separator string */ |
| 523 Str sql; /* Comparison query */ |
| 524 sqlite3_stmt *pStmt; /* Query statement to do the diff */ |
| 525 |
| 526 strInit(&sql); |
| 527 if( g.fDebug==DEBUG_COLUMN_NAMES ){ |
| 528 /* Simply run columnNames() on all tables of the origin |
| 529 ** database and show the results. This is used for testing |
| 530 ** and debugging of the columnNames() function. |
| 531 */ |
| 532 az = columnNames("aux",zTab, &nPk, 0); |
| 533 if( az==0 ){ |
| 534 printf("Rowid not accessible for %s\n", zId); |
| 535 }else{ |
| 536 printf("%s:", zId); |
| 537 for(i=0; az[i]; i++){ |
| 538 printf(" %s", az[i]); |
| 539 if( i+1==nPk ) printf(" *"); |
| 540 } |
| 541 printf("\n"); |
| 542 } |
| 543 goto end_diff_one_table; |
| 544 } |
| 545 |
| 546 |
| 547 if( sqlite3_table_column_metadata(g.db,"aux",zTab,0,0,0,0,0,0) ){ |
| 548 if( !sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){ |
| 549 /* Table missing from second database. */ |
| 550 fprintf(out, "DROP TABLE %s;\n", zId); |
| 551 } |
| 552 goto end_diff_one_table; |
| 553 } |
| 554 |
| 555 if( sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){ |
| 556 /* Table missing from source */ |
| 557 dump_table(zTab, out); |
| 558 goto end_diff_one_table; |
| 559 } |
| 560 |
| 561 az = columnNames("main", zTab, &nPk, 0); |
| 562 az2 = columnNames("aux", zTab, &nPk2, 0); |
| 563 if( az && az2 ){ |
| 564 for(n=0; az[n] && az2[n]; n++){ |
| 565 if( sqlite3_stricmp(az[n],az2[n])!=0 ) break; |
| 566 } |
| 567 } |
| 568 if( az==0 |
| 569 || az2==0 |
| 570 || nPk!=nPk2 |
| 571 || az[n] |
| 572 ){ |
| 573 /* Schema mismatch */ |
| 574 fprintf(out, "DROP TABLE %s; -- due to schema mismatch\n", zId); |
| 575 dump_table(zTab, out); |
| 576 goto end_diff_one_table; |
| 577 } |
| 578 |
| 579 /* Build the comparison query */ |
| 580 for(n2=n; az2[n2]; n2++){ |
| 581 fprintf(out, "ALTER TABLE %s ADD COLUMN %s;\n", zId, safeId(az2[n2])); |
| 582 } |
| 583 nQ = nPk2+1+2*(n2-nPk2); |
| 584 if( n2>nPk2 ){ |
| 585 zSep = "SELECT "; |
| 586 for(i=0; i<nPk; i++){ |
| 587 strPrintf(&sql, "%sB.%s", zSep, az[i]); |
| 588 zSep = ", "; |
| 589 } |
| 590 strPrintf(&sql, ", 1%s -- changed row\n", nPk==n ? "" : ","); |
| 591 while( az[i] ){ |
| 592 strPrintf(&sql, " A.%s IS NOT B.%s, B.%s%s\n", |
| 593 az[i], az2[i], az2[i], az2[i+1]==0 ? "" : ","); |
| 594 i++; |
| 595 } |
| 596 while( az2[i] ){ |
| 597 strPrintf(&sql, " B.%s IS NOT NULL, B.%s%s\n", |
| 598 az2[i], az2[i], az2[i+1]==0 ? "" : ","); |
| 599 i++; |
| 600 } |
| 601 strPrintf(&sql, " FROM main.%s A, aux.%s B\n", zId, zId); |
| 602 zSep = " WHERE"; |
| 603 for(i=0; i<nPk; i++){ |
| 604 strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); |
| 605 zSep = " AND"; |
| 606 } |
| 607 zSep = "\n AND ("; |
| 608 while( az[i] ){ |
| 609 strPrintf(&sql, "%sA.%s IS NOT B.%s%s\n", |
| 610 zSep, az[i], az2[i], az2[i+1]==0 ? ")" : ""); |
| 611 zSep = " OR "; |
| 612 i++; |
| 613 } |
| 614 while( az2[i] ){ |
| 615 strPrintf(&sql, "%sB.%s IS NOT NULL%s\n", |
| 616 zSep, az2[i], az2[i+1]==0 ? ")" : ""); |
| 617 zSep = " OR "; |
| 618 i++; |
| 619 } |
| 620 strPrintf(&sql, " UNION ALL\n"); |
| 621 } |
| 622 zSep = "SELECT "; |
| 623 for(i=0; i<nPk; i++){ |
| 624 strPrintf(&sql, "%sA.%s", zSep, az[i]); |
| 625 zSep = ", "; |
| 626 } |
| 627 strPrintf(&sql, ", 2%s -- deleted row\n", nPk==n ? "" : ","); |
| 628 while( az2[i] ){ |
| 629 strPrintf(&sql, " NULL, NULL%s\n", i==n2-1 ? "" : ","); |
| 630 i++; |
| 631 } |
| 632 strPrintf(&sql, " FROM main.%s A\n", zId); |
| 633 strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B\n", zId); |
| 634 zSep = " WHERE"; |
| 635 for(i=0; i<nPk; i++){ |
| 636 strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); |
| 637 zSep = " AND"; |
| 638 } |
| 639 strPrintf(&sql, ")\n"); |
| 640 zSep = " UNION ALL\nSELECT "; |
| 641 for(i=0; i<nPk; i++){ |
| 642 strPrintf(&sql, "%sB.%s", zSep, az[i]); |
| 643 zSep = ", "; |
| 644 } |
| 645 strPrintf(&sql, ", 3%s -- inserted row\n", nPk==n ? "" : ","); |
| 646 while( az2[i] ){ |
| 647 strPrintf(&sql, " 1, B.%s%s\n", az2[i], az2[i+1]==0 ? "" : ","); |
| 648 i++; |
| 649 } |
| 650 strPrintf(&sql, " FROM aux.%s B\n", zId); |
| 651 strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A\n", zId); |
| 652 zSep = " WHERE"; |
| 653 for(i=0; i<nPk; i++){ |
| 654 strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); |
| 655 zSep = " AND"; |
| 656 } |
| 657 strPrintf(&sql, ")\n ORDER BY"); |
| 658 zSep = " "; |
| 659 for(i=1; i<=nPk; i++){ |
| 660 strPrintf(&sql, "%s%d", zSep, i); |
| 661 zSep = ", "; |
| 662 } |
| 663 strPrintf(&sql, ";\n"); |
| 664 |
| 665 if( g.fDebug & DEBUG_DIFF_SQL ){ |
| 666 printf("SQL for %s:\n%s\n", zId, sql.z); |
| 667 goto end_diff_one_table; |
| 668 } |
| 669 |
| 670 /* Drop indexes that are missing in the destination */ |
| 671 pStmt = db_prepare( |
| 672 "SELECT name FROM main.sqlite_master" |
| 673 " WHERE type='index' AND tbl_name=%Q" |
| 674 " AND sql IS NOT NULL" |
| 675 " AND sql NOT IN (SELECT sql FROM aux.sqlite_master" |
| 676 " WHERE type='index' AND tbl_name=%Q" |
| 677 " AND sql IS NOT NULL)", |
| 678 zTab, zTab); |
| 679 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 680 char *z = safeId((const char*)sqlite3_column_text(pStmt,0)); |
| 681 fprintf(out, "DROP INDEX %s;\n", z); |
| 682 sqlite3_free(z); |
| 683 } |
| 684 sqlite3_finalize(pStmt); |
| 685 |
| 686 /* Run the query and output differences */ |
| 687 if( !g.bSchemaOnly ){ |
| 688 pStmt = db_prepare("%s", sql.z); |
| 689 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 690 int iType = sqlite3_column_int(pStmt, nPk); |
| 691 if( iType==1 || iType==2 ){ |
| 692 if( iType==1 ){ /* Change the content of a row */ |
| 693 fprintf(out, "UPDATE %s", zId); |
| 694 zSep = " SET"; |
| 695 for(i=nPk+1; i<nQ; i+=2){ |
| 696 if( sqlite3_column_int(pStmt,i)==0 ) continue; |
| 697 fprintf(out, "%s %s=", zSep, az2[(i+nPk-1)/2]); |
| 698 zSep = ","; |
| 699 printQuoted(out, sqlite3_column_value(pStmt,i+1)); |
| 700 } |
| 701 }else{ /* Delete a row */ |
| 702 fprintf(out, "DELETE FROM %s", zId); |
| 703 } |
| 704 zSep = " WHERE"; |
| 705 for(i=0; i<nPk; i++){ |
| 706 fprintf(out, "%s %s=", zSep, az2[i]); |
| 707 printQuoted(out, sqlite3_column_value(pStmt,i)); |
| 708 zSep = " AND"; |
| 709 } |
| 710 fprintf(out, ";\n"); |
| 711 }else{ /* Insert a row */ |
| 712 fprintf(out, "INSERT INTO %s(%s", zId, az2[0]); |
| 713 for(i=1; az2[i]; i++) fprintf(out, ",%s", az2[i]); |
| 714 fprintf(out, ") VALUES"); |
| 715 zSep = "("; |
| 716 for(i=0; i<nPk2; i++){ |
| 717 fprintf(out, "%s", zSep); |
| 718 zSep = ","; |
| 719 printQuoted(out, sqlite3_column_value(pStmt,i)); |
| 720 } |
| 721 for(i=nPk2+2; i<nQ; i+=2){ |
| 722 fprintf(out, ","); |
| 723 printQuoted(out, sqlite3_column_value(pStmt,i)); |
| 724 } |
