OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2001 September 15 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This module contains C code that generates VDBE code used to process |
| 13 ** the WHERE clause of SQL statements. This module is responsible for |
| 14 ** generating the code that loops through a table looking for applicable |
| 15 ** rows. Indices are selected and used to speed the search when doing |
| 16 ** so is applicable. Because this module is responsible for selecting |
| 17 ** indices, you might also think of this module as the "query optimizer". |
| 18 */ |
| 19 #include "sqliteInt.h" |
| 20 #include "whereInt.h" |
| 21 |
| 22 /* Forward declaration of methods */ |
| 23 static int whereLoopResize(sqlite3*, WhereLoop*, int); |
| 24 |
| 25 /* Test variable that can be set to enable WHERE tracing */ |
| 26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) |
| 27 /***/ int sqlite3WhereTrace = 0; |
| 28 #endif |
| 29 |
| 30 |
| 31 /* |
| 32 ** Return the estimated number of output rows from a WHERE clause |
| 33 */ |
| 34 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ |
| 35 return pWInfo->nRowOut; |
| 36 } |
| 37 |
| 38 /* |
| 39 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this |
| 40 ** WHERE clause returns outputs for DISTINCT processing. |
| 41 */ |
| 42 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ |
| 43 return pWInfo->eDistinct; |
| 44 } |
| 45 |
| 46 /* |
| 47 ** Return TRUE if the WHERE clause returns rows in ORDER BY order. |
| 48 ** Return FALSE if the output needs to be sorted. |
| 49 */ |
| 50 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ |
| 51 return pWInfo->nOBSat; |
| 52 } |
| 53 |
| 54 /* |
| 55 ** Return TRUE if the innermost loop of the WHERE clause implementation |
| 56 ** returns rows in ORDER BY order for complete run of the inner loop. |
| 57 ** |
| 58 ** Across multiple iterations of outer loops, the output rows need not be |
| 59 ** sorted. As long as rows are sorted for just the innermost loop, this |
| 60 ** routine can return TRUE. |
| 61 */ |
| 62 int sqlite3WhereOrderedInnerLoop(WhereInfo *pWInfo){ |
| 63 return pWInfo->bOrderedInnerLoop; |
| 64 } |
| 65 |
| 66 /* |
| 67 ** Return the VDBE address or label to jump to in order to continue |
| 68 ** immediately with the next row of a WHERE clause. |
| 69 */ |
| 70 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ |
| 71 assert( pWInfo->iContinue!=0 ); |
| 72 return pWInfo->iContinue; |
| 73 } |
| 74 |
| 75 /* |
| 76 ** Return the VDBE address or label to jump to in order to break |
| 77 ** out of a WHERE loop. |
| 78 */ |
| 79 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ |
| 80 return pWInfo->iBreak; |
| 81 } |
| 82 |
| 83 /* |
| 84 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to |
| 85 ** operate directly on the rowis returned by a WHERE clause. Return |
| 86 ** ONEPASS_SINGLE (1) if the statement can operation directly because only |
| 87 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass |
| 88 ** optimization can be used on multiple |
| 89 ** |
| 90 ** If the ONEPASS optimization is used (if this routine returns true) |
| 91 ** then also write the indices of open cursors used by ONEPASS |
| 92 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data |
| 93 ** table and iaCur[1] gets the cursor used by an auxiliary index. |
| 94 ** Either value may be -1, indicating that cursor is not used. |
| 95 ** Any cursors returned will have been opened for writing. |
| 96 ** |
| 97 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is |
| 98 ** unable to use the ONEPASS optimization. |
| 99 */ |
| 100 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ |
| 101 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); |
| 102 #ifdef WHERETRACE_ENABLED |
| 103 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ |
| 104 sqlite3DebugPrintf("%s cursors: %d %d\n", |
| 105 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", |
| 106 aiCur[0], aiCur[1]); |
| 107 } |
| 108 #endif |
| 109 return pWInfo->eOnePass; |
| 110 } |
| 111 |
| 112 /* |
| 113 ** Move the content of pSrc into pDest |
| 114 */ |
| 115 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ |
| 116 pDest->n = pSrc->n; |
| 117 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); |
| 118 } |
| 119 |
| 120 /* |
| 121 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. |
| 122 ** |
| 123 ** The new entry might overwrite an existing entry, or it might be |
| 124 ** appended, or it might be discarded. Do whatever is the right thing |
| 125 ** so that pSet keeps the N_OR_COST best entries seen so far. |
| 126 */ |
| 127 static int whereOrInsert( |
| 128 WhereOrSet *pSet, /* The WhereOrSet to be updated */ |
| 129 Bitmask prereq, /* Prerequisites of the new entry */ |
| 130 LogEst rRun, /* Run-cost of the new entry */ |
| 131 LogEst nOut /* Number of outputs for the new entry */ |
| 132 ){ |
| 133 u16 i; |
| 134 WhereOrCost *p; |
| 135 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ |
| 136 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ |
| 137 goto whereOrInsert_done; |
| 138 } |
| 139 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ |
| 140 return 0; |
| 141 } |
| 142 } |
| 143 if( pSet->n<N_OR_COST ){ |
| 144 p = &pSet->a[pSet->n++]; |
| 145 p->nOut = nOut; |
| 146 }else{ |
| 147 p = pSet->a; |
| 148 for(i=1; i<pSet->n; i++){ |
| 149 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; |
| 150 } |
| 151 if( p->rRun<=rRun ) return 0; |
| 152 } |
| 153 whereOrInsert_done: |
| 154 p->prereq = prereq; |
| 155 p->rRun = rRun; |
| 156 if( p->nOut>nOut ) p->nOut = nOut; |
| 157 return 1; |
| 158 } |
| 159 |
| 160 /* |
| 161 ** Return the bitmask for the given cursor number. Return 0 if |
| 162 ** iCursor is not in the set. |
| 163 */ |
| 164 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ |
| 165 int i; |
| 166 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); |
| 167 for(i=0; i<pMaskSet->n; i++){ |
| 168 if( pMaskSet->ix[i]==iCursor ){ |
| 169 return MASKBIT(i); |
| 170 } |
| 171 } |
| 172 return 0; |
| 173 } |
| 174 |
| 175 /* |
| 176 ** Create a new mask for cursor iCursor. |
| 177 ** |
| 178 ** There is one cursor per table in the FROM clause. The number of |
| 179 ** tables in the FROM clause is limited by a test early in the |
| 180 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] |
| 181 ** array will never overflow. |
| 182 */ |
| 183 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ |
| 184 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); |
| 185 pMaskSet->ix[pMaskSet->n++] = iCursor; |
| 186 } |
| 187 |
| 188 /* |
| 189 ** Advance to the next WhereTerm that matches according to the criteria |
| 190 ** established when the pScan object was initialized by whereScanInit(). |
| 191 ** Return NULL if there are no more matching WhereTerms. |
| 192 */ |
| 193 static WhereTerm *whereScanNext(WhereScan *pScan){ |
| 194 int iCur; /* The cursor on the LHS of the term */ |
| 195 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ |
| 196 Expr *pX; /* An expression being tested */ |
| 197 WhereClause *pWC; /* Shorthand for pScan->pWC */ |
| 198 WhereTerm *pTerm; /* The term being tested */ |
| 199 int k = pScan->k; /* Where to start scanning */ |
| 200 |
| 201 assert( pScan->iEquiv<=pScan->nEquiv ); |
| 202 pWC = pScan->pWC; |
| 203 while(1){ |
| 204 iColumn = pScan->aiColumn[pScan->iEquiv-1]; |
| 205 iCur = pScan->aiCur[pScan->iEquiv-1]; |
| 206 assert( pWC!=0 ); |
| 207 do{ |
| 208 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ |
| 209 if( pTerm->leftCursor==iCur |
| 210 && pTerm->u.leftColumn==iColumn |
| 211 && (iColumn!=XN_EXPR |
| 212 || sqlite3ExprCompare(pTerm->pExpr->pLeft,pScan->pIdxExpr,iCur)==0) |
| 213 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) |
| 214 ){ |
| 215 if( (pTerm->eOperator & WO_EQUIV)!=0 |
| 216 && pScan->nEquiv<ArraySize(pScan->aiCur) |
| 217 && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN |
| 218 ){ |
| 219 int j; |
| 220 for(j=0; j<pScan->nEquiv; j++){ |
| 221 if( pScan->aiCur[j]==pX->iTable |
| 222 && pScan->aiColumn[j]==pX->iColumn ){ |
| 223 break; |
| 224 } |
| 225 } |
| 226 if( j==pScan->nEquiv ){ |
| 227 pScan->aiCur[j] = pX->iTable; |
| 228 pScan->aiColumn[j] = pX->iColumn; |
| 229 pScan->nEquiv++; |
| 230 } |
| 231 } |
| 232 if( (pTerm->eOperator & pScan->opMask)!=0 ){ |
| 233 /* Verify the affinity and collating sequence match */ |
| 234 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ |
| 235 CollSeq *pColl; |
| 236 Parse *pParse = pWC->pWInfo->pParse; |
| 237 pX = pTerm->pExpr; |
| 238 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ |
| 239 continue; |
| 240 } |
| 241 assert(pX->pLeft); |
| 242 pColl = sqlite3BinaryCompareCollSeq(pParse, |
| 243 pX->pLeft, pX->pRight); |
| 244 if( pColl==0 ) pColl = pParse->db->pDfltColl; |
| 245 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ |
| 246 continue; |
| 247 } |
| 248 } |
| 249 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 |
| 250 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN |
| 251 && pX->iTable==pScan->aiCur[0] |
| 252 && pX->iColumn==pScan->aiColumn[0] |
| 253 ){ |
| 254 testcase( pTerm->eOperator & WO_IS ); |
| 255 continue; |
| 256 } |
| 257 pScan->pWC = pWC; |
| 258 pScan->k = k+1; |
| 259 return pTerm; |
| 260 } |
| 261 } |
| 262 } |
| 263 pWC = pWC->pOuter; |
| 264 k = 0; |
| 265 }while( pWC!=0 ); |
| 266 if( pScan->iEquiv>=pScan->nEquiv ) break; |
| 267 pWC = pScan->pOrigWC; |
| 268 k = 0; |
| 269 pScan->iEquiv++; |
| 270 } |
| 271 return 0; |
| 272 } |
| 273 |
| 274 /* |
| 275 ** Initialize a WHERE clause scanner object. Return a pointer to the |
| 276 ** first match. Return NULL if there are no matches. |
| 277 ** |
| 278 ** The scanner will be searching the WHERE clause pWC. It will look |
| 279 ** for terms of the form "X <op> <expr>" where X is column iColumn of table |
| 280 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx |
| 281 ** must be one of the indexes of table iCur. |
| 282 ** |
| 283 ** The <op> must be one of the operators described by opMask. |
| 284 ** |
| 285 ** If the search is for X and the WHERE clause contains terms of the |
| 286 ** form X=Y then this routine might also return terms of the form |
| 287 ** "Y <op> <expr>". The number of levels of transitivity is limited, |
| 288 ** but is enough to handle most commonly occurring SQL statements. |
| 289 ** |
| 290 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with |
| 291 ** index pIdx. |
| 292 */ |
| 293 static WhereTerm *whereScanInit( |
| 294 WhereScan *pScan, /* The WhereScan object being initialized */ |
| 295 WhereClause *pWC, /* The WHERE clause to be scanned */ |
| 296 int iCur, /* Cursor to scan for */ |
| 297 int iColumn, /* Column to scan for */ |
| 298 u32 opMask, /* Operator(s) to scan for */ |
| 299 Index *pIdx /* Must be compatible with this index */ |
| 300 ){ |
| 301 pScan->pOrigWC = pWC; |
| 302 pScan->pWC = pWC; |
| 303 pScan->pIdxExpr = 0; |
| 304 pScan->idxaff = 0; |
| 305 pScan->zCollName = 0; |
| 306 if( pIdx ){ |
| 307 int j = iColumn; |
| 308 iColumn = pIdx->aiColumn[j]; |
| 309 if( iColumn==XN_EXPR ){ |
| 310 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; |
| 311 pScan->zCollName = pIdx->azColl[j]; |
| 312 }else if( iColumn==pIdx->pTable->iPKey ){ |
| 313 iColumn = XN_ROWID; |
| 314 }else if( iColumn>=0 ){ |
| 315 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; |
| 316 pScan->zCollName = pIdx->azColl[j]; |
| 317 } |
| 318 }else if( iColumn==XN_EXPR ){ |
| 319 return 0; |
| 320 } |
| 321 pScan->opMask = opMask; |
| 322 pScan->k = 0; |
| 323 pScan->aiCur[0] = iCur; |
| 324 pScan->aiColumn[0] = iColumn; |
| 325 pScan->nEquiv = 1; |
| 326 pScan->iEquiv = 1; |
| 327 return whereScanNext(pScan); |
| 328 } |
| 329 |
| 330 /* |
| 331 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" |
| 332 ** where X is a reference to the iColumn of table iCur or of index pIdx |
| 333 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by |
| 334 ** the op parameter. Return a pointer to the term. Return 0 if not found. |
| 335 ** |
| 336 ** If pIdx!=0 then it must be one of the indexes of table iCur. |
| 337 ** Search for terms matching the iColumn-th column of pIdx |
| 338 ** rather than the iColumn-th column of table iCur. |
| 339 ** |
| 340 ** The term returned might by Y=<expr> if there is another constraint in |
| 341 ** the WHERE clause that specifies that X=Y. Any such constraints will be |
| 342 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The |
| 343 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 |
| 344 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 |
| 345 ** other equivalent values. Hence a search for X will return <expr> if X=A1 |
| 346 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. |
| 347 ** |
| 348 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" |
| 349 ** then try for the one with no dependencies on <expr> - in other words where |
| 350 ** <expr> is a constant expression of some kind. Only return entries of |
| 351 ** the form "X <op> Y" where Y is a column in another table if no terms of |
| 352 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS |
| 353 ** exist, try to return a term that does not use WO_EQUIV. |
| 354 */ |
| 355 WhereTerm *sqlite3WhereFindTerm( |
| 356 WhereClause *pWC, /* The WHERE clause to be searched */ |
| 357 int iCur, /* Cursor number of LHS */ |
| 358 int iColumn, /* Column number of LHS */ |
| 359 Bitmask notReady, /* RHS must not overlap with this mask */ |
| 360 u32 op, /* Mask of WO_xx values describing operator */ |
| 361 Index *pIdx /* Must be compatible with this index, if not NULL */ |
| 362 ){ |
| 363 WhereTerm *pResult = 0; |
| 364 WhereTerm *p; |
| 365 WhereScan scan; |
| 366 |
| 367 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); |
| 368 op &= WO_EQ|WO_IS; |
| 369 while( p ){ |
| 370 if( (p->prereqRight & notReady)==0 ){ |
| 371 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ |
| 372 testcase( p->eOperator & WO_IS ); |
| 373 return p; |
| 374 } |
| 375 if( pResult==0 ) pResult = p; |
| 376 } |
| 377 p = whereScanNext(&scan); |
| 378 } |
| 379 return pResult; |
| 380 } |
| 381 |
| 382 /* |
| 383 ** This function searches pList for an entry that matches the iCol-th column |
| 384 ** of index pIdx. |
| 385 ** |
| 386 ** If such an expression is found, its index in pList->a[] is returned. If |
| 387 ** no expression is found, -1 is returned. |
| 388 */ |
| 389 static int findIndexCol( |
| 390 Parse *pParse, /* Parse context */ |
| 391 ExprList *pList, /* Expression list to search */ |
| 392 int iBase, /* Cursor for table associated with pIdx */ |
| 393 Index *pIdx, /* Index to match column of */ |
| 394 int iCol /* Column of index to match */ |
| 395 ){ |
| 396 int i; |
| 397 const char *zColl = pIdx->azColl[iCol]; |
| 398 |
| 399 for(i=0; i<pList->nExpr; i++){ |
| 400 Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); |
| 401 if( p->op==TK_COLUMN |
| 402 && p->iColumn==pIdx->aiColumn[iCol] |
| 403 && p->iTable==iBase |
| 404 ){ |
| 405 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); |
| 406 if( pColl && 0==sqlite3StrICmp(pColl->zName, zColl) ){ |
| 407 return i; |
| 408 } |
| 409 } |
| 410 } |
| 411 |
| 412 return -1; |
| 413 } |
| 414 |
| 415 /* |
| 416 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL |
| 417 */ |
| 418 static int indexColumnNotNull(Index *pIdx, int iCol){ |
| 419 int j; |
| 420 assert( pIdx!=0 ); |
| 421 assert( iCol>=0 && iCol<pIdx->nColumn ); |
| 422 j = pIdx->aiColumn[iCol]; |
| 423 if( j>=0 ){ |
| 424 return pIdx->pTable->aCol[j].notNull; |
| 425 }else if( j==(-1) ){ |
| 426 return 1; |
| 427 }else{ |
| 428 assert( j==(-2) ); |
| 429 return 0; /* Assume an indexed expression can always yield a NULL */ |
| 430 |
| 431 } |
| 432 } |
| 433 |
| 434 /* |
| 435 ** Return true if the DISTINCT expression-list passed as the third argument |
| 436 ** is redundant. |
| 437 ** |
| 438 ** A DISTINCT list is redundant if any subset of the columns in the |
| 439 ** DISTINCT list are collectively unique and individually non-null. |
| 440 */ |
| 441 static int isDistinctRedundant( |
| 442 Parse *pParse, /* Parsing context */ |
| 443 SrcList *pTabList, /* The FROM clause */ |
| 444 WhereClause *pWC, /* The WHERE clause */ |
| 445 ExprList *pDistinct /* The result set that needs to be DISTINCT */ |
| 446 ){ |
| 447 Table *pTab; |
| 448 Index *pIdx; |
| 449 int i; |
| 450 int iBase; |
| 451 |
| 452 /* If there is more than one table or sub-select in the FROM clause of |
| 453 ** this query, then it will not be possible to show that the DISTINCT |
| 454 ** clause is redundant. */ |
| 455 if( pTabList->nSrc!=1 ) return 0; |
| 456 iBase = pTabList->a[0].iCursor; |
| 457 pTab = pTabList->a[0].pTab; |
| 458 |
| 459 /* If any of the expressions is an IPK column on table iBase, then return |
| 460 ** true. Note: The (p->iTable==iBase) part of this test may be false if the |
| 461 ** current SELECT is a correlated sub-query. |
| 462 */ |
| 463 for(i=0; i<pDistinct->nExpr; i++){ |
| 464 Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); |
| 465 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; |
| 466 } |
| 467 |
| 468 /* Loop through all indices on the table, checking each to see if it makes |
| 469 ** the DISTINCT qualifier redundant. It does so if: |
| 470 ** |
| 471 ** 1. The index is itself UNIQUE, and |
| 472 ** |
| 473 ** 2. All of the columns in the index are either part of the pDistinct |
| 474 ** list, or else the WHERE clause contains a term of the form "col=X", |
| 475 ** where X is a constant value. The collation sequences of the |
| 476 ** comparison and select-list expressions must match those of the index. |
| 477 ** |
| 478 ** 3. All of those index columns for which the WHERE clause does not |
| 479 ** contain a "col=X" term are subject to a NOT NULL constraint. |
| 480 */ |
| 481 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
| 482 if( !IsUniqueIndex(pIdx) ) continue; |
| 483 for(i=0; i<pIdx->nKeyCol; i++){ |
| 484 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ |
| 485 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; |
| 486 if( indexColumnNotNull(pIdx, i)==0 ) break; |
| 487 } |
| 488 } |
| 489 if( i==pIdx->nKeyCol ){ |
| 490 /* This index implies that the DISTINCT qualifier is redundant. */ |
| 491 return 1; |
| 492 } |
| 493 } |
| 494 |
| 495 return 0; |
| 496 } |
| 497 |
| 498 |
| 499 /* |
| 500 ** Estimate the logarithm of the input value to base 2. |
| 501 */ |
| 502 static LogEst estLog(LogEst N){ |
| 503 return N<=10 ? 0 : sqlite3LogEst(N) - 33; |
| 504 } |
| 505 |
| 506 /* |
| 507 ** Convert OP_Column opcodes to OP_Copy in previously generated code. |
| 508 ** |
| 509 ** This routine runs over generated VDBE code and translates OP_Column |
| 510 ** opcodes into OP_Copy when the table is being accessed via co-routine |
| 511 ** instead of via table lookup. |
| 512 ** |
| 513 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on |
| 514 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero, |
| 515 ** then each OP_Rowid is transformed into an instruction to increment the |
| 516 ** value stored in its output register. |
| 517 */ |
| 518 static void translateColumnToCopy( |
| 519 Vdbe *v, /* The VDBE containing code to translate */ |
| 520 int iStart, /* Translate from this opcode to the end */ |
| 521 int iTabCur, /* OP_Column/OP_Rowid references to this table */ |
| 522 int iRegister, /* The first column is in this register */ |
| 523 int bIncrRowid /* If non-zero, transform OP_rowid to OP_AddImm(1) */ |
| 524 ){ |
| 525 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); |
| 526 int iEnd = sqlite3VdbeCurrentAddr(v); |
| 527 for(; iStart<iEnd; iStart++, pOp++){ |
| 528 if( pOp->p1!=iTabCur ) continue; |
| 529 if( pOp->opcode==OP_Column ){ |
| 530 pOp->opcode = OP_Copy; |
| 531 pOp->p1 = pOp->p2 + iRegister; |
| 532 pOp->p2 = pOp->p3; |
| 533 pOp->p3 = 0; |
| 534 }else if( pOp->opcode==OP_Rowid ){ |
| 535 if( bIncrRowid ){ |
| 536 /* Increment the value stored in the P2 operand of the OP_Rowid. */ |
| 537 pOp->opcode = OP_AddImm; |
| 538 pOp->p1 = pOp->p2; |
| 539 pOp->p2 = 1; |
| 540 }else{ |
| 541 pOp->opcode = OP_Null; |
| 542 pOp->p1 = 0; |
| 543 pOp->p3 = 0; |
| 544 } |
| 545 } |
| 546 } |
| 547 } |
| 548 |
| 549 /* |
| 550 ** Two routines for printing the content of an sqlite3_index_info |
| 551 ** structure. Used for testing and debugging only. If neither |
| 552 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines |
| 553 ** are no-ops. |
| 554 */ |
| 555 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) |
| 556 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ |
| 557 int i; |
| 558 if( !sqlite3WhereTrace ) return; |
| 559 for(i=0; i<p->nConstraint; i++){ |
| 560 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", |
| 561 i, |
| 562 p->aConstraint[i].iColumn, |
| 563 p->aConstraint[i].iTermOffset, |
| 564 p->aConstraint[i].op, |
| 565 p->aConstraint[i].usable); |
| 566 } |
| 567 for(i=0; i<p->nOrderBy; i++){ |
| 568 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", |
| 569 i, |
| 570 p->aOrderBy[i].iColumn, |
| 571 p->aOrderBy[i].desc); |
| 572 } |
| 573 } |
| 574 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ |
| 575 int i; |
| 576 if( !sqlite3WhereTrace ) return; |
| 577 for(i=0; i<p->nConstraint; i++){ |
| 578 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", |
| 579 i, |
| 580 p->aConstraintUsage[i].argvIndex, |
| 581 p->aConstraintUsage[i].omit); |
| 582 } |
| 583 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); |
| 584 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); |
| 585 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); |
| 586 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); |
| 587 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); |
| 588 } |
| 589 #else |
| 590 #define TRACE_IDX_INPUTS(A) |
| 591 #define TRACE_IDX_OUTPUTS(A) |
| 592 #endif |
| 593 |
| 594 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
| 595 /* |
| 596 ** Return TRUE if the WHERE clause term pTerm is of a form where it |
| 597 ** could be used with an index to access pSrc, assuming an appropriate |
| 598 ** index existed. |
| 599 */ |
| 600 static int termCanDriveIndex( |
| 601 WhereTerm *pTerm, /* WHERE clause term to check */ |
| 602 struct SrcList_item *pSrc, /* Table we are trying to access */ |
| 603 Bitmask notReady /* Tables in outer loops of the join */ |
| 604 ){ |
| 605 char aff; |
| 606 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; |
| 607 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; |
| 608 if( (pTerm->prereqRight & notReady)!=0 ) return 0; |
| 609 if( pTerm->u.leftColumn<0 ) return 0; |
| 610 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; |
| 611 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; |
| 612 testcase( pTerm->pExpr->op==TK_IS ); |
| 613 return 1; |
| 614 } |
| 615 #endif |
| 616 |
| 617 |
| 618 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
| 619 /* |
| 620 ** Generate code to construct the Index object for an automatic index |
| 621 ** and to set up the WhereLevel object pLevel so that the code generator |
| 622 ** makes use of the automatic index. |
| 623 */ |
| 624 static void constructAutomaticIndex( |
| 625 Parse *pParse, /* The parsing context */ |
| 626 WhereClause *pWC, /* The WHERE clause */ |
| 627 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ |
| 628 Bitmask notReady, /* Mask of cursors that are not available */ |
| 629 WhereLevel *pLevel /* Write new index here */ |
| 630 ){ |
| 631 int nKeyCol; /* Number of columns in the constructed index */ |
| 632 WhereTerm *pTerm; /* A single term of the WHERE clause */ |
| 633 WhereTerm *pWCEnd; /* End of pWC->a[] */ |
| 634 Index *pIdx; /* Object describing the transient index */ |
| 635 Vdbe *v; /* Prepared statement under construction */ |
| 636 int addrInit; /* Address of the initialization bypass jump */ |
| 637 Table *pTable; /* The table being indexed */ |
| 638 int addrTop; /* Top of the index fill loop */ |
| 639 int regRecord; /* Register holding an index record */ |
| 640 int n; /* Column counter */ |
| 641 int i; /* Loop counter */ |
| 642 int mxBitCol; /* Maximum column in pSrc->colUsed */ |
| 643 CollSeq *pColl; /* Collating sequence to on a column */ |
| 644 WhereLoop *pLoop; /* The Loop object */ |
| 645 char *zNotUsed; /* Extra space on the end of pIdx */ |
| 646 Bitmask idxCols; /* Bitmap of columns used for indexing */ |
| 647 Bitmask extraCols; /* Bitmap of additional columns */ |
| 648 u8 sentWarning = 0; /* True if a warnning has been issued */ |
| 649 Expr *pPartial = 0; /* Partial Index Expression */ |
| 650 int iContinue = 0; /* Jump here to skip excluded rows */ |
| 651 struct SrcList_item *pTabItem; /* FROM clause term being indexed */ |
| 652 int addrCounter = 0; /* Address where integer counter is initialized */ |
| 653 int regBase; /* Array of registers where record is assembled */ |
| 654 |
| 655 /* Generate code to skip over the creation and initialization of the |
| 656 ** transient index on 2nd and subsequent iterations of the loop. */ |
| 657 v = pParse->pVdbe; |
| 658 assert( v!=0 ); |
| 659 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); |
| 660 |
| 661 /* Count the number of columns that will be added to the index |
