Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(29)

Side by Side Diff: third_party/sqlite/sqlite-src-3170000/src/where.c

Issue 2747283002: [sql] Import reference version of SQLite 3.17.. (Closed)
Patch Set: Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements. This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows. Indices are selected and used to speed the search when doing
16 ** so is applicable. Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21
22 /* Forward declaration of methods */
23 static int whereLoopResize(sqlite3*, WhereLoop*, int);
24
25 /* Test variable that can be set to enable WHERE tracing */
26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
27 /***/ int sqlite3WhereTrace = 0;
28 #endif
29
30
31 /*
32 ** Return the estimated number of output rows from a WHERE clause
33 */
34 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
35 return pWInfo->nRowOut;
36 }
37
38 /*
39 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
40 ** WHERE clause returns outputs for DISTINCT processing.
41 */
42 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
43 return pWInfo->eDistinct;
44 }
45
46 /*
47 ** Return TRUE if the WHERE clause returns rows in ORDER BY order.
48 ** Return FALSE if the output needs to be sorted.
49 */
50 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
51 return pWInfo->nOBSat;
52 }
53
54 /*
55 ** Return TRUE if the innermost loop of the WHERE clause implementation
56 ** returns rows in ORDER BY order for complete run of the inner loop.
57 **
58 ** Across multiple iterations of outer loops, the output rows need not be
59 ** sorted. As long as rows are sorted for just the innermost loop, this
60 ** routine can return TRUE.
61 */
62 int sqlite3WhereOrderedInnerLoop(WhereInfo *pWInfo){
63 return pWInfo->bOrderedInnerLoop;
64 }
65
66 /*
67 ** Return the VDBE address or label to jump to in order to continue
68 ** immediately with the next row of a WHERE clause.
69 */
70 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
71 assert( pWInfo->iContinue!=0 );
72 return pWInfo->iContinue;
73 }
74
75 /*
76 ** Return the VDBE address or label to jump to in order to break
77 ** out of a WHERE loop.
78 */
79 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
80 return pWInfo->iBreak;
81 }
82
83 /*
84 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
85 ** operate directly on the rowis returned by a WHERE clause. Return
86 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
87 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass
88 ** optimization can be used on multiple
89 **
90 ** If the ONEPASS optimization is used (if this routine returns true)
91 ** then also write the indices of open cursors used by ONEPASS
92 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data
93 ** table and iaCur[1] gets the cursor used by an auxiliary index.
94 ** Either value may be -1, indicating that cursor is not used.
95 ** Any cursors returned will have been opened for writing.
96 **
97 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
98 ** unable to use the ONEPASS optimization.
99 */
100 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
101 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
102 #ifdef WHERETRACE_ENABLED
103 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
104 sqlite3DebugPrintf("%s cursors: %d %d\n",
105 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
106 aiCur[0], aiCur[1]);
107 }
108 #endif
109 return pWInfo->eOnePass;
110 }
111
112 /*
113 ** Move the content of pSrc into pDest
114 */
115 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
116 pDest->n = pSrc->n;
117 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
118 }
119
120 /*
121 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
122 **
123 ** The new entry might overwrite an existing entry, or it might be
124 ** appended, or it might be discarded. Do whatever is the right thing
125 ** so that pSet keeps the N_OR_COST best entries seen so far.
126 */
127 static int whereOrInsert(
128 WhereOrSet *pSet, /* The WhereOrSet to be updated */
129 Bitmask prereq, /* Prerequisites of the new entry */
130 LogEst rRun, /* Run-cost of the new entry */
131 LogEst nOut /* Number of outputs for the new entry */
132 ){
133 u16 i;
134 WhereOrCost *p;
135 for(i=pSet->n, p=pSet->a; i>0; i--, p++){
136 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
137 goto whereOrInsert_done;
138 }
139 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
140 return 0;
141 }
142 }
143 if( pSet->n<N_OR_COST ){
144 p = &pSet->a[pSet->n++];
145 p->nOut = nOut;
146 }else{
147 p = pSet->a;
148 for(i=1; i<pSet->n; i++){
149 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
150 }
151 if( p->rRun<=rRun ) return 0;
152 }
153 whereOrInsert_done:
154 p->prereq = prereq;
155 p->rRun = rRun;
156 if( p->nOut>nOut ) p->nOut = nOut;
157 return 1;
158 }
159
160 /*
161 ** Return the bitmask for the given cursor number. Return 0 if
162 ** iCursor is not in the set.
163 */
164 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
165 int i;
166 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
167 for(i=0; i<pMaskSet->n; i++){
168 if( pMaskSet->ix[i]==iCursor ){
169 return MASKBIT(i);
170 }
171 }
172 return 0;
173 }
174
175 /*
176 ** Create a new mask for cursor iCursor.
177 **
178 ** There is one cursor per table in the FROM clause. The number of
179 ** tables in the FROM clause is limited by a test early in the
180 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
181 ** array will never overflow.
182 */
183 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
184 assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
185 pMaskSet->ix[pMaskSet->n++] = iCursor;
186 }
187
188 /*
189 ** Advance to the next WhereTerm that matches according to the criteria
190 ** established when the pScan object was initialized by whereScanInit().
191 ** Return NULL if there are no more matching WhereTerms.
