OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2015-06-06 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This module contains C code that generates VDBE code used to process |
| 13 ** the WHERE clause of SQL statements. |
| 14 ** |
| 15 ** This file was split off from where.c on 2015-06-06 in order to reduce the |
| 16 ** size of where.c and make it easier to edit. This file contains the routines |
| 17 ** that actually generate the bulk of the WHERE loop code. The original where.c |
| 18 ** file retains the code that does query planning and analysis. |
| 19 */ |
| 20 #include "sqliteInt.h" |
| 21 #include "whereInt.h" |
| 22 |
| 23 #ifndef SQLITE_OMIT_EXPLAIN |
| 24 |
| 25 /* |
| 26 ** Return the name of the i-th column of the pIdx index. |
| 27 */ |
| 28 static const char *explainIndexColumnName(Index *pIdx, int i){ |
| 29 i = pIdx->aiColumn[i]; |
| 30 if( i==XN_EXPR ) return "<expr>"; |
| 31 if( i==XN_ROWID ) return "rowid"; |
| 32 return pIdx->pTable->aCol[i].zName; |
| 33 } |
| 34 |
| 35 /* |
| 36 ** This routine is a helper for explainIndexRange() below |
| 37 ** |
| 38 ** pStr holds the text of an expression that we are building up one term |
| 39 ** at a time. This routine adds a new term to the end of the expression. |
| 40 ** Terms are separated by AND so add the "AND" text for second and subsequent |
| 41 ** terms only. |
| 42 */ |
| 43 static void explainAppendTerm( |
| 44 StrAccum *pStr, /* The text expression being built */ |
| 45 Index *pIdx, /* Index to read column names from */ |
| 46 int nTerm, /* Number of terms */ |
| 47 int iTerm, /* Zero-based index of first term. */ |
| 48 int bAnd, /* Non-zero to append " AND " */ |
| 49 const char *zOp /* Name of the operator */ |
| 50 ){ |
| 51 int i; |
| 52 |
| 53 assert( nTerm>=1 ); |
| 54 if( bAnd ) sqlite3StrAccumAppend(pStr, " AND ", 5); |
| 55 |
| 56 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1); |
| 57 for(i=0; i<nTerm; i++){ |
| 58 if( i ) sqlite3StrAccumAppend(pStr, ",", 1); |
| 59 sqlite3StrAccumAppendAll(pStr, explainIndexColumnName(pIdx, iTerm+i)); |
| 60 } |
| 61 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1); |
| 62 |
| 63 sqlite3StrAccumAppend(pStr, zOp, 1); |
| 64 |
| 65 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1); |
| 66 for(i=0; i<nTerm; i++){ |
| 67 if( i ) sqlite3StrAccumAppend(pStr, ",", 1); |
| 68 sqlite3StrAccumAppend(pStr, "?", 1); |
| 69 } |
| 70 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1); |
| 71 } |
| 72 |
| 73 /* |
| 74 ** Argument pLevel describes a strategy for scanning table pTab. This |
| 75 ** function appends text to pStr that describes the subset of table |
| 76 ** rows scanned by the strategy in the form of an SQL expression. |
| 77 ** |
| 78 ** For example, if the query: |
| 79 ** |
| 80 ** SELECT * FROM t1 WHERE a=1 AND b>2; |
| 81 ** |
| 82 ** is run and there is an index on (a, b), then this function returns a |
| 83 ** string similar to: |
| 84 ** |
| 85 ** "a=? AND b>?" |
| 86 */ |
| 87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ |
| 88 Index *pIndex = pLoop->u.btree.pIndex; |
| 89 u16 nEq = pLoop->u.btree.nEq; |
| 90 u16 nSkip = pLoop->nSkip; |
| 91 int i, j; |
| 92 |
| 93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; |
| 94 sqlite3StrAccumAppend(pStr, " (", 2); |
| 95 for(i=0; i<nEq; i++){ |
| 96 const char *z = explainIndexColumnName(pIndex, i); |
| 97 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); |
| 98 sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); |
| 99 } |
| 100 |
| 101 j = i; |
| 102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ |
| 103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); |
| 104 i = 1; |
| 105 } |
| 106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ |
| 107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); |
| 108 } |
| 109 sqlite3StrAccumAppend(pStr, ")", 1); |
| 110 } |
| 111 |
| 112 /* |
| 113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN |
| 114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was |
| 115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode |
| 116 ** is added to the output to describe the table scan strategy in pLevel. |
| 117 ** |
| 118 ** If an OP_Explain opcode is added to the VM, its address is returned. |
| 119 ** Otherwise, if no OP_Explain is coded, zero is returned. |
| 120 */ |
| 121 int sqlite3WhereExplainOneScan( |
| 122 Parse *pParse, /* Parse context */ |
| 123 SrcList *pTabList, /* Table list this loop refers to */ |
| 124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ |
| 125 int iLevel, /* Value for "level" column of output */ |
| 126 int iFrom, /* Value for "from" column of output */ |
| 127 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ |
| 128 ){ |
| 129 int ret = 0; |
| 130 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) |
| 131 if( pParse->explain==2 ) |
| 132 #endif |
| 133 { |
| 134 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; |
| 135 Vdbe *v = pParse->pVdbe; /* VM being constructed */ |
| 136 sqlite3 *db = pParse->db; /* Database handle */ |
| 137 int iId = pParse->iSelectId; /* Select id (left-most output column) */ |
| 138 int isSearch; /* True for a SEARCH. False for SCAN. */ |
| 139 WhereLoop *pLoop; /* The controlling WhereLoop object */ |
| 140 u32 flags; /* Flags that describe this loop */ |
| 141 char *zMsg; /* Text to add to EQP output */ |
| 142 StrAccum str; /* EQP output string */ |
| 143 char zBuf[100]; /* Initial space for EQP output string */ |
| 144 |
| 145 pLoop = pLevel->pWLoop; |
| 146 flags = pLoop->wsFlags; |
| 147 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; |
| 148 |
| 149 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 |
| 150 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) |
| 151 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); |
| 152 |
| 153 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); |
| 154 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); |
| 155 if( pItem->pSelect ){ |
| 156 sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId); |
| 157 }else{ |
| 158 sqlite3XPrintf(&str, " TABLE %s", pItem->zName); |
| 159 } |
| 160 |
| 161 if( pItem->zAlias ){ |
| 162 sqlite3XPrintf(&str, " AS %s", pItem->zAlias); |
| 163 } |
| 164 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ |
| 165 const char *zFmt = 0; |
| 166 Index *pIdx; |
| 167 |
| 168 assert( pLoop->u.btree.pIndex!=0 ); |
| 169 pIdx = pLoop->u.btree.pIndex; |
| 170 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); |
| 171 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ |
| 172 if( isSearch ){ |
| 173 zFmt = "PRIMARY KEY"; |
| 174 } |
| 175 }else if( flags & WHERE_PARTIALIDX ){ |
| 176 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; |
| 177 }else if( flags & WHERE_AUTO_INDEX ){ |
| 178 zFmt = "AUTOMATIC COVERING INDEX"; |
| 179 }else if( flags & WHERE_IDX_ONLY ){ |
| 180 zFmt = "COVERING INDEX %s"; |
| 181 }else{ |
| 182 zFmt = "INDEX %s"; |
| 183 } |
| 184 if( zFmt ){ |
| 185 sqlite3StrAccumAppend(&str, " USING ", 7); |
| 186 sqlite3XPrintf(&str, zFmt, pIdx->zName); |
| 187 explainIndexRange(&str, pLoop); |
| 188 } |
| 189 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ |
| 190 const char *zRangeOp; |
| 191 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ |
| 192 zRangeOp = "="; |
| 193 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ |
| 194 zRangeOp = ">? AND rowid<"; |
| 195 }else if( flags&WHERE_BTM_LIMIT ){ |
| 196 zRangeOp = ">"; |
| 197 }else{ |
| 198 assert( flags&WHERE_TOP_LIMIT); |
| 199 zRangeOp = "<"; |
| 200 } |
| 201 sqlite3XPrintf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); |
| 202 } |
| 203 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 204 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ |
| 205 sqlite3XPrintf(&str, " VIRTUAL TABLE INDEX %d:%s", |
| 206 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); |
| 207 } |
| 208 #endif |
| 209 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS |
| 210 if( pLoop->nOut>=10 ){ |
| 211 sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); |
| 212 }else{ |
| 213 sqlite3StrAccumAppend(&str, " (~1 row)", 9); |
| 214 } |
| 215 #endif |
| 216 zMsg = sqlite3StrAccumFinish(&str); |
| 217 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC); |
| 218 } |
| 219 return ret; |
| 220 } |
| 221 #endif /* SQLITE_OMIT_EXPLAIN */ |
| 222 |
| 223 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| 224 /* |
| 225 ** Configure the VM passed as the first argument with an |
| 226 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to |
| 227 ** implement level pLvl. Argument pSrclist is a pointer to the FROM |
| 228 ** clause that the scan reads data from. |
| 229 ** |
| 230 ** If argument addrExplain is not 0, it must be the address of an |
| 231 ** OP_Explain instruction that describes the same loop. |
| 232 */ |
| 233 void sqlite3WhereAddScanStatus( |
| 234 Vdbe *v, /* Vdbe to add scanstatus entry to */ |
| 235 SrcList *pSrclist, /* FROM clause pLvl reads data from */ |
| 236 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ |
| 237 int addrExplain /* Address of OP_Explain (or 0) */ |
| 238 ){ |
| 239 const char *zObj = 0; |
| 240 WhereLoop *pLoop = pLvl->pWLoop; |
| 241 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ |
| 242 zObj = pLoop->u.btree.pIndex->zName; |
| 243 }else{ |
| 244 zObj = pSrclist->a[pLvl->iFrom].zName; |
| 245 } |
| 246 sqlite3VdbeScanStatus( |
| 247 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj |
| 248 ); |
| 249 } |
| 250 #endif |
| 251 |
| 252 |
| 253 /* |
| 254 ** Disable a term in the WHERE clause. Except, do not disable the term |
| 255 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON |
| 256 ** or USING clause of that join. |
| 257 ** |
| 258 ** Consider the term t2.z='ok' in the following queries: |
| 259 ** |
| 260 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' |
| 261 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' |
| 262 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' |
| 263 ** |
| 264 ** The t2.z='ok' is disabled in the in (2) because it originates |
| 265 ** in the ON clause. The term is disabled in (3) because it is not part |
| 266 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. |
| 267 ** |
| 268 ** Disabling a term causes that term to not be tested in the inner loop |
| 269 ** of the join. Disabling is an optimization. When terms are satisfied |
| 270 ** by indices, we disable them to prevent redundant tests in the inner |
| 271 ** loop. We would get the correct results if nothing were ever disabled, |
| 272 ** but joins might run a little slower. The trick is to disable as much |
| 273 ** as we can without disabling too much. If we disabled in (1), we'd get |
