OLD | NEW |
(Empty) | |
| 1 # 2005 November 30 |
| 2 # |
| 3 # The author disclaims copyright to this source code. In place of |
| 4 # a legal notice, here is a blessing: |
| 5 # |
| 6 # May you do good and not evil. |
| 7 # May you find forgiveness for yourself and forgive others. |
| 8 # May you share freely, never taking more than you give. |
| 9 # |
| 10 #*********************************************************************** |
| 11 # |
| 12 # This file contains test cases focused on the two memory-management APIs, |
| 13 # sqlite3_soft_heap_limit() and sqlite3_release_memory(). |
| 14 # |
| 15 # Prior to version 3.6.2, calling sqlite3_release_memory() or exceeding |
| 16 # the configured soft heap limit could cause sqlite to upgrade database |
| 17 # locks and flush dirty pages to the file system. As of 3.6.2, this is |
| 18 # no longer the case. In version 3.6.2, sqlite3_release_memory() only |
| 19 # reclaims clean pages. This test file has been updated accordingly. |
| 20 # |
| 21 # $Id: malloc5.test,v 1.22 2009/04/11 19:09:54 drh Exp $ |
| 22 |
| 23 set testdir [file dirname $argv0] |
| 24 source $testdir/tester.tcl |
| 25 source $testdir/malloc_common.tcl |
| 26 db close |
| 27 |
| 28 # Only run these tests if memory debugging is turned on. |
| 29 # |
| 30 if {!$MEMDEBUG} { |
| 31 puts "Skipping malloc5 tests: not compiled with -DSQLITE_MEMDEBUG..." |
| 32 finish_test |
| 33 return |
| 34 } |
| 35 |
| 36 # Skip these tests if OMIT_MEMORY_MANAGEMENT was defined at compile time. |
| 37 ifcapable !memorymanage { |
| 38 finish_test |
| 39 return |
| 40 } |
| 41 |
| 42 test_set_config_pagecache 0 100 |
| 43 |
| 44 sqlite3_soft_heap_limit 0 |
| 45 sqlite3 db test.db |
| 46 db eval {PRAGMA cache_size=1} |
| 47 |
| 48 do_test malloc5-1.1 { |
| 49 # Simplest possible test. Call sqlite3_release_memory when there is exactly |
| 50 # one unused page in a single pager cache. The page cannot be freed, as |
| 51 # it is dirty. So sqlite3_release_memory() returns 0. |
| 52 # |
| 53 execsql { |
| 54 PRAGMA auto_vacuum=OFF; |
| 55 BEGIN; |
| 56 CREATE TABLE abc(a, b, c); |
| 57 } |
| 58 sqlite3_release_memory |
| 59 } {0} |
| 60 |
| 61 do_test malloc5-1.2 { |
| 62 # Test that the transaction started in the above test is still active. |
| 63 # The lock on the database file should not have been upgraded (this was |
| 64 # not the case before version 3.6.2). |
| 65 # |
| 66 sqlite3 db2 test.db |
| 67 execsql {PRAGMA cache_size=2; SELECT * FROM sqlite_master } db2 |
| 68 } {} |
| 69 do_test malloc5-1.3 { |
| 70 # Call [sqlite3_release_memory] when there is exactly one unused page |
| 71 # in the cache belonging to db2. |
| 72 # |
| 73 set ::pgalloc [sqlite3_release_memory] |
| 74 } {0} |
| 75 |
| 76 # The sizes of memory allocations from system malloc() might vary, |
| 77 # depending on the memory allocator algorithms used. The following |
| 78 # routine is designed to support answers that fall within a range |
| 79 # of values while also supplying easy-to-understand "expected" values |
| 80 # when errors occur. |
| 81 # |
| 82 proc value_in_range {target x args} { |
| 83 set v [lindex $args 0] |
| 84 if {$v!=""} { |
| 85 if {$v<$target*$x} {return $v} |
| 86 if {$v>$target/$x} {return $v} |
| 87 } |
| 88 return "number between [expr {int($target*$x)}] and [expr {int($target/$x)}]" |
| 89 } |
| 90 set mrange 0.98 ;# plus or minus 2% |
| 91 |
| 92 |
| 93 do_test malloc5-1.4 { |
| 94 # Commit the transaction and open a new one. Read 1 page into the cache. |
| 95 # Because the page is not dirty, it is eligible for collection even |
| 96 # before the transaction is concluded. |
| 97 # |
| 98 execsql { |
| 99 COMMIT; |
| 100 BEGIN; |
| 101 SELECT * FROM abc; |
| 102 } |
| 103 value_in_range $::pgalloc $::mrange [sqlite3_release_memory] |
| 104 } [value_in_range $::pgalloc $::mrange] |
