OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** This file contains all sources (including headers) to the LEMON |
| 3 ** LALR(1) parser generator. The sources have been combined into a |
| 4 ** single file to make it easy to include LEMON in the source tree |
| 5 ** and Makefile of another program. |
| 6 ** |
| 7 ** The author of this program disclaims copyright. |
| 8 */ |
| 9 #include <stdio.h> |
| 10 #include <stdarg.h> |
| 11 #include <string.h> |
| 12 #include <ctype.h> |
| 13 #include <stdlib.h> |
| 14 #include <assert.h> |
| 15 |
| 16 #define ISSPACE(X) isspace((unsigned char)(X)) |
| 17 #define ISDIGIT(X) isdigit((unsigned char)(X)) |
| 18 #define ISALNUM(X) isalnum((unsigned char)(X)) |
| 19 #define ISALPHA(X) isalpha((unsigned char)(X)) |
| 20 #define ISUPPER(X) isupper((unsigned char)(X)) |
| 21 #define ISLOWER(X) islower((unsigned char)(X)) |
| 22 |
| 23 |
| 24 #ifndef __WIN32__ |
| 25 # if defined(_WIN32) || defined(WIN32) |
| 26 # define __WIN32__ |
| 27 # endif |
| 28 #endif |
| 29 |
| 30 #ifdef __WIN32__ |
| 31 #ifdef __cplusplus |
| 32 extern "C" { |
| 33 #endif |
| 34 extern int access(const char *path, int mode); |
| 35 #ifdef __cplusplus |
| 36 } |
| 37 #endif |
| 38 #else |
| 39 #include <unistd.h> |
| 40 #endif |
| 41 |
| 42 /* #define PRIVATE static */ |
| 43 #define PRIVATE |
| 44 |
| 45 #ifdef TEST |
| 46 #define MAXRHS 5 /* Set low to exercise exception code */ |
| 47 #else |
| 48 #define MAXRHS 1000 |
| 49 #endif |
| 50 |
| 51 static int showPrecedenceConflict = 0; |
| 52 static char *msort(char*,char**,int(*)(const char*,const char*)); |
| 53 |
| 54 /* |
| 55 ** Compilers are getting increasingly pedantic about type conversions |
| 56 ** as C evolves ever closer to Ada.... To work around the latest problems |
| 57 ** we have to define the following variant of strlen(). |
| 58 */ |
| 59 #define lemonStrlen(X) ((int)strlen(X)) |
| 60 |
| 61 /* |
| 62 ** Compilers are starting to complain about the use of sprintf() and strcpy(), |
| 63 ** saying they are unsafe. So we define our own versions of those routines too. |
| 64 ** |
| 65 ** There are three routines here: lemon_sprintf(), lemon_vsprintf(), and |
| 66 ** lemon_addtext(). The first two are replacements for sprintf() and vsprintf(). |
| 67 ** The third is a helper routine for vsnprintf() that adds texts to the end of a |
| 68 ** buffer, making sure the buffer is always zero-terminated. |
| 69 ** |
| 70 ** The string formatter is a minimal subset of stdlib sprintf() supporting only |
| 71 ** a few simply conversions: |
| 72 ** |
| 73 ** %d |
| 74 ** %s |
| 75 ** %.*s |
| 76 ** |
| 77 */ |
| 78 static void lemon_addtext( |
| 79 char *zBuf, /* The buffer to which text is added */ |
| 80 int *pnUsed, /* Slots of the buffer used so far */ |
| 81 const char *zIn, /* Text to add */ |
| 82 int nIn, /* Bytes of text to add. -1 to use strlen() */ |
| 83 int iWidth /* Field width. Negative to left justify */ |
| 84 ){ |
| 85 if( nIn<0 ) for(nIn=0; zIn[nIn]; nIn++){} |
| 86 while( iWidth>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth--; } |
| 87 if( nIn==0 ) return; |
| 88 memcpy(&zBuf[*pnUsed], zIn, nIn); |
| 89 *pnUsed += nIn; |
| 90 while( (-iWidth)>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth++; } |
| 91 zBuf[*pnUsed] = 0; |
| 92 } |
| 93 static int lemon_vsprintf(char *str, const char *zFormat, va_list ap){ |
| 94 int i, j, k, c; |
| 95 int nUsed = 0; |
| 96 const char *z; |
| 97 char zTemp[50]; |
| 98 str[0] = 0; |
| 99 for(i=j=0; (c = zFormat[i])!=0; i++){ |
| 100 if( c=='%' ){ |
| 101 int iWidth = 0; |
| 102 lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0); |
| 103 c = zFormat[++i]; |
| 104 if( ISDIGIT(c) || (c=='-' && ISDIGIT(zFormat[i+1])) ){ |
| 105 if( c=='-' ) i++; |
| 106 while( ISDIGIT(zFormat[i]) ) iWidth = iWidth*10 + zFormat[i++] - '0'; |
| 107 if( c=='-' ) iWidth = -iWidth; |
| 108 c = zFormat[i]; |
| 109 } |
| 110 if( c=='d' ){ |
| 111 int v = va_arg(ap, int); |
| 112 if( v<0 ){ |
| 113 lemon_addtext(str, &nUsed, "-", 1, iWidth); |
| 114 v = -v; |
| 115 }else if( v==0 ){ |
| 116 lemon_addtext(str, &nUsed, "0", 1, iWidth); |
| 117 } |
| 118 k = 0; |
| 119 while( v>0 ){ |
| 120 k++; |
| 121 zTemp[sizeof(zTemp)-k] = (v%10) + '0'; |
| 122 v /= 10; |
| 123 } |
| 124 lemon_addtext(str, &nUsed, &zTemp[sizeof(zTemp)-k], k, iWidth); |
| 125 }else if( c=='s' ){ |
| 126 z = va_arg(ap, const char*); |
| 127 lemon_addtext(str, &nUsed, z, -1, iWidth); |
| 128 }else if( c=='.' && memcmp(&zFormat[i], ".*s", 3)==0 ){ |
| 129 i += 2; |
| 130 k = va_arg(ap, int); |
| 131 z = va_arg(ap, const char*); |
| 132 lemon_addtext(str, &nUsed, z, k, iWidth); |
| 133 }else if( c=='%' ){ |
| 134 lemon_addtext(str, &nUsed, "%", 1, 0); |
| 135 }else{ |
| 136 fprintf(stderr, "illegal format\n"); |
| 137 exit(1); |
| 138 } |
| 139 j = i+1; |
| 140 } |
| 141 } |
| 142 lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0); |
| 143 return nUsed; |
| 144 } |
| 145 static int lemon_sprintf(char *str, const char *format, ...){ |
| 146 va_list ap; |
| 147 int rc; |
| 148 va_start(ap, format); |
| 149 rc = lemon_vsprintf(str, format, ap); |
| 150 va_end(ap); |
| 151 return rc; |
| 152 } |
| 153 static void lemon_strcpy(char *dest, const char *src){ |
| 154 while( (*(dest++) = *(src++))!=0 ){} |
| 155 } |
| 156 static void lemon_strcat(char *dest, const char *src){ |
| 157 while( *dest ) dest++; |
| 158 lemon_strcpy(dest, src); |
| 159 } |
| 160 |
| 161 |
| 162 /* a few forward declarations... */ |
| 163 struct rule; |
| 164 struct lemon; |
| 165 struct action; |
| 166 |
| 167 static struct action *Action_new(void); |
| 168 static struct action *Action_sort(struct action *); |
| 169 |
| 170 /********** From the file "build.h" ************************************/ |
| 171 void FindRulePrecedences(); |
| 172 void FindFirstSets(); |
| 173 void FindStates(); |
| 174 void FindLinks(); |
| 175 void FindFollowSets(); |
| 176 void FindActions(); |
| 177 |
| 178 /********* From the file "configlist.h" *********************************/ |
| 179 void Configlist_init(void); |
| 180 struct config *Configlist_add(struct rule *, int); |
| 181 struct config *Configlist_addbasis(struct rule *, int); |
| 182 void Configlist_closure(struct lemon *); |
| 183 void Configlist_sort(void); |
| 184 void Configlist_sortbasis(void); |
| 185 struct config *Configlist_return(void); |
| 186 struct config *Configlist_basis(void); |
| 187 void Configlist_eat(struct config *); |
| 188 void Configlist_reset(void); |
| 189 |
| 190 /********* From the file "error.h" ***************************************/ |
| 191 void ErrorMsg(const char *, int,const char *, ...); |
| 192 |
| 193 /****** From the file "option.h" ******************************************/ |
| 194 enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR, |
| 195 OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR}; |
| 196 struct s_options { |
| 197 enum option_type type; |
| 198 const char *label; |
| 199 char *arg; |
| 200 const char *message; |
| 201 }; |
| 202 int OptInit(char**,struct s_options*,FILE*); |
| 203 int OptNArgs(void); |
| 204 char *OptArg(int); |
| 205 void OptErr(int); |
| 206 void OptPrint(void); |
| 207 |
| 208 /******** From the file "parse.h" *****************************************/ |
| 209 void Parse(struct lemon *lemp); |
| 210 |
| 211 /********* From the file "plink.h" ***************************************/ |
| 212 struct plink *Plink_new(void); |
| 213 void Plink_add(struct plink **, struct config *); |
| 214 void Plink_copy(struct plink **, struct plink *); |
| 215 void Plink_delete(struct plink *); |
| 216 |
| 217 /********** From the file "report.h" *************************************/ |
| 218 void Reprint(struct lemon *); |
| 219 void ReportOutput(struct lemon *); |
| 220 void ReportTable(struct lemon *, int); |
| 221 void ReportHeader(struct lemon *); |
| 222 void CompressTables(struct lemon *); |
| 223 void ResortStates(struct lemon *); |
| 224 |
| 225 /********** From the file "set.h" ****************************************/ |
| 226 void SetSize(int); /* All sets will be of size N */ |
| 227 char *SetNew(void); /* A new set for element 0..N */ |
| 228 void SetFree(char*); /* Deallocate a set */ |
| 229 int SetAdd(char*,int); /* Add element to a set */ |
| 230 int SetUnion(char *,char *); /* A <- A U B, thru element N */ |
| 231 #define SetFind(X,Y) (X[Y]) /* True if Y is in set X */ |
| 232 |
| 233 /********** From the file "struct.h" *************************************/ |
| 234 /* |
| 235 ** Principal data structures for the LEMON parser generator. |
| 236 */ |
| 237 |
| 238 typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean; |
| 239 |
| 240 /* Symbols (terminals and nonterminals) of the grammar are stored |
| 241 ** in the following: */ |
| 242 enum symbol_type { |
| 243 TERMINAL, |
| 244 NONTERMINAL, |
| 245 MULTITERMINAL |
| 246 }; |
| 247 enum e_assoc { |
| 248 LEFT, |
| 249 RIGHT, |
| 250 NONE, |
| 251 UNK |
| 252 }; |
| 253 struct symbol { |
| 254 const char *name; /* Name of the symbol */ |
| 255 int index; /* Index number for this symbol */ |
| 256 enum symbol_type type; /* Symbols are all either TERMINALS or NTs */ |
| 257 struct rule *rule; /* Linked list of rules of this (if an NT) */ |
| 258 struct symbol *fallback; /* fallback token in case this token doesn't parse */ |
| 259 int prec; /* Precedence if defined (-1 otherwise) */ |
| 260 enum e_assoc assoc; /* Associativity if precedence is defined */ |
| 261 char *firstset; /* First-set for all rules of this symbol */ |
| 262 Boolean lambda; /* True if NT and can generate an empty string */ |
| 263 int useCnt; /* Number of times used */ |
| 264 char *destructor; /* Code which executes whenever this symbol is |
| 265 ** popped from the stack during error processing */ |
| 266 int destLineno; /* Line number for start of destructor. Set to |
| 267 ** -1 for duplicate destructors. */ |
| 268 char *datatype; /* The data type of information held by this |
| 269 ** object. Only used if type==NONTERMINAL */ |
| 270 int dtnum; /* The data type number. In the parser, the value |
| 271 ** stack is a union. The .yy%d element of this |
| 272 ** union is the correct data type for this object */ |
| 273 /* The following fields are used by MULTITERMINALs only */ |
| 274 int nsubsym; /* Number of constituent symbols in the MULTI */ |
| 275 struct symbol **subsym; /* Array of constituent symbols */ |
| 276 }; |
| 277 |
| 278 /* Each production rule in the grammar is stored in the following |
| 279 ** structure. */ |
| 280 struct rule { |
| 281 struct symbol *lhs; /* Left-hand side of the rule */ |
| 282 const char *lhsalias; /* Alias for the LHS (NULL if none) */ |
| 283 int lhsStart; /* True if left-hand side is the start symbol */ |
| 284 int ruleline; /* Line number for the rule */ |
| 285 int nrhs; /* Number of RHS symbols */ |
| 286 struct symbol **rhs; /* The RHS symbols */ |
| 287 const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */ |
| 288 int line; /* Line number at which code begins */ |
| 289 const char *code; /* The code executed when this rule is reduced */ |
| 290 const char *codePrefix; /* Setup code before code[] above */ |
| 291 const char *codeSuffix; /* Breakdown code after code[] above */ |
| 292 int noCode; /* True if this rule has no associated C code */ |
| 293 int codeEmitted; /* True if the code has been emitted already */ |
| 294 struct symbol *precsym; /* Precedence symbol for this rule */ |
| 295 int index; /* An index number for this rule */ |
| 296 int iRule; /* Rule number as used in the generated tables */ |
| 297 Boolean canReduce; /* True if this rule is ever reduced */ |
| 298 Boolean doesReduce; /* Reduce actions occur after optimization */ |
| 299 struct rule *nextlhs; /* Next rule with the same LHS */ |
| 300 struct rule *next; /* Next rule in the global list */ |
| 301 }; |
| 302 |
| 303 /* A configuration is a production rule of the grammar together with |
| 304 ** a mark (dot) showing how much of that rule has been processed so far. |
| 305 ** Configurations also contain a follow-set which is a list of terminal |
| 306 ** symbols which are allowed to immediately follow the end of the rule. |
| 307 ** Every configuration is recorded as an instance of the following: */ |
| 308 enum cfgstatus { |
| 309 COMPLETE, |
| 310 INCOMPLETE |
| 311 }; |
| 312 struct config { |
| 313 struct rule *rp; /* The rule upon which the configuration is based */ |
| 314 int dot; /* The parse point */ |
| 315 char *fws; /* Follow-set for this configuration only */ |
| 316 struct plink *fplp; /* Follow-set forward propagation links */ |
| 317 struct plink *bplp; /* Follow-set backwards propagation links */ |
| 318 struct state *stp; /* Pointer to state which contains this */ |
| 319 enum cfgstatus status; /* used during followset and shift computations */ |
| 320 struct config *next; /* Next configuration in the state */ |
| 321 struct config *bp; /* The next basis configuration */ |
| 322 }; |
| 323 |
| 324 enum e_action { |
| 325 SHIFT, |
| 326 ACCEPT, |
| 327 REDUCE, |
| 328 ERROR, |
| 329 SSCONFLICT, /* A shift/shift conflict */ |
| 330 SRCONFLICT, /* Was a reduce, but part of a conflict */ |
| 331 RRCONFLICT, /* Was a reduce, but part of a conflict */ |
| 332 SH_RESOLVED, /* Was a shift. Precedence resolved conflict */ |
| 333 RD_RESOLVED, /* Was reduce. Precedence resolved conflict */ |
| 334 NOT_USED, /* Deleted by compression */ |
| 335 SHIFTREDUCE /* Shift first, then reduce */ |
| 336 }; |
| 337 |
| 338 /* Every shift or reduce operation is stored as one of the following */ |
| 339 struct action { |
| 340 struct symbol *sp; /* The look-ahead symbol */ |
| 341 enum e_action type; |
| 342 union { |
| 343 struct state *stp; /* The new state, if a shift */ |
| 344 struct rule *rp; /* The rule, if a reduce */ |
| 345 } x; |
| 346 struct symbol *spOpt; /* SHIFTREDUCE optimization to this symbol */ |
| 347 struct action *next; /* Next action for this state */ |
| 348 struct action *collide; /* Next action with the same hash */ |
| 349 }; |
| 350 |
| 351 /* Each state of the generated parser's finite state machine |
| 352 ** is encoded as an instance of the following structure. */ |
| 353 struct state { |
| 354 struct config *bp; /* The basis configurations for this state */ |
| 355 struct config *cfp; /* All configurations in this set */ |
| 356 int statenum; /* Sequential number for this state */ |
| 357 struct action *ap; /* List of actions for this state */ |
| 358 int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */ |
| 359 int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */ |
| 360 int iDfltReduce; /* Default action is to REDUCE by this rule */ |
| 361 struct rule *pDfltReduce;/* The default REDUCE rule. */ |
| 362 int autoReduce; /* True if this is an auto-reduce state */ |
| 363 }; |
| 364 #define NO_OFFSET (-2147483647) |
| 365 |
| 366 /* A followset propagation link indicates that the contents of one |
| 367 ** configuration followset should be propagated to another whenever |
| 368 ** the first changes. */ |
| 369 struct plink { |
| 370 struct config *cfp; /* The configuration to which linked */ |
| 371 struct plink *next; /* The next propagate link */ |
| 372 }; |
| 373 |
| 374 /* The state vector for the entire parser generator is recorded as |
| 375 ** follows. (LEMON uses no global variables and makes little use of |
| 376 ** static variables. Fields in the following structure can be thought |
| 377 ** of as begin global variables in the program.) */ |
| 378 struct lemon { |
| 379 struct state **sorted; /* Table of states sorted by state number */ |
| 380 struct rule *rule; /* List of all rules */ |
| 381 struct rule *startRule; /* First rule */ |
| 382 int nstate; /* Number of states */ |
| 383 int nxstate; /* nstate with tail degenerate states removed */ |
| 384 int nrule; /* Number of rules */ |
| 385 int nsymbol; /* Number of terminal and nonterminal symbols */ |
| 386 int nterminal; /* Number of terminal symbols */ |
| 387 struct symbol **symbols; /* Sorted array of pointers to symbols */ |
| 388 int errorcnt; /* Number of errors */ |
| 389 struct symbol *errsym; /* The error symbol */ |
| 390 struct symbol *wildcard; /* Token that matches anything */ |
| 391 char *name; /* Name of the generated parser */ |
| 392 char *arg; /* Declaration of the 3th argument to parser */ |
| 393 char *tokentype; /* Type of terminal symbols in the parser stack */ |
| 394 char *vartype; /* The default type of non-terminal symbols */ |
| 395 char *start; /* Name of the start symbol for the grammar */ |
| 396 char *stacksize; /* Size of the parser stack */ |
| 397 char *include; /* Code to put at the start of the C file */ |
| 398 char *error; /* Code to execute when an error is seen */ |
| 399 char *overflow; /* Code to execute on a stack overflow */ |
| 400 char *failure; /* Code to execute on parser failure */ |
| 401 char *accept; /* Code to execute when the parser excepts */ |
| 402 char *extracode; /* Code appended to the generated file */ |
| 403 char *tokendest; /* Code to execute to destroy token data */ |
| 404 char *vardest; /* Code for the default non-terminal destructor */ |
| 405 char *filename; /* Name of the input file */ |
| 406 char *outname; /* Name of the current output file */ |
| 407 char *tokenprefix; /* A prefix added to token names in the .h file */ |
| 408 int nconflict; /* Number of parsing conflicts */ |
| 409 int nactiontab; /* Number of entries in the yy_action[] table */ |
| 410 int tablesize; /* Total table size of all tables in bytes */ |
| 411 int basisflag; /* Print only basis configurations */ |
| 412 int has_fallback; /* True if any %fallback is seen in the grammar */ |
| 413 int nolinenosflag; /* True if #line statements should not be printed */ |
| 414 char *argv0; /* Name of the program */ |
| 415 }; |
| 416 |
| 417 #define MemoryCheck(X) if((X)==0){ \ |
| 418 extern void memory_error(); \ |
| 419 memory_error(); \ |
| 420 } |
| 421 |
| 422 /**************** From the file "table.h" *********************************/ |
| 423 /* |
| 424 ** All code in this file has been automatically generated |
| 425 ** from a specification in the file |
| 426 ** "table.q" |
| 427 ** by the associative array code building program "aagen". |
| 428 ** Do not edit this file! Instead, edit the specification |
| 429 ** file, then rerun aagen. |
| 430 */ |
| 431 /* |
| 432 ** Code for processing tables in the LEMON parser generator. |
| 433 */ |
| 434 /* Routines for handling a strings */ |
| 435 |
| 436 const char *Strsafe(const char *); |
| 437 |
| 438 void Strsafe_init(void); |
| 439 int Strsafe_insert(const char *); |
| 440 const char *Strsafe_find(const char *); |
| 441 |
| 442 /* Routines for handling symbols of the grammar */ |
| 443 |
| 444 struct symbol *Symbol_new(const char *); |
| 445 int Symbolcmpp(const void *, const void *); |
| 446 void Symbol_init(void); |
| 447 int Symbol_insert(struct symbol *, const char *); |
| 448 struct symbol *Symbol_find(const char *); |
| 449 struct symbol *Symbol_Nth(int); |
| 450 int Symbol_count(void); |
| 451 struct symbol **Symbol_arrayof(void); |
| 452 |
| 453 /* Routines to manage the state table */ |
| 454 |
| 455 int Configcmp(const char *, const char *); |
| 456 struct state *State_new(void); |
| 457 void State_init(void); |
| 458 int State_insert(struct state *, struct config *); |
| 459 struct state *State_find(struct config *); |
| 460 struct state **State_arrayof(/* */); |
| 461 |
| 462 /* Routines used for efficiency in Configlist_add */ |
| 463 |
| 464 void Configtable_init(void); |
| 465 int Configtable_insert(struct config *); |
| 466 struct config *Configtable_find(struct config *); |
| 467 void Configtable_clear(int(*)(struct config *)); |
| 468 |
| 469 /****************** From the file "action.c" *******************************/ |
| 470 /* |
| 471 ** Routines processing parser actions in the LEMON parser generator. |
| 472 */ |
| 473 |
| 474 /* Allocate a new parser action */ |
| 475 static struct action *Action_new(void){ |
| 476 static struct action *freelist = 0; |
| 477 struct action *newaction; |
| 478 |
| 479 if( freelist==0 ){ |
| 480 int i; |
| 481 int amt = 100; |
| 482 freelist = (struct action *)calloc(amt, sizeof(struct action)); |
| 483 if( freelist==0 ){ |
| 484 fprintf(stderr,"Unable to allocate memory for a new parser action."); |
| 485 exit(1); |
| 486 } |
| 487 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1]; |
| 488 freelist[amt-1].next = 0; |
| 489 } |
| 490 newaction = freelist; |
| 491 freelist = freelist->next; |
| 492 return newaction; |
| 493 } |
| 494 |
| 495 /* Compare two actions for sorting purposes. Return negative, zero, or |
| 496 ** positive if the first action is less than, equal to, or greater than |
| 497 ** the first |
| 498 */ |
| 499 static int actioncmp( |
| 500 struct action *ap1, |
| 501 struct action *ap2 |
| 502 ){ |
| 503 int rc; |
| 504 rc = ap1->sp->index - ap2->sp->index; |
| 505 if( rc==0 ){ |
| 506 rc = (int)ap1->type - (int)ap2->type; |
| 507 } |
| 508 if( rc==0 && (ap1->type==REDUCE || ap1->type==SHIFTREDUCE) ){ |
| 509 rc = ap1->x.rp->index - ap2->x.rp->index; |
| 510 } |
| 511 if( rc==0 ){ |
| 512 rc = (int) (ap2 - ap1); |
| 513 } |
| 514 return rc; |
| 515 } |
| 516 |
| 517 /* Sort parser actions */ |
| 518 static struct action *Action_sort( |
| 519 struct action *ap |
| 520 ){ |
| 521 ap = (struct action *)msort((char *)ap,(char **)&ap->next, |
| 522 (int(*)(const char*,const char*))actioncmp); |
| 523 return ap; |
| 524 } |
| 525 |
| 526 void Action_add( |
| 527 struct action **app, |
| 528 enum e_action type, |
| 529 struct symbol *sp, |
| 530 char *arg |
| 531 ){ |
| 532 struct action *newaction; |
| 533 newaction = Action_new(); |
| 534 newaction->next = *app; |
| 535 *app = newaction; |
| 536 newaction->type = type; |
| 537 newaction->sp = sp; |
| 538 newaction->spOpt = 0; |
| 539 if( type==SHIFT ){ |
| 540 newaction->x.stp = (struct state *)arg; |
| 541 }else{ |
| 542 newaction->x.rp = (struct rule *)arg; |
| 543 } |
| 544 } |
| 545 /********************** New code to implement the "acttab" module ***********/ |
| 546 /* |
| 547 ** This module implements routines use to construct the yy_action[] table. |
| 548 */ |
| 549 |
| 550 /* |
| 551 ** The state of the yy_action table under construction is an instance of |
| 552 ** the following structure. |
| 553 ** |
| 554 ** The yy_action table maps the pair (state_number, lookahead) into an |
| 555 ** action_number. The table is an array of integers pairs. The state_number |
| 556 ** determines an initial offset into the yy_action array. The lookahead |
| 557 ** value is then added to this initial offset to get an index X into the |
| 558 ** yy_action array. If the aAction[X].lookahead equals the value of the |
| 559 ** of the lookahead input, then the value of the action_number output is |
| 560 ** aAction[X].action. If the lookaheads do not match then the |
| 561 ** default action for the state_number is returned. |
| 562 ** |
| 563 ** All actions associated with a single state_number are first entered |
| 564 ** into aLookahead[] using multiple calls to acttab_action(). Then the |
| 565 ** actions for that single state_number are placed into the aAction[] |
| 566 ** array with a single call to acttab_insert(). The acttab_insert() call |
| 567 ** also resets the aLookahead[] array in preparation for the next |
| 568 ** state number. |
| 569 */ |
| 570 struct lookahead_action { |
| 571 int lookahead; /* Value of the lookahead token */ |
| 572 int action; /* Action to take on the given lookahead */ |
| 573 }; |
| 574 typedef struct acttab acttab; |
| 575 struct acttab { |
| 576 int nAction; /* Number of used slots in aAction[] */ |
| 577 int nActionAlloc; /* Slots allocated for aAction[] */ |
| 578 struct lookahead_action |
| 579 *aAction, /* The yy_action[] table under construction */ |
| 580 *aLookahead; /* A single new transaction set */ |