| 274 ** the wrong answer. See ticket #813. |
| 275 ** |
| 276 ** If all the children of a term are disabled, then that term is also |
| 277 ** automatically disabled. In this way, terms get disabled if derived |
| 278 ** virtual terms are tested first. For example: |
| 279 ** |
| 280 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' |
| 281 ** \___________/ \______/ \_____/ |
| 282 ** parent child1 child2 |
| 283 ** |
| 284 ** Only the parent term was in the original WHERE clause. The child1 |
| 285 ** and child2 terms were added by the LIKE optimization. If both of |
| 286 ** the virtual child terms are valid, then testing of the parent can be |
| 287 ** skipped. |
| 288 ** |
| 289 ** Usually the parent term is marked as TERM_CODED. But if the parent |
| 290 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. |
| 291 ** The TERM_LIKECOND marking indicates that the term should be coded inside |
| 292 ** a conditional such that is only evaluated on the second pass of a |
| 293 ** LIKE-optimization loop, when scanning BLOBs instead of strings. |
| 294 */ |
| 295 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ |
| 296 int nLoop = 0; |
| 297 while( ALWAYS(pTerm!=0) |
| 298 && (pTerm->wtFlags & TERM_CODED)==0 |
| 299 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) |
| 300 && (pLevel->notReady & pTerm->prereqAll)==0 |
| 301 ){ |
| 302 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ |
| 303 pTerm->wtFlags |= TERM_LIKECOND; |
| 304 }else{ |
| 305 pTerm->wtFlags |= TERM_CODED; |
| 306 } |
| 307 if( pTerm->iParent<0 ) break; |
| 308 pTerm = &pTerm->pWC->a[pTerm->iParent]; |
| 309 pTerm->nChild--; |
| 310 if( pTerm->nChild!=0 ) break; |
| 311 nLoop++; |
| 312 } |
| 313 } |
| 314 |
| 315 /* |
| 316 ** Code an OP_Affinity opcode to apply the column affinity string zAff |
| 317 ** to the n registers starting at base. |
| 318 ** |
| 319 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the |
| 320 ** beginning and end of zAff are ignored. If all entries in zAff are |
| 321 ** SQLITE_AFF_BLOB, then no code gets generated. |
| 322 ** |
| 323 ** This routine makes its own copy of zAff so that the caller is free |
| 324 ** to modify zAff after this routine returns. |
| 325 */ |
| 326 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ |
| 327 Vdbe *v = pParse->pVdbe; |
| 328 if( zAff==0 ){ |
| 329 assert( pParse->db->mallocFailed ); |
| 330 return; |
| 331 } |
| 332 assert( v!=0 ); |
| 333 |
| 334 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning |
| 335 ** and end of the affinity string. |
| 336 */ |
| 337 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){ |
| 338 n--; |
| 339 base++; |
| 340 zAff++; |
| 341 } |
| 342 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){ |
| 343 n--; |
| 344 } |
| 345 |
| 346 /* Code the OP_Affinity opcode if there is anything left to do. */ |
| 347 if( n>0 ){ |
| 348 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); |
| 349 sqlite3ExprCacheAffinityChange(pParse, base, n); |
| 350 } |
| 351 } |
| 352 |
| 353 /* |
| 354 ** Expression pRight, which is the RHS of a comparison operation, is |
| 355 ** either a vector of n elements or, if n==1, a scalar expression. |
| 356 ** Before the comparison operation, affinity zAff is to be applied |
| 357 ** to the pRight values. This function modifies characters within the |
| 358 ** affinity string to SQLITE_AFF_BLOB if either: |
| 359 ** |
| 360 ** * the comparison will be performed with no affinity, or |
| 361 ** * the affinity change in zAff is guaranteed not to change the value. |
| 362 */ |
| 363 static void updateRangeAffinityStr( |
| 364 Expr *pRight, /* RHS of comparison */ |
| 365 int n, /* Number of vector elements in comparison */ |
| 366 char *zAff /* Affinity string to modify */ |
| 367 ){ |
| 368 int i; |
| 369 for(i=0; i<n; i++){ |
| 370 Expr *p = sqlite3VectorFieldSubexpr(pRight, i); |
| 371 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB |
| 372 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) |
| 373 ){ |
| 374 zAff[i] = SQLITE_AFF_BLOB; |
| 375 } |
| 376 } |
| 377 } |
| 378 |
| 379 /* |
| 380 ** Generate code for a single equality term of the WHERE clause. An equality |
| 381 ** term can be either X=expr or X IN (...). pTerm is the term to be |
| 382 ** coded. |
| 383 ** |
| 384 ** The current value for the constraint is left in a register, the index |
| 385 ** of which is returned. An attempt is made store the result in iTarget but |
| 386 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the |
| 387 ** constraint is a TK_EQ or TK_IS, then the current value might be left in |
| 388 ** some other register and it is the caller's responsibility to compensate. |
| 389 ** |
| 390 ** For a constraint of the form X=expr, the expression is evaluated in |
| 391 ** straight-line code. For constraints of the form X IN (...) |
| 392 ** this routine sets up a loop that will iterate over all values of X. |
| 393 */ |
| 394 static int codeEqualityTerm( |
| 395 Parse *pParse, /* The parsing context */ |
| 396 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ |
| 397 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ |
| 398 int iEq, /* Index of the equality term within this level */ |
| 399 int bRev, /* True for reverse-order IN operations */ |
| 400 int iTarget /* Attempt to leave results in this register */ |
| 401 ){ |
| 402 Expr *pX = pTerm->pExpr; |
| 403 Vdbe *v = pParse->pVdbe; |
| 404 int iReg; /* Register holding results */ |
| 405 |
| 406 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); |
| 407 assert( iTarget>0 ); |
| 408 if( pX->op==TK_EQ || pX->op==TK_IS ){ |
| 409 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); |
| 410 }else if( pX->op==TK_ISNULL ){ |
| 411 iReg = iTarget; |
| 412 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); |
| 413 #ifndef SQLITE_OMIT_SUBQUERY |
| 414 }else{ |
| 415 int eType = IN_INDEX_NOOP; |
| 416 int iTab; |
| 417 struct InLoop *pIn; |
| 418 WhereLoop *pLoop = pLevel->pWLoop; |
| 419 int i; |
| 420 int nEq = 0; |
| 421 int *aiMap = 0; |
| 422 |
| 423 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 |
| 424 && pLoop->u.btree.pIndex!=0 |
| 425 && pLoop->u.btree.pIndex->aSortOrder[iEq] |
| 426 ){ |
| 427 testcase( iEq==0 ); |
| 428 testcase( bRev ); |
| 429 bRev = !bRev; |
| 430 } |
| 431 assert( pX->op==TK_IN ); |
| 432 iReg = iTarget; |
| 433 |
| 434 for(i=0; i<iEq; i++){ |
| 435 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ |
| 436 disableTerm(pLevel, pTerm); |
| 437 return iTarget; |
| 438 } |
| 439 } |
| 440 for(i=iEq;i<pLoop->nLTerm; i++){ |
| 441 if( ALWAYS(pLoop->aLTerm[i]) && pLoop->aLTerm[i]->pExpr==pX ) nEq++; |
| 442 } |
| 443 |
| 444 if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){ |
| 445 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0); |
| 446 }else{ |
| 447 Select *pSelect = pX->x.pSelect; |
| 448 sqlite3 *db = pParse->db; |
| 449 u16 savedDbOptFlags = db->dbOptFlags; |
| 450 ExprList *pOrigRhs = pSelect->pEList; |
| 451 ExprList *pOrigLhs = pX->pLeft->x.pList; |
| 452 ExprList *pRhs = 0; /* New Select.pEList for RHS */ |
| 453 ExprList *pLhs = 0; /* New pX->pLeft vector */ |
| 454 |
| 455 for(i=iEq;i<pLoop->nLTerm; i++){ |
| 456 if( pLoop->aLTerm[i]->pExpr==pX ){ |
| 457 int iField = pLoop->aLTerm[i]->iField - 1; |
| 458 Expr *pNewRhs = sqlite3ExprDup(db, pOrigRhs->a[iField].pExpr, 0); |
| 459 Expr *pNewLhs = sqlite3ExprDup(db, pOrigLhs->a[iField].pExpr, 0); |
| 460 |
| 461 pRhs = sqlite3ExprListAppend(pParse, pRhs, pNewRhs); |
| 462 pLhs = sqlite3ExprListAppend(pParse, pLhs, pNewLhs); |
| 463 } |
| 464 } |
| 465 if( !db->mallocFailed ){ |
| 466 Expr *pLeft = pX->pLeft; |
| 467 |
| 468 if( pSelect->pOrderBy ){ |
| 469 /* If the SELECT statement has an ORDER BY clause, zero the |
| 470 ** iOrderByCol variables. These are set to non-zero when an |
| 471 ** ORDER BY term exactly matches one of the terms of the |
| 472 ** result-set. Since the result-set of the SELECT statement may |
| 473 ** have been modified or reordered, these variables are no longer |
| 474 ** set correctly. Since setting them is just an optimization, |
| 475 ** it's easiest just to zero them here. */ |
| 476 ExprList *pOrderBy = pSelect->pOrderBy; |
| 477 for(i=0; i<pOrderBy->nExpr; i++){ |
| 478 pOrderBy->a[i].u.x.iOrderByCol = 0; |
| 479 } |
| 480 } |
| 481 |
| 482 /* Take care here not to generate a TK_VECTOR containing only a |
| 483 ** single value. Since the parser never creates such a vector, some |
| 484 ** of the subroutines do not handle this case. */ |
| 485 if( pLhs->nExpr==1 ){ |
| 486 pX->pLeft = pLhs->a[0].pExpr; |
| 487 }else{ |
| 488 pLeft->x.pList = pLhs; |
| 489 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int) * nEq); |
| 490 testcase( aiMap==0 ); |
| 491 } |
| 492 pSelect->pEList = pRhs; |
| 493 db->dbOptFlags |= SQLITE_QueryFlattener; |
| 494 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap); |
| 495 db->dbOptFlags = savedDbOptFlags; |
| 496 testcase( aiMap!=0 && aiMap[0]!=0 ); |
| 497 pSelect->pEList = pOrigRhs; |
| 498 pLeft->x.pList = pOrigLhs; |
| 499 pX->pLeft = pLeft; |
| 500 } |
| 501 sqlite3ExprListDelete(pParse->db, pLhs); |
| 502 sqlite3ExprListDelete(pParse->db, pRhs); |
| 503 } |
| 504 |
| 505 if( eType==IN_INDEX_INDEX_DESC ){ |
| 506 testcase( bRev ); |
| 507 bRev = !bRev; |
| 508 } |
| 509 iTab = pX->iTable; |
| 510 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); |
| 511 VdbeCoverageIf(v, bRev); |
| 512 VdbeCoverageIf(v, !bRev); |
| 513 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); |
| 514 |
| 515 pLoop->wsFlags |= WHERE_IN_ABLE; |
| 516 if( pLevel->u.in.nIn==0 ){ |
| 517 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); |
| 518 } |
| 519 |
| 520 i = pLevel->u.in.nIn; |
| 521 pLevel->u.in.nIn += nEq; |
| 522 pLevel->u.in.aInLoop = |
| 523 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, |
| 524 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); |
| 525 pIn = pLevel->u.in.aInLoop; |
| 526 if( pIn ){ |
| 527 int iMap = 0; /* Index in aiMap[] */ |
| 528 pIn += i; |
| 529 for(i=iEq;i<pLoop->nLTerm; i++){ |
| 530 if( pLoop->aLTerm[i]->pExpr==pX ){ |
| 531 int iOut = iReg + i - iEq; |
| 532 if( eType==IN_INDEX_ROWID ){ |
| 533 testcase( nEq>1 ); /* Happens with a UNIQUE index on ROWID */ |
| 534 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut); |
| 535 }else{ |
| 536 int iCol = aiMap ? aiMap[iMap++] : 0; |
| 537 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); |
| 538 } |
| 539 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); |
| 540 if( i==iEq ){ |
| 541 pIn->iCur = iTab; |
| 542 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; |
| 543 }else{ |
| 544 pIn->eEndLoopOp = OP_Noop; |
| 545 } |
| 546 pIn++; |
| 547 } |
| 548 } |
| 549 }else{ |
