OLD | NEW |
(Empty) | |
| 1 # 2014 May 6. |
| 2 # |
| 3 # The author disclaims copyright to this source code. In place of |
| 4 # a legal notice, here is a blessing: |
| 5 # |
| 6 # May you do good and not evil. |
| 7 # May you find forgiveness for yourself and forgive others. |
| 8 # May you share freely, never taking more than you give. |
| 9 # |
| 10 #*********************************************************************** |
| 11 # This file implements regression tests for SQLite library. |
| 12 # |
| 13 # The tests in this file are brute force tests of the multi-threaded |
| 14 # sorter. |
| 15 # |
| 16 |
| 17 set testdir [file dirname $argv0] |
| 18 source $testdir/tester.tcl |
| 19 set testprefix sort4 |
| 20 db close |
| 21 sqlite3_shutdown |
| 22 sqlite3_config_pmasz 10 |
| 23 sqlite3_initialize |
| 24 sqlite3 db test.db |
| 25 |
| 26 |
| 27 # Configure the sorter to use 3 background threads. |
| 28 # |
| 29 # EVIDENCE-OF: R-19249-32353 SQLITE_LIMIT_WORKER_THREADS The maximum |
| 30 # number of auxiliary worker threads that a single prepared statement |
| 31 # may start. |
| 32 # |
| 33 do_test sort4-init001 { |
| 34 db eval {PRAGMA threads=5} |
| 35 sqlite3_limit db SQLITE_LIMIT_WORKER_THREADS -1 |
| 36 } {5} |
| 37 do_test sort4-init002 { |
| 38 sqlite3_limit db SQLITE_LIMIT_WORKER_THREADS 3 |
| 39 db eval {PRAGMA threads} |
| 40 } {3} |
| 41 |
| 42 |
| 43 # Minimum number of seconds to run for. If the value is 0, each test |
| 44 # is run exactly once. Otherwise, tests are repeated until the timeout |
| 45 # expires. |
| 46 set SORT4TIMEOUT 0 |
| 47 if {[permutation] == "multithread"} { set SORT4TIMEOUT 300 } |
| 48 |
| 49 #-------------------------------------------------------------------- |
| 50 # Set up a table "t1" containing $nRow rows. Each row contains also |
| 51 # contains blob fields that collectively contain at least $nPayload |
| 52 # bytes of content. The table schema is as follows: |
| 53 # |
| 54 # CREATE TABLE t1(a INTEGER, <extra-columns>, b INTEGER); |
| 55 # |
| 56 # For each row, the values of columns "a" and "b" are set to the same |
| 57 # pseudo-randomly selected integer. The "extra-columns", of which there |
| 58 # are at most eight, are named c0, c1, c2 etc. Column c0 contains a 4 |
| 59 # byte string. Column c1 an 8 byte string. Field c2 16 bytes, and so on. |
| 60 # |
| 61 # This table is intended to be used for testing queries of the form: |
| 62 # |
| 63 # SELECT a, <cols>, b FROM t1 ORDER BY a; |
| 64 # |
| 65 # The test code checks that rows are returned in order, and that the |
| 66 # values of "a" and "b" are the same for each row (the idea being that |
| 67 # if field "b" at the end of the sorter record has not been corrupted, |
| 68 # the rest of the record is probably Ok as well). |
| 69 # |
| 70 proc populate_table {nRow nPayload} { |
| 71 set nCol 0 |
| 72 |
| 73 set n 0 |
| 74 for {set nCol 0} {$n < $nPayload} {incr nCol} { |
| 75 incr n [expr (4 << $nCol)] |
| 76 } |
| 77 |
| 78 set cols [lrange [list xxx c0 c1 c2 c3 c4 c5 c6 c7] 1 $nCol] |
| 79 set data [lrange [list xxx \ |
| 80 randomblob(4) randomblob(8) randomblob(16) randomblob(32) \ |
| 81 randomblob(64) randomblob(128) randomblob(256) randomblob(512) \ |
| 82 ] 1 $nCol] |
| 83 |
| 84 execsql { DROP TABLE IF EXISTS t1 } |
| 85 |
| 86 db transaction { |
| 87 execsql "CREATE TABLE t1(a, [join $cols ,], b);" |
| 88 set insert "INSERT INTO t1 VALUES(:k, [join $data ,], :k)" |
| 89 for {set i 0} {$i < $nRow} {incr i} { |
| 90 set k [expr int(rand()*1000000000)] |
| 91 execsql $insert |
| 92 } |
| 93 } |
| 94 } |
| 95 |
| 96 # Helper for [do_sorter_test] |
| 97 # |
| 98 proc sorter_test {nRow nRead nPayload} { |
| 99 set res [list] |
| 100 |
| 101 set nLoad [expr ($nRow > $nRead) ? $nRead : $nRow] |
| 102 |
| 103 set nPayload [expr (($nPayload+3)/4) * 4] |
| 104 set cols [list] |
| 105 foreach {mask col} { |
| 106 0x04 c0 0x08 c1 0x10 c2 0x20 c3 |