| 581 int mnLookahead; /* Minimum aLookahead[].lookahead */ |
| 582 int mnAction; /* Action associated with mnLookahead */ |
| 583 int mxLookahead; /* Maximum aLookahead[].lookahead */ |
| 584 int nLookahead; /* Used slots in aLookahead[] */ |
| 585 int nLookaheadAlloc; /* Slots allocated in aLookahead[] */ |
| 586 }; |
| 587 |
| 588 /* Return the number of entries in the yy_action table */ |
| 589 #define acttab_size(X) ((X)->nAction) |
| 590 |
| 591 /* The value for the N-th entry in yy_action */ |
| 592 #define acttab_yyaction(X,N) ((X)->aAction[N].action) |
| 593 |
| 594 /* The value for the N-th entry in yy_lookahead */ |
| 595 #define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead) |
| 596 |
| 597 /* Free all memory associated with the given acttab */ |
| 598 void acttab_free(acttab *p){ |
| 599 free( p->aAction ); |
| 600 free( p->aLookahead ); |
| 601 free( p ); |
| 602 } |
| 603 |
| 604 /* Allocate a new acttab structure */ |
| 605 acttab *acttab_alloc(void){ |
| 606 acttab *p = (acttab *) calloc( 1, sizeof(*p) ); |
| 607 if( p==0 ){ |
| 608 fprintf(stderr,"Unable to allocate memory for a new acttab."); |
| 609 exit(1); |
| 610 } |
| 611 memset(p, 0, sizeof(*p)); |
| 612 return p; |
| 613 } |
| 614 |
| 615 /* Add a new action to the current transaction set. |
| 616 ** |
| 617 ** This routine is called once for each lookahead for a particular |
| 618 ** state. |
| 619 */ |
| 620 void acttab_action(acttab *p, int lookahead, int action){ |
| 621 if( p->nLookahead>=p->nLookaheadAlloc ){ |
| 622 p->nLookaheadAlloc += 25; |
| 623 p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead, |
| 624 sizeof(p->aLookahead[0])*p->nLookaheadAlloc ); |
| 625 if( p->aLookahead==0 ){ |
| 626 fprintf(stderr,"malloc failed\n"); |
| 627 exit(1); |
| 628 } |
| 629 } |
| 630 if( p->nLookahead==0 ){ |
| 631 p->mxLookahead = lookahead; |
| 632 p->mnLookahead = lookahead; |
| 633 p->mnAction = action; |
| 634 }else{ |
| 635 if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead; |
| 636 if( p->mnLookahead>lookahead ){ |
| 637 p->mnLookahead = lookahead; |
| 638 p->mnAction = action; |
| 639 } |
| 640 } |
| 641 p->aLookahead[p->nLookahead].lookahead = lookahead; |
| 642 p->aLookahead[p->nLookahead].action = action; |
| 643 p->nLookahead++; |
| 644 } |
| 645 |
| 646 /* |
| 647 ** Add the transaction set built up with prior calls to acttab_action() |
| 648 ** into the current action table. Then reset the transaction set back |
| 649 ** to an empty set in preparation for a new round of acttab_action() calls. |
| 650 ** |
| 651 ** Return the offset into the action table of the new transaction. |
| 652 */ |
| 653 int acttab_insert(acttab *p){ |
| 654 int i, j, k, n; |
| 655 assert( p->nLookahead>0 ); |
| 656 |
| 657 /* Make sure we have enough space to hold the expanded action table |
| 658 ** in the worst case. The worst case occurs if the transaction set |
| 659 ** must be appended to the current action table |
| 660 */ |
| 661 n = p->mxLookahead + 1; |
| 662 if( p->nAction + n >= p->nActionAlloc ){ |
| 663 int oldAlloc = p->nActionAlloc; |
| 664 p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20; |
| 665 p->aAction = (struct lookahead_action *) realloc( p->aAction, |
| 666 sizeof(p->aAction[0])*p->nActionAlloc); |
| 667 if( p->aAction==0 ){ |
| 668 fprintf(stderr,"malloc failed\n"); |
| 669 exit(1); |
| 670 } |
| 671 for(i=oldAlloc; i<p->nActionAlloc; i++){ |
| 672 p->aAction[i].lookahead = -1; |
| 673 p->aAction[i].action = -1; |
| 674 } |
| 675 } |
| 676 |
| 677 /* Scan the existing action table looking for an offset that is a |
| 678 ** duplicate of the current transaction set. Fall out of the loop |
| 679 ** if and when the duplicate is found. |
| 680 ** |
| 681 ** i is the index in p->aAction[] where p->mnLookahead is inserted. |
| 682 */ |
| 683 for(i=p->nAction-1; i>=0; i--){ |
| 684 if( p->aAction[i].lookahead==p->mnLookahead ){ |
| 685 /* All lookaheads and actions in the aLookahead[] transaction |
| 686 ** must match against the candidate aAction[i] entry. */ |
| 687 if( p->aAction[i].action!=p->mnAction ) continue; |
| 688 for(j=0; j<p->nLookahead; j++){ |
| 689 k = p->aLookahead[j].lookahead - p->mnLookahead + i; |
| 690 if( k<0 || k>=p->nAction ) break; |
| 691 if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break; |
| 692 if( p->aLookahead[j].action!=p->aAction[k].action ) break; |
| 693 } |
| 694 if( j<p->nLookahead ) continue; |
| 695 |
| 696 /* No possible lookahead value that is not in the aLookahead[] |
| 697 ** transaction is allowed to match aAction[i] */ |
| 698 n = 0; |
| 699 for(j=0; j<p->nAction; j++){ |
| 700 if( p->aAction[j].lookahead<0 ) continue; |
| 701 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++; |
| 702 } |
| 703 if( n==p->nLookahead ){ |
| 704 break; /* An exact match is found at offset i */ |
| 705 } |
| 706 } |
| 707 } |
| 708 |
| 709 /* If no existing offsets exactly match the current transaction, find an |
| 710 ** an empty offset in the aAction[] table in which we can add the |
| 711 ** aLookahead[] transaction. |
| 712 */ |
| 713 if( i<0 ){ |
| 714 /* Look for holes in the aAction[] table that fit the current |
| 715 ** aLookahead[] transaction. Leave i set to the offset of the hole. |
| 716 ** If no holes are found, i is left at p->nAction, which means the |
| 717 ** transaction will be appended. */ |
| 718 for(i=0; i<p->nActionAlloc - p->mxLookahead; i++){ |
| 719 if( p->aAction[i].lookahead<0 ){ |
| 720 for(j=0; j<p->nLookahead; j++){ |
| 721 k = p->aLookahead[j].lookahead - p->mnLookahead + i; |
| 722 if( k<0 ) break; |
| 723 if( p->aAction[k].lookahead>=0 ) break; |
| 724 } |
| 725 if( j<p->nLookahead ) continue; |
| 726 for(j=0; j<p->nAction; j++){ |
| 727 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break; |
| 728 } |
| 729 if( j==p->nAction ){ |
| 730 break; /* Fits in empty slots */ |
| 731 } |
| 732 } |
| 733 } |
| 734 } |
| 735 /* Insert transaction set at index i. */ |
| 736 for(j=0; j<p->nLookahead; j++){ |
| 737 k = p->aLookahead[j].lookahead - p->mnLookahead + i; |
| 738 p->aAction[k] = p->aLookahead[j]; |
| 739 if( k>=p->nAction ) p->nAction = k+1; |
| 740 } |
| 741 p->nLookahead = 0; |
| 742 |
| 743 /* Return the offset that is added to the lookahead in order to get the |
| 744 ** index into yy_action of the action */ |
| 745 return i - p->mnLookahead; |
| 746 } |
| 747 |
| 748 /********************** From the file "build.c" *****************************/ |
| 749 /* |
| 750 ** Routines to construction the finite state machine for the LEMON |
| 751 ** parser generator. |
| 752 */ |
| 753 |
| 754 /* Find a precedence symbol of every rule in the grammar. |
| 755 ** |
| 756 ** Those rules which have a precedence symbol coded in the input |
| 757 ** grammar using the "[symbol]" construct will already have the |
| 758 ** rp->precsym field filled. Other rules take as their precedence |
| 759 ** symbol the first RHS symbol with a defined precedence. If there |
| 760 ** are not RHS symbols with a defined precedence, the precedence |
| 761 ** symbol field is left blank. |
| 762 */ |
| 763 void FindRulePrecedences(struct lemon *xp) |
| 764 { |
| 765 struct rule *rp; |
| 766 for(rp=xp->rule; rp; rp=rp->next){ |
| 767 if( rp->precsym==0 ){ |
| 768 int i, j; |
| 769 for(i=0; i<rp->nrhs && rp->precsym==0; i++){ |
| 770 struct symbol *sp = rp->rhs[i]; |
| 771 if( sp->type==MULTITERMINAL ){ |
| 772 for(j=0; j<sp->nsubsym; j++){ |
| 773 if( sp->subsym[j]->prec>=0 ){ |
| 774 rp->precsym = sp->subsym[j]; |
| 775 break; |
| 776 } |
| 777 } |
| 778 }else if( sp->prec>=0 ){ |
| 779 rp->precsym = rp->rhs[i]; |
| 780 } |
| 781 } |
| 782 } |
| 783 } |
| 784 return; |
| 785 } |
| 786 |
| 787 /* Find all nonterminals which will generate the empty string. |
| 788 ** Then go back and compute the first sets of every nonterminal. |
| 789 ** The first set is the set of all terminal symbols which can begin |
| 790 ** a string generated by that nonterminal. |
| 791 */ |
| 792 void FindFirstSets(struct lemon *lemp) |
| 793 { |
| 794 int i, j; |
| 795 struct rule *rp; |
| 796 int progress; |
| 797 |
| 798 for(i=0; i<lemp->nsymbol; i++){ |
| 799 lemp->symbols[i]->lambda = LEMON_FALSE; |
| 800 } |
| 801 for(i=lemp->nterminal; i<lemp->nsymbol; i++){ |
| 802 lemp->symbols[i]->firstset = SetNew(); |
| 803 } |
| 804 |
| 805 /* First compute all lambdas */ |
| 806 do{ |
| 807 progress = 0; |
| 808 for(rp=lemp->rule; rp; rp=rp->next){ |
| 809 if( rp->lhs->lambda ) continue; |
| 810 for(i=0; i<rp->nrhs; i++){ |
| 811 struct symbol *sp = rp->rhs[i]; |
| 812 assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE ); |
| 813 if( sp->lambda==LEMON_FALSE ) break; |
| 814 } |
| 815 if( i==rp->nrhs ){ |
| 816 rp->lhs->lambda = LEMON_TRUE; |
| 817 progress = 1; |
| 818 } |
| 819 } |
| 820 }while( progress ); |
| 821 |
| 822 /* Now compute all first sets */ |
| 823 do{ |
| 824 struct symbol *s1, *s2; |
| 825 progress = 0; |
| 826 for(rp=lemp->rule; rp; rp=rp->next){ |
| 827 s1 = rp->lhs; |
| 828 for(i=0; i<rp->nrhs; i++){ |
| 829 s2 = rp->rhs[i]; |
| 830 if( s2->type==TERMINAL ){ |
| 831 progress += SetAdd(s1->firstset,s2->index); |
| 832 break; |
| 833 }else if( s2->type==MULTITERMINAL ){ |
| 834 for(j=0; j<s2->nsubsym; j++){ |
| 835 progress += SetAdd(s1->firstset,s2->subsym[j]->index); |
| 836 } |
| 837 break; |
| 838 }else if( s1==s2 ){ |
| 839 if( s1->lambda==LEMON_FALSE ) break; |
| 840 }else{ |
| 841 progress += SetUnion(s1->firstset,s2->firstset); |
| 842 if( s2->lambda==LEMON_FALSE ) break; |
| 843 } |
| 844 } |
| 845 } |
| 846 }while( progress ); |
| 847 return; |
| 848 } |
| 849 |
| 850 /* Compute all LR(0) states for the grammar. Links |
| 851 ** are added to between some states so that the LR(1) follow sets |
| 852 ** can be computed later. |
| 853 */ |
| 854 PRIVATE struct state *getstate(struct lemon *); /* forward reference */ |
| 855 void FindStates(struct lemon *lemp) |
| 856 { |
| 857 struct symbol *sp; |
| 858 struct rule *rp; |
| 859 |
| 860 Configlist_init(); |
| 861 |
| 862 /* Find the start symbol */ |
| 863 if( lemp->start ){ |
| 864 sp = Symbol_find(lemp->start); |
| 865 if( sp==0 ){ |
| 866 ErrorMsg(lemp->filename,0, |
| 867 "The specified start symbol \"%s\" is not \ |
| 868 in a nonterminal of the grammar. \"%s\" will be used as the start \ |
| 869 symbol instead.",lemp->start,lemp->startRule->lhs->name); |
| 870 lemp->errorcnt++; |
| 871 sp = lemp->startRule->lhs; |
| 872 } |
| 873 }else{ |
| 874 sp = lemp->startRule->lhs; |
| 875 } |
| 876 |
| 877 /* Make sure the start symbol doesn't occur on the right-hand side of |
| 878 ** any rule. Report an error if it does. (YACC would generate a new |
| 879 ** start symbol in this case.) */ |
| 880 for(rp=lemp->rule; rp; rp=rp->next){ |
| 881 int i; |
| 882 for(i=0; i<rp->nrhs; i++){ |
| 883 if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */ |
| 884 ErrorMsg(lemp->filename,0, |
| 885 "The start symbol \"%s\" occurs on the \ |
| 886 right-hand side of a rule. This will result in a parser which \ |
| 887 does not work properly.",sp->name); |
| 888 lemp->errorcnt++; |
| 889 } |
| 890 } |
| 891 } |
| 892 |
| 893 /* The basis configuration set for the first state |
| 894 ** is all rules which have the start symbol as their |
| 895 ** left-hand side */ |
| 896 for(rp=sp->rule; rp; rp=rp->nextlhs){ |
| 897 struct config *newcfp; |
| 898 rp->lhsStart = 1; |
| 899 newcfp = Configlist_addbasis(rp,0); |
| 900 SetAdd(newcfp->fws,0); |
| 901 } |
| 902 |
| 903 /* Compute the first state. All other states will be |
| 904 ** computed automatically during the computation of the first one. |
| 905 ** The returned pointer to the first state is not used. */ |
| 906 (void)getstate(lemp); |
| 907 return; |
| 908 } |
| 909 |
| 910 /* Return a pointer to a state which is described by the configuration |
| 911 ** list which has been built from calls to Configlist_add. |
| 912 */ |
| 913 PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */ |
| 914 PRIVATE struct state *getstate(struct lemon *lemp) |
| 915 { |
| 916 struct config *cfp, *bp; |
| 917 struct state *stp; |
| 918 |
| 919 /* Extract the sorted basis of the new state. The basis was constructed |
| 920 ** by prior calls to "Configlist_addbasis()". */ |
| 921 Configlist_sortbasis(); |
| 922 bp = Configlist_basis(); |
| 923 |
| 924 /* Get a state with the same basis */ |
| 925 stp = State_find(bp); |
| 926 if( stp ){ |
| 927 /* A state with the same basis already exists! Copy all the follow-set |
| 928 ** propagation links from the state under construction into the |
| 929 ** preexisting state, then return a pointer to the preexisting state */ |
| 930 struct config *x, *y; |
| 931 for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){ |
| 932 Plink_copy(&y->bplp,x->bplp); |
| 933 Plink_delete(x->fplp); |
| 934 x->fplp = x->bplp = 0; |
| 935 } |
| 936 cfp = Configlist_return(); |
| 937 Configlist_eat(cfp); |
| 938 }else{ |
| 939 /* This really is a new state. Construct all the details */ |
| 940 Configlist_closure(lemp); /* Compute the configuration closure */ |
| 941 Configlist_sort(); /* Sort the configuration closure */ |
| 942 cfp = Configlist_return(); /* Get a pointer to the config list */ |
| 943 stp = State_new(); /* A new state structure */ |
| 944 MemoryCheck(stp); |
| 945 stp->bp = bp; /* Remember the configuration basis */ |
| 946 stp->cfp = cfp; /* Remember the configuration closure */ |
| 947 stp->statenum = lemp->nstate++; /* Every state gets a sequence number */ |
| 948 stp->ap = 0; /* No actions, yet. */ |
| 949 State_insert(stp,stp->bp); /* Add to the state table */ |
| 950 buildshifts(lemp,stp); /* Recursively compute successor states */ |
| 951 } |
| 952 return stp; |
| 953 } |
| 954 |
| 955 /* |
| 956 ** Return true if two symbols are the same. |
| 957 */ |
| 958 int same_symbol(struct symbol *a, struct symbol *b) |
| 959 { |
| 960 int i; |
| 961 if( a==b ) return 1; |
| 962 if( a->type!=MULTITERMINAL ) return 0; |
| 963 if( b->type!=MULTITERMINAL ) return 0; |
| 964 if( a->nsubsym!=b->nsubsym ) return 0; |
| 965 for(i=0; i<a->nsubsym; i++){ |
| 966 if( a->subsym[i]!=b->subsym[i] ) return 0; |
| 967 } |
| 968 return 1; |
| 969 } |
| 970 |
| 971 /* Construct all successor states to the given state. A "successor" |
| 972 ** state is any state which can be reached by a shift action. |
| 973 */ |
| 974 PRIVATE void buildshifts(struct lemon *lemp, struct state *stp) |
| 975 { |
| 976 struct config *cfp; /* For looping thru the config closure of "stp" */ |
| 977 struct config *bcfp; /* For the inner loop on config closure of "stp" */ |
| 978 struct config *newcfg; /* */ |
| 979 struct symbol *sp; /* Symbol following the dot in configuration "cfp" */ |
| 980 struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */ |
| 981 struct state *newstp; /* A pointer to a successor state */ |
| 982 |
| 983 /* Each configuration becomes complete after it contibutes to a successor |
| 984 ** state. Initially, all configurations are incomplete */ |
| 985 for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE; |
| 986 |
| 987 /* Loop through all configurations of the state "stp" */ |
| 988 for(cfp=stp->cfp; cfp; cfp=cfp->next){ |
| 989 if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */ |
| 990 if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */ |
| 991 Configlist_reset(); /* Reset the new config set */ |
| 992 sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */ |
| 993 |
| 994 /* For every configuration in the state "stp" which has the symbol "sp" |
| 995 ** following its dot, add the same configuration to the basis set under |
| 996 ** construction but with the dot shifted one symbol to the right. */ |
| 997 for(bcfp=cfp; bcfp; bcfp=bcfp->next){ |
| 998 if( bcfp->status==COMPLETE ) continue; /* Already used */ |
| 999 if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */ |
| 1000 bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */ |
| 1001 if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */ |
| 1002 bcfp->status = COMPLETE; /* Mark this config as used */ |
| 1003 newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1); |
| 1004 Plink_add(&newcfg->bplp,bcfp); |
| 1005 } |
| 1006 |
| 1007 /* Get a pointer to the state described by the basis configuration set |
| 1008 ** constructed in the preceding loop */ |
| 1009 newstp = getstate(lemp); |
| 1010 |
| 1011 /* The state "newstp" is reached from the state "stp" by a shift action |
| 1012 ** on the symbol "sp" */ |
| 1013 if( sp->type==MULTITERMINAL ){ |
| 1014 int i; |
| 1015 for(i=0; i<sp->nsubsym; i++){ |
| 1016 Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp); |
| 1017 } |
| 1018 }else{ |
| 1019 Action_add(&stp->ap,SHIFT,sp,(char *)newstp); |
| 1020 } |
| 1021 } |
| 1022 } |
| 1023 |
| 1024 /* |
| 1025 ** Construct the propagation links |
| 1026 */ |
| 1027 void FindLinks(struct lemon *lemp) |
| 1028 { |
| 1029 int i; |
| 1030 struct config *cfp, *other; |
| 1031 struct state *stp; |
| 1032 struct plink *plp; |
| 1033 |
| 1034 /* Housekeeping detail: |
| 1035 ** Add to every propagate link a pointer back to the state to |
| 1036 ** which the link is attached. */ |
| 1037 for(i=0; i<lemp->nstate; i++){ |
| 1038 stp = lemp->sorted[i]; |
| 1039 for(cfp=stp->cfp; cfp; cfp=cfp->next){ |
| 1040 cfp->stp = stp; |
| 1041 } |
| 1042 } |
| 1043 |
| 1044 /* Convert all backlinks into forward links. Only the forward |
| 1045 ** links are used in the follow-set computation. */ |
| 1046 for(i=0; i<lemp->nstate; i++){ |
| 1047 stp = lemp->sorted[i]; |
| 1048 for(cfp=stp->cfp; cfp; cfp=cfp->next){ |
| 1049 for(plp=cfp->bplp; plp; plp=plp->next){ |
| 1050 other = plp->cfp; |
| 1051 Plink_add(&other->fplp,cfp); |
| 1052 } |
| 1053 } |
| 1054 } |
| 1055 } |
| 1056 |
| 1057 /* Compute all followsets. |
| 1058 ** |
| 1059 ** A followset is the set of all symbols which can come immediately |
| 1060 ** after a configuration. |
| 1061 */ |
| 1062 void FindFollowSets(struct lemon *lemp) |
| 1063 { |
| 1064 int i; |
| 1065 struct config *cfp; |
| 1066 struct plink *plp; |
| 1067 int progress; |
| 1068 int change; |
| 1069 |
| 1070 for(i=0; i<lemp->nstate; i++){ |
| 1071 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ |
| 1072 cfp->status = INCOMPLETE; |
| 1073 } |
| 1074 } |
| 1075 |
| 1076 do{ |
| 1077 progress = 0; |
| 1078 for(i=0; i<lemp->nstate; i++){ |
| 1079 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ |
| 1080 if( cfp->status==COMPLETE ) continue; |
| 1081 for(plp=cfp->fplp; plp; plp=plp->next){ |
| 1082 change = SetUnion(plp->cfp->fws,cfp->fws); |
| 1083 if( change ){ |
| 1084 plp->cfp->status = INCOMPLETE; |
| 1085 progress = 1; |
| 1086 } |
| 1087 } |
| 1088 cfp->status = COMPLETE; |
| 1089 } |
| 1090 } |
| 1091 }while( progress ); |
| 1092 } |
| 1093 |
| 1094 static int resolve_conflict(struct action *,struct action *); |
| 1095 |
| 1096 /* Compute the reduce actions, and resolve conflicts. |
| 1097 */ |
| 1098 void FindActions(struct lemon *lemp) |
| 1099 { |
| 1100 int i,j; |
| 1101 struct config *cfp; |
| 1102 struct state *stp; |
| 1103 struct symbol *sp; |
| 1104 struct rule *rp; |
| 1105 |
| 1106 /* Add all of the reduce actions |
| 1107 ** A reduce action is added for each element of the followset of |
| 1108 ** a configuration which has its dot at the extreme right. |
| 1109 */ |
| 1110 for(i=0; i<lemp->nstate; i++){ /* Loop over all states */ |
| 1111 stp = lemp->sorted[i]; |
| 1112 for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */ |
| 1113 if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */ |
| 1114 for(j=0; j<lemp->nterminal; j++){ |
| 1115 if( SetFind(cfp->fws,j) ){ |
| 1116 /* Add a reduce action to the state "stp" which will reduce by the |
| 1117 ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */ |
| 1118 Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp); |
| 1119 } |
| 1120 } |
| 1121 } |
| 1122 } |
| 1123 } |
| 1124 |
| 1125 /* Add the accepting token */ |
| 1126 if( lemp->start ){ |
| 1127 sp = Symbol_find(lemp->start); |
| 1128 if( sp==0 ) sp = lemp->startRule->lhs; |
| 1129 }else{ |
| 1130 sp = lemp->startRule->lhs; |
| 1131 } |
| 1132 /* Add to the first state (which is always the starting state of the |
| 1133 ** finite state machine) an action to ACCEPT if the lookahead is the |
| 1134 ** start nonterminal. */ |
| 1135 Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0); |
| 1136 |
| 1137 /* Resolve conflicts */ |
| 1138 for(i=0; i<lemp->nstate; i++){ |
| 1139 struct action *ap, *nap; |
| 1140 stp = lemp->sorted[i]; |
| 1141 /* assert( stp->ap ); */ |
| 1142 stp->ap = Action_sort(stp->ap); |
| 1143 for(ap=stp->ap; ap && ap->next; ap=ap->next){ |
| 1144 for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){ |
| 1145 /* The two actions "ap" and "nap" have the same lookahead. |
| 1146 ** Figure out which one should be used */ |
| 1147 lemp->nconflict += resolve_conflict(ap,nap); |
| 1148 } |
| 1149 } |
| 1150 } |
| 1151 |
| 1152 /* Report an error for each rule that can never be reduced. */ |
| 1153 for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE; |
| 1154 for(i=0; i<lemp->nstate; i++){ |
| 1155 struct action *ap; |
| 1156 for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){ |
| 1157 if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE; |
| 1158 } |
| 1159 } |
| 1160 for(rp=lemp->rule; rp; rp=rp->next){ |
| 1161 if( rp->canReduce ) continue; |
| 1162 ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n"); |
| 1163 lemp->errorcnt++; |
| 1164 } |
| 1165 } |
| 1166 |
| 1167 /* Resolve a conflict between the two given actions. If the |
| 1168 ** conflict can't be resolved, return non-zero. |
| 1169 ** |
| 1170 ** NO LONGER TRUE: |
| 1171 ** To resolve a conflict, first look to see if either action |
| 1172 ** is on an error rule. In that case, take the action which |
| 1173 ** is not associated with the error rule. If neither or both |
| 1174 ** actions are associated with an error rule, then try to |
| 1175 ** use precedence to resolve the conflict. |
| 1176 ** |
| 1177 ** If either action is a SHIFT, then it must be apx. This |
| 1178 ** function won't work if apx->type==REDUCE and apy->type==SHIFT. |
| 1179 */ |
| 1180 static int resolve_conflict( |
| 1181 struct action *apx, |
| 1182 struct action *apy |
| 1183 ){ |
| 1184 struct symbol *spx, *spy; |
| 1185 int errcnt = 0; |
| 1186 assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */ |
| 1187 if( apx->type==SHIFT && apy->type==SHIFT ){ |
| 1188 apy->type = SSCONFLICT; |
| 1189 errcnt++; |
| 1190 } |
| 1191 if( apx->type==SHIFT && apy->type==REDUCE ){ |
| 1192 spx = apx->sp; |
| 1193 spy = apy->x.rp->precsym; |
| 1194 if( spy==0 || spx->prec<0 || spy->prec<0 ){ |
| 1195 /* Not enough precedence information. */ |
| 1196 apy->type = SRCONFLICT; |
| 1197 errcnt++; |
| 1198 }else if( spx->prec>spy->prec ){ /* higher precedence wins */ |
| 1199 apy->type = RD_RESOLVED; |
| 1200 }else if( spx->prec<spy->prec ){ |
| 1201 apx->type = SH_RESOLVED; |
| 1202 }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */ |
| 1203 apy->type = RD_RESOLVED; /* associativity */ |
| 1204 }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */ |
| 1205 apx->type = SH_RESOLVED; |
| 1206 }else{ |
| 1207 assert( spx->prec==spy->prec && spx->assoc==NONE ); |
| 1208 apx->type = ERROR; |
| 1209 } |
| 1210 }else if( apx->type==REDUCE && apy->type==REDUCE ){ |
| 1211 spx = apx->x.rp->precsym; |
| 1212 spy = apy->x.rp->precsym; |
| 1213 if( spx==0 || spy==0 || spx->prec<0 || |
| 1214 spy->prec<0 || spx->prec==spy->prec ){ |
| 1215 apy->type = RRCONFLICT; |
| 1216 errcnt++; |
| 1217 }else if( spx->prec>spy->prec ){ |
| 1218 apy->type = RD_RESOLVED; |
| 1219 }else if( spx->prec<spy->prec ){ |
| 1220 apx->type = RD_RESOLVED; |
| 1221 } |
| 1222 }else{ |
| 1223 assert( |
| 1224 apx->type==SH_RESOLVED || |
| 1225 apx->type==RD_RESOLVED || |
| 1226 apx->type==SSCONFLICT || |
| 1227 apx->type==SRCONFLICT || |
| 1228 apx->type==RRCONFLICT || |
| 1229 apy->type==SH_RESOLVED || |
| 1230 apy->type==RD_RESOLVED || |