| 725 fprintf(out, ");\n"); |
| 726 } |
| 727 } |
| 728 sqlite3_finalize(pStmt); |
| 729 } /* endif !g.bSchemaOnly */ |
| 730 |
| 731 /* Create indexes that are missing in the source */ |
| 732 pStmt = db_prepare( |
| 733 "SELECT sql FROM aux.sqlite_master" |
| 734 " WHERE type='index' AND tbl_name=%Q" |
| 735 " AND sql IS NOT NULL" |
| 736 " AND sql NOT IN (SELECT sql FROM main.sqlite_master" |
| 737 " WHERE type='index' AND tbl_name=%Q" |
| 738 " AND sql IS NOT NULL)", |
| 739 zTab, zTab); |
| 740 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 741 fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0)); |
| 742 } |
| 743 sqlite3_finalize(pStmt); |
| 744 |
| 745 end_diff_one_table: |
| 746 strFree(&sql); |
| 747 sqlite3_free(zId); |
| 748 namelistFree(az); |
| 749 namelistFree(az2); |
| 750 return; |
| 751 } |
| 752 |
| 753 /* |
| 754 ** Check that table zTab exists and has the same schema in both the "main" |
| 755 ** and "aux" databases currently opened by the global db handle. If they |
| 756 ** do not, output an error message on stderr and exit(1). Otherwise, if |
| 757 ** the schemas do match, return control to the caller. |
| 758 */ |
| 759 static void checkSchemasMatch(const char *zTab){ |
| 760 sqlite3_stmt *pStmt = db_prepare( |
| 761 "SELECT A.sql=B.sql FROM main.sqlite_master A, aux.sqlite_master B" |
| 762 " WHERE A.name=%Q AND B.name=%Q", zTab, zTab |
| 763 ); |
| 764 if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 765 if( sqlite3_column_int(pStmt,0)==0 ){ |
| 766 runtimeError("schema changes for table %s", safeId(zTab)); |
| 767 } |
| 768 }else{ |
| 769 runtimeError("table %s missing from one or both databases", safeId(zTab)); |
| 770 } |
| 771 sqlite3_finalize(pStmt); |
| 772 } |
| 773 |
| 774 /************************************************************************** |
| 775 ** The following code is copied from fossil. It is used to generate the |
| 776 ** fossil delta blobs sometimes used in RBU update records. |
| 777 */ |
| 778 |
| 779 typedef unsigned short u16; |
| 780 typedef unsigned int u32; |
| 781 typedef unsigned char u8; |
| 782 |
| 783 /* |
| 784 ** The width of a hash window in bytes. The algorithm only works if this |
| 785 ** is a power of 2. |
| 786 */ |
| 787 #define NHASH 16 |
| 788 |
| 789 /* |
| 790 ** The current state of the rolling hash. |
| 791 ** |
| 792 ** z[] holds the values that have been hashed. z[] is a circular buffer. |
| 793 ** z[i] is the first entry and z[(i+NHASH-1)%NHASH] is the last entry of |
| 794 ** the window. |
| 795 ** |
| 796 ** Hash.a is the sum of all elements of hash.z[]. Hash.b is a weighted |
| 797 ** sum. Hash.b is z[i]*NHASH + z[i+1]*(NHASH-1) + ... + z[i+NHASH-1]*1. |
| 798 ** (Each index for z[] should be module NHASH, of course. The %NHASH operator |
| 799 ** is omitted in the prior expression for brevity.) |
| 800 */ |
| 801 typedef struct hash hash; |
| 802 struct hash { |
| 803 u16 a, b; /* Hash values */ |
| 804 u16 i; /* Start of the hash window */ |
| 805 char z[NHASH]; /* The values that have been hashed */ |
| 806 }; |
| 807 |
| 808 /* |
| 809 ** Initialize the rolling hash using the first NHASH characters of z[] |
| 810 */ |
| 811 static void hash_init(hash *pHash, const char *z){ |
| 812 u16 a, b, i; |
| 813 a = b = 0; |
| 814 for(i=0; i<NHASH; i++){ |
| 815 a += z[i]; |
| 816 b += (NHASH-i)*z[i]; |
| 817 pHash->z[i] = z[i]; |
| 818 } |
| 819 pHash->a = a & 0xffff; |
| 820 pHash->b = b & 0xffff; |
| 821 pHash->i = 0; |
| 822 } |
| 823 |
| 824 /* |
| 825 ** Advance the rolling hash by a single character "c" |
| 826 */ |
| 827 static void hash_next(hash *pHash, int c){ |
| 828 u16 old = pHash->z[pHash->i]; |
| 829 pHash->z[pHash->i] = (char)c; |
| 830 pHash->i = (pHash->i+1)&(NHASH-1); |
| 831 pHash->a = pHash->a - old + (char)c; |
| 832 pHash->b = pHash->b - NHASH*old + pHash->a; |
| 833 } |
| 834 |
| 835 /* |
| 836 ** Return a 32-bit hash value |
| 837 */ |
| 838 static u32 hash_32bit(hash *pHash){ |
| 839 return (pHash->a & 0xffff) | (((u32)(pHash->b & 0xffff))<<16); |
| 840 } |
| 841 |
| 842 /* |
| 843 ** Write an base-64 integer into the given buffer. |
| 844 */ |
| 845 static void putInt(unsigned int v, char **pz){ |
| 846 static const char zDigits[] = |
| 847 "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~"; |
| 848 /* 123456789 123456789 123456789 123456789 123456789 123456789 123 */ |
| 849 int i, j; |
| 850 char zBuf[20]; |
| 851 if( v==0 ){ |
| 852 *(*pz)++ = '0'; |
| 853 return; |
| 854 } |
| 855 for(i=0; v>0; i++, v>>=6){ |
| 856 zBuf[i] = zDigits[v&0x3f]; |
| 857 } |
| 858 for(j=i-1; j>=0; j--){ |
| 859 *(*pz)++ = zBuf[j]; |
| 860 } |
| 861 } |
| 862 |
| 863 /* |
| 864 ** Return the number digits in the base-64 representation of a positive integer |
| 865 */ |
| 866 static int digit_count(int v){ |
| 867 unsigned int i, x; |
| 868 for(i=1, x=64; (unsigned int)v>=x; i++, x <<= 6){} |
| 869 return i; |
| 870 } |
| 871 |
| 872 /* |
| 873 ** Compute a 32-bit checksum on the N-byte buffer. Return the result. |
| 874 */ |
| 875 static unsigned int checksum(const char *zIn, size_t N){ |
| 876 const unsigned char *z = (const unsigned char *)zIn; |
| 877 unsigned sum0 = 0; |
| 878 unsigned sum1 = 0; |
| 879 unsigned sum2 = 0; |
| 880 unsigned sum3 = 0; |
| 881 while(N >= 16){ |
| 882 sum0 += ((unsigned)z[0] + z[4] + z[8] + z[12]); |
| 883 sum1 += ((unsigned)z[1] + z[5] + z[9] + z[13]); |
| 884 sum2 += ((unsigned)z[2] + z[6] + z[10]+ z[14]); |
| 885 sum3 += ((unsigned)z[3] + z[7] + z[11]+ z[15]); |
| 886 z += 16; |
| 887 N -= 16; |
| 888 } |
| 889 while(N >= 4){ |
| 890 sum0 += z[0]; |
| 891 sum1 += z[1]; |
| 892 sum2 += z[2]; |
| 893 sum3 += z[3]; |
| 894 z += 4; |
| 895 N -= 4; |
| 896 } |
| 897 sum3 += (sum2 << 8) + (sum1 << 16) + (sum0 << 24); |
| 898 switch(N){ |
| 899 case 3: sum3 += (z[2] << 8); |
| 900 case 2: sum3 += (z[1] << 16); |
| 901 case 1: sum3 += (z[0] << 24); |
| 902 default: ; |
| 903 } |
| 904 return sum3; |
| 905 } |
| 906 |
| 907 /* |
| 908 ** Create a new delta. |
| 909 ** |
| 910 ** The delta is written into a preallocated buffer, zDelta, which |
| 911 ** should be at least 60 bytes longer than the target file, zOut. |
| 912 ** The delta string will be NUL-terminated, but it might also contain |
| 913 ** embedded NUL characters if either the zSrc or zOut files are |
| 914 ** binary. This function returns the length of the delta string |
| 915 ** in bytes, excluding the final NUL terminator character. |
| 916 ** |
| 917 ** Output Format: |
| 918 ** |
| 919 ** The delta begins with a base64 number followed by a newline. This |
| 920 ** number is the number of bytes in the TARGET file. Thus, given a |
| 921 ** delta file z, a program can compute the size of the output file |
| 922 ** simply by reading the first line and decoding the base-64 number |