| 662 ** and used to match WHERE clause constraints */ |
| 663 nKeyCol = 0; |
| 664 pTable = pSrc->pTab; |
| 665 pWCEnd = &pWC->a[pWC->nTerm]; |
| 666 pLoop = pLevel->pWLoop; |
| 667 idxCols = 0; |
| 668 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ |
| 669 Expr *pExpr = pTerm->pExpr; |
| 670 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */ |
| 671 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */ |
| 672 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */ |
| 673 if( pLoop->prereq==0 |
| 674 && (pTerm->wtFlags & TERM_VIRTUAL)==0 |
| 675 && !ExprHasProperty(pExpr, EP_FromJoin) |
| 676 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){ |
| 677 pPartial = sqlite3ExprAnd(pParse->db, pPartial, |
| 678 sqlite3ExprDup(pParse->db, pExpr, 0)); |
| 679 } |
| 680 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ |
| 681 int iCol = pTerm->u.leftColumn; |
| 682 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); |
| 683 testcase( iCol==BMS ); |
| 684 testcase( iCol==BMS-1 ); |
| 685 if( !sentWarning ){ |
| 686 sqlite3_log(SQLITE_WARNING_AUTOINDEX, |
| 687 "automatic index on %s(%s)", pTable->zName, |
| 688 pTable->aCol[iCol].zName); |
| 689 sentWarning = 1; |
| 690 } |
| 691 if( (idxCols & cMask)==0 ){ |
| 692 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ |
| 693 goto end_auto_index_create; |
| 694 } |
| 695 pLoop->aLTerm[nKeyCol++] = pTerm; |
| 696 idxCols |= cMask; |
| 697 } |
| 698 } |
| 699 } |
| 700 assert( nKeyCol>0 ); |
| 701 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; |
| 702 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED |
| 703 | WHERE_AUTO_INDEX; |
| 704 |
| 705 /* Count the number of additional columns needed to create a |
| 706 ** covering index. A "covering index" is an index that contains all |
| 707 ** columns that are needed by the query. With a covering index, the |
| 708 ** original table never needs to be accessed. Automatic indices must |
| 709 ** be a covering index because the index will not be updated if the |
| 710 ** original table changes and the index and table cannot both be used |
| 711 ** if they go out of sync. |
| 712 */ |
| 713 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); |
| 714 mxBitCol = MIN(BMS-1,pTable->nCol); |
| 715 testcase( pTable->nCol==BMS-1 ); |
| 716 testcase( pTable->nCol==BMS-2 ); |
| 717 for(i=0; i<mxBitCol; i++){ |
| 718 if( extraCols & MASKBIT(i) ) nKeyCol++; |
| 719 } |
| 720 if( pSrc->colUsed & MASKBIT(BMS-1) ){ |
| 721 nKeyCol += pTable->nCol - BMS + 1; |
| 722 } |
| 723 |
| 724 /* Construct the Index object to describe this index */ |
| 725 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); |
| 726 if( pIdx==0 ) goto end_auto_index_create; |
| 727 pLoop->u.btree.pIndex = pIdx; |
| 728 pIdx->zName = "auto-index"; |
| 729 pIdx->pTable = pTable; |
| 730 n = 0; |
| 731 idxCols = 0; |
| 732 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ |
| 733 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ |
| 734 int iCol = pTerm->u.leftColumn; |
| 735 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); |
| 736 testcase( iCol==BMS-1 ); |
| 737 testcase( iCol==BMS ); |
| 738 if( (idxCols & cMask)==0 ){ |
| 739 Expr *pX = pTerm->pExpr; |
| 740 idxCols |= cMask; |
| 741 pIdx->aiColumn[n] = pTerm->u.leftColumn; |
| 742 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); |
| 743 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; |
| 744 n++; |
| 745 } |
| 746 } |
| 747 } |
| 748 assert( (u32)n==pLoop->u.btree.nEq ); |
| 749 |
| 750 /* Add additional columns needed to make the automatic index into |
| 751 ** a covering index */ |
| 752 for(i=0; i<mxBitCol; i++){ |
| 753 if( extraCols & MASKBIT(i) ){ |
| 754 pIdx->aiColumn[n] = i; |
| 755 pIdx->azColl[n] = sqlite3StrBINARY; |
| 756 n++; |
| 757 } |
| 758 } |
| 759 if( pSrc->colUsed & MASKBIT(BMS-1) ){ |
| 760 for(i=BMS-1; i<pTable->nCol; i++){ |
| 761 pIdx->aiColumn[n] = i; |
| 762 pIdx->azColl[n] = sqlite3StrBINARY; |
| 763 n++; |
| 764 } |
| 765 } |
| 766 assert( n==nKeyCol ); |
| 767 pIdx->aiColumn[n] = XN_ROWID; |
| 768 pIdx->azColl[n] = sqlite3StrBINARY; |
| 769 |
| 770 /* Create the automatic index */ |
| 771 assert( pLevel->iIdxCur>=0 ); |
| 772 pLevel->iIdxCur = pParse->nTab++; |
| 773 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); |
| 774 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); |
| 775 VdbeComment((v, "for %s", pTable->zName)); |
| 776 |
| 777 /* Fill the automatic index with content */ |
| 778 sqlite3ExprCachePush(pParse); |
| 779 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; |
| 780 if( pTabItem->fg.viaCoroutine ){ |
| 781 int regYield = pTabItem->regReturn; |
| 782 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); |
| 783 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); |
| 784 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); |
| 785 VdbeCoverage(v); |
| 786 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); |
| 787 }else{ |
| 788 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); |
| 789 } |
| 790 if( pPartial ){ |
| 791 iContinue = sqlite3VdbeMakeLabel(v); |
| 792 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); |
| 793 pLoop->wsFlags |= WHERE_PARTIALIDX; |
| 794 } |
| 795 regRecord = sqlite3GetTempReg(pParse); |
| 796 regBase = sqlite3GenerateIndexKey( |
| 797 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 |
| 798 ); |
| 799 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); |
| 800 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
| 801 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); |
| 802 if( pTabItem->fg.viaCoroutine ){ |
| 803 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); |
| 804 translateColumnToCopy(v, addrTop, pLevel->iTabCur, pTabItem->regResult, 1); |
| 805 sqlite3VdbeGoto(v, addrTop); |
| 806 pTabItem->fg.viaCoroutine = 0; |
| 807 }else{ |
| 808 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); |
| 809 } |
| 810 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); |
| 811 sqlite3VdbeJumpHere(v, addrTop); |
| 812 sqlite3ReleaseTempReg(pParse, regRecord); |
| 813 sqlite3ExprCachePop(pParse); |
| 814 |
| 815 /* Jump here when skipping the initialization */ |
| 816 sqlite3VdbeJumpHere(v, addrInit); |
| 817 |
| 818 end_auto_index_create: |
| 819 sqlite3ExprDelete(pParse->db, pPartial); |
| 820 } |
| 821 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ |
| 822 |
| 823 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 824 /* |
| 825 ** Allocate and populate an sqlite3_index_info structure. It is the |
| 826 ** responsibility of the caller to eventually release the structure |
| 827 ** by passing the pointer returned by this function to sqlite3_free(). |
| 828 */ |
| 829 static sqlite3_index_info *allocateIndexInfo( |
| 830 Parse *pParse, |
| 831 WhereClause *pWC, |
| 832 Bitmask mUnusable, /* Ignore terms with these prereqs */ |
| 833 struct SrcList_item *pSrc, |
| 834 ExprList *pOrderBy, |
| 835 u16 *pmNoOmit /* Mask of terms not to omit */ |
| 836 ){ |
| 837 int i, j; |
| 838 int nTerm; |
| 839 struct sqlite3_index_constraint *pIdxCons; |
| 840 struct sqlite3_index_orderby *pIdxOrderBy; |
| 841 struct sqlite3_index_constraint_usage *pUsage; |
| 842 WhereTerm *pTerm; |
| 843 int nOrderBy; |
| 844 sqlite3_index_info *pIdxInfo; |
| 845 u16 mNoOmit = 0; |
| 846 |
| 847 /* Count the number of possible WHERE clause constraints referring |
| 848 ** to this virtual table */ |
| 849 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
| 850 if( pTerm->leftCursor != pSrc->iCursor ) continue; |
| 851 if( pTerm->prereqRight & mUnusable ) continue; |
| 852 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); |
| 853 testcase( pTerm->eOperator & WO_IN ); |
| 854 testcase( pTerm->eOperator & WO_ISNULL ); |
| 855 testcase( pTerm->eOperator & WO_IS ); |
| 856 testcase( pTerm->eOperator & WO_ALL ); |
| 857 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; |
| 858 if( pTerm->wtFlags & TERM_VNULL ) continue; |
| 859 assert( pTerm->u.leftColumn>=(-1) ); |
| 860 nTerm++; |
| 861 } |
| 862 |
| 863 /* If the ORDER BY clause contains only columns in the current |
| 864 ** virtual table then allocate space for the aOrderBy part of |
| 865 ** the sqlite3_index_info structure. |
| 866 */ |
| 867 nOrderBy = 0; |
| 868 if( pOrderBy ){ |
| 869 int n = pOrderBy->nExpr; |
| 870 for(i=0; i<n; i++){ |
| 871 Expr *pExpr = pOrderBy->a[i].pExpr; |
| 872 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; |
| 873 } |
| 874 if( i==n){ |
| 875 nOrderBy = n; |
| 876 } |
| 877 } |
| 878 |
| 879 /* Allocate the sqlite3_index_info structure |
| 880 */ |
| 881 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) |
| 882 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm |
| 883 + sizeof(*pIdxOrderBy)*nOrderBy ); |
| 884 if( pIdxInfo==0 ){ |
| 885 sqlite3ErrorMsg(pParse, "out of memory"); |
| 886 return 0; |
| 887 } |
| 888 |
| 889 /* Initialize the structure. The sqlite3_index_info structure contains |
| 890 ** many fields that are declared "const" to prevent xBestIndex from |
| 891 ** changing them. We have to do some funky casting in order to |
| 892 ** initialize those fields. |
| 893 */ |
| 894 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; |
| 895 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; |
| 896 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; |
| 897 *(int*)&pIdxInfo->nConstraint = nTerm; |
| 898 *(int*)&pIdxInfo->nOrderBy = nOrderBy; |
| 899 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; |
| 900 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; |
| 901 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = |
| 902 pUsage; |
| 903 |
| 904 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
| 905 u8 op; |
| 906 if( pTerm->leftCursor != pSrc->iCursor ) continue; |
| 907 if( pTerm->prereqRight & mUnusable ) continue; |
| 908 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); |
| 909 testcase( pTerm->eOperator & WO_IN ); |
| 910 testcase( pTerm->eOperator & WO_IS ); |
| 911 testcase( pTerm->eOperator & WO_ISNULL ); |
| 912 testcase( pTerm->eOperator & WO_ALL ); |
| 913 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; |
| 914 if( pTerm->wtFlags & TERM_VNULL ) continue; |
| 915 assert( pTerm->u.leftColumn>=(-1) ); |
| 916 pIdxCons[j].iColumn = pTerm->u.leftColumn; |
| 917 pIdxCons[j].iTermOffset = i; |
| 918 op = (u8)pTerm->eOperator & WO_ALL; |
| 919 if( op==WO_IN ) op = WO_EQ; |
| 920 if( op==WO_MATCH ){ |
| 921 op = pTerm->eMatchOp; |
| 922 } |
| 923 pIdxCons[j].op = op; |
| 924 /* The direct assignment in the previous line is possible only because |
| 925 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The |
| 926 ** following asserts verify this fact. */ |
| 927 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); |
| 928 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); |
| 929 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); |
| 930 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); |
| 931 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); |
| 932 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); |
| 933 assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); |
| 934 |
| 935 if( op & (WO_LT|WO_LE|WO_GT|WO_GE) |
| 936 && sqlite3ExprIsVector(pTerm->pExpr->pRight) |
| 937 ){ |
| 938 if( i<16 ) mNoOmit |= (1 << i); |
| 939 if( op==WO_LT ) pIdxCons[j].op = WO_LE; |
| 940 if( op==WO_GT ) pIdxCons[j].op = WO_GE; |
| 941 } |
| 942 |
| 943 j++; |
| 944 } |
| 945 for(i=0; i<nOrderBy; i++){ |
| 946 Expr *pExpr = pOrderBy->a[i].pExpr; |
| 947 pIdxOrderBy[i].iColumn = pExpr->iColumn; |
| 948 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; |
| 949 } |
| 950 |
| 951 *pmNoOmit = mNoOmit; |
| 952 return pIdxInfo; |
| 953 } |
| 954 |
| 955 /* |
| 956 ** The table object reference passed as the second argument to this function |
| 957 ** must represent a virtual table. This function invokes the xBestIndex() |
| 958 ** method of the virtual table with the sqlite3_index_info object that |
| 959 ** comes in as the 3rd argument to this function. |
| 960 ** |
| 961 ** If an error occurs, pParse is populated with an error message and a |
| 962 ** non-zero value is returned. Otherwise, 0 is returned and the output |
| 963 ** part of the sqlite3_index_info structure is left populated. |
| 964 ** |
| 965 ** Whether or not an error is returned, it is the responsibility of the |
| 966 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates |
| 967 ** that this is required. |
| 968 */ |
| 969 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ |
| 970 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; |
| 971 int rc; |
| 972 |
| 973 TRACE_IDX_INPUTS(p); |
| 974 rc = pVtab->pModule->xBestIndex(pVtab, p); |
| 975 TRACE_IDX_OUTPUTS(p); |
| 976 |
| 977 if( rc!=SQLITE_OK ){ |
| 978 if( rc==SQLITE_NOMEM ){ |
| 979 sqlite3OomFault(pParse->db); |
| 980 }else if( !pVtab->zErrMsg ){ |
| 981 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); |
| 982 }else{ |
| 983 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); |
| 984 } |
| 985 } |
| 986 sqlite3_free(pVtab->zErrMsg); |
| 987 pVtab->zErrMsg = 0; |
| 988 |
| 989 #if 0 |
| 990 /* This error is now caught by the caller. |
| 991 ** Search for "xBestIndex malfunction" below */ |
| 992 for(i=0; i<p->nConstraint; i++){ |
| 993 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ |
| 994 sqlite3ErrorMsg(pParse, |
| 995 "table %s: xBestIndex returned an invalid plan", pTab->zName); |
| 996 } |
| 997 } |
| 998 #endif |
| 999 |
| 1000 return pParse->nErr; |
| 1001 } |
| 1002 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ |
| 1003 |
| 1004 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1005 /* |
| 1006 ** Estimate the location of a particular key among all keys in an |
| 1007 ** index. Store the results in aStat as follows: |
| 1008 ** |
| 1009 ** aStat[0] Est. number of rows less than pRec |
| 1010 ** aStat[1] Est. number of rows equal to pRec |
| 1011 ** |
| 1012 ** Return the index of the sample that is the smallest sample that |
| 1013 ** is greater than or equal to pRec. Note that this index is not an index |
| 1014 ** into the aSample[] array - it is an index into a virtual set of samples |
| 1015 ** based on the contents of aSample[] and the number of fields in record |
| 1016 ** pRec. |
| 1017 */ |
| 1018 static int whereKeyStats( |
| 1019 Parse *pParse, /* Database connection */ |
| 1020 Index *pIdx, /* Index to consider domain of */ |
| 1021 UnpackedRecord *pRec, /* Vector of values to consider */ |
| 1022 int roundUp, /* Round up if true. Round down if false */ |
| 1023 tRowcnt *aStat /* OUT: stats written here */ |
| 1024 ){ |
| 1025 IndexSample *aSample = pIdx->aSample; |
| 1026 int iCol; /* Index of required stats in anEq[] etc. */ |
| 1027 int i; /* Index of first sample >= pRec */ |
| 1028 int iSample; /* Smallest sample larger than or equal to pRec */ |
| 1029 int iMin = 0; /* Smallest sample not yet tested */ |
| 1030 int iTest; /* Next sample to test */ |
| 1031 int res; /* Result of comparison operation */ |
| 1032 int nField; /* Number of fields in pRec */ |
| 1033 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ |
| 1034 |
| 1035 #ifndef SQLITE_DEBUG |
| 1036 UNUSED_PARAMETER( pParse ); |
| 1037 #endif |
| 1038 assert( pRec!=0 ); |
| 1039 assert( pIdx->nSample>0 ); |
| 1040 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); |
| 1041 |
| 1042 /* Do a binary search to find the first sample greater than or equal |
| 1043 ** to pRec. If pRec contains a single field, the set of samples to search |
| 1044 ** is simply the aSample[] array. If the samples in aSample[] contain more |
| 1045 ** than one fields, all fields following the first are ignored. |
| 1046 ** |
| 1047 ** If pRec contains N fields, where N is more than one, then as well as the |
| 1048 ** samples in aSample[] (truncated to N fields), the search also has to |
| 1049 ** consider prefixes of those samples. For example, if the set of samples |
| 1050 ** in aSample is: |
| 1051 ** |
| 1052 ** aSample[0] = (a, 5) |
| 1053 ** aSample[1] = (a, 10) |
| 1054 ** aSample[2] = (b, 5) |
| 1055 ** aSample[3] = (c, 100) |
| 1056 ** aSample[4] = (c, 105) |
| 1057 ** |
| 1058 ** Then the search space should ideally be the samples above and the |
| 1059 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, |
| 1060 ** the code actually searches this set: |
| 1061 ** |
| 1062 ** 0: (a) |
| 1063 ** 1: (a, 5) |
| 1064 ** 2: (a, 10) |
| 1065 ** 3: (a, 10) |
| 1066 ** 4: (b) |
| 1067 ** 5: (b, 5) |
| 1068 ** 6: (c) |
| 1069 ** 7: (c, 100) |
| 1070 ** 8: (c, 105) |
| 1071 ** 9: (c, 105) |
| 1072 ** |
| 1073 ** For each sample in the aSample[] array, N samples are present in the |
| 1074 ** effective sample array. In the above, samples 0 and 1 are based on |
| 1075 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. |
| 1076 ** |
| 1077 ** Often, sample i of each block of N effective samples has (i+1) fields. |
| 1078 ** Except, each sample may be extended to ensure that it is greater than or |
| 1079 ** equal to the previous sample in the array. For example, in the above, |
| 1080 ** sample 2 is the first sample of a block of N samples, so at first it |
| 1081 ** appears that it should be 1 field in size. However, that would make it |
| 1082 ** smaller than sample 1, so the binary search would not work. As a result, |
| 1083 ** it is extended to two fields. The duplicates that this creates do not |
| 1084 ** cause any problems. |
| 1085 */ |
| 1086 nField = pRec->nField; |
| 1087 iCol = 0; |
| 1088 iSample = pIdx->nSample * nField; |
| 1089 do{ |
| 1090 int iSamp; /* Index in aSample[] of test sample */ |
| 1091 int n; /* Number of fields in test sample */ |
| 1092 |
| 1093 iTest = (iMin+iSample)/2; |
| 1094 iSamp = iTest / nField; |
| 1095 if( iSamp>0 ){ |
| 1096 /* The proposed effective sample is a prefix of sample aSample[iSamp]. |
| 1097 ** Specifically, the shortest prefix of at least (1 + iTest%nField) |
| 1098 ** fields that is greater than the previous effective sample. */ |
| 1099 for(n=(iTest % nField) + 1; n<nField; n++){ |
| 1100 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; |
| 1101 } |
| 1102 }else{ |
| 1103 n = iTest + 1; |
| 1104 } |
| 1105 |
| 1106 pRec->nField = n; |
| 1107 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); |
| 1108 if( res<0 ){ |
| 1109 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; |
| 1110 iMin = iTest+1; |
| 1111 }else if( res==0 && n<nField ){ |
| 1112 iLower = aSample[iSamp].anLt[n-1]; |
| 1113 iMin = iTest+1; |
| 1114 res = -1; |
| 1115 }else{ |
| 1116 iSample = iTest; |
| 1117 iCol = n-1; |
| 1118 } |
| 1119 }while( res && iMin<iSample ); |
| 1120 i = iSample / nField; |
| 1121 |
| 1122 #ifdef SQLITE_DEBUG |
| 1123 /* The following assert statements check that the binary search code |
| 1124 ** above found the right answer. This block serves no purpose other |
| 1125 ** than to invoke the asserts. */ |
| 1126 if( pParse->db->mallocFailed==0 ){ |
| 1127 if( res==0 ){ |
| 1128 /* If (res==0) is true, then pRec must be equal to sample i. */ |
| 1129 assert( i<pIdx->nSample ); |
| 1130 assert( iCol==nField-1 ); |
| 1131 pRec->nField = nField; |
| 1132 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) |
| 1133 || pParse->db->mallocFailed |
| 1134 ); |
| 1135 }else{ |
| 1136 /* Unless i==pIdx->nSample, indicating that pRec is larger than |
| 1137 ** all samples in the aSample[] array, pRec must be smaller than the |
| 1138 ** (iCol+1) field prefix of sample i. */ |
| 1139 assert( i<=pIdx->nSample && i>=0 ); |
| 1140 pRec->nField = iCol+1; |
| 1141 assert( i==pIdx->nSample |
| 1142 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 |
| 1143 || pParse->db->mallocFailed ); |
| 1144 |
| 1145 /* if i==0 and iCol==0, then record pRec is smaller than all samples |
| 1146 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must |
| 1147 ** be greater than or equal to the (iCol) field prefix of sample i. |
| 1148 ** If (i>0), then pRec must also be greater than sample (i-1). */ |
| 1149 if( iCol>0 ){ |
| 1150 pRec->nField = iCol; |
| 1151 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 |
| 1152 || pParse->db->mallocFailed ); |
| 1153 } |
| 1154 if( i>0 ){ |
| 1155 pRec->nField = nField; |
| 1156 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 |
| 1157 || pParse->db->mallocFailed ); |
| 1158 } |
| 1159 } |
| 1160 } |
| 1161 #endif /* ifdef SQLITE_DEBUG */ |
| 1162 |
| 1163 if( res==0 ){ |
| 1164 /* Record pRec is equal to sample i */ |
| 1165 assert( iCol==nField-1 ); |
| 1166 aStat[0] = aSample[i].anLt[iCol]; |
| 1167 aStat[1] = aSample[i].anEq[iCol]; |
| 1168 }else{ |
| 1169 /* At this point, the (iCol+1) field prefix of aSample[i] is the first |
| 1170 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec |
| 1171 ** is larger than all samples in the array. */ |
| 1172 tRowcnt iUpper, iGap; |
| 1173 if( i>=pIdx->nSample ){ |
| 1174 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); |
| 1175 }else{ |
| 1176 iUpper = aSample[i].anLt[iCol]; |
| 1177 } |
| 1178 |
| 1179 if( iLower>=iUpper ){ |
| 1180 iGap = 0; |
| 1181 }else{ |
| 1182 iGap = iUpper - iLower; |
| 1183 } |
| 1184 if( roundUp ){ |
| 1185 iGap = (iGap*2)/3; |
| 1186 }else{ |
| 1187 iGap = iGap/3; |
| 1188 } |
| 1189 aStat[0] = iLower + iGap; |
| 1190 aStat[1] = pIdx->aAvgEq[iCol]; |
| 1191 } |
| 1192 |
| 1193 /* Restore the pRec->nField value before returning. */ |
| 1194 pRec->nField = nField; |
| 1195 return i; |
| 1196 } |
| 1197 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
| 1198 |
| 1199 /* |
| 1200 ** If it is not NULL, pTerm is a term that provides an upper or lower |
| 1201 ** bound on a range scan. Without considering pTerm, it is estimated |
| 1202 ** that the scan will visit nNew rows. This function returns the number |
| 1203 ** estimated to be visited after taking pTerm into account. |
| 1204 ** |
| 1205 ** If the user explicitly specified a likelihood() value for this term, |
| 1206 ** then the return value is the likelihood multiplied by the number of |
| 1207 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term |
| 1208 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. |
| 1209 */ |
| 1210 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ |
| 1211 LogEst nRet = nNew; |
| 1212 if( pTerm ){ |
| 1213 if( pTerm->truthProb<=0 ){ |
| 1214 nRet += pTerm->truthProb; |
| 1215 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ |
| 1216 nRet -= 20; assert( 20==sqlite3LogEst(4) ); |
| 1217 } |
| 1218 } |
| 1219 return nRet; |
| 1220 } |
| 1221 |
| 1222 |
| 1223 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1224 /* |
| 1225 ** Return the affinity for a single column of an index. |
| 1226 */ |
| 1227 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ |
| 1228 assert( iCol>=0 && iCol<pIdx->nColumn ); |
| 1229 if( !pIdx->zColAff ){ |
| 1230 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; |
| 1231 } |
| 1232 return pIdx->zColAff[iCol]; |
| 1233 } |
| 1234 #endif |
| 1235 |
| 1236 |
| 1237 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1238 /* |
| 1239 ** This function is called to estimate the number of rows visited by a |
| 1240 ** range-scan on a skip-scan index. For example: |
| 1241 ** |
| 1242 ** CREATE INDEX i1 ON t1(a, b, c); |
| 1243 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; |
| 1244 ** |
| 1245 ** Value pLoop->nOut is currently set to the estimated number of rows |
| 1246 ** visited for scanning (a=? AND b=?). This function reduces that estimate |
| 1247 ** by some factor to account for the (c BETWEEN ? AND ?) expression based |
| 1248 ** on the stat4 data for the index. this scan will be peformed multiple |
| 1249 ** times (once for each (a,b) combination that matches a=?) is dealt with |
| 1250 ** by the caller. |
| 1251 ** |
| 1252 ** It does this by scanning through all stat4 samples, comparing values |
| 1253 ** extracted from pLower and pUpper with the corresponding column in each |
| 1254 ** sample. If L and U are the number of samples found to be less than or |
| 1255 ** equal to the values extracted from pLower and pUpper respectively, and |
| 1256 ** N is the total number of samples, the pLoop->nOut value is adjusted |
| 1257 ** as follows: |
| 1258 ** |
| 1259 ** nOut = nOut * ( min(U - L, 1) / N ) |
| 1260 ** |
| 1261 ** If pLower is NULL, or a value cannot be extracted from the term, L is |
| 1262 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, |
| 1263 ** U is set to N. |
| 1264 ** |
| 1265 ** Normally, this function sets *pbDone to 1 before returning. However, |
| 1266 ** if no value can be extracted from either pLower or pUpper (and so the |
| 1267 ** estimate of the number of rows delivered remains unchanged), *pbDone |
| 1268 ** is left as is. |
| 1269 ** |
| 1270 ** If an error occurs, an SQLite error code is returned. Otherwise, |
| 1271 ** SQLITE_OK. |
| 1272 */ |
| 1273 static int whereRangeSkipScanEst( |
| 1274 Parse *pParse, /* Parsing & code generating context */ |
| 1275 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ |
| 1276 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ |
| 1277 WhereLoop *pLoop, /* Update the .nOut value of this loop */ |
| 1278 int *pbDone /* Set to true if at least one expr. value extracted */ |
| 1279 ){ |
| 1280 Index *p = pLoop->u.btree.pIndex; |
| 1281 int nEq = pLoop->u.btree.nEq; |
