Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(130)

Side by Side Diff: third_party/sqlite/sqlite-src-3170000/src/wherecode.c

Issue 2747283002: [sql] Import reference version of SQLite 3.17.. (Closed)
Patch Set: Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit. This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code. The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22
23 #ifndef SQLITE_OMIT_EXPLAIN
24
25 /*
26 ** Return the name of the i-th column of the pIdx index.
27 */
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29 i = pIdx->aiColumn[i];
30 if( i==XN_EXPR ) return "<expr>";
31 if( i==XN_ROWID ) return "rowid";
32 return pIdx->pTable->aCol[i].zName;
33 }
34
35 /*
36 ** This routine is a helper for explainIndexRange() below
37 **
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time. This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
42 */
43 static void explainAppendTerm(
44 StrAccum *pStr, /* The text expression being built */
45 Index *pIdx, /* Index to read column names from */
46 int nTerm, /* Number of terms */
47 int iTerm, /* Zero-based index of first term. */
48 int bAnd, /* Non-zero to append " AND " */
49 const char *zOp /* Name of the operator */
50 ){
51 int i;
52
53 assert( nTerm>=1 );
54 if( bAnd ) sqlite3StrAccumAppend(pStr, " AND ", 5);
55
56 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1);
57 for(i=0; i<nTerm; i++){
58 if( i ) sqlite3StrAccumAppend(pStr, ",", 1);
59 sqlite3StrAccumAppendAll(pStr, explainIndexColumnName(pIdx, iTerm+i));
60 }
61 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1);
62
63 sqlite3StrAccumAppend(pStr, zOp, 1);
64
65 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1);
66 for(i=0; i<nTerm; i++){
67 if( i ) sqlite3StrAccumAppend(pStr, ",", 1);
68 sqlite3StrAccumAppend(pStr, "?", 1);
69 }
70 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1);
71 }
72
73 /*
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
77 **
78 ** For example, if the query:
79 **
80 ** SELECT * FROM t1 WHERE a=1 AND b>2;
81 **
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
84 **
85 ** "a=? AND b>?"
86 */
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88 Index *pIndex = pLoop->u.btree.pIndex;
89 u16 nEq = pLoop->u.btree.nEq;
90 u16 nSkip = pLoop->nSkip;
91 int i, j;
92
93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94 sqlite3StrAccumAppend(pStr, " (", 2);
95 for(i=0; i<nEq; i++){
96 const char *z = explainIndexColumnName(pIndex, i);
97 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
98 sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
99 }
100
101 j = i;
102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104 i = 1;
105 }
106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
108 }
109 sqlite3StrAccumAppend(pStr, ")", 1);
110 }
111
112 /*
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
117 **
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
120 */
121 int sqlite3WhereExplainOneScan(
122 Parse *pParse, /* Parse context */
123 SrcList *pTabList, /* Table list this loop refers to */
124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
125 int iLevel, /* Value for "level" column of output */
126 int iFrom, /* Value for "from" column of output */
127 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
128 ){
129 int ret = 0;
130 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
131 if( pParse->explain==2 )
132 #endif
133 {
134 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
135 Vdbe *v = pParse->pVdbe; /* VM being constructed */
136 sqlite3 *db = pParse->db; /* Database handle */
137 int iId = pParse->iSelectId; /* Select id (left-most output column) */
138 int isSearch; /* True for a SEARCH. False for SCAN. */
139 WhereLoop *pLoop; /* The controlling WhereLoop object */
140 u32 flags; /* Flags that describe this loop */
141 char *zMsg; /* Text to add to EQP output */
142 StrAccum str; /* EQP output string */
143 char zBuf[100]; /* Initial space for EQP output string */
144
145 pLoop = pLevel->pWLoop;
146 flags = pLoop->wsFlags;
147 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
148
149 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
150 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
151 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
152
153 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
154 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
155 if( pItem->pSelect ){
156 sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId);
157 }else{
158 sqlite3XPrintf(&str, " TABLE %s", pItem->zName);
159 }
160
161 if( pItem->zAlias ){
162 sqlite3XPrintf(&str, " AS %s", pItem->zAlias);
163 }
164 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
165 const char *zFmt = 0;
166 Index *pIdx;
167
168 assert( pLoop->u.btree.pIndex!=0 );
169 pIdx = pLoop->u.btree.pIndex;
170 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
171 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
172 if( isSearch ){
173 zFmt = "PRIMARY KEY";
174 }
175 }else if( flags & WHERE_PARTIALIDX ){
176 zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
177 }else if( flags & WHERE_AUTO_INDEX ){
178 zFmt = "AUTOMATIC COVERING INDEX";
179 }else if( flags & WHERE_IDX_ONLY ){
180 zFmt = "COVERING INDEX %s";
181 }else{
182 zFmt = "INDEX %s";
183 }
184 if( zFmt ){
185 sqlite3StrAccumAppend(&str, " USING ", 7);
186 sqlite3XPrintf(&str, zFmt, pIdx->zName);
187 explainIndexRange(&str, pLoop);
188 }
189 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
190 const char *zRangeOp;
191 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
192 zRangeOp = "=";
193 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
194 zRangeOp = ">? AND rowid<";
195 }else if( flags&WHERE_BTM_LIMIT ){
196 zRangeOp = ">";
197 }else{
198 assert( flags&WHERE_TOP_LIMIT);
199 zRangeOp = "<";
200 }
201 sqlite3XPrintf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
202 }
203 #ifndef SQLITE_OMIT_VIRTUALTABLE
204 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
205 sqlite3XPrintf(&str, " VIRTUAL TABLE INDEX %d:%s",
206 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
207 }
208 #endif
209 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
210 if( pLoop->nOut>=10 ){
211 sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
212 }else{
213 sqlite3StrAccumAppend(&str, " (~1 row)", 9);
214 }
215 #endif
216 zMsg = sqlite3StrAccumFinish(&str);
217 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);
218 }
219 return ret;
220 }
221 #endif /* SQLITE_OMIT_EXPLAIN */
222
223 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
224 /*
225 ** Configure the VM passed as the first argument with an
226 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
227 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
228 ** clause that the scan reads data from.
229 **
230 ** If argument addrExplain is not 0, it must be the address of an
231 ** OP_Explain instruction that describes the same loop.
232 */
233 void sqlite3WhereAddScanStatus(
234 Vdbe *v, /* Vdbe to add scanstatus entry to */
235 SrcList *pSrclist, /* FROM clause pLvl reads data from */
236 WhereLevel *pLvl, /* Level to add scanstatus() entry for */
237 int addrExplain /* Address of OP_Explain (or 0) */
238 ){
239 const char *zObj = 0;
240 WhereLoop *pLoop = pLvl->pWLoop;
241 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){
242 zObj = pLoop->u.btree.pIndex->zName;
243 }else{
244 zObj = pSrclist->a[pLvl->iFrom].zName;
245 }
246 sqlite3VdbeScanStatus(
247 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
248 );
249 }
250 #endif
251
252
253 /*
254 ** Disable a term in the WHERE clause. Except, do not disable the term
255 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
256 ** or USING clause of that join.
257 **
258 ** Consider the term t2.z='ok' in the following queries:
259 **
260 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
261 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
262 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
263 **
264 ** The t2.z='ok' is disabled in the in (2) because it originates
265 ** in the ON clause. The term is disabled in (3) because it is not part
266 ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
267 **
268 ** Disabling a term causes that term to not be tested in the inner loop
269 ** of the join. Disabling is an optimization. When terms are satisfied
270 ** by indices, we disable them to prevent redundant tests in the inner
271 ** loop. We would get the correct results if nothing were ever disabled,
272 ** but joins might run a little slower. The trick is to disable as much
273 ** as we can without disabling too much. If we disabled in (1), we'd get
274 ** the wrong answer. See ticket #813.
275 **
276 ** If all the children of a term are disabled, then that term is also
277 ** automatically disabled. In this way, terms get disabled if derived
278 ** virtual terms are tested first. For example:
279 **
280 ** x GLOB 'abc*' AND x>='abc' AND x<'acd'
281 ** \___________/ \______/ \_____/
282 ** parent child1 child2
283 **
284 ** Only the parent term was in the original WHERE clause. The child1
285 ** and child2 terms were added by the LIKE optimization. If both of
286 ** the virtual child terms are valid, then testing of the parent can be
287 ** skipped.