| 1231 apy->type==SSCONFLICT || |
| 1232 apy->type==SRCONFLICT || |
| 1233 apy->type==RRCONFLICT |
| 1234 ); |
| 1235 /* The REDUCE/SHIFT case cannot happen because SHIFTs come before |
| 1236 ** REDUCEs on the list. If we reach this point it must be because |
| 1237 ** the parser conflict had already been resolved. */ |
| 1238 } |
| 1239 return errcnt; |
| 1240 } |
| 1241 /********************* From the file "configlist.c" *************************/ |
| 1242 /* |
| 1243 ** Routines to processing a configuration list and building a state |
| 1244 ** in the LEMON parser generator. |
| 1245 */ |
| 1246 |
| 1247 static struct config *freelist = 0; /* List of free configurations */ |
| 1248 static struct config *current = 0; /* Top of list of configurations */ |
| 1249 static struct config **currentend = 0; /* Last on list of configs */ |
| 1250 static struct config *basis = 0; /* Top of list of basis configs */ |
| 1251 static struct config **basisend = 0; /* End of list of basis configs */ |
| 1252 |
| 1253 /* Return a pointer to a new configuration */ |
| 1254 PRIVATE struct config *newconfig(){ |
| 1255 struct config *newcfg; |
| 1256 if( freelist==0 ){ |
| 1257 int i; |
| 1258 int amt = 3; |
| 1259 freelist = (struct config *)calloc( amt, sizeof(struct config) ); |
| 1260 if( freelist==0 ){ |
| 1261 fprintf(stderr,"Unable to allocate memory for a new configuration."); |
| 1262 exit(1); |
| 1263 } |
| 1264 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1]; |
| 1265 freelist[amt-1].next = 0; |
| 1266 } |
| 1267 newcfg = freelist; |
| 1268 freelist = freelist->next; |
| 1269 return newcfg; |
| 1270 } |
| 1271 |
| 1272 /* The configuration "old" is no longer used */ |
| 1273 PRIVATE void deleteconfig(struct config *old) |
| 1274 { |
| 1275 old->next = freelist; |
| 1276 freelist = old; |
| 1277 } |
| 1278 |
| 1279 /* Initialized the configuration list builder */ |
| 1280 void Configlist_init(){ |
| 1281 current = 0; |
| 1282 currentend = ¤t; |
| 1283 basis = 0; |
| 1284 basisend = &basis; |
| 1285 Configtable_init(); |
| 1286 return; |
| 1287 } |
| 1288 |
| 1289 /* Initialized the configuration list builder */ |
| 1290 void Configlist_reset(){ |
| 1291 current = 0; |
| 1292 currentend = ¤t; |
| 1293 basis = 0; |
| 1294 basisend = &basis; |
| 1295 Configtable_clear(0); |
| 1296 return; |
| 1297 } |
| 1298 |
| 1299 /* Add another configuration to the configuration list */ |
| 1300 struct config *Configlist_add( |
| 1301 struct rule *rp, /* The rule */ |
| 1302 int dot /* Index into the RHS of the rule where the dot goes */ |
| 1303 ){ |
| 1304 struct config *cfp, model; |
| 1305 |
| 1306 assert( currentend!=0 ); |
| 1307 model.rp = rp; |
| 1308 model.dot = dot; |
| 1309 cfp = Configtable_find(&model); |
| 1310 if( cfp==0 ){ |
| 1311 cfp = newconfig(); |
| 1312 cfp->rp = rp; |
| 1313 cfp->dot = dot; |
| 1314 cfp->fws = SetNew(); |
| 1315 cfp->stp = 0; |
| 1316 cfp->fplp = cfp->bplp = 0; |
| 1317 cfp->next = 0; |
| 1318 cfp->bp = 0; |
| 1319 *currentend = cfp; |
| 1320 currentend = &cfp->next; |
| 1321 Configtable_insert(cfp); |
| 1322 } |
| 1323 return cfp; |
| 1324 } |
| 1325 |
| 1326 /* Add a basis configuration to the configuration list */ |
| 1327 struct config *Configlist_addbasis(struct rule *rp, int dot) |
| 1328 { |
| 1329 struct config *cfp, model; |
| 1330 |
| 1331 assert( basisend!=0 ); |
| 1332 assert( currentend!=0 ); |
| 1333 model.rp = rp; |
| 1334 model.dot = dot; |
| 1335 cfp = Configtable_find(&model); |
| 1336 if( cfp==0 ){ |
| 1337 cfp = newconfig(); |
| 1338 cfp->rp = rp; |
| 1339 cfp->dot = dot; |
| 1340 cfp->fws = SetNew(); |
| 1341 cfp->stp = 0; |
| 1342 cfp->fplp = cfp->bplp = 0; |
| 1343 cfp->next = 0; |
| 1344 cfp->bp = 0; |
| 1345 *currentend = cfp; |
| 1346 currentend = &cfp->next; |
| 1347 *basisend = cfp; |
| 1348 basisend = &cfp->bp; |
| 1349 Configtable_insert(cfp); |
| 1350 } |
| 1351 return cfp; |
| 1352 } |
| 1353 |
| 1354 /* Compute the closure of the configuration list */ |
| 1355 void Configlist_closure(struct lemon *lemp) |
| 1356 { |
| 1357 struct config *cfp, *newcfp; |
| 1358 struct rule *rp, *newrp; |
| 1359 struct symbol *sp, *xsp; |
| 1360 int i, dot; |
| 1361 |
| 1362 assert( currentend!=0 ); |
| 1363 for(cfp=current; cfp; cfp=cfp->next){ |
| 1364 rp = cfp->rp; |
| 1365 dot = cfp->dot; |
| 1366 if( dot>=rp->nrhs ) continue; |
| 1367 sp = rp->rhs[dot]; |
| 1368 if( sp->type==NONTERMINAL ){ |
| 1369 if( sp->rule==0 && sp!=lemp->errsym ){ |
| 1370 ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.", |
| 1371 sp->name); |
| 1372 lemp->errorcnt++; |
| 1373 } |
| 1374 for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){ |
| 1375 newcfp = Configlist_add(newrp,0); |
| 1376 for(i=dot+1; i<rp->nrhs; i++){ |
| 1377 xsp = rp->rhs[i]; |
| 1378 if( xsp->type==TERMINAL ){ |
| 1379 SetAdd(newcfp->fws,xsp->index); |
| 1380 break; |
| 1381 }else if( xsp->type==MULTITERMINAL ){ |
| 1382 int k; |
| 1383 for(k=0; k<xsp->nsubsym; k++){ |
| 1384 SetAdd(newcfp->fws, xsp->subsym[k]->index); |
| 1385 } |
| 1386 break; |
| 1387 }else{ |
| 1388 SetUnion(newcfp->fws,xsp->firstset); |
| 1389 if( xsp->lambda==LEMON_FALSE ) break; |
| 1390 } |
| 1391 } |
| 1392 if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp); |
| 1393 } |
| 1394 } |
| 1395 } |
| 1396 return; |
| 1397 } |
| 1398 |
| 1399 /* Sort the configuration list */ |
| 1400 void Configlist_sort(){ |
| 1401 current = (struct config*)msort((char*)current,(char**)&(current->next), |
| 1402 Configcmp); |
| 1403 currentend = 0; |
| 1404 return; |
| 1405 } |
| 1406 |
| 1407 /* Sort the basis configuration list */ |
| 1408 void Configlist_sortbasis(){ |
| 1409 basis = (struct config*)msort((char*)current,(char**)&(current->bp), |
| 1410 Configcmp); |
| 1411 basisend = 0; |
| 1412 return; |
| 1413 } |
| 1414 |
| 1415 /* Return a pointer to the head of the configuration list and |
| 1416 ** reset the list */ |
| 1417 struct config *Configlist_return(){ |
| 1418 struct config *old; |
| 1419 old = current; |
| 1420 current = 0; |
| 1421 currentend = 0; |
| 1422 return old; |
| 1423 } |
| 1424 |
| 1425 /* Return a pointer to the head of the configuration list and |
| 1426 ** reset the list */ |
| 1427 struct config *Configlist_basis(){ |
| 1428 struct config *old; |
| 1429 old = basis; |
| 1430 basis = 0; |
| 1431 basisend = 0; |
| 1432 return old; |
| 1433 } |
| 1434 |
| 1435 /* Free all elements of the given configuration list */ |
| 1436 void Configlist_eat(struct config *cfp) |
| 1437 { |
| 1438 struct config *nextcfp; |
| 1439 for(; cfp; cfp=nextcfp){ |
| 1440 nextcfp = cfp->next; |
| 1441 assert( cfp->fplp==0 ); |
| 1442 assert( cfp->bplp==0 ); |
| 1443 if( cfp->fws ) SetFree(cfp->fws); |
| 1444 deleteconfig(cfp); |
| 1445 } |
| 1446 return; |
| 1447 } |
| 1448 /***************** From the file "error.c" *********************************/ |
| 1449 /* |
| 1450 ** Code for printing error message. |
| 1451 */ |
| 1452 |
| 1453 void ErrorMsg(const char *filename, int lineno, const char *format, ...){ |
| 1454 va_list ap; |
| 1455 fprintf(stderr, "%s:%d: ", filename, lineno); |
| 1456 va_start(ap, format); |
| 1457 vfprintf(stderr,format,ap); |
| 1458 va_end(ap); |
| 1459 fprintf(stderr, "\n"); |
| 1460 } |
| 1461 /**************** From the file "main.c" ************************************/ |
| 1462 /* |
| 1463 ** Main program file for the LEMON parser generator. |
| 1464 */ |
| 1465 |
| 1466 /* Report an out-of-memory condition and abort. This function |
| 1467 ** is used mostly by the "MemoryCheck" macro in struct.h |
| 1468 */ |
| 1469 void memory_error(){ |
| 1470 fprintf(stderr,"Out of memory. Aborting...\n"); |
| 1471 exit(1); |
| 1472 } |
| 1473 |
| 1474 static int nDefine = 0; /* Number of -D options on the command line */ |
| 1475 static char **azDefine = 0; /* Name of the -D macros */ |
| 1476 |
| 1477 /* This routine is called with the argument to each -D command-line option. |
| 1478 ** Add the macro defined to the azDefine array. |
| 1479 */ |
| 1480 static void handle_D_option(char *z){ |
| 1481 char **paz; |
| 1482 nDefine++; |
| 1483 azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine); |
| 1484 if( azDefine==0 ){ |
| 1485 fprintf(stderr,"out of memory\n"); |
| 1486 exit(1); |
| 1487 } |
| 1488 paz = &azDefine[nDefine-1]; |
| 1489 *paz = (char *) malloc( lemonStrlen(z)+1 ); |
| 1490 if( *paz==0 ){ |
| 1491 fprintf(stderr,"out of memory\n"); |
| 1492 exit(1); |
| 1493 } |
| 1494 lemon_strcpy(*paz, z); |
| 1495 for(z=*paz; *z && *z!='='; z++){} |
| 1496 *z = 0; |
| 1497 } |
| 1498 |
| 1499 static char *user_templatename = NULL; |
| 1500 static void handle_T_option(char *z){ |
| 1501 user_templatename = (char *) malloc( lemonStrlen(z)+1 ); |
| 1502 if( user_templatename==0 ){ |
| 1503 memory_error(); |
| 1504 } |
| 1505 lemon_strcpy(user_templatename, z); |
| 1506 } |
| 1507 |
| 1508 /* Merge together to lists of rules ordered by rule.iRule */ |
| 1509 static struct rule *Rule_merge(struct rule *pA, struct rule *pB){ |
| 1510 struct rule *pFirst = 0; |
| 1511 struct rule **ppPrev = &pFirst; |
| 1512 while( pA && pB ){ |
| 1513 if( pA->iRule<pB->iRule ){ |
| 1514 *ppPrev = pA; |
| 1515 ppPrev = &pA->next; |
| 1516 pA = pA->next; |
| 1517 }else{ |
| 1518 *ppPrev = pB; |
| 1519 ppPrev = &pB->next; |
| 1520 pB = pB->next; |
| 1521 } |
| 1522 } |
| 1523 if( pA ){ |
| 1524 *ppPrev = pA; |
| 1525 }else{ |
| 1526 *ppPrev = pB; |
| 1527 } |
| 1528 return pFirst; |
| 1529 } |
| 1530 |
| 1531 /* |
| 1532 ** Sort a list of rules in order of increasing iRule value |
| 1533 */ |
| 1534 static struct rule *Rule_sort(struct rule *rp){ |
| 1535 int i; |
| 1536 struct rule *pNext; |
| 1537 struct rule *x[32]; |
| 1538 memset(x, 0, sizeof(x)); |
| 1539 while( rp ){ |
| 1540 pNext = rp->next; |
| 1541 rp->next = 0; |
| 1542 for(i=0; i<sizeof(x)/sizeof(x[0]) && x[i]; i++){ |
| 1543 rp = Rule_merge(x[i], rp); |
| 1544 x[i] = 0; |
| 1545 } |
| 1546 x[i] = rp; |
| 1547 rp = pNext; |
| 1548 } |
| 1549 rp = 0; |
| 1550 for(i=0; i<sizeof(x)/sizeof(x[0]); i++){ |
| 1551 rp = Rule_merge(x[i], rp); |
| 1552 } |
| 1553 return rp; |
| 1554 } |
| 1555 |
| 1556 /* forward reference */ |
| 1557 static const char *minimum_size_type(int lwr, int upr, int *pnByte); |
| 1558 |
| 1559 /* Print a single line of the "Parser Stats" output |
| 1560 */ |
| 1561 static void stats_line(const char *zLabel, int iValue){ |
| 1562 int nLabel = lemonStrlen(zLabel); |
| 1563 printf(" %s%.*s %5d\n", zLabel, |
| 1564 35-nLabel, "................................", |
| 1565 iValue); |
| 1566 } |
| 1567 |
| 1568 /* The main program. Parse the command line and do it... */ |
| 1569 int main(int argc, char **argv) |
| 1570 { |
| 1571 static int version = 0; |
| 1572 static int rpflag = 0; |
| 1573 static int basisflag = 0; |
| 1574 static int compress = 0; |
| 1575 static int quiet = 0; |
| 1576 static int statistics = 0; |
| 1577 static int mhflag = 0; |
| 1578 static int nolinenosflag = 0; |
| 1579 static int noResort = 0; |
| 1580 static struct s_options options[] = { |
| 1581 {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."}, |
| 1582 {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."}, |
| 1583 {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."}, |
| 1584 {OPT_FSTR, "f", 0, "Ignored. (Placeholder for -f compiler options.)"}, |
| 1585 {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."}, |
| 1586 {OPT_FSTR, "I", 0, "Ignored. (Placeholder for '-I' compiler options.)"}, |
| 1587 {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."}, |
| 1588 {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."}, |
| 1589 {OPT_FSTR, "O", 0, "Ignored. (Placeholder for '-O' compiler options.)"}, |
| 1590 {OPT_FLAG, "p", (char*)&showPrecedenceConflict, |
| 1591 "Show conflicts resolved by precedence rules"}, |
| 1592 {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."}, |
| 1593 {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"}, |
| 1594 {OPT_FLAG, "s", (char*)&statistics, |
| 1595 "Print parser stats to standard output."}, |
| 1596 {OPT_FLAG, "x", (char*)&version, "Print the version number."}, |
| 1597 {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."}, |
| 1598 {OPT_FSTR, "W", 0, "Ignored. (Placeholder for '-W' compiler options.)"}, |
| 1599 {OPT_FLAG,0,0,0} |
| 1600 }; |
| 1601 int i; |
| 1602 int exitcode; |
| 1603 struct lemon lem; |
| 1604 struct rule *rp; |
| 1605 |
| 1606 OptInit(argv,options,stderr); |
| 1607 if( version ){ |
| 1608 printf("Lemon version 1.0\n"); |
| 1609 exit(0); |
| 1610 } |
| 1611 if( OptNArgs()!=1 ){ |
| 1612 fprintf(stderr,"Exactly one filename argument is required.\n"); |
| 1613 exit(1); |
| 1614 } |
| 1615 memset(&lem, 0, sizeof(lem)); |
| 1616 lem.errorcnt = 0; |
| 1617 |
| 1618 /* Initialize the machine */ |
| 1619 Strsafe_init(); |
| 1620 Symbol_init(); |
| 1621 State_init(); |
| 1622 lem.argv0 = argv[0]; |
| 1623 lem.filename = OptArg(0); |
| 1624 lem.basisflag = basisflag; |
| 1625 lem.nolinenosflag = nolinenosflag; |
| 1626 Symbol_new("$"); |
| 1627 lem.errsym = Symbol_new("error"); |
| 1628 lem.errsym->useCnt = 0; |
| 1629 |
| 1630 /* Parse the input file */ |
| 1631 Parse(&lem); |
| 1632 if( lem.errorcnt ) exit(lem.errorcnt); |
| 1633 if( lem.nrule==0 ){ |
| 1634 fprintf(stderr,"Empty grammar.\n"); |
| 1635 exit(1); |
| 1636 } |
| 1637 |
| 1638 /* Count and index the symbols of the grammar */ |
| 1639 Symbol_new("{default}"); |
| 1640 lem.nsymbol = Symbol_count(); |
| 1641 lem.symbols = Symbol_arrayof(); |
| 1642 for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i; |
| 1643 qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp); |
| 1644 for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i; |
| 1645 while( lem.symbols[i-1]->type==MULTITERMINAL ){ i--; } |
| 1646 assert( strcmp(lem.symbols[i-1]->name,"{default}")==0 ); |
| 1647 lem.nsymbol = i - 1; |
| 1648 for(i=1; ISUPPER(lem.symbols[i]->name[0]); i++); |
| 1649 lem.nterminal = i; |
| 1650 |
| 1651 /* Assign sequential rule numbers. Start with 0. Put rules that have no |
| 1652 ** reduce action C-code associated with them last, so that the switch() |
| 1653 ** statement that selects reduction actions will have a smaller jump table. |
| 1654 */ |
| 1655 for(i=0, rp=lem.rule; rp; rp=rp->next){ |
| 1656 rp->iRule = rp->code ? i++ : -1; |
| 1657 } |
| 1658 for(rp=lem.rule; rp; rp=rp->next){ |
| 1659 if( rp->iRule<0 ) rp->iRule = i++; |
| 1660 } |
| 1661 lem.startRule = lem.rule; |
| 1662 lem.rule = Rule_sort(lem.rule); |
| 1663 |
| 1664 /* Generate a reprint of the grammar, if requested on the command line */ |
| 1665 if( rpflag ){ |
| 1666 Reprint(&lem); |
| 1667 }else{ |
| 1668 /* Initialize the size for all follow and first sets */ |
| 1669 SetSize(lem.nterminal+1); |
| 1670 |
| 1671 /* Find the precedence for every production rule (that has one) */ |
| 1672 FindRulePrecedences(&lem); |
| 1673 |
| 1674 /* Compute the lambda-nonterminals and the first-sets for every |
| 1675 ** nonterminal */ |
| 1676 FindFirstSets(&lem); |
| 1677 |
| 1678 /* Compute all LR(0) states. Also record follow-set propagation |
| 1679 ** links so that the follow-set can be computed later */ |
| 1680 lem.nstate = 0; |
| 1681 FindStates(&lem); |
| 1682 lem.sorted = State_arrayof(); |
| 1683 |
| 1684 /* Tie up loose ends on the propagation links */ |
| 1685 FindLinks(&lem); |
| 1686 |
| 1687 /* Compute the follow set of every reducible configuration */ |
| 1688 FindFollowSets(&lem); |
| 1689 |
| 1690 /* Compute the action tables */ |
| 1691 FindActions(&lem); |
| 1692 |
| 1693 /* Compress the action tables */ |
| 1694 if( compress==0 ) CompressTables(&lem); |
| 1695 |
| 1696 /* Reorder and renumber the states so that states with fewer choices |
| 1697 ** occur at the end. This is an optimization that helps make the |
| 1698 ** generated parser tables smaller. */ |
| 1699 if( noResort==0 ) ResortStates(&lem); |
| 1700 |
| 1701 /* Generate a report of the parser generated. (the "y.output" file) */ |
| 1702 if( !quiet ) ReportOutput(&lem); |
| 1703 |
| 1704 /* Generate the source code for the parser */ |
| 1705 ReportTable(&lem, mhflag); |
| 1706 |
| 1707 /* Produce a header file for use by the scanner. (This step is |
| 1708 ** omitted if the "-m" option is used because makeheaders will |
| 1709 ** generate the file for us.) */ |
| 1710 if( !mhflag ) ReportHeader(&lem); |
| 1711 } |
| 1712 if( statistics ){ |
| 1713 printf("Parser statistics:\n"); |
| 1714 stats_line("terminal symbols", lem.nterminal); |
| 1715 stats_line("non-terminal symbols", lem.nsymbol - lem.nterminal); |
| 1716 stats_line("total symbols", lem.nsymbol); |
| 1717 stats_line("rules", lem.nrule); |
| 1718 stats_line("states", lem.nxstate); |
| 1719 stats_line("conflicts", lem.nconflict); |
| 1720 stats_line("action table entries", lem.nactiontab); |
| 1721 stats_line("total table size (bytes)", lem.tablesize); |
| 1722 } |
| 1723 if( lem.nconflict > 0 ){ |
| 1724 fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict); |
| 1725 } |
| 1726 |
| 1727 /* return 0 on success, 1 on failure. */ |
| 1728 exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0; |
| 1729 exit(exitcode); |
| 1730 return (exitcode); |
| 1731 } |
| 1732 /******************** From the file "msort.c" *******************************/ |
| 1733 /* |
| 1734 ** A generic merge-sort program. |
| 1735 ** |
| 1736 ** USAGE: |
| 1737 ** Let "ptr" be a pointer to some structure which is at the head of |
| 1738 ** a null-terminated list. Then to sort the list call: |
| 1739 ** |
| 1740 ** ptr = msort(ptr,&(ptr->next),cmpfnc); |
| 1741 ** |
| 1742 ** In the above, "cmpfnc" is a pointer to a function which compares |
| 1743 ** two instances of the structure and returns an integer, as in |
| 1744 ** strcmp. The second argument is a pointer to the pointer to the |
| 1745 ** second element of the linked list. This address is used to compute |
| 1746 ** the offset to the "next" field within the structure. The offset to |
| 1747 ** the "next" field must be constant for all structures in the list. |
| 1748 ** |
| 1749 ** The function returns a new pointer which is the head of the list |
| 1750 ** after sorting. |
| 1751 ** |
| 1752 ** ALGORITHM: |
| 1753 ** Merge-sort. |
| 1754 */ |
| 1755 |
| 1756 /* |
| 1757 ** Return a pointer to the next structure in the linked list. |
| 1758 */ |
| 1759 #define NEXT(A) (*(char**)(((char*)A)+offset)) |
| 1760 |
| 1761 /* |
| 1762 ** Inputs: |
| 1763 ** a: A sorted, null-terminated linked list. (May be null). |
| 1764 ** b: A sorted, null-terminated linked list. (May be null). |
| 1765 ** cmp: A pointer to the comparison function. |
| 1766 ** offset: Offset in the structure to the "next" field. |
| 1767 ** |
| 1768 ** Return Value: |
| 1769 ** A pointer to the head of a sorted list containing the elements |
| 1770 ** of both a and b. |
| 1771 ** |
| 1772 ** Side effects: |
| 1773 ** The "next" pointers for elements in the lists a and b are |
| 1774 ** changed. |
| 1775 */ |
| 1776 static char *merge( |
| 1777 char *a, |
| 1778 char *b, |
| 1779 int (*cmp)(const char*,const char*), |
| 1780 int offset |
| 1781 ){ |
| 1782 char *ptr, *head; |
| 1783 |
| 1784 if( a==0 ){ |
| 1785 head = b; |
| 1786 }else if( b==0 ){ |
| 1787 head = a; |
| 1788 }else{ |
| 1789 if( (*cmp)(a,b)<=0 ){ |
| 1790 ptr = a; |
| 1791 a = NEXT(a); |
| 1792 }else{ |
| 1793 ptr = b; |
| 1794 b = NEXT(b); |
| 1795 } |
| 1796 head = ptr; |
| 1797 while( a && b ){ |
| 1798 if( (*cmp)(a,b)<=0 ){ |
| 1799 NEXT(ptr) = a; |
| 1800 ptr = a; |
| 1801 a = NEXT(a); |
| 1802 }else{ |
| 1803 NEXT(ptr) = b; |
| 1804 ptr = b; |
| 1805 b = NEXT(b); |
| 1806 } |
| 1807 } |
| 1808 if( a ) NEXT(ptr) = a; |
| 1809 else NEXT(ptr) = b; |
| 1810 } |
| 1811 return head; |
| 1812 } |
| 1813 |
| 1814 /* |
| 1815 ** Inputs: |
| 1816 ** list: Pointer to a singly-linked list of structures. |
| 1817 ** next: Pointer to pointer to the second element of the list. |
| 1818 ** cmp: A comparison function. |
| 1819 ** |
| 1820 ** Return Value: |
| 1821 ** A pointer to the head of a sorted list containing the elements |
| 1822 ** orginally in list. |
| 1823 ** |
| 1824 ** Side effects: |
| 1825 ** The "next" pointers for elements in list are changed. |
| 1826 */ |
| 1827 #define LISTSIZE 30 |
| 1828 static char *msort( |
| 1829 char *list, |
| 1830 char **next, |
| 1831 int (*cmp)(const char*,const char*) |
| 1832 ){ |
| 1833 unsigned long offset; |
| 1834 char *ep; |
| 1835 char *set[LISTSIZE]; |
| 1836 int i; |
| 1837 offset = (unsigned long)((char*)next - (char*)list); |
| 1838 for(i=0; i<LISTSIZE; i++) set[i] = 0; |
| 1839 while( list ){ |
| 1840 ep = list; |
| 1841 list = NEXT(list); |
| 1842 NEXT(ep) = 0; |
| 1843 for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){ |
| 1844 ep = merge(ep,set[i],cmp,offset); |
| 1845 set[i] = 0; |
| 1846 } |
| 1847 set[i] = ep; |
| 1848 } |
| 1849 ep = 0; |
| 1850 for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset); |
| 1851 return ep; |
| 1852 } |
| 1853 /************************ From the file "option.c" **************************/ |
| 1854 static char **argv; |
| 1855 static struct s_options *op; |
| 1856 static FILE *errstream; |
| 1857 |
| 1858 #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0) |
| 1859 |
| 1860 /* |
| 1861 ** Print the command line with a carrot pointing to the k-th character |
| 1862 ** of the n-th field. |
| 1863 */ |
| 1864 static void errline(int n, int k, FILE *err) |
| 1865 { |
| 1866 int spcnt, i; |
| 1867 if( argv[0] ) fprintf(err,"%s",argv[0]); |
| 1868 spcnt = lemonStrlen(argv[0]) + 1; |
| 1869 for(i=1; i<n && argv[i]; i++){ |
| 1870 fprintf(err," %s",argv[i]); |
| 1871 spcnt += lemonStrlen(argv[i])+1; |
| 1872 } |
| 1873 spcnt += k; |
| 1874 for(; argv[i]; i++) fprintf(err," %s",argv[i]); |
| 1875 if( spcnt<20 ){ |
| 1876 fprintf(err,"\n%*s^-- here\n",spcnt,""); |
| 1877 }else{ |
| 1878 fprintf(err,"\n%*shere --^\n",spcnt-7,""); |
| 1879 } |
| 1880 } |
| 1881 |
| 1882 /* |
| 1883 ** Return the index of the N-th non-switch argument. Return -1 |
| 1884 ** if N is out of range. |
| 1885 */ |
| 1886 static int argindex(int n) |
| 1887 { |
| 1888 int i; |
| 1889 int dashdash = 0; |
| 1890 if( argv!=0 && *argv!=0 ){ |
| 1891 for(i=1; argv[i]; i++){ |
| 1892 if( dashdash || !ISOPT(argv[i]) ){ |
| 1893 if( n==0 ) return i; |
| 1894 n--; |
| 1895 } |
| 1896 if( strcmp(argv[i],"--")==0 ) dashdash = 1; |
| 1897 } |
| 1898 } |
| 1899 return -1; |
| 1900 } |
| 1901 |
| 1902 static char emsg[] = "Command line syntax error: "; |
| 1903 |
| 1904 /* |
| 1905 ** Process a flag command line argument. |
| 1906 */ |
| 1907 static int handleflags(int i, FILE *err) |
| 1908 { |
| 1909 int v; |
| 1910 int errcnt = 0; |
| 1911 int j; |
| 1912 for(j=0; op[j].label; j++){ |
| 1913 if( strncmp(&argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break; |
| 1914 } |
| 1915 v = argv[i][0]=='-' ? 1 : 0; |
| 1916 if( op[j].label==0 ){ |
| 1917 if( err ){ |
| 1918 fprintf(err,"%sundefined option.\n",emsg); |
| 1919 errline(i,1,err); |
| 1920 } |
| 1921 errcnt++; |
| 1922 }else if( op[j].arg==0 ){ |
| 1923 /* Ignore this option */ |
| 1924 }else if( op[j].type==OPT_FLAG ){ |
| 1925 *((int*)op[j].arg) = v; |
| 1926 }else if( op[j].type==OPT_FFLAG ){ |
| 1927 (*(void(*)(int))(op[j].arg))(v); |
| 1928 }else if( op[j].type==OPT_FSTR ){ |
| 1929 (*(void(*)(char *))(op[j].arg))(&argv[i][2]); |
| 1930 }else{ |
| 1931 if( err ){ |
| 1932 fprintf(err,"%smissing argument on switch.\n",emsg); |
| 1933 errline(i,1,err); |
| 1934 } |
| 1935 errcnt++; |
| 1936 } |
| 1937 return errcnt; |
| 1938 } |
| 1939 |
| 1940 /* |
| 1941 ** Process a command line switch which has an argument. |
| 1942 */ |
| 1943 static int handleswitch(int i, FILE *err) |
| 1944 { |
| 1945 int lv = 0; |
| 1946 double dv = 0.0; |
| 1947 char *sv = 0, *end; |
| 1948 char *cp; |
| 1949 int j; |
| 1950 int errcnt = 0; |
| 1951 cp = strchr(argv[i],'='); |
| 1952 assert( cp!=0 ); |
| 1953 *cp = 0; |
| 1954 for(j=0; op[j].label; j++){ |
| 1955 if( strcmp(argv[i],op[j].label)==0 ) break; |