| 550 pLevel->u.in.nIn = 0; |
| 551 } |
| 552 sqlite3DbFree(pParse->db, aiMap); |
| 553 #endif |
| 554 } |
| 555 disableTerm(pLevel, pTerm); |
| 556 return iReg; |
| 557 } |
| 558 |
| 559 /* |
| 560 ** Generate code that will evaluate all == and IN constraints for an |
| 561 ** index scan. |
| 562 ** |
| 563 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). |
| 564 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 |
| 565 ** The index has as many as three equality constraints, but in this |
| 566 ** example, the third "c" value is an inequality. So only two |
| 567 ** constraints are coded. This routine will generate code to evaluate |
| 568 ** a==5 and b IN (1,2,3). The current values for a and b will be stored |
| 569 ** in consecutive registers and the index of the first register is returned. |
| 570 ** |
| 571 ** In the example above nEq==2. But this subroutine works for any value |
| 572 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. |
| 573 ** The only thing it does is allocate the pLevel->iMem memory cell and |
| 574 ** compute the affinity string. |
| 575 ** |
| 576 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints |
| 577 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is |
| 578 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that |
| 579 ** occurs after the nEq quality constraints. |
| 580 ** |
| 581 ** This routine allocates a range of nEq+nExtraReg memory cells and returns |
| 582 ** the index of the first memory cell in that range. The code that |
| 583 ** calls this routine will use that memory range to store keys for |
| 584 ** start and termination conditions of the loop. |
| 585 ** key value of the loop. If one or more IN operators appear, then |
| 586 ** this routine allocates an additional nEq memory cells for internal |
| 587 ** use. |
| 588 ** |
| 589 ** Before returning, *pzAff is set to point to a buffer containing a |
| 590 ** copy of the column affinity string of the index allocated using |
| 591 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated |
| 592 ** with equality constraints that use BLOB or NONE affinity are set to |
| 593 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: |
| 594 ** |
| 595 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); |
| 596 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; |
| 597 ** |
| 598 ** In the example above, the index on t1(a) has TEXT affinity. But since |
| 599 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, |
| 600 ** no conversion should be attempted before using a t2.b value as part of |
| 601 ** a key to search the index. Hence the first byte in the returned affinity |
| 602 ** string in this example would be set to SQLITE_AFF_BLOB. |
| 603 */ |
| 604 static int codeAllEqualityTerms( |
| 605 Parse *pParse, /* Parsing context */ |
| 606 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ |
| 607 int bRev, /* Reverse the order of IN operators */ |
| 608 int nExtraReg, /* Number of extra registers to allocate */ |
| 609 char **pzAff /* OUT: Set to point to affinity string */ |
| 610 ){ |
| 611 u16 nEq; /* The number of == or IN constraints to code */ |
| 612 u16 nSkip; /* Number of left-most columns to skip */ |
| 613 Vdbe *v = pParse->pVdbe; /* The vm under construction */ |
| 614 Index *pIdx; /* The index being used for this loop */ |
| 615 WhereTerm *pTerm; /* A single constraint term */ |
| 616 WhereLoop *pLoop; /* The WhereLoop object */ |
| 617 int j; /* Loop counter */ |
| 618 int regBase; /* Base register */ |
| 619 int nReg; /* Number of registers to allocate */ |
| 620 char *zAff; /* Affinity string to return */ |
| 621 |
| 622 /* This module is only called on query plans that use an index. */ |
| 623 pLoop = pLevel->pWLoop; |
| 624 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); |
| 625 nEq = pLoop->u.btree.nEq; |
| 626 nSkip = pLoop->nSkip; |
| 627 pIdx = pLoop->u.btree.pIndex; |
| 628 assert( pIdx!=0 ); |
| 629 |
| 630 /* Figure out how many memory cells we will need then allocate them. |
| 631 */ |
| 632 regBase = pParse->nMem + 1; |
| 633 nReg = pLoop->u.btree.nEq + nExtraReg; |
| 634 pParse->nMem += nReg; |
| 635 |
| 636 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); |
| 637 assert( zAff!=0 || pParse->db->mallocFailed ); |
| 638 |
| 639 if( nSkip ){ |
| 640 int iIdxCur = pLevel->iIdxCur; |
| 641 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); |
| 642 VdbeCoverageIf(v, bRev==0); |
| 643 VdbeCoverageIf(v, bRev!=0); |
| 644 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); |
| 645 j = sqlite3VdbeAddOp0(v, OP_Goto); |
| 646 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), |
| 647 iIdxCur, 0, regBase, nSkip); |
| 648 VdbeCoverageIf(v, bRev==0); |
| 649 VdbeCoverageIf(v, bRev!=0); |
| 650 sqlite3VdbeJumpHere(v, j); |
| 651 for(j=0; j<nSkip; j++){ |
| 652 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); |
| 653 testcase( pIdx->aiColumn[j]==XN_EXPR ); |
| 654 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); |
| 655 } |
| 656 } |
| 657 |
| 658 /* Evaluate the equality constraints |
| 659 */ |
| 660 assert( zAff==0 || (int)strlen(zAff)>=nEq ); |
| 661 for(j=nSkip; j<nEq; j++){ |
| 662 int r1; |
| 663 pTerm = pLoop->aLTerm[j]; |
| 664 assert( pTerm!=0 ); |
| 665 /* The following testcase is true for indices with redundant columns. |
| 666 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ |
| 667 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); |
| 668 testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
| 669 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); |
| 670 if( r1!=regBase+j ){ |
| 671 if( nReg==1 ){ |
| 672 sqlite3ReleaseTempReg(pParse, regBase); |
| 673 regBase = r1; |
| 674 }else{ |
| 675 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); |
| 676 } |
| 677 } |
| 678 if( pTerm->eOperator & WO_IN ){ |
| 679 if( pTerm->pExpr->flags & EP_xIsSelect ){ |
| 680 /* No affinity ever needs to be (or should be) applied to a value |
| 681 ** from the RHS of an "? IN (SELECT ...)" expression. The |
| 682 ** sqlite3FindInIndex() routine has already ensured that the |
| 683 ** affinity of the comparison has been applied to the value. */ |
| 684 if( zAff ) zAff[j] = SQLITE_AFF_BLOB; |
| 685 } |
| 686 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ |
| 687 Expr *pRight = pTerm->pExpr->pRight; |
| 688 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ |
| 689 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); |
| 690 VdbeCoverage(v); |
| 691 } |
| 692 if( zAff ){ |
| 693 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ |
| 694 zAff[j] = SQLITE_AFF_BLOB; |
| 695 } |
| 696 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ |
| 697 zAff[j] = SQLITE_AFF_BLOB; |
| 698 } |
| 699 } |
| 700 } |
| 701 } |
| 702 *pzAff = zAff; |
| 703 return regBase; |
| 704 } |
| 705 |
| 706 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS |
| 707 /* |
| 708 ** If the most recently coded instruction is a constant range constraint |
| 709 ** (a string literal) that originated from the LIKE optimization, then |
| 710 ** set P3 and P5 on the OP_String opcode so that the string will be cast |
| 711 ** to a BLOB at appropriate times. |
| 712 ** |
| 713 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range |
| 714 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range |
| 715 ** scan loop run twice, once for strings and a second time for BLOBs. |
| 716 ** The OP_String opcodes on the second pass convert the upper and lower |
| 717 ** bound string constants to blobs. This routine makes the necessary changes |
| 718 ** to the OP_String opcodes for that to happen. |
| 719 ** |
| 720 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then |
| 721 ** only the one pass through the string space is required, so this routine |
| 722 ** becomes a no-op. |
| 723 */ |
| 724 static void whereLikeOptimizationStringFixup( |
| 725 Vdbe *v, /* prepared statement under construction */ |
| 726 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ |
| 727 WhereTerm *pTerm /* The upper or lower bound just coded */ |
| 728 ){ |
| 729 if( pTerm->wtFlags & TERM_LIKEOPT ){ |
| 730 VdbeOp *pOp; |
| 731 assert( pLevel->iLikeRepCntr>0 ); |
| 732 pOp = sqlite3VdbeGetOp(v, -1); |
| 733 assert( pOp!=0 ); |
| 734 assert( pOp->opcode==OP_String8 |
| 735 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); |
| 736 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ |
| 737 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ |
| 738 } |
| 739 } |
| 740 #else |
| 741 # define whereLikeOptimizationStringFixup(A,B,C) |
| 742 #endif |
| 743 |
| 744 #ifdef SQLITE_ENABLE_CURSOR_HINTS |
| 745 /* |
| 746 ** Information is passed from codeCursorHint() down to individual nodes of |
| 747 ** the expression tree (by sqlite3WalkExpr()) using an instance of this |
| 748 ** structure. |
| 749 */ |
| 750 struct CCurHint { |
| 751 int iTabCur; /* Cursor for the main table */ |
| 752 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ |
| 753 Index *pIdx; /* The index used to access the table */ |
| 754 }; |
| 755 |
| 756 /* |
| 757 ** This function is called for every node of an expression that is a candidate |
| 758 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference |
| 759 ** the table CCurHint.iTabCur, verify that the same column can be |
| 760 ** accessed through the index. If it cannot, then set pWalker->eCode to 1. |
| 761 */ |
| 762 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ |
| 763 struct CCurHint *pHint = pWalker->u.pCCurHint; |
| 764 assert( pHint->pIdx!=0 ); |
| 765 if( pExpr->op==TK_COLUMN |
| 766 && pExpr->iTable==pHint->iTabCur |
| 767 && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0 |
| 768 ){ |
| 769 pWalker->eCode = 1; |
| 770 } |
| 771 return WRC_Continue; |
| 772 } |
| 773 |
| 774 /* |
| 775 ** Test whether or not expression pExpr, which was part of a WHERE clause, |
| 776 ** should be included in the cursor-hint for a table that is on the rhs |
| 777 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the |
| 778 ** expression is not suitable. |
| 779 ** |
| 780 ** An expression is unsuitable if it might evaluate to non NULL even if |
| 781 ** a TK_COLUMN node that does affect the value of the expression is set |
| 782 ** to NULL. For example: |
| 783 ** |
| 784 ** col IS NULL |
| 785 ** col IS NOT NULL |
| 786 ** coalesce(col, 1) |
| 787 ** CASE WHEN col THEN 0 ELSE 1 END |
| 788 */ |
| 789 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ |
| 790 if( pExpr->op==TK_IS |
| 791 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT |
| 792 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE |
| 793 ){ |
| 794 pWalker->eCode = 1; |
| 795 }else if( pExpr->op==TK_FUNCTION ){ |
| 796 int d1; |
| 797 char d2[3]; |