| 105 |
| 106 do_test malloc5-1.5 { |
| 107 # Conclude the transaction opened in the previous [do_test] block. This |
| 108 # causes another page (page 1) to become eligible for recycling. |
| 109 # |
| 110 execsql { COMMIT } |
| 111 value_in_range $::pgalloc $::mrange [sqlite3_release_memory] |
| 112 } [value_in_range $::pgalloc $::mrange] |
| 113 |
| 114 do_test malloc5-1.6 { |
| 115 # Manipulate the cache so that it contains two unused pages. One requires |
| 116 # a journal-sync to free, the other does not. |
| 117 db2 close |
| 118 execsql { |
| 119 BEGIN; |
| 120 SELECT * FROM abc; |
| 121 CREATE TABLE def(d, e, f); |
| 122 } |
| 123 value_in_range $::pgalloc $::mrange [sqlite3_release_memory 500] |
| 124 } [value_in_range $::pgalloc $::mrange] |
| 125 |
| 126 do_test malloc5-1.7 { |
| 127 # Database should not be locked this time. |
| 128 sqlite3 db2 test.db |
| 129 catchsql { SELECT * FROM abc } db2 |
| 130 } {0 {}} |
| 131 do_test malloc5-1.8 { |
| 132 # Try to release another block of memory. This will fail as the only |
| 133 # pages currently in the cache are dirty (page 3) or pinned (page 1). |
| 134 db2 close |
| 135 sqlite3_release_memory 500 |
| 136 } 0 |
| 137 do_test malloc5-1.8 { |
| 138 # Database is still not locked. |
| 139 # |
| 140 sqlite3 db2 test.db |
| 141 catchsql { SELECT * FROM abc } db2 |
| 142 } {0 {}} |
| 143 do_test malloc5-1.9 { |
| 144 execsql { |
| 145 COMMIT; |
| 146 } |
| 147 } {} |
| 148 |
| 149 do_test malloc5-2.1 { |
| 150 # Put some data in tables abc and def. Both tables are still wholly |
| 151 # contained within their root pages. |
| 152 execsql { |
| 153 INSERT INTO abc VALUES(1, 2, 3); |
| 154 INSERT INTO abc VALUES(4, 5, 6); |
| 155 INSERT INTO def VALUES(7, 8, 9); |
| 156 INSERT INTO def VALUES(10,11,12); |
| 157 } |
| 158 } {} |
| 159 do_test malloc5-2.2 { |
| 160 # Load the root-page for table def into the cache. Then query table abc. |
| 161 # Halfway through the query call sqlite3_release_memory(). The goal of this |
| 162 # test is to make sure we don't free pages that are in use (specifically, |
| 163 # the root of table abc). |
| 164 sqlite3_release_memory |
| 165 set nRelease 0 |
| 166 execsql { |
| 167 BEGIN; |
| 168 SELECT * FROM def; |
| 169 } |
| 170 set data [list] |
| 171 db eval {SELECT * FROM abc} { |
| 172 incr nRelease [sqlite3_release_memory] |
| 173 lappend data $a $b $c |
| 174 } |
| 175 execsql { |
| 176 COMMIT; |
| 177 } |
| 178 list $nRelease $data |
| 179 } [list $pgalloc [list 1 2 3 4 5 6]] |
| 180 |
| 181 do_test malloc5-3.1 { |
| 182 # Simple test to show that if two pagers are opened from within this |
| 183 # thread, memory is freed from both when sqlite3_release_memory() is |
| 184 # called. |
| 185 execsql { |
| 186 BEGIN; |
| 187 SELECT * FROM abc; |
| 188 } |
| 189 execsql { |
| 190 SELECT * FROM sqlite_master; |
| 191 BEGIN; |
| 192 SELECT * FROM def; |
| 193 } db2 |
| 194 value_in_range [expr $::pgalloc*2] 0.99 [sqlite3_release_memory] |
| 195 } [value_in_range [expr $::pgalloc * 2] 0.99] |
| 196 do_test malloc5-3.2 { |
| 197 concat \ |
| 198 [execsql {SELECT * FROM abc; COMMIT}] \ |
| 199 [execsql {SELECT * FROM def; COMMIT} db2] |
| 200 } {1 2 3 4 5 6 7 8 9 10 11 12} |
| 201 |
| 202 db2 close |
| 203 puts "Highwater mark: [sqlite3_memory_highwater]" |
| 204 |
| 205 # The following two test cases each execute a transaction in which |
| 206 # 10000 rows are inserted into table abc. The first test case is used |
| 207 # to ensure that more than 1MB of dynamic memory is used to perform |
| 208 # the transaction. |
| 209 # |
| 210 # The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB) |
| 211 # and tests to see that this limit is not exceeded at any point during |
| 212 # transaction execution. |
| 213 # |
| 214 # Before executing malloc5-4.* we save the value of the current soft heap |