| 923 ** found there. The delta_output_size() routine does exactly this. |
| 924 ** |
| 925 ** After the initial size number, the delta consists of a series of |
| 926 ** literal text segments and commands to copy from the SOURCE file. |
| 927 ** A copy command looks like this: |
| 928 ** |
| 929 ** NNN@MMM, |
| 930 ** |
| 931 ** where NNN is the number of bytes to be copied and MMM is the offset |
| 932 ** into the source file of the first byte (both base-64). If NNN is 0 |
| 933 ** it means copy the rest of the input file. Literal text is like this: |
| 934 ** |
| 935 ** NNN:TTTTT |
| 936 ** |
| 937 ** where NNN is the number of bytes of text (base-64) and TTTTT is the text. |
| 938 ** |
| 939 ** The last term is of the form |
| 940 ** |
| 941 ** NNN; |
| 942 ** |
| 943 ** In this case, NNN is a 32-bit bigendian checksum of the output file |
| 944 ** that can be used to verify that the delta applied correctly. All |
| 945 ** numbers are in base-64. |
| 946 ** |
| 947 ** Pure text files generate a pure text delta. Binary files generate a |
| 948 ** delta that may contain some binary data. |
| 949 ** |
| 950 ** Algorithm: |
| 951 ** |
| 952 ** The encoder first builds a hash table to help it find matching |
| 953 ** patterns in the source file. 16-byte chunks of the source file |
| 954 ** sampled at evenly spaced intervals are used to populate the hash |
| 955 ** table. |
| 956 ** |
| 957 ** Next we begin scanning the target file using a sliding 16-byte |
| 958 ** window. The hash of the 16-byte window in the target is used to |
| 959 ** search for a matching section in the source file. When a match |
| 960 ** is found, a copy command is added to the delta. An effort is |
| 961 ** made to extend the matching section to regions that come before |
| 962 ** and after the 16-byte hash window. A copy command is only issued |
| 963 ** if the result would use less space that just quoting the text |
| 964 ** literally. Literal text is added to the delta for sections that |
| 965 ** do not match or which can not be encoded efficiently using copy |
| 966 ** commands. |
| 967 */ |
| 968 static int rbuDeltaCreate( |
| 969 const char *zSrc, /* The source or pattern file */ |
| 970 unsigned int lenSrc, /* Length of the source file */ |
| 971 const char *zOut, /* The target file */ |
| 972 unsigned int lenOut, /* Length of the target file */ |
| 973 char *zDelta /* Write the delta into this buffer */ |
| 974 ){ |
| 975 unsigned int i, base; |
| 976 char *zOrigDelta = zDelta; |
| 977 hash h; |
| 978 int nHash; /* Number of hash table entries */ |
| 979 int *landmark; /* Primary hash table */ |
| 980 int *collide; /* Collision chain */ |
| 981 int lastRead = -1; /* Last byte of zSrc read by a COPY command */ |
| 982 |
| 983 /* Add the target file size to the beginning of the delta |
| 984 */ |
| 985 putInt(lenOut, &zDelta); |
| 986 *(zDelta++) = '\n'; |
| 987 |
| 988 /* If the source file is very small, it means that we have no |
| 989 ** chance of ever doing a copy command. Just output a single |
| 990 ** literal segment for the entire target and exit. |
| 991 */ |
| 992 if( lenSrc<=NHASH ){ |
| 993 putInt(lenOut, &zDelta); |
| 994 *(zDelta++) = ':'; |
| 995 memcpy(zDelta, zOut, lenOut); |
| 996 zDelta += lenOut; |
| 997 putInt(checksum(zOut, lenOut), &zDelta); |
| 998 *(zDelta++) = ';'; |
| 999 return (int)(zDelta - zOrigDelta); |
| 1000 } |
| 1001 |
| 1002 /* Compute the hash table used to locate matching sections in the |
| 1003 ** source file. |
| 1004 */ |
| 1005 nHash = lenSrc/NHASH; |
| 1006 collide = sqlite3_malloc( nHash*2*sizeof(int) ); |
| 1007 landmark = &collide[nHash]; |
| 1008 memset(landmark, -1, nHash*sizeof(int)); |
| 1009 memset(collide, -1, nHash*sizeof(int)); |
| 1010 for(i=0; i<lenSrc-NHASH; i+=NHASH){ |
| 1011 int hv; |
| 1012 hash_init(&h, &zSrc[i]); |
| 1013 hv = hash_32bit(&h) % nHash; |
| 1014 collide[i/NHASH] = landmark[hv]; |
| 1015 landmark[hv] = i/NHASH; |
| 1016 } |
| 1017 |
| 1018 /* Begin scanning the target file and generating copy commands and |
| 1019 ** literal sections of the delta. |
| 1020 */ |
| 1021 base = 0; /* We have already generated everything before zOut[base] */ |
| 1022 while( base+NHASH<lenOut ){ |
| 1023 int iSrc, iBlock; |
| 1024 int bestCnt, bestOfst=0, bestLitsz=0; |
| 1025 hash_init(&h, &zOut[base]); |
| 1026 i = 0; /* Trying to match a landmark against zOut[base+i] */ |
| 1027 bestCnt = 0; |
| 1028 while( 1 ){ |
| 1029 int hv; |
| 1030 int limit = 250; |
| 1031 |
| 1032 hv = hash_32bit(&h) % nHash; |
| 1033 iBlock = landmark[hv]; |
| 1034 while( iBlock>=0 && (limit--)>0 ){ |
| 1035 /* |
| 1036 ** The hash window has identified a potential match against |
| 1037 ** landmark block iBlock. But we need to investigate further. |
| 1038 ** |
| 1039 ** Look for a region in zOut that matches zSrc. Anchor the search |
| 1040 ** at zSrc[iSrc] and zOut[base+i]. Do not include anything prior to |
| 1041 ** zOut[base] or after zOut[outLen] nor anything after zSrc[srcLen]. |
| 1042 ** |
| 1043 ** Set cnt equal to the length of the match and set ofst so that |
| 1044 ** zSrc[ofst] is the first element of the match. litsz is the number |
| 1045 ** of characters between zOut[base] and the beginning of the match. |
| 1046 ** sz will be the overhead (in bytes) needed to encode the copy |
| 1047 ** command. Only generate copy command if the overhead of the |
| 1048 ** copy command is less than the amount of literal text to be copied. |
| 1049 */ |
| 1050 int cnt, ofst, litsz; |
| 1051 int j, k, x, y; |
| 1052 int sz; |
| 1053 |
| 1054 /* Beginning at iSrc, match forwards as far as we can. j counts |
| 1055 ** the number of characters that match */ |
| 1056 iSrc = iBlock*NHASH; |
| 1057 for( |
| 1058 j=0, x=iSrc, y=base+i; |
| 1059 (unsigned int)x<lenSrc && (unsigned int)y<lenOut; |
| 1060 j++, x++, y++ |
| 1061 ){ |
| 1062 if( zSrc[x]!=zOut[y] ) break; |
| 1063 } |
| 1064 j--; |
| 1065 |
| 1066 /* Beginning at iSrc-1, match backwards as far as we can. k counts |
| 1067 ** the number of characters that match */ |
| 1068 for(k=1; k<iSrc && (unsigned int)k<=i; k++){ |
| 1069 if( zSrc[iSrc-k]!=zOut[base+i-k] ) break; |
| 1070 } |
| 1071 k--; |
| 1072 |
| 1073 /* Compute the offset and size of the matching region */ |
| 1074 ofst = iSrc-k; |
| 1075 cnt = j+k+1; |
| 1076 litsz = i-k; /* Number of bytes of literal text before the copy */ |
| 1077 /* sz will hold the number of bytes needed to encode the "insert" |
| 1078 ** command and the copy command, not counting the "insert" text */ |
| 1079 sz = digit_count(i-k)+digit_count(cnt)+digit_count(ofst)+3; |
| 1080 if( cnt>=sz && cnt>bestCnt ){ |
| 1081 /* Remember this match only if it is the best so far and it |
| 1082 ** does not increase the file size */ |
| 1083 bestCnt = cnt; |