| 1282 sqlite3 *db = pParse->db; |
| 1283 int nLower = -1; |
| 1284 int nUpper = p->nSample+1; |
| 1285 int rc = SQLITE_OK; |
| 1286 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); |
| 1287 CollSeq *pColl; |
| 1288 |
| 1289 sqlite3_value *p1 = 0; /* Value extracted from pLower */ |
| 1290 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ |
| 1291 sqlite3_value *pVal = 0; /* Value extracted from record */ |
| 1292 |
| 1293 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); |
| 1294 if( pLower ){ |
| 1295 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); |
| 1296 nLower = 0; |
| 1297 } |
| 1298 if( pUpper && rc==SQLITE_OK ){ |
| 1299 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); |
| 1300 nUpper = p2 ? 0 : p->nSample; |
| 1301 } |
| 1302 |
| 1303 if( p1 || p2 ){ |
| 1304 int i; |
| 1305 int nDiff; |
| 1306 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ |
| 1307 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); |
| 1308 if( rc==SQLITE_OK && p1 ){ |
| 1309 int res = sqlite3MemCompare(p1, pVal, pColl); |
| 1310 if( res>=0 ) nLower++; |
| 1311 } |
| 1312 if( rc==SQLITE_OK && p2 ){ |
| 1313 int res = sqlite3MemCompare(p2, pVal, pColl); |
| 1314 if( res>=0 ) nUpper++; |
| 1315 } |
| 1316 } |
| 1317 nDiff = (nUpper - nLower); |
| 1318 if( nDiff<=0 ) nDiff = 1; |
| 1319 |
| 1320 /* If there is both an upper and lower bound specified, and the |
| 1321 ** comparisons indicate that they are close together, use the fallback |
| 1322 ** method (assume that the scan visits 1/64 of the rows) for estimating |
| 1323 ** the number of rows visited. Otherwise, estimate the number of rows |
| 1324 ** using the method described in the header comment for this function. */ |
| 1325 if( nDiff!=1 || pUpper==0 || pLower==0 ){ |
| 1326 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); |
| 1327 pLoop->nOut -= nAdjust; |
| 1328 *pbDone = 1; |
| 1329 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", |
| 1330 nLower, nUpper, nAdjust*-1, pLoop->nOut)); |
| 1331 } |
| 1332 |
| 1333 }else{ |
| 1334 assert( *pbDone==0 ); |
| 1335 } |
| 1336 |
| 1337 sqlite3ValueFree(p1); |
| 1338 sqlite3ValueFree(p2); |
| 1339 sqlite3ValueFree(pVal); |
| 1340 |
| 1341 return rc; |
| 1342 } |
| 1343 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
| 1344 |
| 1345 /* |
| 1346 ** This function is used to estimate the number of rows that will be visited |
| 1347 ** by scanning an index for a range of values. The range may have an upper |
| 1348 ** bound, a lower bound, or both. The WHERE clause terms that set the upper |
| 1349 ** and lower bounds are represented by pLower and pUpper respectively. For |
| 1350 ** example, assuming that index p is on t1(a): |
| 1351 ** |
| 1352 ** ... FROM t1 WHERE a > ? AND a < ? ... |
| 1353 ** |_____| |_____| |
| 1354 ** | | |
| 1355 ** pLower pUpper |
| 1356 ** |
| 1357 ** If either of the upper or lower bound is not present, then NULL is passed in |
| 1358 ** place of the corresponding WhereTerm. |
| 1359 ** |
| 1360 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index |
| 1361 ** column subject to the range constraint. Or, equivalently, the number of |
| 1362 ** equality constraints optimized by the proposed index scan. For example, |
| 1363 ** assuming index p is on t1(a, b), and the SQL query is: |
| 1364 ** |
| 1365 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... |
| 1366 ** |
| 1367 ** then nEq is set to 1 (as the range restricted column, b, is the second |
| 1368 ** left-most column of the index). Or, if the query is: |
| 1369 ** |
| 1370 ** ... FROM t1 WHERE a > ? AND a < ? ... |
| 1371 ** |
| 1372 ** then nEq is set to 0. |
| 1373 ** |
| 1374 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the |
| 1375 ** number of rows that the index scan is expected to visit without |
| 1376 ** considering the range constraints. If nEq is 0, then *pnOut is the number of |
| 1377 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) |
| 1378 ** to account for the range constraints pLower and pUpper. |
| 1379 ** |
| 1380 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be |
| 1381 ** used, a single range inequality reduces the search space by a factor of 4. |
| 1382 ** and a pair of constraints (x>? AND x<?) reduces the expected number of |
| 1383 ** rows visited by a factor of 64. |
| 1384 */ |
| 1385 static int whereRangeScanEst( |
| 1386 Parse *pParse, /* Parsing & code generating context */ |
| 1387 WhereLoopBuilder *pBuilder, |
| 1388 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ |
| 1389 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ |
| 1390 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ |
| 1391 ){ |
| 1392 int rc = SQLITE_OK; |
| 1393 int nOut = pLoop->nOut; |
| 1394 LogEst nNew; |
| 1395 |
| 1396 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1397 Index *p = pLoop->u.btree.pIndex; |
| 1398 int nEq = pLoop->u.btree.nEq; |
| 1399 |
| 1400 if( p->nSample>0 && nEq<p->nSampleCol ){ |
| 1401 if( nEq==pBuilder->nRecValid ){ |
| 1402 UnpackedRecord *pRec = pBuilder->pRec; |
| 1403 tRowcnt a[2]; |
| 1404 int nBtm = pLoop->u.btree.nBtm; |
| 1405 int nTop = pLoop->u.btree.nTop; |
| 1406 |
| 1407 /* Variable iLower will be set to the estimate of the number of rows in |
| 1408 ** the index that are less than the lower bound of the range query. The |
| 1409 ** lower bound being the concatenation of $P and $L, where $P is the |
| 1410 ** key-prefix formed by the nEq values matched against the nEq left-most |
| 1411 ** columns of the index, and $L is the value in pLower. |
| 1412 ** |
| 1413 ** Or, if pLower is NULL or $L cannot be extracted from it (because it |
| 1414 ** is not a simple variable or literal value), the lower bound of the |
| 1415 ** range is $P. Due to a quirk in the way whereKeyStats() works, even |
| 1416 ** if $L is available, whereKeyStats() is called for both ($P) and |
| 1417 ** ($P:$L) and the larger of the two returned values is used. |
| 1418 ** |
| 1419 ** Similarly, iUpper is to be set to the estimate of the number of rows |
| 1420 ** less than the upper bound of the range query. Where the upper bound |
| 1421 ** is either ($P) or ($P:$U). Again, even if $U is available, both values |
| 1422 ** of iUpper are requested of whereKeyStats() and the smaller used. |
| 1423 ** |
| 1424 ** The number of rows between the two bounds is then just iUpper-iLower. |
| 1425 */ |
| 1426 tRowcnt iLower; /* Rows less than the lower bound */ |
| 1427 tRowcnt iUpper; /* Rows less than the upper bound */ |
| 1428 int iLwrIdx = -2; /* aSample[] for the lower bound */ |
| 1429 int iUprIdx = -1; /* aSample[] for the upper bound */ |
| 1430 |
| 1431 if( pRec ){ |
| 1432 testcase( pRec->nField!=pBuilder->nRecValid ); |
| 1433 pRec->nField = pBuilder->nRecValid; |
| 1434 } |
| 1435 /* Determine iLower and iUpper using ($P) only. */ |
| 1436 if( nEq==0 ){ |
| 1437 iLower = 0; |
| 1438 iUpper = p->nRowEst0; |
| 1439 }else{ |
| 1440 /* Note: this call could be optimized away - since the same values must |
| 1441 ** have been requested when testing key $P in whereEqualScanEst(). */ |
| 1442 whereKeyStats(pParse, p, pRec, 0, a); |
| 1443 iLower = a[0]; |
| 1444 iUpper = a[0] + a[1]; |
| 1445 } |
| 1446 |
| 1447 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); |
| 1448 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); |
| 1449 assert( p->aSortOrder!=0 ); |
| 1450 if( p->aSortOrder[nEq] ){ |
| 1451 /* The roles of pLower and pUpper are swapped for a DESC index */ |
| 1452 SWAP(WhereTerm*, pLower, pUpper); |
| 1453 SWAP(int, nBtm, nTop); |
| 1454 } |
| 1455 |
| 1456 /* If possible, improve on the iLower estimate using ($P:$L). */ |
| 1457 if( pLower ){ |
| 1458 int n; /* Values extracted from pExpr */ |
| 1459 Expr *pExpr = pLower->pExpr->pRight; |
| 1460 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); |
| 1461 if( rc==SQLITE_OK && n ){ |
| 1462 tRowcnt iNew; |
| 1463 u16 mask = WO_GT|WO_LE; |
| 1464 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); |
| 1465 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); |
| 1466 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); |
| 1467 if( iNew>iLower ) iLower = iNew; |
| 1468 nOut--; |
| 1469 pLower = 0; |
| 1470 } |
| 1471 } |
| 1472 |
| 1473 /* If possible, improve on the iUpper estimate using ($P:$U). */ |
| 1474 if( pUpper ){ |
| 1475 int n; /* Values extracted from pExpr */ |
| 1476 Expr *pExpr = pUpper->pExpr->pRight; |
| 1477 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); |
| 1478 if( rc==SQLITE_OK && n ){ |
| 1479 tRowcnt iNew; |
| 1480 u16 mask = WO_GT|WO_LE; |
| 1481 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); |
| 1482 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); |
| 1483 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); |
| 1484 if( iNew<iUpper ) iUpper = iNew; |
| 1485 nOut--; |
| 1486 pUpper = 0; |
| 1487 } |
| 1488 } |
| 1489 |
| 1490 pBuilder->pRec = pRec; |
| 1491 if( rc==SQLITE_OK ){ |
| 1492 if( iUpper>iLower ){ |
| 1493 nNew = sqlite3LogEst(iUpper - iLower); |
| 1494 /* TUNING: If both iUpper and iLower are derived from the same |
| 1495 ** sample, then assume they are 4x more selective. This brings |
| 1496 ** the estimated selectivity more in line with what it would be |
| 1497 ** if estimated without the use of STAT3/4 tables. */ |
| 1498 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); |
| 1499 }else{ |
| 1500 nNew = 10; assert( 10==sqlite3LogEst(2) ); |
| 1501 } |
| 1502 if( nNew<nOut ){ |
| 1503 nOut = nNew; |
| 1504 } |
| 1505 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", |
| 1506 (u32)iLower, (u32)iUpper, nOut)); |
| 1507 } |
| 1508 }else{ |
| 1509 int bDone = 0; |
| 1510 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); |
| 1511 if( bDone ) return rc; |
| 1512 } |
| 1513 } |
| 1514 #else |
| 1515 UNUSED_PARAMETER(pParse); |
| 1516 UNUSED_PARAMETER(pBuilder); |
| 1517 assert( pLower || pUpper ); |
| 1518 #endif |
| 1519 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); |
| 1520 nNew = whereRangeAdjust(pLower, nOut); |
| 1521 nNew = whereRangeAdjust(pUpper, nNew); |
| 1522 |
| 1523 /* TUNING: If there is both an upper and lower limit and neither limit |
| 1524 ** has an application-defined likelihood(), assume the range is |
| 1525 ** reduced by an additional 75%. This means that, by default, an open-ended |
| 1526 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the |
| 1527 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to |
| 1528 ** match 1/64 of the index. */ |
| 1529 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ |
| 1530 nNew -= 20; |
| 1531 } |
| 1532 |
| 1533 nOut -= (pLower!=0) + (pUpper!=0); |
| 1534 if( nNew<10 ) nNew = 10; |
| 1535 if( nNew<nOut ) nOut = nNew; |
| 1536 #if defined(WHERETRACE_ENABLED) |
| 1537 if( pLoop->nOut>nOut ){ |
| 1538 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", |
| 1539 pLoop->nOut, nOut)); |
| 1540 } |
| 1541 #endif |
| 1542 pLoop->nOut = (LogEst)nOut; |
| 1543 return rc; |
| 1544 } |
| 1545 |
| 1546 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1547 /* |
| 1548 ** Estimate the number of rows that will be returned based on |
| 1549 ** an equality constraint x=VALUE and where that VALUE occurs in |
| 1550 ** the histogram data. This only works when x is the left-most |
| 1551 ** column of an index and sqlite_stat3 histogram data is available |
| 1552 ** for that index. When pExpr==NULL that means the constraint is |
| 1553 ** "x IS NULL" instead of "x=VALUE". |
| 1554 ** |
| 1555 ** Write the estimated row count into *pnRow and return SQLITE_OK. |
| 1556 ** If unable to make an estimate, leave *pnRow unchanged and return |
| 1557 ** non-zero. |
| 1558 ** |
| 1559 ** This routine can fail if it is unable to load a collating sequence |
| 1560 ** required for string comparison, or if unable to allocate memory |
| 1561 ** for a UTF conversion required for comparison. The error is stored |
| 1562 ** in the pParse structure. |
| 1563 */ |
| 1564 static int whereEqualScanEst( |
| 1565 Parse *pParse, /* Parsing & code generating context */ |
| 1566 WhereLoopBuilder *pBuilder, |
| 1567 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ |
| 1568 tRowcnt *pnRow /* Write the revised row estimate here */ |
| 1569 ){ |
| 1570 Index *p = pBuilder->pNew->u.btree.pIndex; |
| 1571 int nEq = pBuilder->pNew->u.btree.nEq; |
| 1572 UnpackedRecord *pRec = pBuilder->pRec; |
| 1573 int rc; /* Subfunction return code */ |
| 1574 tRowcnt a[2]; /* Statistics */ |
| 1575 int bOk; |
| 1576 |
| 1577 assert( nEq>=1 ); |
| 1578 assert( nEq<=p->nColumn ); |
| 1579 assert( p->aSample!=0 ); |
| 1580 assert( p->nSample>0 ); |
| 1581 assert( pBuilder->nRecValid<nEq ); |
| 1582 |
| 1583 /* If values are not available for all fields of the index to the left |
| 1584 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ |
| 1585 if( pBuilder->nRecValid<(nEq-1) ){ |
| 1586 return SQLITE_NOTFOUND; |
| 1587 } |
| 1588 |
| 1589 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() |
| 1590 ** below would return the same value. */ |
| 1591 if( nEq>=p->nColumn ){ |
| 1592 *pnRow = 1; |
| 1593 return SQLITE_OK; |
| 1594 } |
| 1595 |
| 1596 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); |
| 1597 pBuilder->pRec = pRec; |
| 1598 if( rc!=SQLITE_OK ) return rc; |
| 1599 if( bOk==0 ) return SQLITE_NOTFOUND; |
| 1600 pBuilder->nRecValid = nEq; |
| 1601 |
| 1602 whereKeyStats(pParse, p, pRec, 0, a); |
| 1603 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n", |
| 1604 p->zName, nEq-1, (int)a[1])); |
| 1605 *pnRow = a[1]; |
| 1606 |
| 1607 return rc; |
| 1608 } |
| 1609 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
| 1610 |
| 1611 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1612 /* |
| 1613 ** Estimate the number of rows that will be returned based on |
| 1614 ** an IN constraint where the right-hand side of the IN operator |
| 1615 ** is a list of values. Example: |
| 1616 ** |
| 1617 ** WHERE x IN (1,2,3,4) |
| 1618 ** |
| 1619 ** Write the estimated row count into *pnRow and return SQLITE_OK. |
| 1620 ** If unable to make an estimate, leave *pnRow unchanged and return |
| 1621 ** non-zero. |
| 1622 ** |
| 1623 ** This routine can fail if it is unable to load a collating sequence |
| 1624 ** required for string comparison, or if unable to allocate memory |
| 1625 ** for a UTF conversion required for comparison. The error is stored |
| 1626 ** in the pParse structure. |
| 1627 */ |
| 1628 static int whereInScanEst( |
| 1629 Parse *pParse, /* Parsing & code generating context */ |
| 1630 WhereLoopBuilder *pBuilder, |
| 1631 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ |
| 1632 tRowcnt *pnRow /* Write the revised row estimate here */ |
| 1633 ){ |
| 1634 Index *p = pBuilder->pNew->u.btree.pIndex; |
| 1635 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); |
| 1636 int nRecValid = pBuilder->nRecValid; |
| 1637 int rc = SQLITE_OK; /* Subfunction return code */ |
| 1638 tRowcnt nEst; /* Number of rows for a single term */ |
| 1639 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ |
| 1640 int i; /* Loop counter */ |
| 1641 |
| 1642 assert( p->aSample!=0 ); |
| 1643 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ |
| 1644 nEst = nRow0; |
| 1645 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); |
| 1646 nRowEst += nEst; |
| 1647 pBuilder->nRecValid = nRecValid; |
| 1648 } |
| 1649 |
| 1650 if( rc==SQLITE_OK ){ |
| 1651 if( nRowEst > nRow0 ) nRowEst = nRow0; |
| 1652 *pnRow = nRowEst; |
| 1653 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); |
| 1654 } |
| 1655 assert( pBuilder->nRecValid==nRecValid ); |
| 1656 return rc; |
| 1657 } |
| 1658 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
| 1659 |
| 1660 |
| 1661 #ifdef WHERETRACE_ENABLED |
| 1662 /* |
| 1663 ** Print the content of a WhereTerm object |
| 1664 */ |
| 1665 static void whereTermPrint(WhereTerm *pTerm, int iTerm){ |
| 1666 if( pTerm==0 ){ |
| 1667 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); |
| 1668 }else{ |
| 1669 char zType[4]; |
| 1670 char zLeft[50]; |
| 1671 memcpy(zType, "...", 4); |
| 1672 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; |
| 1673 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; |
| 1674 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; |
| 1675 if( pTerm->eOperator & WO_SINGLE ){ |
| 1676 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", |
| 1677 pTerm->leftCursor, pTerm->u.leftColumn); |
| 1678 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ |
| 1679 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld", |
| 1680 pTerm->u.pOrInfo->indexable); |
| 1681 }else{ |
| 1682 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); |
| 1683 } |
| 1684 sqlite3DebugPrintf( |
| 1685 "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x", |
| 1686 iTerm, pTerm, zType, zLeft, pTerm->truthProb, |
| 1687 pTerm->eOperator, pTerm->wtFlags); |
| 1688 if( pTerm->iField ){ |
| 1689 sqlite3DebugPrintf(" iField=%d\n", pTerm->iField); |
| 1690 }else{ |
| 1691 sqlite3DebugPrintf("\n"); |
| 1692 } |
| 1693 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); |
| 1694 } |
| 1695 } |
| 1696 #endif |
| 1697 |
| 1698 #ifdef WHERETRACE_ENABLED |
| 1699 /* |
| 1700 ** Show the complete content of a WhereClause |
| 1701 */ |
| 1702 void sqlite3WhereClausePrint(WhereClause *pWC){ |
| 1703 int i; |
| 1704 for(i=0; i<pWC->nTerm; i++){ |
| 1705 whereTermPrint(&pWC->a[i], i); |
| 1706 } |
| 1707 } |
| 1708 #endif |
| 1709 |
| 1710 #ifdef WHERETRACE_ENABLED |
| 1711 /* |
| 1712 ** Print a WhereLoop object for debugging purposes |
| 1713 */ |
| 1714 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){ |
| 1715 WhereInfo *pWInfo = pWC->pWInfo; |
| 1716 int nb = 1+(pWInfo->pTabList->nSrc+3)/4; |
| 1717 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; |
| 1718 Table *pTab = pItem->pTab; |
| 1719 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; |
| 1720 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, |
| 1721 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); |
| 1722 sqlite3DebugPrintf(" %12s", |
| 1723 pItem->zAlias ? pItem->zAlias : pTab->zName); |
| 1724 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ |
| 1725 const char *zName; |
| 1726 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ |
| 1727 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ |
| 1728 int i = sqlite3Strlen30(zName) - 1; |
| 1729 while( zName[i]!='_' ) i--; |
| 1730 zName += i; |
| 1731 } |
| 1732 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); |
| 1733 }else{ |
| 1734 sqlite3DebugPrintf("%20s",""); |
| 1735 } |
| 1736 }else{ |
| 1737 char *z; |
| 1738 if( p->u.vtab.idxStr ){ |
| 1739 z = sqlite3_mprintf("(%d,\"%s\",%x)", |
| 1740 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); |
| 1741 }else{ |
| 1742 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); |
| 1743 } |
| 1744 sqlite3DebugPrintf(" %-19s", z); |
| 1745 sqlite3_free(z); |
| 1746 } |
| 1747 if( p->wsFlags & WHERE_SKIPSCAN ){ |
| 1748 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); |
| 1749 }else{ |
| 1750 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); |
| 1751 } |
| 1752 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); |
| 1753 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ |
| 1754 int i; |
| 1755 for(i=0; i<p->nLTerm; i++){ |
| 1756 whereTermPrint(p->aLTerm[i], i); |
| 1757 } |
| 1758 } |
| 1759 } |
| 1760 #endif |
| 1761 |
| 1762 /* |
| 1763 ** Convert bulk memory into a valid WhereLoop that can be passed |
| 1764 ** to whereLoopClear harmlessly. |
| 1765 */ |
| 1766 static void whereLoopInit(WhereLoop *p){ |
| 1767 p->aLTerm = p->aLTermSpace; |
| 1768 p->nLTerm = 0; |
| 1769 p->nLSlot = ArraySize(p->aLTermSpace); |
| 1770 p->wsFlags = 0; |
| 1771 } |
| 1772 |
| 1773 /* |
| 1774 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. |
| 1775 */ |
| 1776 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ |
| 1777 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ |
| 1778 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ |
| 1779 sqlite3_free(p->u.vtab.idxStr); |
| 1780 p->u.vtab.needFree = 0; |
| 1781 p->u.vtab.idxStr = 0; |
| 1782 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ |
| 1783 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); |
| 1784 sqlite3DbFree(db, p->u.btree.pIndex); |
| 1785 p->u.btree.pIndex = 0; |
| 1786 } |
| 1787 } |
| 1788 } |
| 1789 |
| 1790 /* |
| 1791 ** Deallocate internal memory used by a WhereLoop object |
| 1792 */ |
| 1793 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ |
| 1794 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); |
| 1795 whereLoopClearUnion(db, p); |
| 1796 whereLoopInit(p); |
| 1797 } |
| 1798 |
| 1799 /* |
| 1800 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. |
| 1801 */ |
| 1802 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ |
| 1803 WhereTerm **paNew; |
| 1804 if( p->nLSlot>=n ) return SQLITE_OK; |
| 1805 n = (n+7)&~7; |
| 1806 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); |
| 1807 if( paNew==0 ) return SQLITE_NOMEM_BKPT; |
| 1808 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); |
| 1809 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); |
| 1810 p->aLTerm = paNew; |
| 1811 p->nLSlot = n; |
| 1812 return SQLITE_OK; |
| 1813 } |
| 1814 |
| 1815 /* |
| 1816 ** Transfer content from the second pLoop into the first. |
| 1817 */ |
| 1818 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ |
| 1819 whereLoopClearUnion(db, pTo); |
| 1820 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ |
| 1821 memset(&pTo->u, 0, sizeof(pTo->u)); |
| 1822 return SQLITE_NOMEM_BKPT; |
| 1823 } |
| 1824 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); |
| 1825 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); |
| 1826 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ |
| 1827 pFrom->u.vtab.needFree = 0; |
| 1828 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ |
| 1829 pFrom->u.btree.pIndex = 0; |
| 1830 } |
| 1831 return SQLITE_OK; |
| 1832 } |
| 1833 |
| 1834 /* |
| 1835 ** Delete a WhereLoop object |
| 1836 */ |
| 1837 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ |
| 1838 whereLoopClear(db, p); |
| 1839 sqlite3DbFree(db, p); |
| 1840 } |
| 1841 |
| 1842 /* |
| 1843 ** Free a WhereInfo structure |
| 1844 */ |
| 1845 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ |
| 1846 if( ALWAYS(pWInfo) ){ |
| 1847 int i; |
| 1848 for(i=0; i<pWInfo->nLevel; i++){ |
| 1849 WhereLevel *pLevel = &pWInfo->a[i]; |
| 1850 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ |
| 1851 sqlite3DbFree(db, pLevel->u.in.aInLoop); |
| 1852 } |
| 1853 } |
| 1854 sqlite3WhereClauseClear(&pWInfo->sWC); |
| 1855 while( pWInfo->pLoops ){ |
| 1856 WhereLoop *p = pWInfo->pLoops; |
| 1857 pWInfo->pLoops = p->pNextLoop; |
| 1858 whereLoopDelete(db, p); |
| 1859 } |
| 1860 sqlite3DbFree(db, pWInfo); |
| 1861 } |
| 1862 } |
| 1863 |
| 1864 /* |
| 1865 ** Return TRUE if all of the following are true: |
| 1866 ** |
| 1867 ** (1) X has the same or lower cost that Y |
| 1868 ** (2) X is a proper subset of Y |
| 1869 ** (3) X skips at least as many columns as Y |
| 1870 ** |
| 1871 ** By "proper subset" we mean that X uses fewer WHERE clause terms |
| 1872 ** than Y and that every WHERE clause term used by X is also used |
| 1873 ** by Y. |
| 1874 ** |
| 1875 ** If X is a proper subset of Y then Y is a better choice and ought |
| 1876 ** to have a lower cost. This routine returns TRUE when that cost |
| 1877 ** relationship is inverted and needs to be adjusted. The third rule |
| 1878 ** was added because if X uses skip-scan less than Y it still might |
| 1879 ** deserve a lower cost even if it is a proper subset of Y. |
| 1880 */ |
| 1881 static int whereLoopCheaperProperSubset( |
| 1882 const WhereLoop *pX, /* First WhereLoop to compare */ |
| 1883 const WhereLoop *pY /* Compare against this WhereLoop */ |
| 1884 ){ |
| 1885 int i, j; |
| 1886 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ |
| 1887 return 0; /* X is not a subset of Y */ |
| 1888 } |
| 1889 if( pY->nSkip > pX->nSkip ) return 0; |
| 1890 if( pX->rRun >= pY->rRun ){ |
| 1891 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ |
| 1892 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ |
| 1893 } |
| 1894 for(i=pX->nLTerm-1; i>=0; i--){ |
| 1895 if( pX->aLTerm[i]==0 ) continue; |
| 1896 for(j=pY->nLTerm-1; j>=0; j--){ |
| 1897 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; |
| 1898 } |
| 1899 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ |
| 1900 } |
| 1901 return 1; /* All conditions meet */ |
| 1902 } |
| 1903 |
| 1904 /* |
| 1905 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so |
| 1906 ** that: |
| 1907 ** |
| 1908 ** (1) pTemplate costs less than any other WhereLoops that are a proper |
| 1909 ** subset of pTemplate |
| 1910 ** |
| 1911 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate |
| 1912 ** is a proper subset. |
| 1913 ** |
| 1914 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer |
| 1915 ** WHERE clause terms than Y and that every WHERE clause term used by X is |
| 1916 ** also used by Y. |
| 1917 */ |
| 1918 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ |
| 1919 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; |
| 1920 for(; p; p=p->pNextLoop){ |
| 1921 if( p->iTab!=pTemplate->iTab ) continue; |