| 107 0x40 c4 0x80 c5 0x100 c6 0x200 c7 |
| 108 } { |
| 109 if {$nPayload & $mask} { lappend cols $col } |
| 110 } |
| 111 |
| 112 # Create two SELECT statements. Statement $sql1 uses the sorter to sort |
| 113 # $nRow records of a bit over $nPayload bytes each read from the "t1" |
| 114 # table created by [populate_table] proc above. Rows are sorted in order |
| 115 # of the integer field in each "t1" record. |
| 116 # |
| 117 # The second SQL statement sorts the same set of rows as the first, but |
| 118 # uses a LIMIT clause, causing SQLite to use a temp table instead of the |
| 119 # sorter for sorting. |
| 120 # |
| 121 set sql1 "SELECT a, [join $cols ,], b FROM t1 WHERE rowid<=$nRow ORDER BY a" |
| 122 set sql2 "SELECT a FROM t1 WHERE rowid<=$nRow ORDER BY a LIMIT $nRead" |
| 123 |
| 124 # Pass the two SQL statements to a helper command written in C. This |
| 125 # command steps statement $sql1 $nRead times and compares the integer |
| 126 # values in the rows returned with the results of executing $sql2. If |
| 127 # the comparison fails (indicating some bug in the sorter), a Tcl |
| 128 # exception is thrown. |
| 129 # |
| 130 sorter_test_sort4_helper db $sql1 $nRead $sql2 |
| 131 set {} {} |
| 132 } |
| 133 |
| 134 # Usage: |
| 135 # |
| 136 # do_sorter_test <testname> <args>... |
| 137 # |
| 138 # where <args> are any of the following switches: |
| 139 # |
| 140 # -rows N (number of rows to have sorter sort) |
| 141 # -read N (number of rows to read out of sorter) |
| 142 # -payload N (bytes of payload to read with each row) |
| 143 # -cachesize N (Value for "PRAGMA cache_size = ?") |
| 144 # -repeats N (number of times to repeat test) |
| 145 # -fakeheap BOOL (true to use separate allocations for in-memory records) |
| 146 # |
| 147 proc do_sorter_test {tn args} { |
| 148 set a(-rows) 1000 |
| 149 set a(-repeats) 1 |
| 150 set a(-read) 100 |
| 151 set a(-payload) 100 |
| 152 set a(-cachesize) 100 |
| 153 set a(-fakeheap) 0 |
| 154 |
| 155 foreach {s val} $args { |
| 156 if {[info exists a($s)]==0} { |
| 157 unset a(-cachesize) |
| 158 set optlist "[join [array names a] ,] or -cachesize" |
| 159 error "Unknown option $s, expected $optlist" |
| 160 } |
| 161 set a($s) $val |
| 162 } |
| 163 if {[permutation] == "memsys3" || [permutation] == "memsys5"} { |
| 164 set a(-fakeheap) 0 |
| 165 } |
| 166 if {$a(-fakeheap)} { sorter_test_fakeheap 1 } |
| 167 |
| 168 |
| 169 db eval "PRAGMA cache_size = $a(-cachesize)" |
| 170 do_test $tn [subst -nocommands { |
| 171 for {set i 0} {[set i] < $a(-repeats)} {incr i} { |
| 172 sorter_test $a(-rows) $a(-read) $a(-payload) |
| 173 } |
| 174 }] {} |
| 175 |
| 176 if {$a(-fakeheap)} { sorter_test_fakeheap 0 } |
| 177 } |
| 178 |
| 179 proc clock_seconds {} { |
| 180 db one {SELECT strftime('%s')} |
| 181 } |
| 182 |
| 183 #------------------------------------------------------------------------- |
| 184 # Begin tests here. |
| 185 |
| 186 # Create a test database. |
| 187 do_test 1 { |
| 188 execsql "PRAGMA page_size = 4096" |
| 189 populate_table 100000 500 |
| 190 } {} |
| 191 |
| 192 set iTimeLimit [expr [clock_seconds] + $SORT4TIMEOUT] |
| 193 |
| 194 for {set t 2} {1} {incr tn} { |
| 195 do_sorter_test $t.2 -repeats 10 -rows 1000 -read 100 |
| 196 do_sorter_test $t.3 -repeats 10 -rows 100000 -read 1000 |
| 197 do_sorter_test $t.4 -repeats 10 -rows 100000 -read 1000 -payload 500 |
| 198 do_sorter_test $t.5 -repeats 10 -rows 100000 -read 100000 -payload 8 |
| 199 do_sorter_test $t.6 -repeats 10 -rows 100000 -read 10 -payload 8 |
| 200 do_sorter_test $t.7 -repeats 10 -rows 10000 -read 10000 -payload 8 -fakeheap 1 |
| 201 do_sorter_test $t.8 -repeats 10 -rows 100000 -read 10000 -cachesize 250 |
| 202 |
| 203 set iNow [clock_seconds] |
| 204 if {$iNow>=$iTimeLimit} break |
| 205 do_test "$testprefix-([expr $iTimeLimit-$iNow] seconds remain)" {} {} |
| 206 } |
| 207 |
| 208 finish_test |
OLD | NEW |