288 **
289 ** Usually the parent term is marked as TERM_CODED. But if the parent
290 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
291 ** The TERM_LIKECOND marking indicates that the term should be coded inside
292 ** a conditional such that is only evaluated on the second pass of a
293 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
294 */
295 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
296 int nLoop = 0;
297 while( ALWAYS(pTerm!=0)
298 && (pTerm->wtFlags & TERM_CODED)==0
299 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
300 && (pLevel->notReady & pTerm->prereqAll)==0
301 ){
302 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
303 pTerm->wtFlags |= TERM_LIKECOND;
304 }else{
305 pTerm->wtFlags |= TERM_CODED;
306 }
307 if( pTerm->iParent<0 ) break;
308 pTerm = &pTerm->pWC->a[pTerm->iParent];
309 pTerm->nChild--;
310 if( pTerm->nChild!=0 ) break;
311 nLoop++;
312 }
313 }
314
315 /*
316 ** Code an OP_Affinity opcode to apply the column affinity string zAff
317 ** to the n registers starting at base.
318 **
319 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the
320 ** beginning and end of zAff are ignored. If all entries in zAff are
321 ** SQLITE_AFF_BLOB, then no code gets generated.
322 **
323 ** This routine makes its own copy of zAff so that the caller is free
324 ** to modify zAff after this routine returns.
325 */
326 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
327 Vdbe *v = pParse->pVdbe;
328 if( zAff==0 ){
329 assert( pParse->db->mallocFailed );
330 return;
331 }
332 assert( v!=0 );
333
334 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning
335 ** and end of the affinity string.
336 */
337 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){
338 n--;
339 base++;
340 zAff++;
341 }
342 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
343 n--;
344 }
345
346 /* Code the OP_Affinity opcode if there is anything left to do. */
347 if( n>0 ){
348 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
349 sqlite3ExprCacheAffinityChange(pParse, base, n);
350 }
351 }
352
353 /*
354 ** Expression pRight, which is the RHS of a comparison operation, is
355 ** either a vector of n elements or, if n==1, a scalar expression.
356 ** Before the comparison operation, affinity zAff is to be applied
357 ** to the pRight values. This function modifies characters within the
358 ** affinity string to SQLITE_AFF_BLOB if either:
359 **
360 ** * the comparison will be performed with no affinity, or
361 ** * the affinity change in zAff is guaranteed not to change the value.
362 */
363 static void updateRangeAffinityStr(
364 Expr *pRight, /* RHS of comparison */
365 int n, /* Number of vector elements in comparison */
366 char *zAff /* Affinity string to modify */
367 ){
368 int i;
369 for(i=0; i<n; i++){
370 Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
371 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
372 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
373 ){
374 zAff[i] = SQLITE_AFF_BLOB;
375 }
376 }
377 }
378
379 /*
380 ** Generate code for a single equality term of the WHERE clause. An equality
381 ** term can be either X=expr or X IN (...). pTerm is the term to be
382 ** coded.
383 **
384 ** The current value for the constraint is left in a register, the index
385 ** of which is returned. An attempt is made store the result in iTarget but
386 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the
387 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
388 ** some other register and it is the caller's responsibility to compensate.
389 **
390 ** For a constraint of the form X=expr, the expression is evaluated in
391 ** straight-line code. For constraints of the form X IN (...)
392 ** this routine sets up a loop that will iterate over all values of X.
393 */
394 static int codeEqualityTerm(
395 Parse *pParse, /* The parsing context */
396 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
397 WhereLevel *pLevel, /* The level of the FROM clause we are working on */
398 int iEq, /* Index of the equality term within this level */
399 int bRev, /* True for reverse-order IN operations */
400 int iTarget /* Attempt to leave results in this register */
401 ){
402 Expr *pX = pTerm->pExpr;
403 Vdbe *v = pParse->pVdbe;
404 int iReg; /* Register holding results */
405
406 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
407 assert( iTarget>0 );
408 if( pX->op==TK_EQ || pX->op==TK_IS ){
409 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
410 }else if( pX->op==TK_ISNULL ){
411 iReg = iTarget;
412 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
413 #ifndef SQLITE_OMIT_SUBQUERY
414 }else{
415 int eType = IN_INDEX_NOOP;
416 int iTab;
417 struct InLoop *pIn;
418 WhereLoop *pLoop = pLevel->pWLoop;
419 int i;
420 int nEq = 0;
421 int *aiMap = 0;
422
423 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
424 && pLoop->u.btree.pIndex!=0
425 && pLoop->u.btree.pIndex->aSortOrder[iEq]
426 ){
427 testcase( iEq==0 );
428 testcase( bRev );
429 bRev = !bRev;
430 }
431 assert( pX->op==TK_IN );
432 iReg = iTarget;
433
434 for(i=0; i<iEq; i++){
435 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
436 disableTerm(pLevel, pTerm);
437 return iTarget;
438 }
439 }
440 for(i=iEq;i<pLoop->nLTerm; i++){
441 if( ALWAYS(pLoop->aLTerm[i]) && pLoop->aLTerm[i]->pExpr==pX ) nEq++;
442 }
443
444 if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
445 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0);
446 }else{
447 Select *pSelect = pX->x.pSelect;
448 sqlite3 *db = pParse->db;
449 u16 savedDbOptFlags = db->dbOptFlags;
450 ExprList *pOrigRhs = pSelect->pEList;
451 ExprList *pOrigLhs = pX->pLeft->x.pList;
452 ExprList *pRhs = 0; /* New Select.pEList for RHS */
453 ExprList *pLhs = 0; /* New pX->pLeft vector */
454
455 for(i=iEq;i<pLoop->nLTerm; i++){
456 if( pLoop->aLTerm[i]->pExpr==pX ){
457 int iField = pLoop->aLTerm[i]->iField - 1;
458 Expr *pNewRhs = sqlite3ExprDup(db, pOrigRhs->a[iField].pExpr, 0);
459 Expr *pNewLhs = sqlite3ExprDup(db, pOrigLhs->a[iField].pExpr, 0);
460
461 pRhs = sqlite3ExprListAppend(pParse, pRhs, pNewRhs);
462 pLhs = sqlite3ExprListAppend(pParse, pLhs, pNewLhs);
463 }
464 }
465 if( !db->mallocFailed ){
466 Expr *pLeft = pX->pLeft;
467
468 if( pSelect->pOrderBy ){
469 /* If the SELECT statement has an ORDER BY clause, zero the
470 ** iOrderByCol variables. These are set to non-zero when an
471 ** ORDER BY term exactly matches one of the terms of the
472 ** result-set. Since the result-set of the SELECT statement may
473 ** have been modified or reordered, these variables are no longer
474 ** set correctly. Since setting them is just an optimization,
475 ** it's easiest just to zero them here. */
476 ExprList *pOrderBy = pSelect->pOrderBy;
477 for(i=0; i<pOrderBy->nExpr; i++){
478 pOrderBy->a[i].u.x.iOrderByCol = 0;
479 }
480 }
481
482 /* Take care here not to generate a TK_VECTOR containing only a
483 ** single value. Since the parser never creates such a vector, some
484 ** of the subroutines do not handle this case. */
485 if( pLhs->nExpr==1 ){
486 pX->pLeft = pLhs->a[0].pExpr;
487 }else{
488 pLeft->x.pList = pLhs;
489 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int) * nEq);
490 testcase( aiMap==0 );
491 }
492 pSelect->pEList = pRhs;
493 db->dbOptFlags |= SQLITE_QueryFlattener;
494 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap);
495 db->dbOptFlags = savedDbOptFlags;
496 testcase( aiMap!=0 && aiMap[0]!=0 );
497 pSelect->pEList = pOrigRhs;
498 pLeft->x.pList = pOrigLhs;
499 pX->pLeft = pLeft;
500 }
501 sqlite3ExprListDelete(pParse->db, pLhs);
502 sqlite3ExprListDelete(pParse->db, pRhs);
503 }
504
505 if( eType==IN_INDEX_INDEX_DESC ){
506 testcase( bRev );
507 bRev = !bRev;
508 }
509 iTab = pX->iTable;
510 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
511 VdbeCoverageIf(v, bRev);
512 VdbeCoverageIf(v, !bRev);
513 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
514
515 pLoop->wsFlags |= WHERE_IN_ABLE;
516 if( pLevel->u.in.nIn==0 ){
517 pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
518 }
519
520 i = pLevel->u.in.nIn;
521 pLevel->u.in.nIn += nEq;
522 pLevel->u.in.aInLoop =
523 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
524 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
525 pIn = pLevel->u.in.aInLoop;
526 if( pIn ){
527 int iMap = 0; /* Index in aiMap[] */
528 pIn += i;
529 for(i=iEq;i<pLoop->nLTerm; i++){
530 if( pLoop->aLTerm[i]->pExpr==pX ){
531 int iOut = iReg + i - iEq;
532 if( eType==IN_INDEX_ROWID ){
533 testcase( nEq>1 ); /* Happens with a UNIQUE index on ROWID */
534 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
535 }else{
536 int iCol = aiMap ? aiMap[iMap++] : 0;
537 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
538 }
539 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
540 if( i==iEq ){
541 pIn->iCur = iTab;
542 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
543 }else{
544 pIn->eEndLoopOp = OP_Noop;
545 }
546 pIn++;
547 }
548 }
549 }else{
550 pLevel->u.in.nIn = 0;
551 }
552 sqlite3DbFree(pParse->db, aiMap);
553 #endif
554 }
555 disableTerm(pLevel, pTerm);
556 return iReg;
557 }
558
559 /*
560 ** Generate code that will evaluate all == and IN constraints for an
561 ** index scan.