192 */
193 static WhereTerm *whereScanNext(WhereScan *pScan){
194 int iCur; /* The cursor on the LHS of the term */
195 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */
196 Expr *pX; /* An expression being tested */
197 WhereClause *pWC; /* Shorthand for pScan->pWC */
198 WhereTerm *pTerm; /* The term being tested */
199 int k = pScan->k; /* Where to start scanning */
200
201 assert( pScan->iEquiv<=pScan->nEquiv );
202 pWC = pScan->pWC;
203 while(1){
204 iColumn = pScan->aiColumn[pScan->iEquiv-1];
205 iCur = pScan->aiCur[pScan->iEquiv-1];
206 assert( pWC!=0 );
207 do{
208 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
209 if( pTerm->leftCursor==iCur
210 && pTerm->u.leftColumn==iColumn
211 && (iColumn!=XN_EXPR
212 || sqlite3ExprCompare(pTerm->pExpr->pLeft,pScan->pIdxExpr,iCur)==0)
213 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
214 ){
215 if( (pTerm->eOperator & WO_EQUIV)!=0
216 && pScan->nEquiv<ArraySize(pScan->aiCur)
217 && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN
218 ){
219 int j;
220 for(j=0; j<pScan->nEquiv; j++){
221 if( pScan->aiCur[j]==pX->iTable
222 && pScan->aiColumn[j]==pX->iColumn ){
223 break;
224 }
225 }
226 if( j==pScan->nEquiv ){
227 pScan->aiCur[j] = pX->iTable;
228 pScan->aiColumn[j] = pX->iColumn;
229 pScan->nEquiv++;
230 }
231 }
232 if( (pTerm->eOperator & pScan->opMask)!=0 ){
233 /* Verify the affinity and collating sequence match */
234 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
235 CollSeq *pColl;
236 Parse *pParse = pWC->pWInfo->pParse;
237 pX = pTerm->pExpr;
238 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
239 continue;
240 }
241 assert(pX->pLeft);
242 pColl = sqlite3BinaryCompareCollSeq(pParse,
243 pX->pLeft, pX->pRight);
244 if( pColl==0 ) pColl = pParse->db->pDfltColl;
245 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
246 continue;
247 }
248 }
249 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
250 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
251 && pX->iTable==pScan->aiCur[0]
252 && pX->iColumn==pScan->aiColumn[0]
253 ){
254 testcase( pTerm->eOperator & WO_IS );
255 continue;
256 }
257 pScan->pWC = pWC;
258 pScan->k = k+1;
259 return pTerm;
260 }
261 }
262 }
263 pWC = pWC->pOuter;
264 k = 0;
265 }while( pWC!=0 );
266 if( pScan->iEquiv>=pScan->nEquiv ) break;
267 pWC = pScan->pOrigWC;
268 k = 0;
269 pScan->iEquiv++;
270 }
271 return 0;
272 }
273
274 /*
275 ** Initialize a WHERE clause scanner object. Return a pointer to the
276 ** first match. Return NULL if there are no matches.
277 **
278 ** The scanner will be searching the WHERE clause pWC. It will look
279 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
280 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx
281 ** must be one of the indexes of table iCur.
282 **
283 ** The <op> must be one of the operators described by opMask.
284 **
285 ** If the search is for X and the WHERE clause contains terms of the
286 ** form X=Y then this routine might also return terms of the form
287 ** "Y <op> <expr>". The number of levels of transitivity is limited,
288 ** but is enough to handle most commonly occurring SQL statements.
289 **
290 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
291 ** index pIdx.
292 */
293 static WhereTerm *whereScanInit(
294 WhereScan *pScan, /* The WhereScan object being initialized */
295 WhereClause *pWC, /* The WHERE clause to be scanned */
296 int iCur, /* Cursor to scan for */
297 int iColumn, /* Column to scan for */
298 u32 opMask, /* Operator(s) to scan for */
299 Index *pIdx /* Must be compatible with this index */
300 ){
301 pScan->pOrigWC = pWC;
302 pScan->pWC = pWC;
303 pScan->pIdxExpr = 0;
304 pScan->idxaff = 0;
305 pScan->zCollName = 0;
306 if( pIdx ){
307 int j = iColumn;
308 iColumn = pIdx->aiColumn[j];
309 if( iColumn==XN_EXPR ){
310 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
311 pScan->zCollName = pIdx->azColl[j];
312 }else if( iColumn==pIdx->pTable->iPKey ){
313 iColumn = XN_ROWID;
314 }else if( iColumn>=0 ){
315 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
316 pScan->zCollName = pIdx->azColl[j];
317 }
318 }else if( iColumn==XN_EXPR ){
319 return 0;
320 }
321 pScan->opMask = opMask;
322 pScan->k = 0;
323 pScan->aiCur[0] = iCur;
324 pScan->aiColumn[0] = iColumn;
325 pScan->nEquiv = 1;
326 pScan->iEquiv = 1;
327 return whereScanNext(pScan);
328 }
329
330 /*
331 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
332 ** where X is a reference to the iColumn of table iCur or of index pIdx
333 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
334 ** the op parameter. Return a pointer to the term. Return 0 if not found.
335 **
336 ** If pIdx!=0 then it must be one of the indexes of table iCur.
337 ** Search for terms matching the iColumn-th column of pIdx
338 ** rather than the iColumn-th column of table iCur.
339 **
340 ** The term returned might by Y=<expr> if there is another constraint in
341 ** the WHERE clause that specifies that X=Y. Any such constraints will be
342 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The
343 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
344 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
345 ** other equivalent values. Hence a search for X will return <expr> if X=A1
346 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
347 **
348 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
349 ** then try for the one with no dependencies on <expr> - in other words where
350 ** <expr> is a constant expression of some kind. Only return entries of
351 ** the form "X <op> Y" where Y is a column in another table if no terms of
352 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS
353 ** exist, try to return a term that does not use WO_EQUIV.
354 */
355 WhereTerm *sqlite3WhereFindTerm(
356 WhereClause *pWC, /* The WHERE clause to be searched */
357 int iCur, /* Cursor number of LHS */
358 int iColumn, /* Column number of LHS */
359 Bitmask notReady, /* RHS must not overlap with this mask */
360 u32 op, /* Mask of WO_xx values describing operator */
361 Index *pIdx /* Must be compatible with this index, if not NULL */
362 ){
363 WhereTerm *pResult = 0;
364 WhereTerm *p;
365 WhereScan scan;
366
367 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
368 op &= WO_EQ|WO_IS;
369 while( p ){
370 if( (p->prereqRight & notReady)==0 ){
371 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
372 testcase( p->eOperator & WO_IS );
373 return p;
374 }
375 if( pResult==0 ) pResult = p;
376 }
377 p = whereScanNext(&scan);
378 }
379 return pResult;
380 }
381
382 /*
383 ** This function searches pList for an entry that matches the iCol-th column
384 ** of index pIdx.