| 1956 } |
| 1957 *cp = '='; |
| 1958 if( op[j].label==0 ){ |
| 1959 if( err ){ |
| 1960 fprintf(err,"%sundefined option.\n",emsg); |
| 1961 errline(i,0,err); |
| 1962 } |
| 1963 errcnt++; |
| 1964 }else{ |
| 1965 cp++; |
| 1966 switch( op[j].type ){ |
| 1967 case OPT_FLAG: |
| 1968 case OPT_FFLAG: |
| 1969 if( err ){ |
| 1970 fprintf(err,"%soption requires an argument.\n",emsg); |
| 1971 errline(i,0,err); |
| 1972 } |
| 1973 errcnt++; |
| 1974 break; |
| 1975 case OPT_DBL: |
| 1976 case OPT_FDBL: |
| 1977 dv = strtod(cp,&end); |
| 1978 if( *end ){ |
| 1979 if( err ){ |
| 1980 fprintf(err, |
| 1981 "%sillegal character in floating-point argument.\n",emsg); |
| 1982 errline(i,(int)((char*)end-(char*)argv[i]),err); |
| 1983 } |
| 1984 errcnt++; |
| 1985 } |
| 1986 break; |
| 1987 case OPT_INT: |
| 1988 case OPT_FINT: |
| 1989 lv = strtol(cp,&end,0); |
| 1990 if( *end ){ |
| 1991 if( err ){ |
| 1992 fprintf(err,"%sillegal character in integer argument.\n",emsg); |
| 1993 errline(i,(int)((char*)end-(char*)argv[i]),err); |
| 1994 } |
| 1995 errcnt++; |
| 1996 } |
| 1997 break; |
| 1998 case OPT_STR: |
| 1999 case OPT_FSTR: |
| 2000 sv = cp; |
| 2001 break; |
| 2002 } |
| 2003 switch( op[j].type ){ |
| 2004 case OPT_FLAG: |
| 2005 case OPT_FFLAG: |
| 2006 break; |
| 2007 case OPT_DBL: |
| 2008 *(double*)(op[j].arg) = dv; |
| 2009 break; |
| 2010 case OPT_FDBL: |
| 2011 (*(void(*)(double))(op[j].arg))(dv); |
| 2012 break; |
| 2013 case OPT_INT: |
| 2014 *(int*)(op[j].arg) = lv; |
| 2015 break; |
| 2016 case OPT_FINT: |
| 2017 (*(void(*)(int))(op[j].arg))((int)lv); |
| 2018 break; |
| 2019 case OPT_STR: |
| 2020 *(char**)(op[j].arg) = sv; |
| 2021 break; |
| 2022 case OPT_FSTR: |
| 2023 (*(void(*)(char *))(op[j].arg))(sv); |
| 2024 break; |
| 2025 } |
| 2026 } |
| 2027 return errcnt; |
| 2028 } |
| 2029 |
| 2030 int OptInit(char **a, struct s_options *o, FILE *err) |
| 2031 { |
| 2032 int errcnt = 0; |
| 2033 argv = a; |
| 2034 op = o; |
| 2035 errstream = err; |
| 2036 if( argv && *argv && op ){ |
| 2037 int i; |
| 2038 for(i=1; argv[i]; i++){ |
| 2039 if( argv[i][0]=='+' || argv[i][0]=='-' ){ |
| 2040 errcnt += handleflags(i,err); |
| 2041 }else if( strchr(argv[i],'=') ){ |
| 2042 errcnt += handleswitch(i,err); |
| 2043 } |
| 2044 } |
| 2045 } |
| 2046 if( errcnt>0 ){ |
| 2047 fprintf(err,"Valid command line options for \"%s\" are:\n",*a); |
| 2048 OptPrint(); |
| 2049 exit(1); |
| 2050 } |
| 2051 return 0; |
| 2052 } |
| 2053 |
| 2054 int OptNArgs(){ |
| 2055 int cnt = 0; |
| 2056 int dashdash = 0; |
| 2057 int i; |
| 2058 if( argv!=0 && argv[0]!=0 ){ |
| 2059 for(i=1; argv[i]; i++){ |
| 2060 if( dashdash || !ISOPT(argv[i]) ) cnt++; |
| 2061 if( strcmp(argv[i],"--")==0 ) dashdash = 1; |
| 2062 } |
| 2063 } |
| 2064 return cnt; |
| 2065 } |
| 2066 |
| 2067 char *OptArg(int n) |
| 2068 { |
| 2069 int i; |
| 2070 i = argindex(n); |
| 2071 return i>=0 ? argv[i] : 0; |
| 2072 } |
| 2073 |
| 2074 void OptErr(int n) |
| 2075 { |
| 2076 int i; |
| 2077 i = argindex(n); |
| 2078 if( i>=0 ) errline(i,0,errstream); |
| 2079 } |
| 2080 |
| 2081 void OptPrint(){ |
| 2082 int i; |
| 2083 int max, len; |
| 2084 max = 0; |
| 2085 for(i=0; op[i].label; i++){ |
| 2086 len = lemonStrlen(op[i].label) + 1; |
| 2087 switch( op[i].type ){ |
| 2088 case OPT_FLAG: |
| 2089 case OPT_FFLAG: |
| 2090 break; |
| 2091 case OPT_INT: |
| 2092 case OPT_FINT: |
| 2093 len += 9; /* length of "<integer>" */ |
| 2094 break; |
| 2095 case OPT_DBL: |
| 2096 case OPT_FDBL: |
| 2097 len += 6; /* length of "<real>" */ |
| 2098 break; |
| 2099 case OPT_STR: |
| 2100 case OPT_FSTR: |
| 2101 len += 8; /* length of "<string>" */ |
| 2102 break; |
| 2103 } |
| 2104 if( len>max ) max = len; |
| 2105 } |
| 2106 for(i=0; op[i].label; i++){ |
| 2107 switch( op[i].type ){ |
| 2108 case OPT_FLAG: |
| 2109 case OPT_FFLAG: |
| 2110 fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message); |
| 2111 break; |
| 2112 case OPT_INT: |
| 2113 case OPT_FINT: |
| 2114 fprintf(errstream," -%s<integer>%*s %s\n",op[i].label, |
| 2115 (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message); |
| 2116 break; |
| 2117 case OPT_DBL: |
| 2118 case OPT_FDBL: |
| 2119 fprintf(errstream," -%s<real>%*s %s\n",op[i].label, |
| 2120 (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message); |
| 2121 break; |
| 2122 case OPT_STR: |
| 2123 case OPT_FSTR: |
| 2124 fprintf(errstream," -%s<string>%*s %s\n",op[i].label, |
| 2125 (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message); |
| 2126 break; |
| 2127 } |
| 2128 } |
| 2129 } |
| 2130 /*********************** From the file "parse.c" ****************************/ |
| 2131 /* |
| 2132 ** Input file parser for the LEMON parser generator. |
| 2133 */ |
| 2134 |
| 2135 /* The state of the parser */ |
| 2136 enum e_state { |
| 2137 INITIALIZE, |
| 2138 WAITING_FOR_DECL_OR_RULE, |
| 2139 WAITING_FOR_DECL_KEYWORD, |
| 2140 WAITING_FOR_DECL_ARG, |
| 2141 WAITING_FOR_PRECEDENCE_SYMBOL, |
| 2142 WAITING_FOR_ARROW, |
| 2143 IN_RHS, |
| 2144 LHS_ALIAS_1, |
| 2145 LHS_ALIAS_2, |
| 2146 LHS_ALIAS_3, |
| 2147 RHS_ALIAS_1, |
| 2148 RHS_ALIAS_2, |
| 2149 PRECEDENCE_MARK_1, |
| 2150 PRECEDENCE_MARK_2, |
| 2151 RESYNC_AFTER_RULE_ERROR, |
| 2152 RESYNC_AFTER_DECL_ERROR, |
| 2153 WAITING_FOR_DESTRUCTOR_SYMBOL, |
| 2154 WAITING_FOR_DATATYPE_SYMBOL, |
| 2155 WAITING_FOR_FALLBACK_ID, |
| 2156 WAITING_FOR_WILDCARD_ID, |
| 2157 WAITING_FOR_CLASS_ID, |
| 2158 WAITING_FOR_CLASS_TOKEN |
| 2159 }; |
| 2160 struct pstate { |
| 2161 char *filename; /* Name of the input file */ |
| 2162 int tokenlineno; /* Linenumber at which current token starts */ |
| 2163 int errorcnt; /* Number of errors so far */ |
| 2164 char *tokenstart; /* Text of current token */ |
| 2165 struct lemon *gp; /* Global state vector */ |
| 2166 enum e_state state; /* The state of the parser */ |
| 2167 struct symbol *fallback; /* The fallback token */ |
| 2168 struct symbol *tkclass; /* Token class symbol */ |
| 2169 struct symbol *lhs; /* Left-hand side of current rule */ |
| 2170 const char *lhsalias; /* Alias for the LHS */ |
| 2171 int nrhs; /* Number of right-hand side symbols seen */ |
| 2172 struct symbol *rhs[MAXRHS]; /* RHS symbols */ |
| 2173 const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */ |
| 2174 struct rule *prevrule; /* Previous rule parsed */ |
| 2175 const char *declkeyword; /* Keyword of a declaration */ |
| 2176 char **declargslot; /* Where the declaration argument should be put */ |
| 2177 int insertLineMacro; /* Add #line before declaration insert */ |
| 2178 int *decllinenoslot; /* Where to write declaration line number */ |
| 2179 enum e_assoc declassoc; /* Assign this association to decl arguments */ |
| 2180 int preccounter; /* Assign this precedence to decl arguments */ |
| 2181 struct rule *firstrule; /* Pointer to first rule in the grammar */ |
| 2182 struct rule *lastrule; /* Pointer to the most recently parsed rule */ |
| 2183 }; |
| 2184 |
| 2185 /* Parse a single token */ |
| 2186 static void parseonetoken(struct pstate *psp) |
| 2187 { |
| 2188 const char *x; |
| 2189 x = Strsafe(psp->tokenstart); /* Save the token permanently */ |
| 2190 #if 0 |
| 2191 printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno, |
| 2192 x,psp->state); |
| 2193 #endif |
| 2194 switch( psp->state ){ |
| 2195 case INITIALIZE: |
| 2196 psp->prevrule = 0; |
| 2197 psp->preccounter = 0; |
| 2198 psp->firstrule = psp->lastrule = 0; |
| 2199 psp->gp->nrule = 0; |
| 2200 /* Fall thru to next case */ |
| 2201 case WAITING_FOR_DECL_OR_RULE: |
| 2202 if( x[0]=='%' ){ |
| 2203 psp->state = WAITING_FOR_DECL_KEYWORD; |
| 2204 }else if( ISLOWER(x[0]) ){ |
| 2205 psp->lhs = Symbol_new(x); |
| 2206 psp->nrhs = 0; |
| 2207 psp->lhsalias = 0; |
| 2208 psp->state = WAITING_FOR_ARROW; |
| 2209 }else if( x[0]=='{' ){ |
| 2210 if( psp->prevrule==0 ){ |
| 2211 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2212 "There is no prior rule upon which to attach the code \ |
| 2213 fragment which begins on this line."); |
| 2214 psp->errorcnt++; |
| 2215 }else if( psp->prevrule->code!=0 ){ |
| 2216 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2217 "Code fragment beginning on this line is not the first \ |
| 2218 to follow the previous rule."); |
| 2219 psp->errorcnt++; |
| 2220 }else{ |
| 2221 psp->prevrule->line = psp->tokenlineno; |
| 2222 psp->prevrule->code = &x[1]; |
| 2223 psp->prevrule->noCode = 0; |
| 2224 } |
| 2225 }else if( x[0]=='[' ){ |
| 2226 psp->state = PRECEDENCE_MARK_1; |
| 2227 }else{ |
| 2228 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2229 "Token \"%s\" should be either \"%%\" or a nonterminal name.", |
| 2230 x); |
| 2231 psp->errorcnt++; |
| 2232 } |
| 2233 break; |
| 2234 case PRECEDENCE_MARK_1: |
| 2235 if( !ISUPPER(x[0]) ){ |
| 2236 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2237 "The precedence symbol must be a terminal."); |
| 2238 psp->errorcnt++; |
| 2239 }else if( psp->prevrule==0 ){ |
| 2240 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2241 "There is no prior rule to assign precedence \"[%s]\".",x); |
| 2242 psp->errorcnt++; |
| 2243 }else if( psp->prevrule->precsym!=0 ){ |
| 2244 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2245 "Precedence mark on this line is not the first \ |
| 2246 to follow the previous rule."); |
| 2247 psp->errorcnt++; |
| 2248 }else{ |
| 2249 psp->prevrule->precsym = Symbol_new(x); |
| 2250 } |
| 2251 psp->state = PRECEDENCE_MARK_2; |
| 2252 break; |
| 2253 case PRECEDENCE_MARK_2: |
| 2254 if( x[0]!=']' ){ |
| 2255 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2256 "Missing \"]\" on precedence mark."); |
| 2257 psp->errorcnt++; |
| 2258 } |
| 2259 psp->state = WAITING_FOR_DECL_OR_RULE; |
| 2260 break; |
| 2261 case WAITING_FOR_ARROW: |
| 2262 if( x[0]==':' && x[1]==':' && x[2]=='=' ){ |
| 2263 psp->state = IN_RHS; |
| 2264 }else if( x[0]=='(' ){ |
| 2265 psp->state = LHS_ALIAS_1; |
| 2266 }else{ |
| 2267 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2268 "Expected to see a \":\" following the LHS symbol \"%s\".", |
| 2269 psp->lhs->name); |
| 2270 psp->errorcnt++; |
| 2271 psp->state = RESYNC_AFTER_RULE_ERROR; |
| 2272 } |
| 2273 break; |
| 2274 case LHS_ALIAS_1: |
| 2275 if( ISALPHA(x[0]) ){ |
| 2276 psp->lhsalias = x; |
| 2277 psp->state = LHS_ALIAS_2; |
| 2278 }else{ |
| 2279 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2280 "\"%s\" is not a valid alias for the LHS \"%s\"\n", |
| 2281 x,psp->lhs->name); |
| 2282 psp->errorcnt++; |
| 2283 psp->state = RESYNC_AFTER_RULE_ERROR; |
| 2284 } |
| 2285 break; |
| 2286 case LHS_ALIAS_2: |
| 2287 if( x[0]==')' ){ |
| 2288 psp->state = LHS_ALIAS_3; |
| 2289 }else{ |
| 2290 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2291 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); |
| 2292 psp->errorcnt++; |
| 2293 psp->state = RESYNC_AFTER_RULE_ERROR; |
| 2294 } |
| 2295 break; |
| 2296 case LHS_ALIAS_3: |
| 2297 if( x[0]==':' && x[1]==':' && x[2]=='=' ){ |
| 2298 psp->state = IN_RHS; |
| 2299 }else{ |
| 2300 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2301 "Missing \"->\" following: \"%s(%s)\".", |
| 2302 psp->lhs->name,psp->lhsalias); |
| 2303 psp->errorcnt++; |
| 2304 psp->state = RESYNC_AFTER_RULE_ERROR; |
| 2305 } |
| 2306 break; |
| 2307 case IN_RHS: |
| 2308 if( x[0]=='.' ){ |
| 2309 struct rule *rp; |
| 2310 rp = (struct rule *)calloc( sizeof(struct rule) + |
| 2311 sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1); |
| 2312 if( rp==0 ){ |
| 2313 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2314 "Can't allocate enough memory for this rule."); |
| 2315 psp->errorcnt++; |
| 2316 psp->prevrule = 0; |
| 2317 }else{ |
| 2318 int i; |
| 2319 rp->ruleline = psp->tokenlineno; |
| 2320 rp->rhs = (struct symbol**)&rp[1]; |
| 2321 rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]); |
| 2322 for(i=0; i<psp->nrhs; i++){ |
| 2323 rp->rhs[i] = psp->rhs[i]; |
| 2324 rp->rhsalias[i] = psp->alias[i]; |
| 2325 } |
| 2326 rp->lhs = psp->lhs; |
| 2327 rp->lhsalias = psp->lhsalias; |
| 2328 rp->nrhs = psp->nrhs; |
| 2329 rp->code = 0; |
| 2330 rp->noCode = 1; |
| 2331 rp->precsym = 0; |
| 2332 rp->index = psp->gp->nrule++; |
| 2333 rp->nextlhs = rp->lhs->rule; |
| 2334 rp->lhs->rule = rp; |
| 2335 rp->next = 0; |
| 2336 if( psp->firstrule==0 ){ |
| 2337 psp->firstrule = psp->lastrule = rp; |
| 2338 }else{ |
| 2339 psp->lastrule->next = rp; |
| 2340 psp->lastrule = rp; |
| 2341 } |
| 2342 psp->prevrule = rp; |
| 2343 } |
| 2344 psp->state = WAITING_FOR_DECL_OR_RULE; |
| 2345 }else if( ISALPHA(x[0]) ){ |
| 2346 if( psp->nrhs>=MAXRHS ){ |
| 2347 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2348 "Too many symbols on RHS of rule beginning at \"%s\".", |
| 2349 x); |
| 2350 psp->errorcnt++; |
| 2351 psp->state = RESYNC_AFTER_RULE_ERROR; |
| 2352 }else{ |
| 2353 psp->rhs[psp->nrhs] = Symbol_new(x); |
| 2354 psp->alias[psp->nrhs] = 0; |
| 2355 psp->nrhs++; |
| 2356 } |
| 2357 }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){ |
| 2358 struct symbol *msp = psp->rhs[psp->nrhs-1]; |
| 2359 if( msp->type!=MULTITERMINAL ){ |
| 2360 struct symbol *origsp = msp; |
| 2361 msp = (struct symbol *) calloc(1,sizeof(*msp)); |
| 2362 memset(msp, 0, sizeof(*msp)); |
| 2363 msp->type = MULTITERMINAL; |
| 2364 msp->nsubsym = 1; |
| 2365 msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*)); |
| 2366 msp->subsym[0] = origsp; |
| 2367 msp->name = origsp->name; |
| 2368 psp->rhs[psp->nrhs-1] = msp; |
| 2369 } |
| 2370 msp->nsubsym++; |
| 2371 msp->subsym = (struct symbol **) realloc(msp->subsym, |
| 2372 sizeof(struct symbol*)*msp->nsubsym); |
| 2373 msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]); |
| 2374 if( ISLOWER(x[1]) || ISLOWER(msp->subsym[0]->name[0]) ){ |
| 2375 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2376 "Cannot form a compound containing a non-terminal"); |
| 2377 psp->errorcnt++; |
| 2378 } |
| 2379 }else if( x[0]=='(' && psp->nrhs>0 ){ |
| 2380 psp->state = RHS_ALIAS_1; |
| 2381 }else{ |
| 2382 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2383 "Illegal character on RHS of rule: \"%s\".",x); |
| 2384 psp->errorcnt++; |
| 2385 psp->state = RESYNC_AFTER_RULE_ERROR; |
| 2386 } |
| 2387 break; |
| 2388 case RHS_ALIAS_1: |
| 2389 if( ISALPHA(x[0]) ){ |
| 2390 psp->alias[psp->nrhs-1] = x; |
| 2391 psp->state = RHS_ALIAS_2; |
| 2392 }else{ |
| 2393 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2394 "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n", |
| 2395 x,psp->rhs[psp->nrhs-1]->name); |
| 2396 psp->errorcnt++; |
| 2397 psp->state = RESYNC_AFTER_RULE_ERROR; |
| 2398 } |
| 2399 break; |
| 2400 case RHS_ALIAS_2: |
| 2401 if( x[0]==')' ){ |
| 2402 psp->state = IN_RHS; |
| 2403 }else{ |
| 2404 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2405 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); |
| 2406 psp->errorcnt++; |
| 2407 psp->state = RESYNC_AFTER_RULE_ERROR; |
| 2408 } |
| 2409 break; |
| 2410 case WAITING_FOR_DECL_KEYWORD: |
| 2411 if( ISALPHA(x[0]) ){ |
| 2412 psp->declkeyword = x; |
| 2413 psp->declargslot = 0; |
| 2414 psp->decllinenoslot = 0; |
| 2415 psp->insertLineMacro = 1; |
| 2416 psp->state = WAITING_FOR_DECL_ARG; |
| 2417 if( strcmp(x,"name")==0 ){ |
| 2418 psp->declargslot = &(psp->gp->name); |
| 2419 psp->insertLineMacro = 0; |
| 2420 }else if( strcmp(x,"include")==0 ){ |
| 2421 psp->declargslot = &(psp->gp->include); |
| 2422 }else if( strcmp(x,"code")==0 ){ |
| 2423 psp->declargslot = &(psp->gp->extracode); |
| 2424 }else if( strcmp(x,"token_destructor")==0 ){ |
| 2425 psp->declargslot = &psp->gp->tokendest; |
| 2426 }else if( strcmp(x,"default_destructor")==0 ){ |
| 2427 psp->declargslot = &psp->gp->vardest; |
| 2428 }else if( strcmp(x,"token_prefix")==0 ){ |
| 2429 psp->declargslot = &psp->gp->tokenprefix; |
| 2430 psp->insertLineMacro = 0; |
| 2431 }else if( strcmp(x,"syntax_error")==0 ){ |
| 2432 psp->declargslot = &(psp->gp->error); |
| 2433 }else if( strcmp(x,"parse_accept")==0 ){ |
| 2434 psp->declargslot = &(psp->gp->accept); |
| 2435 }else if( strcmp(x,"parse_failure")==0 ){ |
| 2436 psp->declargslot = &(psp->gp->failure); |
| 2437 }else if( strcmp(x,"stack_overflow")==0 ){ |
| 2438 psp->declargslot = &(psp->gp->overflow); |
| 2439 }else if( strcmp(x,"extra_argument")==0 ){ |
| 2440 psp->declargslot = &(psp->gp->arg); |
| 2441 psp->insertLineMacro = 0; |
| 2442 }else if( strcmp(x,"token_type")==0 ){ |
| 2443 psp->declargslot = &(psp->gp->tokentype); |
| 2444 psp->insertLineMacro = 0; |
| 2445 }else if( strcmp(x,"default_type")==0 ){ |
| 2446 psp->declargslot = &(psp->gp->vartype); |
| 2447 psp->insertLineMacro = 0; |
| 2448 }else if( strcmp(x,"stack_size")==0 ){ |
| 2449 psp->declargslot = &(psp->gp->stacksize); |
| 2450 psp->insertLineMacro = 0; |
| 2451 }else if( strcmp(x,"start_symbol")==0 ){ |
| 2452 psp->declargslot = &(psp->gp->start); |
| 2453 psp->insertLineMacro = 0; |
| 2454 }else if( strcmp(x,"left")==0 ){ |
| 2455 psp->preccounter++; |
| 2456 psp->declassoc = LEFT; |
| 2457 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; |
| 2458 }else if( strcmp(x,"right")==0 ){ |
| 2459 psp->preccounter++; |
| 2460 psp->declassoc = RIGHT; |
| 2461 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; |
| 2462 }else if( strcmp(x,"nonassoc")==0 ){ |
| 2463 psp->preccounter++; |
| 2464 psp->declassoc = NONE; |
| 2465 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; |
| 2466 }else if( strcmp(x,"destructor")==0 ){ |
| 2467 psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL; |
| 2468 }else if( strcmp(x,"type")==0 ){ |
| 2469 psp->state = WAITING_FOR_DATATYPE_SYMBOL; |
| 2470 }else if( strcmp(x,"fallback")==0 ){ |
| 2471 psp->fallback = 0; |
| 2472 psp->state = WAITING_FOR_FALLBACK_ID; |
| 2473 }else if( strcmp(x,"wildcard")==0 ){ |
| 2474 psp->state = WAITING_FOR_WILDCARD_ID; |
| 2475 }else if( strcmp(x,"token_class")==0 ){ |
| 2476 psp->state = WAITING_FOR_CLASS_ID; |
| 2477 }else{ |
| 2478 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2479 "Unknown declaration keyword: \"%%%s\".",x); |
| 2480 psp->errorcnt++; |
| 2481 psp->state = RESYNC_AFTER_DECL_ERROR; |
| 2482 } |
| 2483 }else{ |
| 2484 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2485 "Illegal declaration keyword: \"%s\".",x); |
| 2486 psp->errorcnt++; |
| 2487 psp->state = RESYNC_AFTER_DECL_ERROR; |
| 2488 } |
| 2489 break; |
| 2490 case WAITING_FOR_DESTRUCTOR_SYMBOL: |
| 2491 if( !ISALPHA(x[0]) ){ |
| 2492 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2493 "Symbol name missing after %%destructor keyword"); |
| 2494 psp->errorcnt++; |
| 2495 psp->state = RESYNC_AFTER_DECL_ERROR; |
| 2496 }else{ |
| 2497 struct symbol *sp = Symbol_new(x); |
| 2498 psp->declargslot = &sp->destructor; |
| 2499 psp->decllinenoslot = &sp->destLineno; |
| 2500 psp->insertLineMacro = 1; |
| 2501 psp->state = WAITING_FOR_DECL_ARG; |
| 2502 } |
| 2503 break; |
| 2504 case WAITING_FOR_DATATYPE_SYMBOL: |
| 2505 if( !ISALPHA(x[0]) ){ |
| 2506 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2507 "Symbol name missing after %%type keyword"); |
| 2508 psp->errorcnt++; |
| 2509 psp->state = RESYNC_AFTER_DECL_ERROR; |
| 2510 }else{ |
| 2511 struct symbol *sp = Symbol_find(x); |
| 2512 if((sp) && (sp->datatype)){ |
| 2513 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2514 "Symbol %%type \"%s\" already defined", x); |
| 2515 psp->errorcnt++; |
| 2516 psp->state = RESYNC_AFTER_DECL_ERROR; |
| 2517 }else{ |
| 2518 if (!sp){ |
| 2519 sp = Symbol_new(x); |
| 2520 } |
| 2521 psp->declargslot = &sp->datatype; |
| 2522 psp->insertLineMacro = 0; |
| 2523 psp->state = WAITING_FOR_DECL_ARG; |
| 2524 } |
| 2525 } |
| 2526 break; |
| 2527 case WAITING_FOR_PRECEDENCE_SYMBOL: |
| 2528 if( x[0]=='.' ){ |
| 2529 psp->state = WAITING_FOR_DECL_OR_RULE; |
| 2530 }else if( ISUPPER(x[0]) ){ |
| 2531 struct symbol *sp; |
| 2532 sp = Symbol_new(x); |
| 2533 if( sp->prec>=0 ){ |
| 2534 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2535 "Symbol \"%s\" has already be given a precedence.",x); |
| 2536 psp->errorcnt++; |
| 2537 }else{ |
| 2538 sp->prec = psp->preccounter; |
| 2539 sp->assoc = psp->declassoc; |
| 2540 } |
| 2541 }else{ |
| 2542 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2543 "Can't assign a precedence to \"%s\".",x); |
| 2544 psp->errorcnt++; |
| 2545 } |
| 2546 break; |
| 2547 case WAITING_FOR_DECL_ARG: |
| 2548 if( x[0]=='{' || x[0]=='\"' || ISALNUM(x[0]) ){ |
| 2549 const char *zOld, *zNew; |
| 2550 char *zBuf, *z; |
| 2551 int nOld, n, nLine = 0, nNew, nBack; |
| 2552 int addLineMacro; |
| 2553 char zLine[50]; |
| 2554 zNew = x; |
| 2555 if( zNew[0]=='"' || zNew[0]=='{' ) zNew++; |
| 2556 nNew = lemonStrlen(zNew); |
| 2557 if( *psp->declargslot ){ |
| 2558 zOld = *psp->declargslot; |
| 2559 }else{ |
| 2560 zOld = ""; |
| 2561 } |
| 2562 nOld = lemonStrlen(zOld); |
| 2563 n = nOld + nNew + 20; |
| 2564 addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro && |
| 2565 (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0); |
| 2566 if( addLineMacro ){ |
| 2567 for(z=psp->filename, nBack=0; *z; z++){ |
| 2568 if( *z=='\\' ) nBack++; |
| 2569 } |
| 2570 lemon_sprintf(zLine, "#line %d ", psp->tokenlineno); |
| 2571 nLine = lemonStrlen(zLine); |
| 2572 n += nLine + lemonStrlen(psp->filename) + nBack; |
| 2573 } |
| 2574 *psp->declargslot = (char *) realloc(*psp->declargslot, n); |
| 2575 zBuf = *psp->declargslot + nOld; |
| 2576 if( addLineMacro ){ |
| 2577 if( nOld && zBuf[-1]!='\n' ){ |
| 2578 *(zBuf++) = '\n'; |
| 2579 } |
| 2580 memcpy(zBuf, zLine, nLine); |
| 2581 zBuf += nLine; |
| 2582 *(zBuf++) = '"'; |
| 2583 for(z=psp->filename; *z; z++){ |
| 2584 if( *z=='\\' ){ |
| 2585 *(zBuf++) = '\\'; |
| 2586 } |
| 2587 *(zBuf++) = *z; |
| 2588 } |
| 2589 *(zBuf++) = '"'; |
| 2590 *(zBuf++) = '\n'; |
| 2591 } |
| 2592 if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){ |
| 2593 psp->decllinenoslot[0] = psp->tokenlineno; |
| 2594 } |
| 2595 memcpy(zBuf, zNew, nNew); |
| 2596 zBuf += nNew; |
| 2597 *zBuf = 0; |
| 2598 psp->state = WAITING_FOR_DECL_OR_RULE; |
| 2599 }else{ |
| 2600 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2601 "Illegal argument to %%%s: %s",psp->declkeyword,x); |
| 2602 psp->errorcnt++; |
| 2603 psp->state = RESYNC_AFTER_DECL_ERROR; |
| 2604 } |
| 2605 break; |
| 2606 case WAITING_FOR_FALLBACK_ID: |
| 2607 if( x[0]=='.' ){ |
| 2608 psp->state = WAITING_FOR_DECL_OR_RULE; |
| 2609 }else if( !ISUPPER(x[0]) ){ |
| 2610 ErrorMsg(psp->filename, psp->tokenlineno, |
| 2611 "%%fallback argument \"%s\" should be a token", x); |
| 2612 psp->errorcnt++; |
| 2613 }else{ |
| 2614 struct symbol *sp = Symbol_new(x); |
| 2615 if( psp->fallback==0 ){ |
| 2616 psp->fallback = sp; |
| 2617 }else if( sp->fallback ){ |
| 2618 ErrorMsg(psp->filename, psp->tokenlineno, |
| 2619 "More than one fallback assigned to token %s", x); |
| 2620 psp->errorcnt++; |
| 2621 }else{ |
| 2622 sp->fallback = psp->fallback; |
| 2623 psp->gp->has_fallback = 1; |
| 2624 } |
| 2625 } |
| 2626 break; |
| 2627 case WAITING_FOR_WILDCARD_ID: |
| 2628 if( x[0]=='.' ){ |
| 2629 psp->state = WAITING_FOR_DECL_OR_RULE; |
| 2630 }else if( !ISUPPER(x[0]) ){ |
| 2631 ErrorMsg(psp->filename, psp->tokenlineno, |
| 2632 "%%wildcard argument \"%s\" should be a token", x); |
| 2633 psp->errorcnt++; |
| 2634 }else{ |
| 2635 struct symbol *sp = Symbol_new(x); |
| 2636 if( psp->gp->wildcard==0 ){ |
| 2637 psp->gp->wildcard = sp; |
| 2638 }else{ |
| 2639 ErrorMsg(psp->filename, psp->tokenlineno, |
| 2640 "Extra wildcard to token: %s", x); |
| 2641 psp->errorcnt++; |
| 2642 } |
| 2643 } |
| 2644 break; |
| 2645 case WAITING_FOR_CLASS_ID: |
| 2646 if( !ISLOWER(x[0]) ){ |
| 2647 ErrorMsg(psp->filename, psp->tokenlineno, |
| 2648 "%%token_class must be followed by an identifier: ", x); |
| 2649 psp->errorcnt++; |
| 2650 psp->state = RESYNC_AFTER_DECL_ERROR; |
| 2651 }else if( Symbol_find(x) ){ |
| 2652 ErrorMsg(psp->filename, psp->tokenlineno, |