562 **
563 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
564 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
565 ** The index has as many as three equality constraints, but in this
566 ** example, the third "c" value is an inequality. So only two
567 ** constraints are coded. This routine will generate code to evaluate
568 ** a==5 and b IN (1,2,3). The current values for a and b will be stored
569 ** in consecutive registers and the index of the first register is returned.
570 **
571 ** In the example above nEq==2. But this subroutine works for any value
572 ** of nEq including 0. If nEq==0, this routine is nearly a no-op.
573 ** The only thing it does is allocate the pLevel->iMem memory cell and
574 ** compute the affinity string.
575 **
576 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
577 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
578 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
579 ** occurs after the nEq quality constraints.
580 **
581 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
582 ** the index of the first memory cell in that range. The code that
583 ** calls this routine will use that memory range to store keys for
584 ** start and termination conditions of the loop.
585 ** key value of the loop. If one or more IN operators appear, then
586 ** this routine allocates an additional nEq memory cells for internal
587 ** use.
588 **
589 ** Before returning, *pzAff is set to point to a buffer containing a
590 ** copy of the column affinity string of the index allocated using
591 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
592 ** with equality constraints that use BLOB or NONE affinity are set to
593 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
594 **
595 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
596 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
597 **
598 ** In the example above, the index on t1(a) has TEXT affinity. But since
599 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
600 ** no conversion should be attempted before using a t2.b value as part of
601 ** a key to search the index. Hence the first byte in the returned affinity
602 ** string in this example would be set to SQLITE_AFF_BLOB.
603 */
604 static int codeAllEqualityTerms(
605 Parse *pParse, /* Parsing context */
606 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
607 int bRev, /* Reverse the order of IN operators */
608 int nExtraReg, /* Number of extra registers to allocate */
609 char **pzAff /* OUT: Set to point to affinity string */
610 ){
611 u16 nEq; /* The number of == or IN constraints to code */
612 u16 nSkip; /* Number of left-most columns to skip */
613 Vdbe *v = pParse->pVdbe; /* The vm under construction */
614 Index *pIdx; /* The index being used for this loop */
615 WhereTerm *pTerm; /* A single constraint term */
616 WhereLoop *pLoop; /* The WhereLoop object */
617 int j; /* Loop counter */
618 int regBase; /* Base register */
619 int nReg; /* Number of registers to allocate */
620 char *zAff; /* Affinity string to return */
621
622 /* This module is only called on query plans that use an index. */
623 pLoop = pLevel->pWLoop;
624 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
625 nEq = pLoop->u.btree.nEq;
626 nSkip = pLoop->nSkip;
627 pIdx = pLoop->u.btree.pIndex;
628 assert( pIdx!=0 );
629
630 /* Figure out how many memory cells we will need then allocate them.
631 */
632 regBase = pParse->nMem + 1;
633 nReg = pLoop->u.btree.nEq + nExtraReg;
634 pParse->nMem += nReg;
635
636 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
637 assert( zAff!=0 || pParse->db->mallocFailed );
638
639 if( nSkip ){
640 int iIdxCur = pLevel->iIdxCur;
641 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
642 VdbeCoverageIf(v, bRev==0);
643 VdbeCoverageIf(v, bRev!=0);
644 VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
645 j = sqlite3VdbeAddOp0(v, OP_Goto);
646 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
647 iIdxCur, 0, regBase, nSkip);
648 VdbeCoverageIf(v, bRev==0);
649 VdbeCoverageIf(v, bRev!=0);
650 sqlite3VdbeJumpHere(v, j);
651 for(j=0; j<nSkip; j++){
652 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
653 testcase( pIdx->aiColumn[j]==XN_EXPR );
654 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
655 }
656 }
657
658 /* Evaluate the equality constraints
659 */
660 assert( zAff==0 || (int)strlen(zAff)>=nEq );
661 for(j=nSkip; j<nEq; j++){
662 int r1;
663 pTerm = pLoop->aLTerm[j];
664 assert( pTerm!=0 );
665 /* The following testcase is true for indices with redundant columns.
666 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
667 testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
668 testcase( pTerm->wtFlags & TERM_VIRTUAL );
669 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
670 if( r1!=regBase+j ){
671 if( nReg==1 ){
672 sqlite3ReleaseTempReg(pParse, regBase);
673 regBase = r1;
674 }else{
675 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
676 }
677 }
678 if( pTerm->eOperator & WO_IN ){
679 if( pTerm->pExpr->flags & EP_xIsSelect ){
680 /* No affinity ever needs to be (or should be) applied to a value
681 ** from the RHS of an "? IN (SELECT ...)" expression. The
682 ** sqlite3FindInIndex() routine has already ensured that the
683 ** affinity of the comparison has been applied to the value. */
684 if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
685 }
686 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
687 Expr *pRight = pTerm->pExpr->pRight;
688 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
689 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
690 VdbeCoverage(v);
691 }
692 if( zAff ){
693 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
694 zAff[j] = SQLITE_AFF_BLOB;
695 }
696 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
697 zAff[j] = SQLITE_AFF_BLOB;
698 }
699 }
700 }
701 }
702 *pzAff = zAff;
703 return regBase;
704 }
705
706 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
707 /*
708 ** If the most recently coded instruction is a constant range constraint
709 ** (a string literal) that originated from the LIKE optimization, then
710 ** set P3 and P5 on the OP_String opcode so that the string will be cast
711 ** to a BLOB at appropriate times.
712 **
713 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
714 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range
715 ** scan loop run twice, once for strings and a second time for BLOBs.
716 ** The OP_String opcodes on the second pass convert the upper and lower
717 ** bound string constants to blobs. This routine makes the necessary changes
718 ** to the OP_String opcodes for that to happen.
719 **
720 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
721 ** only the one pass through the string space is required, so this routine
722 ** becomes a no-op.
723 */
724 static void whereLikeOptimizationStringFixup(
725 Vdbe *v, /* prepared statement under construction */
726 WhereLevel *pLevel, /* The loop that contains the LIKE operator */
727 WhereTerm *pTerm /* The upper or lower bound just coded */
728 ){
729 if( pTerm->wtFlags & TERM_LIKEOPT ){
730 VdbeOp *pOp;
731 assert( pLevel->iLikeRepCntr>0 );
732 pOp = sqlite3VdbeGetOp(v, -1);
733 assert( pOp!=0 );
734 assert( pOp->opcode==OP_String8
735 || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
736 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */
737 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */
738 }
739 }
740 #else
741 # define whereLikeOptimizationStringFixup(A,B,C)
742 #endif
743
744 #ifdef SQLITE_ENABLE_CURSOR_HINTS
745 /*
746 ** Information is passed from codeCursorHint() down to individual nodes of
747 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
748 ** structure.
749 */
750 struct CCurHint {
751 int iTabCur; /* Cursor for the main table */
752 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */
753 Index *pIdx; /* The index used to access the table */
754 };
755
756 /*
757 ** This function is called for every node of an expression that is a candidate
758 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference
759 ** the table CCurHint.iTabCur, verify that the same column can be
760 ** accessed through the index. If it cannot, then set pWalker->eCode to 1.
761 */
762 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
763 struct CCurHint *pHint = pWalker->u.pCCurHint;
764 assert( pHint->pIdx!=0 );
765 if( pExpr->op==TK_COLUMN
766 && pExpr->iTable==pHint->iTabCur
767 && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0
768 ){
769 pWalker->eCode = 1;
770 }
771 return WRC_Continue;
772 }
773
774 /*
775 ** Test whether or not expression pExpr, which was part of a WHERE clause,
776 ** should be included in the cursor-hint for a table that is on the rhs
777 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
778 ** expression is not suitable.