385 **
386 ** If such an expression is found, its index in pList->a[] is returned. If
387 ** no expression is found, -1 is returned.
388 */
389 static int findIndexCol(
390 Parse *pParse, /* Parse context */
391 ExprList *pList, /* Expression list to search */
392 int iBase, /* Cursor for table associated with pIdx */
393 Index *pIdx, /* Index to match column of */
394 int iCol /* Column of index to match */
395 ){
396 int i;
397 const char *zColl = pIdx->azColl[iCol];
398
399 for(i=0; i<pList->nExpr; i++){
400 Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr);
401 if( p->op==TK_COLUMN
402 && p->iColumn==pIdx->aiColumn[iCol]
403 && p->iTable==iBase
404 ){
405 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
406 if( pColl && 0==sqlite3StrICmp(pColl->zName, zColl) ){
407 return i;
408 }
409 }
410 }
411
412 return -1;
413 }
414
415 /*
416 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
417 */
418 static int indexColumnNotNull(Index *pIdx, int iCol){
419 int j;
420 assert( pIdx!=0 );
421 assert( iCol>=0 && iCol<pIdx->nColumn );
422 j = pIdx->aiColumn[iCol];
423 if( j>=0 ){
424 return pIdx->pTable->aCol[j].notNull;
425 }else if( j==(-1) ){
426 return 1;
427 }else{
428 assert( j==(-2) );
429 return 0; /* Assume an indexed expression can always yield a NULL */
430
431 }
432 }
433
434 /*
435 ** Return true if the DISTINCT expression-list passed as the third argument
436 ** is redundant.
437 **
438 ** A DISTINCT list is redundant if any subset of the columns in the
439 ** DISTINCT list are collectively unique and individually non-null.
440 */
441 static int isDistinctRedundant(
442 Parse *pParse, /* Parsing context */
443 SrcList *pTabList, /* The FROM clause */
444 WhereClause *pWC, /* The WHERE clause */
445 ExprList *pDistinct /* The result set that needs to be DISTINCT */
446 ){
447 Table *pTab;
448 Index *pIdx;
449 int i;
450 int iBase;
451
452 /* If there is more than one table or sub-select in the FROM clause of
453 ** this query, then it will not be possible to show that the DISTINCT
454 ** clause is redundant. */
455 if( pTabList->nSrc!=1 ) return 0;
456 iBase = pTabList->a[0].iCursor;
457 pTab = pTabList->a[0].pTab;
458
459 /* If any of the expressions is an IPK column on table iBase, then return
460 ** true. Note: The (p->iTable==iBase) part of this test may be false if the
461 ** current SELECT is a correlated sub-query.
462 */
463 for(i=0; i<pDistinct->nExpr; i++){
464 Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr);
465 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
466 }
467
468 /* Loop through all indices on the table, checking each to see if it makes
469 ** the DISTINCT qualifier redundant. It does so if:
470 **
471 ** 1. The index is itself UNIQUE, and
472 **
473 ** 2. All of the columns in the index are either part of the pDistinct
474 ** list, or else the WHERE clause contains a term of the form "col=X",
475 ** where X is a constant value. The collation sequences of the
476 ** comparison and select-list expressions must match those of the index.
477 **
478 ** 3. All of those index columns for which the WHERE clause does not
479 ** contain a "col=X" term are subject to a NOT NULL constraint.
480 */
481 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
482 if( !IsUniqueIndex(pIdx) ) continue;
483 for(i=0; i<pIdx->nKeyCol; i++){
484 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
485 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
486 if( indexColumnNotNull(pIdx, i)==0 ) break;
487 }
488 }
489 if( i==pIdx->nKeyCol ){
490 /* This index implies that the DISTINCT qualifier is redundant. */
491 return 1;
492 }
493 }
494
495 return 0;
496 }
497
498
499 /*
500 ** Estimate the logarithm of the input value to base 2.
501 */
502 static LogEst estLog(LogEst N){
503 return N<=10 ? 0 : sqlite3LogEst(N) - 33;
504 }
505
506 /*
507 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
508 **
509 ** This routine runs over generated VDBE code and translates OP_Column
510 ** opcodes into OP_Copy when the table is being accessed via co-routine
511 ** instead of via table lookup.
512 **
513 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on
514 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero,
515 ** then each OP_Rowid is transformed into an instruction to increment the
516 ** value stored in its output register.
517 */
518 static void translateColumnToCopy(
519 Vdbe *v, /* The VDBE containing code to translate */
520 int iStart, /* Translate from this opcode to the end */
521 int iTabCur, /* OP_Column/OP_Rowid references to this table */
522 int iRegister, /* The first column is in this register */
523 int bIncrRowid /* If non-zero, transform OP_rowid to OP_AddImm(1) */
524 ){
525 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
526 int iEnd = sqlite3VdbeCurrentAddr(v);
527 for(; iStart<iEnd; iStart++, pOp++){
528 if( pOp->p1!=iTabCur ) continue;
529 if( pOp->opcode==OP_Column ){
530 pOp->opcode = OP_Copy;
531 pOp->p1 = pOp->p2 + iRegister;
532 pOp->p2 = pOp->p3;
533 pOp->p3 = 0;
534 }else if( pOp->opcode==OP_Rowid ){
535 if( bIncrRowid ){
536 /* Increment the value stored in the P2 operand of the OP_Rowid. */
537 pOp->opcode = OP_AddImm;
538 pOp->p1 = pOp->p2;
539 pOp->p2 = 1;
540 }else{
541 pOp->opcode = OP_Null;
542 pOp->p1 = 0;
543 pOp->p3 = 0;
544 }
545 }
546 }
547 }
548
549 /*
550 ** Two routines for printing the content of an sqlite3_index_info
551 ** structure. Used for testing and debugging only. If neither
552 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
553 ** are no-ops.