| 1084 bestOfst = iSrc-k; |
| 1085 bestLitsz = litsz; |
| 1086 } |
| 1087 |
| 1088 /* Check the next matching block */ |
| 1089 iBlock = collide[iBlock]; |
| 1090 } |
| 1091 |
| 1092 /* We have a copy command that does not cause the delta to be larger |
| 1093 ** than a literal insert. So add the copy command to the delta. |
| 1094 */ |
| 1095 if( bestCnt>0 ){ |
| 1096 if( bestLitsz>0 ){ |
| 1097 /* Add an insert command before the copy */ |
| 1098 putInt(bestLitsz,&zDelta); |
| 1099 *(zDelta++) = ':'; |
| 1100 memcpy(zDelta, &zOut[base], bestLitsz); |
| 1101 zDelta += bestLitsz; |
| 1102 base += bestLitsz; |
| 1103 } |
| 1104 base += bestCnt; |
| 1105 putInt(bestCnt, &zDelta); |
| 1106 *(zDelta++) = '@'; |
| 1107 putInt(bestOfst, &zDelta); |
| 1108 *(zDelta++) = ','; |
| 1109 if( bestOfst + bestCnt -1 > lastRead ){ |
| 1110 lastRead = bestOfst + bestCnt - 1; |
| 1111 } |
| 1112 bestCnt = 0; |
| 1113 break; |
| 1114 } |
| 1115 |
| 1116 /* If we reach this point, it means no match is found so far */ |
| 1117 if( base+i+NHASH>=lenOut ){ |
| 1118 /* We have reached the end of the file and have not found any |
| 1119 ** matches. Do an "insert" for everything that does not match */ |
| 1120 putInt(lenOut-base, &zDelta); |
| 1121 *(zDelta++) = ':'; |
| 1122 memcpy(zDelta, &zOut[base], lenOut-base); |
| 1123 zDelta += lenOut-base; |
| 1124 base = lenOut; |
| 1125 break; |
| 1126 } |
| 1127 |
| 1128 /* Advance the hash by one character. Keep looking for a match */ |
| 1129 hash_next(&h, zOut[base+i+NHASH]); |
| 1130 i++; |
| 1131 } |
| 1132 } |
| 1133 /* Output a final "insert" record to get all the text at the end of |
| 1134 ** the file that does not match anything in the source file. |
| 1135 */ |
| 1136 if( base<lenOut ){ |
| 1137 putInt(lenOut-base, &zDelta); |
| 1138 *(zDelta++) = ':'; |
| 1139 memcpy(zDelta, &zOut[base], lenOut-base); |
| 1140 zDelta += lenOut-base; |
| 1141 } |
| 1142 /* Output the final checksum record. */ |
| 1143 putInt(checksum(zOut, lenOut), &zDelta); |
| 1144 *(zDelta++) = ';'; |
| 1145 sqlite3_free(collide); |
| 1146 return (int)(zDelta - zOrigDelta); |
| 1147 } |
| 1148 |
| 1149 /* |
| 1150 ** End of code copied from fossil. |
| 1151 **************************************************************************/ |
| 1152 |
| 1153 static void strPrintfArray( |
| 1154 Str *pStr, /* String object to append to */ |
| 1155 const char *zSep, /* Separator string */ |
| 1156 const char *zFmt, /* Format for each entry */ |
| 1157 char **az, int n /* Array of strings & its size (or -1) */ |
| 1158 ){ |
| 1159 int i; |
| 1160 for(i=0; az[i] && (i<n || n<0); i++){ |
| 1161 if( i!=0 ) strPrintf(pStr, "%s", zSep); |
| 1162 strPrintf(pStr, zFmt, az[i], az[i], az[i]); |
| 1163 } |
| 1164 } |
| 1165 |
| 1166 static void getRbudiffQuery( |
| 1167 const char *zTab, |
| 1168 char **azCol, |
| 1169 int nPK, |
| 1170 int bOtaRowid, |
| 1171 Str *pSql |
| 1172 ){ |
| 1173 int i; |
| 1174 |
| 1175 /* First the newly inserted rows: **/ |
| 1176 strPrintf(pSql, "SELECT "); |
| 1177 strPrintfArray(pSql, ", ", "%s", azCol, -1); |
| 1178 strPrintf(pSql, ", 0, "); /* Set ota_control to 0 for an insert */ |
| 1179 strPrintfArray(pSql, ", ", "NULL", azCol, -1); |
| 1180 strPrintf(pSql, " FROM aux.%Q AS n WHERE NOT EXISTS (\n", zTab); |
| 1181 strPrintf(pSql, " SELECT 1 FROM ", zTab); |
| 1182 strPrintf(pSql, " main.%Q AS o WHERE ", zTab); |
| 1183 strPrintfArray(pSql, " AND ", "(n.%Q = o.%Q)", azCol, nPK); |
| 1184 strPrintf(pSql, "\n) AND "); |
| 1185 strPrintfArray(pSql, " AND ", "(n.%Q IS NOT NULL)", azCol, nPK); |
| 1186 |
| 1187 /* Deleted rows: */ |
| 1188 strPrintf(pSql, "\nUNION ALL\nSELECT "); |
| 1189 strPrintfArray(pSql, ", ", "%s", azCol, nPK); |
| 1190 if( azCol[nPK] ){ |
| 1191 strPrintf(pSql, ", "); |
| 1192 strPrintfArray(pSql, ", ", "NULL", &azCol[nPK], -1); |
| 1193 } |
| 1194 strPrintf(pSql, ", 1, "); /* Set ota_control to 1 for a delete */ |
| 1195 strPrintfArray(pSql, ", ", "NULL", azCol, -1); |
| 1196 strPrintf(pSql, " FROM main.%Q AS n WHERE NOT EXISTS (\n", zTab); |
| 1197 strPrintf(pSql, " SELECT 1 FROM ", zTab); |
| 1198 strPrintf(pSql, " aux.%Q AS o WHERE ", zTab); |
| 1199 strPrintfArray(pSql, " AND ", "(n.%Q = o.%Q)", azCol, nPK); |
| 1200 strPrintf(pSql, "\n) AND "); |
| 1201 strPrintfArray(pSql, " AND ", "(n.%Q IS NOT NULL)", azCol, nPK); |
| 1202 |
| 1203 /* Updated rows. If all table columns are part of the primary key, there |
| 1204 ** can be no updates. In this case this part of the compound SELECT can |
| 1205 ** be omitted altogether. */ |
| 1206 if( azCol[nPK] ){ |
| 1207 strPrintf(pSql, "\nUNION ALL\nSELECT "); |
| 1208 strPrintfArray(pSql, ", ", "n.%s", azCol, nPK); |
| 1209 strPrintf(pSql, ",\n"); |
| 1210 strPrintfArray(pSql, " ,\n", |
| 1211 " CASE WHEN n.%s IS o.%s THEN NULL ELSE n.%s END", &azCol[nPK], -1 |
| 1212 ); |
| 1213 |
| 1214 if( bOtaRowid==0 ){ |
| 1215 strPrintf(pSql, ", '"); |
| 1216 strPrintfArray(pSql, "", ".", azCol, nPK); |
| 1217 strPrintf(pSql, "' ||\n"); |
| 1218 }else{ |
| 1219 strPrintf(pSql, ",\n"); |
| 1220 } |
| 1221 strPrintfArray(pSql, " ||\n", |
| 1222 " CASE WHEN n.%s IS o.%s THEN '.' ELSE 'x' END", &azCol[nPK], -1 |
| 1223 ); |
| 1224 strPrintf(pSql, "\nAS ota_control, "); |
| 1225 strPrintfArray(pSql, ", ", "NULL", azCol, nPK); |
| 1226 strPrintf(pSql, ",\n"); |
| 1227 strPrintfArray(pSql, " ,\n", |
| 1228 " CASE WHEN n.%s IS o.%s THEN NULL ELSE o.%s END", &azCol[nPK], -1 |
| 1229 ); |
| 1230 |
| 1231 strPrintf(pSql, "\nFROM main.%Q AS o, aux.%Q AS n\nWHERE ", zTab, zTab); |
| 1232 strPrintfArray(pSql, " AND ", "(n.%Q = o.%Q)", azCol, nPK); |
| 1233 strPrintf(pSql, " AND ota_control LIKE '%%x%%'"); |
| 1234 } |
| 1235 |
| 1236 /* Now add an ORDER BY clause to sort everything by PK. */ |
| 1237 strPrintf(pSql, "\nORDER BY "); |
| 1238 for(i=1; i<=nPK; i++) strPrintf(pSql, "%s%d", ((i>1)?", ":""), i); |
| 1239 } |
| 1240 |
| 1241 static void rbudiff_one_table(const char *zTab, FILE *out){ |
| 1242 int bOtaRowid; /* True to use an ota_rowid column */ |
| 1243 int nPK; /* Number of primary key columns in table */ |
| 1244 char **azCol; /* NULL terminated array of col names */ |
| 1245 int i; |
| 1246 int nCol; |
| 1247 Str ct = {0, 0, 0}; /* The "CREATE TABLE data_xxx" statement */ |
| 1248 Str sql = {0, 0, 0}; /* Query to find differences */ |
| 1249 Str insert = {0, 0, 0}; /* First part of output INSERT statement */ |
| 1250 sqlite3_stmt *pStmt = 0; |
| 1251 int nRow = 0; /* Total rows in data_xxx table */ |
| 1252 |
| 1253 /* --rbu mode must use real primary keys. */ |
| 1254 g.bSchemaPK = 1; |
| 1255 |
| 1256 /* Check that the schemas of the two tables match. Exit early otherwise. */ |
| 1257 checkSchemasMatch(zTab); |
| 1258 |
| 1259 /* Grab the column names and PK details for the table(s). If no usable PK |