779 **
780 ** An expression is unsuitable if it might evaluate to non NULL even if
781 ** a TK_COLUMN node that does affect the value of the expression is set
782 ** to NULL. For example:
783 **
784 ** col IS NULL
785 ** col IS NOT NULL
786 ** coalesce(col, 1)
787 ** CASE WHEN col THEN 0 ELSE 1 END
788 */
789 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
790 if( pExpr->op==TK_IS
791 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
792 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
793 ){
794 pWalker->eCode = 1;
795 }else if( pExpr->op==TK_FUNCTION ){
796 int d1;
797 char d2[3];
798 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
799 pWalker->eCode = 1;
800 }
801 }
802
803 return WRC_Continue;
804 }
805
806
807 /*
808 ** This function is called on every node of an expression tree used as an
809 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
810 ** that accesses any table other than the one identified by
811 ** CCurHint.iTabCur, then do the following:
812 **
813 ** 1) allocate a register and code an OP_Column instruction to read
814 ** the specified column into the new register, and
815 **
816 ** 2) transform the expression node to a TK_REGISTER node that reads
817 ** from the newly populated register.
818 **
819 ** Also, if the node is a TK_COLUMN that does access the table idenified
820 ** by pCCurHint.iTabCur, and an index is being used (which we will
821 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
822 ** an access of the index rather than the original table.
823 */
824 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
825 int rc = WRC_Continue;
826 struct CCurHint *pHint = pWalker->u.pCCurHint;
827 if( pExpr->op==TK_COLUMN ){
828 if( pExpr->iTable!=pHint->iTabCur ){
829 Vdbe *v = pWalker->pParse->pVdbe;
830 int reg = ++pWalker->pParse->nMem; /* Register for column value */
831 sqlite3ExprCodeGetColumnOfTable(
832 v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg
833 );
834 pExpr->op = TK_REGISTER;
835 pExpr->iTable = reg;
836 }else if( pHint->pIdx!=0 ){
837 pExpr->iTable = pHint->iIdxCur;
838 pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn);
839 assert( pExpr->iColumn>=0 );
840 }
841 }else if( pExpr->op==TK_AGG_FUNCTION ){
842 /* An aggregate function in the WHERE clause of a query means this must
843 ** be a correlated sub-query, and expression pExpr is an aggregate from
844 ** the parent context. Do not walk the function arguments in this case.
845 **
846 ** todo: It should be possible to replace this node with a TK_REGISTER
847 ** expression, as the result of the expression must be stored in a
848 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
849 rc = WRC_Prune;
850 }
851 return rc;
852 }
853
854 /*
855 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
856 */
857 static void codeCursorHint(
858 struct SrcList_item *pTabItem, /* FROM clause item */
859 WhereInfo *pWInfo, /* The where clause */
860 WhereLevel *pLevel, /* Which loop to provide hints for */
861 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */
862 ){
863 Parse *pParse = pWInfo->pParse;
864 sqlite3 *db = pParse->db;
865 Vdbe *v = pParse->pVdbe;
866 Expr *pExpr = 0;
867 WhereLoop *pLoop = pLevel->pWLoop;
868 int iCur;
869 WhereClause *pWC;
870 WhereTerm *pTerm;
871 int i, j;
872 struct CCurHint sHint;
873 Walker sWalker;
874
875 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
876 iCur = pLevel->iTabCur;
877 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
878 sHint.iTabCur = iCur;
879 sHint.iIdxCur = pLevel->iIdxCur;
880 sHint.pIdx = pLoop->u.btree.pIndex;
881 memset(&sWalker, 0, sizeof(sWalker));
882 sWalker.pParse = pParse;
883 sWalker.u.pCCurHint = &sHint;
884 pWC = &pWInfo->sWC;
885 for(i=0; i<pWC->nTerm; i++){
886 pTerm = &pWC->a[i];
887 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
888 if( pTerm->prereqAll & pLevel->notReady ) continue;
889
890 /* Any terms specified as part of the ON(...) clause for any LEFT
891 ** JOIN for which the current table is not the rhs are omitted
892 ** from the cursor-hint.
893 **
894 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
895 ** that were specified as part of the WHERE clause must be excluded.
896 ** This is to address the following:
897 **
898 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
899 **
900 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
901 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
902 ** pushed down to the cursor, this row is filtered out, causing
903 ** SQLite to synthesize a row of NULL values. Which does match the
904 ** WHERE clause, and so the query returns a row. Which is incorrect.
905 **
906 ** For the same reason, WHERE terms such as:
907 **
908 ** WHERE 1 = (t2.c IS NULL)
909 **
910 ** are also excluded. See codeCursorHintIsOrFunction() for details.
911 */
912 if( pTabItem->fg.jointype & JT_LEFT ){
913 Expr *pExpr = pTerm->pExpr;
914 if( !ExprHasProperty(pExpr, EP_FromJoin)
915 || pExpr->iRightJoinTable!=pTabItem->iCursor
916 ){
917 sWalker.eCode = 0;
918 sWalker.xExprCallback = codeCursorHintIsOrFunction;
919 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
920 if( sWalker.eCode ) continue;
921 }
922 }else{
923 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
924 }
925
926 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
927 ** the cursor. These terms are not needed as hints for a pure range
928 ** scan (that has no == terms) so omit them. */
929 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
930 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
931 if( j<pLoop->nLTerm ) continue;
932 }
933
934 /* No subqueries or non-deterministic functions allowed */
935 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
936
937 /* For an index scan, make sure referenced columns are actually in
938 ** the index. */
939 if( sHint.pIdx!=0 ){
940 sWalker.eCode = 0;
941 sWalker.xExprCallback = codeCursorHintCheckExpr;
942 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
943 if( sWalker.eCode ) continue;
944 }
945
946 /* If we survive all prior tests, that means this term is worth hinting */
947 pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
948 }
949 if( pExpr!=0 ){
950 sWalker.xExprCallback = codeCursorHintFixExpr;
951 sqlite3WalkExpr(&sWalker, pExpr);
952 sqlite3VdbeAddOp4(v, OP_CursorHint,
953 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
954 (const char*)pExpr, P4_EXPR);
955 }
956 }
957 #else
958 # define codeCursorHint(A,B,C,D) /* No-op */
959 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
960
961 /*
962 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
963 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
964 ** function generates code to do a deferred seek of cursor iCur to the
965 ** rowid stored in register iRowid.
966 **
967 ** Normally, this is just:
968 **
969 ** OP_Seek $iCur $iRowid
970 **
971 ** However, if the scan currently being coded is a branch of an OR-loop and
972 ** the statement currently being coded is a SELECT, then P3 of the OP_Seek
973 ** is set to iIdxCur and P4 is set to point to an array of integers
974 ** containing one entry for each column of the table cursor iCur is open
975 ** on. For each table column, if the column is the i'th column of the
976 ** index, then the corresponding array entry is set to (i+1). If the column
977 ** does not appear in the index at all, the array entry is set to 0.
978 */
979 static void codeDeferredSeek(
980 WhereInfo *pWInfo, /* Where clause context */
981 Index *pIdx, /* Index scan is using */
982 int iCur, /* Cursor for IPK b-tree */
983 int iIdxCur /* Index cursor */
984 ){
985 Parse *pParse = pWInfo->pParse; /* Parse context */
986 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */
987
988 assert( iIdxCur>0 );
989 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
990
991 sqlite3VdbeAddOp3(v, OP_Seek, iIdxCur, 0, iCur);
992 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
993 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
994 ){
995 int i;
996 Table *pTab = pIdx->pTable;
997 int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1));
998 if( ai ){
999 ai[0] = pTab->nCol;
1000 for(i=0; i<pIdx->nColumn-1; i++){
1001 assert( pIdx->aiColumn[i]<pTab->nCol );
1002 if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1;
1003 }
1004 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1005 }
1006 }
1007 }
1008
1009 /*
1010 ** If the expression passed as the second argument is a vector, generate
1011 ** code to write the first nReg elements of the vector into an array
1012 ** of registers starting with iReg.
1013 **
1014 ** If the expression is not a vector, then nReg must be passed 1. In
1015 ** this case, generate code to evaluate the expression and leave the
1016 ** result in register iReg.
1017 */
1018 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1019 assert( nReg>0 );
1020 if( sqlite3ExprIsVector(p) ){
1021 #ifndef SQLITE_OMIT_SUBQUERY
1022 if( (p->flags & EP_xIsSelect) ){
1023 Vdbe *v = pParse->pVdbe;
1024 int iSelect = sqlite3CodeSubselect(pParse, p, 0, 0);
1025 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1026 }else
1027 #endif
1028 {
1029 int i;
1030 ExprList *pList = p->x.pList;
1031 assert( nReg<=pList->nExpr );
1032 for(i=0; i<nReg; i++){
1033 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1034 }
1035 }
1036 }else{
1037 assert( nReg==1 );
1038 sqlite3ExprCode(pParse, p, iReg);
1039 }
1040 }
1041
1042 /*
1043 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1044 ** implementation described by pWInfo.