554 */
555 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
556 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
557 int i;
558 if( !sqlite3WhereTrace ) return;
559 for(i=0; i<p->nConstraint; i++){
560 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
561 i,
562 p->aConstraint[i].iColumn,
563 p->aConstraint[i].iTermOffset,
564 p->aConstraint[i].op,
565 p->aConstraint[i].usable);
566 }
567 for(i=0; i<p->nOrderBy; i++){
568 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
569 i,
570 p->aOrderBy[i].iColumn,
571 p->aOrderBy[i].desc);
572 }
573 }
574 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
575 int i;
576 if( !sqlite3WhereTrace ) return;
577 for(i=0; i<p->nConstraint; i++){
578 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
579 i,
580 p->aConstraintUsage[i].argvIndex,
581 p->aConstraintUsage[i].omit);
582 }
583 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
584 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
585 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
586 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
587 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows);
588 }
589 #else
590 #define TRACE_IDX_INPUTS(A)
591 #define TRACE_IDX_OUTPUTS(A)
592 #endif
593
594 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
595 /*
596 ** Return TRUE if the WHERE clause term pTerm is of a form where it
597 ** could be used with an index to access pSrc, assuming an appropriate
598 ** index existed.
599 */
600 static int termCanDriveIndex(
601 WhereTerm *pTerm, /* WHERE clause term to check */
602 struct SrcList_item *pSrc, /* Table we are trying to access */
603 Bitmask notReady /* Tables in outer loops of the join */
604 ){
605 char aff;
606 if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
607 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
608 if( (pTerm->prereqRight & notReady)!=0 ) return 0;
609 if( pTerm->u.leftColumn<0 ) return 0;
610 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
611 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
612 testcase( pTerm->pExpr->op==TK_IS );
613 return 1;
614 }
615 #endif
616
617
618 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
619 /*
620 ** Generate code to construct the Index object for an automatic index
621 ** and to set up the WhereLevel object pLevel so that the code generator
622 ** makes use of the automatic index.
623 */
624 static void constructAutomaticIndex(
625 Parse *pParse, /* The parsing context */
626 WhereClause *pWC, /* The WHERE clause */
627 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */
628 Bitmask notReady, /* Mask of cursors that are not available */
629 WhereLevel *pLevel /* Write new index here */
630 ){
631 int nKeyCol; /* Number of columns in the constructed index */
632 WhereTerm *pTerm; /* A single term of the WHERE clause */
633 WhereTerm *pWCEnd; /* End of pWC->a[] */
634 Index *pIdx; /* Object describing the transient index */
635 Vdbe *v; /* Prepared statement under construction */
636 int addrInit; /* Address of the initialization bypass jump */
637 Table *pTable; /* The table being indexed */
638 int addrTop; /* Top of the index fill loop */
639 int regRecord; /* Register holding an index record */
640 int n; /* Column counter */
641 int i; /* Loop counter */
642 int mxBitCol; /* Maximum column in pSrc->colUsed */
643 CollSeq *pColl; /* Collating sequence to on a column */
644 WhereLoop *pLoop; /* The Loop object */
645 char *zNotUsed; /* Extra space on the end of pIdx */
646 Bitmask idxCols; /* Bitmap of columns used for indexing */
647 Bitmask extraCols; /* Bitmap of additional columns */
648 u8 sentWarning = 0; /* True if a warnning has been issued */
649 Expr *pPartial = 0; /* Partial Index Expression */
650 int iContinue = 0; /* Jump here to skip excluded rows */
651 struct SrcList_item *pTabItem; /* FROM clause term being indexed */
652 int addrCounter = 0; /* Address where integer counter is initialized */
653 int regBase; /* Array of registers where record is assembled */
654
655 /* Generate code to skip over the creation and initialization of the
656 ** transient index on 2nd and subsequent iterations of the loop. */
657 v = pParse->pVdbe;
658 assert( v!=0 );
659 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
660
661 /* Count the number of columns that will be added to the index
662 ** and used to match WHERE clause constraints */
663 nKeyCol = 0;
664 pTable = pSrc->pTab;
665 pWCEnd = &pWC->a[pWC->nTerm];
666 pLoop = pLevel->pWLoop;
667 idxCols = 0;
668 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
669 Expr *pExpr = pTerm->pExpr;
670 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */
671 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */
672 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */
673 if( pLoop->prereq==0
674 && (pTerm->wtFlags & TERM_VIRTUAL)==0
675 && !ExprHasProperty(pExpr, EP_FromJoin)
676 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
677 pPartial = sqlite3ExprAnd(pParse->db, pPartial,
678 sqlite3ExprDup(pParse->db, pExpr, 0));
679 }
680 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
681 int iCol = pTerm->u.leftColumn;
682 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
683 testcase( iCol==BMS );
684 testcase( iCol==BMS-1 );
685 if( !sentWarning ){
686 sqlite3_log(SQLITE_WARNING_AUTOINDEX,
687 "automatic index on %s(%s)", pTable->zName,
688 pTable->aCol[iCol].zName);
689 sentWarning = 1;
690 }
691 if( (idxCols & cMask)==0 ){
692 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
693 goto end_auto_index_create;
694 }
695 pLoop->aLTerm[nKeyCol++] = pTerm;
696 idxCols |= cMask;
697 }
698 }
699 }
700 assert( nKeyCol>0 );
701 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
702 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
703 | WHERE_AUTO_INDEX;
704
705 /* Count the number of additional columns needed to create a
706 ** covering index. A "covering index" is an index that contains all
707 ** columns that are needed by the query. With a covering index, the
708 ** original table never needs to be accessed. Automatic indices must
709 ** be a covering index because the index will not be updated if the
710 ** original table changes and the index and table cannot both be used
711 ** if they go out of sync.