| 215 # limit in variable ::soft_limit. The original value is restored after |
| 216 # running the tests. |
| 217 # |
| 218 set ::soft_limit [sqlite3_soft_heap_limit -1] |
| 219 execsql {PRAGMA cache_size=2000} |
| 220 do_test malloc5-4.1 { |
| 221 execsql {BEGIN;} |
| 222 execsql {DELETE FROM abc;} |
| 223 for {set i 0} {$i < 10000} {incr i} { |
| 224 execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');" |
| 225 } |
| 226 execsql {COMMIT;} |
| 227 db cache flush |
| 228 sqlite3_release_memory |
| 229 sqlite3_memory_highwater 1 |
| 230 execsql {SELECT * FROM abc} |
| 231 set nMaxBytes [sqlite3_memory_highwater 1] |
| 232 puts -nonewline " (Highwater mark: $nMaxBytes) " |
| 233 expr $nMaxBytes > 1000000 |
| 234 } {1} |
| 235 do_test malloc5-4.2 { |
| 236 db eval {PRAGMA cache_size=1} |
| 237 db cache flush |
| 238 sqlite3_release_memory |
| 239 sqlite3_soft_heap_limit 200000 |
| 240 sqlite3_memory_highwater 1 |
| 241 execsql {SELECT * FROM abc} |
| 242 set nMaxBytes [sqlite3_memory_highwater 1] |
| 243 puts -nonewline " (Highwater mark: $nMaxBytes) " |
| 244 expr $nMaxBytes <= 210000 |
| 245 } {1} |
| 246 do_test malloc5-4.3 { |
| 247 # Check that the content of table abc is at least roughly as expected. |
| 248 execsql { |
| 249 SELECT count(*), sum(a), sum(b) FROM abc; |
| 250 } |
| 251 } [list 10000 [expr int(10000.0 * 4999.5)] [expr int(10000.0 * 4999.5)]] |
| 252 |
| 253 # Restore the soft heap limit. |
| 254 sqlite3_soft_heap_limit $::soft_limit |
| 255 |
| 256 # Test that there are no problems calling sqlite3_release_memory when |
| 257 # there are open in-memory databases. |
| 258 # |
| 259 # At one point these tests would cause a seg-fault. |
| 260 # |
| 261 do_test malloc5-5.1 { |
| 262 db close |
| 263 sqlite3 db :memory: |
| 264 execsql { |
| 265 BEGIN; |
| 266 CREATE TABLE abc(a, b, c); |
| 267 INSERT INTO abc VALUES('abcdefghi', 1234567890, NULL); |
| 268 INSERT INTO abc SELECT * FROM abc; |
| 269 INSERT INTO abc SELECT * FROM abc; |
| 270 INSERT INTO abc SELECT * FROM abc; |
| 271 INSERT INTO abc SELECT * FROM abc; |
| 272 INSERT INTO abc SELECT * FROM abc; |
| 273 INSERT INTO abc SELECT * FROM abc; |
| 274 INSERT INTO abc SELECT * FROM abc; |
| 275 } |
| 276 sqlite3_release_memory |
| 277 } 0 |
| 278 do_test malloc5-5.2 { |
| 279 sqlite3_soft_heap_limit 5000 |
| 280 execsql { |
| 281 COMMIT; |
| 282 PRAGMA temp_store = memory; |
| 283 SELECT * FROM abc ORDER BY a; |
| 284 } |
| 285 expr 1 |
| 286 } {1} |
| 287 sqlite3_soft_heap_limit $::soft_limit |
| 288 |
| 289 #------------------------------------------------------------------------- |
| 290 # The following test cases (malloc5-6.*) test the new global LRU list |
| 291 # used to determine the pages to recycle when sqlite3_release_memory is |
| 292 # called and there is more than one pager open. |
| 293 # |
| 294 proc nPage {db} { |
| 295 set bt [btree_from_db $db] |
| 296 array set stats [btree_pager_stats $bt] |
| 297 set stats(page) |
| 298 } |
| 299 db close |
| 300 forcedelete test.db test.db-journal test2.db test2.db-journal |
| 301 |
| 302 # This block of test-cases (malloc5-6.1.*) prepares two database files |
| 303 # for the subsequent tests. |
| 304 do_test malloc5-6.1.1 { |
| 305 sqlite3 db test.db |
| 306 execsql { |
| 307 PRAGMA page_size=1024; |
| 308 PRAGMA default_cache_size=2; |
| 309 } |
| 310 execsql { |
| 311 PRAGMA temp_store = memory; |
| 312 BEGIN; |
| 313 CREATE TABLE abc(a PRIMARY KEY, b, c); |
| 314 INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100)); |
| 315 INSERT INTO abc |
| 316 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; |
| 317 INSERT INTO abc |
| 318 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; |
| 319 INSERT INTO abc |
| 320 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; |
| 321 INSERT INTO abc |