| 798 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ |
| 799 pWalker->eCode = 1; |
| 800 } |
| 801 } |
| 802 |
| 803 return WRC_Continue; |
| 804 } |
| 805 |
| 806 |
| 807 /* |
| 808 ** This function is called on every node of an expression tree used as an |
| 809 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN |
| 810 ** that accesses any table other than the one identified by |
| 811 ** CCurHint.iTabCur, then do the following: |
| 812 ** |
| 813 ** 1) allocate a register and code an OP_Column instruction to read |
| 814 ** the specified column into the new register, and |
| 815 ** |
| 816 ** 2) transform the expression node to a TK_REGISTER node that reads |
| 817 ** from the newly populated register. |
| 818 ** |
| 819 ** Also, if the node is a TK_COLUMN that does access the table idenified |
| 820 ** by pCCurHint.iTabCur, and an index is being used (which we will |
| 821 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into |
| 822 ** an access of the index rather than the original table. |
| 823 */ |
| 824 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ |
| 825 int rc = WRC_Continue; |
| 826 struct CCurHint *pHint = pWalker->u.pCCurHint; |
| 827 if( pExpr->op==TK_COLUMN ){ |
| 828 if( pExpr->iTable!=pHint->iTabCur ){ |
| 829 Vdbe *v = pWalker->pParse->pVdbe; |
| 830 int reg = ++pWalker->pParse->nMem; /* Register for column value */ |
| 831 sqlite3ExprCodeGetColumnOfTable( |
| 832 v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg |
| 833 ); |
| 834 pExpr->op = TK_REGISTER; |
| 835 pExpr->iTable = reg; |
| 836 }else if( pHint->pIdx!=0 ){ |
| 837 pExpr->iTable = pHint->iIdxCur; |
| 838 pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn); |
| 839 assert( pExpr->iColumn>=0 ); |
| 840 } |
| 841 }else if( pExpr->op==TK_AGG_FUNCTION ){ |
| 842 /* An aggregate function in the WHERE clause of a query means this must |
| 843 ** be a correlated sub-query, and expression pExpr is an aggregate from |
| 844 ** the parent context. Do not walk the function arguments in this case. |
| 845 ** |
| 846 ** todo: It should be possible to replace this node with a TK_REGISTER |
| 847 ** expression, as the result of the expression must be stored in a |
| 848 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ |
| 849 rc = WRC_Prune; |
| 850 } |
| 851 return rc; |
| 852 } |
| 853 |
| 854 /* |
| 855 ** Insert an OP_CursorHint instruction if it is appropriate to do so. |
| 856 */ |
| 857 static void codeCursorHint( |
| 858 struct SrcList_item *pTabItem, /* FROM clause item */ |
| 859 WhereInfo *pWInfo, /* The where clause */ |
| 860 WhereLevel *pLevel, /* Which loop to provide hints for */ |
| 861 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ |
| 862 ){ |
| 863 Parse *pParse = pWInfo->pParse; |
| 864 sqlite3 *db = pParse->db; |
| 865 Vdbe *v = pParse->pVdbe; |
| 866 Expr *pExpr = 0; |
| 867 WhereLoop *pLoop = pLevel->pWLoop; |
| 868 int iCur; |
| 869 WhereClause *pWC; |
| 870 WhereTerm *pTerm; |
| 871 int i, j; |
| 872 struct CCurHint sHint; |
| 873 Walker sWalker; |
| 874 |
| 875 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; |
| 876 iCur = pLevel->iTabCur; |
| 877 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); |
| 878 sHint.iTabCur = iCur; |
| 879 sHint.iIdxCur = pLevel->iIdxCur; |
| 880 sHint.pIdx = pLoop->u.btree.pIndex; |
| 881 memset(&sWalker, 0, sizeof(sWalker)); |
| 882 sWalker.pParse = pParse; |
| 883 sWalker.u.pCCurHint = &sHint; |
| 884 pWC = &pWInfo->sWC; |
| 885 for(i=0; i<pWC->nTerm; i++){ |
| 886 pTerm = &pWC->a[i]; |
| 887 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
| 888 if( pTerm->prereqAll & pLevel->notReady ) continue; |
| 889 |
| 890 /* Any terms specified as part of the ON(...) clause for any LEFT |
| 891 ** JOIN for which the current table is not the rhs are omitted |
| 892 ** from the cursor-hint. |
| 893 ** |
| 894 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms |
| 895 ** that were specified as part of the WHERE clause must be excluded. |
| 896 ** This is to address the following: |
| 897 ** |
| 898 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; |
| 899 ** |
| 900 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its |
| 901 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is |
| 902 ** pushed down to the cursor, this row is filtered out, causing |
| 903 ** SQLite to synthesize a row of NULL values. Which does match the |
| 904 ** WHERE clause, and so the query returns a row. Which is incorrect. |
| 905 ** |
| 906 ** For the same reason, WHERE terms such as: |
| 907 ** |
| 908 ** WHERE 1 = (t2.c IS NULL) |
| 909 ** |
| 910 ** are also excluded. See codeCursorHintIsOrFunction() for details. |
| 911 */ |
| 912 if( pTabItem->fg.jointype & JT_LEFT ){ |
| 913 Expr *pExpr = pTerm->pExpr; |
| 914 if( !ExprHasProperty(pExpr, EP_FromJoin) |
| 915 || pExpr->iRightJoinTable!=pTabItem->iCursor |
| 916 ){ |
| 917 sWalker.eCode = 0; |
| 918 sWalker.xExprCallback = codeCursorHintIsOrFunction; |
| 919 sqlite3WalkExpr(&sWalker, pTerm->pExpr); |
| 920 if( sWalker.eCode ) continue; |
| 921 } |
| 922 }else{ |
| 923 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; |
| 924 } |
| 925 |
| 926 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize |
| 927 ** the cursor. These terms are not needed as hints for a pure range |
| 928 ** scan (that has no == terms) so omit them. */ |
| 929 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ |
| 930 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} |
| 931 if( j<pLoop->nLTerm ) continue; |
| 932 } |
| 933 |
| 934 /* No subqueries or non-deterministic functions allowed */ |
| 935 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; |
| 936 |
| 937 /* For an index scan, make sure referenced columns are actually in |
| 938 ** the index. */ |
| 939 if( sHint.pIdx!=0 ){ |
| 940 sWalker.eCode = 0; |
| 941 sWalker.xExprCallback = codeCursorHintCheckExpr; |
| 942 sqlite3WalkExpr(&sWalker, pTerm->pExpr); |
| 943 if( sWalker.eCode ) continue; |
| 944 } |
| 945 |
| 946 /* If we survive all prior tests, that means this term is worth hinting */ |
| 947 pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); |
| 948 } |
| 949 if( pExpr!=0 ){ |
| 950 sWalker.xExprCallback = codeCursorHintFixExpr; |
| 951 sqlite3WalkExpr(&sWalker, pExpr); |
| 952 sqlite3VdbeAddOp4(v, OP_CursorHint, |
| 953 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, |
| 954 (const char*)pExpr, P4_EXPR); |
| 955 } |
| 956 } |
| 957 #else |
| 958 # define codeCursorHint(A,B,C,D) /* No-op */ |
| 959 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ |
| 960 |
| 961 /* |
| 962 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains |
| 963 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This |
| 964 ** function generates code to do a deferred seek of cursor iCur to the |
| 965 ** rowid stored in register iRowid. |
| 966 ** |
| 967 ** Normally, this is just: |
| 968 ** |
| 969 ** OP_Seek $iCur $iRowid |
| 970 ** |
| 971 ** However, if the scan currently being coded is a branch of an OR-loop and |
| 972 ** the statement currently being coded is a SELECT, then P3 of the OP_Seek |
| 973 ** is set to iIdxCur and P4 is set to point to an array of integers |
| 974 ** containing one entry for each column of the table cursor iCur is open |
| 975 ** on. For each table column, if the column is the i'th column of the |
| 976 ** index, then the corresponding array entry is set to (i+1). If the column |
| 977 ** does not appear in the index at all, the array entry is set to 0. |
| 978 */ |
| 979 static void codeDeferredSeek( |
| 980 WhereInfo *pWInfo, /* Where clause context */ |
| 981 Index *pIdx, /* Index scan is using */ |
| 982 int iCur, /* Cursor for IPK b-tree */ |
| 983 int iIdxCur /* Index cursor */ |
| 984 ){ |
| 985 Parse *pParse = pWInfo->pParse; /* Parse context */ |
| 986 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ |
| 987 |
| 988 assert( iIdxCur>0 ); |
| 989 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); |
| 990 |
| 991 sqlite3VdbeAddOp3(v, OP_Seek, iIdxCur, 0, iCur); |
| 992 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) |
| 993 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) |
| 994 ){ |
| 995 int i; |
| 996 Table *pTab = pIdx->pTable; |
| 997 int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1)); |
| 998 if( ai ){ |
| 999 ai[0] = pTab->nCol; |
| 1000 for(i=0; i<pIdx->nColumn-1; i++){ |
| 1001 assert( pIdx->aiColumn[i]<pTab->nCol ); |
| 1002 if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1; |
| 1003 } |
| 1004 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); |
| 1005 } |
| 1006 } |
| 1007 } |
| 1008 |
| 1009 /* |
| 1010 ** If the expression passed as the second argument is a vector, generate |
| 1011 ** code to write the first nReg elements of the vector into an array |
| 1012 ** of registers starting with iReg. |
| 1013 ** |
| 1014 ** If the expression is not a vector, then nReg must be passed 1. In |
| 1015 ** this case, generate code to evaluate the expression and leave the |
| 1016 ** result in register iReg. |
| 1017 */ |
| 1018 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ |
| 1019 assert( nReg>0 ); |
| 1020 if( sqlite3ExprIsVector(p) ){ |
| 1021 #ifndef SQLITE_OMIT_SUBQUERY |
| 1022 if( (p->flags & EP_xIsSelect) ){ |
| 1023 Vdbe *v = pParse->pVdbe; |
| 1024 int iSelect = sqlite3CodeSubselect(pParse, p, 0, 0); |
| 1025 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); |
| 1026 }else |
| 1027 #endif |
| 1028 { |
| 1029 int i; |
| 1030 ExprList *pList = p->x.pList; |
| 1031 assert( nReg<=pList->nExpr ); |
| 1032 for(i=0; i<nReg; i++){ |
| 1033 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); |
| 1034 } |
| 1035 } |
| 1036 }else{ |
| 1037 assert( nReg==1 ); |
| 1038 sqlite3ExprCode(pParse, p, iReg); |
| 1039 } |
| 1040 } |
| 1041 |
| 1042 /* |
| 1043 ** Generate code for the start of the iLevel-th loop in the WHERE clause |
| 1044 ** implementation described by pWInfo. |
| 1045 */ |
| 1046 Bitmask sqlite3WhereCodeOneLoopStart( |
| 1047 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ |
| 1048 int iLevel, /* Which level of pWInfo->a[] should be coded */ |
| 1049 Bitmask notReady /* Which tables are currently available */ |
| 1050 ){ |
| 1051 int j, k; /* Loop counters */ |
| 1052 int iCur; /* The VDBE cursor for the table */ |
| 1053 int addrNxt; /* Where to jump to continue with the next IN case */ |
| 1054 int omitTable; /* True if we use the index only */ |
| 1055 int bRev; /* True if we need to scan in reverse order */ |
| 1056 WhereLevel *pLevel; /* The where level to be coded */ |
| 1057 WhereLoop *pLoop; /* The WhereLoop object being coded */ |
| 1058 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ |
| 1059 WhereTerm *pTerm; /* A WHERE clause term */ |