1045 */
1046 Bitmask sqlite3WhereCodeOneLoopStart(
1047 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
1048 int iLevel, /* Which level of pWInfo->a[] should be coded */
1049 Bitmask notReady /* Which tables are currently available */
1050 ){
1051 int j, k; /* Loop counters */
1052 int iCur; /* The VDBE cursor for the table */
1053 int addrNxt; /* Where to jump to continue with the next IN case */
1054 int omitTable; /* True if we use the index only */
1055 int bRev; /* True if we need to scan in reverse order */
1056 WhereLevel *pLevel; /* The where level to be coded */
1057 WhereLoop *pLoop; /* The WhereLoop object being coded */
1058 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
1059 WhereTerm *pTerm; /* A WHERE clause term */
1060 Parse *pParse; /* Parsing context */
1061 sqlite3 *db; /* Database connection */
1062 Vdbe *v; /* The prepared stmt under constructions */
1063 struct SrcList_item *pTabItem; /* FROM clause term being coded */
1064 int addrBrk; /* Jump here to break out of the loop */
1065 int addrCont; /* Jump here to continue with next cycle */
1066 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
1067 int iReleaseReg = 0; /* Temp register to free before returning */
1068
1069 pParse = pWInfo->pParse;
1070 v = pParse->pVdbe;
1071 pWC = &pWInfo->sWC;
1072 db = pParse->db;
1073 pLevel = &pWInfo->a[iLevel];
1074 pLoop = pLevel->pWLoop;
1075 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1076 iCur = pTabItem->iCursor;
1077 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1078 bRev = (pWInfo->revMask>>iLevel)&1;
1079 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
1080 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
1081 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1082
1083 /* Create labels for the "break" and "continue" instructions
1084 ** for the current loop. Jump to addrBrk to break out of a loop.
1085 ** Jump to cont to go immediately to the next iteration of the
1086 ** loop.
1087 **
1088 ** When there is an IN operator, we also have a "addrNxt" label that
1089 ** means to continue with the next IN value combination. When
1090 ** there are no IN operators in the constraints, the "addrNxt" label
1091 ** is the same as "addrBrk".
1092 */
1093 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
1094 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
1095
1096 /* If this is the right table of a LEFT OUTER JOIN, allocate and
1097 ** initialize a memory cell that records if this table matches any
1098 ** row of the left table of the join.
1099 */
1100 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1101 pLevel->iLeftJoin = ++pParse->nMem;
1102 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1103 VdbeComment((v, "init LEFT JOIN no-match flag"));
1104 }
1105
1106 /* Special case of a FROM clause subquery implemented as a co-routine */
1107 if( pTabItem->fg.viaCoroutine ){
1108 int regYield = pTabItem->regReturn;
1109 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1110 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1111 VdbeCoverage(v);
1112 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
1113 pLevel->op = OP_Goto;
1114 }else
1115
1116 #ifndef SQLITE_OMIT_VIRTUALTABLE
1117 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1118 /* Case 1: The table is a virtual-table. Use the VFilter and VNext
1119 ** to access the data.
1120 */
1121 int iReg; /* P3 Value for OP_VFilter */
1122 int addrNotFound;
1123 int nConstraint = pLoop->nLTerm;
1124 int iIn; /* Counter for IN constraints */
1125
1126 sqlite3ExprCachePush(pParse);
1127 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1128 addrNotFound = pLevel->addrBrk;
1129 for(j=0; j<nConstraint; j++){
1130 int iTarget = iReg+j+2;
1131 pTerm = pLoop->aLTerm[j];
1132 if( NEVER(pTerm==0) ) continue;
1133 if( pTerm->eOperator & WO_IN ){
1134 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1135 addrNotFound = pLevel->addrNxt;
1136 }else{
1137 Expr *pRight = pTerm->pExpr->pRight;
1138 codeExprOrVector(pParse, pRight, iTarget, 1);
1139 }
1140 }
1141 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1142 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1143 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1144 pLoop->u.vtab.idxStr,
1145 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1146 VdbeCoverage(v);
1147 pLoop->u.vtab.needFree = 0;
1148 pLevel->p1 = iCur;
1149 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1150 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1151 iIn = pLevel->u.in.nIn;
1152 for(j=nConstraint-1; j>=0; j--){
1153 pTerm = pLoop->aLTerm[j];
1154 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1155 disableTerm(pLevel, pTerm);
1156 }else if( (pTerm->eOperator & WO_IN)!=0 ){
1157 Expr *pCompare; /* The comparison operator */
1158 Expr *pRight; /* RHS of the comparison */
1159 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */
1160
1161 /* Reload the constraint value into reg[iReg+j+2]. The same value
1162 ** was loaded into the same register prior to the OP_VFilter, but
1163 ** the xFilter implementation might have changed the datatype or
1164 ** encoding of the value in the register, so it *must* be reloaded. */
1165 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1166 if( !db->mallocFailed ){
1167 assert( iIn>0 );
1168 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop);
1169 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1170 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1171 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1172 testcase( pOp->opcode==OP_Rowid );
1173 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1174 }
1175
1176 /* Generate code that will continue to the next row if
1177 ** the IN constraint is not satisfied */
1178 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1179 assert( pCompare!=0 || db->mallocFailed );
1180 if( pCompare ){
1181 pCompare->pLeft = pTerm->pExpr->pLeft;
1182 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1183 if( pRight ){
1184 pRight->iTable = iReg+j+2;
1185 sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0);
1186 }
1187 pCompare->pLeft = 0;
1188 sqlite3ExprDelete(db, pCompare);
1189 }
1190 }
1191 }
1192 /* These registers need to be preserved in case there is an IN operator
1193 ** loop. So we could deallocate the registers here (and potentially
1194 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems
1195 ** simpler and safer to simply not reuse the registers.
1196 **
1197 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1198 */
1199 sqlite3ExprCachePop(pParse);
1200 }else
1201 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1202
1203 if( (pLoop->wsFlags & WHERE_IPK)!=0
1204 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1205 ){
1206 /* Case 2: We can directly reference a single row using an
1207 ** equality comparison against the ROWID field. Or
1208 ** we reference multiple rows using a "rowid IN (...)"
1209 ** construct.
1210 */
1211 assert( pLoop->u.btree.nEq==1 );
1212 pTerm = pLoop->aLTerm[0];
1213 assert( pTerm!=0 );
1214 assert( pTerm->pExpr!=0 );
1215 assert( omitTable==0 );
1216 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1217 iReleaseReg = ++pParse->nMem;
1218 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1219 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1220 addrNxt = pLevel->addrNxt;
1221 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1222 VdbeCoverage(v);
1223 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
1224 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1225 VdbeComment((v, "pk"));
1226 pLevel->op = OP_Noop;
1227 }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1228 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1229 ){
1230 /* Case 3: We have an inequality comparison against the ROWID field.
1231 */
1232 int testOp = OP_Noop;
1233 int start;
1234 int memEndValue = 0;
1235 WhereTerm *pStart, *pEnd;
1236
1237 assert( omitTable==0 );
1238 j = 0;
1239 pStart = pEnd = 0;
1240 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1241 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1242 assert( pStart!=0 || pEnd!=0 );
1243 if( bRev ){
1244 pTerm = pStart;
1245 pStart = pEnd;
1246 pEnd = pTerm;
1247 }
1248 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1249 if( pStart ){
1250 Expr *pX; /* The expression that defines the start bound */
1251 int r1, rTemp; /* Registers for holding the start boundary */
1252 int op; /* Cursor seek operation */
1253
1254 /* The following constant maps TK_xx codes into corresponding
1255 ** seek opcodes. It depends on a particular ordering of TK_xx
1256 */
1257 const u8 aMoveOp[] = {
1258 /* TK_GT */ OP_SeekGT,
1259 /* TK_LE */ OP_SeekLE,
1260 /* TK_LT */ OP_SeekLT,
1261 /* TK_GE */ OP_SeekGE
1262 };
1263 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
1264 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
1265 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
1266
1267 assert( (pStart->wtFlags & TERM_VNULL)==0 );
1268 testcase( pStart->wtFlags & TERM_VIRTUAL );
1269 pX = pStart->pExpr;
1270 assert( pX!=0 );
1271 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1272 if( sqlite3ExprIsVector(pX->pRight) ){
1273 r1 = rTemp = sqlite3GetTempReg(pParse);
1274 codeExprOrVector(pParse, pX->pRight, r1, 1);
1275 op = aMoveOp[(pX->op - TK_GT) | 0x0001];
1276 }else{
1277 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1278 disableTerm(pLevel, pStart);
1279 op = aMoveOp[(pX->op - TK_GT)];
1280 }
1281 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1282 VdbeComment((v, "pk"));
1283 VdbeCoverageIf(v, pX->op==TK_GT);
1284 VdbeCoverageIf(v, pX->op==TK_LE);
1285 VdbeCoverageIf(v, pX->op==TK_LT);
1286 VdbeCoverageIf(v, pX->op==TK_GE);
1287 sqlite3ExprCacheAffinityChange(pParse, r1, 1);
1288 sqlite3ReleaseTempReg(pParse, rTemp);
1289 }else{
1290 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
1291 VdbeCoverageIf(v, bRev==0);
1292 VdbeCoverageIf(v, bRev!=0);
1293 }
1294 if( pEnd ){
1295 Expr *pX;
1296 pX = pEnd->pExpr;
1297 assert( pX!=0 );
1298 assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1299 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1300 testcase( pEnd->wtFlags & TERM_VIRTUAL );
1301 memEndValue = ++pParse->nMem;
1302 codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1303 if( 0==sqlite3ExprIsVector(pX->pRight)
1304 && (pX->op==TK_LT || pX->op==TK_GT)
1305 ){
1306 testOp = bRev ? OP_Le : OP_Ge;
1307 }else{
1308 testOp = bRev ? OP_Lt : OP_Gt;
1309 }
1310 if( 0==sqlite3ExprIsVector(pX->pRight) ){
1311 disableTerm(pLevel, pEnd);
1312 }
1313 }
1314 start = sqlite3VdbeCurrentAddr(v);
1315 pLevel->op = bRev ? OP_Prev : OP_Next;
1316 pLevel->p1 = iCur;
1317 pLevel->p2 = start;
1318 assert( pLevel->p5==0 );
1319 if( testOp!=OP_Noop ){
1320 iRowidReg = ++pParse->nMem;
1321 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1322 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1323 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1324 VdbeCoverageIf(v, testOp==OP_Le);
1325 VdbeCoverageIf(v, testOp==OP_Lt);
1326 VdbeCoverageIf(v, testOp==OP_Ge);
1327 VdbeCoverageIf(v, testOp==OP_Gt);
1328 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1329 }
1330 }else if( pLoop->wsFlags & WHERE_INDEXED ){
1331 /* Case 4: A scan using an index.