| 2653 "Symbol \"%s\" already used", x); |
| 2654 psp->errorcnt++; |
| 2655 psp->state = RESYNC_AFTER_DECL_ERROR; |
| 2656 }else{ |
| 2657 psp->tkclass = Symbol_new(x); |
| 2658 psp->tkclass->type = MULTITERMINAL; |
| 2659 psp->state = WAITING_FOR_CLASS_TOKEN; |
| 2660 } |
| 2661 break; |
| 2662 case WAITING_FOR_CLASS_TOKEN: |
| 2663 if( x[0]=='.' ){ |
| 2664 psp->state = WAITING_FOR_DECL_OR_RULE; |
| 2665 }else if( ISUPPER(x[0]) || ((x[0]=='|' || x[0]=='/') && ISUPPER(x[1])) ){ |
| 2666 struct symbol *msp = psp->tkclass; |
| 2667 msp->nsubsym++; |
| 2668 msp->subsym = (struct symbol **) realloc(msp->subsym, |
| 2669 sizeof(struct symbol*)*msp->nsubsym); |
| 2670 if( !ISUPPER(x[0]) ) x++; |
| 2671 msp->subsym[msp->nsubsym-1] = Symbol_new(x); |
| 2672 }else{ |
| 2673 ErrorMsg(psp->filename, psp->tokenlineno, |
| 2674 "%%token_class argument \"%s\" should be a token", x); |
| 2675 psp->errorcnt++; |
| 2676 psp->state = RESYNC_AFTER_DECL_ERROR; |
| 2677 } |
| 2678 break; |
| 2679 case RESYNC_AFTER_RULE_ERROR: |
| 2680 /* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; |
| 2681 ** break; */ |
| 2682 case RESYNC_AFTER_DECL_ERROR: |
| 2683 if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; |
| 2684 if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD; |
| 2685 break; |
| 2686 } |
| 2687 } |
| 2688 |
| 2689 /* Run the preprocessor over the input file text. The global variables |
| 2690 ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined |
| 2691 ** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and |
| 2692 ** comments them out. Text in between is also commented out as appropriate. |
| 2693 */ |
| 2694 static void preprocess_input(char *z){ |
| 2695 int i, j, k, n; |
| 2696 int exclude = 0; |
| 2697 int start = 0; |
| 2698 int lineno = 1; |
| 2699 int start_lineno = 1; |
| 2700 for(i=0; z[i]; i++){ |
| 2701 if( z[i]=='\n' ) lineno++; |
| 2702 if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue; |
| 2703 if( strncmp(&z[i],"%endif",6)==0 && ISSPACE(z[i+6]) ){ |
| 2704 if( exclude ){ |
| 2705 exclude--; |
| 2706 if( exclude==0 ){ |
| 2707 for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' '; |
| 2708 } |
| 2709 } |
| 2710 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; |
| 2711 }else if( (strncmp(&z[i],"%ifdef",6)==0 && ISSPACE(z[i+6])) |
| 2712 || (strncmp(&z[i],"%ifndef",7)==0 && ISSPACE(z[i+7])) ){ |
| 2713 if( exclude ){ |
| 2714 exclude++; |
| 2715 }else{ |
| 2716 for(j=i+7; ISSPACE(z[j]); j++){} |
| 2717 for(n=0; z[j+n] && !ISSPACE(z[j+n]); n++){} |
| 2718 exclude = 1; |
| 2719 for(k=0; k<nDefine; k++){ |
| 2720 if( strncmp(azDefine[k],&z[j],n)==0 && lemonStrlen(azDefine[k])==n ){ |
| 2721 exclude = 0; |
| 2722 break; |
| 2723 } |
| 2724 } |
| 2725 if( z[i+3]=='n' ) exclude = !exclude; |
| 2726 if( exclude ){ |
| 2727 start = i; |
| 2728 start_lineno = lineno; |
| 2729 } |
| 2730 } |
| 2731 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; |
| 2732 } |
| 2733 } |
| 2734 if( exclude ){ |
| 2735 fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno); |
| 2736 exit(1); |
| 2737 } |
| 2738 } |
| 2739 |
| 2740 /* In spite of its name, this function is really a scanner. It read |
| 2741 ** in the entire input file (all at once) then tokenizes it. Each |
| 2742 ** token is passed to the function "parseonetoken" which builds all |
| 2743 ** the appropriate data structures in the global state vector "gp". |
| 2744 */ |
| 2745 void Parse(struct lemon *gp) |
| 2746 { |
| 2747 struct pstate ps; |
| 2748 FILE *fp; |
| 2749 char *filebuf; |
| 2750 unsigned int filesize; |
| 2751 int lineno; |
| 2752 int c; |
| 2753 char *cp, *nextcp; |
| 2754 int startline = 0; |
| 2755 |
| 2756 memset(&ps, '\0', sizeof(ps)); |
| 2757 ps.gp = gp; |
| 2758 ps.filename = gp->filename; |
| 2759 ps.errorcnt = 0; |
| 2760 ps.state = INITIALIZE; |
| 2761 |
| 2762 /* Begin by reading the input file */ |
| 2763 fp = fopen(ps.filename,"rb"); |
| 2764 if( fp==0 ){ |
| 2765 ErrorMsg(ps.filename,0,"Can't open this file for reading."); |
| 2766 gp->errorcnt++; |
| 2767 return; |
| 2768 } |
| 2769 fseek(fp,0,2); |
| 2770 filesize = ftell(fp); |
| 2771 rewind(fp); |
| 2772 filebuf = (char *)malloc( filesize+1 ); |
| 2773 if( filesize>100000000 || filebuf==0 ){ |
| 2774 ErrorMsg(ps.filename,0,"Input file too large."); |
| 2775 gp->errorcnt++; |
| 2776 fclose(fp); |
| 2777 return; |
| 2778 } |
| 2779 if( fread(filebuf,1,filesize,fp)!=filesize ){ |
| 2780 ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.", |
| 2781 filesize); |
| 2782 free(filebuf); |
| 2783 gp->errorcnt++; |
| 2784 fclose(fp); |
| 2785 return; |
| 2786 } |
| 2787 fclose(fp); |
| 2788 filebuf[filesize] = 0; |
| 2789 |
| 2790 /* Make an initial pass through the file to handle %ifdef and %ifndef */ |
| 2791 preprocess_input(filebuf); |
| 2792 |
| 2793 /* Now scan the text of the input file */ |
| 2794 lineno = 1; |
| 2795 for(cp=filebuf; (c= *cp)!=0; ){ |
| 2796 if( c=='\n' ) lineno++; /* Keep track of the line number */ |
| 2797 if( ISSPACE(c) ){ cp++; continue; } /* Skip all white space */ |
| 2798 if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */ |
| 2799 cp+=2; |
| 2800 while( (c= *cp)!=0 && c!='\n' ) cp++; |
| 2801 continue; |
| 2802 } |
| 2803 if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */ |
| 2804 cp+=2; |
| 2805 while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){ |
| 2806 if( c=='\n' ) lineno++; |
| 2807 cp++; |
| 2808 } |
| 2809 if( c ) cp++; |
| 2810 continue; |
| 2811 } |
| 2812 ps.tokenstart = cp; /* Mark the beginning of the token */ |
| 2813 ps.tokenlineno = lineno; /* Linenumber on which token begins */ |
| 2814 if( c=='\"' ){ /* String literals */ |
| 2815 cp++; |
| 2816 while( (c= *cp)!=0 && c!='\"' ){ |
| 2817 if( c=='\n' ) lineno++; |
| 2818 cp++; |
| 2819 } |
| 2820 if( c==0 ){ |
| 2821 ErrorMsg(ps.filename,startline, |
| 2822 "String starting on this line is not terminated before the end of the file."); |
| 2823 ps.errorcnt++; |
| 2824 nextcp = cp; |
| 2825 }else{ |
| 2826 nextcp = cp+1; |
| 2827 } |
| 2828 }else if( c=='{' ){ /* A block of C code */ |
| 2829 int level; |
| 2830 cp++; |
| 2831 for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){ |
| 2832 if( c=='\n' ) lineno++; |
| 2833 else if( c=='{' ) level++; |
| 2834 else if( c=='}' ) level--; |
| 2835 else if( c=='/' && cp[1]=='*' ){ /* Skip comments */ |
| 2836 int prevc; |
| 2837 cp = &cp[2]; |
| 2838 prevc = 0; |
| 2839 while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){ |
| 2840 if( c=='\n' ) lineno++; |
| 2841 prevc = c; |
| 2842 cp++; |
| 2843 } |
| 2844 }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */ |
| 2845 cp = &cp[2]; |
| 2846 while( (c= *cp)!=0 && c!='\n' ) cp++; |
| 2847 if( c ) lineno++; |
| 2848 }else if( c=='\'' || c=='\"' ){ /* String a character literals */ |
| 2849 int startchar, prevc; |
| 2850 startchar = c; |
| 2851 prevc = 0; |
| 2852 for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){ |
| 2853 if( c=='\n' ) lineno++; |
| 2854 if( prevc=='\\' ) prevc = 0; |
| 2855 else prevc = c; |
| 2856 } |
| 2857 } |
| 2858 } |
| 2859 if( c==0 ){ |
| 2860 ErrorMsg(ps.filename,ps.tokenlineno, |
| 2861 "C code starting on this line is not terminated before the end of the file."); |
| 2862 ps.errorcnt++; |
| 2863 nextcp = cp; |
| 2864 }else{ |
| 2865 nextcp = cp+1; |
| 2866 } |
| 2867 }else if( ISALNUM(c) ){ /* Identifiers */ |
| 2868 while( (c= *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++; |
| 2869 nextcp = cp; |
| 2870 }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */ |
| 2871 cp += 3; |
| 2872 nextcp = cp; |
| 2873 }else if( (c=='/' || c=='|') && ISALPHA(cp[1]) ){ |
| 2874 cp += 2; |
| 2875 while( (c = *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++; |
| 2876 nextcp = cp; |
| 2877 }else{ /* All other (one character) operators */ |
| 2878 cp++; |
| 2879 nextcp = cp; |
| 2880 } |
| 2881 c = *cp; |
| 2882 *cp = 0; /* Null terminate the token */ |
| 2883 parseonetoken(&ps); /* Parse the token */ |
| 2884 *cp = (char)c; /* Restore the buffer */ |
| 2885 cp = nextcp; |
| 2886 } |
| 2887 free(filebuf); /* Release the buffer after parsing */ |
| 2888 gp->rule = ps.firstrule; |
| 2889 gp->errorcnt = ps.errorcnt; |
| 2890 } |
| 2891 /*************************** From the file "plink.c" *********************/ |
| 2892 /* |
| 2893 ** Routines processing configuration follow-set propagation links |
| 2894 ** in the LEMON parser generator. |
| 2895 */ |
| 2896 static struct plink *plink_freelist = 0; |
| 2897 |
| 2898 /* Allocate a new plink */ |
| 2899 struct plink *Plink_new(){ |
| 2900 struct plink *newlink; |
| 2901 |
| 2902 if( plink_freelist==0 ){ |
| 2903 int i; |
| 2904 int amt = 100; |
| 2905 plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) ); |
| 2906 if( plink_freelist==0 ){ |
| 2907 fprintf(stderr, |
| 2908 "Unable to allocate memory for a new follow-set propagation link.\n"); |
| 2909 exit(1); |
| 2910 } |
| 2911 for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1]; |
| 2912 plink_freelist[amt-1].next = 0; |
| 2913 } |
| 2914 newlink = plink_freelist; |
| 2915 plink_freelist = plink_freelist->next; |
| 2916 return newlink; |
| 2917 } |
| 2918 |
| 2919 /* Add a plink to a plink list */ |
| 2920 void Plink_add(struct plink **plpp, struct config *cfp) |
| 2921 { |
| 2922 struct plink *newlink; |
| 2923 newlink = Plink_new(); |
| 2924 newlink->next = *plpp; |
| 2925 *plpp = newlink; |
| 2926 newlink->cfp = cfp; |
| 2927 } |
| 2928 |
| 2929 /* Transfer every plink on the list "from" to the list "to" */ |
| 2930 void Plink_copy(struct plink **to, struct plink *from) |
| 2931 { |
| 2932 struct plink *nextpl; |
| 2933 while( from ){ |
| 2934 nextpl = from->next; |
| 2935 from->next = *to; |
| 2936 *to = from; |
| 2937 from = nextpl; |
| 2938 } |
| 2939 } |
| 2940 |
| 2941 /* Delete every plink on the list */ |
| 2942 void Plink_delete(struct plink *plp) |
| 2943 { |
| 2944 struct plink *nextpl; |
| 2945 |
| 2946 while( plp ){ |
| 2947 nextpl = plp->next; |
| 2948 plp->next = plink_freelist; |
| 2949 plink_freelist = plp; |
| 2950 plp = nextpl; |
| 2951 } |
| 2952 } |
| 2953 /*********************** From the file "report.c" **************************/ |
| 2954 /* |
| 2955 ** Procedures for generating reports and tables in the LEMON parser generator. |
| 2956 */ |
| 2957 |
| 2958 /* Generate a filename with the given suffix. Space to hold the |
| 2959 ** name comes from malloc() and must be freed by the calling |
| 2960 ** function. |
| 2961 */ |
| 2962 PRIVATE char *file_makename(struct lemon *lemp, const char *suffix) |
| 2963 { |
| 2964 char *name; |
| 2965 char *cp; |
| 2966 |
| 2967 name = (char*)malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 ); |
| 2968 if( name==0 ){ |
| 2969 fprintf(stderr,"Can't allocate space for a filename.\n"); |
| 2970 exit(1); |
| 2971 } |
| 2972 lemon_strcpy(name,lemp->filename); |
| 2973 cp = strrchr(name,'.'); |
| 2974 if( cp ) *cp = 0; |
| 2975 lemon_strcat(name,suffix); |
| 2976 return name; |
| 2977 } |
| 2978 |
| 2979 /* Open a file with a name based on the name of the input file, |
| 2980 ** but with a different (specified) suffix, and return a pointer |
| 2981 ** to the stream */ |
| 2982 PRIVATE FILE *file_open( |
| 2983 struct lemon *lemp, |
| 2984 const char *suffix, |
| 2985 const char *mode |
| 2986 ){ |
| 2987 FILE *fp; |
| 2988 |
| 2989 if( lemp->outname ) free(lemp->outname); |
| 2990 lemp->outname = file_makename(lemp, suffix); |
| 2991 fp = fopen(lemp->outname,mode); |
| 2992 if( fp==0 && *mode=='w' ){ |
| 2993 fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname); |
| 2994 lemp->errorcnt++; |
| 2995 return 0; |
| 2996 } |
| 2997 return fp; |
| 2998 } |
| 2999 |
| 3000 /* Duplicate the input file without comments and without actions |
| 3001 ** on rules */ |
| 3002 void Reprint(struct lemon *lemp) |
| 3003 { |
| 3004 struct rule *rp; |
| 3005 struct symbol *sp; |
| 3006 int i, j, maxlen, len, ncolumns, skip; |
| 3007 printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename); |
| 3008 maxlen = 10; |
| 3009 for(i=0; i<lemp->nsymbol; i++){ |
| 3010 sp = lemp->symbols[i]; |
| 3011 len = lemonStrlen(sp->name); |
| 3012 if( len>maxlen ) maxlen = len; |
| 3013 } |
| 3014 ncolumns = 76/(maxlen+5); |
| 3015 if( ncolumns<1 ) ncolumns = 1; |
| 3016 skip = (lemp->nsymbol + ncolumns - 1)/ncolumns; |
| 3017 for(i=0; i<skip; i++){ |
| 3018 printf("//"); |
| 3019 for(j=i; j<lemp->nsymbol; j+=skip){ |
| 3020 sp = lemp->symbols[j]; |
| 3021 assert( sp->index==j ); |
| 3022 printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name); |
| 3023 } |
| 3024 printf("\n"); |
| 3025 } |
| 3026 for(rp=lemp->rule; rp; rp=rp->next){ |
| 3027 printf("%s",rp->lhs->name); |
| 3028 /* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */ |
| 3029 printf(" ::="); |
| 3030 for(i=0; i<rp->nrhs; i++){ |
| 3031 sp = rp->rhs[i]; |
| 3032 if( sp->type==MULTITERMINAL ){ |
| 3033 printf(" %s", sp->subsym[0]->name); |
| 3034 for(j=1; j<sp->nsubsym; j++){ |
| 3035 printf("|%s", sp->subsym[j]->name); |
| 3036 } |
| 3037 }else{ |
| 3038 printf(" %s", sp->name); |
| 3039 } |
| 3040 /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */ |
| 3041 } |
| 3042 printf("."); |
| 3043 if( rp->precsym ) printf(" [%s]",rp->precsym->name); |
| 3044 /* if( rp->code ) printf("\n %s",rp->code); */ |
| 3045 printf("\n"); |
| 3046 } |
| 3047 } |
| 3048 |
| 3049 /* Print a single rule. |
| 3050 */ |
| 3051 void RulePrint(FILE *fp, struct rule *rp, int iCursor){ |
| 3052 struct symbol *sp; |
| 3053 int i, j; |
| 3054 fprintf(fp,"%s ::=",rp->lhs->name); |
| 3055 for(i=0; i<=rp->nrhs; i++){ |
| 3056 if( i==iCursor ) fprintf(fp," *"); |
| 3057 if( i==rp->nrhs ) break; |
| 3058 sp = rp->rhs[i]; |
| 3059 if( sp->type==MULTITERMINAL ){ |
| 3060 fprintf(fp," %s", sp->subsym[0]->name); |
| 3061 for(j=1; j<sp->nsubsym; j++){ |
| 3062 fprintf(fp,"|%s",sp->subsym[j]->name); |
| 3063 } |
| 3064 }else{ |
| 3065 fprintf(fp," %s", sp->name); |
| 3066 } |
| 3067 } |
| 3068 } |
| 3069 |
| 3070 /* Print the rule for a configuration. |
| 3071 */ |
| 3072 void ConfigPrint(FILE *fp, struct config *cfp){ |
| 3073 RulePrint(fp, cfp->rp, cfp->dot); |
| 3074 } |
| 3075 |
| 3076 /* #define TEST */ |
| 3077 #if 0 |
| 3078 /* Print a set */ |
| 3079 PRIVATE void SetPrint(out,set,lemp) |
| 3080 FILE *out; |
| 3081 char *set; |
| 3082 struct lemon *lemp; |
| 3083 { |
| 3084 int i; |
| 3085 char *spacer; |
| 3086 spacer = ""; |
| 3087 fprintf(out,"%12s[",""); |
| 3088 for(i=0; i<lemp->nterminal; i++){ |
| 3089 if( SetFind(set,i) ){ |
| 3090 fprintf(out,"%s%s",spacer,lemp->symbols[i]->name); |
| 3091 spacer = " "; |
| 3092 } |
| 3093 } |
| 3094 fprintf(out,"]\n"); |
| 3095 } |
| 3096 |
| 3097 /* Print a plink chain */ |
| 3098 PRIVATE void PlinkPrint(out,plp,tag) |
| 3099 FILE *out; |
| 3100 struct plink *plp; |
| 3101 char *tag; |
| 3102 { |
| 3103 while( plp ){ |
| 3104 fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum); |
| 3105 ConfigPrint(out,plp->cfp); |
| 3106 fprintf(out,"\n"); |
| 3107 plp = plp->next; |
| 3108 } |
| 3109 } |
| 3110 #endif |
| 3111 |
| 3112 /* Print an action to the given file descriptor. Return FALSE if |
| 3113 ** nothing was actually printed. |
| 3114 */ |
| 3115 int PrintAction( |
| 3116 struct action *ap, /* The action to print */ |
| 3117 FILE *fp, /* Print the action here */ |
| 3118 int indent /* Indent by this amount */ |
| 3119 ){ |
| 3120 int result = 1; |
| 3121 switch( ap->type ){ |
| 3122 case SHIFT: { |
| 3123 struct state *stp = ap->x.stp; |
| 3124 fprintf(fp,"%*s shift %-7d",indent,ap->sp->name,stp->statenum); |
| 3125 break; |
| 3126 } |
| 3127 case REDUCE: { |
| 3128 struct rule *rp = ap->x.rp; |
| 3129 fprintf(fp,"%*s reduce %-7d",indent,ap->sp->name,rp->iRule); |
| 3130 RulePrint(fp, rp, -1); |
| 3131 break; |
| 3132 } |
| 3133 case SHIFTREDUCE: { |
| 3134 struct rule *rp = ap->x.rp; |
| 3135 fprintf(fp,"%*s shift-reduce %-7d",indent,ap->sp->name,rp->iRule); |
| 3136 RulePrint(fp, rp, -1); |
| 3137 break; |
| 3138 } |
| 3139 case ACCEPT: |
| 3140 fprintf(fp,"%*s accept",indent,ap->sp->name); |
| 3141 break; |
| 3142 case ERROR: |
| 3143 fprintf(fp,"%*s error",indent,ap->sp->name); |
| 3144 break; |
| 3145 case SRCONFLICT: |
| 3146 case RRCONFLICT: |
| 3147 fprintf(fp,"%*s reduce %-7d ** Parsing conflict **", |
| 3148 indent,ap->sp->name,ap->x.rp->iRule); |
| 3149 break; |
| 3150 case SSCONFLICT: |
| 3151 fprintf(fp,"%*s shift %-7d ** Parsing conflict **", |
| 3152 indent,ap->sp->name,ap->x.stp->statenum); |
| 3153 break; |
| 3154 case SH_RESOLVED: |
| 3155 if( showPrecedenceConflict ){ |
| 3156 fprintf(fp,"%*s shift %-7d -- dropped by precedence", |
| 3157 indent,ap->sp->name,ap->x.stp->statenum); |
| 3158 }else{ |
| 3159 result = 0; |
| 3160 } |
| 3161 break; |
| 3162 case RD_RESOLVED: |
| 3163 if( showPrecedenceConflict ){ |
| 3164 fprintf(fp,"%*s reduce %-7d -- dropped by precedence", |
| 3165 indent,ap->sp->name,ap->x.rp->iRule); |
| 3166 }else{ |
| 3167 result = 0; |
| 3168 } |
| 3169 break; |
| 3170 case NOT_USED: |
| 3171 result = 0; |
| 3172 break; |
| 3173 } |
| 3174 if( result && ap->spOpt ){ |
| 3175 fprintf(fp," /* because %s==%s */", ap->sp->name, ap->spOpt->name); |
| 3176 } |
| 3177 return result; |
| 3178 } |
| 3179 |
| 3180 /* Generate the "*.out" log file */ |
| 3181 void ReportOutput(struct lemon *lemp) |
| 3182 { |
| 3183 int i; |
| 3184 struct state *stp; |
| 3185 struct config *cfp; |
| 3186 struct action *ap; |
| 3187 FILE *fp; |
| 3188 |
| 3189 fp = file_open(lemp,".out","wb"); |
| 3190 if( fp==0 ) return; |
| 3191 for(i=0; i<lemp->nxstate; i++){ |
| 3192 stp = lemp->sorted[i]; |
| 3193 fprintf(fp,"State %d:\n",stp->statenum); |
| 3194 if( lemp->basisflag ) cfp=stp->bp; |
| 3195 else cfp=stp->cfp; |
| 3196 while( cfp ){ |
| 3197 char buf[20]; |
| 3198 if( cfp->dot==cfp->rp->nrhs ){ |
| 3199 lemon_sprintf(buf,"(%d)",cfp->rp->iRule); |
| 3200 fprintf(fp," %5s ",buf); |
| 3201 }else{ |
| 3202 fprintf(fp," "); |
| 3203 } |
| 3204 ConfigPrint(fp,cfp); |
| 3205 fprintf(fp,"\n"); |
| 3206 #if 0 |
| 3207 SetPrint(fp,cfp->fws,lemp); |
| 3208 PlinkPrint(fp,cfp->fplp,"To "); |
| 3209 PlinkPrint(fp,cfp->bplp,"From"); |
| 3210 #endif |
| 3211 if( lemp->basisflag ) cfp=cfp->bp; |
| 3212 else cfp=cfp->next; |
| 3213 } |
| 3214 fprintf(fp,"\n"); |
| 3215 for(ap=stp->ap; ap; ap=ap->next){ |
| 3216 if( PrintAction(ap,fp,30) ) fprintf(fp,"\n"); |
| 3217 } |
| 3218 fprintf(fp,"\n"); |
| 3219 } |
| 3220 fprintf(fp, "----------------------------------------------------\n"); |
| 3221 fprintf(fp, "Symbols:\n"); |
| 3222 for(i=0; i<lemp->nsymbol; i++){ |
| 3223 int j; |
| 3224 struct symbol *sp; |
| 3225 |
| 3226 sp = lemp->symbols[i]; |
| 3227 fprintf(fp, " %3d: %s", i, sp->name); |
| 3228 if( sp->type==NONTERMINAL ){ |
| 3229 fprintf(fp, ":"); |
| 3230 if( sp->lambda ){ |
| 3231 fprintf(fp, " <lambda>"); |
| 3232 } |
| 3233 for(j=0; j<lemp->nterminal; j++){ |
| 3234 if( sp->firstset && SetFind(sp->firstset, j) ){ |
| 3235 fprintf(fp, " %s", lemp->symbols[j]->name); |
| 3236 } |
| 3237 } |
| 3238 } |
| 3239 fprintf(fp, "\n"); |
| 3240 } |
| 3241 fclose(fp); |
| 3242 return; |
| 3243 } |
| 3244 |
| 3245 /* Search for the file "name" which is in the same directory as |
| 3246 ** the exacutable */ |
| 3247 PRIVATE char *pathsearch(char *argv0, char *name, int modemask) |
| 3248 { |
| 3249 const char *pathlist; |
| 3250 char *pathbufptr; |
| 3251 char *pathbuf; |
| 3252 char *path,*cp; |
| 3253 char c; |
| 3254 |
| 3255 #ifdef __WIN32__ |
| 3256 cp = strrchr(argv0,'\\'); |
| 3257 #else |
| 3258 cp = strrchr(argv0,'/'); |
| 3259 #endif |
| 3260 if( cp ){ |
| 3261 c = *cp; |
| 3262 *cp = 0; |
| 3263 path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 ); |
| 3264 if( path ) lemon_sprintf(path,"%s/%s",argv0,name); |
| 3265 *cp = c; |
| 3266 }else{ |
| 3267 pathlist = getenv("PATH"); |
| 3268 if( pathlist==0 ) pathlist = ".:/bin:/usr/bin"; |
| 3269 pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 ); |
| 3270 path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 ); |
| 3271 if( (pathbuf != 0) && (path!=0) ){ |
| 3272 pathbufptr = pathbuf; |
| 3273 lemon_strcpy(pathbuf, pathlist); |
| 3274 while( *pathbuf ){ |
| 3275 cp = strchr(pathbuf,':'); |
| 3276 if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)]; |
| 3277 c = *cp; |
| 3278 *cp = 0; |
| 3279 lemon_sprintf(path,"%s/%s",pathbuf,name); |
| 3280 *cp = c; |
| 3281 if( c==0 ) pathbuf[0] = 0; |
| 3282 else pathbuf = &cp[1]; |
| 3283 if( access(path,modemask)==0 ) break; |
| 3284 } |
| 3285 free(pathbufptr); |
| 3286 } |
| 3287 } |
| 3288 return path; |
| 3289 } |
| 3290 |
| 3291 /* Given an action, compute the integer value for that action |
| 3292 ** which is to be put in the action table of the generated machine. |
| 3293 ** Return negative if no action should be generated. |
| 3294 */ |
| 3295 PRIVATE int compute_action(struct lemon *lemp, struct action *ap) |
| 3296 { |
| 3297 int act; |
| 3298 switch( ap->type ){ |
| 3299 case SHIFT: act = ap->x.stp->statenum; break; |
| 3300 case SHIFTREDUCE: act = ap->x.rp->iRule + lemp->nstate; break; |
| 3301 case REDUCE: act = ap->x.rp->iRule + lemp->nstate+lemp->nrule; break; |
| 3302 case ERROR: act = lemp->nstate + lemp->nrule*2; break; |
| 3303 case ACCEPT: act = lemp->nstate + lemp->nrule*2 + 1; break; |
| 3304 default: act = -1; break; |
| 3305 } |
| 3306 return act; |
| 3307 } |
| 3308 |
| 3309 #define LINESIZE 1000 |
| 3310 /* The next cluster of routines are for reading the template file |
| 3311 ** and writing the results to the generated parser */ |
| 3312 /* The first function transfers data from "in" to "out" until |
| 3313 ** a line is seen which begins with "%%". The line number is |
| 3314 ** tracked. |
| 3315 ** |
| 3316 ** if name!=0, then any word that begin with "Parse" is changed to |
| 3317 ** begin with *name instead. |
| 3318 */ |
| 3319 PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno) |
| 3320 { |
| 3321 int i, iStart; |
| 3322 char line[LINESIZE]; |
| 3323 while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){ |
| 3324 (*lineno)++; |
| 3325 iStart = 0; |
| 3326 if( name ){ |
| 3327 for(i=0; line[i]; i++){ |
| 3328 if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0 |
| 3329 && (i==0 || !ISALPHA(line[i-1])) |
| 3330 ){ |
| 3331 if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]); |
| 3332 fprintf(out,"%s",name); |
| 3333 i += 4; |
| 3334 iStart = i+1; |
| 3335 } |
| 3336 } |
| 3337 } |
| 3338 fprintf(out,"%s",&line[iStart]); |
| 3339 } |
| 3340 } |
| 3341 |
| 3342 /* The next function finds the template file and opens it, returning |
| 3343 ** a pointer to the opened file. */ |
| 3344 PRIVATE FILE *tplt_open(struct lemon *lemp) |
| 3345 { |
| 3346 static char templatename[] = "lempar.c"; |
| 3347 char buf[1000]; |
| 3348 FILE *in; |
| 3349 char *tpltname; |
| 3350 char *cp; |
| 3351 |
| 3352 /* first, see if user specified a template filename on the command line. */ |
| 3353 if (user_templatename != 0) { |
| 3354 if( access(user_templatename,004)==-1 ){ |
| 3355 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", |
| 3356 user_templatename); |
| 3357 lemp->errorcnt++; |
| 3358 return 0; |
| 3359 } |
| 3360 in = fopen(user_templatename,"rb"); |
| 3361 if( in==0 ){ |
| 3362 fprintf(stderr,"Can't open the template file \"%s\".\n", |
| 3363 user_templatename); |
| 3364 lemp->errorcnt++; |
| 3365 return 0; |
| 3366 } |
| 3367 return in; |
| 3368 } |
| 3369 |
| 3370 cp = strrchr(lemp->filename,'.'); |
| 3371 if( cp ){ |
| 3372 lemon_sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename); |
| 3373 }else{ |
| 3374 lemon_sprintf(buf,"%s.lt",lemp->filename); |
| 3375 } |
| 3376 if( access(buf,004)==0 ){ |
| 3377 tpltname = buf; |
| 3378 }else if( access(templatename,004)==0 ){ |
| 3379 tpltname = templatename; |
| 3380 }else{ |
| 3381 tpltname = pathsearch(lemp->argv0,templatename,0); |
| 3382 } |
| 3383 if( tpltname==0 ){ |
| 3384 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", |