| 1060 Parse *pParse; /* Parsing context */ |
| 1061 sqlite3 *db; /* Database connection */ |
| 1062 Vdbe *v; /* The prepared stmt under constructions */ |
| 1063 struct SrcList_item *pTabItem; /* FROM clause term being coded */ |
| 1064 int addrBrk; /* Jump here to break out of the loop */ |
| 1065 int addrCont; /* Jump here to continue with next cycle */ |
| 1066 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ |
| 1067 int iReleaseReg = 0; /* Temp register to free before returning */ |
| 1068 |
| 1069 pParse = pWInfo->pParse; |
| 1070 v = pParse->pVdbe; |
| 1071 pWC = &pWInfo->sWC; |
| 1072 db = pParse->db; |
| 1073 pLevel = &pWInfo->a[iLevel]; |
| 1074 pLoop = pLevel->pWLoop; |
| 1075 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; |
| 1076 iCur = pTabItem->iCursor; |
| 1077 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); |
| 1078 bRev = (pWInfo->revMask>>iLevel)&1; |
| 1079 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 |
| 1080 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0; |
| 1081 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); |
| 1082 |
| 1083 /* Create labels for the "break" and "continue" instructions |
| 1084 ** for the current loop. Jump to addrBrk to break out of a loop. |
| 1085 ** Jump to cont to go immediately to the next iteration of the |
| 1086 ** loop. |
| 1087 ** |
| 1088 ** When there is an IN operator, we also have a "addrNxt" label that |
| 1089 ** means to continue with the next IN value combination. When |
| 1090 ** there are no IN operators in the constraints, the "addrNxt" label |
| 1091 ** is the same as "addrBrk". |
| 1092 */ |
| 1093 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); |
| 1094 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); |
| 1095 |
| 1096 /* If this is the right table of a LEFT OUTER JOIN, allocate and |
| 1097 ** initialize a memory cell that records if this table matches any |
| 1098 ** row of the left table of the join. |
| 1099 */ |
| 1100 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ |
| 1101 pLevel->iLeftJoin = ++pParse->nMem; |
| 1102 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); |
| 1103 VdbeComment((v, "init LEFT JOIN no-match flag")); |
| 1104 } |
| 1105 |
| 1106 /* Special case of a FROM clause subquery implemented as a co-routine */ |
| 1107 if( pTabItem->fg.viaCoroutine ){ |
| 1108 int regYield = pTabItem->regReturn; |
| 1109 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); |
| 1110 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); |
| 1111 VdbeCoverage(v); |
| 1112 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); |
| 1113 pLevel->op = OP_Goto; |
| 1114 }else |
| 1115 |
| 1116 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 1117 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ |
| 1118 /* Case 1: The table is a virtual-table. Use the VFilter and VNext |
| 1119 ** to access the data. |
| 1120 */ |
| 1121 int iReg; /* P3 Value for OP_VFilter */ |
| 1122 int addrNotFound; |
| 1123 int nConstraint = pLoop->nLTerm; |
| 1124 int iIn; /* Counter for IN constraints */ |
| 1125 |
| 1126 sqlite3ExprCachePush(pParse); |
| 1127 iReg = sqlite3GetTempRange(pParse, nConstraint+2); |
| 1128 addrNotFound = pLevel->addrBrk; |
| 1129 for(j=0; j<nConstraint; j++){ |
| 1130 int iTarget = iReg+j+2; |
| 1131 pTerm = pLoop->aLTerm[j]; |
| 1132 if( NEVER(pTerm==0) ) continue; |
| 1133 if( pTerm->eOperator & WO_IN ){ |
| 1134 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); |
| 1135 addrNotFound = pLevel->addrNxt; |
| 1136 }else{ |
| 1137 Expr *pRight = pTerm->pExpr->pRight; |
| 1138 codeExprOrVector(pParse, pRight, iTarget, 1); |
| 1139 } |
| 1140 } |
| 1141 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); |
| 1142 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); |
| 1143 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, |
| 1144 pLoop->u.vtab.idxStr, |
| 1145 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC); |
| 1146 VdbeCoverage(v); |
| 1147 pLoop->u.vtab.needFree = 0; |
| 1148 pLevel->p1 = iCur; |
| 1149 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; |
| 1150 pLevel->p2 = sqlite3VdbeCurrentAddr(v); |
| 1151 iIn = pLevel->u.in.nIn; |
| 1152 for(j=nConstraint-1; j>=0; j--){ |
| 1153 pTerm = pLoop->aLTerm[j]; |
| 1154 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ |
| 1155 disableTerm(pLevel, pTerm); |
| 1156 }else if( (pTerm->eOperator & WO_IN)!=0 ){ |
| 1157 Expr *pCompare; /* The comparison operator */ |
| 1158 Expr *pRight; /* RHS of the comparison */ |
| 1159 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ |
| 1160 |
| 1161 /* Reload the constraint value into reg[iReg+j+2]. The same value |
| 1162 ** was loaded into the same register prior to the OP_VFilter, but |
| 1163 ** the xFilter implementation might have changed the datatype or |
| 1164 ** encoding of the value in the register, so it *must* be reloaded. */ |
| 1165 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed ); |
| 1166 if( !db->mallocFailed ){ |
| 1167 assert( iIn>0 ); |
| 1168 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop); |
| 1169 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid ); |
| 1170 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 ); |
| 1171 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 ); |
| 1172 testcase( pOp->opcode==OP_Rowid ); |
| 1173 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); |
| 1174 } |
| 1175 |
| 1176 /* Generate code that will continue to the next row if |
| 1177 ** the IN constraint is not satisfied */ |
| 1178 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0); |
| 1179 assert( pCompare!=0 || db->mallocFailed ); |
| 1180 if( pCompare ){ |
| 1181 pCompare->pLeft = pTerm->pExpr->pLeft; |
| 1182 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); |
| 1183 if( pRight ){ |
| 1184 pRight->iTable = iReg+j+2; |
| 1185 sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0); |
| 1186 } |
| 1187 pCompare->pLeft = 0; |
| 1188 sqlite3ExprDelete(db, pCompare); |
| 1189 } |
| 1190 } |
| 1191 } |
| 1192 /* These registers need to be preserved in case there is an IN operator |
| 1193 ** loop. So we could deallocate the registers here (and potentially |
| 1194 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems |
| 1195 ** simpler and safer to simply not reuse the registers. |
| 1196 ** |
| 1197 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); |
| 1198 */ |
| 1199 sqlite3ExprCachePop(pParse); |
| 1200 }else |
| 1201 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 1202 |
| 1203 if( (pLoop->wsFlags & WHERE_IPK)!=0 |
| 1204 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 |
| 1205 ){ |
| 1206 /* Case 2: We can directly reference a single row using an |
| 1207 ** equality comparison against the ROWID field. Or |
| 1208 ** we reference multiple rows using a "rowid IN (...)" |
| 1209 ** construct. |
| 1210 */ |
| 1211 assert( pLoop->u.btree.nEq==1 ); |
| 1212 pTerm = pLoop->aLTerm[0]; |
| 1213 assert( pTerm!=0 ); |
| 1214 assert( pTerm->pExpr!=0 ); |
| 1215 assert( omitTable==0 ); |
| 1216 testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
| 1217 iReleaseReg = ++pParse->nMem; |
| 1218 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); |
| 1219 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); |
| 1220 addrNxt = pLevel->addrNxt; |
| 1221 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); |
| 1222 VdbeCoverage(v); |
| 1223 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); |
| 1224 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
| 1225 VdbeComment((v, "pk")); |
| 1226 pLevel->op = OP_Noop; |
| 1227 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 |
| 1228 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 |
| 1229 ){ |
| 1230 /* Case 3: We have an inequality comparison against the ROWID field. |
| 1231 */ |
| 1232 int testOp = OP_Noop; |
| 1233 int start; |
| 1234 int memEndValue = 0; |
| 1235 WhereTerm *pStart, *pEnd; |
| 1236 |
| 1237 assert( omitTable==0 ); |
| 1238 j = 0; |
| 1239 pStart = pEnd = 0; |
| 1240 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; |
| 1241 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; |
| 1242 assert( pStart!=0 || pEnd!=0 ); |
| 1243 if( bRev ){ |
| 1244 pTerm = pStart; |
| 1245 pStart = pEnd; |
| 1246 pEnd = pTerm; |
| 1247 } |
| 1248 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); |
| 1249 if( pStart ){ |
| 1250 Expr *pX; /* The expression that defines the start bound */ |
| 1251 int r1, rTemp; /* Registers for holding the start boundary */ |
| 1252 int op; /* Cursor seek operation */ |
| 1253 |
| 1254 /* The following constant maps TK_xx codes into corresponding |
| 1255 ** seek opcodes. It depends on a particular ordering of TK_xx |
| 1256 */ |
| 1257 const u8 aMoveOp[] = { |
| 1258 /* TK_GT */ OP_SeekGT, |
| 1259 /* TK_LE */ OP_SeekLE, |
| 1260 /* TK_LT */ OP_SeekLT, |
| 1261 /* TK_GE */ OP_SeekGE |
| 1262 }; |
| 1263 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ |
| 1264 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ |
| 1265 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ |
| 1266 |
| 1267 assert( (pStart->wtFlags & TERM_VNULL)==0 ); |
| 1268 testcase( pStart->wtFlags & TERM_VIRTUAL ); |
| 1269 pX = pStart->pExpr; |
| 1270 assert( pX!=0 ); |
| 1271 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ |
| 1272 if( sqlite3ExprIsVector(pX->pRight) ){ |
| 1273 r1 = rTemp = sqlite3GetTempReg(pParse); |
| 1274 codeExprOrVector(pParse, pX->pRight, r1, 1); |
| 1275 op = aMoveOp[(pX->op - TK_GT) | 0x0001]; |
| 1276 }else{ |
| 1277 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); |
| 1278 disableTerm(pLevel, pStart); |
| 1279 op = aMoveOp[(pX->op - TK_GT)]; |
| 1280 } |
| 1281 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); |
| 1282 VdbeComment((v, "pk")); |
| 1283 VdbeCoverageIf(v, pX->op==TK_GT); |
| 1284 VdbeCoverageIf(v, pX->op==TK_LE); |
| 1285 VdbeCoverageIf(v, pX->op==TK_LT); |
| 1286 VdbeCoverageIf(v, pX->op==TK_GE); |
| 1287 sqlite3ExprCacheAffinityChange(pParse, r1, 1); |
| 1288 sqlite3ReleaseTempReg(pParse, rTemp); |
| 1289 }else{ |
| 1290 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); |
| 1291 VdbeCoverageIf(v, bRev==0); |
| 1292 VdbeCoverageIf(v, bRev!=0); |
| 1293 } |
| 1294 if( pEnd ){ |
| 1295 Expr *pX; |
| 1296 pX = pEnd->pExpr; |
| 1297 assert( pX!=0 ); |
| 1298 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); |
| 1299 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ |
| 1300 testcase( pEnd->wtFlags & TERM_VIRTUAL ); |
| 1301 memEndValue = ++pParse->nMem; |
| 1302 codeExprOrVector(pParse, pX->pRight, memEndValue, 1); |
| 1303 if( 0==sqlite3ExprIsVector(pX->pRight) |
| 1304 && (pX->op==TK_LT || pX->op==TK_GT) |
| 1305 ){ |