1332 **
1333 ** The WHERE clause may contain zero or more equality
1334 ** terms ("==" or "IN" operators) that refer to the N
1335 ** left-most columns of the index. It may also contain
1336 ** inequality constraints (>, <, >= or <=) on the indexed
1337 ** column that immediately follows the N equalities. Only
1338 ** the right-most column can be an inequality - the rest must
1339 ** use the "==" and "IN" operators. For example, if the
1340 ** index is on (x,y,z), then the following clauses are all
1341 ** optimized:
1342 **
1343 ** x=5
1344 ** x=5 AND y=10
1345 ** x=5 AND y<10
1346 ** x=5 AND y>5 AND y<10
1347 ** x=5 AND y=5 AND z<=10
1348 **
1349 ** The z<10 term of the following cannot be used, only
1350 ** the x=5 term:
1351 **
1352 ** x=5 AND z<10
1353 **
1354 ** N may be zero if there are inequality constraints.
1355 ** If there are no inequality constraints, then N is at
1356 ** least one.
1357 **
1358 ** This case is also used when there are no WHERE clause
1359 ** constraints but an index is selected anyway, in order
1360 ** to force the output order to conform to an ORDER BY.
1361 */
1362 static const u8 aStartOp[] = {
1363 0,
1364 0,
1365 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
1366 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
1367 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */
1368 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */
1369 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */
1370 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */
1371 };
1372 static const u8 aEndOp[] = {
1373 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */
1374 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */
1375 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */
1376 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */
1377 };
1378 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */
1379 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */
1380 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */
1381 int regBase; /* Base register holding constraint values */
1382 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
1383 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
1384 int startEq; /* True if range start uses ==, >= or <= */
1385 int endEq; /* True if range end uses ==, >= or <= */
1386 int start_constraints; /* Start of range is constrained */
1387 int nConstraint; /* Number of constraint terms */
1388 Index *pIdx; /* The index we will be using */
1389 int iIdxCur; /* The VDBE cursor for the index */
1390 int nExtraReg = 0; /* Number of extra registers needed */
1391 int op; /* Instruction opcode */
1392 char *zStartAff; /* Affinity for start of range constraint */
1393 char *zEndAff = 0; /* Affinity for end of range constraint */
1394 u8 bSeekPastNull = 0; /* True to seek past initial nulls */
1395 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */
1396
1397 pIdx = pLoop->u.btree.pIndex;
1398 iIdxCur = pLevel->iIdxCur;
1399 assert( nEq>=pLoop->nSkip );
1400
1401 /* If this loop satisfies a sort order (pOrderBy) request that
1402 ** was passed to this function to implement a "SELECT min(x) ..."
1403 ** query, then the caller will only allow the loop to run for
1404 ** a single iteration. This means that the first row returned
1405 ** should not have a NULL value stored in 'x'. If column 'x' is
1406 ** the first one after the nEq equality constraints in the index,
1407 ** this requires some special handling.
1408 */
1409 assert( pWInfo->pOrderBy==0
1410 || pWInfo->pOrderBy->nExpr==1
1411 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
1412 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
1413 && pWInfo->nOBSat>0
1414 && (pIdx->nKeyCol>nEq)
1415 ){
1416 assert( pLoop->nSkip==0 );
1417 bSeekPastNull = 1;
1418 nExtraReg = 1;
1419 }
1420
1421 /* Find any inequality constraint terms for the start and end
1422 ** of the range.
1423 */
1424 j = nEq;
1425 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1426 pRangeStart = pLoop->aLTerm[j++];
1427 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1428 /* Like optimization range constraints always occur in pairs */
1429 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1430 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1431 }
1432 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1433 pRangeEnd = pLoop->aLTerm[j++];
1434 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1435 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1436 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1437 assert( pRangeStart!=0 ); /* LIKE opt constraints */
1438 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */
1439 pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1440 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1441 VdbeComment((v, "LIKE loop counter"));
1442 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1443 /* iLikeRepCntr actually stores 2x the counter register number. The
1444 ** bottom bit indicates whether the search order is ASC or DESC. */
1445 testcase( bRev );
1446 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1447 assert( (bRev & ~1)==0 );
1448 pLevel->iLikeRepCntr <<=1;
1449 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1450 }
1451 #endif
1452 if( pRangeStart==0 ){
1453 j = pIdx->aiColumn[nEq];
1454 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1455 bSeekPastNull = 1;
1456 }
1457 }
1458 }
1459 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1460
1461 /* If we are doing a reverse order scan on an ascending index, or
1462 ** a forward order scan on a descending index, interchange the
1463 ** start and end terms (pRangeStart and pRangeEnd).
1464 */
1465 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1466 || (bRev && pIdx->nKeyCol==nEq)
1467 ){
1468 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1469 SWAP(u8, bSeekPastNull, bStopAtNull);
1470 SWAP(u8, nBtm, nTop);
1471 }
1472
1473 /* Generate code to evaluate all constraint terms using == or IN
1474 ** and store the values of those terms in an array of registers
1475 ** starting at regBase.
1476 */
1477 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1478 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1479 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1480 if( zStartAff && nTop ){
1481 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1482 }
1483 addrNxt = pLevel->addrNxt;
1484
1485 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1486 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1487 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1488 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1489 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1490 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1491 start_constraints = pRangeStart || nEq>0;
1492
1493 /* Seek the index cursor to the start of the range. */
1494 nConstraint = nEq;
1495 if( pRangeStart ){
1496 Expr *pRight = pRangeStart->pExpr->pRight;
1497 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1498 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1499 if( (pRangeStart->wtFlags & TERM_VNULL)==0
1500 && sqlite3ExprCanBeNull(pRight)
1501 ){
1502 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1503 VdbeCoverage(v);
1504 }
1505 if( zStartAff ){
1506 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1507 }
1508 nConstraint += nBtm;
1509 testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1510 if( sqlite3ExprIsVector(pRight)==0 ){
1511 disableTerm(pLevel, pRangeStart);
1512 }else{
1513 startEq = 1;
1514 }
1515 bSeekPastNull = 0;
1516 }else if( bSeekPastNull ){
1517 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1518 nConstraint++;
1519 startEq = 0;
1520 start_constraints = 1;
1521 }
1522 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1523 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1524 /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1525 ** above has already left the cursor sitting on the correct row,
1526 ** so no further seeking is needed */
1527 }else{
1528 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1529 assert( op!=0 );
1530 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1531 VdbeCoverage(v);
1532 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
1533 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
1534 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT );
1535 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
1536 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
1537 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT );
1538 }
1539
1540 /* Load the value for the inequality constraint at the end of the
1541 ** range (if any).