712 */
713 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
714 mxBitCol = MIN(BMS-1,pTable->nCol);
715 testcase( pTable->nCol==BMS-1 );
716 testcase( pTable->nCol==BMS-2 );
717 for(i=0; i<mxBitCol; i++){
718 if( extraCols & MASKBIT(i) ) nKeyCol++;
719 }
720 if( pSrc->colUsed & MASKBIT(BMS-1) ){
721 nKeyCol += pTable->nCol - BMS + 1;
722 }
723
724 /* Construct the Index object to describe this index */
725 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
726 if( pIdx==0 ) goto end_auto_index_create;
727 pLoop->u.btree.pIndex = pIdx;
728 pIdx->zName = "auto-index";
729 pIdx->pTable = pTable;
730 n = 0;
731 idxCols = 0;
732 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
733 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
734 int iCol = pTerm->u.leftColumn;
735 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
736 testcase( iCol==BMS-1 );
737 testcase( iCol==BMS );
738 if( (idxCols & cMask)==0 ){
739 Expr *pX = pTerm->pExpr;
740 idxCols |= cMask;
741 pIdx->aiColumn[n] = pTerm->u.leftColumn;
742 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
743 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
744 n++;
745 }
746 }
747 }
748 assert( (u32)n==pLoop->u.btree.nEq );
749
750 /* Add additional columns needed to make the automatic index into
751 ** a covering index */
752 for(i=0; i<mxBitCol; i++){
753 if( extraCols & MASKBIT(i) ){
754 pIdx->aiColumn[n] = i;
755 pIdx->azColl[n] = sqlite3StrBINARY;
756 n++;
757 }
758 }
759 if( pSrc->colUsed & MASKBIT(BMS-1) ){
760 for(i=BMS-1; i<pTable->nCol; i++){
761 pIdx->aiColumn[n] = i;
762 pIdx->azColl[n] = sqlite3StrBINARY;
763 n++;
764 }
765 }
766 assert( n==nKeyCol );
767 pIdx->aiColumn[n] = XN_ROWID;
768 pIdx->azColl[n] = sqlite3StrBINARY;
769
770 /* Create the automatic index */
771 assert( pLevel->iIdxCur>=0 );
772 pLevel->iIdxCur = pParse->nTab++;
773 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
774 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
775 VdbeComment((v, "for %s", pTable->zName));
776
777 /* Fill the automatic index with content */
778 sqlite3ExprCachePush(pParse);
779 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
780 if( pTabItem->fg.viaCoroutine ){
781 int regYield = pTabItem->regReturn;
782 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
783 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
784 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield);
785 VdbeCoverage(v);
786 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
787 }else{
788 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
789 }
790 if( pPartial ){
791 iContinue = sqlite3VdbeMakeLabel(v);
792 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
793 pLoop->wsFlags |= WHERE_PARTIALIDX;
794 }
795 regRecord = sqlite3GetTempReg(pParse);
796 regBase = sqlite3GenerateIndexKey(
797 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
798 );
799 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
800 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
801 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
802 if( pTabItem->fg.viaCoroutine ){
803 sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
804 translateColumnToCopy(v, addrTop, pLevel->iTabCur, pTabItem->regResult, 1);
805 sqlite3VdbeGoto(v, addrTop);
806 pTabItem->fg.viaCoroutine = 0;
807 }else{
808 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
809 }
810 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
811 sqlite3VdbeJumpHere(v, addrTop);
812 sqlite3ReleaseTempReg(pParse, regRecord);
813 sqlite3ExprCachePop(pParse);
814
815 /* Jump here when skipping the initialization */
816 sqlite3VdbeJumpHere(v, addrInit);
817
818 end_auto_index_create:
819 sqlite3ExprDelete(pParse->db, pPartial);
820 }
821 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
822
823 #ifndef SQLITE_OMIT_VIRTUALTABLE
824 /*
825 ** Allocate and populate an sqlite3_index_info structure. It is the
826 ** responsibility of the caller to eventually release the structure
827 ** by passing the pointer returned by this function to sqlite3_free().
828 */
829 static sqlite3_index_info *allocateIndexInfo(
830 Parse *pParse,
831 WhereClause *pWC,
832 Bitmask mUnusable, /* Ignore terms with these prereqs */
833 struct SrcList_item *pSrc,
834 ExprList *pOrderBy,
835 u16 *pmNoOmit /* Mask of terms not to omit */
836 ){
837 int i, j;
838 int nTerm;
839 struct sqlite3_index_constraint *pIdxCons;
840 struct sqlite3_index_orderby *pIdxOrderBy;
841 struct sqlite3_index_constraint_usage *pUsage;
842 WhereTerm *pTerm;
843 int nOrderBy;
844 sqlite3_index_info *pIdxInfo;
845 u16 mNoOmit = 0;
846
847 /* Count the number of possible WHERE clause constraints referring
848 ** to this virtual table */
849 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
850 if( pTerm->leftCursor != pSrc->iCursor ) continue;
851 if( pTerm->prereqRight & mUnusable ) continue;
852 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
853 testcase( pTerm->eOperator & WO_IN );
854 testcase( pTerm->eOperator & WO_ISNULL );
855 testcase( pTerm->eOperator & WO_IS );
856 testcase( pTerm->eOperator & WO_ALL );
857 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue;
858 if( pTerm->wtFlags & TERM_VNULL ) continue;
859 assert( pTerm->u.leftColumn>=(-1) );
860 nTerm++;
861 }
862
863 /* If the ORDER BY clause contains only columns in the current
864 ** virtual table then allocate space for the aOrderBy part of
865 ** the sqlite3_index_info structure.