| 1922 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; |
| 1923 if( whereLoopCheaperProperSubset(p, pTemplate) ){ |
| 1924 /* Adjust pTemplate cost downward so that it is cheaper than its |
| 1925 ** subset p. */ |
| 1926 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", |
| 1927 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1)); |
| 1928 pTemplate->rRun = p->rRun; |
| 1929 pTemplate->nOut = p->nOut - 1; |
| 1930 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ |
| 1931 /* Adjust pTemplate cost upward so that it is costlier than p since |
| 1932 ** pTemplate is a proper subset of p */ |
| 1933 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", |
| 1934 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1)); |
| 1935 pTemplate->rRun = p->rRun; |
| 1936 pTemplate->nOut = p->nOut + 1; |
| 1937 } |
| 1938 } |
| 1939 } |
| 1940 |
| 1941 /* |
| 1942 ** Search the list of WhereLoops in *ppPrev looking for one that can be |
| 1943 ** supplanted by pTemplate. |
| 1944 ** |
| 1945 ** Return NULL if the WhereLoop list contains an entry that can supplant |
| 1946 ** pTemplate, in other words if pTemplate does not belong on the list. |
| 1947 ** |
| 1948 ** If pX is a WhereLoop that pTemplate can supplant, then return the |
| 1949 ** link that points to pX. |
| 1950 ** |
| 1951 ** If pTemplate cannot supplant any existing element of the list but needs |
| 1952 ** to be added to the list, then return a pointer to the tail of the list. |
| 1953 */ |
| 1954 static WhereLoop **whereLoopFindLesser( |
| 1955 WhereLoop **ppPrev, |
| 1956 const WhereLoop *pTemplate |
| 1957 ){ |
| 1958 WhereLoop *p; |
| 1959 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ |
| 1960 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ |
| 1961 /* If either the iTab or iSortIdx values for two WhereLoop are different |
| 1962 ** then those WhereLoops need to be considered separately. Neither is |
| 1963 ** a candidate to replace the other. */ |
| 1964 continue; |
| 1965 } |
| 1966 /* In the current implementation, the rSetup value is either zero |
| 1967 ** or the cost of building an automatic index (NlogN) and the NlogN |
| 1968 ** is the same for compatible WhereLoops. */ |
| 1969 assert( p->rSetup==0 || pTemplate->rSetup==0 |
| 1970 || p->rSetup==pTemplate->rSetup ); |
| 1971 |
| 1972 /* whereLoopAddBtree() always generates and inserts the automatic index |
| 1973 ** case first. Hence compatible candidate WhereLoops never have a larger |
| 1974 ** rSetup. Call this SETUP-INVARIANT */ |
| 1975 assert( p->rSetup>=pTemplate->rSetup ); |
| 1976 |
| 1977 /* Any loop using an appliation-defined index (or PRIMARY KEY or |
| 1978 ** UNIQUE constraint) with one or more == constraints is better |
| 1979 ** than an automatic index. Unless it is a skip-scan. */ |
| 1980 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 |
| 1981 && (pTemplate->nSkip)==0 |
| 1982 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 |
| 1983 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 |
| 1984 && (p->prereq & pTemplate->prereq)==pTemplate->prereq |
| 1985 ){ |
| 1986 break; |
| 1987 } |
| 1988 |
| 1989 /* If existing WhereLoop p is better than pTemplate, pTemplate can be |
| 1990 ** discarded. WhereLoop p is better if: |
| 1991 ** (1) p has no more dependencies than pTemplate, and |
| 1992 ** (2) p has an equal or lower cost than pTemplate |
| 1993 */ |
| 1994 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ |
| 1995 && p->rSetup<=pTemplate->rSetup /* (2a) */ |
| 1996 && p->rRun<=pTemplate->rRun /* (2b) */ |
| 1997 && p->nOut<=pTemplate->nOut /* (2c) */ |
| 1998 ){ |
| 1999 return 0; /* Discard pTemplate */ |
| 2000 } |
| 2001 |
| 2002 /* If pTemplate is always better than p, then cause p to be overwritten |
| 2003 ** with pTemplate. pTemplate is better than p if: |
| 2004 ** (1) pTemplate has no more dependences than p, and |
| 2005 ** (2) pTemplate has an equal or lower cost than p. |
| 2006 */ |
| 2007 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ |
| 2008 && p->rRun>=pTemplate->rRun /* (2a) */ |
| 2009 && p->nOut>=pTemplate->nOut /* (2b) */ |
| 2010 ){ |
| 2011 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ |
| 2012 break; /* Cause p to be overwritten by pTemplate */ |
| 2013 } |
| 2014 } |
| 2015 return ppPrev; |
| 2016 } |
| 2017 |
| 2018 /* |
| 2019 ** Insert or replace a WhereLoop entry using the template supplied. |
| 2020 ** |
| 2021 ** An existing WhereLoop entry might be overwritten if the new template |
| 2022 ** is better and has fewer dependencies. Or the template will be ignored |
| 2023 ** and no insert will occur if an existing WhereLoop is faster and has |
| 2024 ** fewer dependencies than the template. Otherwise a new WhereLoop is |
| 2025 ** added based on the template. |
| 2026 ** |
| 2027 ** If pBuilder->pOrSet is not NULL then we care about only the |
| 2028 ** prerequisites and rRun and nOut costs of the N best loops. That |
| 2029 ** information is gathered in the pBuilder->pOrSet object. This special |
| 2030 ** processing mode is used only for OR clause processing. |
| 2031 ** |
| 2032 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we |
| 2033 ** still might overwrite similar loops with the new template if the |
| 2034 ** new template is better. Loops may be overwritten if the following |
| 2035 ** conditions are met: |
| 2036 ** |
| 2037 ** (1) They have the same iTab. |
| 2038 ** (2) They have the same iSortIdx. |
| 2039 ** (3) The template has same or fewer dependencies than the current loop |
| 2040 ** (4) The template has the same or lower cost than the current loop |
| 2041 */ |
| 2042 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ |
| 2043 WhereLoop **ppPrev, *p; |
| 2044 WhereInfo *pWInfo = pBuilder->pWInfo; |
| 2045 sqlite3 *db = pWInfo->pParse->db; |
| 2046 int rc; |
| 2047 |
| 2048 /* If pBuilder->pOrSet is defined, then only keep track of the costs |
| 2049 ** and prereqs. |
| 2050 */ |
| 2051 if( pBuilder->pOrSet!=0 ){ |
| 2052 if( pTemplate->nLTerm ){ |
| 2053 #if WHERETRACE_ENABLED |
| 2054 u16 n = pBuilder->pOrSet->n; |
| 2055 int x = |
| 2056 #endif |
| 2057 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, |
| 2058 pTemplate->nOut); |
| 2059 #if WHERETRACE_ENABLED /* 0x8 */ |
| 2060 if( sqlite3WhereTrace & 0x8 ){ |
| 2061 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); |
| 2062 whereLoopPrint(pTemplate, pBuilder->pWC); |
| 2063 } |
| 2064 #endif |
| 2065 } |
| 2066 return SQLITE_OK; |
| 2067 } |
| 2068 |
| 2069 /* Look for an existing WhereLoop to replace with pTemplate |
| 2070 */ |
| 2071 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); |
| 2072 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); |
| 2073 |
| 2074 if( ppPrev==0 ){ |
| 2075 /* There already exists a WhereLoop on the list that is better |
| 2076 ** than pTemplate, so just ignore pTemplate */ |
| 2077 #if WHERETRACE_ENABLED /* 0x8 */ |
| 2078 if( sqlite3WhereTrace & 0x8 ){ |
| 2079 sqlite3DebugPrintf(" skip: "); |
| 2080 whereLoopPrint(pTemplate, pBuilder->pWC); |
| 2081 } |
| 2082 #endif |
| 2083 return SQLITE_OK; |
| 2084 }else{ |
| 2085 p = *ppPrev; |
| 2086 } |
| 2087 |
| 2088 /* If we reach this point it means that either p[] should be overwritten |
| 2089 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new |
| 2090 ** WhereLoop and insert it. |
| 2091 */ |
| 2092 #if WHERETRACE_ENABLED /* 0x8 */ |
| 2093 if( sqlite3WhereTrace & 0x8 ){ |
| 2094 if( p!=0 ){ |
| 2095 sqlite3DebugPrintf("replace: "); |
| 2096 whereLoopPrint(p, pBuilder->pWC); |
| 2097 } |
| 2098 sqlite3DebugPrintf(" add: "); |
| 2099 whereLoopPrint(pTemplate, pBuilder->pWC); |
| 2100 } |
| 2101 #endif |
| 2102 if( p==0 ){ |
| 2103 /* Allocate a new WhereLoop to add to the end of the list */ |
| 2104 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); |
| 2105 if( p==0 ) return SQLITE_NOMEM_BKPT; |
| 2106 whereLoopInit(p); |
| 2107 p->pNextLoop = 0; |
| 2108 }else{ |
| 2109 /* We will be overwriting WhereLoop p[]. But before we do, first |
| 2110 ** go through the rest of the list and delete any other entries besides |
| 2111 ** p[] that are also supplated by pTemplate */ |
| 2112 WhereLoop **ppTail = &p->pNextLoop; |
| 2113 WhereLoop *pToDel; |
| 2114 while( *ppTail ){ |
| 2115 ppTail = whereLoopFindLesser(ppTail, pTemplate); |
| 2116 if( ppTail==0 ) break; |
| 2117 pToDel = *ppTail; |
| 2118 if( pToDel==0 ) break; |
| 2119 *ppTail = pToDel->pNextLoop; |
| 2120 #if WHERETRACE_ENABLED /* 0x8 */ |
| 2121 if( sqlite3WhereTrace & 0x8 ){ |
| 2122 sqlite3DebugPrintf(" delete: "); |
| 2123 whereLoopPrint(pToDel, pBuilder->pWC); |
| 2124 } |
| 2125 #endif |
| 2126 whereLoopDelete(db, pToDel); |
| 2127 } |
| 2128 } |
| 2129 rc = whereLoopXfer(db, p, pTemplate); |
| 2130 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ |
| 2131 Index *pIndex = p->u.btree.pIndex; |
| 2132 if( pIndex && pIndex->tnum==0 ){ |
| 2133 p->u.btree.pIndex = 0; |
| 2134 } |
| 2135 } |
| 2136 return rc; |
| 2137 } |
| 2138 |
| 2139 /* |
| 2140 ** Adjust the WhereLoop.nOut value downward to account for terms of the |
| 2141 ** WHERE clause that reference the loop but which are not used by an |
| 2142 ** index. |
| 2143 * |
| 2144 ** For every WHERE clause term that is not used by the index |
| 2145 ** and which has a truth probability assigned by one of the likelihood(), |
| 2146 ** likely(), or unlikely() SQL functions, reduce the estimated number |
| 2147 ** of output rows by the probability specified. |
| 2148 ** |
| 2149 ** TUNING: For every WHERE clause term that is not used by the index |
| 2150 ** and which does not have an assigned truth probability, heuristics |
| 2151 ** described below are used to try to estimate the truth probability. |
| 2152 ** TODO --> Perhaps this is something that could be improved by better |
| 2153 ** table statistics. |
| 2154 ** |
| 2155 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% |
| 2156 ** value corresponds to -1 in LogEst notation, so this means decrement |
| 2157 ** the WhereLoop.nOut field for every such WHERE clause term. |
| 2158 ** |
| 2159 ** Heuristic 2: If there exists one or more WHERE clause terms of the |
| 2160 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the |
| 2161 ** final output row estimate is no greater than 1/4 of the total number |
| 2162 ** of rows in the table. In other words, assume that x==EXPR will filter |
| 2163 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the |
| 2164 ** "x" column is boolean or else -1 or 0 or 1 is a common default value |
| 2165 ** on the "x" column and so in that case only cap the output row estimate |
| 2166 ** at 1/2 instead of 1/4. |
| 2167 */ |
| 2168 static void whereLoopOutputAdjust( |
| 2169 WhereClause *pWC, /* The WHERE clause */ |
| 2170 WhereLoop *pLoop, /* The loop to adjust downward */ |
| 2171 LogEst nRow /* Number of rows in the entire table */ |
| 2172 ){ |
| 2173 WhereTerm *pTerm, *pX; |
| 2174 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); |
| 2175 int i, j, k; |
| 2176 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ |
| 2177 |
| 2178 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); |
| 2179 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ |
| 2180 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; |
| 2181 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; |
| 2182 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; |
| 2183 for(j=pLoop->nLTerm-1; j>=0; j--){ |
| 2184 pX = pLoop->aLTerm[j]; |
| 2185 if( pX==0 ) continue; |
| 2186 if( pX==pTerm ) break; |
| 2187 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; |
| 2188 } |
| 2189 if( j<0 ){ |
| 2190 if( pTerm->truthProb<=0 ){ |
| 2191 /* If a truth probability is specified using the likelihood() hints, |
| 2192 ** then use the probability provided by the application. */ |
| 2193 pLoop->nOut += pTerm->truthProb; |
| 2194 }else{ |
| 2195 /* In the absence of explicit truth probabilities, use heuristics to |
| 2196 ** guess a reasonable truth probability. */ |
| 2197 pLoop->nOut--; |
| 2198 if( pTerm->eOperator&(WO_EQ|WO_IS) ){ |
| 2199 Expr *pRight = pTerm->pExpr->pRight; |
| 2200 testcase( pTerm->pExpr->op==TK_IS ); |
| 2201 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ |
| 2202 k = 10; |
| 2203 }else{ |
| 2204 k = 20; |
| 2205 } |
| 2206 if( iReduce<k ) iReduce = k; |
| 2207 } |
| 2208 } |
| 2209 } |
| 2210 } |
| 2211 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce; |
| 2212 } |
| 2213 |
| 2214 /* |
| 2215 ** Term pTerm is a vector range comparison operation. The first comparison |
| 2216 ** in the vector can be optimized using column nEq of the index. This |
| 2217 ** function returns the total number of vector elements that can be used |
| 2218 ** as part of the range comparison. |
| 2219 ** |
| 2220 ** For example, if the query is: |
| 2221 ** |
| 2222 ** WHERE a = ? AND (b, c, d) > (?, ?, ?) |
| 2223 ** |
| 2224 ** and the index: |
| 2225 ** |
| 2226 ** CREATE INDEX ... ON (a, b, c, d, e) |
| 2227 ** |
| 2228 ** then this function would be invoked with nEq=1. The value returned in |
| 2229 ** this case is 3. |
| 2230 */ |
| 2231 static int whereRangeVectorLen( |
| 2232 Parse *pParse, /* Parsing context */ |
| 2233 int iCur, /* Cursor open on pIdx */ |
| 2234 Index *pIdx, /* The index to be used for a inequality constraint */ |
| 2235 int nEq, /* Number of prior equality constraints on same index */ |
| 2236 WhereTerm *pTerm /* The vector inequality constraint */ |
| 2237 ){ |
| 2238 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); |
| 2239 int i; |
| 2240 |
| 2241 nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); |
| 2242 for(i=1; i<nCmp; i++){ |
| 2243 /* Test if comparison i of pTerm is compatible with column (i+nEq) |
| 2244 ** of the index. If not, exit the loop. */ |
| 2245 char aff; /* Comparison affinity */ |
| 2246 char idxaff = 0; /* Indexed columns affinity */ |
| 2247 CollSeq *pColl; /* Comparison collation sequence */ |
| 2248 Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; |
| 2249 Expr *pRhs = pTerm->pExpr->pRight; |
| 2250 if( pRhs->flags & EP_xIsSelect ){ |
| 2251 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; |
| 2252 }else{ |
| 2253 pRhs = pRhs->x.pList->a[i].pExpr; |
| 2254 } |
| 2255 |
| 2256 /* Check that the LHS of the comparison is a column reference to |
| 2257 ** the right column of the right source table. And that the sort |
| 2258 ** order of the index column is the same as the sort order of the |
| 2259 ** leftmost index column. */ |
| 2260 if( pLhs->op!=TK_COLUMN |
| 2261 || pLhs->iTable!=iCur |
| 2262 || pLhs->iColumn!=pIdx->aiColumn[i+nEq] |
| 2263 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] |
| 2264 ){ |
| 2265 break; |
| 2266 } |
| 2267 |
| 2268 testcase( pLhs->iColumn==XN_ROWID ); |
| 2269 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); |
| 2270 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); |
| 2271 if( aff!=idxaff ) break; |
| 2272 |
| 2273 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); |
| 2274 if( pColl==0 ) break; |
| 2275 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; |
| 2276 } |
| 2277 return i; |
| 2278 } |
| 2279 |
| 2280 /* |
| 2281 ** Adjust the cost C by the costMult facter T. This only occurs if |
| 2282 ** compiled with -DSQLITE_ENABLE_COSTMULT |
| 2283 */ |
| 2284 #ifdef SQLITE_ENABLE_COSTMULT |
| 2285 # define ApplyCostMultiplier(C,T) C += T |
| 2286 #else |
| 2287 # define ApplyCostMultiplier(C,T) |
| 2288 #endif |
| 2289 |
| 2290 /* |
| 2291 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the |
| 2292 ** index pIndex. Try to match one more. |
| 2293 ** |
| 2294 ** When this function is called, pBuilder->pNew->nOut contains the |
| 2295 ** number of rows expected to be visited by filtering using the nEq |
| 2296 ** terms only. If it is modified, this value is restored before this |
| 2297 ** function returns. |
| 2298 ** |
| 2299 ** If pProbe->tnum==0, that means pIndex is a fake index used for the |
| 2300 ** INTEGER PRIMARY KEY. |
| 2301 */ |
| 2302 static int whereLoopAddBtreeIndex( |
| 2303 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ |
| 2304 struct SrcList_item *pSrc, /* FROM clause term being analyzed */ |
| 2305 Index *pProbe, /* An index on pSrc */ |
| 2306 LogEst nInMul /* log(Number of iterations due to IN) */ |
| 2307 ){ |
| 2308 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ |
| 2309 Parse *pParse = pWInfo->pParse; /* Parsing context */ |
| 2310 sqlite3 *db = pParse->db; /* Database connection malloc context */ |
| 2311 WhereLoop *pNew; /* Template WhereLoop under construction */ |
| 2312 WhereTerm *pTerm; /* A WhereTerm under consideration */ |
| 2313 int opMask; /* Valid operators for constraints */ |
| 2314 WhereScan scan; /* Iterator for WHERE terms */ |
| 2315 Bitmask saved_prereq; /* Original value of pNew->prereq */ |
| 2316 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ |
| 2317 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ |
| 2318 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ |
| 2319 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ |
| 2320 u16 saved_nSkip; /* Original value of pNew->nSkip */ |
| 2321 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ |
| 2322 LogEst saved_nOut; /* Original value of pNew->nOut */ |
| 2323 int rc = SQLITE_OK; /* Return code */ |
| 2324 LogEst rSize; /* Number of rows in the table */ |
| 2325 LogEst rLogSize; /* Logarithm of table size */ |
| 2326 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ |
| 2327 |
| 2328 pNew = pBuilder->pNew; |
| 2329 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; |
| 2330 WHERETRACE(0x800, ("BEGIN addBtreeIdx(%s), nEq=%d\n", |
| 2331 pProbe->zName, pNew->u.btree.nEq)); |
| 2332 |
| 2333 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); |
| 2334 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); |
| 2335 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ |
| 2336 opMask = WO_LT|WO_LE; |
| 2337 }else{ |
| 2338 assert( pNew->u.btree.nBtm==0 ); |
| 2339 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; |
| 2340 } |
| 2341 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); |
| 2342 |
| 2343 assert( pNew->u.btree.nEq<pProbe->nColumn ); |
| 2344 |
| 2345 saved_nEq = pNew->u.btree.nEq; |
| 2346 saved_nBtm = pNew->u.btree.nBtm; |
| 2347 saved_nTop = pNew->u.btree.nTop; |
| 2348 saved_nSkip = pNew->nSkip; |
| 2349 saved_nLTerm = pNew->nLTerm; |
| 2350 saved_wsFlags = pNew->wsFlags; |
| 2351 saved_prereq = pNew->prereq; |
| 2352 saved_nOut = pNew->nOut; |
| 2353 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, |
| 2354 opMask, pProbe); |
| 2355 pNew->rSetup = 0; |
| 2356 rSize = pProbe->aiRowLogEst[0]; |
| 2357 rLogSize = estLog(rSize); |
| 2358 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ |
| 2359 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ |
| 2360 LogEst rCostIdx; |
| 2361 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ |
| 2362 int nIn = 0; |
| 2363 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 2364 int nRecValid = pBuilder->nRecValid; |
| 2365 #endif |
| 2366 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) |
| 2367 && indexColumnNotNull(pProbe, saved_nEq) |
| 2368 ){ |
| 2369 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ |
| 2370 } |
| 2371 if( pTerm->prereqRight & pNew->maskSelf ) continue; |
| 2372 |
| 2373 /* Do not allow the upper bound of a LIKE optimization range constraint |
| 2374 ** to mix with a lower range bound from some other source */ |
| 2375 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; |
| 2376 |
| 2377 /* Do not allow IS constraints from the WHERE clause to be used by the |
| 2378 ** right table of a LEFT JOIN. Only constraints in the ON clause are |
| 2379 ** allowed */ |
| 2380 if( (pSrc->fg.jointype & JT_LEFT)!=0 |
| 2381 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) |
| 2382 && (eOp & (WO_IS|WO_ISNULL))!=0 |
| 2383 ){ |
| 2384 testcase( eOp & WO_IS ); |
| 2385 testcase( eOp & WO_ISNULL ); |
| 2386 continue; |
| 2387 } |
| 2388 |
| 2389 pNew->wsFlags = saved_wsFlags; |
| 2390 pNew->u.btree.nEq = saved_nEq; |
| 2391 pNew->u.btree.nBtm = saved_nBtm; |
| 2392 pNew->u.btree.nTop = saved_nTop; |
| 2393 pNew->nLTerm = saved_nLTerm; |
| 2394 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ |
| 2395 pNew->aLTerm[pNew->nLTerm++] = pTerm; |
| 2396 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; |
| 2397 |
| 2398 assert( nInMul==0 |
| 2399 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 |
| 2400 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 |
| 2401 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 |
| 2402 ); |
| 2403 |
| 2404 if( eOp & WO_IN ){ |
| 2405 Expr *pExpr = pTerm->pExpr; |
| 2406 pNew->wsFlags |= WHERE_COLUMN_IN; |
| 2407 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
| 2408 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ |
| 2409 int i; |
| 2410 nIn = 46; assert( 46==sqlite3LogEst(25) ); |
| 2411 |
| 2412 /* The expression may actually be of the form (x, y) IN (SELECT...). |
| 2413 ** In this case there is a separate term for each of (x) and (y). |
| 2414 ** However, the nIn multiplier should only be applied once, not once |
| 2415 ** for each such term. The following loop checks that pTerm is the |
| 2416 ** first such term in use, and sets nIn back to 0 if it is not. */ |
| 2417 for(i=0; i<pNew->nLTerm-1; i++){ |
| 2418 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; |
| 2419 } |
| 2420 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ |
| 2421 /* "x IN (value, value, ...)" */ |
| 2422 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); |
| 2423 assert( nIn>0 ); /* RHS always has 2 or more terms... The parser |
| 2424 ** changes "x IN (?)" into "x=?". */ |
| 2425 } |
| 2426 }else if( eOp & (WO_EQ|WO_IS) ){ |
| 2427 int iCol = pProbe->aiColumn[saved_nEq]; |
| 2428 pNew->wsFlags |= WHERE_COLUMN_EQ; |
| 2429 assert( saved_nEq==pNew->u.btree.nEq ); |
| 2430 if( iCol==XN_ROWID |
| 2431 || (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) |
| 2432 ){ |
| 2433 if( iCol>=0 && pProbe->uniqNotNull==0 ){ |
| 2434 pNew->wsFlags |= WHERE_UNQ_WANTED; |
| 2435 }else{ |
| 2436 pNew->wsFlags |= WHERE_ONEROW; |
| 2437 } |
| 2438 } |
| 2439 }else if( eOp & WO_ISNULL ){ |
| 2440 pNew->wsFlags |= WHERE_COLUMN_NULL; |
| 2441 }else if( eOp & (WO_GT|WO_GE) ){ |
| 2442 testcase( eOp & WO_GT ); |
| 2443 testcase( eOp & WO_GE ); |
| 2444 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; |
| 2445 pNew->u.btree.nBtm = whereRangeVectorLen( |
| 2446 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm |
| 2447 ); |
| 2448 pBtm = pTerm; |
| 2449 pTop = 0; |
| 2450 if( pTerm->wtFlags & TERM_LIKEOPT ){ |
| 2451 /* Range contraints that come from the LIKE optimization are |
| 2452 ** always used in pairs. */ |
| 2453 pTop = &pTerm[1]; |
| 2454 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); |
| 2455 assert( pTop->wtFlags & TERM_LIKEOPT ); |
| 2456 assert( pTop->eOperator==WO_LT ); |
| 2457 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ |
| 2458 pNew->aLTerm[pNew->nLTerm++] = pTop; |
| 2459 pNew->wsFlags |= WHERE_TOP_LIMIT; |
| 2460 pNew->u.btree.nTop = 1; |
| 2461 } |
| 2462 }else{ |
| 2463 assert( eOp & (WO_LT|WO_LE) ); |
| 2464 testcase( eOp & WO_LT ); |
| 2465 testcase( eOp & WO_LE ); |
| 2466 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; |
| 2467 pNew->u.btree.nTop = whereRangeVectorLen( |
| 2468 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm |
| 2469 ); |
| 2470 pTop = pTerm; |
| 2471 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? |
| 2472 pNew->aLTerm[pNew->nLTerm-2] : 0; |
| 2473 } |
| 2474 |
| 2475 /* At this point pNew->nOut is set to the number of rows expected to |
| 2476 ** be visited by the index scan before considering term pTerm, or the |
| 2477 ** values of nIn and nInMul. In other words, assuming that all |
| 2478 ** "x IN(...)" terms are replaced with "x = ?". This block updates |
| 2479 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ |
| 2480 assert( pNew->nOut==saved_nOut ); |
| 2481 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ |
| 2482 /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4 |
| 2483 ** data, using some other estimate. */ |
| 2484 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); |
| 2485 }else{ |
| 2486 int nEq = ++pNew->u.btree.nEq; |
| 2487 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); |
| 2488 |
| 2489 assert( pNew->nOut==saved_nOut ); |
| 2490 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ |
| 2491 assert( (eOp & WO_IN) || nIn==0 ); |
| 2492 testcase( eOp & WO_IN ); |
| 2493 pNew->nOut += pTerm->truthProb; |
| 2494 pNew->nOut -= nIn; |
| 2495 }else{ |
| 2496 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 2497 tRowcnt nOut = 0; |
| 2498 if( nInMul==0 |
| 2499 && pProbe->nSample |
| 2500 && pNew->u.btree.nEq<=pProbe->nSampleCol |
| 2501 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) |
| 2502 ){ |
| 2503 Expr *pExpr = pTerm->pExpr; |
| 2504 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ |
| 2505 testcase( eOp & WO_EQ ); |
| 2506 testcase( eOp & WO_IS ); |
| 2507 testcase( eOp & WO_ISNULL ); |
| 2508 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); |
| 2509 }else{ |
| 2510 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); |
| 2511 } |