| 3385 templatename); |
| 3386 lemp->errorcnt++; |
| 3387 return 0; |
| 3388 } |
| 3389 in = fopen(tpltname,"rb"); |
| 3390 if( in==0 ){ |
| 3391 fprintf(stderr,"Can't open the template file \"%s\".\n",templatename); |
| 3392 lemp->errorcnt++; |
| 3393 return 0; |
| 3394 } |
| 3395 return in; |
| 3396 } |
| 3397 |
| 3398 /* Print a #line directive line to the output file. */ |
| 3399 PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename) |
| 3400 { |
| 3401 fprintf(out,"#line %d \"",lineno); |
| 3402 while( *filename ){ |
| 3403 if( *filename == '\\' ) putc('\\',out); |
| 3404 putc(*filename,out); |
| 3405 filename++; |
| 3406 } |
| 3407 fprintf(out,"\"\n"); |
| 3408 } |
| 3409 |
| 3410 /* Print a string to the file and keep the linenumber up to date */ |
| 3411 PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno) |
| 3412 { |
| 3413 if( str==0 ) return; |
| 3414 while( *str ){ |
| 3415 putc(*str,out); |
| 3416 if( *str=='\n' ) (*lineno)++; |
| 3417 str++; |
| 3418 } |
| 3419 if( str[-1]!='\n' ){ |
| 3420 putc('\n',out); |
| 3421 (*lineno)++; |
| 3422 } |
| 3423 if (!lemp->nolinenosflag) { |
| 3424 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); |
| 3425 } |
| 3426 return; |
| 3427 } |
| 3428 |
| 3429 /* |
| 3430 ** The following routine emits code for the destructor for the |
| 3431 ** symbol sp |
| 3432 */ |
| 3433 void emit_destructor_code( |
| 3434 FILE *out, |
| 3435 struct symbol *sp, |
| 3436 struct lemon *lemp, |
| 3437 int *lineno |
| 3438 ){ |
| 3439 char *cp = 0; |
| 3440 |
| 3441 if( sp->type==TERMINAL ){ |
| 3442 cp = lemp->tokendest; |
| 3443 if( cp==0 ) return; |
| 3444 fprintf(out,"{\n"); (*lineno)++; |
| 3445 }else if( sp->destructor ){ |
| 3446 cp = sp->destructor; |
| 3447 fprintf(out,"{\n"); (*lineno)++; |
| 3448 if( !lemp->nolinenosflag ){ |
| 3449 (*lineno)++; |
| 3450 tplt_linedir(out,sp->destLineno,lemp->filename); |
| 3451 } |
| 3452 }else if( lemp->vardest ){ |
| 3453 cp = lemp->vardest; |
| 3454 if( cp==0 ) return; |
| 3455 fprintf(out,"{\n"); (*lineno)++; |
| 3456 }else{ |
| 3457 assert( 0 ); /* Cannot happen */ |
| 3458 } |
| 3459 for(; *cp; cp++){ |
| 3460 if( *cp=='$' && cp[1]=='$' ){ |
| 3461 fprintf(out,"(yypminor->yy%d)",sp->dtnum); |
| 3462 cp++; |
| 3463 continue; |
| 3464 } |
| 3465 if( *cp=='\n' ) (*lineno)++; |
| 3466 fputc(*cp,out); |
| 3467 } |
| 3468 fprintf(out,"\n"); (*lineno)++; |
| 3469 if (!lemp->nolinenosflag) { |
| 3470 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); |
| 3471 } |
| 3472 fprintf(out,"}\n"); (*lineno)++; |
| 3473 return; |
| 3474 } |
| 3475 |
| 3476 /* |
| 3477 ** Return TRUE (non-zero) if the given symbol has a destructor. |
| 3478 */ |
| 3479 int has_destructor(struct symbol *sp, struct lemon *lemp) |
| 3480 { |
| 3481 int ret; |
| 3482 if( sp->type==TERMINAL ){ |
| 3483 ret = lemp->tokendest!=0; |
| 3484 }else{ |
| 3485 ret = lemp->vardest!=0 || sp->destructor!=0; |
| 3486 } |
| 3487 return ret; |
| 3488 } |
| 3489 |
| 3490 /* |
| 3491 ** Append text to a dynamically allocated string. If zText is 0 then |
| 3492 ** reset the string to be empty again. Always return the complete text |
| 3493 ** of the string (which is overwritten with each call). |
| 3494 ** |
| 3495 ** n bytes of zText are stored. If n==0 then all of zText up to the first |
| 3496 ** \000 terminator is stored. zText can contain up to two instances of |
| 3497 ** %d. The values of p1 and p2 are written into the first and second |
| 3498 ** %d. |
| 3499 ** |
| 3500 ** If n==-1, then the previous character is overwritten. |
| 3501 */ |
| 3502 PRIVATE char *append_str(const char *zText, int n, int p1, int p2){ |
| 3503 static char empty[1] = { 0 }; |
| 3504 static char *z = 0; |
| 3505 static int alloced = 0; |
| 3506 static int used = 0; |
| 3507 int c; |
| 3508 char zInt[40]; |
| 3509 if( zText==0 ){ |
| 3510 if( used==0 && z!=0 ) z[0] = 0; |
| 3511 used = 0; |
| 3512 return z; |
| 3513 } |
| 3514 if( n<=0 ){ |
| 3515 if( n<0 ){ |
| 3516 used += n; |
| 3517 assert( used>=0 ); |
| 3518 } |
| 3519 n = lemonStrlen(zText); |
| 3520 } |
| 3521 if( (int) (n+sizeof(zInt)*2+used) >= alloced ){ |
| 3522 alloced = n + sizeof(zInt)*2 + used + 200; |
| 3523 z = (char *) realloc(z, alloced); |
| 3524 } |
| 3525 if( z==0 ) return empty; |
| 3526 while( n-- > 0 ){ |
| 3527 c = *(zText++); |
| 3528 if( c=='%' && n>0 && zText[0]=='d' ){ |
| 3529 lemon_sprintf(zInt, "%d", p1); |
| 3530 p1 = p2; |
| 3531 lemon_strcpy(&z[used], zInt); |
| 3532 used += lemonStrlen(&z[used]); |
| 3533 zText++; |
| 3534 n--; |
| 3535 }else{ |
| 3536 z[used++] = (char)c; |
| 3537 } |
| 3538 } |
| 3539 z[used] = 0; |
| 3540 return z; |
| 3541 } |
| 3542 |
| 3543 /* |
| 3544 ** Write and transform the rp->code string so that symbols are expanded. |
| 3545 ** Populate the rp->codePrefix and rp->codeSuffix strings, as appropriate. |
| 3546 ** |
| 3547 ** Return 1 if the expanded code requires that "yylhsminor" local variable |
| 3548 ** to be defined. |
| 3549 */ |
| 3550 PRIVATE int translate_code(struct lemon *lemp, struct rule *rp){ |
| 3551 char *cp, *xp; |
| 3552 int i; |
| 3553 int rc = 0; /* True if yylhsminor is used */ |
| 3554 int dontUseRhs0 = 0; /* If true, use of left-most RHS label is illegal */ |
| 3555 const char *zSkip = 0; /* The zOvwrt comment within rp->code, or NULL */ |
| 3556 char lhsused = 0; /* True if the LHS element has been used */ |
| 3557 char lhsdirect; /* True if LHS writes directly into stack */ |
| 3558 char used[MAXRHS]; /* True for each RHS element which is used */ |
| 3559 char zLhs[50]; /* Convert the LHS symbol into this string */ |
| 3560 char zOvwrt[900]; /* Comment that to allow LHS to overwrite RHS */ |
| 3561 |
| 3562 for(i=0; i<rp->nrhs; i++) used[i] = 0; |
| 3563 lhsused = 0; |
| 3564 |
| 3565 if( rp->code==0 ){ |
| 3566 static char newlinestr[2] = { '\n', '\0' }; |
| 3567 rp->code = newlinestr; |
| 3568 rp->line = rp->ruleline; |
| 3569 rp->noCode = 1; |
| 3570 }else{ |
| 3571 rp->noCode = 0; |
| 3572 } |
| 3573 |
| 3574 |
| 3575 if( rp->nrhs==0 ){ |
| 3576 /* If there are no RHS symbols, then writing directly to the LHS is ok */ |
| 3577 lhsdirect = 1; |
| 3578 }else if( rp->rhsalias[0]==0 ){ |
| 3579 /* The left-most RHS symbol has no value. LHS direct is ok. But |
| 3580 ** we have to call the distructor on the RHS symbol first. */ |
| 3581 lhsdirect = 1; |
| 3582 if( has_destructor(rp->rhs[0],lemp) ){ |
| 3583 append_str(0,0,0,0); |
| 3584 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0, |
| 3585 rp->rhs[0]->index,1-rp->nrhs); |
| 3586 rp->codePrefix = Strsafe(append_str(0,0,0,0)); |
| 3587 rp->noCode = 0; |
| 3588 } |
| 3589 }else if( rp->lhsalias==0 ){ |
| 3590 /* There is no LHS value symbol. */ |
| 3591 lhsdirect = 1; |
| 3592 }else if( strcmp(rp->lhsalias,rp->rhsalias[0])==0 ){ |
| 3593 /* The LHS symbol and the left-most RHS symbol are the same, so |
| 3594 ** direct writing is allowed */ |
| 3595 lhsdirect = 1; |
| 3596 lhsused = 1; |
| 3597 used[0] = 1; |
| 3598 if( rp->lhs->dtnum!=rp->rhs[0]->dtnum ){ |
| 3599 ErrorMsg(lemp->filename,rp->ruleline, |
| 3600 "%s(%s) and %s(%s) share the same label but have " |
| 3601 "different datatypes.", |
| 3602 rp->lhs->name, rp->lhsalias, rp->rhs[0]->name, rp->rhsalias[0]); |
| 3603 lemp->errorcnt++; |
| 3604 } |
| 3605 }else{ |
| 3606 lemon_sprintf(zOvwrt, "/*%s-overwrites-%s*/", |
| 3607 rp->lhsalias, rp->rhsalias[0]); |
| 3608 zSkip = strstr(rp->code, zOvwrt); |
| 3609 if( zSkip!=0 ){ |
| 3610 /* The code contains a special comment that indicates that it is safe |
| 3611 ** for the LHS label to overwrite left-most RHS label. */ |
| 3612 lhsdirect = 1; |
| 3613 }else{ |
| 3614 lhsdirect = 0; |
| 3615 } |
| 3616 } |
| 3617 if( lhsdirect ){ |
| 3618 sprintf(zLhs, "yymsp[%d].minor.yy%d",1-rp->nrhs,rp->lhs->dtnum); |
| 3619 }else{ |
| 3620 rc = 1; |
| 3621 sprintf(zLhs, "yylhsminor.yy%d",rp->lhs->dtnum); |
| 3622 } |
| 3623 |
| 3624 append_str(0,0,0,0); |
| 3625 |
| 3626 /* This const cast is wrong but harmless, if we're careful. */ |
| 3627 for(cp=(char *)rp->code; *cp; cp++){ |
| 3628 if( cp==zSkip ){ |
| 3629 append_str(zOvwrt,0,0,0); |
| 3630 cp += lemonStrlen(zOvwrt)-1; |
| 3631 dontUseRhs0 = 1; |
| 3632 continue; |
| 3633 } |
| 3634 if( ISALPHA(*cp) && (cp==rp->code || (!ISALNUM(cp[-1]) && cp[-1]!='_')) ){ |
| 3635 char saved; |
| 3636 for(xp= &cp[1]; ISALNUM(*xp) || *xp=='_'; xp++); |
| 3637 saved = *xp; |
| 3638 *xp = 0; |
| 3639 if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){ |
| 3640 append_str(zLhs,0,0,0); |
| 3641 cp = xp; |
| 3642 lhsused = 1; |
| 3643 }else{ |
| 3644 for(i=0; i<rp->nrhs; i++){ |
| 3645 if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){ |
| 3646 if( i==0 && dontUseRhs0 ){ |
| 3647 ErrorMsg(lemp->filename,rp->ruleline, |
| 3648 "Label %s used after '%s'.", |
| 3649 rp->rhsalias[0], zOvwrt); |
| 3650 lemp->errorcnt++; |
| 3651 }else if( cp!=rp->code && cp[-1]=='@' ){ |
| 3652 /* If the argument is of the form @X then substituted |
| 3653 ** the token number of X, not the value of X */ |
| 3654 append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0); |
| 3655 }else{ |
| 3656 struct symbol *sp = rp->rhs[i]; |
| 3657 int dtnum; |
| 3658 if( sp->type==MULTITERMINAL ){ |
| 3659 dtnum = sp->subsym[0]->dtnum; |
| 3660 }else{ |
| 3661 dtnum = sp->dtnum; |
| 3662 } |
| 3663 append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum); |
| 3664 } |
| 3665 cp = xp; |
| 3666 used[i] = 1; |
| 3667 break; |
| 3668 } |
| 3669 } |
| 3670 } |
| 3671 *xp = saved; |
| 3672 } |
| 3673 append_str(cp, 1, 0, 0); |
| 3674 } /* End loop */ |
| 3675 |
| 3676 /* Main code generation completed */ |
| 3677 cp = append_str(0,0,0,0); |
| 3678 if( cp && cp[0] ) rp->code = Strsafe(cp); |
| 3679 append_str(0,0,0,0); |
| 3680 |
| 3681 /* Check to make sure the LHS has been used */ |
| 3682 if( rp->lhsalias && !lhsused ){ |
| 3683 ErrorMsg(lemp->filename,rp->ruleline, |
| 3684 "Label \"%s\" for \"%s(%s)\" is never used.", |
| 3685 rp->lhsalias,rp->lhs->name,rp->lhsalias); |
| 3686 lemp->errorcnt++; |
| 3687 } |
| 3688 |
| 3689 /* Generate destructor code for RHS minor values which are not referenced. |
| 3690 ** Generate error messages for unused labels and duplicate labels. |
| 3691 */ |
| 3692 for(i=0; i<rp->nrhs; i++){ |
| 3693 if( rp->rhsalias[i] ){ |
| 3694 if( i>0 ){ |
| 3695 int j; |
| 3696 if( rp->lhsalias && strcmp(rp->lhsalias,rp->rhsalias[i])==0 ){ |
| 3697 ErrorMsg(lemp->filename,rp->ruleline, |
| 3698 "%s(%s) has the same label as the LHS but is not the left-most " |
| 3699 "symbol on the RHS.", |
| 3700 rp->rhs[i]->name, rp->rhsalias); |
| 3701 lemp->errorcnt++; |
| 3702 } |
| 3703 for(j=0; j<i; j++){ |
| 3704 if( rp->rhsalias[j] && strcmp(rp->rhsalias[j],rp->rhsalias[i])==0 ){ |
| 3705 ErrorMsg(lemp->filename,rp->ruleline, |
| 3706 "Label %s used for multiple symbols on the RHS of a rule.", |
| 3707 rp->rhsalias[i]); |
| 3708 lemp->errorcnt++; |
| 3709 break; |
| 3710 } |
| 3711 } |
| 3712 } |
| 3713 if( !used[i] ){ |
| 3714 ErrorMsg(lemp->filename,rp->ruleline, |
| 3715 "Label %s for \"%s(%s)\" is never used.", |
| 3716 rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]); |
| 3717 lemp->errorcnt++; |
| 3718 } |
| 3719 }else if( i>0 && has_destructor(rp->rhs[i],lemp) ){ |
| 3720 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0, |
| 3721 rp->rhs[i]->index,i-rp->nrhs+1); |
| 3722 } |
| 3723 } |
| 3724 |
| 3725 /* If unable to write LHS values directly into the stack, write the |
| 3726 ** saved LHS value now. */ |
| 3727 if( lhsdirect==0 ){ |
| 3728 append_str(" yymsp[%d].minor.yy%d = ", 0, 1-rp->nrhs, rp->lhs->dtnum); |
| 3729 append_str(zLhs, 0, 0, 0); |
| 3730 append_str(";\n", 0, 0, 0); |
| 3731 } |
| 3732 |
| 3733 /* Suffix code generation complete */ |
| 3734 cp = append_str(0,0,0,0); |
| 3735 if( cp && cp[0] ){ |
| 3736 rp->codeSuffix = Strsafe(cp); |
| 3737 rp->noCode = 0; |
| 3738 } |
| 3739 |
| 3740 return rc; |
| 3741 } |
| 3742 |
| 3743 /* |
| 3744 ** Generate code which executes when the rule "rp" is reduced. Write |
| 3745 ** the code to "out". Make sure lineno stays up-to-date. |
| 3746 */ |
| 3747 PRIVATE void emit_code( |
| 3748 FILE *out, |
| 3749 struct rule *rp, |
| 3750 struct lemon *lemp, |
| 3751 int *lineno |
| 3752 ){ |
| 3753 const char *cp; |
| 3754 |
| 3755 /* Setup code prior to the #line directive */ |
| 3756 if( rp->codePrefix && rp->codePrefix[0] ){ |
| 3757 fprintf(out, "{%s", rp->codePrefix); |
| 3758 for(cp=rp->codePrefix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; } |
| 3759 } |
| 3760 |
| 3761 /* Generate code to do the reduce action */ |
| 3762 if( rp->code ){ |
| 3763 if( !lemp->nolinenosflag ){ |
| 3764 (*lineno)++; |
| 3765 tplt_linedir(out,rp->line,lemp->filename); |
| 3766 } |
| 3767 fprintf(out,"{%s",rp->code); |
| 3768 for(cp=rp->code; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; } |
| 3769 fprintf(out,"}\n"); (*lineno)++; |
| 3770 if( !lemp->nolinenosflag ){ |
| 3771 (*lineno)++; |
| 3772 tplt_linedir(out,*lineno,lemp->outname); |
| 3773 } |
| 3774 } |
| 3775 |
| 3776 /* Generate breakdown code that occurs after the #line directive */ |
| 3777 if( rp->codeSuffix && rp->codeSuffix[0] ){ |
| 3778 fprintf(out, "%s", rp->codeSuffix); |
| 3779 for(cp=rp->codeSuffix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; } |
| 3780 } |
| 3781 |
| 3782 if( rp->codePrefix ){ |
| 3783 fprintf(out, "}\n"); (*lineno)++; |
| 3784 } |
| 3785 |
| 3786 return; |
| 3787 } |
| 3788 |
| 3789 /* |
| 3790 ** Print the definition of the union used for the parser's data stack. |
| 3791 ** This union contains fields for every possible data type for tokens |
| 3792 ** and nonterminals. In the process of computing and printing this |
| 3793 ** union, also set the ".dtnum" field of every terminal and nonterminal |
| 3794 ** symbol. |
| 3795 */ |
| 3796 void print_stack_union( |
| 3797 FILE *out, /* The output stream */ |
| 3798 struct lemon *lemp, /* The main info structure for this parser */ |
| 3799 int *plineno, /* Pointer to the line number */ |
| 3800 int mhflag /* True if generating makeheaders output */ |
| 3801 ){ |
| 3802 int lineno = *plineno; /* The line number of the output */ |
| 3803 char **types; /* A hash table of datatypes */ |
| 3804 int arraysize; /* Size of the "types" array */ |
| 3805 int maxdtlength; /* Maximum length of any ".datatype" field. */ |
| 3806 char *stddt; /* Standardized name for a datatype */ |
| 3807 int i,j; /* Loop counters */ |
| 3808 unsigned hash; /* For hashing the name of a type */ |
| 3809 const char *name; /* Name of the parser */ |
| 3810 |
| 3811 /* Allocate and initialize types[] and allocate stddt[] */ |
| 3812 arraysize = lemp->nsymbol * 2; |
| 3813 types = (char**)calloc( arraysize, sizeof(char*) ); |
| 3814 if( types==0 ){ |
| 3815 fprintf(stderr,"Out of memory.\n"); |
| 3816 exit(1); |
| 3817 } |
| 3818 for(i=0; i<arraysize; i++) types[i] = 0; |
| 3819 maxdtlength = 0; |
| 3820 if( lemp->vartype ){ |
| 3821 maxdtlength = lemonStrlen(lemp->vartype); |
| 3822 } |
| 3823 for(i=0; i<lemp->nsymbol; i++){ |
| 3824 int len; |
| 3825 struct symbol *sp = lemp->symbols[i]; |
| 3826 if( sp->datatype==0 ) continue; |
| 3827 len = lemonStrlen(sp->datatype); |
| 3828 if( len>maxdtlength ) maxdtlength = len; |
| 3829 } |
| 3830 stddt = (char*)malloc( maxdtlength*2 + 1 ); |
| 3831 if( stddt==0 ){ |
| 3832 fprintf(stderr,"Out of memory.\n"); |
| 3833 exit(1); |
| 3834 } |
| 3835 |
| 3836 /* Build a hash table of datatypes. The ".dtnum" field of each symbol |
| 3837 ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is |
| 3838 ** used for terminal symbols. If there is no %default_type defined then |
| 3839 ** 0 is also used as the .dtnum value for nonterminals which do not specify |
| 3840 ** a datatype using the %type directive. |
| 3841 */ |
| 3842 for(i=0; i<lemp->nsymbol; i++){ |
| 3843 struct symbol *sp = lemp->symbols[i]; |
| 3844 char *cp; |
| 3845 if( sp==lemp->errsym ){ |
| 3846 sp->dtnum = arraysize+1; |
| 3847 continue; |
| 3848 } |
| 3849 if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){ |
| 3850 sp->dtnum = 0; |
| 3851 continue; |
| 3852 } |
| 3853 cp = sp->datatype; |
| 3854 if( cp==0 ) cp = lemp->vartype; |
| 3855 j = 0; |
| 3856 while( ISSPACE(*cp) ) cp++; |
| 3857 while( *cp ) stddt[j++] = *cp++; |
| 3858 while( j>0 && ISSPACE(stddt[j-1]) ) j--; |
| 3859 stddt[j] = 0; |
| 3860 if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){ |
| 3861 sp->dtnum = 0; |
| 3862 continue; |
| 3863 } |
| 3864 hash = 0; |
| 3865 for(j=0; stddt[j]; j++){ |
| 3866 hash = hash*53 + stddt[j]; |
| 3867 } |
| 3868 hash = (hash & 0x7fffffff)%arraysize; |
| 3869 while( types[hash] ){ |
| 3870 if( strcmp(types[hash],stddt)==0 ){ |
| 3871 sp->dtnum = hash + 1; |
| 3872 break; |
| 3873 } |
| 3874 hash++; |
| 3875 if( hash>=(unsigned)arraysize ) hash = 0; |
| 3876 } |
| 3877 if( types[hash]==0 ){ |
| 3878 sp->dtnum = hash + 1; |
| 3879 types[hash] = (char*)malloc( lemonStrlen(stddt)+1 ); |
| 3880 if( types[hash]==0 ){ |
| 3881 fprintf(stderr,"Out of memory.\n"); |
| 3882 exit(1); |
| 3883 } |
| 3884 lemon_strcpy(types[hash],stddt); |
| 3885 } |
| 3886 } |
| 3887 |
| 3888 /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */ |
| 3889 name = lemp->name ? lemp->name : "Parse"; |
| 3890 lineno = *plineno; |
| 3891 if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; } |
| 3892 fprintf(out,"#define %sTOKENTYPE %s\n",name, |
| 3893 lemp->tokentype?lemp->tokentype:"void*"); lineno++; |
| 3894 if( mhflag ){ fprintf(out,"#endif\n"); lineno++; } |
| 3895 fprintf(out,"typedef union {\n"); lineno++; |
| 3896 fprintf(out," int yyinit;\n"); lineno++; |
| 3897 fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++; |
| 3898 for(i=0; i<arraysize; i++){ |
| 3899 if( types[i]==0 ) continue; |
| 3900 fprintf(out," %s yy%d;\n",types[i],i+1); lineno++; |
| 3901 free(types[i]); |
| 3902 } |
| 3903 if( lemp->errsym->useCnt ){ |
| 3904 fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++; |
| 3905 } |
| 3906 free(stddt); |
| 3907 free(types); |
| 3908 fprintf(out,"} YYMINORTYPE;\n"); lineno++; |
| 3909 *plineno = lineno; |
| 3910 } |
| 3911 |
| 3912 /* |
| 3913 ** Return the name of a C datatype able to represent values between |
| 3914 ** lwr and upr, inclusive. If pnByte!=NULL then also write the sizeof |
| 3915 ** for that type (1, 2, or 4) into *pnByte. |
| 3916 */ |
| 3917 static const char *minimum_size_type(int lwr, int upr, int *pnByte){ |
| 3918 const char *zType = "int"; |
| 3919 int nByte = 4; |
| 3920 if( lwr>=0 ){ |
| 3921 if( upr<=255 ){ |
| 3922 zType = "unsigned char"; |
| 3923 nByte = 1; |
| 3924 }else if( upr<65535 ){ |
| 3925 zType = "unsigned short int"; |
| 3926 nByte = 2; |
| 3927 }else{ |
| 3928 zType = "unsigned int"; |
| 3929 nByte = 4; |
| 3930 } |
| 3931 }else if( lwr>=-127 && upr<=127 ){ |
| 3932 zType = "signed char"; |
| 3933 nByte = 1; |
| 3934 }else if( lwr>=-32767 && upr<32767 ){ |
| 3935 zType = "short"; |
| 3936 nByte = 2; |
| 3937 } |
| 3938 if( pnByte ) *pnByte = nByte; |
| 3939 return zType; |
| 3940 } |
| 3941 |
| 3942 /* |
| 3943 ** Each state contains a set of token transaction and a set of |
| 3944 ** nonterminal transactions. Each of these sets makes an instance |
| 3945 ** of the following structure. An array of these structures is used |
| 3946 ** to order the creation of entries in the yy_action[] table. |
| 3947 */ |
| 3948 struct axset { |
| 3949 struct state *stp; /* A pointer to a state */ |
| 3950 int isTkn; /* True to use tokens. False for non-terminals */ |
| 3951 int nAction; /* Number of actions */ |
| 3952 int iOrder; /* Original order of action sets */ |
| 3953 }; |
| 3954 |
| 3955 /* |
| 3956 ** Compare to axset structures for sorting purposes |
| 3957 */ |
| 3958 static int axset_compare(const void *a, const void *b){ |
| 3959 struct axset *p1 = (struct axset*)a; |
| 3960 struct axset *p2 = (struct axset*)b; |
| 3961 int c; |
| 3962 c = p2->nAction - p1->nAction; |
| 3963 if( c==0 ){ |
| 3964 c = p1->iOrder - p2->iOrder; |
| 3965 } |
| 3966 assert( c!=0 || p1==p2 ); |
| 3967 return c; |
| 3968 } |
| 3969 |
| 3970 /* |
| 3971 ** Write text on "out" that describes the rule "rp". |
| 3972 */ |
| 3973 static void writeRuleText(FILE *out, struct rule *rp){ |
| 3974 int j; |
| 3975 fprintf(out,"%s ::=", rp->lhs->name); |
| 3976 for(j=0; j<rp->nrhs; j++){ |
| 3977 struct symbol *sp = rp->rhs[j]; |
| 3978 if( sp->type!=MULTITERMINAL ){ |
| 3979 fprintf(out," %s", sp->name); |
| 3980 }else{ |
| 3981 int k; |
| 3982 fprintf(out," %s", sp->subsym[0]->name); |
| 3983 for(k=1; k<sp->nsubsym; k++){ |
| 3984 fprintf(out,"|%s",sp->subsym[k]->name); |
| 3985 } |
| 3986 } |
| 3987 } |
| 3988 } |
| 3989 |
| 3990 |
| 3991 /* Generate C source code for the parser */ |
| 3992 void ReportTable( |
| 3993 struct lemon *lemp, |
| 3994 int mhflag /* Output in makeheaders format if true */ |
| 3995 ){ |
| 3996 FILE *out, *in; |
| 3997 char line[LINESIZE]; |
| 3998 int lineno; |
| 3999 struct state *stp; |
| 4000 struct action *ap; |
| 4001 struct rule *rp; |
| 4002 struct acttab *pActtab; |
| 4003 int i, j, n, sz; |
| 4004 int szActionType; /* sizeof(YYACTIONTYPE) */ |
| 4005 int szCodeType; /* sizeof(YYCODETYPE) */ |
| 4006 const char *name; |
| 4007 int mnTknOfst, mxTknOfst; |
| 4008 int mnNtOfst, mxNtOfst; |
| 4009 struct axset *ax; |
| 4010 |
| 4011 in = tplt_open(lemp); |
| 4012 if( in==0 ) return; |
| 4013 out = file_open(lemp,".c","wb"); |
| 4014 if( out==0 ){ |
| 4015 fclose(in); |
| 4016 return; |
| 4017 } |
| 4018 lineno = 1; |
| 4019 tplt_xfer(lemp->name,in,out,&lineno); |
| 4020 |
| 4021 /* Generate the include code, if any */ |
| 4022 tplt_print(out,lemp,lemp->include,&lineno); |
| 4023 if( mhflag ){ |
| 4024 char *incName = file_makename(lemp, ".h"); |
| 4025 fprintf(out,"#include \"%s\"\n", incName); lineno++; |
| 4026 free(incName); |
| 4027 } |
| 4028 tplt_xfer(lemp->name,in,out,&lineno); |
| 4029 |
| 4030 /* Generate #defines for all tokens */ |
| 4031 if( mhflag ){ |
| 4032 const char *prefix; |
| 4033 fprintf(out,"#if INTERFACE\n"); lineno++; |
| 4034 if( lemp->tokenprefix ) prefix = lemp->tokenprefix; |
| 4035 else prefix = ""; |
| 4036 for(i=1; i<lemp->nterminal; i++){ |
| 4037 fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); |
| 4038 lineno++; |
| 4039 } |
| 4040 fprintf(out,"#endif\n"); lineno++; |
| 4041 } |
| 4042 tplt_xfer(lemp->name,in,out,&lineno); |
| 4043 |
| 4044 /* Generate the defines */ |
| 4045 fprintf(out,"#define YYCODETYPE %s\n", |
| 4046 minimum_size_type(0, lemp->nsymbol+1, &szCodeType)); lineno++; |
| 4047 fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++; |
| 4048 fprintf(out,"#define YYACTIONTYPE %s\n", |
| 4049 minimum_size_type(0,lemp->nstate+lemp->nrule*2+5,&szActionType)); lineno++; |
| 4050 if( lemp->wildcard ){ |
| 4051 fprintf(out,"#define YYWILDCARD %d\n", |
| 4052 lemp->wildcard->index); lineno++; |
| 4053 } |
| 4054 print_stack_union(out,lemp,&lineno,mhflag); |
| 4055 fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++; |
| 4056 if( lemp->stacksize ){ |
| 4057 fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++; |
| 4058 }else{ |
| 4059 fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++; |
| 4060 } |
| 4061 fprintf(out, "#endif\n"); lineno++; |
| 4062 if( mhflag ){ |
| 4063 fprintf(out,"#if INTERFACE\n"); lineno++; |
| 4064 } |
| 4065 name = lemp->name ? lemp->name : "Parse"; |
| 4066 if( lemp->arg && lemp->arg[0] ){ |
| 4067 i = lemonStrlen(lemp->arg); |
| 4068 while( i>=1 && ISSPACE(lemp->arg[i-1]) ) i--; |
| 4069 while( i>=1 && (ISALNUM(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--; |
| 4070 fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++; |
| 4071 fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++; |
| 4072 fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n", |
| 4073 name,lemp->arg,&lemp->arg[i]); lineno++; |
| 4074 fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n", |
| 4075 name,&lemp->arg[i],&lemp->arg[i]); lineno++; |
| 4076 }else{ |