1542 */
1543 nConstraint = nEq;
1544 if( pRangeEnd ){
1545 Expr *pRight = pRangeEnd->pExpr->pRight;
1546 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
1547 codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1548 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1549 if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1550 && sqlite3ExprCanBeNull(pRight)
1551 ){
1552 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1553 VdbeCoverage(v);
1554 }
1555 if( zEndAff ){
1556 updateRangeAffinityStr(pRight, nTop, zEndAff);
1557 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1558 }else{
1559 assert( pParse->db->mallocFailed );
1560 }
1561 nConstraint += nTop;
1562 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1563
1564 if( sqlite3ExprIsVector(pRight)==0 ){
1565 disableTerm(pLevel, pRangeEnd);
1566 }else{
1567 endEq = 1;
1568 }
1569 }else if( bStopAtNull ){
1570 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1571 endEq = 0;
1572 nConstraint++;
1573 }
1574 sqlite3DbFree(db, zStartAff);
1575 sqlite3DbFree(db, zEndAff);
1576
1577 /* Top of the loop body */
1578 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1579
1580 /* Check if the index cursor is past the end of the range. */
1581 if( nConstraint ){
1582 op = aEndOp[bRev*2 + endEq];
1583 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1584 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
1585 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
1586 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
1587 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
1588 }
1589
1590 /* Seek the table cursor, if required */
1591 if( omitTable ){
1592 /* pIdx is a covering index. No need to access the main table. */
1593 }else if( HasRowid(pIdx->pTable) ){
1594 if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE) || (
1595 (pWInfo->wctrlFlags & WHERE_SEEK_UNIQ_TABLE)
1596 && (pWInfo->eOnePass==ONEPASS_SINGLE)
1597 )){
1598 iRowidReg = ++pParse->nMem;
1599 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1600 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1601 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
1602 VdbeCoverage(v);
1603 }else{
1604 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1605 }
1606 }else if( iCur!=iIdxCur ){
1607 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1608 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1609 for(j=0; j<pPk->nKeyCol; j++){
1610 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1611 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1612 }
1613 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1614 iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1615 }
1616
1617 /* Record the instruction used to terminate the loop. */
1618 if( pLoop->wsFlags & WHERE_ONEROW ){
1619 pLevel->op = OP_Noop;
1620 }else if( bRev ){
1621 pLevel->op = OP_Prev;
1622 }else{
1623 pLevel->op = OP_Next;
1624 }
1625 pLevel->p1 = iIdxCur;
1626 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1627 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1628 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1629 }else{
1630 assert( pLevel->p5==0 );
1631 }
1632 }else
1633
1634 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1635 if( pLoop->wsFlags & WHERE_MULTI_OR ){
1636 /* Case 5: Two or more separately indexed terms connected by OR
1637 **
1638 ** Example:
1639 **
1640 ** CREATE TABLE t1(a,b,c,d);
1641 ** CREATE INDEX i1 ON t1(a);
1642 ** CREATE INDEX i2 ON t1(b);
1643 ** CREATE INDEX i3 ON t1(c);
1644 **
1645 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1646 **
1647 ** In the example, there are three indexed terms connected by OR.
1648 ** The top of the loop looks like this:
1649 **
1650 ** Null 1 # Zero the rowset in reg 1
1651 **
1652 ** Then, for each indexed term, the following. The arguments to
1653 ** RowSetTest are such that the rowid of the current row is inserted
1654 ** into the RowSet. If it is already present, control skips the
1655 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
1656 **
1657 ** sqlite3WhereBegin(<term>)
1658 ** RowSetTest # Insert rowid into rowset
1659 ** Gosub 2 A
1660 ** sqlite3WhereEnd()
1661 **
1662 ** Following the above, code to terminate the loop. Label A, the target
1663 ** of the Gosub above, jumps to the instruction right after the Goto.
1664 **
1665 ** Null 1 # Zero the rowset in reg 1
1666 ** Goto B # The loop is finished.
1667 **
1668 ** A: <loop body> # Return data, whatever.
1669 **
1670 ** Return 2 # Jump back to the Gosub
1671 **
1672 ** B: <after the loop>
1673 **
1674 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
1675 ** use an ephemeral index instead of a RowSet to record the primary
1676 ** keys of the rows we have already seen.
1677 **
1678 */
1679 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
1680 SrcList *pOrTab; /* Shortened table list or OR-clause generation */
1681 Index *pCov = 0; /* Potential covering index (or NULL) */
1682 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */
1683
1684 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
1685 int regRowset = 0; /* Register for RowSet object */
1686 int regRowid = 0; /* Register holding rowid */
1687 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
1688 int iRetInit; /* Address of regReturn init */
1689 int untestedTerms = 0; /* Some terms not completely tested */
1690 int ii; /* Loop counter */
1691 u16 wctrlFlags; /* Flags for sub-WHERE clause */
1692 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
1693 Table *pTab = pTabItem->pTab;
1694
1695 pTerm = pLoop->aLTerm[0];
1696 assert( pTerm!=0 );
1697 assert( pTerm->eOperator & WO_OR );
1698 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
1699 pOrWc = &pTerm->u.pOrInfo->wc;
1700 pLevel->op = OP_Return;
1701 pLevel->p1 = regReturn;
1702
1703 /* Set up a new SrcList in pOrTab containing the table being scanned
1704 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
1705 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
1706 */
1707 if( pWInfo->nLevel>1 ){
1708 int nNotReady; /* The number of notReady tables */
1709 struct SrcList_item *origSrc; /* Original list of tables */
1710 nNotReady = pWInfo->nLevel - iLevel - 1;
1711 pOrTab = sqlite3StackAllocRaw(db,
1712 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
1713 if( pOrTab==0 ) return notReady;
1714 pOrTab->nAlloc = (u8)(nNotReady + 1);
1715 pOrTab->nSrc = pOrTab->nAlloc;
1716 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
1717 origSrc = pWInfo->pTabList->a;
1718 for(k=1; k<=nNotReady; k++){
1719 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
1720 }
1721 }else{
1722 pOrTab = pWInfo->pTabList;
1723 }
1724
1725 /* Initialize the rowset register to contain NULL. An SQL NULL is
1726 ** equivalent to an empty rowset. Or, create an ephemeral index
1727 ** capable of holding primary keys in the case of a WITHOUT ROWID.
1728 **
1729 ** Also initialize regReturn to contain the address of the instruction
1730 ** immediately following the OP_Return at the bottom of the loop. This
1731 ** is required in a few obscure LEFT JOIN cases where control jumps
1732 ** over the top of the loop into the body of it. In this case the
1733 ** correct response for the end-of-loop code (the OP_Return) is to
1734 ** fall through to the next instruction, just as an OP_Next does if
1735 ** called on an uninitialized cursor.
1736 */
1737 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1738 if( HasRowid(pTab) ){
1739 regRowset = ++pParse->nMem;
1740 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
1741 }else{
1742 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1743 regRowset = pParse->nTab++;
1744 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
1745 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
1746 }
1747 regRowid = ++pParse->nMem;
1748 }
1749 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
1750
1751 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
1752 ** Then for every term xN, evaluate as the subexpression: xN AND z
1753 ** That way, terms in y that are factored into the disjunction will
1754 ** be picked up by the recursive calls to sqlite3WhereBegin() below.
1755 **
1756 ** Actually, each subexpression is converted to "xN AND w" where w is
1757 ** the "interesting" terms of z - terms that did not originate in the
1758 ** ON or USING clause of a LEFT JOIN, and terms that are usable as
1759 ** indices.
1760 **
1761 ** This optimization also only applies if the (x1 OR x2 OR ...) term
1762 ** is not contained in the ON clause of a LEFT JOIN.
1763 ** See ticket http://www.sqlite.org/src/info/f2369304e4
1764 */
1765 if( pWC->nTerm>1 ){
1766 int iTerm;
1767 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
1768 Expr *pExpr = pWC->a[iTerm].pExpr;
1769 if( &pWC->a[iTerm] == pTerm ) continue;
1770 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
1771 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
1772 testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
1773 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
1774 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
1775 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
1776 pExpr = sqlite3ExprDup(db, pExpr, 0);
1777 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
1778 }
1779 if( pAndExpr ){
1780 pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr);
1781 }
1782 }
1783
1784 /* Run a separate WHERE clause for each term of the OR clause. After
1785 ** eliminating duplicates from other WHERE clauses, the action for each
1786 ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
1787 */
1788 wctrlFlags = WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE);
1789 for(ii=0; ii<pOrWc->nTerm; ii++){
1790 WhereTerm *pOrTerm = &pOrWc->a[ii];
1791 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
1792 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
1793 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
1794 int jmp1 = 0; /* Address of jump operation */
1795 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
1796 pAndExpr->pLeft = pOrExpr;
1797 pOrExpr = pAndExpr;
1798 }
1799 /* Loop through table entries that match term pOrTerm. */
1800 WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
1801 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
1802 wctrlFlags, iCovCur);
1803 assert( pSubWInfo || pParse->nErr || db->mallocFailed );
1804 if( pSubWInfo ){
1805 WhereLoop *pSubLoop;
1806 int addrExplain = sqlite3WhereExplainOneScan(
1807 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
1808 );
1809 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
1810
1811 /* This is the sub-WHERE clause body. First skip over
1812 ** duplicate rows from prior sub-WHERE clauses, and record the
1813 ** rowid (or PRIMARY KEY) for the current row so that the same
1814 ** row will be skipped in subsequent sub-WHERE clauses.