| 2512 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; |
| 2513 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ |
| 2514 if( nOut ){ |
| 2515 pNew->nOut = sqlite3LogEst(nOut); |
| 2516 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; |
| 2517 pNew->nOut -= nIn; |
| 2518 } |
| 2519 } |
| 2520 if( nOut==0 ) |
| 2521 #endif |
| 2522 { |
| 2523 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); |
| 2524 if( eOp & WO_ISNULL ){ |
| 2525 /* TUNING: If there is no likelihood() value, assume that a |
| 2526 ** "col IS NULL" expression matches twice as many rows |
| 2527 ** as (col=?). */ |
| 2528 pNew->nOut += 10; |
| 2529 } |
| 2530 } |
| 2531 } |
| 2532 } |
| 2533 |
| 2534 /* Set rCostIdx to the cost of visiting selected rows in index. Add |
| 2535 ** it to pNew->rRun, which is currently set to the cost of the index |
| 2536 ** seek only. Then, if this is a non-covering index, add the cost of |
| 2537 ** visiting the rows in the main table. */ |
| 2538 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; |
| 2539 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); |
| 2540 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ |
| 2541 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); |
| 2542 } |
| 2543 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); |
| 2544 |
| 2545 nOutUnadjusted = pNew->nOut; |
| 2546 pNew->rRun += nInMul + nIn; |
| 2547 pNew->nOut += nInMul + nIn; |
| 2548 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); |
| 2549 rc = whereLoopInsert(pBuilder, pNew); |
| 2550 |
| 2551 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ |
| 2552 pNew->nOut = saved_nOut; |
| 2553 }else{ |
| 2554 pNew->nOut = nOutUnadjusted; |
| 2555 } |
| 2556 |
| 2557 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 |
| 2558 && pNew->u.btree.nEq<pProbe->nColumn |
| 2559 ){ |
| 2560 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); |
| 2561 } |
| 2562 pNew->nOut = saved_nOut; |
| 2563 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 2564 pBuilder->nRecValid = nRecValid; |
| 2565 #endif |
| 2566 } |
| 2567 pNew->prereq = saved_prereq; |
| 2568 pNew->u.btree.nEq = saved_nEq; |
| 2569 pNew->u.btree.nBtm = saved_nBtm; |
| 2570 pNew->u.btree.nTop = saved_nTop; |
| 2571 pNew->nSkip = saved_nSkip; |
| 2572 pNew->wsFlags = saved_wsFlags; |
| 2573 pNew->nOut = saved_nOut; |
| 2574 pNew->nLTerm = saved_nLTerm; |
| 2575 |
| 2576 /* Consider using a skip-scan if there are no WHERE clause constraints |
| 2577 ** available for the left-most terms of the index, and if the average |
| 2578 ** number of repeats in the left-most terms is at least 18. |
| 2579 ** |
| 2580 ** The magic number 18 is selected on the basis that scanning 17 rows |
| 2581 ** is almost always quicker than an index seek (even though if the index |
| 2582 ** contains fewer than 2^17 rows we assume otherwise in other parts of |
| 2583 ** the code). And, even if it is not, it should not be too much slower. |
| 2584 ** On the other hand, the extra seeks could end up being significantly |
| 2585 ** more expensive. */ |
| 2586 assert( 42==sqlite3LogEst(18) ); |
| 2587 if( saved_nEq==saved_nSkip |
| 2588 && saved_nEq+1<pProbe->nKeyCol |
| 2589 && pProbe->noSkipScan==0 |
| 2590 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ |
| 2591 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK |
| 2592 ){ |
| 2593 LogEst nIter; |
| 2594 pNew->u.btree.nEq++; |
| 2595 pNew->nSkip++; |
| 2596 pNew->aLTerm[pNew->nLTerm++] = 0; |
| 2597 pNew->wsFlags |= WHERE_SKIPSCAN; |
| 2598 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; |
| 2599 pNew->nOut -= nIter; |
| 2600 /* TUNING: Because uncertainties in the estimates for skip-scan queries, |
| 2601 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ |
| 2602 nIter += 5; |
| 2603 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); |
| 2604 pNew->nOut = saved_nOut; |
| 2605 pNew->u.btree.nEq = saved_nEq; |
| 2606 pNew->nSkip = saved_nSkip; |
| 2607 pNew->wsFlags = saved_wsFlags; |
| 2608 } |
| 2609 |
| 2610 WHERETRACE(0x800, ("END addBtreeIdx(%s), nEq=%d, rc=%d\n", |
| 2611 pProbe->zName, saved_nEq, rc)); |
| 2612 return rc; |
| 2613 } |
| 2614 |
| 2615 /* |
| 2616 ** Return True if it is possible that pIndex might be useful in |
| 2617 ** implementing the ORDER BY clause in pBuilder. |
| 2618 ** |
| 2619 ** Return False if pBuilder does not contain an ORDER BY clause or |
| 2620 ** if there is no way for pIndex to be useful in implementing that |
| 2621 ** ORDER BY clause. |
| 2622 */ |
| 2623 static int indexMightHelpWithOrderBy( |
| 2624 WhereLoopBuilder *pBuilder, |
| 2625 Index *pIndex, |
| 2626 int iCursor |
| 2627 ){ |
| 2628 ExprList *pOB; |
| 2629 ExprList *aColExpr; |
| 2630 int ii, jj; |
| 2631 |
| 2632 if( pIndex->bUnordered ) return 0; |
| 2633 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; |
| 2634 for(ii=0; ii<pOB->nExpr; ii++){ |
| 2635 Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr); |
| 2636 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ |
| 2637 if( pExpr->iColumn<0 ) return 1; |
| 2638 for(jj=0; jj<pIndex->nKeyCol; jj++){ |
| 2639 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; |
| 2640 } |
| 2641 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ |
| 2642 for(jj=0; jj<pIndex->nKeyCol; jj++){ |
| 2643 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; |
| 2644 if( sqlite3ExprCompare(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ |
| 2645 return 1; |
| 2646 } |
| 2647 } |
| 2648 } |
| 2649 } |
| 2650 return 0; |
| 2651 } |
| 2652 |
| 2653 /* |
| 2654 ** Return a bitmask where 1s indicate that the corresponding column of |
| 2655 ** the table is used by an index. Only the first 63 columns are considered. |
| 2656 */ |
| 2657 static Bitmask columnsInIndex(Index *pIdx){ |
| 2658 Bitmask m = 0; |
| 2659 int j; |
| 2660 for(j=pIdx->nColumn-1; j>=0; j--){ |
| 2661 int x = pIdx->aiColumn[j]; |
| 2662 if( x>=0 ){ |
| 2663 testcase( x==BMS-1 ); |
| 2664 testcase( x==BMS-2 ); |
| 2665 if( x<BMS-1 ) m |= MASKBIT(x); |
| 2666 } |
| 2667 } |
| 2668 return m; |
| 2669 } |
| 2670 |
| 2671 /* Check to see if a partial index with pPartIndexWhere can be used |
| 2672 ** in the current query. Return true if it can be and false if not. |
| 2673 */ |
| 2674 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){ |
| 2675 int i; |
| 2676 WhereTerm *pTerm; |
| 2677 while( pWhere->op==TK_AND ){ |
| 2678 if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0; |
| 2679 pWhere = pWhere->pRight; |
| 2680 } |
| 2681 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ |
| 2682 Expr *pExpr = pTerm->pExpr; |
| 2683 if( sqlite3ExprImpliesExpr(pExpr, pWhere, iTab) |
| 2684 && (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab) |
| 2685 ){ |
| 2686 return 1; |
| 2687 } |
| 2688 } |
| 2689 return 0; |
| 2690 } |
| 2691 |
| 2692 /* |
| 2693 ** Add all WhereLoop objects for a single table of the join where the table |
| 2694 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be |
| 2695 ** a b-tree table, not a virtual table. |
| 2696 ** |
| 2697 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function |
| 2698 ** are calculated as follows: |
| 2699 ** |
| 2700 ** For a full scan, assuming the table (or index) contains nRow rows: |
| 2701 ** |
| 2702 ** cost = nRow * 3.0 // full-table scan |
| 2703 ** cost = nRow * K // scan of covering index |
| 2704 ** cost = nRow * (K+3.0) // scan of non-covering index |
| 2705 ** |
| 2706 ** where K is a value between 1.1 and 3.0 set based on the relative |
| 2707 ** estimated average size of the index and table records. |
| 2708 ** |
| 2709 ** For an index scan, where nVisit is the number of index rows visited |
| 2710 ** by the scan, and nSeek is the number of seek operations required on |
| 2711 ** the index b-tree: |
| 2712 ** |
| 2713 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index |
| 2714 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index |
| 2715 ** |
| 2716 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the |
| 2717 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when |
| 2718 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. |
| 2719 ** |
| 2720 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount |
| 2721 ** of uncertainty. For this reason, scoring is designed to pick plans that |
| 2722 ** "do the least harm" if the estimates are inaccurate. For example, a |
| 2723 ** log(nRow) factor is omitted from a non-covering index scan in order to |
| 2724 ** bias the scoring in favor of using an index, since the worst-case |
| 2725 ** performance of using an index is far better than the worst-case performance |
| 2726 ** of a full table scan. |
| 2727 */ |
| 2728 static int whereLoopAddBtree( |
| 2729 WhereLoopBuilder *pBuilder, /* WHERE clause information */ |
| 2730 Bitmask mPrereq /* Extra prerequesites for using this table */ |
| 2731 ){ |
| 2732 WhereInfo *pWInfo; /* WHERE analysis context */ |
| 2733 Index *pProbe; /* An index we are evaluating */ |
| 2734 Index sPk; /* A fake index object for the primary key */ |
| 2735 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ |
| 2736 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ |
| 2737 SrcList *pTabList; /* The FROM clause */ |
| 2738 struct SrcList_item *pSrc; /* The FROM clause btree term to add */ |
| 2739 WhereLoop *pNew; /* Template WhereLoop object */ |
| 2740 int rc = SQLITE_OK; /* Return code */ |
| 2741 int iSortIdx = 1; /* Index number */ |
| 2742 int b; /* A boolean value */ |
| 2743 LogEst rSize; /* number of rows in the table */ |
| 2744 LogEst rLogSize; /* Logarithm of the number of rows in the table */ |
| 2745 WhereClause *pWC; /* The parsed WHERE clause */ |
| 2746 Table *pTab; /* Table being queried */ |
| 2747 |
| 2748 pNew = pBuilder->pNew; |
| 2749 pWInfo = pBuilder->pWInfo; |
| 2750 pTabList = pWInfo->pTabList; |
| 2751 pSrc = pTabList->a + pNew->iTab; |
| 2752 pTab = pSrc->pTab; |
| 2753 pWC = pBuilder->pWC; |
| 2754 assert( !IsVirtual(pSrc->pTab) ); |
| 2755 |
| 2756 if( pSrc->pIBIndex ){ |
| 2757 /* An INDEXED BY clause specifies a particular index to use */ |
| 2758 pProbe = pSrc->pIBIndex; |
| 2759 }else if( !HasRowid(pTab) ){ |
| 2760 pProbe = pTab->pIndex; |
| 2761 }else{ |
| 2762 /* There is no INDEXED BY clause. Create a fake Index object in local |
| 2763 ** variable sPk to represent the rowid primary key index. Make this |
| 2764 ** fake index the first in a chain of Index objects with all of the real |
| 2765 ** indices to follow */ |
| 2766 Index *pFirst; /* First of real indices on the table */ |
| 2767 memset(&sPk, 0, sizeof(Index)); |
| 2768 sPk.nKeyCol = 1; |
| 2769 sPk.nColumn = 1; |
| 2770 sPk.aiColumn = &aiColumnPk; |
| 2771 sPk.aiRowLogEst = aiRowEstPk; |
| 2772 sPk.onError = OE_Replace; |
| 2773 sPk.pTable = pTab; |
| 2774 sPk.szIdxRow = pTab->szTabRow; |
| 2775 aiRowEstPk[0] = pTab->nRowLogEst; |
| 2776 aiRowEstPk[1] = 0; |
| 2777 pFirst = pSrc->pTab->pIndex; |
| 2778 if( pSrc->fg.notIndexed==0 ){ |
| 2779 /* The real indices of the table are only considered if the |
| 2780 ** NOT INDEXED qualifier is omitted from the FROM clause */ |
| 2781 sPk.pNext = pFirst; |
| 2782 } |
| 2783 pProbe = &sPk; |
| 2784 } |
| 2785 rSize = pTab->nRowLogEst; |
| 2786 rLogSize = estLog(rSize); |
| 2787 |
| 2788 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
| 2789 /* Automatic indexes */ |
| 2790 if( !pBuilder->pOrSet /* Not part of an OR optimization */ |
| 2791 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 |
| 2792 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 |
| 2793 && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */ |
| 2794 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ |
| 2795 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ |
| 2796 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ |
| 2797 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ |
| 2798 ){ |
| 2799 /* Generate auto-index WhereLoops */ |
| 2800 WhereTerm *pTerm; |
| 2801 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; |
| 2802 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ |
| 2803 if( pTerm->prereqRight & pNew->maskSelf ) continue; |
| 2804 if( termCanDriveIndex(pTerm, pSrc, 0) ){ |
| 2805 pNew->u.btree.nEq = 1; |
| 2806 pNew->nSkip = 0; |
| 2807 pNew->u.btree.pIndex = 0; |
| 2808 pNew->nLTerm = 1; |
| 2809 pNew->aLTerm[0] = pTerm; |
| 2810 /* TUNING: One-time cost for computing the automatic index is |
| 2811 ** estimated to be X*N*log2(N) where N is the number of rows in |
| 2812 ** the table being indexed and where X is 7 (LogEst=28) for normal |
| 2813 ** tables or 1.375 (LogEst=4) for views and subqueries. The value |
| 2814 ** of X is smaller for views and subqueries so that the query planner |
| 2815 ** will be more aggressive about generating automatic indexes for |
| 2816 ** those objects, since there is no opportunity to add schema |
| 2817 ** indexes on subqueries and views. */ |
| 2818 pNew->rSetup = rLogSize + rSize + 4; |
| 2819 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ |
| 2820 pNew->rSetup += 24; |
| 2821 } |
| 2822 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); |
| 2823 if( pNew->rSetup<0 ) pNew->rSetup = 0; |
| 2824 /* TUNING: Each index lookup yields 20 rows in the table. This |
| 2825 ** is more than the usual guess of 10 rows, since we have no way |
| 2826 ** of knowing how selective the index will ultimately be. It would |
| 2827 ** not be unreasonable to make this value much larger. */ |
| 2828 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); |
| 2829 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); |
| 2830 pNew->wsFlags = WHERE_AUTO_INDEX; |
| 2831 pNew->prereq = mPrereq | pTerm->prereqRight; |
| 2832 rc = whereLoopInsert(pBuilder, pNew); |
| 2833 } |
| 2834 } |
| 2835 } |
| 2836 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ |
| 2837 |
| 2838 /* Loop over all indices |
| 2839 */ |
| 2840 for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){ |
| 2841 if( pProbe->pPartIdxWhere!=0 |
| 2842 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){ |
| 2843 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ |
| 2844 continue; /* Partial index inappropriate for this query */ |
| 2845 } |
| 2846 rSize = pProbe->aiRowLogEst[0]; |
| 2847 pNew->u.btree.nEq = 0; |
| 2848 pNew->u.btree.nBtm = 0; |
| 2849 pNew->u.btree.nTop = 0; |
| 2850 pNew->nSkip = 0; |
| 2851 pNew->nLTerm = 0; |
| 2852 pNew->iSortIdx = 0; |
| 2853 pNew->rSetup = 0; |
| 2854 pNew->prereq = mPrereq; |
| 2855 pNew->nOut = rSize; |
| 2856 pNew->u.btree.pIndex = pProbe; |
| 2857 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); |
| 2858 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ |
| 2859 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); |
| 2860 if( pProbe->tnum<=0 ){ |
| 2861 /* Integer primary key index */ |
| 2862 pNew->wsFlags = WHERE_IPK; |
| 2863 |
| 2864 /* Full table scan */ |
| 2865 pNew->iSortIdx = b ? iSortIdx : 0; |
| 2866 /* TUNING: Cost of full table scan is (N*3.0). */ |
| 2867 pNew->rRun = rSize + 16; |
| 2868 ApplyCostMultiplier(pNew->rRun, pTab->costMult); |
| 2869 whereLoopOutputAdjust(pWC, pNew, rSize); |
| 2870 rc = whereLoopInsert(pBuilder, pNew); |
| 2871 pNew->nOut = rSize; |
| 2872 if( rc ) break; |
| 2873 }else{ |
| 2874 Bitmask m; |
| 2875 if( pProbe->isCovering ){ |
| 2876 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; |
| 2877 m = 0; |
| 2878 }else{ |
| 2879 m = pSrc->colUsed & ~columnsInIndex(pProbe); |
| 2880 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; |
| 2881 } |
| 2882 |
| 2883 /* Full scan via index */ |
| 2884 if( b |
| 2885 || !HasRowid(pTab) |
| 2886 || pProbe->pPartIdxWhere!=0 |
| 2887 || ( m==0 |
| 2888 && pProbe->bUnordered==0 |
| 2889 && (pProbe->szIdxRow<pTab->szTabRow) |
| 2890 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 |
| 2891 && sqlite3GlobalConfig.bUseCis |
| 2892 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) |
| 2893 ) |
| 2894 ){ |
| 2895 pNew->iSortIdx = b ? iSortIdx : 0; |
| 2896 |
| 2897 /* The cost of visiting the index rows is N*K, where K is |
| 2898 ** between 1.1 and 3.0, depending on the relative sizes of the |
| 2899 ** index and table rows. */ |
| 2900 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; |
| 2901 if( m!=0 ){ |
| 2902 /* If this is a non-covering index scan, add in the cost of |
| 2903 ** doing table lookups. The cost will be 3x the number of |
| 2904 ** lookups. Take into account WHERE clause terms that can be |
| 2905 ** satisfied using just the index, and that do not require a |
| 2906 ** table lookup. */ |
| 2907 LogEst nLookup = rSize + 16; /* Base cost: N*3 */ |
| 2908 int ii; |
| 2909 int iCur = pSrc->iCursor; |
| 2910 WhereClause *pWC2 = &pWInfo->sWC; |
| 2911 for(ii=0; ii<pWC2->nTerm; ii++){ |
| 2912 WhereTerm *pTerm = &pWC2->a[ii]; |
| 2913 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ |
| 2914 break; |
| 2915 } |
| 2916 /* pTerm can be evaluated using just the index. So reduce |
| 2917 ** the expected number of table lookups accordingly */ |
| 2918 if( pTerm->truthProb<=0 ){ |
| 2919 nLookup += pTerm->truthProb; |
| 2920 }else{ |
| 2921 nLookup--; |
| 2922 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; |
| 2923 } |
| 2924 } |
| 2925 |
| 2926 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); |
| 2927 } |
| 2928 ApplyCostMultiplier(pNew->rRun, pTab->costMult); |
| 2929 whereLoopOutputAdjust(pWC, pNew, rSize); |
| 2930 rc = whereLoopInsert(pBuilder, pNew); |
| 2931 pNew->nOut = rSize; |
| 2932 if( rc ) break; |
| 2933 } |
| 2934 } |
| 2935 |
| 2936 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); |
| 2937 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 2938 sqlite3Stat4ProbeFree(pBuilder->pRec); |
| 2939 pBuilder->nRecValid = 0; |
| 2940 pBuilder->pRec = 0; |
| 2941 #endif |
| 2942 |
| 2943 /* If there was an INDEXED BY clause, then only that one index is |
| 2944 ** considered. */ |
| 2945 if( pSrc->pIBIndex ) break; |
| 2946 } |
| 2947 return rc; |
| 2948 } |
| 2949 |
| 2950 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 2951 |
| 2952 /* |
| 2953 ** Argument pIdxInfo is already populated with all constraints that may |
| 2954 ** be used by the virtual table identified by pBuilder->pNew->iTab. This |
| 2955 ** function marks a subset of those constraints usable, invokes the |
| 2956 ** xBestIndex method and adds the returned plan to pBuilder. |
| 2957 ** |
| 2958 ** A constraint is marked usable if: |
| 2959 ** |
| 2960 ** * Argument mUsable indicates that its prerequisites are available, and |
| 2961 ** |
| 2962 ** * It is not one of the operators specified in the mExclude mask passed |
| 2963 ** as the fourth argument (which in practice is either WO_IN or 0). |
| 2964 ** |
| 2965 ** Argument mPrereq is a mask of tables that must be scanned before the |
| 2966 ** virtual table in question. These are added to the plans prerequisites |
| 2967 ** before it is added to pBuilder. |
| 2968 ** |
| 2969 ** Output parameter *pbIn is set to true if the plan added to pBuilder |
| 2970 ** uses one or more WO_IN terms, or false otherwise. |
| 2971 */ |
| 2972 static int whereLoopAddVirtualOne( |
| 2973 WhereLoopBuilder *pBuilder, |
| 2974 Bitmask mPrereq, /* Mask of tables that must be used. */ |
| 2975 Bitmask mUsable, /* Mask of usable tables */ |
| 2976 u16 mExclude, /* Exclude terms using these operators */ |
| 2977 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ |
| 2978 u16 mNoOmit, /* Do not omit these constraints */ |
| 2979 int *pbIn /* OUT: True if plan uses an IN(...) op */ |
| 2980 ){ |
| 2981 WhereClause *pWC = pBuilder->pWC; |
| 2982 struct sqlite3_index_constraint *pIdxCons; |
| 2983 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; |
| 2984 int i; |
| 2985 int mxTerm; |
| 2986 int rc = SQLITE_OK; |
| 2987 WhereLoop *pNew = pBuilder->pNew; |
| 2988 Parse *pParse = pBuilder->pWInfo->pParse; |
| 2989 struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; |
| 2990 int nConstraint = pIdxInfo->nConstraint; |
| 2991 |
| 2992 assert( (mUsable & mPrereq)==mPrereq ); |
| 2993 *pbIn = 0; |
| 2994 pNew->prereq = mPrereq; |
| 2995 |
| 2996 /* Set the usable flag on the subset of constraints identified by |
| 2997 ** arguments mUsable and mExclude. */ |
| 2998 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; |
| 2999 for(i=0; i<nConstraint; i++, pIdxCons++){ |
| 3000 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; |
| 3001 pIdxCons->usable = 0; |
| 3002 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight |
| 3003 && (pTerm->eOperator & mExclude)==0 |
| 3004 ){ |
| 3005 pIdxCons->usable = 1; |
| 3006 } |
| 3007 } |
| 3008 |
| 3009 /* Initialize the output fields of the sqlite3_index_info structure */ |
| 3010 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); |
| 3011 assert( pIdxInfo->needToFreeIdxStr==0 ); |
| 3012 pIdxInfo->idxStr = 0; |
| 3013 pIdxInfo->idxNum = 0; |
| 3014 pIdxInfo->orderByConsumed = 0; |
| 3015 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; |
| 3016 pIdxInfo->estimatedRows = 25; |
| 3017 pIdxInfo->idxFlags = 0; |
| 3018 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; |
| 3019 |
| 3020 /* Invoke the virtual table xBestIndex() method */ |
| 3021 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); |
| 3022 if( rc ) return rc; |
| 3023 |
| 3024 mxTerm = -1; |
| 3025 assert( pNew->nLSlot>=nConstraint ); |
| 3026 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; |
| 3027 pNew->u.vtab.omitMask = 0; |
| 3028 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; |
| 3029 for(i=0; i<nConstraint; i++, pIdxCons++){ |
| 3030 int iTerm; |
| 3031 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ |
| 3032 WhereTerm *pTerm; |
| 3033 int j = pIdxCons->iTermOffset; |
| 3034 if( iTerm>=nConstraint |
| 3035 || j<0 |
| 3036 || j>=pWC->nTerm |
| 3037 || pNew->aLTerm[iTerm]!=0 |
| 3038 || pIdxCons->usable==0 |
| 3039 ){ |
| 3040 rc = SQLITE_ERROR; |
| 3041 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); |
| 3042 return rc; |
| 3043 } |
| 3044 testcase( iTerm==nConstraint-1 ); |
| 3045 testcase( j==0 ); |
| 3046 testcase( j==pWC->nTerm-1 ); |
| 3047 pTerm = &pWC->a[j]; |
| 3048 pNew->prereq |= pTerm->prereqRight; |
| 3049 assert( iTerm<pNew->nLSlot ); |
| 3050 pNew->aLTerm[iTerm] = pTerm; |
| 3051 if( iTerm>mxTerm ) mxTerm = iTerm; |
| 3052 testcase( iTerm==15 ); |
| 3053 testcase( iTerm==16 ); |
| 3054 if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm; |
| 3055 if( (pTerm->eOperator & WO_IN)!=0 ){ |
| 3056 /* A virtual table that is constrained by an IN clause may not |
| 3057 ** consume the ORDER BY clause because (1) the order of IN terms |
| 3058 ** is not necessarily related to the order of output terms and |
| 3059 ** (2) Multiple outputs from a single IN value will not merge |
| 3060 ** together. */ |
| 3061 pIdxInfo->orderByConsumed = 0; |
| 3062 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; |
| 3063 *pbIn = 1; assert( (mExclude & WO_IN)==0 ); |
| 3064 } |
| 3065 } |
| 3066 } |
| 3067 pNew->u.vtab.omitMask &= ~mNoOmit; |
| 3068 |
| 3069 pNew->nLTerm = mxTerm+1; |
| 3070 assert( pNew->nLTerm<=pNew->nLSlot ); |
| 3071 pNew->u.vtab.idxNum = pIdxInfo->idxNum; |
| 3072 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; |
| 3073 pIdxInfo->needToFreeIdxStr = 0; |
| 3074 pNew->u.vtab.idxStr = pIdxInfo->idxStr; |
| 3075 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? |
| 3076 pIdxInfo->nOrderBy : 0); |
| 3077 pNew->rSetup = 0; |
| 3078 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); |
| 3079 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); |
| 3080 |
| 3081 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated |
| 3082 ** that the scan will visit at most one row. Clear it otherwise. */ |
| 3083 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ |
| 3084 pNew->wsFlags |= WHERE_ONEROW; |
| 3085 }else{ |
| 3086 pNew->wsFlags &= ~WHERE_ONEROW; |
| 3087 } |
| 3088 rc = whereLoopInsert(pBuilder, pNew); |
| 3089 if( pNew->u.vtab.needFree ){ |
| 3090 sqlite3_free(pNew->u.vtab.idxStr); |
| 3091 pNew->u.vtab.needFree = 0; |
| 3092 } |
| 3093 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", |
| 3094 *pbIn, (sqlite3_uint64)mPrereq, |
| 3095 (sqlite3_uint64)(pNew->prereq & ~mPrereq))); |
| 3096 |
| 3097 return rc; |
| 3098 } |
| 3099 |
| 3100 |
| 3101 /* |
| 3102 ** Add all WhereLoop objects for a table of the join identified by |
| 3103 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. |
| 3104 ** |
| 3105 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and |
| 3106 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause |
| 3107 ** entries that occur before the virtual table in the FROM clause and are |
| 3108 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the |
| 3109 ** mUnusable mask contains all FROM clause entries that occur after the |
| 3110 ** virtual table and are separated from it by at least one LEFT or |
| 3111 ** CROSS JOIN. |
| 3112 ** |
| 3113 ** For example, if the query were: |
| 3114 ** |
| 3115 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; |
| 3116 ** |
| 3117 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). |
| 3118 ** |
| 3119 ** All the tables in mPrereq must be scanned before the current virtual |
| 3120 ** table. So any terms for which all prerequisites are satisfied by |