| 1260 ** columns are found, bail out early. */ |
| 1261 azCol = columnNames("main", zTab, &nPK, &bOtaRowid); |
| 1262 if( azCol==0 ){ |
| 1263 runtimeError("table %s has no usable PK columns", zTab); |
| 1264 } |
| 1265 for(nCol=0; azCol[nCol]; nCol++); |
| 1266 |
| 1267 /* Build and output the CREATE TABLE statement for the data_xxx table */ |
| 1268 strPrintf(&ct, "CREATE TABLE IF NOT EXISTS 'data_%q'(", zTab); |
| 1269 if( bOtaRowid ) strPrintf(&ct, "rbu_rowid, "); |
| 1270 strPrintfArray(&ct, ", ", "%s", &azCol[bOtaRowid], -1); |
| 1271 strPrintf(&ct, ", rbu_control);"); |
| 1272 |
| 1273 /* Get the SQL for the query to retrieve data from the two databases */ |
| 1274 getRbudiffQuery(zTab, azCol, nPK, bOtaRowid, &sql); |
| 1275 |
| 1276 /* Build the first part of the INSERT statement output for each row |
| 1277 ** in the data_xxx table. */ |
| 1278 strPrintf(&insert, "INSERT INTO 'data_%q' (", zTab); |
| 1279 if( bOtaRowid ) strPrintf(&insert, "rbu_rowid, "); |
| 1280 strPrintfArray(&insert, ", ", "%s", &azCol[bOtaRowid], -1); |
| 1281 strPrintf(&insert, ", rbu_control) VALUES("); |
| 1282 |
| 1283 pStmt = db_prepare("%s", sql.z); |
| 1284 |
| 1285 while( sqlite3_step(pStmt)==SQLITE_ROW ){ |
| 1286 |
| 1287 /* If this is the first row output, print out the CREATE TABLE |
| 1288 ** statement first. And then set ct.z to NULL so that it is not |
| 1289 ** printed again. */ |
| 1290 if( ct.z ){ |
| 1291 fprintf(out, "%s\n", ct.z); |
| 1292 strFree(&ct); |
| 1293 } |
| 1294 |
| 1295 /* Output the first part of the INSERT statement */ |
| 1296 fprintf(out, "%s", insert.z); |
| 1297 nRow++; |
| 1298 |
| 1299 if( sqlite3_column_type(pStmt, nCol)==SQLITE_INTEGER ){ |
| 1300 for(i=0; i<=nCol; i++){ |
| 1301 if( i>0 ) fprintf(out, ", "); |
| 1302 printQuoted(out, sqlite3_column_value(pStmt, i)); |
| 1303 } |
| 1304 }else{ |
| 1305 char *zOtaControl; |
| 1306 int nOtaControl = sqlite3_column_bytes(pStmt, nCol); |
| 1307 |
| 1308 zOtaControl = (char*)sqlite3_malloc(nOtaControl+1); |
| 1309 memcpy(zOtaControl, sqlite3_column_text(pStmt, nCol), nOtaControl+1); |
| 1310 |
| 1311 for(i=0; i<nCol; i++){ |
| 1312 int bDone = 0; |
| 1313 if( i>=nPK |
| 1314 && sqlite3_column_type(pStmt, i)==SQLITE_BLOB |
| 1315 && sqlite3_column_type(pStmt, nCol+1+i)==SQLITE_BLOB |
| 1316 ){ |
| 1317 const char *aSrc = sqlite3_column_blob(pStmt, nCol+1+i); |
| 1318 int nSrc = sqlite3_column_bytes(pStmt, nCol+1+i); |
| 1319 const char *aFinal = sqlite3_column_blob(pStmt, i); |
| 1320 int nFinal = sqlite3_column_bytes(pStmt, i); |
| 1321 char *aDelta; |
| 1322 int nDelta; |
| 1323 |
| 1324 aDelta = sqlite3_malloc(nFinal + 60); |
| 1325 nDelta = rbuDeltaCreate(aSrc, nSrc, aFinal, nFinal, aDelta); |
| 1326 if( nDelta<nFinal ){ |
| 1327 int j; |
| 1328 fprintf(out, "x'"); |
| 1329 for(j=0; j<nDelta; j++) fprintf(out, "%02x", (u8)aDelta[j]); |
| 1330 fprintf(out, "'"); |
| 1331 zOtaControl[i-bOtaRowid] = 'f'; |
| 1332 bDone = 1; |
| 1333 } |
| 1334 sqlite3_free(aDelta); |
| 1335 } |
| 1336 |
| 1337 if( bDone==0 ){ |
| 1338 printQuoted(out, sqlite3_column_value(pStmt, i)); |
| 1339 } |
| 1340 fprintf(out, ", "); |
| 1341 } |
| 1342 fprintf(out, "'%s'", zOtaControl); |
| 1343 sqlite3_free(zOtaControl); |
| 1344 } |
| 1345 |
| 1346 /* And the closing bracket of the insert statement */ |
| 1347 fprintf(out, ");\n"); |
| 1348 } |
| 1349 |
| 1350 sqlite3_finalize(pStmt); |
| 1351 if( nRow>0 ){ |
| 1352 Str cnt = {0, 0, 0}; |
| 1353 strPrintf(&cnt, "INSERT INTO rbu_count VALUES('data_%q', %d);", zTab, nRow); |
| 1354 fprintf(out, "%s\n", cnt.z); |
| 1355 strFree(&cnt); |
| 1356 } |
| 1357 |
| 1358 strFree(&ct); |
| 1359 strFree(&sql); |
| 1360 strFree(&insert); |
| 1361 } |
| 1362 |
| 1363 /* |
| 1364 ** Display a summary of differences between two versions of the same |
| 1365 ** table table. |
| 1366 ** |
| 1367 ** * Number of rows changed |
| 1368 ** * Number of rows added |
| 1369 ** * Number of rows deleted |
| 1370 ** * Number of identical rows |
| 1371 */ |
| 1372 static void summarize_one_table(const char *zTab, FILE *out){ |
| 1373 char *zId = safeId(zTab); /* Name of table (translated for us in SQL) */ |
| 1374 char **az = 0; /* Columns in main */ |
| 1375 char **az2 = 0; /* Columns in aux */ |
| 1376 int nPk; /* Primary key columns in main */ |
| 1377 int nPk2; /* Primary key columns in aux */ |
| 1378 int n = 0; /* Number of columns in main */ |
| 1379 int n2; /* Number of columns in aux */ |
| 1380 int i; /* Loop counter */ |
| 1381 const char *zSep; /* Separator string */ |
| 1382 Str sql; /* Comparison query */ |
| 1383 sqlite3_stmt *pStmt; /* Query statement to do the diff */ |
| 1384 sqlite3_int64 nUpdate; /* Number of updated rows */ |
| 1385 sqlite3_int64 nUnchanged; /* Number of unmodified rows */ |
| 1386 sqlite3_int64 nDelete; /* Number of deleted rows */ |
| 1387 sqlite3_int64 nInsert; /* Number of inserted rows */ |
| 1388 |
| 1389 strInit(&sql); |
| 1390 if( sqlite3_table_column_metadata(g.db,"aux",zTab,0,0,0,0,0,0) ){ |
| 1391 if( !sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){ |
| 1392 /* Table missing from second database. */ |
| 1393 fprintf(out, "%s: missing from second database\n", zTab); |
| 1394 } |
| 1395 goto end_summarize_one_table; |
| 1396 } |
| 1397 |
| 1398 if( sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){ |
| 1399 /* Table missing from source */ |
| 1400 fprintf(out, "%s: missing from first database\n", zTab); |
| 1401 goto end_summarize_one_table; |
| 1402 } |
| 1403 |
| 1404 az = columnNames("main", zTab, &nPk, 0); |
| 1405 az2 = columnNames("aux", zTab, &nPk2, 0); |
| 1406 if( az && az2 ){ |
| 1407 for(n=0; az[n]; n++){ |
| 1408 if( sqlite3_stricmp(az[n],az2[n])!=0 ) break; |
| 1409 } |
| 1410 } |
| 1411 if( az==0 |
| 1412 || az2==0 |
| 1413 || nPk!=nPk2 |
| 1414 || az[n] |
| 1415 ){ |
| 1416 /* Schema mismatch */ |
| 1417 fprintf(out, "%s: incompatible schema\n", zTab); |
| 1418 goto end_summarize_one_table; |
| 1419 } |
| 1420 |
| 1421 /* Build the comparison query */ |
| 1422 for(n2=n; az[n2]; n2++){} |
| 1423 strPrintf(&sql, "SELECT 1, count(*)"); |
| 1424 if( n2==nPk2 ){ |
| 1425 strPrintf(&sql, ", 0\n"); |
| 1426 }else{ |
| 1427 zSep = ", sum("; |
| 1428 for(i=nPk; az[i]; i++){ |
| 1429 strPrintf(&sql, "%sA.%s IS NOT B.%s", zSep, az[i], az[i]); |
| 1430 zSep = " OR "; |
| 1431 } |
| 1432 strPrintf(&sql, ")\n"); |
| 1433 } |
| 1434 strPrintf(&sql, " FROM main.%s A, aux.%s B\n", zId, zId); |
| 1435 zSep = " WHERE"; |
| 1436 for(i=0; i<nPk; i++){ |
| 1437 strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); |
| 1438 zSep = " AND"; |
| 1439 } |
| 1440 strPrintf(&sql, " UNION ALL\n"); |
| 1441 strPrintf(&sql, "SELECT 2, count(*), 0\n"); |
| 1442 strPrintf(&sql, " FROM main.%s A\n", zId); |