| 4077 fprintf(out,"#define %sARG_SDECL\n",name); lineno++; |
| 4078 fprintf(out,"#define %sARG_PDECL\n",name); lineno++; |
| 4079 fprintf(out,"#define %sARG_FETCH\n",name); lineno++; |
| 4080 fprintf(out,"#define %sARG_STORE\n",name); lineno++; |
| 4081 } |
| 4082 if( mhflag ){ |
| 4083 fprintf(out,"#endif\n"); lineno++; |
| 4084 } |
| 4085 if( lemp->errsym->useCnt ){ |
| 4086 fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++; |
| 4087 fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++; |
| 4088 } |
| 4089 if( lemp->has_fallback ){ |
| 4090 fprintf(out,"#define YYFALLBACK 1\n"); lineno++; |
| 4091 } |
| 4092 |
| 4093 /* Compute the action table, but do not output it yet. The action |
| 4094 ** table must be computed before generating the YYNSTATE macro because |
| 4095 ** we need to know how many states can be eliminated. |
| 4096 */ |
| 4097 ax = (struct axset *) calloc(lemp->nxstate*2, sizeof(ax[0])); |
| 4098 if( ax==0 ){ |
| 4099 fprintf(stderr,"malloc failed\n"); |
| 4100 exit(1); |
| 4101 } |
| 4102 for(i=0; i<lemp->nxstate; i++){ |
| 4103 stp = lemp->sorted[i]; |
| 4104 ax[i*2].stp = stp; |
| 4105 ax[i*2].isTkn = 1; |
| 4106 ax[i*2].nAction = stp->nTknAct; |
| 4107 ax[i*2+1].stp = stp; |
| 4108 ax[i*2+1].isTkn = 0; |
| 4109 ax[i*2+1].nAction = stp->nNtAct; |
| 4110 } |
| 4111 mxTknOfst = mnTknOfst = 0; |
| 4112 mxNtOfst = mnNtOfst = 0; |
| 4113 /* In an effort to minimize the action table size, use the heuristic |
| 4114 ** of placing the largest action sets first */ |
| 4115 for(i=0; i<lemp->nxstate*2; i++) ax[i].iOrder = i; |
| 4116 qsort(ax, lemp->nxstate*2, sizeof(ax[0]), axset_compare); |
| 4117 pActtab = acttab_alloc(); |
| 4118 for(i=0; i<lemp->nxstate*2 && ax[i].nAction>0; i++){ |
| 4119 stp = ax[i].stp; |
| 4120 if( ax[i].isTkn ){ |
| 4121 for(ap=stp->ap; ap; ap=ap->next){ |
| 4122 int action; |
| 4123 if( ap->sp->index>=lemp->nterminal ) continue; |
| 4124 action = compute_action(lemp, ap); |
| 4125 if( action<0 ) continue; |
| 4126 acttab_action(pActtab, ap->sp->index, action); |
| 4127 } |
| 4128 stp->iTknOfst = acttab_insert(pActtab); |
| 4129 if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst; |
| 4130 if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst; |
| 4131 }else{ |
| 4132 for(ap=stp->ap; ap; ap=ap->next){ |
| 4133 int action; |
| 4134 if( ap->sp->index<lemp->nterminal ) continue; |
| 4135 if( ap->sp->index==lemp->nsymbol ) continue; |
| 4136 action = compute_action(lemp, ap); |
| 4137 if( action<0 ) continue; |
| 4138 acttab_action(pActtab, ap->sp->index, action); |
| 4139 } |
| 4140 stp->iNtOfst = acttab_insert(pActtab); |
| 4141 if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst; |
| 4142 if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst; |
| 4143 } |
| 4144 #if 0 /* Uncomment for a trace of how the yy_action[] table fills out */ |
| 4145 { int jj, nn; |
| 4146 for(jj=nn=0; jj<pActtab->nAction; jj++){ |
| 4147 if( pActtab->aAction[jj].action<0 ) nn++; |
| 4148 } |
| 4149 printf("%4d: State %3d %s n: %2d size: %5d freespace: %d\n", |
| 4150 i, stp->statenum, ax[i].isTkn ? "Token" : "Var ", |
| 4151 ax[i].nAction, pActtab->nAction, nn); |
| 4152 } |
| 4153 #endif |
| 4154 } |
| 4155 free(ax); |
| 4156 |
| 4157 /* Mark rules that are actually used for reduce actions after all |
| 4158 ** optimizations have been applied |
| 4159 */ |
| 4160 for(rp=lemp->rule; rp; rp=rp->next) rp->doesReduce = LEMON_FALSE; |
| 4161 for(i=0; i<lemp->nxstate; i++){ |
| 4162 for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){ |
| 4163 if( ap->type==REDUCE || ap->type==SHIFTREDUCE ){ |
| 4164 ap->x.rp->doesReduce = i; |
| 4165 } |
| 4166 } |
| 4167 } |
| 4168 |
| 4169 /* Finish rendering the constants now that the action table has |
| 4170 ** been computed */ |
| 4171 fprintf(out,"#define YYNSTATE %d\n",lemp->nxstate); lineno++; |
| 4172 fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++; |
| 4173 fprintf(out,"#define YY_MAX_SHIFT %d\n",lemp->nxstate-1); lineno++; |
| 4174 fprintf(out,"#define YY_MIN_SHIFTREDUCE %d\n",lemp->nstate); lineno++; |
| 4175 i = lemp->nstate + lemp->nrule; |
| 4176 fprintf(out,"#define YY_MAX_SHIFTREDUCE %d\n", i-1); lineno++; |
| 4177 fprintf(out,"#define YY_MIN_REDUCE %d\n", i); lineno++; |
| 4178 i = lemp->nstate + lemp->nrule*2; |
| 4179 fprintf(out,"#define YY_MAX_REDUCE %d\n", i-1); lineno++; |
| 4180 fprintf(out,"#define YY_ERROR_ACTION %d\n", i); lineno++; |
| 4181 fprintf(out,"#define YY_ACCEPT_ACTION %d\n", i+1); lineno++; |
| 4182 fprintf(out,"#define YY_NO_ACTION %d\n", i+2); lineno++; |
| 4183 tplt_xfer(lemp->name,in,out,&lineno); |
| 4184 |
| 4185 /* Now output the action table and its associates: |
| 4186 ** |
| 4187 ** yy_action[] A single table containing all actions. |
| 4188 ** yy_lookahead[] A table containing the lookahead for each entry in |
| 4189 ** yy_action. Used to detect hash collisions. |
| 4190 ** yy_shift_ofst[] For each state, the offset into yy_action for |
| 4191 ** shifting terminals. |
| 4192 ** yy_reduce_ofst[] For each state, the offset into yy_action for |
| 4193 ** shifting non-terminals after a reduce. |
| 4194 ** yy_default[] Default action for each state. |
| 4195 */ |
| 4196 |
| 4197 /* Output the yy_action table */ |
| 4198 lemp->nactiontab = n = acttab_size(pActtab); |
| 4199 lemp->tablesize += n*szActionType; |
| 4200 fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++; |
| 4201 fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++; |
| 4202 for(i=j=0; i<n; i++){ |
| 4203 int action = acttab_yyaction(pActtab, i); |
| 4204 if( action<0 ) action = lemp->nstate + lemp->nrule + 2; |
| 4205 if( j==0 ) fprintf(out," /* %5d */ ", i); |
| 4206 fprintf(out, " %4d,", action); |
| 4207 if( j==9 || i==n-1 ){ |
| 4208 fprintf(out, "\n"); lineno++; |
| 4209 j = 0; |
| 4210 }else{ |
| 4211 j++; |
| 4212 } |
| 4213 } |
| 4214 fprintf(out, "};\n"); lineno++; |
| 4215 |
| 4216 /* Output the yy_lookahead table */ |
| 4217 lemp->tablesize += n*szCodeType; |
| 4218 fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++; |
| 4219 for(i=j=0; i<n; i++){ |
| 4220 int la = acttab_yylookahead(pActtab, i); |
| 4221 if( la<0 ) la = lemp->nsymbol; |
| 4222 if( j==0 ) fprintf(out," /* %5d */ ", i); |
| 4223 fprintf(out, " %4d,", la); |
| 4224 if( j==9 || i==n-1 ){ |
| 4225 fprintf(out, "\n"); lineno++; |
| 4226 j = 0; |
| 4227 }else{ |
| 4228 j++; |
| 4229 } |
| 4230 } |
| 4231 fprintf(out, "};\n"); lineno++; |
| 4232 |
| 4233 /* Output the yy_shift_ofst[] table */ |
| 4234 n = lemp->nxstate; |
| 4235 while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--; |
| 4236 fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", lemp->nactiontab); lineno++; |
| 4237 fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++; |
| 4238 fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst); lineno++; |
| 4239 fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst); lineno++; |
| 4240 fprintf(out, "static const %s yy_shift_ofst[] = {\n", |
| 4241 minimum_size_type(mnTknOfst, lemp->nterminal+lemp->nactiontab, &sz)); |
| 4242 lineno++; |
| 4243 lemp->tablesize += n*sz; |
| 4244 for(i=j=0; i<n; i++){ |
| 4245 int ofst; |
| 4246 stp = lemp->sorted[i]; |
| 4247 ofst = stp->iTknOfst; |
| 4248 if( ofst==NO_OFFSET ) ofst = lemp->nactiontab; |
| 4249 if( j==0 ) fprintf(out," /* %5d */ ", i); |
| 4250 fprintf(out, " %4d,", ofst); |
| 4251 if( j==9 || i==n-1 ){ |
| 4252 fprintf(out, "\n"); lineno++; |
| 4253 j = 0; |
| 4254 }else{ |
| 4255 j++; |
| 4256 } |
| 4257 } |
| 4258 fprintf(out, "};\n"); lineno++; |
| 4259 |
| 4260 /* Output the yy_reduce_ofst[] table */ |
| 4261 fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++; |
| 4262 n = lemp->nxstate; |
| 4263 while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--; |
| 4264 fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++; |
| 4265 fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst); lineno++; |
| 4266 fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst); lineno++; |
| 4267 fprintf(out, "static const %s yy_reduce_ofst[] = {\n", |
| 4268 minimum_size_type(mnNtOfst-1, mxNtOfst, &sz)); lineno++; |
| 4269 lemp->tablesize += n*sz; |
| 4270 for(i=j=0; i<n; i++){ |
| 4271 int ofst; |
| 4272 stp = lemp->sorted[i]; |
| 4273 ofst = stp->iNtOfst; |
| 4274 if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1; |
| 4275 if( j==0 ) fprintf(out," /* %5d */ ", i); |
| 4276 fprintf(out, " %4d,", ofst); |
| 4277 if( j==9 || i==n-1 ){ |
| 4278 fprintf(out, "\n"); lineno++; |
| 4279 j = 0; |
| 4280 }else{ |
| 4281 j++; |
| 4282 } |
| 4283 } |
| 4284 fprintf(out, "};\n"); lineno++; |
| 4285 |
| 4286 /* Output the default action table */ |
| 4287 fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++; |
| 4288 n = lemp->nxstate; |
| 4289 lemp->tablesize += n*szActionType; |
| 4290 for(i=j=0; i<n; i++){ |
| 4291 stp = lemp->sorted[i]; |
| 4292 if( j==0 ) fprintf(out," /* %5d */ ", i); |
| 4293 fprintf(out, " %4d,", stp->iDfltReduce+lemp->nstate+lemp->nrule); |
| 4294 if( j==9 || i==n-1 ){ |
| 4295 fprintf(out, "\n"); lineno++; |
| 4296 j = 0; |
| 4297 }else{ |
| 4298 j++; |
| 4299 } |
| 4300 } |
| 4301 fprintf(out, "};\n"); lineno++; |
| 4302 tplt_xfer(lemp->name,in,out,&lineno); |
| 4303 |
| 4304 /* Generate the table of fallback tokens. |
| 4305 */ |
| 4306 if( lemp->has_fallback ){ |
| 4307 int mx = lemp->nterminal - 1; |
| 4308 while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; } |
| 4309 lemp->tablesize += (mx+1)*szCodeType; |
| 4310 for(i=0; i<=mx; i++){ |
| 4311 struct symbol *p = lemp->symbols[i]; |
| 4312 if( p->fallback==0 ){ |
| 4313 fprintf(out, " 0, /* %10s => nothing */\n", p->name); |
| 4314 }else{ |
| 4315 fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index, |
| 4316 p->name, p->fallback->name); |
| 4317 } |
| 4318 lineno++; |
| 4319 } |
| 4320 } |
| 4321 tplt_xfer(lemp->name, in, out, &lineno); |
| 4322 |
| 4323 /* Generate a table containing the symbolic name of every symbol |
| 4324 */ |
| 4325 for(i=0; i<lemp->nsymbol; i++){ |
| 4326 lemon_sprintf(line,"\"%s\",",lemp->symbols[i]->name); |
| 4327 fprintf(out," %-15s",line); |
| 4328 if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; } |
| 4329 } |
| 4330 if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; } |
| 4331 tplt_xfer(lemp->name,in,out,&lineno); |
| 4332 |
| 4333 /* Generate a table containing a text string that describes every |
| 4334 ** rule in the rule set of the grammar. This information is used |
| 4335 ** when tracing REDUCE actions. |
| 4336 */ |
| 4337 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){ |
| 4338 assert( rp->iRule==i ); |
| 4339 fprintf(out," /* %3d */ \"", i); |
| 4340 writeRuleText(out, rp); |
| 4341 fprintf(out,"\",\n"); lineno++; |
| 4342 } |
| 4343 tplt_xfer(lemp->name,in,out,&lineno); |
| 4344 |
| 4345 /* Generate code which executes every time a symbol is popped from |
| 4346 ** the stack while processing errors or while destroying the parser. |
| 4347 ** (In other words, generate the %destructor actions) |
| 4348 */ |
| 4349 if( lemp->tokendest ){ |
| 4350 int once = 1; |
| 4351 for(i=0; i<lemp->nsymbol; i++){ |
| 4352 struct symbol *sp = lemp->symbols[i]; |
| 4353 if( sp==0 || sp->type!=TERMINAL ) continue; |
| 4354 if( once ){ |
| 4355 fprintf(out, " /* TERMINAL Destructor */\n"); lineno++; |
| 4356 once = 0; |
| 4357 } |
| 4358 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; |
| 4359 } |
| 4360 for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++); |
| 4361 if( i<lemp->nsymbol ){ |
| 4362 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); |
| 4363 fprintf(out," break;\n"); lineno++; |
| 4364 } |
| 4365 } |
| 4366 if( lemp->vardest ){ |
| 4367 struct symbol *dflt_sp = 0; |
| 4368 int once = 1; |
| 4369 for(i=0; i<lemp->nsymbol; i++){ |
| 4370 struct symbol *sp = lemp->symbols[i]; |
| 4371 if( sp==0 || sp->type==TERMINAL || |
| 4372 sp->index<=0 || sp->destructor!=0 ) continue; |
| 4373 if( once ){ |
| 4374 fprintf(out, " /* Default NON-TERMINAL Destructor */\n"); lineno++; |
| 4375 once = 0; |
| 4376 } |
| 4377 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; |
| 4378 dflt_sp = sp; |
| 4379 } |
| 4380 if( dflt_sp!=0 ){ |
| 4381 emit_destructor_code(out,dflt_sp,lemp,&lineno); |
| 4382 } |
| 4383 fprintf(out," break;\n"); lineno++; |
| 4384 } |
| 4385 for(i=0; i<lemp->nsymbol; i++){ |
| 4386 struct symbol *sp = lemp->symbols[i]; |
| 4387 if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue; |
| 4388 if( sp->destLineno<0 ) continue; /* Already emitted */ |
| 4389 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; |
| 4390 |
| 4391 /* Combine duplicate destructors into a single case */ |
| 4392 for(j=i+1; j<lemp->nsymbol; j++){ |
| 4393 struct symbol *sp2 = lemp->symbols[j]; |
| 4394 if( sp2 && sp2->type!=TERMINAL && sp2->destructor |
| 4395 && sp2->dtnum==sp->dtnum |
| 4396 && strcmp(sp->destructor,sp2->destructor)==0 ){ |
| 4397 fprintf(out," case %d: /* %s */\n", |
| 4398 sp2->index, sp2->name); lineno++; |
| 4399 sp2->destLineno = -1; /* Avoid emitting this destructor again */ |
| 4400 } |
| 4401 } |
| 4402 |
| 4403 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); |
| 4404 fprintf(out," break;\n"); lineno++; |
| 4405 } |
| 4406 tplt_xfer(lemp->name,in,out,&lineno); |
| 4407 |
| 4408 /* Generate code which executes whenever the parser stack overflows */ |
| 4409 tplt_print(out,lemp,lemp->overflow,&lineno); |
| 4410 tplt_xfer(lemp->name,in,out,&lineno); |
| 4411 |
| 4412 /* Generate the table of rule information |
| 4413 ** |
| 4414 ** Note: This code depends on the fact that rules are number |
| 4415 ** sequentually beginning with 0. |
| 4416 */ |
| 4417 for(rp=lemp->rule; rp; rp=rp->next){ |
| 4418 fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++; |
| 4419 } |
| 4420 tplt_xfer(lemp->name,in,out,&lineno); |
| 4421 |
| 4422 /* Generate code which execution during each REDUCE action */ |
| 4423 i = 0; |
| 4424 for(rp=lemp->rule; rp; rp=rp->next){ |
| 4425 i += translate_code(lemp, rp); |
| 4426 } |
| 4427 if( i ){ |
| 4428 fprintf(out," YYMINORTYPE yylhsminor;\n"); lineno++; |
| 4429 } |
| 4430 /* First output rules other than the default: rule */ |
| 4431 for(rp=lemp->rule; rp; rp=rp->next){ |
| 4432 struct rule *rp2; /* Other rules with the same action */ |
| 4433 if( rp->codeEmitted ) continue; |
| 4434 if( rp->noCode ){ |
| 4435 /* No C code actions, so this will be part of the "default:" rule */ |
| 4436 continue; |
| 4437 } |
| 4438 fprintf(out," case %d: /* ", rp->iRule); |
| 4439 writeRuleText(out, rp); |
| 4440 fprintf(out, " */\n"); lineno++; |
| 4441 for(rp2=rp->next; rp2; rp2=rp2->next){ |
| 4442 if( rp2->code==rp->code && rp2->codePrefix==rp->codePrefix |
| 4443 && rp2->codeSuffix==rp->codeSuffix ){ |
| 4444 fprintf(out," case %d: /* ", rp2->iRule); |
| 4445 writeRuleText(out, rp2); |
| 4446 fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->iRule); lineno++; |
| 4447 rp2->codeEmitted = 1; |
| 4448 } |
| 4449 } |
| 4450 emit_code(out,rp,lemp,&lineno); |
| 4451 fprintf(out," break;\n"); lineno++; |
| 4452 rp->codeEmitted = 1; |
| 4453 } |
| 4454 /* Finally, output the default: rule. We choose as the default: all |
| 4455 ** empty actions. */ |
| 4456 fprintf(out," default:\n"); lineno++; |
| 4457 for(rp=lemp->rule; rp; rp=rp->next){ |
| 4458 if( rp->codeEmitted ) continue; |
| 4459 assert( rp->noCode ); |
| 4460 fprintf(out," /* (%d) ", rp->iRule); |
| 4461 writeRuleText(out, rp); |
| 4462 if( rp->doesReduce ){ |
| 4463 fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->iRule); lineno++; |
| 4464 }else{ |
| 4465 fprintf(out, " (OPTIMIZED OUT) */ assert(yyruleno!=%d);\n", |
| 4466 rp->iRule); lineno++; |
| 4467 } |
| 4468 } |
| 4469 fprintf(out," break;\n"); lineno++; |
| 4470 tplt_xfer(lemp->name,in,out,&lineno); |
| 4471 |
| 4472 /* Generate code which executes if a parse fails */ |
| 4473 tplt_print(out,lemp,lemp->failure,&lineno); |
| 4474 tplt_xfer(lemp->name,in,out,&lineno); |
| 4475 |
| 4476 /* Generate code which executes when a syntax error occurs */ |
| 4477 tplt_print(out,lemp,lemp->error,&lineno); |
| 4478 tplt_xfer(lemp->name,in,out,&lineno); |
| 4479 |
| 4480 /* Generate code which executes when the parser accepts its input */ |
| 4481 tplt_print(out,lemp,lemp->accept,&lineno); |
| 4482 tplt_xfer(lemp->name,in,out,&lineno); |
| 4483 |
| 4484 /* Append any addition code the user desires */ |
| 4485 tplt_print(out,lemp,lemp->extracode,&lineno); |
| 4486 |
| 4487 fclose(in); |
| 4488 fclose(out); |
| 4489 return; |
| 4490 } |
| 4491 |
| 4492 /* Generate a header file for the parser */ |
| 4493 void ReportHeader(struct lemon *lemp) |
| 4494 { |
| 4495 FILE *out, *in; |
| 4496 const char *prefix; |
| 4497 char line[LINESIZE]; |
| 4498 char pattern[LINESIZE]; |
| 4499 int i; |
| 4500 |
| 4501 if( lemp->tokenprefix ) prefix = lemp->tokenprefix; |
| 4502 else prefix = ""; |
| 4503 in = file_open(lemp,".h","rb"); |
| 4504 if( in ){ |
| 4505 int nextChar; |
| 4506 for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){ |
| 4507 lemon_sprintf(pattern,"#define %s%-30s %3d\n", |
| 4508 prefix,lemp->symbols[i]->name,i); |
| 4509 if( strcmp(line,pattern) ) break; |
| 4510 } |
| 4511 nextChar = fgetc(in); |
| 4512 fclose(in); |
| 4513 if( i==lemp->nterminal && nextChar==EOF ){ |
| 4514 /* No change in the file. Don't rewrite it. */ |
| 4515 return; |
| 4516 } |
| 4517 } |
| 4518 out = file_open(lemp,".h","wb"); |
| 4519 if( out ){ |
| 4520 for(i=1; i<lemp->nterminal; i++){ |
| 4521 fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i); |
| 4522 } |
| 4523 fclose(out); |
| 4524 } |
| 4525 return; |
| 4526 } |
| 4527 |
| 4528 /* Reduce the size of the action tables, if possible, by making use |
| 4529 ** of defaults. |
| 4530 ** |
| 4531 ** In this version, we take the most frequent REDUCE action and make |
| 4532 ** it the default. Except, there is no default if the wildcard token |
| 4533 ** is a possible look-ahead. |
| 4534 */ |
| 4535 void CompressTables(struct lemon *lemp) |
| 4536 { |
| 4537 struct state *stp; |
| 4538 struct action *ap, *ap2, *nextap; |
| 4539 struct rule *rp, *rp2, *rbest; |
| 4540 int nbest, n; |
| 4541 int i; |
| 4542 int usesWildcard; |
| 4543 |
| 4544 for(i=0; i<lemp->nstate; i++){ |
| 4545 stp = lemp->sorted[i]; |
| 4546 nbest = 0; |
| 4547 rbest = 0; |
| 4548 usesWildcard = 0; |
| 4549 |
| 4550 for(ap=stp->ap; ap; ap=ap->next){ |
| 4551 if( ap->type==SHIFT && ap->sp==lemp->wildcard ){ |
| 4552 usesWildcard = 1; |
| 4553 } |
| 4554 if( ap->type!=REDUCE ) continue; |
| 4555 rp = ap->x.rp; |
| 4556 if( rp->lhsStart ) continue; |
| 4557 if( rp==rbest ) continue; |
| 4558 n = 1; |
| 4559 for(ap2=ap->next; ap2; ap2=ap2->next){ |
| 4560 if( ap2->type!=REDUCE ) continue; |
| 4561 rp2 = ap2->x.rp; |
| 4562 if( rp2==rbest ) continue; |
| 4563 if( rp2==rp ) n++; |
| 4564 } |
| 4565 if( n>nbest ){ |
| 4566 nbest = n; |
| 4567 rbest = rp; |
| 4568 } |
| 4569 } |
| 4570 |
| 4571 /* Do not make a default if the number of rules to default |
| 4572 ** is not at least 1 or if the wildcard token is a possible |
| 4573 ** lookahead. |
| 4574 */ |
| 4575 if( nbest<1 || usesWildcard ) continue; |
| 4576 |
| 4577 |
| 4578 /* Combine matching REDUCE actions into a single default */ |
| 4579 for(ap=stp->ap; ap; ap=ap->next){ |
| 4580 if( ap->type==REDUCE && ap->x.rp==rbest ) break; |
| 4581 } |
| 4582 assert( ap ); |
| 4583 ap->sp = Symbol_new("{default}"); |
| 4584 for(ap=ap->next; ap; ap=ap->next){ |
| 4585 if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED; |
| 4586 } |
| 4587 stp->ap = Action_sort(stp->ap); |
| 4588 |
| 4589 for(ap=stp->ap; ap; ap=ap->next){ |
| 4590 if( ap->type==SHIFT ) break; |
| 4591 if( ap->type==REDUCE && ap->x.rp!=rbest ) break; |
| 4592 } |
| 4593 if( ap==0 ){ |
| 4594 stp->autoReduce = 1; |
| 4595 stp->pDfltReduce = rbest; |
| 4596 } |
| 4597 } |
| 4598 |
| 4599 /* Make a second pass over all states and actions. Convert |
| 4600 ** every action that is a SHIFT to an autoReduce state into |
| 4601 ** a SHIFTREDUCE action. |
| 4602 */ |
| 4603 for(i=0; i<lemp->nstate; i++){ |
| 4604 stp = lemp->sorted[i]; |
| 4605 for(ap=stp->ap; ap; ap=ap->next){ |
| 4606 struct state *pNextState; |
| 4607 if( ap->type!=SHIFT ) continue; |
| 4608 pNextState = ap->x.stp; |
| 4609 if( pNextState->autoReduce && pNextState->pDfltReduce!=0 ){ |
| 4610 ap->type = SHIFTREDUCE; |
| 4611 ap->x.rp = pNextState->pDfltReduce; |
| 4612 } |
| 4613 } |
| 4614 } |
| 4615 |
| 4616 /* If a SHIFTREDUCE action specifies a rule that has a single RHS term |
| 4617 ** (meaning that the SHIFTREDUCE will land back in the state where it |
| 4618 ** started) and if there is no C-code associated with the reduce action, |
| 4619 ** then we can go ahead and convert the action to be the same as the |
| 4620 ** action for the RHS of the rule. |
| 4621 */ |
| 4622 for(i=0; i<lemp->nstate; i++){ |
| 4623 stp = lemp->sorted[i]; |
| 4624 for(ap=stp->ap; ap; ap=nextap){ |
| 4625 nextap = ap->next; |
| 4626 if( ap->type!=SHIFTREDUCE ) continue; |
| 4627 rp = ap->x.rp; |
| 4628 if( rp->noCode==0 ) continue; |
| 4629 if( rp->nrhs!=1 ) continue; |
| 4630 #if 1 |
| 4631 /* Only apply this optimization to non-terminals. It would be OK to |
| 4632 ** apply it to terminal symbols too, but that makes the parser tables |
| 4633 ** larger. */ |
| 4634 if( ap->sp->index<lemp->nterminal ) continue; |
| 4635 #endif |
| 4636 /* If we reach this point, it means the optimization can be applied */ |
| 4637 nextap = ap; |
| 4638 for(ap2=stp->ap; ap2 && (ap2==ap || ap2->sp!=rp->lhs); ap2=ap2->next){} |
| 4639 assert( ap2!=0 ); |
| 4640 ap->spOpt = ap2->sp; |
| 4641 ap->type = ap2->type; |
| 4642 ap->x = ap2->x; |
| 4643 } |
| 4644 } |
| 4645 } |
| 4646 |
| 4647 |
| 4648 /* |
| 4649 ** Compare two states for sorting purposes. The smaller state is the |
| 4650 ** one with the most non-terminal actions. If they have the same number |
| 4651 ** of non-terminal actions, then the smaller is the one with the most |
| 4652 ** token actions. |
| 4653 */ |
| 4654 static int stateResortCompare(const void *a, const void *b){ |
| 4655 const struct state *pA = *(const struct state**)a; |
| 4656 const struct state *pB = *(const struct state**)b; |
| 4657 int n; |
| 4658 |
| 4659 n = pB->nNtAct - pA->nNtAct; |
| 4660 if( n==0 ){ |
| 4661 n = pB->nTknAct - pA->nTknAct; |
| 4662 if( n==0 ){ |
| 4663 n = pB->statenum - pA->statenum; |
| 4664 } |
| 4665 } |
| 4666 assert( n!=0 ); |
| 4667 return n; |
| 4668 } |
| 4669 |
| 4670 |
| 4671 /* |
| 4672 ** Renumber and resort states so that states with fewer choices |
| 4673 ** occur at the end. Except, keep state 0 as the first state. |
| 4674 */ |
| 4675 void ResortStates(struct lemon *lemp) |
| 4676 { |
| 4677 int i; |
| 4678 struct state *stp; |
| 4679 struct action *ap; |
| 4680 |
| 4681 for(i=0; i<lemp->nstate; i++){ |
| 4682 stp = lemp->sorted[i]; |
| 4683 stp->nTknAct = stp->nNtAct = 0; |
| 4684 stp->iDfltReduce = lemp->nrule; /* Init dflt action to "syntax error" */ |
| 4685 stp->iTknOfst = NO_OFFSET; |
| 4686 stp->iNtOfst = NO_OFFSET; |
| 4687 for(ap=stp->ap; ap; ap=ap->next){ |
| 4688 int iAction = compute_action(lemp,ap); |
| 4689 if( iAction>=0 ){ |
| 4690 if( ap->sp->index<lemp->nterminal ){ |
| 4691 stp->nTknAct++; |
| 4692 }else if( ap->sp->index<lemp->nsymbol ){ |
| 4693 stp->nNtAct++; |
| 4694 }else{ |
| 4695 assert( stp->autoReduce==0 || stp->pDfltReduce==ap->x.rp ); |
| 4696 stp->iDfltReduce = iAction - lemp->nstate - lemp->nrule; |
| 4697 } |
| 4698 } |
| 4699 } |
| 4700 } |
| 4701 qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]), |
| 4702 stateResortCompare); |
| 4703 for(i=0; i<lemp->nstate; i++){ |
| 4704 lemp->sorted[i]->statenum = i; |
| 4705 } |
| 4706 lemp->nxstate = lemp->nstate; |
| 4707 while( lemp->nxstate>1 && lemp->sorted[lemp->nxstate-1]->autoReduce ){ |
| 4708 lemp->nxstate--; |
| 4709 } |
| 4710 } |
| 4711 |
| 4712 |
| 4713 /***************** From the file "set.c" ************************************/ |
| 4714 /* |