| 1306 testOp = bRev ? OP_Le : OP_Ge; |
| 1307 }else{ |
| 1308 testOp = bRev ? OP_Lt : OP_Gt; |
| 1309 } |
| 1310 if( 0==sqlite3ExprIsVector(pX->pRight) ){ |
| 1311 disableTerm(pLevel, pEnd); |
| 1312 } |
| 1313 } |
| 1314 start = sqlite3VdbeCurrentAddr(v); |
| 1315 pLevel->op = bRev ? OP_Prev : OP_Next; |
| 1316 pLevel->p1 = iCur; |
| 1317 pLevel->p2 = start; |
| 1318 assert( pLevel->p5==0 ); |
| 1319 if( testOp!=OP_Noop ){ |
| 1320 iRowidReg = ++pParse->nMem; |
| 1321 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); |
| 1322 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
| 1323 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); |
| 1324 VdbeCoverageIf(v, testOp==OP_Le); |
| 1325 VdbeCoverageIf(v, testOp==OP_Lt); |
| 1326 VdbeCoverageIf(v, testOp==OP_Ge); |
| 1327 VdbeCoverageIf(v, testOp==OP_Gt); |
| 1328 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); |
| 1329 } |
| 1330 }else if( pLoop->wsFlags & WHERE_INDEXED ){ |
| 1331 /* Case 4: A scan using an index. |
| 1332 ** |
| 1333 ** The WHERE clause may contain zero or more equality |
| 1334 ** terms ("==" or "IN" operators) that refer to the N |
| 1335 ** left-most columns of the index. It may also contain |
| 1336 ** inequality constraints (>, <, >= or <=) on the indexed |
| 1337 ** column that immediately follows the N equalities. Only |
| 1338 ** the right-most column can be an inequality - the rest must |
| 1339 ** use the "==" and "IN" operators. For example, if the |
| 1340 ** index is on (x,y,z), then the following clauses are all |
| 1341 ** optimized: |
| 1342 ** |
| 1343 ** x=5 |
| 1344 ** x=5 AND y=10 |
| 1345 ** x=5 AND y<10 |
| 1346 ** x=5 AND y>5 AND y<10 |
| 1347 ** x=5 AND y=5 AND z<=10 |
| 1348 ** |
| 1349 ** The z<10 term of the following cannot be used, only |
| 1350 ** the x=5 term: |
| 1351 ** |
| 1352 ** x=5 AND z<10 |
| 1353 ** |
| 1354 ** N may be zero if there are inequality constraints. |
| 1355 ** If there are no inequality constraints, then N is at |
| 1356 ** least one. |
| 1357 ** |
| 1358 ** This case is also used when there are no WHERE clause |
| 1359 ** constraints but an index is selected anyway, in order |
| 1360 ** to force the output order to conform to an ORDER BY. |
| 1361 */ |
| 1362 static const u8 aStartOp[] = { |
| 1363 0, |
| 1364 0, |
| 1365 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ |
| 1366 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ |
| 1367 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ |
| 1368 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ |
| 1369 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ |
| 1370 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ |
| 1371 }; |
| 1372 static const u8 aEndOp[] = { |
| 1373 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ |
| 1374 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ |
| 1375 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ |
| 1376 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ |
| 1377 }; |
| 1378 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ |
| 1379 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ |
| 1380 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ |
| 1381 int regBase; /* Base register holding constraint values */ |
| 1382 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ |
| 1383 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ |
| 1384 int startEq; /* True if range start uses ==, >= or <= */ |
| 1385 int endEq; /* True if range end uses ==, >= or <= */ |
| 1386 int start_constraints; /* Start of range is constrained */ |
| 1387 int nConstraint; /* Number of constraint terms */ |
| 1388 Index *pIdx; /* The index we will be using */ |
| 1389 int iIdxCur; /* The VDBE cursor for the index */ |
| 1390 int nExtraReg = 0; /* Number of extra registers needed */ |
| 1391 int op; /* Instruction opcode */ |
| 1392 char *zStartAff; /* Affinity for start of range constraint */ |
| 1393 char *zEndAff = 0; /* Affinity for end of range constraint */ |
| 1394 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ |
| 1395 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ |
| 1396 |
| 1397 pIdx = pLoop->u.btree.pIndex; |
| 1398 iIdxCur = pLevel->iIdxCur; |
| 1399 assert( nEq>=pLoop->nSkip ); |
| 1400 |
| 1401 /* If this loop satisfies a sort order (pOrderBy) request that |
| 1402 ** was passed to this function to implement a "SELECT min(x) ..." |
| 1403 ** query, then the caller will only allow the loop to run for |
| 1404 ** a single iteration. This means that the first row returned |
| 1405 ** should not have a NULL value stored in 'x'. If column 'x' is |
| 1406 ** the first one after the nEq equality constraints in the index, |
| 1407 ** this requires some special handling. |
| 1408 */ |
| 1409 assert( pWInfo->pOrderBy==0 |
| 1410 || pWInfo->pOrderBy->nExpr==1 |
| 1411 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); |
| 1412 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 |
| 1413 && pWInfo->nOBSat>0 |
| 1414 && (pIdx->nKeyCol>nEq) |
| 1415 ){ |
| 1416 assert( pLoop->nSkip==0 ); |
| 1417 bSeekPastNull = 1; |
| 1418 nExtraReg = 1; |
| 1419 } |
| 1420 |
| 1421 /* Find any inequality constraint terms for the start and end |
| 1422 ** of the range. |
| 1423 */ |
| 1424 j = nEq; |
| 1425 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ |
| 1426 pRangeStart = pLoop->aLTerm[j++]; |
| 1427 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); |
| 1428 /* Like optimization range constraints always occur in pairs */ |
| 1429 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || |
| 1430 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); |
| 1431 } |
| 1432 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ |
| 1433 pRangeEnd = pLoop->aLTerm[j++]; |
| 1434 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); |
| 1435 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS |
| 1436 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ |
| 1437 assert( pRangeStart!=0 ); /* LIKE opt constraints */ |
| 1438 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ |
| 1439 pLevel->iLikeRepCntr = (u32)++pParse->nMem; |
| 1440 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); |
| 1441 VdbeComment((v, "LIKE loop counter")); |
| 1442 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); |
| 1443 /* iLikeRepCntr actually stores 2x the counter register number. The |
| 1444 ** bottom bit indicates whether the search order is ASC or DESC. */ |
| 1445 testcase( bRev ); |
| 1446 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); |
| 1447 assert( (bRev & ~1)==0 ); |
| 1448 pLevel->iLikeRepCntr <<=1; |
| 1449 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); |
| 1450 } |
| 1451 #endif |
| 1452 if( pRangeStart==0 ){ |
| 1453 j = pIdx->aiColumn[nEq]; |
| 1454 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){ |
| 1455 bSeekPastNull = 1; |
| 1456 } |
| 1457 } |
| 1458 } |
| 1459 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); |
| 1460 |
| 1461 /* If we are doing a reverse order scan on an ascending index, or |
| 1462 ** a forward order scan on a descending index, interchange the |
| 1463 ** start and end terms (pRangeStart and pRangeEnd). |
| 1464 */ |
| 1465 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) |
| 1466 || (bRev && pIdx->nKeyCol==nEq) |
| 1467 ){ |
| 1468 SWAP(WhereTerm *, pRangeEnd, pRangeStart); |
| 1469 SWAP(u8, bSeekPastNull, bStopAtNull); |
| 1470 SWAP(u8, nBtm, nTop); |
| 1471 } |
| 1472 |
| 1473 /* Generate code to evaluate all constraint terms using == or IN |
| 1474 ** and store the values of those terms in an array of registers |
| 1475 ** starting at regBase. |
| 1476 */ |
| 1477 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); |
| 1478 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); |
| 1479 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); |
| 1480 if( zStartAff && nTop ){ |
| 1481 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); |
| 1482 } |
| 1483 addrNxt = pLevel->addrNxt; |
| 1484 |
| 1485 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); |
| 1486 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); |
| 1487 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); |
| 1488 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); |
| 1489 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); |
| 1490 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); |
| 1491 start_constraints = pRangeStart || nEq>0; |
| 1492 |
| 1493 /* Seek the index cursor to the start of the range. */ |
| 1494 nConstraint = nEq; |
| 1495 if( pRangeStart ){ |
| 1496 Expr *pRight = pRangeStart->pExpr->pRight; |
| 1497 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); |
| 1498 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); |
| 1499 if( (pRangeStart->wtFlags & TERM_VNULL)==0 |
| 1500 && sqlite3ExprCanBeNull(pRight) |
| 1501 ){ |
| 1502 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); |
| 1503 VdbeCoverage(v); |
| 1504 } |
| 1505 if( zStartAff ){ |
| 1506 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]); |
| 1507 } |
| 1508 nConstraint += nBtm; |
| 1509 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); |
| 1510 if( sqlite3ExprIsVector(pRight)==0 ){ |
| 1511 disableTerm(pLevel, pRangeStart); |
| 1512 }else{ |
| 1513 startEq = 1; |
| 1514 } |
| 1515 bSeekPastNull = 0; |
| 1516 }else if( bSeekPastNull ){ |
| 1517 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); |
| 1518 nConstraint++; |
| 1519 startEq = 0; |
| 1520 start_constraints = 1; |
| 1521 } |
| 1522 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); |
| 1523 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ |
| 1524 /* The skip-scan logic inside the call to codeAllEqualityConstraints() |
| 1525 ** above has already left the cursor sitting on the correct row, |
| 1526 ** so no further seeking is needed */ |
| 1527 }else{ |
| 1528 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; |
| 1529 assert( op!=0 ); |
| 1530 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); |
| 1531 VdbeCoverage(v); |
| 1532 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); |
| 1533 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); |
| 1534 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); |
| 1535 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); |
| 1536 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); |
| 1537 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); |
| 1538 } |
| 1539 |
| 1540 /* Load the value for the inequality constraint at the end of the |
| 1541 ** range (if any). |
| 1542 */ |
| 1543 nConstraint = nEq; |
| 1544 if( pRangeEnd ){ |
| 1545 Expr *pRight = pRangeEnd->pExpr->pRight; |
| 1546 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); |