1815 */
1816 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1817 int r;
1818 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
1819 if( HasRowid(pTab) ){
1820 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
1821 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
1822 r,iSet);
1823 VdbeCoverage(v);
1824 }else{
1825 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1826 int nPk = pPk->nKeyCol;
1827 int iPk;
1828
1829 /* Read the PK into an array of temp registers. */
1830 r = sqlite3GetTempRange(pParse, nPk);
1831 for(iPk=0; iPk<nPk; iPk++){
1832 int iCol = pPk->aiColumn[iPk];
1833 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk);
1834 }
1835
1836 /* Check if the temp table already contains this key. If so,
1837 ** the row has already been included in the result set and
1838 ** can be ignored (by jumping past the Gosub below). Otherwise,
1839 ** insert the key into the temp table and proceed with processing
1840 ** the row.
1841 **
1842 ** Use some of the same optimizations as OP_RowSetTest: If iSet
1843 ** is zero, assume that the key cannot already be present in
1844 ** the temp table. And if iSet is -1, assume that there is no
1845 ** need to insert the key into the temp table, as it will never
1846 ** be tested for. */
1847 if( iSet ){
1848 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
1849 VdbeCoverage(v);
1850 }
1851 if( iSet>=0 ){
1852 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
1853 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
1854 r, nPk);
1855 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1856 }
1857
1858 /* Release the array of temp registers */
1859 sqlite3ReleaseTempRange(pParse, r, nPk);
1860 }
1861 }
1862
1863 /* Invoke the main loop body as a subroutine */
1864 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
1865
1866 /* Jump here (skipping the main loop body subroutine) if the
1867 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
1868 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
1869
1870 /* The pSubWInfo->untestedTerms flag means that this OR term
1871 ** contained one or more AND term from a notReady table. The
1872 ** terms from the notReady table could not be tested and will
1873 ** need to be tested later.
1874 */
1875 if( pSubWInfo->untestedTerms ) untestedTerms = 1;
1876
1877 /* If all of the OR-connected terms are optimized using the same
1878 ** index, and the index is opened using the same cursor number
1879 ** by each call to sqlite3WhereBegin() made by this loop, it may
1880 ** be possible to use that index as a covering index.
1881 **
1882 ** If the call to sqlite3WhereBegin() above resulted in a scan that
1883 ** uses an index, and this is either the first OR-connected term
1884 ** processed or the index is the same as that used by all previous
1885 ** terms, set pCov to the candidate covering index. Otherwise, set
1886 ** pCov to NULL to indicate that no candidate covering index will
1887 ** be available.
1888 */
1889 pSubLoop = pSubWInfo->a[0].pWLoop;
1890 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
1891 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
1892 && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
1893 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
1894 ){
1895 assert( pSubWInfo->a[0].iIdxCur==iCovCur );
1896 pCov = pSubLoop->u.btree.pIndex;
1897 }else{
1898 pCov = 0;
1899 }
1900
1901 /* Finish the loop through table entries that match term pOrTerm. */
1902 sqlite3WhereEnd(pSubWInfo);
1903 }
1904 }
1905 }
1906 pLevel->u.pCovidx = pCov;
1907 if( pCov ) pLevel->iIdxCur = iCovCur;
1908 if( pAndExpr ){
1909 pAndExpr->pLeft = 0;
1910 sqlite3ExprDelete(db, pAndExpr);
1911 }
1912 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
1913 sqlite3VdbeGoto(v, pLevel->addrBrk);
1914 sqlite3VdbeResolveLabel(v, iLoopBody);
1915
1916 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
1917 if( !untestedTerms ) disableTerm(pLevel, pTerm);
1918 }else
1919 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1920
1921 {
1922 /* Case 6: There is no usable index. We must do a complete
1923 ** scan of the entire table.
1924 */
1925 static const u8 aStep[] = { OP_Next, OP_Prev };
1926 static const u8 aStart[] = { OP_Rewind, OP_Last };
1927 assert( bRev==0 || bRev==1 );
1928 if( pTabItem->fg.isRecursive ){
1929 /* Tables marked isRecursive have only a single row that is stored in
1930 ** a pseudo-cursor. No need to Rewind or Next such cursors. */
1931 pLevel->op = OP_Noop;
1932 }else{
1933 codeCursorHint(pTabItem, pWInfo, pLevel, 0);
1934 pLevel->op = aStep[bRev];
1935 pLevel->p1 = iCur;
1936 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
1937 VdbeCoverageIf(v, bRev==0);
1938 VdbeCoverageIf(v, bRev!=0);
1939 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1940 }
1941 }
1942
1943 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1944 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
1945 #endif
1946
1947 /* Insert code to test every subexpression that can be completely
1948 ** computed using the current set of tables.
1949 */
1950 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1951 Expr *pE;
1952 int skipLikeAddr = 0;
1953 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1954 testcase( pTerm->wtFlags & TERM_CODED );
1955 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1956 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
1957 testcase( pWInfo->untestedTerms==0
1958 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
1959 pWInfo->untestedTerms = 1;
1960 continue;
1961 }
1962 pE = pTerm->pExpr;
1963 assert( pE!=0 );
1964 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
1965 continue;
1966 }
1967 if( pTerm->wtFlags & TERM_LIKECOND ){
1968 /* If the TERM_LIKECOND flag is set, that means that the range search
1969 ** is sufficient to guarantee that the LIKE operator is true, so we
1970 ** can skip the call to the like(A,B) function. But this only works
1971 ** for strings. So do not skip the call to the function on the pass
1972 ** that compares BLOBs. */
1973 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1974 continue;
1975 #else
1976 u32 x = pLevel->iLikeRepCntr;
1977 assert( x>0 );
1978 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)? OP_IfNot : OP_If, (int)(x>>1));
1979 VdbeCoverage(v);
1980 #endif
1981 }
1982 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
1983 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
1984 pTerm->wtFlags |= TERM_CODED;
1985 }
1986
1987 /* Insert code to test for implied constraints based on transitivity
1988 ** of the "==" operator.
1989 **
1990 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
1991 ** and we are coding the t1 loop and the t2 loop has not yet coded,
1992 ** then we cannot use the "t1.a=t2.b" constraint, but we can code
1993 ** the implied "t1.a=123" constraint.
1994 */
1995 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1996 Expr *pE, sEAlt;
1997 WhereTerm *pAlt;
1998 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1999 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2000 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2001 if( pTerm->leftCursor!=iCur ) continue;
2002 if( pLevel->iLeftJoin ) continue;
2003 pE = pTerm->pExpr;
2004 assert( !ExprHasProperty(pE, EP_FromJoin) );
2005 assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2006 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
2007 WO_EQ|WO_IN|WO_IS, 0);
2008 if( pAlt==0 ) continue;
2009 if( pAlt->wtFlags & (TERM_CODED) ) continue;
2010 testcase( pAlt->eOperator & WO_EQ );
2011 testcase( pAlt->eOperator & WO_IS );
2012 testcase( pAlt->eOperator & WO_IN );
2013 VdbeModuleComment((v, "begin transitive constraint"));
2014 sEAlt = *pAlt->pExpr;
2015 sEAlt.pLeft = pE->pLeft;
2016 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2017 }
2018
2019 /* For a LEFT OUTER JOIN, generate code that will record the fact that
2020 ** at least one row of the right table has matched the left table.
2021 */
2022 if( pLevel->iLeftJoin ){
2023 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2024 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2025 VdbeComment((v, "record LEFT JOIN hit"));
2026 sqlite3ExprCacheClear(pParse);
2027 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2028 testcase( pTerm->wtFlags & TERM_VIRTUAL );
2029 testcase( pTerm->wtFlags & TERM_CODED );
2030 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2031 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2032 assert( pWInfo->untestedTerms );
2033 continue;
2034 }
2035 assert( pTerm->pExpr );
2036 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2037 pTerm->wtFlags |= TERM_CODED;
2038 }
2039 }
2040
2041 return pLevel->notReady;
2042 }
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3170000/src/whereInt.h ('k') | third_party/sqlite/sqlite-src-3170000/src/whereexpr.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698