866 */
867 nOrderBy = 0;
868 if( pOrderBy ){
869 int n = pOrderBy->nExpr;
870 for(i=0; i<n; i++){
871 Expr *pExpr = pOrderBy->a[i].pExpr;
872 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
873 }
874 if( i==n){
875 nOrderBy = n;
876 }
877 }
878
879 /* Allocate the sqlite3_index_info structure
880 */
881 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
882 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
883 + sizeof(*pIdxOrderBy)*nOrderBy );
884 if( pIdxInfo==0 ){
885 sqlite3ErrorMsg(pParse, "out of memory");
886 return 0;
887 }
888
889 /* Initialize the structure. The sqlite3_index_info structure contains
890 ** many fields that are declared "const" to prevent xBestIndex from
891 ** changing them. We have to do some funky casting in order to
892 ** initialize those fields.
893 */
894 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
895 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
896 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
897 *(int*)&pIdxInfo->nConstraint = nTerm;
898 *(int*)&pIdxInfo->nOrderBy = nOrderBy;
899 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
900 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
901 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
902 pUsage;
903
904 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
905 u8 op;
906 if( pTerm->leftCursor != pSrc->iCursor ) continue;
907 if( pTerm->prereqRight & mUnusable ) continue;
908 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
909 testcase( pTerm->eOperator & WO_IN );
910 testcase( pTerm->eOperator & WO_IS );
911 testcase( pTerm->eOperator & WO_ISNULL );
912 testcase( pTerm->eOperator & WO_ALL );
913 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue;
914 if( pTerm->wtFlags & TERM_VNULL ) continue;
915 assert( pTerm->u.leftColumn>=(-1) );
916 pIdxCons[j].iColumn = pTerm->u.leftColumn;
917 pIdxCons[j].iTermOffset = i;
918 op = (u8)pTerm->eOperator & WO_ALL;
919 if( op==WO_IN ) op = WO_EQ;
920 if( op==WO_MATCH ){
921 op = pTerm->eMatchOp;
922 }
923 pIdxCons[j].op = op;
924 /* The direct assignment in the previous line is possible only because
925 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
926 ** following asserts verify this fact. */
927 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
928 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
929 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
930 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
931 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
932 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
933 assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
934
935 if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
936 && sqlite3ExprIsVector(pTerm->pExpr->pRight)
937 ){
938 if( i<16 ) mNoOmit |= (1 << i);
939 if( op==WO_LT ) pIdxCons[j].op = WO_LE;
940 if( op==WO_GT ) pIdxCons[j].op = WO_GE;
941 }
942
943 j++;
944 }
945 for(i=0; i<nOrderBy; i++){
946 Expr *pExpr = pOrderBy->a[i].pExpr;
947 pIdxOrderBy[i].iColumn = pExpr->iColumn;
948 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
949 }
950
951 *pmNoOmit = mNoOmit;
952 return pIdxInfo;
953 }
954
955 /*
956 ** The table object reference passed as the second argument to this function
957 ** must represent a virtual table. This function invokes the xBestIndex()
958 ** method of the virtual table with the sqlite3_index_info object that
959 ** comes in as the 3rd argument to this function.
960 **
961 ** If an error occurs, pParse is populated with an error message and a
962 ** non-zero value is returned. Otherwise, 0 is returned and the output
963 ** part of the sqlite3_index_info structure is left populated.
964 **
965 ** Whether or not an error is returned, it is the responsibility of the
966 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
967 ** that this is required.
968 */
969 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
970 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
971 int rc;
972
973 TRACE_IDX_INPUTS(p);
974 rc = pVtab->pModule->xBestIndex(pVtab, p);
975 TRACE_IDX_OUTPUTS(p);
976
977 if( rc!=SQLITE_OK ){
978 if( rc==SQLITE_NOMEM ){
979 sqlite3OomFault(pParse->db);
980 }else if( !pVtab->zErrMsg ){
981 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
982 }else{
983 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
984 }
985 }
986 sqlite3_free(pVtab->zErrMsg);
987 pVtab->zErrMsg = 0;
988
989 #if 0
990 /* This error is now caught by the caller.
991 ** Search for "xBestIndex malfunction" below */
992 for(i=0; i<p->nConstraint; i++){
993 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
994 sqlite3ErrorMsg(pParse,
995 "table %s: xBestIndex returned an invalid plan", pTab->zName);
996 }
997 }
998 #endif
999
1000 return pParse->nErr;
1001 }
1002 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1003
1004 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1005 /*
1006 ** Estimate the location of a particular key among all keys in an
1007 ** index. Store the results in aStat as follows:
1008 **
1009 ** aStat[0] Est. number of rows less than pRec
1010 ** aStat[1] Est. number of rows equal to pRec
1011 **
1012 ** Return the index of the sample that is the smallest sample that
1013 ** is greater than or equal to pRec. Note that this index is not an index
1014 ** into the aSample[] array - it is an index into a virtual set of samples
1015 ** based on the contents of aSample[] and the number of fields in record
1016 ** pRec.
1017 */
1018 static int whereKeyStats(
1019 Parse *pParse, /* Database connection */
1020 Index *pIdx, /* Index to consider domain of */
1021 UnpackedRecord *pRec, /* Vector of values to consider */
1022 int roundUp, /* Round up if true. Round down if false */
1023 tRowcnt *aStat /* OUT: stats written here */
1024 ){
1025 IndexSample *aSample = pIdx->aSample;
1026 int iCol; /* Index of required stats in anEq[] etc. */
1027 int i; /* Index of first sample >= pRec */
1028 int iSample; /* Smallest sample larger than or equal to pRec */
1029 int iMin = 0; /* Smallest sample not yet tested */
1030 int iTest; /* Next sample to test */
1031 int res; /* Result of comparison operation */
1032 int nField; /* Number of fields in pRec */
1033 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */
1034
1035 #ifndef SQLITE_DEBUG
1036 UNUSED_PARAMETER( pParse );
1037 #endif
1038 assert( pRec!=0 );
1039 assert( pIdx->nSample>0 );
1040 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1041
1042 /* Do a binary search to find the first sample greater than or equal
1043 ** to pRec. If pRec contains a single field, the set of samples to search
1044 ** is simply the aSample[] array. If the samples in aSample[] contain more
1045 ** than one fields, all fields following the first are ignored.