| 3121 ** mPrereq may be specified as "usable" in all calls to xBestIndex. |
| 3122 ** Conversely, all tables in mUnusable must be scanned after the current |
| 3123 ** virtual table, so any terms for which the prerequisites overlap with |
| 3124 ** mUnusable should always be configured as "not-usable" for xBestIndex. |
| 3125 */ |
| 3126 static int whereLoopAddVirtual( |
| 3127 WhereLoopBuilder *pBuilder, /* WHERE clause information */ |
| 3128 Bitmask mPrereq, /* Tables that must be scanned before this one */ |
| 3129 Bitmask mUnusable /* Tables that must be scanned after this one */ |
| 3130 ){ |
| 3131 int rc = SQLITE_OK; /* Return code */ |
| 3132 WhereInfo *pWInfo; /* WHERE analysis context */ |
| 3133 Parse *pParse; /* The parsing context */ |
| 3134 WhereClause *pWC; /* The WHERE clause */ |
| 3135 struct SrcList_item *pSrc; /* The FROM clause term to search */ |
| 3136 sqlite3_index_info *p; /* Object to pass to xBestIndex() */ |
| 3137 int nConstraint; /* Number of constraints in p */ |
| 3138 int bIn; /* True if plan uses IN(...) operator */ |
| 3139 WhereLoop *pNew; |
| 3140 Bitmask mBest; /* Tables used by best possible plan */ |
| 3141 u16 mNoOmit; |
| 3142 |
| 3143 assert( (mPrereq & mUnusable)==0 ); |
| 3144 pWInfo = pBuilder->pWInfo; |
| 3145 pParse = pWInfo->pParse; |
| 3146 pWC = pBuilder->pWC; |
| 3147 pNew = pBuilder->pNew; |
| 3148 pSrc = &pWInfo->pTabList->a[pNew->iTab]; |
| 3149 assert( IsVirtual(pSrc->pTab) ); |
| 3150 p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy, |
| 3151 &mNoOmit); |
| 3152 if( p==0 ) return SQLITE_NOMEM_BKPT; |
| 3153 pNew->rSetup = 0; |
| 3154 pNew->wsFlags = WHERE_VIRTUALTABLE; |
| 3155 pNew->nLTerm = 0; |
| 3156 pNew->u.vtab.needFree = 0; |
| 3157 nConstraint = p->nConstraint; |
| 3158 if( whereLoopResize(pParse->db, pNew, nConstraint) ){ |
| 3159 sqlite3DbFree(pParse->db, p); |
| 3160 return SQLITE_NOMEM_BKPT; |
| 3161 } |
| 3162 |
| 3163 /* First call xBestIndex() with all constraints usable. */ |
| 3164 WHERETRACE(0x40, (" VirtualOne: all usable\n")); |
| 3165 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn); |
| 3166 |
| 3167 /* If the call to xBestIndex() with all terms enabled produced a plan |
| 3168 ** that does not require any source tables (IOW: a plan with mBest==0), |
| 3169 ** then there is no point in making any further calls to xBestIndex() |
| 3170 ** since they will all return the same result (if the xBestIndex() |
| 3171 ** implementation is sane). */ |
| 3172 if( rc==SQLITE_OK && (mBest = (pNew->prereq & ~mPrereq))!=0 ){ |
| 3173 int seenZero = 0; /* True if a plan with no prereqs seen */ |
| 3174 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ |
| 3175 Bitmask mPrev = 0; |
| 3176 Bitmask mBestNoIn = 0; |
| 3177 |
| 3178 /* If the plan produced by the earlier call uses an IN(...) term, call |
| 3179 ** xBestIndex again, this time with IN(...) terms disabled. */ |
| 3180 if( bIn ){ |
| 3181 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n")); |
| 3182 rc = whereLoopAddVirtualOne( |
| 3183 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn); |
| 3184 assert( bIn==0 ); |
| 3185 mBestNoIn = pNew->prereq & ~mPrereq; |
| 3186 if( mBestNoIn==0 ){ |
| 3187 seenZero = 1; |
| 3188 seenZeroNoIN = 1; |
| 3189 } |
| 3190 } |
| 3191 |
| 3192 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) |
| 3193 ** in the set of terms that apply to the current virtual table. */ |
| 3194 while( rc==SQLITE_OK ){ |
| 3195 int i; |
| 3196 Bitmask mNext = ALLBITS; |
| 3197 assert( mNext>0 ); |
| 3198 for(i=0; i<nConstraint; i++){ |
| 3199 Bitmask mThis = ( |
| 3200 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq |
| 3201 ); |
| 3202 if( mThis>mPrev && mThis<mNext ) mNext = mThis; |
| 3203 } |
| 3204 mPrev = mNext; |
| 3205 if( mNext==ALLBITS ) break; |
| 3206 if( mNext==mBest || mNext==mBestNoIn ) continue; |
| 3207 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", |
| 3208 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); |
| 3209 rc = whereLoopAddVirtualOne( |
| 3210 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn); |
| 3211 if( pNew->prereq==mPrereq ){ |
| 3212 seenZero = 1; |
| 3213 if( bIn==0 ) seenZeroNoIN = 1; |
| 3214 } |
| 3215 } |
| 3216 |
| 3217 /* If the calls to xBestIndex() in the above loop did not find a plan |
| 3218 ** that requires no source tables at all (i.e. one guaranteed to be |
| 3219 ** usable), make a call here with all source tables disabled */ |
| 3220 if( rc==SQLITE_OK && seenZero==0 ){ |
| 3221 WHERETRACE(0x40, (" VirtualOne: all disabled\n")); |
| 3222 rc = whereLoopAddVirtualOne( |
| 3223 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn); |
| 3224 if( bIn==0 ) seenZeroNoIN = 1; |
| 3225 } |
| 3226 |
| 3227 /* If the calls to xBestIndex() have so far failed to find a plan |
| 3228 ** that requires no source tables at all and does not use an IN(...) |
| 3229 ** operator, make a final call to obtain one here. */ |
| 3230 if( rc==SQLITE_OK && seenZeroNoIN==0 ){ |
| 3231 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n")); |
| 3232 rc = whereLoopAddVirtualOne( |
| 3233 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn); |
| 3234 } |
| 3235 } |
| 3236 |
| 3237 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); |
| 3238 sqlite3DbFree(pParse->db, p); |
| 3239 return rc; |
| 3240 } |
| 3241 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 3242 |
| 3243 /* |
| 3244 ** Add WhereLoop entries to handle OR terms. This works for either |
| 3245 ** btrees or virtual tables. |
| 3246 */ |
| 3247 static int whereLoopAddOr( |
| 3248 WhereLoopBuilder *pBuilder, |
| 3249 Bitmask mPrereq, |
| 3250 Bitmask mUnusable |
| 3251 ){ |
| 3252 WhereInfo *pWInfo = pBuilder->pWInfo; |
| 3253 WhereClause *pWC; |
| 3254 WhereLoop *pNew; |
| 3255 WhereTerm *pTerm, *pWCEnd; |
| 3256 int rc = SQLITE_OK; |
| 3257 int iCur; |
| 3258 WhereClause tempWC; |
| 3259 WhereLoopBuilder sSubBuild; |
| 3260 WhereOrSet sSum, sCur; |
| 3261 struct SrcList_item *pItem; |
| 3262 |
| 3263 pWC = pBuilder->pWC; |
| 3264 pWCEnd = pWC->a + pWC->nTerm; |
| 3265 pNew = pBuilder->pNew; |
| 3266 memset(&sSum, 0, sizeof(sSum)); |
| 3267 pItem = pWInfo->pTabList->a + pNew->iTab; |
| 3268 iCur = pItem->iCursor; |
| 3269 |
| 3270 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ |
| 3271 if( (pTerm->eOperator & WO_OR)!=0 |
| 3272 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 |
| 3273 ){ |
| 3274 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; |
| 3275 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; |
| 3276 WhereTerm *pOrTerm; |
| 3277 int once = 1; |
| 3278 int i, j; |
| 3279 |
| 3280 sSubBuild = *pBuilder; |
| 3281 sSubBuild.pOrderBy = 0; |
| 3282 sSubBuild.pOrSet = &sCur; |
| 3283 |
| 3284 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); |
| 3285 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ |
| 3286 if( (pOrTerm->eOperator & WO_AND)!=0 ){ |
| 3287 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; |
| 3288 }else if( pOrTerm->leftCursor==iCur ){ |
| 3289 tempWC.pWInfo = pWC->pWInfo; |
| 3290 tempWC.pOuter = pWC; |
| 3291 tempWC.op = TK_AND; |
| 3292 tempWC.nTerm = 1; |
| 3293 tempWC.a = pOrTerm; |
| 3294 sSubBuild.pWC = &tempWC; |
| 3295 }else{ |
| 3296 continue; |
| 3297 } |
| 3298 sCur.n = 0; |
| 3299 #ifdef WHERETRACE_ENABLED |
| 3300 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", |
| 3301 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); |
| 3302 if( sqlite3WhereTrace & 0x400 ){ |
| 3303 sqlite3WhereClausePrint(sSubBuild.pWC); |
| 3304 } |
| 3305 #endif |
| 3306 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 3307 if( IsVirtual(pItem->pTab) ){ |
| 3308 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); |
| 3309 }else |
| 3310 #endif |
| 3311 { |
| 3312 rc = whereLoopAddBtree(&sSubBuild, mPrereq); |
| 3313 } |
| 3314 if( rc==SQLITE_OK ){ |
| 3315 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); |
| 3316 } |
| 3317 assert( rc==SQLITE_OK || sCur.n==0 ); |
| 3318 if( sCur.n==0 ){ |
| 3319 sSum.n = 0; |
| 3320 break; |
| 3321 }else if( once ){ |
| 3322 whereOrMove(&sSum, &sCur); |
| 3323 once = 0; |
| 3324 }else{ |
| 3325 WhereOrSet sPrev; |
| 3326 whereOrMove(&sPrev, &sSum); |
| 3327 sSum.n = 0; |
| 3328 for(i=0; i<sPrev.n; i++){ |
| 3329 for(j=0; j<sCur.n; j++){ |
| 3330 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, |
| 3331 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), |
| 3332 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); |
| 3333 } |
| 3334 } |
| 3335 } |
| 3336 } |
| 3337 pNew->nLTerm = 1; |
| 3338 pNew->aLTerm[0] = pTerm; |
| 3339 pNew->wsFlags = WHERE_MULTI_OR; |
| 3340 pNew->rSetup = 0; |
| 3341 pNew->iSortIdx = 0; |
| 3342 memset(&pNew->u, 0, sizeof(pNew->u)); |
| 3343 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ |
| 3344 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs |
| 3345 ** of all sub-scans required by the OR-scan. However, due to rounding |
| 3346 ** errors, it may be that the cost of the OR-scan is equal to its |
| 3347 ** most expensive sub-scan. Add the smallest possible penalty |
| 3348 ** (equivalent to multiplying the cost by 1.07) to ensure that |
| 3349 ** this does not happen. Otherwise, for WHERE clauses such as the |
| 3350 ** following where there is an index on "y": |
| 3351 ** |
| 3352 ** WHERE likelihood(x=?, 0.99) OR y=? |
| 3353 ** |
| 3354 ** the planner may elect to "OR" together a full-table scan and an |
| 3355 ** index lookup. And other similarly odd results. */ |
| 3356 pNew->rRun = sSum.a[i].rRun + 1; |
| 3357 pNew->nOut = sSum.a[i].nOut; |
| 3358 pNew->prereq = sSum.a[i].prereq; |
| 3359 rc = whereLoopInsert(pBuilder, pNew); |
| 3360 } |
| 3361 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); |
| 3362 } |
| 3363 } |
| 3364 return rc; |
| 3365 } |
| 3366 |
| 3367 /* |
| 3368 ** Add all WhereLoop objects for all tables |
| 3369 */ |
| 3370 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ |
| 3371 WhereInfo *pWInfo = pBuilder->pWInfo; |
| 3372 Bitmask mPrereq = 0; |
| 3373 Bitmask mPrior = 0; |
| 3374 int iTab; |
| 3375 SrcList *pTabList = pWInfo->pTabList; |
| 3376 struct SrcList_item *pItem; |
| 3377 struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel]; |
| 3378 sqlite3 *db = pWInfo->pParse->db; |
| 3379 int rc = SQLITE_OK; |
| 3380 WhereLoop *pNew; |
| 3381 u8 priorJointype = 0; |
| 3382 |
| 3383 /* Loop over the tables in the join, from left to right */ |
| 3384 pNew = pBuilder->pNew; |
| 3385 whereLoopInit(pNew); |
| 3386 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ |
| 3387 Bitmask mUnusable = 0; |
| 3388 pNew->iTab = iTab; |
| 3389 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); |
| 3390 if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){ |
| 3391 /* This condition is true when pItem is the FROM clause term on the |
| 3392 ** right-hand-side of a LEFT or CROSS JOIN. */ |
| 3393 mPrereq = mPrior; |
| 3394 } |
| 3395 priorJointype = pItem->fg.jointype; |
| 3396 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 3397 if( IsVirtual(pItem->pTab) ){ |
| 3398 struct SrcList_item *p; |
| 3399 for(p=&pItem[1]; p<pEnd; p++){ |
| 3400 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){ |
| 3401 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); |
| 3402 } |
| 3403 } |
| 3404 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); |
| 3405 }else |
| 3406 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 3407 { |
| 3408 rc = whereLoopAddBtree(pBuilder, mPrereq); |
| 3409 } |
| 3410 if( rc==SQLITE_OK ){ |
| 3411 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); |
| 3412 } |
| 3413 mPrior |= pNew->maskSelf; |
| 3414 if( rc || db->mallocFailed ) break; |
| 3415 } |
| 3416 |
| 3417 whereLoopClear(db, pNew); |
| 3418 return rc; |
| 3419 } |
| 3420 |
| 3421 /* |
| 3422 ** Examine a WherePath (with the addition of the extra WhereLoop of the 5th |
| 3423 ** parameters) to see if it outputs rows in the requested ORDER BY |
| 3424 ** (or GROUP BY) without requiring a separate sort operation. Return N: |
| 3425 ** |
| 3426 ** N>0: N terms of the ORDER BY clause are satisfied |
| 3427 ** N==0: No terms of the ORDER BY clause are satisfied |
| 3428 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. |
| 3429 ** |
| 3430 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as |
| 3431 ** strict. With GROUP BY and DISTINCT the only requirement is that |
| 3432 ** equivalent rows appear immediately adjacent to one another. GROUP BY |
| 3433 ** and DISTINCT do not require rows to appear in any particular order as long |
| 3434 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT |
| 3435 ** the pOrderBy terms can be matched in any order. With ORDER BY, the |
| 3436 ** pOrderBy terms must be matched in strict left-to-right order. |
| 3437 */ |
| 3438 static i8 wherePathSatisfiesOrderBy( |
| 3439 WhereInfo *pWInfo, /* The WHERE clause */ |
| 3440 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ |
| 3441 WherePath *pPath, /* The WherePath to check */ |
| 3442 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ |
| 3443 u16 nLoop, /* Number of entries in pPath->aLoop[] */ |
| 3444 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ |
| 3445 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ |
| 3446 ){ |
| 3447 u8 revSet; /* True if rev is known */ |
| 3448 u8 rev; /* Composite sort order */ |
| 3449 u8 revIdx; /* Index sort order */ |
| 3450 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ |
| 3451 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ |
| 3452 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ |
| 3453 u16 eqOpMask; /* Allowed equality operators */ |
| 3454 u16 nKeyCol; /* Number of key columns in pIndex */ |
| 3455 u16 nColumn; /* Total number of ordered columns in the index */ |
| 3456 u16 nOrderBy; /* Number terms in the ORDER BY clause */ |
| 3457 int iLoop; /* Index of WhereLoop in pPath being processed */ |
| 3458 int i, j; /* Loop counters */ |
| 3459 int iCur; /* Cursor number for current WhereLoop */ |
| 3460 int iColumn; /* A column number within table iCur */ |
| 3461 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ |
| 3462 WhereTerm *pTerm; /* A single term of the WHERE clause */ |
| 3463 Expr *pOBExpr; /* An expression from the ORDER BY clause */ |
| 3464 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ |
| 3465 Index *pIndex; /* The index associated with pLoop */ |
| 3466 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ |
| 3467 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ |
| 3468 Bitmask obDone; /* Mask of all ORDER BY terms */ |
| 3469 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ |
| 3470 Bitmask ready; /* Mask of inner loops */ |
| 3471 |
| 3472 /* |
| 3473 ** We say the WhereLoop is "one-row" if it generates no more than one |
| 3474 ** row of output. A WhereLoop is one-row if all of the following are true: |
| 3475 ** (a) All index columns match with WHERE_COLUMN_EQ. |
| 3476 ** (b) The index is unique |
| 3477 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. |
| 3478 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. |
| 3479 ** |
| 3480 ** We say the WhereLoop is "order-distinct" if the set of columns from |
| 3481 ** that WhereLoop that are in the ORDER BY clause are different for every |
| 3482 ** row of the WhereLoop. Every one-row WhereLoop is automatically |
| 3483 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause |
| 3484 ** is not order-distinct. To be order-distinct is not quite the same as being |
| 3485 ** UNIQUE since a UNIQUE column or index can have multiple rows that |
| 3486 ** are NULL and NULL values are equivalent for the purpose of order-distinct. |
| 3487 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. |
| 3488 ** |
| 3489 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the |
| 3490 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is |
| 3491 ** automatically order-distinct. |
| 3492 */ |
| 3493 |
| 3494 assert( pOrderBy!=0 ); |
| 3495 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; |
| 3496 |
| 3497 nOrderBy = pOrderBy->nExpr; |
| 3498 testcase( nOrderBy==BMS-1 ); |
| 3499 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ |
| 3500 isOrderDistinct = 1; |
| 3501 obDone = MASKBIT(nOrderBy)-1; |
| 3502 orderDistinctMask = 0; |
| 3503 ready = 0; |
| 3504 eqOpMask = WO_EQ | WO_IS | WO_ISNULL; |
| 3505 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN; |
| 3506 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ |
| 3507 if( iLoop>0 ) ready |= pLoop->maskSelf; |
| 3508 if( iLoop<nLoop ){ |
| 3509 pLoop = pPath->aLoop[iLoop]; |
| 3510 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; |
| 3511 }else{ |
| 3512 pLoop = pLast; |
| 3513 } |
| 3514 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ |
| 3515 if( pLoop->u.vtab.isOrdered ) obSat = obDone; |
| 3516 break; |
| 3517 } |
| 3518 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; |
| 3519 |
| 3520 /* Mark off any ORDER BY term X that is a column in the table of |
| 3521 ** the current loop for which there is term in the WHERE |
| 3522 ** clause of the form X IS NULL or X=? that reference only outer |
| 3523 ** loops. |
| 3524 */ |
| 3525 for(i=0; i<nOrderBy; i++){ |
| 3526 if( MASKBIT(i) & obSat ) continue; |
| 3527 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); |
| 3528 if( pOBExpr->op!=TK_COLUMN ) continue; |
| 3529 if( pOBExpr->iTable!=iCur ) continue; |
| 3530 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, |
| 3531 ~ready, eqOpMask, 0); |
| 3532 if( pTerm==0 ) continue; |
| 3533 if( pTerm->eOperator==WO_IN ){ |
| 3534 /* IN terms are only valid for sorting in the ORDER BY LIMIT |
| 3535 ** optimization, and then only if they are actually used |
| 3536 ** by the query plan */ |
| 3537 assert( wctrlFlags & WHERE_ORDERBY_LIMIT ); |
| 3538 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){} |
| 3539 if( j>=pLoop->nLTerm ) continue; |
| 3540 } |
| 3541 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ |
| 3542 const char *z1, *z2; |
| 3543 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); |
| 3544 if( !pColl ) pColl = db->pDfltColl; |
| 3545 z1 = pColl->zName; |
| 3546 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr); |
| 3547 if( !pColl ) pColl = db->pDfltColl; |
| 3548 z2 = pColl->zName; |
| 3549 if( sqlite3StrICmp(z1, z2)!=0 ) continue; |
| 3550 testcase( pTerm->pExpr->op==TK_IS ); |
| 3551 } |
| 3552 obSat |= MASKBIT(i); |
| 3553 } |
| 3554 |
| 3555 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ |
| 3556 if( pLoop->wsFlags & WHERE_IPK ){ |
| 3557 pIndex = 0; |
| 3558 nKeyCol = 0; |
| 3559 nColumn = 1; |
| 3560 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ |
| 3561 return 0; |
| 3562 }else{ |
| 3563 nKeyCol = pIndex->nKeyCol; |
| 3564 nColumn = pIndex->nColumn; |
| 3565 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); |
| 3566 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID |
| 3567 || !HasRowid(pIndex->pTable)); |
| 3568 isOrderDistinct = IsUniqueIndex(pIndex); |
| 3569 } |
| 3570 |
| 3571 /* Loop through all columns of the index and deal with the ones |
| 3572 ** that are not constrained by == or IN. |
| 3573 */ |
| 3574 rev = revSet = 0; |
| 3575 distinctColumns = 0; |
| 3576 for(j=0; j<nColumn; j++){ |
| 3577 u8 bOnce = 1; /* True to run the ORDER BY search loop */ |
| 3578 |
| 3579 assert( j>=pLoop->u.btree.nEq |
| 3580 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip) |
| 3581 ); |
| 3582 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){ |
| 3583 u16 eOp = pLoop->aLTerm[j]->eOperator; |
| 3584 |
| 3585 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when |
| 3586 ** doing WHERE_ORDERBY_LIMIT processing). |
| 3587 ** |
| 3588 ** If the current term is a column of an ((?,?) IN (SELECT...)) |
| 3589 ** expression for which the SELECT returns more than one column, |
| 3590 ** check that it is the only column used by this loop. Otherwise, |
| 3591 ** if it is one of two or more, none of the columns can be |
| 3592 ** considered to match an ORDER BY term. */ |
| 3593 if( (eOp & eqOpMask)!=0 ){ |
| 3594 if( eOp & WO_ISNULL ){ |
| 3595 testcase( isOrderDistinct ); |
| 3596 isOrderDistinct = 0; |
| 3597 } |
| 3598 continue; |
| 3599 }else if( ALWAYS(eOp & WO_IN) ){ |
| 3600 /* ALWAYS() justification: eOp is an equality operator due to the |
| 3601 ** j<pLoop->u.btree.nEq constraint above. Any equality other |
| 3602 ** than WO_IN is captured by the previous "if". So this one |
| 3603 ** always has to be WO_IN. */ |
| 3604 Expr *pX = pLoop->aLTerm[j]->pExpr; |
| 3605 for(i=j+1; i<pLoop->u.btree.nEq; i++){ |
| 3606 if( pLoop->aLTerm[i]->pExpr==pX ){ |
| 3607 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); |
| 3608 bOnce = 0; |
| 3609 break; |
| 3610 } |
| 3611 } |
| 3612 } |
| 3613 } |
| 3614 |
| 3615 /* Get the column number in the table (iColumn) and sort order |
| 3616 ** (revIdx) for the j-th column of the index. |
| 3617 */ |
| 3618 if( pIndex ){ |
| 3619 iColumn = pIndex->aiColumn[j]; |
| 3620 revIdx = pIndex->aSortOrder[j]; |
| 3621 if( iColumn==pIndex->pTable->iPKey ) iColumn = -1; |
| 3622 }else{ |
| 3623 iColumn = XN_ROWID; |
| 3624 revIdx = 0; |
| 3625 } |
| 3626 |
| 3627 /* An unconstrained column that might be NULL means that this |
| 3628 ** WhereLoop is not well-ordered |
| 3629 */ |
| 3630 if( isOrderDistinct |
| 3631 && iColumn>=0 |
| 3632 && j>=pLoop->u.btree.nEq |
| 3633 && pIndex->pTable->aCol[iColumn].notNull==0 |
| 3634 ){ |
| 3635 isOrderDistinct = 0; |
| 3636 } |
| 3637 |
| 3638 /* Find the ORDER BY term that corresponds to the j-th column |
| 3639 ** of the index and mark that ORDER BY term off |
| 3640 */ |
| 3641 isMatch = 0; |
| 3642 for(i=0; bOnce && i<nOrderBy; i++){ |
| 3643 if( MASKBIT(i) & obSat ) continue; |
| 3644 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); |
| 3645 testcase( wctrlFlags & WHERE_GROUPBY ); |
| 3646 testcase( wctrlFlags & WHERE_DISTINCTBY ); |
| 3647 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; |
| 3648 if( iColumn>=(-1) ){ |
| 3649 if( pOBExpr->op!=TK_COLUMN ) continue; |
| 3650 if( pOBExpr->iTable!=iCur ) continue; |
| 3651 if( pOBExpr->iColumn!=iColumn ) continue; |
| 3652 }else{ |
| 3653 if( sqlite3ExprCompare(pOBExpr,pIndex->aColExpr->a[j].pExpr,iCur) ){ |
| 3654 continue; |
| 3655 } |
| 3656 } |
| 3657 if( iColumn>=0 ){ |
| 3658 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); |
| 3659 if( !pColl ) pColl = db->pDfltColl; |
| 3660 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; |
| 3661 } |
| 3662 isMatch = 1; |
| 3663 break; |
| 3664 } |
| 3665 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ |
| 3666 /* Make sure the sort order is compatible in an ORDER BY clause. |
| 3667 ** Sort order is irrelevant for a GROUP BY clause. */ |
| 3668 if( revSet ){ |
| 3669 if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0; |
| 3670 }else{ |
| 3671 rev = revIdx ^ pOrderBy->a[i].sortOrder; |
| 3672 if( rev ) *pRevMask |= MASKBIT(iLoop); |
| 3673 revSet = 1; |
| 3674 } |
| 3675 } |
| 3676 if( isMatch ){ |
| 3677 if( iColumn==XN_ROWID ){ |
| 3678 testcase( distinctColumns==0 ); |
| 3679 distinctColumns = 1; |
| 3680 } |
| 3681 obSat |= MASKBIT(i); |
| 3682 }else{ |
| 3683 /* No match found */ |
| 3684 if( j==0 || j<nKeyCol ){ |
| 3685 testcase( isOrderDistinct!=0 ); |
| 3686 isOrderDistinct = 0; |
| 3687 } |
| 3688 break; |
| 3689 } |
| 3690 } /* end Loop over all index columns */ |
| 3691 if( distinctColumns ){ |
| 3692 testcase( isOrderDistinct==0 ); |
| 3693 isOrderDistinct = 1; |
| 3694 } |
| 3695 } /* end-if not one-row */ |
| 3696 |
| 3697 /* Mark off any other ORDER BY terms that reference pLoop */ |
| 3698 if( isOrderDistinct ){ |
| 3699 orderDistinctMask |= pLoop->maskSelf; |
| 3700 for(i=0; i<nOrderBy; i++){ |
| 3701 Expr *p; |
| 3702 Bitmask mTerm; |
| 3703 if( MASKBIT(i) & obSat ) continue; |
| 3704 p = pOrderBy->a[i].pExpr; |
| 3705 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); |
| 3706 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; |
| 3707 if( (mTerm&~orderDistinctMask)==0 ){ |
| 3708 obSat |= MASKBIT(i); |
| 3709 } |
| 3710 } |
| 3711 } |
| 3712 } /* End the loop over all WhereLoops from outer-most down to inner-most */ |
| 3713 if( obSat==obDone ) return (i8)nOrderBy; |
| 3714 if( !isOrderDistinct ){ |
| 3715 for(i=nOrderBy-1; i>0; i--){ |
| 3716 Bitmask m = MASKBIT(i) - 1; |
| 3717 if( (obSat&m)==m ) return i; |
| 3718 } |
| 3719 return 0; |
| 3720 } |
| 3721 return -1; |
| 3722 } |
| 3723 |
| 3724 |
| 3725 /* |
| 3726 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), |
| 3727 ** the planner assumes that the specified pOrderBy list is actually a GROUP |
| 3728 ** BY clause - and so any order that groups rows as required satisfies the |
| 3729 ** request. |
| 3730 ** |
| 3731 ** Normally, in this case it is not possible for the caller to determine |
| 3732 ** whether or not the rows are really being delivered in sorted order, or |
| 3733 ** just in some other order that provides the required grouping. However, |
| 3734 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then |
| 3735 ** this function may be called on the returned WhereInfo object. It returns |
| 3736 ** true if the rows really will be sorted in the specified order, or false |
| 3737 ** otherwise. |
| 3738 ** |
| 3739 ** For example, assuming: |
| 3740 ** |
| 3741 ** CREATE INDEX i1 ON t1(x, Y); |