| 1547 codeExprOrVector(pParse, pRight, regBase+nEq, nTop); |
| 1548 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); |
| 1549 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 |
| 1550 && sqlite3ExprCanBeNull(pRight) |
| 1551 ){ |
| 1552 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); |
| 1553 VdbeCoverage(v); |
| 1554 } |
| 1555 if( zEndAff ){ |
| 1556 updateRangeAffinityStr(pRight, nTop, zEndAff); |
| 1557 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); |
| 1558 }else{ |
| 1559 assert( pParse->db->mallocFailed ); |
| 1560 } |
| 1561 nConstraint += nTop; |
| 1562 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); |
| 1563 |
| 1564 if( sqlite3ExprIsVector(pRight)==0 ){ |
| 1565 disableTerm(pLevel, pRangeEnd); |
| 1566 }else{ |
| 1567 endEq = 1; |
| 1568 } |
| 1569 }else if( bStopAtNull ){ |
| 1570 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); |
| 1571 endEq = 0; |
| 1572 nConstraint++; |
| 1573 } |
| 1574 sqlite3DbFree(db, zStartAff); |
| 1575 sqlite3DbFree(db, zEndAff); |
| 1576 |
| 1577 /* Top of the loop body */ |
| 1578 pLevel->p2 = sqlite3VdbeCurrentAddr(v); |
| 1579 |
| 1580 /* Check if the index cursor is past the end of the range. */ |
| 1581 if( nConstraint ){ |
| 1582 op = aEndOp[bRev*2 + endEq]; |
| 1583 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); |
| 1584 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); |
| 1585 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); |
| 1586 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); |
| 1587 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); |
| 1588 } |
| 1589 |
| 1590 /* Seek the table cursor, if required */ |
| 1591 if( omitTable ){ |
| 1592 /* pIdx is a covering index. No need to access the main table. */ |
| 1593 }else if( HasRowid(pIdx->pTable) ){ |
| 1594 if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE) || ( |
| 1595 (pWInfo->wctrlFlags & WHERE_SEEK_UNIQ_TABLE) |
| 1596 && (pWInfo->eOnePass==ONEPASS_SINGLE) |
| 1597 )){ |
| 1598 iRowidReg = ++pParse->nMem; |
| 1599 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); |
| 1600 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
| 1601 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg); |
| 1602 VdbeCoverage(v); |
| 1603 }else{ |
| 1604 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); |
| 1605 } |
| 1606 }else if( iCur!=iIdxCur ){ |
| 1607 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); |
| 1608 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); |
| 1609 for(j=0; j<pPk->nKeyCol; j++){ |
| 1610 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); |
| 1611 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); |
| 1612 } |
| 1613 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, |
| 1614 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); |
| 1615 } |
| 1616 |
| 1617 /* Record the instruction used to terminate the loop. */ |
| 1618 if( pLoop->wsFlags & WHERE_ONEROW ){ |
| 1619 pLevel->op = OP_Noop; |
| 1620 }else if( bRev ){ |
| 1621 pLevel->op = OP_Prev; |
| 1622 }else{ |
| 1623 pLevel->op = OP_Next; |
| 1624 } |
| 1625 pLevel->p1 = iIdxCur; |
| 1626 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; |
| 1627 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ |
| 1628 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; |
| 1629 }else{ |
| 1630 assert( pLevel->p5==0 ); |
| 1631 } |
| 1632 }else |
| 1633 |
| 1634 #ifndef SQLITE_OMIT_OR_OPTIMIZATION |
| 1635 if( pLoop->wsFlags & WHERE_MULTI_OR ){ |
| 1636 /* Case 5: Two or more separately indexed terms connected by OR |
| 1637 ** |
| 1638 ** Example: |
| 1639 ** |
| 1640 ** CREATE TABLE t1(a,b,c,d); |
| 1641 ** CREATE INDEX i1 ON t1(a); |
| 1642 ** CREATE INDEX i2 ON t1(b); |
| 1643 ** CREATE INDEX i3 ON t1(c); |
| 1644 ** |
| 1645 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) |
| 1646 ** |
| 1647 ** In the example, there are three indexed terms connected by OR. |
| 1648 ** The top of the loop looks like this: |
| 1649 ** |
| 1650 ** Null 1 # Zero the rowset in reg 1 |
| 1651 ** |
| 1652 ** Then, for each indexed term, the following. The arguments to |
| 1653 ** RowSetTest are such that the rowid of the current row is inserted |
| 1654 ** into the RowSet. If it is already present, control skips the |
| 1655 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). |
| 1656 ** |
| 1657 ** sqlite3WhereBegin(<term>) |
| 1658 ** RowSetTest # Insert rowid into rowset |
| 1659 ** Gosub 2 A |
| 1660 ** sqlite3WhereEnd() |
| 1661 ** |
| 1662 ** Following the above, code to terminate the loop. Label A, the target |
| 1663 ** of the Gosub above, jumps to the instruction right after the Goto. |
| 1664 ** |
| 1665 ** Null 1 # Zero the rowset in reg 1 |
| 1666 ** Goto B # The loop is finished. |
| 1667 ** |
| 1668 ** A: <loop body> # Return data, whatever. |
| 1669 ** |
| 1670 ** Return 2 # Jump back to the Gosub |
| 1671 ** |
| 1672 ** B: <after the loop> |
| 1673 ** |
| 1674 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then |
| 1675 ** use an ephemeral index instead of a RowSet to record the primary |
| 1676 ** keys of the rows we have already seen. |
| 1677 ** |
| 1678 */ |
| 1679 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ |
| 1680 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ |
| 1681 Index *pCov = 0; /* Potential covering index (or NULL) */ |
| 1682 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ |
| 1683 |
| 1684 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ |
| 1685 int regRowset = 0; /* Register for RowSet object */ |
| 1686 int regRowid = 0; /* Register holding rowid */ |
| 1687 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ |
| 1688 int iRetInit; /* Address of regReturn init */ |
| 1689 int untestedTerms = 0; /* Some terms not completely tested */ |
| 1690 int ii; /* Loop counter */ |
| 1691 u16 wctrlFlags; /* Flags for sub-WHERE clause */ |
| 1692 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ |
| 1693 Table *pTab = pTabItem->pTab; |
| 1694 |
| 1695 pTerm = pLoop->aLTerm[0]; |
| 1696 assert( pTerm!=0 ); |
| 1697 assert( pTerm->eOperator & WO_OR ); |
| 1698 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); |
| 1699 pOrWc = &pTerm->u.pOrInfo->wc; |
| 1700 pLevel->op = OP_Return; |
| 1701 pLevel->p1 = regReturn; |
| 1702 |
| 1703 /* Set up a new SrcList in pOrTab containing the table being scanned |
| 1704 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. |
| 1705 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). |
| 1706 */ |
| 1707 if( pWInfo->nLevel>1 ){ |
| 1708 int nNotReady; /* The number of notReady tables */ |
| 1709 struct SrcList_item *origSrc; /* Original list of tables */ |
| 1710 nNotReady = pWInfo->nLevel - iLevel - 1; |
| 1711 pOrTab = sqlite3StackAllocRaw(db, |
| 1712 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); |
| 1713 if( pOrTab==0 ) return notReady; |
| 1714 pOrTab->nAlloc = (u8)(nNotReady + 1); |
| 1715 pOrTab->nSrc = pOrTab->nAlloc; |
| 1716 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); |
| 1717 origSrc = pWInfo->pTabList->a; |
| 1718 for(k=1; k<=nNotReady; k++){ |
| 1719 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); |
| 1720 } |
| 1721 }else{ |
| 1722 pOrTab = pWInfo->pTabList; |
| 1723 } |
| 1724 |
| 1725 /* Initialize the rowset register to contain NULL. An SQL NULL is |
| 1726 ** equivalent to an empty rowset. Or, create an ephemeral index |
| 1727 ** capable of holding primary keys in the case of a WITHOUT ROWID. |
| 1728 ** |
| 1729 ** Also initialize regReturn to contain the address of the instruction |
| 1730 ** immediately following the OP_Return at the bottom of the loop. This |
| 1731 ** is required in a few obscure LEFT JOIN cases where control jumps |
| 1732 ** over the top of the loop into the body of it. In this case the |
| 1733 ** correct response for the end-of-loop code (the OP_Return) is to |
| 1734 ** fall through to the next instruction, just as an OP_Next does if |
| 1735 ** called on an uninitialized cursor. |
| 1736 */ |
| 1737 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ |
| 1738 if( HasRowid(pTab) ){ |
| 1739 regRowset = ++pParse->nMem; |
| 1740 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); |
| 1741 }else{ |
| 1742 Index *pPk = sqlite3PrimaryKeyIndex(pTab); |
| 1743 regRowset = pParse->nTab++; |
| 1744 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); |
| 1745 sqlite3VdbeSetP4KeyInfo(pParse, pPk); |
| 1746 } |
| 1747 regRowid = ++pParse->nMem; |
| 1748 } |
| 1749 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); |
| 1750 |
| 1751 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y |
| 1752 ** Then for every term xN, evaluate as the subexpression: xN AND z |
| 1753 ** That way, terms in y that are factored into the disjunction will |
| 1754 ** be picked up by the recursive calls to sqlite3WhereBegin() below. |
| 1755 ** |
| 1756 ** Actually, each subexpression is converted to "xN AND w" where w is |
| 1757 ** the "interesting" terms of z - terms that did not originate in the |
| 1758 ** ON or USING clause of a LEFT JOIN, and terms that are usable as |
| 1759 ** indices. |
| 1760 ** |
| 1761 ** This optimization also only applies if the (x1 OR x2 OR ...) term |
| 1762 ** is not contained in the ON clause of a LEFT JOIN. |
| 1763 ** See ticket http://www.sqlite.org/src/info/f2369304e4 |
| 1764 */ |
| 1765 if( pWC->nTerm>1 ){ |
| 1766 int iTerm; |
| 1767 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ |
| 1768 Expr *pExpr = pWC->a[iTerm].pExpr; |
| 1769 if( &pWC->a[iTerm] == pTerm ) continue; |
| 1770 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; |
| 1771 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); |
| 1772 testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); |
| 1773 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; |
| 1774 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; |
| 1775 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); |
| 1776 pExpr = sqlite3ExprDup(db, pExpr, 0); |
| 1777 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); |
| 1778 } |
| 1779 if( pAndExpr ){ |
| 1780 pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr); |
| 1781 } |
| 1782 } |
| 1783 |
| 1784 /* Run a separate WHERE clause for each term of the OR clause. After |
| 1785 ** eliminating duplicates from other WHERE clauses, the action for each |
| 1786 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. |
| 1787 */ |
| 1788 wctrlFlags = WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE); |
| 1789 for(ii=0; ii<pOrWc->nTerm; ii++){ |
| 1790 WhereTerm *pOrTerm = &pOrWc->a[ii]; |
| 1791 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ |
| 1792 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ |
| 1793 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ |
| 1794 int jmp1 = 0; /* Address of jump operation */ |
| 1795 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ |
| 1796 pAndExpr->pLeft = pOrExpr; |
| 1797 pOrExpr = pAndExpr; |
| 1798 } |
| 1799 /* Loop through table entries that match term pOrTerm. */ |
| 1800 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); |
| 1801 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, |
| 1802 wctrlFlags, iCovCur); |
| 1803 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); |
| 1804 if( pSubWInfo ){ |
| 1805 WhereLoop *pSubLoop; |
| 1806 int addrExplain = sqlite3WhereExplainOneScan( |
| 1807 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 |
| 1808 ); |
| 1809 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); |
| 1810 |
| 1811 /* This is the sub-WHERE clause body. First skip over |
| 1812 ** duplicate rows from prior sub-WHERE clauses, and record the |
| 1813 ** rowid (or PRIMARY KEY) for the current row so that the same |
| 1814 ** row will be skipped in subsequent sub-WHERE clauses. |
| 1815 */ |
| 1816 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ |
| 1817 int r; |
| 1818 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); |
| 1819 if( HasRowid(pTab) ){ |
| 1820 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0); |
| 1821 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, |
| 1822 r,iSet); |
| 1823 VdbeCoverage(v); |
| 1824 }else{ |
| 1825 Index *pPk = sqlite3PrimaryKeyIndex(pTab); |
| 1826 int nPk = pPk->nKeyCol; |
| 1827 int iPk; |
| 1828 |
| 1829 /* Read the PK into an array of temp registers. */ |
| 1830 r = sqlite3GetTempRange(pParse, nPk); |
| 1831 for(iPk=0; iPk<nPk; iPk++){ |
| 1832 int iCol = pPk->aiColumn[iPk]; |
| 1833 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk); |
| 1834 } |
| 1835 |
| 1836 /* Check if the temp table already contains this key. If so, |
| 1837 ** the row has already been included in the result set and |
| 1838 ** can be ignored (by jumping past the Gosub below). Otherwise, |
| 1839 ** insert the key into the temp table and proceed with processing |
| 1840 ** the row. |
| 1841 ** |
| 1842 ** Use some of the same optimizations as OP_RowSetTest: If iSet |
| 1843 ** is zero, assume that the key cannot already be present in |
| 1844 ** the temp table. And if iSet is -1, assume that there is no |
| 1845 ** need to insert the key into the temp table, as it will never |
| 1846 ** be tested for. */ |
| 1847 if( iSet ){ |
| 1848 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); |
| 1849 VdbeCoverage(v); |
| 1850 } |
| 1851 if( iSet>=0 ){ |
| 1852 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); |
| 1853 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid, |
| 1854 r, nPk); |
| 1855 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
| 1856 } |
| 1857 |
| 1858 /* Release the array of temp registers */ |
| 1859 sqlite3ReleaseTempRange(pParse, r, nPk); |
| 1860 } |
| 1861 } |
| 1862 |
| 1863 /* Invoke the main loop body as a subroutine */ |
| 1864 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); |
| 1865 |
| 1866 /* Jump here (skipping the main loop body subroutine) if the |
| 1867 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ |
| 1868 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); |
| 1869 |
| 1870 /* The pSubWInfo->untestedTerms flag means that this OR term |
| 1871 ** contained one or more AND term from a notReady table. The |
| 1872 ** terms from the notReady table could not be tested and will |
| 1873 ** need to be tested later. |
| 1874 */ |
| 1875 if( pSubWInfo->untestedTerms ) untestedTerms = 1; |
| 1876 |
| 1877 /* If all of the OR-connected terms are optimized using the same |
| 1878 ** index, and the index is opened using the same cursor number |
| 1879 ** by each call to sqlite3WhereBegin() made by this loop, it may |
| 1880 ** be possible to use that index as a covering index. |
| 1881 ** |
| 1882 ** If the call to sqlite3WhereBegin() above resulted in a scan that |
| 1883 ** uses an index, and this is either the first OR-connected term |
| 1884 ** processed or the index is the same as that used by all previous |
| 1885 ** terms, set pCov to the candidate covering index. Otherwise, set |
| 1886 ** pCov to NULL to indicate that no candidate covering index will |
| 1887 ** be available. |
| 1888 */ |
| 1889 pSubLoop = pSubWInfo->a[0].pWLoop; |
| 1890 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); |
| 1891 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 |
| 1892 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) |
| 1893 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) |
| 1894 ){ |
| 1895 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); |
| 1896 pCov = pSubLoop->u.btree.pIndex; |
| 1897 }else{ |
| 1898 pCov = 0; |
| 1899 } |
| 1900 |
| 1901 /* Finish the loop through table entries that match term pOrTerm. */ |
| 1902 sqlite3WhereEnd(pSubWInfo); |
| 1903 } |
| 1904 } |
| 1905 } |
| 1906 pLevel->u.pCovidx = pCov; |
| 1907 if( pCov ) pLevel->iIdxCur = iCovCur; |
| 1908 if( pAndExpr ){ |
| 1909 pAndExpr->pLeft = 0; |
| 1910 sqlite3ExprDelete(db, pAndExpr); |
| 1911 } |
| 1912 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); |
| 1913 sqlite3VdbeGoto(v, pLevel->addrBrk); |
| 1914 sqlite3VdbeResolveLabel(v, iLoopBody); |
| 1915 |
| 1916 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); |
| 1917 if( !untestedTerms ) disableTerm(pLevel, pTerm); |
| 1918 }else |
| 1919 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ |
| 1920 |
| 1921 { |
| 1922 /* Case 6: There is no usable index. We must do a complete |
| 1923 ** scan of the entire table. |
| 1924 */ |
| 1925 static const u8 aStep[] = { OP_Next, OP_Prev }; |
| 1926 static const u8 aStart[] = { OP_Rewind, OP_Last }; |
| 1927 assert( bRev==0 || bRev==1 ); |
| 1928 if( pTabItem->fg.isRecursive ){ |
| 1929 /* Tables marked isRecursive have only a single row that is stored in |
| 1930 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ |
| 1931 pLevel->op = OP_Noop; |
| 1932 }else{ |
| 1933 codeCursorHint(pTabItem, pWInfo, pLevel, 0); |
| 1934 pLevel->op = aStep[bRev]; |
| 1935 pLevel->p1 = iCur; |
| 1936 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); |
| 1937 VdbeCoverageIf(v, bRev==0); |
| 1938 VdbeCoverageIf(v, bRev!=0); |
| 1939 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; |
| 1940 } |
| 1941 } |
| 1942 |
| 1943 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| 1944 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); |
| 1945 #endif |
| 1946 |
| 1947 /* Insert code to test every subexpression that can be completely |
| 1948 ** computed using the current set of tables. |
| 1949 */ |
| 1950 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ |
| 1951 Expr *pE; |
| 1952 int skipLikeAddr = 0; |
| 1953 testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
| 1954 testcase( pTerm->wtFlags & TERM_CODED ); |
| 1955 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
| 1956 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ |
| 1957 testcase( pWInfo->untestedTerms==0 |
| 1958 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); |
| 1959 pWInfo->untestedTerms = 1; |
| 1960 continue; |
| 1961 } |
| 1962 pE = pTerm->pExpr; |
| 1963 assert( pE!=0 ); |
| 1964 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ |
| 1965 continue; |
| 1966 } |
| 1967 if( pTerm->wtFlags & TERM_LIKECOND ){ |
| 1968 /* If the TERM_LIKECOND flag is set, that means that the range search |
| 1969 ** is sufficient to guarantee that the LIKE operator is true, so we |
| 1970 ** can skip the call to the like(A,B) function. But this only works |
| 1971 ** for strings. So do not skip the call to the function on the pass |
| 1972 ** that compares BLOBs. */ |
| 1973 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS |
| 1974 continue; |
| 1975 #else |
| 1976 u32 x = pLevel->iLikeRepCntr; |
| 1977 assert( x>0 ); |
| 1978 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)? OP_IfNot : OP_If, (int)(x>>1)); |
| 1979 VdbeCoverage(v); |
| 1980 #endif |
| 1981 } |
| 1982 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); |
| 1983 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); |
| 1984 pTerm->wtFlags |= TERM_CODED; |
| 1985 } |
| 1986 |
| 1987 /* Insert code to test for implied constraints based on transitivity |
| 1988 ** of the "==" operator. |
| 1989 ** |
| 1990 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" |
| 1991 ** and we are coding the t1 loop and the t2 loop has not yet coded, |
| 1992 ** then we cannot use the "t1.a=t2.b" constraint, but we can code |
| 1993 ** the implied "t1.a=123" constraint. |
| 1994 */ |
| 1995 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ |
| 1996 Expr *pE, sEAlt; |
| 1997 WhereTerm *pAlt; |
| 1998 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
| 1999 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; |
| 2000 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; |
| 2001 if( pTerm->leftCursor!=iCur ) continue; |
| 2002 if( pLevel->iLeftJoin ) continue; |
| 2003 pE = pTerm->pExpr; |
| 2004 assert( !ExprHasProperty(pE, EP_FromJoin) ); |
| 2005 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); |
| 2006 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady, |
| 2007 WO_EQ|WO_IN|WO_IS, 0); |
| 2008 if( pAlt==0 ) continue; |
| 2009 if( pAlt->wtFlags & (TERM_CODED) ) continue; |
| 2010 testcase( pAlt->eOperator & WO_EQ ); |
| 2011 testcase( pAlt->eOperator & WO_IS ); |
| 2012 testcase( pAlt->eOperator & WO_IN ); |
| 2013 VdbeModuleComment((v, "begin transitive constraint")); |
| 2014 sEAlt = *pAlt->pExpr; |
| 2015 sEAlt.pLeft = pE->pLeft; |
| 2016 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL); |
| 2017 } |
| 2018 |
| 2019 /* For a LEFT OUTER JOIN, generate code that will record the fact that |
| 2020 ** at least one row of the right table has matched the left table. |
| 2021 */ |
| 2022 if( pLevel->iLeftJoin ){ |
| 2023 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); |
| 2024 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); |
| 2025 VdbeComment((v, "record LEFT JOIN hit")); |
| 2026 sqlite3ExprCacheClear(pParse); |
| 2027 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ |
| 2028 testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
| 2029 testcase( pTerm->wtFlags & TERM_CODED ); |
| 2030 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
| 2031 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ |
| 2032 assert( pWInfo->untestedTerms ); |
| 2033 continue; |
| 2034 } |
| 2035 assert( pTerm->pExpr ); |
| 2036 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); |
| 2037 pTerm->wtFlags |= TERM_CODED; |
| 2038 } |
| 2039 } |
| 2040 |
| 2041 return pLevel->notReady; |
| 2042 } |
OLD | NEW |