| 322 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; |
| 323 INSERT INTO abc |
| 324 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; |
| 325 INSERT INTO abc |
| 326 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; |
| 327 COMMIT; |
| 328 } |
| 329 forcecopy test.db test2.db |
| 330 sqlite3 db2 test2.db |
| 331 db2 eval {PRAGMA cache_size=2} |
| 332 list \ |
| 333 [expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20] |
| 334 } {1 1} |
| 335 do_test malloc5-6.1.2 { |
| 336 list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2] |
| 337 } {2 2} |
| 338 |
| 339 do_test malloc5-6.2.1 { |
| 340 execsql {SELECT * FROM abc} db2 |
| 341 execsql {SELECT * FROM abc} db |
| 342 expr [nPage db] + [nPage db2] |
| 343 } {4} |
| 344 |
| 345 do_test malloc5-6.2.2 { |
| 346 # If we now try to reclaim some memory, it should come from the db2 cache. |
| 347 sqlite3_release_memory 3000 |
| 348 expr [nPage db] + [nPage db2] |
| 349 } {4} |
| 350 do_test malloc5-6.2.3 { |
| 351 # Access the db2 cache again, so that all the db2 pages have been used |
| 352 # more recently than all the db pages. Then try to reclaim 3000 bytes. |
| 353 # This time, 3 pages should be pulled from the db cache. |
| 354 execsql { SELECT * FROM abc } db2 |
| 355 sqlite3_release_memory 3000 |
| 356 expr [nPage db] + [nPage db2] |
| 357 } {4} |
| 358 |
| 359 do_test malloc5-6.3.1 { |
| 360 # Now open a transaction and update 2 pages in the db2 cache. Then |
| 361 # do a SELECT on the db cache so that all the db pages are more recently |
| 362 # used than the db2 pages. When we try to free memory, SQLite should |
| 363 # free the non-dirty db2 pages, then the db pages, then finally use |
| 364 # sync() to free up the dirty db2 pages. The only page that cannot be |
| 365 # freed is page1 of db2. Because there is an open transaction, the |
| 366 # btree layer holds a reference to page 1 in the db2 cache. |
| 367 execsql { |
| 368 BEGIN; |
| 369 UPDATE abc SET c = randstr(100,100) |
| 370 WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc); |
| 371 } db2 |
| 372 execsql { SELECT * FROM abc } db |
| 373 expr [nPage db] + [nPage db2] |
| 374 } {4} |
| 375 do_test malloc5-6.3.2 { |
| 376 # Try to release 7700 bytes. This should release all the |
| 377 # non-dirty pages held by db2. |
| 378 sqlite3_release_memory [expr 7*1132] |
| 379 list [nPage db] [nPage db2] |
| 380 } {1 3} |
| 381 do_test malloc5-6.3.3 { |
| 382 # Try to release another 1000 bytes. This should come fromt the db |
| 383 # cache, since all three pages held by db2 are either in-use or diry. |
| 384 sqlite3_release_memory 1000 |
| 385 list [nPage db] [nPage db2] |
| 386 } {1 3} |
| 387 do_test malloc5-6.3.4 { |
| 388 # Now release 9900 more (about 9 pages worth). This should expunge |
| 389 # the rest of the db cache. But the db2 cache remains intact, because |
| 390 # SQLite tries to avoid calling sync(). |
| 391 if {$::tcl_platform(wordSize)==8} { |
| 392 sqlite3_release_memory 10500 |
| 393 } else { |
| 394 sqlite3_release_memory 9900 |
| 395 } |
| 396 list [nPage db] [nPage db2] |
| 397 } {1 3} |
| 398 do_test malloc5-6.3.5 { |
| 399 # But if we are really insistent, SQLite will consent to call sync() |
| 400 # if there is no other option. UPDATE: As of 3.6.2, SQLite will not |
| 401 # call sync() in this scenario. So no further memory can be reclaimed. |
| 402 sqlite3_release_memory 1000 |
| 403 list [nPage db] [nPage db2] |
| 404 } {1 3} |
| 405 do_test malloc5-6.3.6 { |
| 406 # The referenced page (page 1 of the db2 cache) will not be freed no |
| 407 # matter how much memory we ask for: |
| 408 sqlite3_release_memory 31459 |
| 409 list [nPage db] [nPage db2] |
| 410 } {1 3} |
| 411 |
| 412 db2 close |
| 413 |
| 414 sqlite3_soft_heap_limit $::soft_limit |
| 415 test_restore_config_pagecache |
| 416 finish_test |
| 417 catch {db close} |
OLD | NEW |