| 1443 strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B ", zId); |
| 1444 zSep = "WHERE"; |
| 1445 for(i=0; i<nPk; i++){ |
| 1446 strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); |
| 1447 zSep = " AND"; |
| 1448 } |
| 1449 strPrintf(&sql, ")\n"); |
| 1450 strPrintf(&sql, " UNION ALL\n"); |
| 1451 strPrintf(&sql, "SELECT 3, count(*), 0\n"); |
| 1452 strPrintf(&sql, " FROM aux.%s B\n", zId); |
| 1453 strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A ", zId); |
| 1454 zSep = "WHERE"; |
| 1455 for(i=0; i<nPk; i++){ |
| 1456 strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); |
| 1457 zSep = " AND"; |
| 1458 } |
| 1459 strPrintf(&sql, ")\n ORDER BY 1;\n"); |
| 1460 |
| 1461 if( (g.fDebug & DEBUG_DIFF_SQL)!=0 ){ |
| 1462 printf("SQL for %s:\n%s\n", zId, sql.z); |
| 1463 goto end_summarize_one_table; |
| 1464 } |
| 1465 |
| 1466 /* Run the query and output difference summary */ |
| 1467 pStmt = db_prepare("%s", sql.z); |
| 1468 nUpdate = 0; |
| 1469 nInsert = 0; |
| 1470 nDelete = 0; |
| 1471 nUnchanged = 0; |
| 1472 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 1473 switch( sqlite3_column_int(pStmt,0) ){ |
| 1474 case 1: |
| 1475 nUpdate = sqlite3_column_int64(pStmt,2); |
| 1476 nUnchanged = sqlite3_column_int64(pStmt,1) - nUpdate; |
| 1477 break; |
| 1478 case 2: |
| 1479 nDelete = sqlite3_column_int64(pStmt,1); |
| 1480 break; |
| 1481 case 3: |
| 1482 nInsert = sqlite3_column_int64(pStmt,1); |
| 1483 break; |
| 1484 } |
| 1485 } |
| 1486 sqlite3_finalize(pStmt); |
| 1487 fprintf(out, "%s: %lld changes, %lld inserts, %lld deletes, %lld unchanged\n", |
| 1488 zTab, nUpdate, nInsert, nDelete, nUnchanged); |
| 1489 |
| 1490 end_summarize_one_table: |
| 1491 strFree(&sql); |
| 1492 sqlite3_free(zId); |
| 1493 namelistFree(az); |
| 1494 namelistFree(az2); |
| 1495 return; |
| 1496 } |
| 1497 |
| 1498 /* |
| 1499 ** Write a 64-bit signed integer as a varint onto out |
| 1500 */ |
| 1501 static void putsVarint(FILE *out, sqlite3_uint64 v){ |
| 1502 int i, n; |
| 1503 unsigned char p[12]; |
| 1504 if( v & (((sqlite3_uint64)0xff000000)<<32) ){ |
| 1505 p[8] = (unsigned char)v; |
| 1506 v >>= 8; |
| 1507 for(i=7; i>=0; i--){ |
| 1508 p[i] = (unsigned char)((v & 0x7f) | 0x80); |
| 1509 v >>= 7; |
| 1510 } |
| 1511 fwrite(p, 8, 1, out); |
| 1512 }else{ |
| 1513 n = 9; |
| 1514 do{ |
| 1515 p[n--] = (unsigned char)((v & 0x7f) | 0x80); |
| 1516 v >>= 7; |
| 1517 }while( v!=0 ); |
| 1518 p[9] &= 0x7f; |
| 1519 fwrite(p+n+1, 9-n, 1, out); |
| 1520 } |
| 1521 } |
| 1522 |
| 1523 /* |
| 1524 ** Write an SQLite value onto out. |
| 1525 */ |
| 1526 static void putValue(FILE *out, sqlite3_value *pVal){ |
| 1527 int iDType = sqlite3_value_type(pVal); |
| 1528 sqlite3_int64 iX; |
| 1529 double rX; |
| 1530 sqlite3_uint64 uX; |
| 1531 int j; |
| 1532 |
| 1533 putc(iDType, out); |
| 1534 switch( iDType ){ |
| 1535 case SQLITE_INTEGER: |
| 1536 iX = sqlite3_value_int64(pVal); |
| 1537 memcpy(&uX, &iX, 8); |
| 1538 for(j=56; j>=0; j-=8) putc((uX>>j)&0xff, out); |
| 1539 break; |
| 1540 case SQLITE_FLOAT: |
| 1541 rX = sqlite3_value_double(pVal); |
| 1542 memcpy(&uX, &rX, 8); |
| 1543 for(j=56; j>=0; j-=8) putc((uX>>j)&0xff, out); |
| 1544 break; |
| 1545 case SQLITE_TEXT: |
| 1546 iX = sqlite3_value_bytes(pVal); |
| 1547 putsVarint(out, (sqlite3_uint64)iX); |
| 1548 fwrite(sqlite3_value_text(pVal),1,(size_t)iX,out); |
| 1549 break; |
| 1550 case SQLITE_BLOB: |
| 1551 iX = sqlite3_value_bytes(pVal); |
| 1552 putsVarint(out, (sqlite3_uint64)iX); |
| 1553 fwrite(sqlite3_value_blob(pVal),1,(size_t)iX,out); |
| 1554 break; |
| 1555 case SQLITE_NULL: |
| 1556 break; |
| 1557 } |
| 1558 } |
| 1559 |
| 1560 /* |
| 1561 ** Generate a CHANGESET for all differences from main.zTab to aux.zTab. |
| 1562 */ |
| 1563 static void changeset_one_table(const char *zTab, FILE *out){ |
| 1564 sqlite3_stmt *pStmt; /* SQL statment */ |
| 1565 char *zId = safeId(zTab); /* Escaped name of the table */ |
| 1566 char **azCol = 0; /* List of escaped column names */ |
| 1567 int nCol = 0; /* Number of columns */ |
| 1568 int *aiFlg = 0; /* 0 if column is not part of PK */ |
| 1569 int *aiPk = 0; /* Column numbers for each PK column */ |
| 1570 int nPk = 0; /* Number of PRIMARY KEY columns */ |
| 1571 Str sql; /* SQL for the diff query */ |
| 1572 int i, k; /* Loop counters */ |
| 1573 const char *zSep; /* List separator */ |
| 1574 |
| 1575 /* Check that the schemas of the two tables match. Exit early otherwise. */ |
| 1576 checkSchemasMatch(zTab); |
| 1577 |
| 1578 pStmt = db_prepare("PRAGMA main.table_info=%Q", zTab); |
| 1579 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 1580 nCol++; |
| 1581 azCol = sqlite3_realloc(azCol, sizeof(char*)*nCol); |
| 1582 if( azCol==0 ) runtimeError("out of memory"); |
| 1583 aiFlg = sqlite3_realloc(aiFlg, sizeof(int)*nCol); |
| 1584 if( aiFlg==0 ) runtimeError("out of memory"); |
| 1585 azCol[nCol-1] = safeId((const char*)sqlite3_column_text(pStmt,1)); |
| 1586 aiFlg[nCol-1] = i = sqlite3_column_int(pStmt,5); |
| 1587 if( i>0 ){ |
| 1588 if( i>nPk ){ |
| 1589 nPk = i; |
| 1590 aiPk = sqlite3_realloc(aiPk, sizeof(int)*nPk); |
| 1591 if( aiPk==0 ) runtimeError("out of memory"); |
| 1592 } |
| 1593 aiPk[i-1] = nCol-1; |
| 1594 } |
| 1595 } |
| 1596 sqlite3_finalize(pStmt); |
| 1597 if( nPk==0 ) goto end_changeset_one_table; |
| 1598 strInit(&sql); |
| 1599 if( nCol>nPk ){ |
| 1600 strPrintf(&sql, "SELECT %d", SQLITE_UPDATE); |
| 1601 for(i=0; i<nCol; i++){ |
| 1602 if( aiFlg[i] ){ |
| 1603 strPrintf(&sql, ",\n A.%s", azCol[i]); |
| 1604 }else{ |
| 1605 strPrintf(&sql, ",\n A.%s IS NOT B.%s, A.%s, B.%s", |
| 1606 azCol[i], azCol[i], azCol[i], azCol[i]); |
| 1607 } |
| 1608 } |
| 1609 strPrintf(&sql,"\n FROM main.%s A, aux.%s B\n", zId, zId); |
| 1610 zSep = " WHERE"; |
| 1611 for(i=0; i<nPk; i++){ |
| 1612 strPrintf(&sql, "%s A.%s=B.%s", zSep, azCol[aiPk[i]], azCol[aiPk[i]]); |
| 1613 zSep = " AND"; |
| 1614 } |
| 1615 zSep = "\n AND ("; |
| 1616 for(i=0; i<nCol; i++){ |
| 1617 if( aiFlg[i] ) continue; |
| 1618 strPrintf(&sql, "%sA.%s IS NOT B.%s", zSep, azCol[i], azCol[i]); |
| 1619 zSep = " OR\n "; |
| 1620 } |
| 1621 strPrintf(&sql,")\n UNION ALL\n"); |
| 1622 } |
| 1623 strPrintf(&sql, "SELECT %d", SQLITE_DELETE); |
| 1624 for(i=0; i<nCol; i++){ |
| 1625 if( aiFlg[i] ){ |
| 1626 strPrintf(&sql, ",\n A.%s", azCol[i]); |
| 1627 }else{ |
| 1628 strPrintf(&sql, ",\n 1, A.%s, NULL", azCol[i]); |
| 1629 } |
| 1630 } |
| 1631 strPrintf(&sql, "\n FROM main.%s A\n", zId); |
| 1632 strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B\n", zId); |
| 1633 zSep = " WHERE"; |
| 1634 for(i=0; i<nPk; i++){ |
| 1635 strPrintf(&sql, "%s A.%s=B.%s", zSep, azCol[aiPk[i]], azCol[aiPk[i]]); |
| 1636 zSep = " AND"; |
| 1637 } |
| 1638 strPrintf(&sql, ")\n UNION ALL\n"); |