| 3742 ** |
| 3743 ** then |
| 3744 ** |
| 3745 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 |
| 3746 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 |
| 3747 */ |
| 3748 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ |
| 3749 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); |
| 3750 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); |
| 3751 return pWInfo->sorted; |
| 3752 } |
| 3753 |
| 3754 #ifdef WHERETRACE_ENABLED |
| 3755 /* For debugging use only: */ |
| 3756 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ |
| 3757 static char zName[65]; |
| 3758 int i; |
| 3759 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } |
| 3760 if( pLast ) zName[i++] = pLast->cId; |
| 3761 zName[i] = 0; |
| 3762 return zName; |
| 3763 } |
| 3764 #endif |
| 3765 |
| 3766 /* |
| 3767 ** Return the cost of sorting nRow rows, assuming that the keys have |
| 3768 ** nOrderby columns and that the first nSorted columns are already in |
| 3769 ** order. |
| 3770 */ |
| 3771 static LogEst whereSortingCost( |
| 3772 WhereInfo *pWInfo, |
| 3773 LogEst nRow, |
| 3774 int nOrderBy, |
| 3775 int nSorted |
| 3776 ){ |
| 3777 /* TUNING: Estimated cost of a full external sort, where N is |
| 3778 ** the number of rows to sort is: |
| 3779 ** |
| 3780 ** cost = (3.0 * N * log(N)). |
| 3781 ** |
| 3782 ** Or, if the order-by clause has X terms but only the last Y |
| 3783 ** terms are out of order, then block-sorting will reduce the |
| 3784 ** sorting cost to: |
| 3785 ** |
| 3786 ** cost = (3.0 * N * log(N)) * (Y/X) |
| 3787 ** |
| 3788 ** The (Y/X) term is implemented using stack variable rScale |
| 3789 ** below. */ |
| 3790 LogEst rScale, rSortCost; |
| 3791 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); |
| 3792 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; |
| 3793 rSortCost = nRow + rScale + 16; |
| 3794 |
| 3795 /* Multiple by log(M) where M is the number of output rows. |
| 3796 ** Use the LIMIT for M if it is smaller */ |
| 3797 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){ |
| 3798 nRow = pWInfo->iLimit; |
| 3799 } |
| 3800 rSortCost += estLog(nRow); |
| 3801 return rSortCost; |
| 3802 } |
| 3803 |
| 3804 /* |
| 3805 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine |
| 3806 ** attempts to find the lowest cost path that visits each WhereLoop |
| 3807 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. |
| 3808 ** |
| 3809 ** Assume that the total number of output rows that will need to be sorted |
| 3810 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting |
| 3811 ** costs if nRowEst==0. |
| 3812 ** |
| 3813 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation |
| 3814 ** error occurs. |
| 3815 */ |
| 3816 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ |
| 3817 int mxChoice; /* Maximum number of simultaneous paths tracked */ |
| 3818 int nLoop; /* Number of terms in the join */ |
| 3819 Parse *pParse; /* Parsing context */ |
| 3820 sqlite3 *db; /* The database connection */ |
| 3821 int iLoop; /* Loop counter over the terms of the join */ |
| 3822 int ii, jj; /* Loop counters */ |
| 3823 int mxI = 0; /* Index of next entry to replace */ |
| 3824 int nOrderBy; /* Number of ORDER BY clause terms */ |
| 3825 LogEst mxCost = 0; /* Maximum cost of a set of paths */ |
| 3826 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ |
| 3827 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ |
| 3828 WherePath *aFrom; /* All nFrom paths at the previous level */ |
| 3829 WherePath *aTo; /* The nTo best paths at the current level */ |
| 3830 WherePath *pFrom; /* An element of aFrom[] that we are working on */ |
| 3831 WherePath *pTo; /* An element of aTo[] that we are working on */ |
| 3832 WhereLoop *pWLoop; /* One of the WhereLoop objects */ |
| 3833 WhereLoop **pX; /* Used to divy up the pSpace memory */ |
| 3834 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ |
| 3835 char *pSpace; /* Temporary memory used by this routine */ |
| 3836 int nSpace; /* Bytes of space allocated at pSpace */ |
| 3837 |
| 3838 pParse = pWInfo->pParse; |
| 3839 db = pParse->db; |
| 3840 nLoop = pWInfo->nLevel; |
| 3841 /* TUNING: For simple queries, only the best path is tracked. |
| 3842 ** For 2-way joins, the 5 best paths are followed. |
| 3843 ** For joins of 3 or more tables, track the 10 best paths */ |
| 3844 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); |
| 3845 assert( nLoop<=pWInfo->pTabList->nSrc ); |
| 3846 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); |
| 3847 |
| 3848 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this |
| 3849 ** case the purpose of this call is to estimate the number of rows returned |
| 3850 ** by the overall query. Once this estimate has been obtained, the caller |
| 3851 ** will invoke this function a second time, passing the estimate as the |
| 3852 ** nRowEst parameter. */ |
| 3853 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ |
| 3854 nOrderBy = 0; |
| 3855 }else{ |
| 3856 nOrderBy = pWInfo->pOrderBy->nExpr; |
| 3857 } |
| 3858 |
| 3859 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ |
| 3860 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; |
| 3861 nSpace += sizeof(LogEst) * nOrderBy; |
| 3862 pSpace = sqlite3DbMallocRawNN(db, nSpace); |
| 3863 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; |
| 3864 aTo = (WherePath*)pSpace; |
| 3865 aFrom = aTo+mxChoice; |
| 3866 memset(aFrom, 0, sizeof(aFrom[0])); |
| 3867 pX = (WhereLoop**)(aFrom+mxChoice); |
| 3868 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ |
| 3869 pFrom->aLoop = pX; |
| 3870 } |
| 3871 if( nOrderBy ){ |
| 3872 /* If there is an ORDER BY clause and it is not being ignored, set up |
| 3873 ** space for the aSortCost[] array. Each element of the aSortCost array |
| 3874 ** is either zero - meaning it has not yet been initialized - or the |
| 3875 ** cost of sorting nRowEst rows of data where the first X terms of |
| 3876 ** the ORDER BY clause are already in order, where X is the array |
| 3877 ** index. */ |
| 3878 aSortCost = (LogEst*)pX; |
| 3879 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); |
| 3880 } |
| 3881 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); |
| 3882 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); |
| 3883 |
| 3884 /* Seed the search with a single WherePath containing zero WhereLoops. |
| 3885 ** |
| 3886 ** TUNING: Do not let the number of iterations go above 28. If the cost |
| 3887 ** of computing an automatic index is not paid back within the first 28 |
| 3888 ** rows, then do not use the automatic index. */ |
| 3889 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); |
| 3890 nFrom = 1; |
| 3891 assert( aFrom[0].isOrdered==0 ); |
| 3892 if( nOrderBy ){ |
| 3893 /* If nLoop is zero, then there are no FROM terms in the query. Since |
| 3894 ** in this case the query may return a maximum of one row, the results |
| 3895 ** are already in the requested order. Set isOrdered to nOrderBy to |
| 3896 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to |
| 3897 ** -1, indicating that the result set may or may not be ordered, |
| 3898 ** depending on the loops added to the current plan. */ |
| 3899 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; |
| 3900 } |
| 3901 |
| 3902 /* Compute successively longer WherePaths using the previous generation |
| 3903 ** of WherePaths as the basis for the next. Keep track of the mxChoice |
| 3904 ** best paths at each generation */ |
| 3905 for(iLoop=0; iLoop<nLoop; iLoop++){ |
| 3906 nTo = 0; |
| 3907 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ |
| 3908 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ |
| 3909 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ |
| 3910 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ |
| 3911 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ |
| 3912 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ |
| 3913 Bitmask maskNew; /* Mask of src visited by (..) */ |
| 3914 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ |
| 3915 |
| 3916 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; |
| 3917 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; |
| 3918 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<10 ){ |
| 3919 /* Do not use an automatic index if the this loop is expected |
| 3920 ** to run less than 2 times. */ |
| 3921 assert( 10==sqlite3LogEst(2) ); |
| 3922 continue; |
| 3923 } |
| 3924 /* At this point, pWLoop is a candidate to be the next loop. |
| 3925 ** Compute its cost */ |
| 3926 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); |
| 3927 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); |
| 3928 nOut = pFrom->nRow + pWLoop->nOut; |
| 3929 maskNew = pFrom->maskLoop | pWLoop->maskSelf; |
| 3930 if( isOrdered<0 ){ |
| 3931 isOrdered = wherePathSatisfiesOrderBy(pWInfo, |
| 3932 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, |
| 3933 iLoop, pWLoop, &revMask); |
| 3934 }else{ |
| 3935 revMask = pFrom->revLoop; |
| 3936 } |
| 3937 if( isOrdered>=0 && isOrdered<nOrderBy ){ |
| 3938 if( aSortCost[isOrdered]==0 ){ |
| 3939 aSortCost[isOrdered] = whereSortingCost( |
| 3940 pWInfo, nRowEst, nOrderBy, isOrdered |
| 3941 ); |
| 3942 } |
| 3943 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]); |
| 3944 |
| 3945 WHERETRACE(0x002, |
| 3946 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", |
| 3947 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, |
| 3948 rUnsorted, rCost)); |
| 3949 }else{ |
| 3950 rCost = rUnsorted; |
| 3951 } |
| 3952 |
| 3953 /* Check to see if pWLoop should be added to the set of |
| 3954 ** mxChoice best-so-far paths. |
| 3955 ** |
| 3956 ** First look for an existing path among best-so-far paths |
| 3957 ** that covers the same set of loops and has the same isOrdered |
| 3958 ** setting as the current path candidate. |
| 3959 ** |
| 3960 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent |
| 3961 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range |
| 3962 ** of legal values for isOrdered, -1..64. |
| 3963 */ |
| 3964 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ |
| 3965 if( pTo->maskLoop==maskNew |
| 3966 && ((pTo->isOrdered^isOrdered)&0x80)==0 |
| 3967 ){ |
| 3968 testcase( jj==nTo-1 ); |
| 3969 break; |
| 3970 } |
| 3971 } |
| 3972 if( jj>=nTo ){ |
| 3973 /* None of the existing best-so-far paths match the candidate. */ |
| 3974 if( nTo>=mxChoice |
| 3975 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) |
| 3976 ){ |
| 3977 /* The current candidate is no better than any of the mxChoice |
| 3978 ** paths currently in the best-so-far buffer. So discard |
| 3979 ** this candidate as not viable. */ |
| 3980 #ifdef WHERETRACE_ENABLED /* 0x4 */ |
| 3981 if( sqlite3WhereTrace&0x4 ){ |
| 3982 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d order=%c\n", |
| 3983 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, |
| 3984 isOrdered>=0 ? isOrdered+'0' : '?'); |
| 3985 } |
| 3986 #endif |
| 3987 continue; |
| 3988 } |
| 3989 /* If we reach this points it means that the new candidate path |
| 3990 ** needs to be added to the set of best-so-far paths. */ |
| 3991 if( nTo<mxChoice ){ |
| 3992 /* Increase the size of the aTo set by one */ |
| 3993 jj = nTo++; |
| 3994 }else{ |
| 3995 /* New path replaces the prior worst to keep count below mxChoice */ |
| 3996 jj = mxI; |
| 3997 } |
| 3998 pTo = &aTo[jj]; |
| 3999 #ifdef WHERETRACE_ENABLED /* 0x4 */ |
| 4000 if( sqlite3WhereTrace&0x4 ){ |
| 4001 sqlite3DebugPrintf("New %s cost=%-3d,%3d order=%c\n", |
| 4002 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, |
| 4003 isOrdered>=0 ? isOrdered+'0' : '?'); |
| 4004 } |
| 4005 #endif |
| 4006 }else{ |
| 4007 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the |
| 4008 ** same set of loops and has the sam isOrdered setting as the |
| 4009 ** candidate path. Check to see if the candidate should replace |
| 4010 ** pTo or if the candidate should be skipped */ |
| 4011 if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){ |
| 4012 #ifdef WHERETRACE_ENABLED /* 0x4 */ |
| 4013 if( sqlite3WhereTrace&0x4 ){ |
| 4014 sqlite3DebugPrintf( |
| 4015 "Skip %s cost=%-3d,%3d order=%c", |
| 4016 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, |
| 4017 isOrdered>=0 ? isOrdered+'0' : '?'); |
| 4018 sqlite3DebugPrintf(" vs %s cost=%-3d,%d order=%c\n", |
| 4019 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, |
| 4020 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); |
| 4021 } |
| 4022 #endif |
| 4023 /* Discard the candidate path from further consideration */ |
| 4024 testcase( pTo->rCost==rCost ); |
| 4025 continue; |
| 4026 } |
| 4027 testcase( pTo->rCost==rCost+1 ); |
| 4028 /* Control reaches here if the candidate path is better than the |
| 4029 ** pTo path. Replace pTo with the candidate. */ |
| 4030 #ifdef WHERETRACE_ENABLED /* 0x4 */ |
| 4031 if( sqlite3WhereTrace&0x4 ){ |
| 4032 sqlite3DebugPrintf( |
| 4033 "Update %s cost=%-3d,%3d order=%c", |
| 4034 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, |
| 4035 isOrdered>=0 ? isOrdered+'0' : '?'); |
| 4036 sqlite3DebugPrintf(" was %s cost=%-3d,%3d order=%c\n", |
| 4037 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, |
| 4038 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); |
| 4039 } |
| 4040 #endif |
| 4041 } |
| 4042 /* pWLoop is a winner. Add it to the set of best so far */ |
| 4043 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; |
| 4044 pTo->revLoop = revMask; |
| 4045 pTo->nRow = nOut; |
| 4046 pTo->rCost = rCost; |
| 4047 pTo->rUnsorted = rUnsorted; |
| 4048 pTo->isOrdered = isOrdered; |
| 4049 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); |
| 4050 pTo->aLoop[iLoop] = pWLoop; |
| 4051 if( nTo>=mxChoice ){ |
| 4052 mxI = 0; |
| 4053 mxCost = aTo[0].rCost; |
| 4054 mxUnsorted = aTo[0].nRow; |
| 4055 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ |
| 4056 if( pTo->rCost>mxCost |
| 4057 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) |
| 4058 ){ |
| 4059 mxCost = pTo->rCost; |
| 4060 mxUnsorted = pTo->rUnsorted; |
| 4061 mxI = jj; |
| 4062 } |
| 4063 } |
| 4064 } |
| 4065 } |
| 4066 } |
| 4067 |
| 4068 #ifdef WHERETRACE_ENABLED /* >=2 */ |
| 4069 if( sqlite3WhereTrace & 0x02 ){ |
| 4070 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); |
| 4071 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ |
| 4072 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", |
| 4073 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, |
| 4074 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); |
| 4075 if( pTo->isOrdered>0 ){ |
| 4076 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); |
| 4077 }else{ |
| 4078 sqlite3DebugPrintf("\n"); |
| 4079 } |
| 4080 } |
| 4081 } |
| 4082 #endif |
| 4083 |
| 4084 /* Swap the roles of aFrom and aTo for the next generation */ |
| 4085 pFrom = aTo; |
| 4086 aTo = aFrom; |
| 4087 aFrom = pFrom; |
| 4088 nFrom = nTo; |
| 4089 } |
| 4090 |
| 4091 if( nFrom==0 ){ |
| 4092 sqlite3ErrorMsg(pParse, "no query solution"); |
| 4093 sqlite3DbFree(db, pSpace); |
| 4094 return SQLITE_ERROR; |
| 4095 } |
| 4096 |
| 4097 /* Find the lowest cost path. pFrom will be left pointing to that path */ |
| 4098 pFrom = aFrom; |
| 4099 for(ii=1; ii<nFrom; ii++){ |
| 4100 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; |
| 4101 } |
| 4102 assert( pWInfo->nLevel==nLoop ); |
| 4103 /* Load the lowest cost path into pWInfo */ |
| 4104 for(iLoop=0; iLoop<nLoop; iLoop++){ |
| 4105 WhereLevel *pLevel = pWInfo->a + iLoop; |
| 4106 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; |
| 4107 pLevel->iFrom = pWLoop->iTab; |
| 4108 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; |
| 4109 } |
| 4110 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 |
| 4111 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 |
| 4112 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP |
| 4113 && nRowEst |
| 4114 ){ |
| 4115 Bitmask notUsed; |
| 4116 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pDistinctSet, pFrom, |
| 4117 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); |
| 4118 if( rc==pWInfo->pDistinctSet->nExpr ){ |
| 4119 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; |
| 4120 } |
| 4121 } |
| 4122 if( pWInfo->pOrderBy ){ |
| 4123 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ |
| 4124 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ |
| 4125 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; |
| 4126 } |
| 4127 }else{ |
| 4128 pWInfo->nOBSat = pFrom->isOrdered; |
| 4129 pWInfo->revMask = pFrom->revLoop; |
| 4130 if( pWInfo->nOBSat<=0 ){ |
| 4131 pWInfo->nOBSat = 0; |
| 4132 if( nLoop>0 ){ |
| 4133 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; |
| 4134 if( (wsFlags & WHERE_ONEROW)==0 |
| 4135 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) |
| 4136 ){ |
| 4137 Bitmask m = 0; |
| 4138 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, |
| 4139 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); |
| 4140 testcase( wsFlags & WHERE_IPK ); |
| 4141 testcase( wsFlags & WHERE_COLUMN_IN ); |
| 4142 if( rc==pWInfo->pOrderBy->nExpr ){ |
| 4143 pWInfo->bOrderedInnerLoop = 1; |
| 4144 pWInfo->revMask = m; |
| 4145 } |
| 4146 } |
| 4147 } |
| 4148 } |
| 4149 } |
| 4150 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) |
| 4151 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 |
| 4152 ){ |
| 4153 Bitmask revMask = 0; |
| 4154 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, |
| 4155 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask |
| 4156 ); |
| 4157 assert( pWInfo->sorted==0 ); |
| 4158 if( nOrder==pWInfo->pOrderBy->nExpr ){ |
| 4159 pWInfo->sorted = 1; |
| 4160 pWInfo->revMask = revMask; |
| 4161 } |
| 4162 } |
| 4163 } |
| 4164 |
| 4165 |
| 4166 pWInfo->nRowOut = pFrom->nRow; |
| 4167 |
| 4168 /* Free temporary memory and return success */ |
| 4169 sqlite3DbFree(db, pSpace); |
| 4170 return SQLITE_OK; |
| 4171 } |
| 4172 |
| 4173 /* |
| 4174 ** Most queries use only a single table (they are not joins) and have |
| 4175 ** simple == constraints against indexed fields. This routine attempts |
| 4176 ** to plan those simple cases using much less ceremony than the |
| 4177 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() |
| 4178 ** times for the common case. |
| 4179 ** |
| 4180 ** Return non-zero on success, if this query can be handled by this |
| 4181 ** no-frills query planner. Return zero if this query needs the |
| 4182 ** general-purpose query planner. |
| 4183 */ |
| 4184 static int whereShortCut(WhereLoopBuilder *pBuilder){ |
| 4185 WhereInfo *pWInfo; |
| 4186 struct SrcList_item *pItem; |
| 4187 WhereClause *pWC; |
| 4188 WhereTerm *pTerm; |
| 4189 WhereLoop *pLoop; |
| 4190 int iCur; |
| 4191 int j; |
| 4192 Table *pTab; |
| 4193 Index *pIdx; |
| 4194 |
| 4195 pWInfo = pBuilder->pWInfo; |
| 4196 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; |
| 4197 assert( pWInfo->pTabList->nSrc>=1 ); |
| 4198 pItem = pWInfo->pTabList->a; |
| 4199 pTab = pItem->pTab; |
| 4200 if( IsVirtual(pTab) ) return 0; |
| 4201 if( pItem->fg.isIndexedBy ) return 0; |
| 4202 iCur = pItem->iCursor; |
| 4203 pWC = &pWInfo->sWC; |
| 4204 pLoop = pBuilder->pNew; |
| 4205 pLoop->wsFlags = 0; |
| 4206 pLoop->nSkip = 0; |
| 4207 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0); |
| 4208 if( pTerm ){ |
| 4209 testcase( pTerm->eOperator & WO_IS ); |
| 4210 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; |
| 4211 pLoop->aLTerm[0] = pTerm; |
| 4212 pLoop->nLTerm = 1; |
| 4213 pLoop->u.btree.nEq = 1; |
| 4214 /* TUNING: Cost of a rowid lookup is 10 */ |
| 4215 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ |
| 4216 }else{ |
| 4217 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
| 4218 int opMask; |
| 4219 assert( pLoop->aLTermSpace==pLoop->aLTerm ); |
| 4220 if( !IsUniqueIndex(pIdx) |
| 4221 || pIdx->pPartIdxWhere!=0 |
| 4222 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) |
| 4223 ) continue; |
| 4224 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; |
| 4225 for(j=0; j<pIdx->nKeyCol; j++){ |
| 4226 pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx); |
| 4227 if( pTerm==0 ) break; |
| 4228 testcase( pTerm->eOperator & WO_IS ); |
| 4229 pLoop->aLTerm[j] = pTerm; |
| 4230 } |
| 4231 if( j!=pIdx->nKeyCol ) continue; |
| 4232 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; |
| 4233 if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){ |
| 4234 pLoop->wsFlags |= WHERE_IDX_ONLY; |
| 4235 } |
| 4236 pLoop->nLTerm = j; |
| 4237 pLoop->u.btree.nEq = j; |
| 4238 pLoop->u.btree.pIndex = pIdx; |
| 4239 /* TUNING: Cost of a unique index lookup is 15 */ |
| 4240 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ |
| 4241 break; |
| 4242 } |
| 4243 } |
| 4244 if( pLoop->wsFlags ){ |
| 4245 pLoop->nOut = (LogEst)1; |
| 4246 pWInfo->a[0].pWLoop = pLoop; |
| 4247 pLoop->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); |
| 4248 pWInfo->a[0].iTabCur = iCur; |
| 4249 pWInfo->nRowOut = 1; |
| 4250 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; |
| 4251 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ |
| 4252 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; |
| 4253 } |
| 4254 #ifdef SQLITE_DEBUG |
| 4255 pLoop->cId = '0'; |
| 4256 #endif |
| 4257 return 1; |
| 4258 } |
| 4259 return 0; |
| 4260 } |
| 4261 |
| 4262 /* |
| 4263 ** Generate the beginning of the loop used for WHERE clause processing. |
| 4264 ** The return value is a pointer to an opaque structure that contains |
| 4265 ** information needed to terminate the loop. Later, the calling routine |
| 4266 ** should invoke sqlite3WhereEnd() with the return value of this function |
| 4267 ** in order to complete the WHERE clause processing. |
| 4268 ** |
| 4269 ** If an error occurs, this routine returns NULL. |
| 4270 ** |
| 4271 ** The basic idea is to do a nested loop, one loop for each table in |
| 4272 ** the FROM clause of a select. (INSERT and UPDATE statements are the |
| 4273 ** same as a SELECT with only a single table in the FROM clause.) For |
| 4274 ** example, if the SQL is this: |
| 4275 ** |
| 4276 ** SELECT * FROM t1, t2, t3 WHERE ...; |
| 4277 ** |
| 4278 ** Then the code generated is conceptually like the following: |
| 4279 ** |
| 4280 ** foreach row1 in t1 do \ Code generated |
| 4281 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() |
| 4282 ** foreach row3 in t3 do / |
| 4283 ** ... |
| 4284 ** end \ Code generated |
| 4285 ** end |-- by sqlite3WhereEnd() |
| 4286 ** end / |
| 4287 ** |
| 4288 ** Note that the loops might not be nested in the order in which they |
| 4289 ** appear in the FROM clause if a different order is better able to make |
| 4290 ** use of indices. Note also that when the IN operator appears in |
| 4291 ** the WHERE clause, it might result in additional nested loops for |
| 4292 ** scanning through all values on the right-hand side of the IN. |
| 4293 ** |
| 4294 ** There are Btree cursors associated with each table. t1 uses cursor |
| 4295 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. |
| 4296 ** And so forth. This routine generates code to open those VDBE cursors |
| 4297 ** and sqlite3WhereEnd() generates the code to close them. |
| 4298 ** |
| 4299 ** The code that sqlite3WhereBegin() generates leaves the cursors named |
| 4300 ** in pTabList pointing at their appropriate entries. The [...] code |
| 4301 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract |
| 4302 ** data from the various tables of the loop. |
| 4303 ** |
| 4304 ** If the WHERE clause is empty, the foreach loops must each scan their |
| 4305 ** entire tables. Thus a three-way join is an O(N^3) operation. But if |
| 4306 ** the tables have indices and there are terms in the WHERE clause that |
| 4307 ** refer to those indices, a complete table scan can be avoided and the |
| 4308 ** code will run much faster. Most of the work of this routine is checking |
| 4309 ** to see if there are indices that can be used to speed up the loop. |
| 4310 ** |
| 4311 ** Terms of the WHERE clause are also used to limit which rows actually |
| 4312 ** make it to the "..." in the middle of the loop. After each "foreach", |
| 4313 ** terms of the WHERE clause that use only terms in that loop and outer |
| 4314 ** loops are evaluated and if false a jump is made around all subsequent |
| 4315 ** inner loops (or around the "..." if the test occurs within the inner- |
| 4316 ** most loop) |
| 4317 ** |
| 4318 ** OUTER JOINS |
| 4319 ** |
| 4320 ** An outer join of tables t1 and t2 is conceptally coded as follows: |
| 4321 ** |
| 4322 ** foreach row1 in t1 do |
| 4323 ** flag = 0 |
| 4324 ** foreach row2 in t2 do |
| 4325 ** start: |
| 4326 ** ... |
| 4327 ** flag = 1 |
| 4328 ** end |
| 4329 ** if flag==0 then |
| 4330 ** move the row2 cursor to a null row |
| 4331 ** goto start |
| 4332 ** fi |
| 4333 ** end |
| 4334 ** |
| 4335 ** ORDER BY CLAUSE PROCESSING |
| 4336 ** |
| 4337 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause |
| 4338 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement |
| 4339 ** if there is one. If there is no ORDER BY clause or if this routine |
| 4340 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. |
| 4341 ** |
| 4342 ** The iIdxCur parameter is the cursor number of an index. If |
| 4343 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index |