| 4715 ** Set manipulation routines for the LEMON parser generator. |
| 4716 */ |
| 4717 |
| 4718 static int size = 0; |
| 4719 |
| 4720 /* Set the set size */ |
| 4721 void SetSize(int n) |
| 4722 { |
| 4723 size = n+1; |
| 4724 } |
| 4725 |
| 4726 /* Allocate a new set */ |
| 4727 char *SetNew(){ |
| 4728 char *s; |
| 4729 s = (char*)calloc( size, 1); |
| 4730 if( s==0 ){ |
| 4731 extern void memory_error(); |
| 4732 memory_error(); |
| 4733 } |
| 4734 return s; |
| 4735 } |
| 4736 |
| 4737 /* Deallocate a set */ |
| 4738 void SetFree(char *s) |
| 4739 { |
| 4740 free(s); |
| 4741 } |
| 4742 |
| 4743 /* Add a new element to the set. Return TRUE if the element was added |
| 4744 ** and FALSE if it was already there. */ |
| 4745 int SetAdd(char *s, int e) |
| 4746 { |
| 4747 int rv; |
| 4748 assert( e>=0 && e<size ); |
| 4749 rv = s[e]; |
| 4750 s[e] = 1; |
| 4751 return !rv; |
| 4752 } |
| 4753 |
| 4754 /* Add every element of s2 to s1. Return TRUE if s1 changes. */ |
| 4755 int SetUnion(char *s1, char *s2) |
| 4756 { |
| 4757 int i, progress; |
| 4758 progress = 0; |
| 4759 for(i=0; i<size; i++){ |
| 4760 if( s2[i]==0 ) continue; |
| 4761 if( s1[i]==0 ){ |
| 4762 progress = 1; |
| 4763 s1[i] = 1; |
| 4764 } |
| 4765 } |
| 4766 return progress; |
| 4767 } |
| 4768 /********************** From the file "table.c" ****************************/ |
| 4769 /* |
| 4770 ** All code in this file has been automatically generated |
| 4771 ** from a specification in the file |
| 4772 ** "table.q" |
| 4773 ** by the associative array code building program "aagen". |
| 4774 ** Do not edit this file! Instead, edit the specification |
| 4775 ** file, then rerun aagen. |
| 4776 */ |
| 4777 /* |
| 4778 ** Code for processing tables in the LEMON parser generator. |
| 4779 */ |
| 4780 |
| 4781 PRIVATE unsigned strhash(const char *x) |
| 4782 { |
| 4783 unsigned h = 0; |
| 4784 while( *x ) h = h*13 + *(x++); |
| 4785 return h; |
| 4786 } |
| 4787 |
| 4788 /* Works like strdup, sort of. Save a string in malloced memory, but |
| 4789 ** keep strings in a table so that the same string is not in more |
| 4790 ** than one place. |
| 4791 */ |
| 4792 const char *Strsafe(const char *y) |
| 4793 { |
| 4794 const char *z; |
| 4795 char *cpy; |
| 4796 |
| 4797 if( y==0 ) return 0; |
| 4798 z = Strsafe_find(y); |
| 4799 if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){ |
| 4800 lemon_strcpy(cpy,y); |
| 4801 z = cpy; |
| 4802 Strsafe_insert(z); |
| 4803 } |
| 4804 MemoryCheck(z); |
| 4805 return z; |
| 4806 } |
| 4807 |
| 4808 /* There is one instance of the following structure for each |
| 4809 ** associative array of type "x1". |
| 4810 */ |
| 4811 struct s_x1 { |
| 4812 int size; /* The number of available slots. */ |
| 4813 /* Must be a power of 2 greater than or */ |
| 4814 /* equal to 1 */ |
| 4815 int count; /* Number of currently slots filled */ |
| 4816 struct s_x1node *tbl; /* The data stored here */ |
| 4817 struct s_x1node **ht; /* Hash table for lookups */ |
| 4818 }; |
| 4819 |
| 4820 /* There is one instance of this structure for every data element |
| 4821 ** in an associative array of type "x1". |
| 4822 */ |
| 4823 typedef struct s_x1node { |
| 4824 const char *data; /* The data */ |
| 4825 struct s_x1node *next; /* Next entry with the same hash */ |
| 4826 struct s_x1node **from; /* Previous link */ |
| 4827 } x1node; |
| 4828 |
| 4829 /* There is only one instance of the array, which is the following */ |
| 4830 static struct s_x1 *x1a; |
| 4831 |
| 4832 /* Allocate a new associative array */ |
| 4833 void Strsafe_init(){ |
| 4834 if( x1a ) return; |
| 4835 x1a = (struct s_x1*)malloc( sizeof(struct s_x1) ); |
| 4836 if( x1a ){ |
| 4837 x1a->size = 1024; |
| 4838 x1a->count = 0; |
| 4839 x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*)); |
| 4840 if( x1a->tbl==0 ){ |
| 4841 free(x1a); |
| 4842 x1a = 0; |
| 4843 }else{ |
| 4844 int i; |
| 4845 x1a->ht = (x1node**)&(x1a->tbl[1024]); |
| 4846 for(i=0; i<1024; i++) x1a->ht[i] = 0; |
| 4847 } |
| 4848 } |
| 4849 } |
| 4850 /* Insert a new record into the array. Return TRUE if successful. |
| 4851 ** Prior data with the same key is NOT overwritten */ |
| 4852 int Strsafe_insert(const char *data) |
| 4853 { |
| 4854 x1node *np; |
| 4855 unsigned h; |
| 4856 unsigned ph; |
| 4857 |
| 4858 if( x1a==0 ) return 0; |
| 4859 ph = strhash(data); |
| 4860 h = ph & (x1a->size-1); |
| 4861 np = x1a->ht[h]; |
| 4862 while( np ){ |
| 4863 if( strcmp(np->data,data)==0 ){ |
| 4864 /* An existing entry with the same key is found. */ |
| 4865 /* Fail because overwrite is not allows. */ |
| 4866 return 0; |
| 4867 } |
| 4868 np = np->next; |
| 4869 } |
| 4870 if( x1a->count>=x1a->size ){ |
| 4871 /* Need to make the hash table bigger */ |
| 4872 int i,arrSize; |
| 4873 struct s_x1 array; |
| 4874 array.size = arrSize = x1a->size*2; |
| 4875 array.count = x1a->count; |
| 4876 array.tbl = (x1node*)calloc(arrSize, sizeof(x1node) + sizeof(x1node*)); |
| 4877 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
| 4878 array.ht = (x1node**)&(array.tbl[arrSize]); |
| 4879 for(i=0; i<arrSize; i++) array.ht[i] = 0; |
| 4880 for(i=0; i<x1a->count; i++){ |
| 4881 x1node *oldnp, *newnp; |
| 4882 oldnp = &(x1a->tbl[i]); |
| 4883 h = strhash(oldnp->data) & (arrSize-1); |
| 4884 newnp = &(array.tbl[i]); |
| 4885 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
| 4886 newnp->next = array.ht[h]; |
| 4887 newnp->data = oldnp->data; |
| 4888 newnp->from = &(array.ht[h]); |
| 4889 array.ht[h] = newnp; |
| 4890 } |
| 4891 free(x1a->tbl); |
| 4892 *x1a = array; |
| 4893 } |
| 4894 /* Insert the new data */ |
| 4895 h = ph & (x1a->size-1); |
| 4896 np = &(x1a->tbl[x1a->count++]); |
| 4897 np->data = data; |
| 4898 if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next); |
| 4899 np->next = x1a->ht[h]; |
| 4900 x1a->ht[h] = np; |
| 4901 np->from = &(x1a->ht[h]); |
| 4902 return 1; |
| 4903 } |
| 4904 |
| 4905 /* Return a pointer to data assigned to the given key. Return NULL |
| 4906 ** if no such key. */ |
| 4907 const char *Strsafe_find(const char *key) |
| 4908 { |
| 4909 unsigned h; |
| 4910 x1node *np; |
| 4911 |
| 4912 if( x1a==0 ) return 0; |
| 4913 h = strhash(key) & (x1a->size-1); |
| 4914 np = x1a->ht[h]; |
| 4915 while( np ){ |
| 4916 if( strcmp(np->data,key)==0 ) break; |
| 4917 np = np->next; |
| 4918 } |
| 4919 return np ? np->data : 0; |
| 4920 } |
| 4921 |
| 4922 /* Return a pointer to the (terminal or nonterminal) symbol "x". |
| 4923 ** Create a new symbol if this is the first time "x" has been seen. |
| 4924 */ |
| 4925 struct symbol *Symbol_new(const char *x) |
| 4926 { |
| 4927 struct symbol *sp; |
| 4928 |
| 4929 sp = Symbol_find(x); |
| 4930 if( sp==0 ){ |
| 4931 sp = (struct symbol *)calloc(1, sizeof(struct symbol) ); |
| 4932 MemoryCheck(sp); |
| 4933 sp->name = Strsafe(x); |
| 4934 sp->type = ISUPPER(*x) ? TERMINAL : NONTERMINAL; |
| 4935 sp->rule = 0; |
| 4936 sp->fallback = 0; |
| 4937 sp->prec = -1; |
| 4938 sp->assoc = UNK; |
| 4939 sp->firstset = 0; |
| 4940 sp->lambda = LEMON_FALSE; |
| 4941 sp->destructor = 0; |
| 4942 sp->destLineno = 0; |
| 4943 sp->datatype = 0; |
| 4944 sp->useCnt = 0; |
| 4945 Symbol_insert(sp,sp->name); |
| 4946 } |
| 4947 sp->useCnt++; |
| 4948 return sp; |
| 4949 } |
| 4950 |
| 4951 /* Compare two symbols for sorting purposes. Return negative, |
| 4952 ** zero, or positive if a is less then, equal to, or greater |
| 4953 ** than b. |
| 4954 ** |
| 4955 ** Symbols that begin with upper case letters (terminals or tokens) |
| 4956 ** must sort before symbols that begin with lower case letters |
| 4957 ** (non-terminals). And MULTITERMINAL symbols (created using the |
| 4958 ** %token_class directive) must sort at the very end. Other than |
| 4959 ** that, the order does not matter. |
| 4960 ** |
| 4961 ** We find experimentally that leaving the symbols in their original |
| 4962 ** order (the order they appeared in the grammar file) gives the |
| 4963 ** smallest parser tables in SQLite. |
| 4964 */ |
| 4965 int Symbolcmpp(const void *_a, const void *_b) |
| 4966 { |
| 4967 const struct symbol *a = *(const struct symbol **) _a; |
| 4968 const struct symbol *b = *(const struct symbol **) _b; |
| 4969 int i1 = a->type==MULTITERMINAL ? 3 : a->name[0]>'Z' ? 2 : 1; |
| 4970 int i2 = b->type==MULTITERMINAL ? 3 : b->name[0]>'Z' ? 2 : 1; |
| 4971 return i1==i2 ? a->index - b->index : i1 - i2; |
| 4972 } |
| 4973 |
| 4974 /* There is one instance of the following structure for each |
| 4975 ** associative array of type "x2". |
| 4976 */ |
| 4977 struct s_x2 { |
| 4978 int size; /* The number of available slots. */ |
| 4979 /* Must be a power of 2 greater than or */ |
| 4980 /* equal to 1 */ |
| 4981 int count; /* Number of currently slots filled */ |
| 4982 struct s_x2node *tbl; /* The data stored here */ |
| 4983 struct s_x2node **ht; /* Hash table for lookups */ |
| 4984 }; |
| 4985 |
| 4986 /* There is one instance of this structure for every data element |
| 4987 ** in an associative array of type "x2". |
| 4988 */ |
| 4989 typedef struct s_x2node { |
| 4990 struct symbol *data; /* The data */ |
| 4991 const char *key; /* The key */ |
| 4992 struct s_x2node *next; /* Next entry with the same hash */ |
| 4993 struct s_x2node **from; /* Previous link */ |
| 4994 } x2node; |
| 4995 |
| 4996 /* There is only one instance of the array, which is the following */ |
| 4997 static struct s_x2 *x2a; |
| 4998 |
| 4999 /* Allocate a new associative array */ |
| 5000 void Symbol_init(){ |
| 5001 if( x2a ) return; |
| 5002 x2a = (struct s_x2*)malloc( sizeof(struct s_x2) ); |
| 5003 if( x2a ){ |
| 5004 x2a->size = 128; |
| 5005 x2a->count = 0; |
| 5006 x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*)); |
| 5007 if( x2a->tbl==0 ){ |
| 5008 free(x2a); |
| 5009 x2a = 0; |
| 5010 }else{ |
| 5011 int i; |
| 5012 x2a->ht = (x2node**)&(x2a->tbl[128]); |
| 5013 for(i=0; i<128; i++) x2a->ht[i] = 0; |
| 5014 } |
| 5015 } |
| 5016 } |
| 5017 /* Insert a new record into the array. Return TRUE if successful. |
| 5018 ** Prior data with the same key is NOT overwritten */ |
| 5019 int Symbol_insert(struct symbol *data, const char *key) |
| 5020 { |
| 5021 x2node *np; |
| 5022 unsigned h; |
| 5023 unsigned ph; |
| 5024 |
| 5025 if( x2a==0 ) return 0; |
| 5026 ph = strhash(key); |
| 5027 h = ph & (x2a->size-1); |
| 5028 np = x2a->ht[h]; |
| 5029 while( np ){ |
| 5030 if( strcmp(np->key,key)==0 ){ |
| 5031 /* An existing entry with the same key is found. */ |
| 5032 /* Fail because overwrite is not allows. */ |
| 5033 return 0; |
| 5034 } |
| 5035 np = np->next; |
| 5036 } |
| 5037 if( x2a->count>=x2a->size ){ |
| 5038 /* Need to make the hash table bigger */ |
| 5039 int i,arrSize; |
| 5040 struct s_x2 array; |
| 5041 array.size = arrSize = x2a->size*2; |
| 5042 array.count = x2a->count; |
| 5043 array.tbl = (x2node*)calloc(arrSize, sizeof(x2node) + sizeof(x2node*)); |
| 5044 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
| 5045 array.ht = (x2node**)&(array.tbl[arrSize]); |
| 5046 for(i=0; i<arrSize; i++) array.ht[i] = 0; |
| 5047 for(i=0; i<x2a->count; i++){ |
| 5048 x2node *oldnp, *newnp; |
| 5049 oldnp = &(x2a->tbl[i]); |
| 5050 h = strhash(oldnp->key) & (arrSize-1); |
| 5051 newnp = &(array.tbl[i]); |
| 5052 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
| 5053 newnp->next = array.ht[h]; |
| 5054 newnp->key = oldnp->key; |
| 5055 newnp->data = oldnp->data; |
| 5056 newnp->from = &(array.ht[h]); |
| 5057 array.ht[h] = newnp; |
| 5058 } |
| 5059 free(x2a->tbl); |
| 5060 *x2a = array; |
| 5061 } |
| 5062 /* Insert the new data */ |
| 5063 h = ph & (x2a->size-1); |
| 5064 np = &(x2a->tbl[x2a->count++]); |
| 5065 np->key = key; |
| 5066 np->data = data; |
| 5067 if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next); |
| 5068 np->next = x2a->ht[h]; |
| 5069 x2a->ht[h] = np; |
| 5070 np->from = &(x2a->ht[h]); |
| 5071 return 1; |
| 5072 } |
| 5073 |
| 5074 /* Return a pointer to data assigned to the given key. Return NULL |
| 5075 ** if no such key. */ |
| 5076 struct symbol *Symbol_find(const char *key) |
| 5077 { |
| 5078 unsigned h; |
| 5079 x2node *np; |
| 5080 |
| 5081 if( x2a==0 ) return 0; |
| 5082 h = strhash(key) & (x2a->size-1); |
| 5083 np = x2a->ht[h]; |
| 5084 while( np ){ |
| 5085 if( strcmp(np->key,key)==0 ) break; |
| 5086 np = np->next; |
| 5087 } |
| 5088 return np ? np->data : 0; |
| 5089 } |
| 5090 |
| 5091 /* Return the n-th data. Return NULL if n is out of range. */ |
| 5092 struct symbol *Symbol_Nth(int n) |
| 5093 { |
| 5094 struct symbol *data; |
| 5095 if( x2a && n>0 && n<=x2a->count ){ |
| 5096 data = x2a->tbl[n-1].data; |
| 5097 }else{ |
| 5098 data = 0; |
| 5099 } |
| 5100 return data; |
| 5101 } |
| 5102 |
| 5103 /* Return the size of the array */ |
| 5104 int Symbol_count() |
| 5105 { |
| 5106 return x2a ? x2a->count : 0; |
| 5107 } |
| 5108 |
| 5109 /* Return an array of pointers to all data in the table. |
| 5110 ** The array is obtained from malloc. Return NULL if memory allocation |
| 5111 ** problems, or if the array is empty. */ |
| 5112 struct symbol **Symbol_arrayof() |
| 5113 { |
| 5114 struct symbol **array; |
| 5115 int i,arrSize; |
| 5116 if( x2a==0 ) return 0; |
| 5117 arrSize = x2a->count; |
| 5118 array = (struct symbol **)calloc(arrSize, sizeof(struct symbol *)); |
| 5119 if( array ){ |
| 5120 for(i=0; i<arrSize; i++) array[i] = x2a->tbl[i].data; |
| 5121 } |
| 5122 return array; |
| 5123 } |
| 5124 |
| 5125 /* Compare two configurations */ |
| 5126 int Configcmp(const char *_a,const char *_b) |
| 5127 { |
| 5128 const struct config *a = (struct config *) _a; |
| 5129 const struct config *b = (struct config *) _b; |
| 5130 int x; |
| 5131 x = a->rp->index - b->rp->index; |
| 5132 if( x==0 ) x = a->dot - b->dot; |
| 5133 return x; |
| 5134 } |
| 5135 |
| 5136 /* Compare two states */ |
| 5137 PRIVATE int statecmp(struct config *a, struct config *b) |
| 5138 { |
| 5139 int rc; |
| 5140 for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){ |
| 5141 rc = a->rp->index - b->rp->index; |
| 5142 if( rc==0 ) rc = a->dot - b->dot; |
| 5143 } |
| 5144 if( rc==0 ){ |
| 5145 if( a ) rc = 1; |
| 5146 if( b ) rc = -1; |
| 5147 } |
| 5148 return rc; |
| 5149 } |
| 5150 |
| 5151 /* Hash a state */ |
| 5152 PRIVATE unsigned statehash(struct config *a) |
| 5153 { |
| 5154 unsigned h=0; |
| 5155 while( a ){ |
| 5156 h = h*571 + a->rp->index*37 + a->dot; |
| 5157 a = a->bp; |
| 5158 } |
| 5159 return h; |
| 5160 } |
| 5161 |
| 5162 /* Allocate a new state structure */ |
| 5163 struct state *State_new() |
| 5164 { |
| 5165 struct state *newstate; |
| 5166 newstate = (struct state *)calloc(1, sizeof(struct state) ); |
| 5167 MemoryCheck(newstate); |
| 5168 return newstate; |
| 5169 } |
| 5170 |
| 5171 /* There is one instance of the following structure for each |
| 5172 ** associative array of type "x3". |
| 5173 */ |
| 5174 struct s_x3 { |
| 5175 int size; /* The number of available slots. */ |
| 5176 /* Must be a power of 2 greater than or */ |
| 5177 /* equal to 1 */ |
| 5178 int count; /* Number of currently slots filled */ |
| 5179 struct s_x3node *tbl; /* The data stored here */ |
| 5180 struct s_x3node **ht; /* Hash table for lookups */ |
| 5181 }; |
| 5182 |
| 5183 /* There is one instance of this structure for every data element |
| 5184 ** in an associative array of type "x3". |
| 5185 */ |
| 5186 typedef struct s_x3node { |
| 5187 struct state *data; /* The data */ |
| 5188 struct config *key; /* The key */ |
| 5189 struct s_x3node *next; /* Next entry with the same hash */ |
| 5190 struct s_x3node **from; /* Previous link */ |
| 5191 } x3node; |
| 5192 |
| 5193 /* There is only one instance of the array, which is the following */ |
| 5194 static struct s_x3 *x3a; |
| 5195 |
| 5196 /* Allocate a new associative array */ |
| 5197 void State_init(){ |
| 5198 if( x3a ) return; |
| 5199 x3a = (struct s_x3*)malloc( sizeof(struct s_x3) ); |
| 5200 if( x3a ){ |
| 5201 x3a->size = 128; |
| 5202 x3a->count = 0; |
| 5203 x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*)); |
| 5204 if( x3a->tbl==0 ){ |
| 5205 free(x3a); |
| 5206 x3a = 0; |
| 5207 }else{ |
| 5208 int i; |
| 5209 x3a->ht = (x3node**)&(x3a->tbl[128]); |
| 5210 for(i=0; i<128; i++) x3a->ht[i] = 0; |
| 5211 } |
| 5212 } |
| 5213 } |
| 5214 /* Insert a new record into the array. Return TRUE if successful. |
| 5215 ** Prior data with the same key is NOT overwritten */ |
| 5216 int State_insert(struct state *data, struct config *key) |
| 5217 { |
| 5218 x3node *np; |
| 5219 unsigned h; |
| 5220 unsigned ph; |
| 5221 |
| 5222 if( x3a==0 ) return 0; |
| 5223 ph = statehash(key); |
| 5224 h = ph & (x3a->size-1); |
| 5225 np = x3a->ht[h]; |
| 5226 while( np ){ |
| 5227 if( statecmp(np->key,key)==0 ){ |
| 5228 /* An existing entry with the same key is found. */ |
| 5229 /* Fail because overwrite is not allows. */ |
| 5230 return 0; |
| 5231 } |
| 5232 np = np->next; |
| 5233 } |
| 5234 if( x3a->count>=x3a->size ){ |
| 5235 /* Need to make the hash table bigger */ |
| 5236 int i,arrSize; |
| 5237 struct s_x3 array; |
| 5238 array.size = arrSize = x3a->size*2; |
| 5239 array.count = x3a->count; |
| 5240 array.tbl = (x3node*)calloc(arrSize, sizeof(x3node) + sizeof(x3node*)); |
| 5241 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
| 5242 array.ht = (x3node**)&(array.tbl[arrSize]); |
| 5243 for(i=0; i<arrSize; i++) array.ht[i] = 0; |
| 5244 for(i=0; i<x3a->count; i++){ |
| 5245 x3node *oldnp, *newnp; |
| 5246 oldnp = &(x3a->tbl[i]); |
| 5247 h = statehash(oldnp->key) & (arrSize-1); |
| 5248 newnp = &(array.tbl[i]); |
| 5249 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
| 5250 newnp->next = array.ht[h]; |
| 5251 newnp->key = oldnp->key; |
| 5252 newnp->data = oldnp->data; |
| 5253 newnp->from = &(array.ht[h]); |
| 5254 array.ht[h] = newnp; |
| 5255 } |
| 5256 free(x3a->tbl); |
| 5257 *x3a = array; |
| 5258 } |
| 5259 /* Insert the new data */ |
| 5260 h = ph & (x3a->size-1); |
| 5261 np = &(x3a->tbl[x3a->count++]); |
| 5262 np->key = key; |
| 5263 np->data = data; |
| 5264 if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next); |
| 5265 np->next = x3a->ht[h]; |
| 5266 x3a->ht[h] = np; |
| 5267 np->from = &(x3a->ht[h]); |
| 5268 return 1; |
| 5269 } |
| 5270 |
| 5271 /* Return a pointer to data assigned to the given key. Return NULL |
| 5272 ** if no such key. */ |
| 5273 struct state *State_find(struct config *key) |
| 5274 { |
| 5275 unsigned h; |
| 5276 x3node *np; |
| 5277 |
| 5278 if( x3a==0 ) return 0; |
| 5279 h = statehash(key) & (x3a->size-1); |
| 5280 np = x3a->ht[h]; |
| 5281 while( np ){ |
| 5282 if( statecmp(np->key,key)==0 ) break; |
| 5283 np = np->next; |
| 5284 } |
| 5285 return np ? np->data : 0; |
| 5286 } |
| 5287 |
| 5288 /* Return an array of pointers to all data in the table. |
| 5289 ** The array is obtained from malloc. Return NULL if memory allocation |
| 5290 ** problems, or if the array is empty. */ |
| 5291 struct state **State_arrayof() |
| 5292 { |
| 5293 struct state **array; |
| 5294 int i,arrSize; |
| 5295 if( x3a==0 ) return 0; |
| 5296 arrSize = x3a->count; |
| 5297 array = (struct state **)calloc(arrSize, sizeof(struct state *)); |
| 5298 if( array ){ |
| 5299 for(i=0; i<arrSize; i++) array[i] = x3a->tbl[i].data; |
| 5300 } |
| 5301 return array; |
| 5302 } |
| 5303 |
| 5304 /* Hash a configuration */ |
| 5305 PRIVATE unsigned confighash(struct config *a) |
| 5306 { |
| 5307 unsigned h=0; |
| 5308 h = h*571 + a->rp->index*37 + a->dot; |
| 5309 return h; |
| 5310 } |
| 5311 |
| 5312 /* There is one instance of the following structure for each |
| 5313 ** associative array of type "x4". |
| 5314 */ |
| 5315 struct s_x4 { |
| 5316 int size; /* The number of available slots. */ |
| 5317 /* Must be a power of 2 greater than or */ |
| 5318 /* equal to 1 */ |
| 5319 int count; /* Number of currently slots filled */ |
| 5320 struct s_x4node *tbl; /* The data stored here */ |
| 5321 struct s_x4node **ht; /* Hash table for lookups */ |
| 5322 }; |
| 5323 |
| 5324 /* There is one instance of this structure for every data element |
| 5325 ** in an associative array of type "x4". |
| 5326 */ |
| 5327 typedef struct s_x4node { |
| 5328 struct config *data; /* The data */ |
| 5329 struct s_x4node *next; /* Next entry with the same hash */ |
| 5330 struct s_x4node **from; /* Previous link */ |
| 5331 } x4node; |
| 5332 |
| 5333 /* There is only one instance of the array, which is the following */ |
| 5334 static struct s_x4 *x4a; |
| 5335 |
| 5336 /* Allocate a new associative array */ |
| 5337 void Configtable_init(){ |
| 5338 if( x4a ) return; |
| 5339 x4a = (struct s_x4*)malloc( sizeof(struct s_x4) ); |
| 5340 if( x4a ){ |
| 5341 x4a->size = 64; |
| 5342 x4a->count = 0; |
| 5343 x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*)); |
| 5344 if( x4a->tbl==0 ){ |
| 5345 free(x4a); |
| 5346 x4a = 0; |
| 5347 }else{ |
| 5348 int i; |
| 5349 x4a->ht = (x4node**)&(x4a->tbl[64]); |
| 5350 for(i=0; i<64; i++) x4a->ht[i] = 0; |
| 5351 } |
| 5352 } |
| 5353 } |
| 5354 /* Insert a new record into the array. Return TRUE if successful. |
| 5355 ** Prior data with the same key is NOT overwritten */ |
| 5356 int Configtable_insert(struct config *data) |
| 5357 { |
| 5358 x4node *np; |
| 5359 unsigned h; |
| 5360 unsigned ph; |
| 5361 |
| 5362 if( x4a==0 ) return 0; |
| 5363 ph = confighash(data); |
| 5364 h = ph & (x4a->size-1); |
| 5365 np = x4a->ht[h]; |
| 5366 while( np ){ |
| 5367 if( Configcmp((const char *) np->data,(const char *) data)==0 ){ |
| 5368 /* An existing entry with the same key is found. */ |
| 5369 /* Fail because overwrite is not allows. */ |
| 5370 return 0; |
| 5371 } |
| 5372 np = np->next; |
| 5373 } |
| 5374 if( x4a->count>=x4a->size ){ |
| 5375 /* Need to make the hash table bigger */ |
| 5376 int i,arrSize; |
| 5377 struct s_x4 array; |
| 5378 array.size = arrSize = x4a->size*2; |
| 5379 array.count = x4a->count; |
| 5380 array.tbl = (x4node*)calloc(arrSize, sizeof(x4node) + sizeof(x4node*)); |
| 5381 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
| 5382 array.ht = (x4node**)&(array.tbl[arrSize]); |
| 5383 for(i=0; i<arrSize; i++) array.ht[i] = 0; |
| 5384 for(i=0; i<x4a->count; i++){ |
| 5385 x4node *oldnp, *newnp; |
| 5386 oldnp = &(x4a->tbl[i]); |
| 5387 h = confighash(oldnp->data) & (arrSize-1); |
| 5388 newnp = &(array.tbl[i]); |
| 5389 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
| 5390 newnp->next = array.ht[h]; |
| 5391 newnp->data = oldnp->data; |
| 5392 newnp->from = &(array.ht[h]); |
| 5393 array.ht[h] = newnp; |
| 5394 } |
| 5395 free(x4a->tbl); |
| 5396 *x4a = array; |
| 5397 } |
| 5398 /* Insert the new data */ |
| 5399 h = ph & (x4a->size-1); |
| 5400 np = &(x4a->tbl[x4a->count++]); |
| 5401 np->data = data; |
| 5402 if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next); |
| 5403 np->next = x4a->ht[h]; |
| 5404 x4a->ht[h] = np; |
| 5405 np->from = &(x4a->ht[h]); |
| 5406 return 1; |
| 5407 } |
| 5408 |
| 5409 /* Return a pointer to data assigned to the given key. Return NULL |
| 5410 ** if no such key. */ |
| 5411 struct config *Configtable_find(struct config *key) |
| 5412 { |
| 5413 int h; |
| 5414 x4node *np; |
| 5415 |
| 5416 if( x4a==0 ) return 0; |
| 5417 h = confighash(key) & (x4a->size-1); |
| 5418 np = x4a->ht[h]; |
| 5419 while( np ){ |
| 5420 if( Configcmp((const char *) np->data,(const char *) key)==0 ) break; |
| 5421 np = np->next; |
| 5422 } |
| 5423 return np ? np->data : 0; |
| 5424 } |
| 5425 |
| 5426 /* Remove all data from the table. Pass each data to the function "f" |
| 5427 ** as it is removed. ("f" may be null to avoid this step.) */ |
| 5428 void Configtable_clear(int(*f)(struct config *)) |
| 5429 { |
| 5430 int i; |
| 5431 if( x4a==0 || x4a->count==0 ) return; |
| 5432 if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data); |
| 5433 for(i=0; i<x4a->size; i++) x4a->ht[i] = 0; |
| 5434 x4a->count = 0; |
| 5435 return; |
| 5436 } |
OLD | NEW |