| 1639 strPrintf(&sql, "SELECT %d", SQLITE_INSERT); |
| 1640 for(i=0; i<nCol; i++){ |
| 1641 if( aiFlg[i] ){ |
| 1642 strPrintf(&sql, ",\n B.%s", azCol[i]); |
| 1643 }else{ |
| 1644 strPrintf(&sql, ",\n 1, NULL, B.%s", azCol[i]); |
| 1645 } |
| 1646 } |
| 1647 strPrintf(&sql, "\n FROM aux.%s B\n", zId); |
| 1648 strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A\n", zId); |
| 1649 zSep = " WHERE"; |
| 1650 for(i=0; i<nPk; i++){ |
| 1651 strPrintf(&sql, "%s A.%s=B.%s", zSep, azCol[aiPk[i]], azCol[aiPk[i]]); |
| 1652 zSep = " AND"; |
| 1653 } |
| 1654 strPrintf(&sql, ")\n"); |
| 1655 strPrintf(&sql, " ORDER BY"); |
| 1656 zSep = " "; |
| 1657 for(i=0; i<nPk; i++){ |
| 1658 strPrintf(&sql, "%s %d", zSep, aiPk[i]+2); |
| 1659 zSep = ","; |
| 1660 } |
| 1661 strPrintf(&sql, ";\n"); |
| 1662 |
| 1663 if( g.fDebug & DEBUG_DIFF_SQL ){ |
| 1664 printf("SQL for %s:\n%s\n", zId, sql.z); |
| 1665 goto end_changeset_one_table; |
| 1666 } |
| 1667 |
| 1668 putc('T', out); |
| 1669 putsVarint(out, (sqlite3_uint64)nCol); |
| 1670 for(i=0; i<nCol; i++) putc(aiFlg[i]!=0, out); |
| 1671 fwrite(zTab, 1, strlen(zTab), out); |
| 1672 putc(0, out); |
| 1673 |
| 1674 pStmt = db_prepare("%s", sql.z); |
| 1675 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 1676 int iType = sqlite3_column_int(pStmt,0); |
| 1677 putc(iType, out); |
| 1678 putc(0, out); |
| 1679 switch( sqlite3_column_int(pStmt,0) ){ |
| 1680 case SQLITE_UPDATE: { |
| 1681 for(k=1, i=0; i<nCol; i++){ |
| 1682 if( aiFlg[i] ){ |
| 1683 putValue(out, sqlite3_column_value(pStmt,k)); |
| 1684 k++; |
| 1685 }else if( sqlite3_column_int(pStmt,k) ){ |
| 1686 putValue(out, sqlite3_column_value(pStmt,k+1)); |
| 1687 k += 3; |
| 1688 }else{ |
| 1689 putc(0, out); |
| 1690 k += 3; |
| 1691 } |
| 1692 } |
| 1693 for(k=1, i=0; i<nCol; i++){ |
| 1694 if( aiFlg[i] ){ |
| 1695 putc(0, out); |
| 1696 k++; |
| 1697 }else if( sqlite3_column_int(pStmt,k) ){ |
| 1698 putValue(out, sqlite3_column_value(pStmt,k+2)); |
| 1699 k += 3; |
| 1700 }else{ |
| 1701 putc(0, out); |
| 1702 k += 3; |
| 1703 } |
| 1704 } |
| 1705 break; |
| 1706 } |
| 1707 case SQLITE_INSERT: { |
| 1708 for(k=1, i=0; i<nCol; i++){ |
| 1709 if( aiFlg[i] ){ |
| 1710 putValue(out, sqlite3_column_value(pStmt,k)); |
| 1711 k++; |
| 1712 }else{ |
| 1713 putValue(out, sqlite3_column_value(pStmt,k+2)); |
| 1714 k += 3; |
| 1715 } |
| 1716 } |
| 1717 break; |
| 1718 } |
| 1719 case SQLITE_DELETE: { |
| 1720 for(k=1, i=0; i<nCol; i++){ |
| 1721 if( aiFlg[i] ){ |
| 1722 putValue(out, sqlite3_column_value(pStmt,k)); |
| 1723 k++; |
| 1724 }else{ |
| 1725 putValue(out, sqlite3_column_value(pStmt,k+1)); |
| 1726 k += 3; |
| 1727 } |
| 1728 } |
| 1729 break; |
| 1730 } |
| 1731 } |
| 1732 } |
| 1733 sqlite3_finalize(pStmt); |
| 1734 |
| 1735 end_changeset_one_table: |
| 1736 while( nCol>0 ) sqlite3_free(azCol[--nCol]); |
| 1737 sqlite3_free(azCol); |
| 1738 sqlite3_free(aiPk); |
| 1739 sqlite3_free(zId); |
| 1740 } |
| 1741 |
| 1742 /* |
| 1743 ** Extract the next SQL keyword or quoted string from buffer zIn and copy it |
| 1744 ** (or a prefix of it if it will not fit) into buffer zBuf, size nBuf bytes. |
| 1745 ** Return a pointer to the character within zIn immediately following |
| 1746 ** the token or quoted string just extracted. |
| 1747 */ |
| 1748 const char *gobble_token(const char *zIn, char *zBuf, int nBuf){ |
| 1749 const char *p = zIn; |
| 1750 char *pOut = zBuf; |
| 1751 char *pEnd = &pOut[nBuf-1]; |
| 1752 char q = 0; /* quote character, if any */ |
| 1753 |
| 1754 if( p==0 ) return 0; |
| 1755 while( *p==' ' ) p++; |
| 1756 switch( *p ){ |
| 1757 case '"': q = '"'; break; |
| 1758 case '\'': q = '\''; break; |
| 1759 case '`': q = '`'; break; |
| 1760 case '[': q = ']'; break; |
| 1761 } |
| 1762 |
| 1763 if( q ){ |
| 1764 p++; |
| 1765 while( *p && pOut<pEnd ){ |
| 1766 if( *p==q ){ |
| 1767 p++; |
| 1768 if( *p!=q ) break; |
| 1769 } |
| 1770 if( pOut<pEnd ) *pOut++ = *p; |
| 1771 p++; |
| 1772 } |
| 1773 }else{ |
| 1774 while( *p && *p!=' ' && *p!='(' ){ |
| 1775 if( pOut<pEnd ) *pOut++ = *p; |
| 1776 p++; |
| 1777 } |
| 1778 } |
| 1779 |
| 1780 *pOut = '\0'; |
| 1781 return p; |
| 1782 } |
| 1783 |
| 1784 /* |
| 1785 ** This function is the implementation of SQL scalar function "module_name": |
| 1786 ** |
| 1787 ** module_name(SQL) |
| 1788 ** |
| 1789 ** The only argument should be an SQL statement of the type that may appear |
| 1790 ** in the sqlite_master table. If the statement is a "CREATE VIRTUAL TABLE" |
| 1791 ** statement, then the value returned is the name of the module that it |
| 1792 ** uses. Otherwise, if the statement is not a CVT, NULL is returned. |
| 1793 */ |
| 1794 static void module_name_func( |
| 1795 sqlite3_context *pCtx, |
| 1796 int nVal, sqlite3_value **apVal |
| 1797 ){ |
| 1798 const char *zSql; |
| 1799 char zToken[32]; |
| 1800 |
| 1801 assert( nVal==1 ); |
| 1802 zSql = (const char*)sqlite3_value_text(apVal[0]); |
| 1803 |
| 1804 zSql = gobble_token(zSql, zToken, sizeof(zToken)); |
| 1805 if( zSql==0 || sqlite3_stricmp(zToken, "create") ) return; |
| 1806 zSql = gobble_token(zSql, zToken, sizeof(zToken)); |
| 1807 if( zSql==0 || sqlite3_stricmp(zToken, "virtual") ) return; |
| 1808 zSql = gobble_token(zSql, zToken, sizeof(zToken)); |
| 1809 if( zSql==0 || sqlite3_stricmp(zToken, "table") ) return; |
| 1810 zSql = gobble_token(zSql, zToken, sizeof(zToken)); |
| 1811 if( zSql==0 ) return; |
| 1812 zSql = gobble_token(zSql, zToken, sizeof(zToken)); |
| 1813 if( zSql==0 || sqlite3_stricmp(zToken, "using") ) return; |
| 1814 zSql = gobble_token(zSql, zToken, sizeof(zToken)); |
| 1815 |
| 1816 sqlite3_result_text(pCtx, zToken, -1, SQLITE_TRANSIENT); |
| 1817 } |
| 1818 |
| 1819 /* |
| 1820 ** Return the text of an SQL statement that itself returns the list of |
| 1821 ** tables to process within the database. |
| 1822 */ |
| 1823 const char *all_tables_sql(){ |
| 1824 if( g.bHandleVtab ){ |
| 1825 int rc; |
| 1826 |
| 1827 rc = sqlite3_exec(g.db, |
| 1828 "CREATE TEMP TABLE tblmap(module COLLATE nocase, postfix);" |
| 1829 "INSERT INTO temp.tblmap VALUES" |
| 1830 "('fts3', '_content'), ('fts3', '_segments'), ('fts3', '_segdir')," |
| 1831 |
| 1832 "('fts4', '_content'), ('fts4', '_segments'), ('fts4', '_segdir')," |
| 1833 "('fts4', '_docsize'), ('fts4', '_stat')," |
| 1834 |
| 1835 "('fts5', '_data'), ('fts5', '_idx'), ('fts5', '_content')," |
| 1836 "('fts5', '_docsize'), ('fts5', '_config')," |
| 1837 |
| 1838 "('rtree', '_node'), ('rtree', '_rowid'), ('rtree', '_parent');" |
| 1839 , 0, 0, 0 |
| 1840 ); |
| 1841 assert( rc==SQLITE_OK ); |
| 1842 |
| 1843 rc = sqlite3_create_function( |
| 1844 g.db, "module_name", 1, SQLITE_UTF8, 0, module_name_func, 0, 0 |
| 1845 ); |
| 1846 assert( rc==SQLITE_OK ); |
| 1847 |