| 4344 ** to use for OR clause processing. The WHERE clause should use this |
| 4345 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is |
| 4346 ** the first cursor in an array of cursors for all indices. iIdxCur should |
| 4347 ** be used to compute the appropriate cursor depending on which index is |
| 4348 ** used. |
| 4349 */ |
| 4350 WhereInfo *sqlite3WhereBegin( |
| 4351 Parse *pParse, /* The parser context */ |
| 4352 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ |
| 4353 Expr *pWhere, /* The WHERE clause */ |
| 4354 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ |
| 4355 ExprList *pDistinctSet, /* Try not to output two rows that duplicate these */ |
| 4356 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ |
| 4357 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number |
| 4358 ** If WHERE_USE_LIMIT, then the limit amount */ |
| 4359 ){ |
| 4360 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ |
| 4361 int nTabList; /* Number of elements in pTabList */ |
| 4362 WhereInfo *pWInfo; /* Will become the return value of this function */ |
| 4363 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ |
| 4364 Bitmask notReady; /* Cursors that are not yet positioned */ |
| 4365 WhereLoopBuilder sWLB; /* The WhereLoop builder */ |
| 4366 WhereMaskSet *pMaskSet; /* The expression mask set */ |
| 4367 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ |
| 4368 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ |
| 4369 int ii; /* Loop counter */ |
| 4370 sqlite3 *db; /* Database connection */ |
| 4371 int rc; /* Return code */ |
| 4372 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ |
| 4373 |
| 4374 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( |
| 4375 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 |
| 4376 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 |
| 4377 )); |
| 4378 |
| 4379 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ |
| 4380 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 |
| 4381 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); |
| 4382 |
| 4383 /* Variable initialization */ |
| 4384 db = pParse->db; |
| 4385 memset(&sWLB, 0, sizeof(sWLB)); |
| 4386 |
| 4387 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ |
| 4388 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); |
| 4389 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; |
| 4390 sWLB.pOrderBy = pOrderBy; |
| 4391 |
| 4392 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via |
| 4393 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ |
| 4394 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ |
| 4395 wctrlFlags &= ~WHERE_WANT_DISTINCT; |
| 4396 } |
| 4397 |
| 4398 /* The number of tables in the FROM clause is limited by the number of |
| 4399 ** bits in a Bitmask |
| 4400 */ |
| 4401 testcase( pTabList->nSrc==BMS ); |
| 4402 if( pTabList->nSrc>BMS ){ |
| 4403 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); |
| 4404 return 0; |
| 4405 } |
| 4406 |
| 4407 /* This function normally generates a nested loop for all tables in |
| 4408 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should |
| 4409 ** only generate code for the first table in pTabList and assume that |
| 4410 ** any cursors associated with subsequent tables are uninitialized. |
| 4411 */ |
| 4412 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; |
| 4413 |
| 4414 /* Allocate and initialize the WhereInfo structure that will become the |
| 4415 ** return value. A single allocation is used to store the WhereInfo |
| 4416 ** struct, the contents of WhereInfo.a[], the WhereClause structure |
| 4417 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte |
| 4418 ** field (type Bitmask) it must be aligned on an 8-byte boundary on |
| 4419 ** some architectures. Hence the ROUND8() below. |
| 4420 */ |
| 4421 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); |
| 4422 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); |
| 4423 if( db->mallocFailed ){ |
| 4424 sqlite3DbFree(db, pWInfo); |
| 4425 pWInfo = 0; |
| 4426 goto whereBeginError; |
| 4427 } |
| 4428 pWInfo->pParse = pParse; |
| 4429 pWInfo->pTabList = pTabList; |
| 4430 pWInfo->pOrderBy = pOrderBy; |
| 4431 pWInfo->pDistinctSet = pDistinctSet; |
| 4432 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; |
| 4433 pWInfo->nLevel = nTabList; |
| 4434 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v); |
| 4435 pWInfo->wctrlFlags = wctrlFlags; |
| 4436 pWInfo->iLimit = iAuxArg; |
| 4437 pWInfo->savedNQueryLoop = pParse->nQueryLoop; |
| 4438 memset(&pWInfo->nOBSat, 0, |
| 4439 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); |
| 4440 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); |
| 4441 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ |
| 4442 pMaskSet = &pWInfo->sMaskSet; |
| 4443 sWLB.pWInfo = pWInfo; |
| 4444 sWLB.pWC = &pWInfo->sWC; |
| 4445 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); |
| 4446 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); |
| 4447 whereLoopInit(sWLB.pNew); |
| 4448 #ifdef SQLITE_DEBUG |
| 4449 sWLB.pNew->cId = '*'; |
| 4450 #endif |
| 4451 |
| 4452 /* Split the WHERE clause into separate subexpressions where each |
| 4453 ** subexpression is separated by an AND operator. |
| 4454 */ |
| 4455 initMaskSet(pMaskSet); |
| 4456 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); |
| 4457 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); |
| 4458 |
| 4459 /* Special case: a WHERE clause that is constant. Evaluate the |
| 4460 ** expression and either jump over all of the code or fall thru. |
| 4461 */ |
| 4462 for(ii=0; ii<sWLB.pWC->nTerm; ii++){ |
| 4463 if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){ |
| 4464 sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak, |
| 4465 SQLITE_JUMPIFNULL); |
| 4466 sWLB.pWC->a[ii].wtFlags |= TERM_CODED; |
| 4467 } |
| 4468 } |
| 4469 |
| 4470 /* Special case: No FROM clause |
| 4471 */ |
| 4472 if( nTabList==0 ){ |
| 4473 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; |
| 4474 if( wctrlFlags & WHERE_WANT_DISTINCT ){ |
| 4475 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; |
| 4476 } |
| 4477 } |
| 4478 |
| 4479 /* Assign a bit from the bitmask to every term in the FROM clause. |
| 4480 ** |
| 4481 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. |
| 4482 ** |
| 4483 ** The rule of the previous sentence ensures thta if X is the bitmask for |
| 4484 ** a table T, then X-1 is the bitmask for all other tables to the left of T. |
| 4485 ** Knowing the bitmask for all tables to the left of a left join is |
| 4486 ** important. Ticket #3015. |
| 4487 ** |
| 4488 ** Note that bitmasks are created for all pTabList->nSrc tables in |
| 4489 ** pTabList, not just the first nTabList tables. nTabList is normally |
| 4490 ** equal to pTabList->nSrc but might be shortened to 1 if the |
| 4491 ** WHERE_OR_SUBCLAUSE flag is set. |
| 4492 */ |
| 4493 for(ii=0; ii<pTabList->nSrc; ii++){ |
| 4494 createMask(pMaskSet, pTabList->a[ii].iCursor); |
| 4495 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); |
| 4496 } |
| 4497 #ifdef SQLITE_DEBUG |
| 4498 for(ii=0; ii<pTabList->nSrc; ii++){ |
| 4499 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); |
| 4500 assert( m==MASKBIT(ii) ); |
| 4501 } |
| 4502 #endif |
| 4503 |
| 4504 /* Analyze all of the subexpressions. */ |
| 4505 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); |
| 4506 if( db->mallocFailed ) goto whereBeginError; |
| 4507 |
| 4508 if( wctrlFlags & WHERE_WANT_DISTINCT ){ |
| 4509 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pDistinctSet) ){ |
| 4510 /* The DISTINCT marking is pointless. Ignore it. */ |
| 4511 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; |
| 4512 }else if( pOrderBy==0 ){ |
| 4513 /* Try to ORDER BY the result set to make distinct processing easier */ |
| 4514 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; |
| 4515 pWInfo->pOrderBy = pDistinctSet; |
| 4516 } |
| 4517 } |
| 4518 |
| 4519 /* Construct the WhereLoop objects */ |
| 4520 #if defined(WHERETRACE_ENABLED) |
| 4521 if( sqlite3WhereTrace & 0xffff ){ |
| 4522 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); |
| 4523 if( wctrlFlags & WHERE_USE_LIMIT ){ |
| 4524 sqlite3DebugPrintf(", limit: %d", iAuxArg); |
| 4525 } |
| 4526 sqlite3DebugPrintf(")\n"); |
| 4527 } |
| 4528 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ |
| 4529 sqlite3WhereClausePrint(sWLB.pWC); |
| 4530 } |
| 4531 #endif |
| 4532 |
| 4533 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ |
| 4534 rc = whereLoopAddAll(&sWLB); |
| 4535 if( rc ) goto whereBeginError; |
| 4536 |
| 4537 #ifdef WHERETRACE_ENABLED |
| 4538 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ |
| 4539 WhereLoop *p; |
| 4540 int i; |
| 4541 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" |
| 4542 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; |
| 4543 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ |
| 4544 p->cId = zLabel[i%sizeof(zLabel)]; |
| 4545 whereLoopPrint(p, sWLB.pWC); |
| 4546 } |
| 4547 } |
| 4548 #endif |
| 4549 |
| 4550 wherePathSolver(pWInfo, 0); |
| 4551 if( db->mallocFailed ) goto whereBeginError; |
| 4552 if( pWInfo->pOrderBy ){ |
| 4553 wherePathSolver(pWInfo, pWInfo->nRowOut+1); |
| 4554 if( db->mallocFailed ) goto whereBeginError; |
| 4555 } |
| 4556 } |
| 4557 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ |
| 4558 pWInfo->revMask = ALLBITS; |
| 4559 } |
| 4560 if( pParse->nErr || NEVER(db->mallocFailed) ){ |
| 4561 goto whereBeginError; |
| 4562 } |
| 4563 #ifdef WHERETRACE_ENABLED |
| 4564 if( sqlite3WhereTrace ){ |
| 4565 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); |
| 4566 if( pWInfo->nOBSat>0 ){ |
| 4567 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); |
| 4568 } |
| 4569 switch( pWInfo->eDistinct ){ |
| 4570 case WHERE_DISTINCT_UNIQUE: { |
| 4571 sqlite3DebugPrintf(" DISTINCT=unique"); |
| 4572 break; |
| 4573 } |
| 4574 case WHERE_DISTINCT_ORDERED: { |
| 4575 sqlite3DebugPrintf(" DISTINCT=ordered"); |
| 4576 break; |
| 4577 } |
| 4578 case WHERE_DISTINCT_UNORDERED: { |
| 4579 sqlite3DebugPrintf(" DISTINCT=unordered"); |
| 4580 break; |
| 4581 } |
| 4582 } |
| 4583 sqlite3DebugPrintf("\n"); |
| 4584 for(ii=0; ii<pWInfo->nLevel; ii++){ |
| 4585 whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); |
| 4586 } |
| 4587 } |
| 4588 #endif |
| 4589 /* Attempt to omit tables from the join that do not effect the result */ |
| 4590 if( pWInfo->nLevel>=2 |
| 4591 && pDistinctSet!=0 |
| 4592 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) |
| 4593 ){ |
| 4594 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pDistinctSet); |
| 4595 if( sWLB.pOrderBy ){ |
| 4596 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); |
| 4597 } |
| 4598 while( pWInfo->nLevel>=2 ){ |
| 4599 WhereTerm *pTerm, *pEnd; |
| 4600 pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop; |
| 4601 if( (pWInfo->pTabList->a[pLoop->iTab].fg.jointype & JT_LEFT)==0 ) break; |
| 4602 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 |
| 4603 && (pLoop->wsFlags & WHERE_ONEROW)==0 |
| 4604 ){ |
| 4605 break; |
| 4606 } |
| 4607 if( (tabUsed & pLoop->maskSelf)!=0 ) break; |
| 4608 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; |
| 4609 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ |
| 4610 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 |
| 4611 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) |
| 4612 ){ |
| 4613 break; |
| 4614 } |
| 4615 } |
| 4616 if( pTerm<pEnd ) break; |
| 4617 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); |
| 4618 pWInfo->nLevel--; |
| 4619 nTabList--; |
| 4620 } |
| 4621 } |
| 4622 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); |
| 4623 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; |
| 4624 |
| 4625 /* If the caller is an UPDATE or DELETE statement that is requesting |
| 4626 ** to use a one-pass algorithm, determine if this is appropriate. |
| 4627 */ |
| 4628 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); |
| 4629 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ |
| 4630 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; |
| 4631 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; |
| 4632 if( bOnerow |
| 4633 || ((wctrlFlags & WHERE_ONEPASS_MULTIROW)!=0 |
| 4634 && 0==(wsFlags & WHERE_VIRTUALTABLE)) |
| 4635 ){ |
| 4636 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; |
| 4637 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ |
| 4638 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ |
| 4639 bFordelete = OPFLAG_FORDELETE; |
| 4640 } |
| 4641 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); |
| 4642 } |
| 4643 } |
| 4644 } |
| 4645 |
| 4646 /* Open all tables in the pTabList and any indices selected for |
| 4647 ** searching those tables. |
| 4648 */ |
| 4649 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ |
| 4650 Table *pTab; /* Table to open */ |
| 4651 int iDb; /* Index of database containing table/index */ |
| 4652 struct SrcList_item *pTabItem; |
| 4653 |
| 4654 pTabItem = &pTabList->a[pLevel->iFrom]; |
| 4655 pTab = pTabItem->pTab; |
| 4656 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| 4657 pLoop = pLevel->pWLoop; |
| 4658 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ |
| 4659 /* Do nothing */ |
| 4660 }else |
| 4661 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 4662 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ |
| 4663 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); |
| 4664 int iCur = pTabItem->iCursor; |
| 4665 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); |
| 4666 }else if( IsVirtual(pTab) ){ |
| 4667 /* noop */ |
| 4668 }else |
| 4669 #endif |
| 4670 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 |
| 4671 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ |
| 4672 int op = OP_OpenRead; |
| 4673 if( pWInfo->eOnePass!=ONEPASS_OFF ){ |
| 4674 op = OP_OpenWrite; |
| 4675 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; |
| 4676 }; |
| 4677 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); |
| 4678 assert( pTabItem->iCursor==pLevel->iTabCur ); |
| 4679 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); |
| 4680 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); |
| 4681 if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){ |
| 4682 Bitmask b = pTabItem->colUsed; |
| 4683 int n = 0; |
| 4684 for(; b; b=b>>1, n++){} |
| 4685 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); |
| 4686 assert( n<=pTab->nCol ); |
| 4687 } |
| 4688 #ifdef SQLITE_ENABLE_CURSOR_HINTS |
| 4689 if( pLoop->u.btree.pIndex!=0 ){ |
| 4690 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); |
| 4691 }else |
| 4692 #endif |
| 4693 { |
| 4694 sqlite3VdbeChangeP5(v, bFordelete); |
| 4695 } |
| 4696 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK |
| 4697 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, |
| 4698 (const u8*)&pTabItem->colUsed, P4_INT64); |
| 4699 #endif |
| 4700 }else{ |
| 4701 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
| 4702 } |
| 4703 if( pLoop->wsFlags & WHERE_INDEXED ){ |
| 4704 Index *pIx = pLoop->u.btree.pIndex; |
| 4705 int iIndexCur; |
| 4706 int op = OP_OpenRead; |
| 4707 /* iAuxArg is always set if to a positive value if ONEPASS is possible */ |
| 4708 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); |
| 4709 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) |
| 4710 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 |
| 4711 ){ |
| 4712 /* This is one term of an OR-optimization using the PRIMARY KEY of a |
| 4713 ** WITHOUT ROWID table. No need for a separate index */ |
| 4714 iIndexCur = pLevel->iTabCur; |
| 4715 op = 0; |
| 4716 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ |
| 4717 Index *pJ = pTabItem->pTab->pIndex; |
| 4718 iIndexCur = iAuxArg; |
| 4719 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); |
| 4720 while( ALWAYS(pJ) && pJ!=pIx ){ |
| 4721 iIndexCur++; |
| 4722 pJ = pJ->pNext; |
| 4723 } |
| 4724 op = OP_OpenWrite; |
| 4725 pWInfo->aiCurOnePass[1] = iIndexCur; |
| 4726 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ |
| 4727 iIndexCur = iAuxArg; |
| 4728 op = OP_ReopenIdx; |
| 4729 }else{ |
| 4730 iIndexCur = pParse->nTab++; |
| 4731 } |
| 4732 pLevel->iIdxCur = iIndexCur; |
| 4733 assert( pIx->pSchema==pTab->pSchema ); |
| 4734 assert( iIndexCur>=0 ); |
| 4735 if( op ){ |
| 4736 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); |
| 4737 sqlite3VdbeSetP4KeyInfo(pParse, pIx); |
| 4738 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 |
| 4739 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 |
| 4740 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 |
| 4741 ){ |
| 4742 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */ |
| 4743 } |
| 4744 VdbeComment((v, "%s", pIx->zName)); |
| 4745 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK |
| 4746 { |
| 4747 u64 colUsed = 0; |
| 4748 int ii, jj; |
| 4749 for(ii=0; ii<pIx->nColumn; ii++){ |
| 4750 jj = pIx->aiColumn[ii]; |
| 4751 if( jj<0 ) continue; |
| 4752 if( jj>63 ) jj = 63; |
| 4753 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; |
| 4754 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); |
| 4755 } |
| 4756 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, |
| 4757 (u8*)&colUsed, P4_INT64); |
| 4758 } |
| 4759 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ |
| 4760 } |
| 4761 } |
| 4762 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); |
| 4763 } |
| 4764 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); |
| 4765 if( db->mallocFailed ) goto whereBeginError; |
| 4766 |
| 4767 /* Generate the code to do the search. Each iteration of the for |
| 4768 ** loop below generates code for a single nested loop of the VM |
| 4769 ** program. |
| 4770 */ |
| 4771 notReady = ~(Bitmask)0; |
| 4772 for(ii=0; ii<nTabList; ii++){ |
| 4773 int addrExplain; |
| 4774 int wsFlags; |
| 4775 pLevel = &pWInfo->a[ii]; |
| 4776 wsFlags = pLevel->pWLoop->wsFlags; |
| 4777 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX |
| 4778 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ |
| 4779 constructAutomaticIndex(pParse, &pWInfo->sWC, |
| 4780 &pTabList->a[pLevel->iFrom], notReady, pLevel); |
| 4781 if( db->mallocFailed ) goto whereBeginError; |
| 4782 } |
| 4783 #endif |
| 4784 addrExplain = sqlite3WhereExplainOneScan( |
| 4785 pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags |
| 4786 ); |
| 4787 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); |
| 4788 notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady); |
| 4789 pWInfo->iContinue = pLevel->addrCont; |
| 4790 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ |
| 4791 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); |
| 4792 } |
| 4793 } |
| 4794 |
| 4795 /* Done. */ |
| 4796 VdbeModuleComment((v, "Begin WHERE-core")); |
| 4797 return pWInfo; |
| 4798 |
| 4799 /* Jump here if malloc fails */ |
| 4800 whereBeginError: |
| 4801 if( pWInfo ){ |
| 4802 pParse->nQueryLoop = pWInfo->savedNQueryLoop; |
| 4803 whereInfoFree(db, pWInfo); |
| 4804 } |
| 4805 return 0; |
| 4806 } |
| 4807 |
| 4808 /* |
| 4809 ** Generate the end of the WHERE loop. See comments on |
| 4810 ** sqlite3WhereBegin() for additional information. |
| 4811 */ |
| 4812 void sqlite3WhereEnd(WhereInfo *pWInfo){ |
| 4813 Parse *pParse = pWInfo->pParse; |
| 4814 Vdbe *v = pParse->pVdbe; |
| 4815 int i; |
| 4816 WhereLevel *pLevel; |
| 4817 WhereLoop *pLoop; |
| 4818 SrcList *pTabList = pWInfo->pTabList; |
| 4819 sqlite3 *db = pParse->db; |
| 4820 |
| 4821 /* Generate loop termination code. |
| 4822 */ |
| 4823 VdbeModuleComment((v, "End WHERE-core")); |
| 4824 sqlite3ExprCacheClear(pParse); |
| 4825 for(i=pWInfo->nLevel-1; i>=0; i--){ |
| 4826 int addr; |
| 4827 pLevel = &pWInfo->a[i]; |
| 4828 pLoop = pLevel->pWLoop; |
| 4829 sqlite3VdbeResolveLabel(v, pLevel->addrCont); |
| 4830 if( pLevel->op!=OP_Noop ){ |
| 4831 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); |
| 4832 sqlite3VdbeChangeP5(v, pLevel->p5); |
| 4833 VdbeCoverage(v); |
| 4834 VdbeCoverageIf(v, pLevel->op==OP_Next); |
| 4835 VdbeCoverageIf(v, pLevel->op==OP_Prev); |
| 4836 VdbeCoverageIf(v, pLevel->op==OP_VNext); |
| 4837 } |
| 4838 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ |
| 4839 struct InLoop *pIn; |
| 4840 int j; |
| 4841 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); |
| 4842 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ |
| 4843 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); |
| 4844 if( pIn->eEndLoopOp!=OP_Noop ){ |
| 4845 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); |
| 4846 VdbeCoverage(v); |
| 4847 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen); |
| 4848 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen); |
| 4849 } |
| 4850 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); |
| 4851 } |
| 4852 } |
| 4853 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); |
| 4854 if( pLevel->addrSkip ){ |
| 4855 sqlite3VdbeGoto(v, pLevel->addrSkip); |
| 4856 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); |
| 4857 sqlite3VdbeJumpHere(v, pLevel->addrSkip); |
| 4858 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); |
| 4859 } |
| 4860 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS |
| 4861 if( pLevel->addrLikeRep ){ |
| 4862 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), |
| 4863 pLevel->addrLikeRep); |
| 4864 VdbeCoverage(v); |
| 4865 } |
| 4866 #endif |
| 4867 if( pLevel->iLeftJoin ){ |
| 4868 int ws = pLoop->wsFlags; |
| 4869 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); |
| 4870 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); |
| 4871 if( (ws & WHERE_IDX_ONLY)==0 ){ |
| 4872 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); |
| 4873 } |
| 4874 if( (ws & WHERE_INDEXED) |
| 4875 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx) |
| 4876 ){ |
| 4877 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); |
| 4878 } |
| 4879 if( pLevel->op==OP_Return ){ |
| 4880 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); |
| 4881 }else{ |
| 4882 sqlite3VdbeGoto(v, pLevel->addrFirst); |
| 4883 } |
| 4884 sqlite3VdbeJumpHere(v, addr); |
| 4885 } |
| 4886 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, |
| 4887 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); |
| 4888 } |
| 4889 |
| 4890 /* The "break" point is here, just past the end of the outer loop. |
| 4891 ** Set it. |
| 4892 */ |
| 4893 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); |
| 4894 |
| 4895 assert( pWInfo->nLevel<=pTabList->nSrc ); |
| 4896 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ |
| 4897 int k, last; |
| 4898 VdbeOp *pOp; |
| 4899 Index *pIdx = 0; |
| 4900 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; |
| 4901 Table *pTab = pTabItem->pTab; |
| 4902 assert( pTab!=0 ); |
| 4903 pLoop = pLevel->pWLoop; |
| 4904 |
| 4905 /* For a co-routine, change all OP_Column references to the table of |
| 4906 ** the co-routine into OP_Copy of result contained in a register. |
| 4907 ** OP_Rowid becomes OP_Null. |
| 4908 */ |
| 4909 if( pTabItem->fg.viaCoroutine && !db->mallocFailed ){ |
| 4910 translateColumnToCopy(v, pLevel->addrBody, pLevel->iTabCur, |
| 4911 pTabItem->regResult, 0); |
| 4912 continue; |
| 4913 } |
| 4914 |
| 4915 /* If this scan uses an index, make VDBE code substitutions to read data |
| 4916 ** from the index instead of from the table where possible. In some cases |
| 4917 ** this optimization prevents the table from ever being read, which can |
| 4918 ** yield a significant performance boost. |
| 4919 ** |
| 4920 ** Calls to the code generator in between sqlite3WhereBegin and |
| 4921 ** sqlite3WhereEnd will have created code that references the table |
| 4922 ** directly. This loop scans all that code looking for opcodes |
| 4923 ** that reference the table and converts them into opcodes that |
| 4924 ** reference the index. |
| 4925 */ |
| 4926 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ |
| 4927 pIdx = pLoop->u.btree.pIndex; |
| 4928 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ |
| 4929 pIdx = pLevel->u.pCovidx; |
| 4930 } |
| 4931 if( pIdx |
| 4932 && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable)) |
| 4933 && !db->mallocFailed |
| 4934 ){ |
| 4935 last = sqlite3VdbeCurrentAddr(v); |
| 4936 k = pLevel->addrBody; |
| 4937 pOp = sqlite3VdbeGetOp(v, k); |
| 4938 for(; k<last; k++, pOp++){ |
| 4939 if( pOp->p1!=pLevel->iTabCur ) continue; |
| 4940 if( pOp->opcode==OP_Column ){ |
| 4941 int x = pOp->p2; |
| 4942 assert( pIdx->pTable==pTab ); |
| 4943 if( !HasRowid(pTab) ){ |
| 4944 Index *pPk = sqlite3PrimaryKeyIndex(pTab); |
| 4945 x = pPk->aiColumn[x]; |
| 4946 assert( x>=0 ); |
| 4947 } |
| 4948 x = sqlite3ColumnOfIndex(pIdx, x); |
| 4949 if( x>=0 ){ |
| 4950 pOp->p2 = x; |
| 4951 pOp->p1 = pLevel->iIdxCur; |
| 4952 } |
| 4953 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 |
| 4954 || pWInfo->eOnePass ); |
| 4955 }else if( pOp->opcode==OP_Rowid ){ |
| 4956 pOp->p1 = pLevel->iIdxCur; |
| 4957 pOp->opcode = OP_IdxRowid; |
| 4958 } |
| 4959 } |
| 4960 } |
| 4961 } |
| 4962 |
| 4963 /* Final cleanup |
| 4964 */ |
| 4965 pParse->nQueryLoop = pWInfo->savedNQueryLoop; |
| 4966 whereInfoFree(db, pWInfo); |
| 4967 return; |
| 4968 } |
OLD | NEW |