1046 **
1047 ** If pRec contains N fields, where N is more than one, then as well as the
1048 ** samples in aSample[] (truncated to N fields), the search also has to
1049 ** consider prefixes of those samples. For example, if the set of samples
1050 ** in aSample is:
1051 **
1052 ** aSample[0] = (a, 5)
1053 ** aSample[1] = (a, 10)
1054 ** aSample[2] = (b, 5)
1055 ** aSample[3] = (c, 100)
1056 ** aSample[4] = (c, 105)
1057 **
1058 ** Then the search space should ideally be the samples above and the
1059 ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1060 ** the code actually searches this set:
1061 **
1062 ** 0: (a)
1063 ** 1: (a, 5)
1064 ** 2: (a, 10)
1065 ** 3: (a, 10)
1066 ** 4: (b)
1067 ** 5: (b, 5)
1068 ** 6: (c)
1069 ** 7: (c, 100)
1070 ** 8: (c, 105)
1071 ** 9: (c, 105)
1072 **
1073 ** For each sample in the aSample[] array, N samples are present in the
1074 ** effective sample array. In the above, samples 0 and 1 are based on
1075 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1076 **
1077 ** Often, sample i of each block of N effective samples has (i+1) fields.
1078 ** Except, each sample may be extended to ensure that it is greater than or
1079 ** equal to the previous sample in the array. For example, in the above,
1080 ** sample 2 is the first sample of a block of N samples, so at first it
1081 ** appears that it should be 1 field in size. However, that would make it
1082 ** smaller than sample 1, so the binary search would not work. As a result,
1083 ** it is extended to two fields. The duplicates that this creates do not
1084 ** cause any problems.
1085 */
1086 nField = pRec->nField;
1087 iCol = 0;
1088 iSample = pIdx->nSample * nField;
1089 do{
1090 int iSamp; /* Index in aSample[] of test sample */
1091 int n; /* Number of fields in test sample */
1092
1093 iTest = (iMin+iSample)/2;
1094 iSamp = iTest / nField;
1095 if( iSamp>0 ){
1096 /* The proposed effective sample is a prefix of sample aSample[iSamp].
1097 ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1098 ** fields that is greater than the previous effective sample. */
1099 for(n=(iTest % nField) + 1; n<nField; n++){
1100 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1101 }
1102 }else{
1103 n = iTest + 1;
1104 }
1105
1106 pRec->nField = n;
1107 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1108 if( res<0 ){
1109 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1110 iMin = iTest+1;
1111 }else if( res==0 && n<nField ){
1112 iLower = aSample[iSamp].anLt[n-1];
1113 iMin = iTest+1;
1114 res = -1;
1115 }else{
1116 iSample = iTest;
1117 iCol = n-1;
1118 }
1119 }while( res && iMin<iSample );
1120 i = iSample / nField;
1121
1122 #ifdef SQLITE_DEBUG
1123 /* The following assert statements check that the binary search code
1124 ** above found the right answer. This block serves no purpose other
1125 ** than to invoke the asserts. */
1126 if( pParse->db->mallocFailed==0 ){
1127 if( res==0 ){
1128 /* If (res==0) is true, then pRec must be equal to sample i. */
1129 assert( i<pIdx->nSample );
1130 assert( iCol==nField-1 );
1131 pRec->nField = nField;
1132 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1133 || pParse->db->mallocFailed
1134 );
1135 }else{
1136 /* Unless i==pIdx->nSample, indicating that pRec is larger than
1137 ** all samples in the aSample[] array, pRec must be smaller than the
1138 ** (iCol+1) field prefix of sample i. */
1139 assert( i<=pIdx->nSample && i>=0 );
1140 pRec->nField = iCol+1;
1141 assert( i==pIdx->nSample
1142 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1143 || pParse->db->mallocFailed );
1144
1145 /* if i==0 and iCol==0, then record pRec is smaller than all samples
1146 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1147 ** be greater than or equal to the (iCol) field prefix of sample i.
1148 ** If (i>0), then pRec must also be greater than sample (i-1). */
1149 if( iCol>0 ){
1150 pRec->nField = iCol;
1151 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1152 || pParse->db->mallocFailed );
1153 }
1154 if( i>0 ){
1155 pRec->nField = nField;
1156 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1157 || pParse->db->mallocFailed );
1158 }
1159 }
1160 }
1161 #endif /* ifdef SQLITE_DEBUG */
1162
1163 if( res==0 ){
1164 /* Record pRec is equal to sample i */
1165 assert( iCol==nField-1 );
1166 aStat[0] = aSample[i].anLt[iCol];
1167 aStat[1] = aSample[i].anEq[iCol];
1168 }else{
1169 /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1170 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1171 ** is larger than all samples in the array. */
1172 tRowcnt iUpper, iGap;
1173 if( i>=pIdx->nSample ){
1174 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1175 }else{
1176 iUpper = aSample[i].anLt[iCol];
1177 }
1178
1179 if( iLower>=iUpper ){
1180 iGap = 0;
1181 }else{
1182 iGap = iUpper - iLower;
1183 }
1184 if( roundUp ){
1185 iGap = (iGap*2)/3;
1186 }else{
1187 iGap = iGap/3;
1188 }
1189 aStat[0] = iLower + iGap;
1190 aStat[1] = pIdx->aAvgEq[iCol];
1191 }
1192
1193 /* Restore the pRec->nField value before returning. */
1194 pRec->nField = nField;
1195 return i;
1196 }
1197 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1198
1199 /*
1200 ** If it is not NULL, pTerm is a term that provides an upper or lower
1201 ** bound on a range scan. Without considering pTerm, it is estimated
1202 ** that the scan will visit nNew rows. This function returns the number
1203 ** estimated to be visited after taking pTerm into account.