| 1848 return |
| 1849 "SELECT name FROM main.sqlite_master\n" |
| 1850 " WHERE type='table' AND (\n" |
| 1851 " module_name(sql) IS NULL OR \n" |
| 1852 " module_name(sql) IN (SELECT module FROM temp.tblmap)\n" |
| 1853 " ) AND name NOT IN (\n" |
| 1854 " SELECT a.name || b.postfix \n" |
| 1855 "FROM main.sqlite_master AS a, temp.tblmap AS b \n" |
| 1856 "WHERE module_name(a.sql) = b.module\n" |
| 1857 " )\n" |
| 1858 "UNION \n" |
| 1859 "SELECT name FROM aux.sqlite_master\n" |
| 1860 " WHERE type='table' AND (\n" |
| 1861 " module_name(sql) IS NULL OR \n" |
| 1862 " module_name(sql) IN (SELECT module FROM temp.tblmap)\n" |
| 1863 " ) AND name NOT IN (\n" |
| 1864 " SELECT a.name || b.postfix \n" |
| 1865 "FROM aux.sqlite_master AS a, temp.tblmap AS b \n" |
| 1866 "WHERE module_name(a.sql) = b.module\n" |
| 1867 " )\n" |
| 1868 " ORDER BY name"; |
| 1869 }else{ |
| 1870 return |
| 1871 "SELECT name FROM main.sqlite_master\n" |
| 1872 " WHERE type='table' AND sql NOT LIKE 'CREATE VIRTUAL%%'\n" |
| 1873 " UNION\n" |
| 1874 "SELECT name FROM aux.sqlite_master\n" |
| 1875 " WHERE type='table' AND sql NOT LIKE 'CREATE VIRTUAL%%'\n" |
| 1876 " ORDER BY name"; |
| 1877 } |
| 1878 } |
| 1879 |
| 1880 /* |
| 1881 ** Print sketchy documentation for this utility program |
| 1882 */ |
| 1883 static void showHelp(void){ |
| 1884 printf("Usage: %s [options] DB1 DB2\n", g.zArgv0); |
| 1885 printf( |
| 1886 "Output SQL text that would transform DB1 into DB2.\n" |
| 1887 "Options:\n" |
| 1888 " --changeset FILE Write a CHANGESET into FILE\n" |
| 1889 " -L|--lib LIBRARY Load an SQLite extension library\n" |
| 1890 " --primarykey Use schema-defined PRIMARY KEYs\n" |
| 1891 " --rbu Output SQL to create/populate RBU table(s)\n" |
| 1892 " --schema Show only differences in the schema\n" |
| 1893 " --summary Show only a summary of the differences\n" |
| 1894 " --table TAB Show only differences in table TAB\n" |
| 1895 " --transaction Show SQL output inside a transaction\n" |
| 1896 " --vtab Handle fts3, fts4, fts5 and rtree tables\n" |
| 1897 ); |
| 1898 } |
| 1899 |
| 1900 int main(int argc, char **argv){ |
| 1901 const char *zDb1 = 0; |
| 1902 const char *zDb2 = 0; |
| 1903 int i; |
| 1904 int rc; |
| 1905 char *zErrMsg = 0; |
| 1906 char *zSql; |
| 1907 sqlite3_stmt *pStmt; |
| 1908 char *zTab = 0; |
| 1909 FILE *out = stdout; |
| 1910 void (*xDiff)(const char*,FILE*) = diff_one_table; |
| 1911 #ifndef SQLITE_OMIT_LOAD_EXTENSION |
| 1912 int nExt = 0; |
| 1913 char **azExt = 0; |
| 1914 #endif |
| 1915 int useTransaction = 0; |
| 1916 int neverUseTransaction = 0; |
| 1917 |
| 1918 g.zArgv0 = argv[0]; |
| 1919 sqlite3_config(SQLITE_CONFIG_SINGLETHREAD); |
| 1920 for(i=1; i<argc; i++){ |
| 1921 const char *z = argv[i]; |
| 1922 if( z[0]=='-' ){ |
| 1923 z++; |
| 1924 if( z[0]=='-' ) z++; |
| 1925 if( strcmp(z,"changeset")==0 ){ |
| 1926 if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]); |
| 1927 out = fopen(argv[++i], "wb"); |
| 1928 if( out==0 ) cmdlineError("cannot open: %s", argv[i]); |
| 1929 xDiff = changeset_one_table; |
| 1930 neverUseTransaction = 1; |
| 1931 }else |
| 1932 if( strcmp(z,"debug")==0 ){ |
| 1933 if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]); |
| 1934 g.fDebug = strtol(argv[++i], 0, 0); |
| 1935 }else |
| 1936 if( strcmp(z,"help")==0 ){ |
| 1937 showHelp(); |
| 1938 return 0; |
| 1939 }else |
| 1940 #ifndef SQLITE_OMIT_LOAD_EXTENSION |
| 1941 if( strcmp(z,"lib")==0 || strcmp(z,"L")==0 ){ |
| 1942 if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]); |
| 1943 azExt = realloc(azExt, sizeof(azExt[0])*(nExt+1)); |
| 1944 if( azExt==0 ) cmdlineError("out of memory"); |
| 1945 azExt[nExt++] = argv[++i]; |
| 1946 }else |
| 1947 #endif |
| 1948 if( strcmp(z,"primarykey")==0 ){ |
| 1949 g.bSchemaPK = 1; |
| 1950 }else |
| 1951 if( strcmp(z,"rbu")==0 ){ |
| 1952 xDiff = rbudiff_one_table; |
| 1953 }else |
| 1954 if( strcmp(z,"schema")==0 ){ |
| 1955 g.bSchemaOnly = 1; |
| 1956 }else |
| 1957 if( strcmp(z,"summary")==0 ){ |
| 1958 xDiff = summarize_one_table; |
| 1959 }else |
| 1960 if( strcmp(z,"table")==0 ){ |
| 1961 if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]); |
| 1962 zTab = argv[++i]; |
| 1963 }else |
| 1964 if( strcmp(z,"transaction")==0 ){ |
| 1965 useTransaction = 1; |
| 1966 }else |
| 1967 if( strcmp(z,"vtab")==0 ){ |
| 1968 g.bHandleVtab = 1; |
| 1969 }else |
| 1970 { |
| 1971 cmdlineError("unknown option: %s", argv[i]); |
| 1972 } |
| 1973 }else if( zDb1==0 ){ |
| 1974 zDb1 = argv[i]; |
| 1975 }else if( zDb2==0 ){ |
| 1976 zDb2 = argv[i]; |
| 1977 }else{ |
| 1978 cmdlineError("unknown argument: %s", argv[i]); |
| 1979 } |
| 1980 } |
| 1981 if( zDb2==0 ){ |
| 1982 cmdlineError("two database arguments required"); |
| 1983 } |
| 1984 rc = sqlite3_open(zDb1, &g.db); |
| 1985 if( rc ){ |
| 1986 cmdlineError("cannot open database file \"%s\"", zDb1); |
| 1987 } |
| 1988 rc = sqlite3_exec(g.db, "SELECT * FROM sqlite_master", 0, 0, &zErrMsg); |
| 1989 if( rc || zErrMsg ){ |
| 1990 cmdlineError("\"%s\" does not appear to be a valid SQLite database", zDb1); |
| 1991 } |
| 1992 #ifndef SQLITE_OMIT_LOAD_EXTENSION |
| 1993 sqlite3_enable_load_extension(g.db, 1); |
| 1994 for(i=0; i<nExt; i++){ |
| 1995 rc = sqlite3_load_extension(g.db, azExt[i], 0, &zErrMsg); |
| 1996 if( rc || zErrMsg ){ |
| 1997 cmdlineError("error loading %s: %s", azExt[i], zErrMsg); |
| 1998 } |
| 1999 } |
| 2000 free(azExt); |
| 2001 #endif |
| 2002 zSql = sqlite3_mprintf("ATTACH %Q as aux;", zDb2); |
| 2003 rc = sqlite3_exec(g.db, zSql, 0, 0, &zErrMsg); |
| 2004 if( rc || zErrMsg ){ |
| 2005 cmdlineError("cannot attach database \"%s\"", zDb2); |
| 2006 } |
| 2007 rc = sqlite3_exec(g.db, "SELECT * FROM aux.sqlite_master", 0, 0, &zErrMsg); |
| 2008 if( rc || zErrMsg ){ |
| 2009 cmdlineError("\"%s\" does not appear to be a valid SQLite database", zDb2); |
| 2010 } |
| 2011 |
| 2012 if( neverUseTransaction ) useTransaction = 0; |
| 2013 if( useTransaction ) fprintf(out, "BEGIN TRANSACTION;\n"); |
| 2014 if( xDiff==rbudiff_one_table ){ |
| 2015 fprintf(out, "CREATE TABLE IF NOT EXISTS rbu_count" |
| 2016 "(tbl TEXT PRIMARY KEY COLLATE NOCASE, cnt INTEGER) " |
| 2017 "WITHOUT ROWID;\n" |
| 2018 ); |
| 2019 } |
| 2020 if( zTab ){ |
| 2021 xDiff(zTab, out); |
| 2022 }else{ |
| 2023 /* Handle tables one by one */ |
| 2024 pStmt = db_prepare("%s", all_tables_sql() ); |
| 2025 while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 2026 xDiff((const char*)sqlite3_column_text(pStmt,0), out); |
| 2027 } |
| 2028 sqlite3_finalize(pStmt); |
| 2029 } |
| 2030 if( useTransaction ) printf("COMMIT;\n"); |
| 2031 |
| 2032 /* TBD: Handle trigger differences */ |
| 2033 /* TBD: Handle view differences */ |
| 2034 sqlite3_close(g.db); |
| 2035 return 0; |
| 2036 } |
OLD | NEW |