1204 **
1205 ** If the user explicitly specified a likelihood() value for this term,
1206 ** then the return value is the likelihood multiplied by the number of
1207 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1208 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1209 */
1210 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1211 LogEst nRet = nNew;
1212 if( pTerm ){
1213 if( pTerm->truthProb<=0 ){
1214 nRet += pTerm->truthProb;
1215 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1216 nRet -= 20; assert( 20==sqlite3LogEst(4) );
1217 }
1218 }
1219 return nRet;
1220 }
1221
1222
1223 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1224 /*
1225 ** Return the affinity for a single column of an index.
1226 */
1227 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1228 assert( iCol>=0 && iCol<pIdx->nColumn );
1229 if( !pIdx->zColAff ){
1230 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1231 }
1232 return pIdx->zColAff[iCol];
1233 }
1234 #endif
1235
1236
1237 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1238 /*
1239 ** This function is called to estimate the number of rows visited by a
1240 ** range-scan on a skip-scan index. For example:
1241 **
1242 ** CREATE INDEX i1 ON t1(a, b, c);
1243 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1244 **
1245 ** Value pLoop->nOut is currently set to the estimated number of rows
1246 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1247 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1248 ** on the stat4 data for the index. this scan will be peformed multiple
1249 ** times (once for each (a,b) combination that matches a=?) is dealt with
1250 ** by the caller.
1251 **
1252 ** It does this by scanning through all stat4 samples, comparing values
1253 ** extracted from pLower and pUpper with the corresponding column in each
1254 ** sample. If L and U are the number of samples found to be less than or
1255 ** equal to the values extracted from pLower and pUpper respectively, and
1256 ** N is the total number of samples, the pLoop->nOut value is adjusted
1257 ** as follows:
1258 **
1259 ** nOut = nOut * ( min(U - L, 1) / N )
1260 **
1261 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1262 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1263 ** U is set to N.
1264 **
1265 ** Normally, this function sets *pbDone to 1 before returning. However,
1266 ** if no value can be extracted from either pLower or pUpper (and so the
1267 ** estimate of the number of rows delivered remains unchanged), *pbDone
1268 ** is left as is.
1269 **
1270 ** If an error occurs, an SQLite error code is returned. Otherwise,
1271 ** SQLITE_OK.
1272 */
1273 static int whereRangeSkipScanEst(
1274 Parse *pParse, /* Parsing & code generating context */
1275 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
1276 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
1277 WhereLoop *pLoop, /* Update the .nOut value of this loop */
1278 int *pbDone /* Set to true if at least one expr. value extracted */
1279 ){
1280 Index *p = pLoop->u.btree.pIndex;
1281 int nEq = pLoop->u.btree.nEq;
1282 sqlite3 *db = pParse->db;
1283 int nLower = -1;
1284 int nUpper = p->nSample+1;
1285 int rc = SQLITE_OK;
1286 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1287 CollSeq *pColl;
1288
1289 sqlite3_value *p1 = 0; /* Value extracted from pLower */
1290 sqlite3_value *p2 = 0; /* Value extracted from pUpper */
1291 sqlite3_value *pVal = 0; /* Value extracted from record */
1292
1293 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1294 if( pLower ){
1295 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1296 nLower = 0;
1297 }
1298 if( pUpper && rc==SQLITE_OK ){
1299 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1300 nUpper = p2 ? 0 : p->nSample;
1301 }
1302
1303 if( p1 || p2 ){
1304 int i;
1305 int nDiff;
1306 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1307 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1308 if( rc==SQLITE_OK && p1 ){
1309 int res = sqlite3MemCompare(p1, pVal, pColl);
1310 if( res>=0 ) nLower++;
1311 }
1312 if( rc==SQLITE_OK && p2 ){
1313 int res = sqlite3MemCompare(p2, pVal, pColl);
1314 if( res>=0 ) nUpper++;
1315 }
1316 }
1317 nDiff = (nUpper - nLower);
1318 if( nDiff<=0 ) nDiff = 1;
1319
1320 /* If there is both an upper and lower bound specified, and the
1321 ** comparisons indicate that they are close together, use the fallback
1322 ** method (assume that the scan visits 1/64 of the rows) for estimating
1323 ** the number of rows visited. Otherwise, estimate the number of rows
1324 ** using the method described in the header comment for this function. */
1325 if( nDiff!=1 || pUpper==0 || pLower==0 ){
1326 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1327 pLoop->nOut -= nAdjust;
1328 *pbDone = 1;
1329 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n",
1330 nLower, nUpper, nAdjust*-1, pLoop->nOut));
1331 }
1332
1333 }else{
1334 assert( *pbDone==0 );
1335 }
1336
1337 sqlite3ValueFree(p1);
1338 sqlite3ValueFree(p2);
1339 sqlite3ValueFree(pVal);
1340
1341 return rc;
1342 }
1343 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1344
1345 /*
1346 ** This function is used to estimate the number of rows that will be visited
1347 ** by scanning an index for a range of values. The range may have an upper
1348 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1349 ** and lower bounds are represented by pLower and pUpper respectively. For
1350 ** example, assuming that index p is on t1(a):
1351 **
1352 ** ... FROM t1 WHERE a > ? AND a < ? ...
1353 ** |_____| |_____|
1354 ** | |
1355 ** pLower pUpper
1356 **
1357 ** If either of the upper or lower bound is not present, then NULL is passed in
1358 ** place of the corresponding WhereTerm.
1359 **
1360 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1361 ** column subject to the range constraint. Or, equivalently, the number of
1362 ** equality constraints optimized by the proposed index scan. For example,
1363 ** assuming index p is on t1(a, b), and the SQL query is:
1364 **
1365 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1366 **
1367 ** then nEq is set to 1 (as the range restricted column, b, is the second
1368 ** left-most column of the index). Or, if the query is:
1369 **
1370 ** ... FROM t1 WHERE a > ? AND a < ? ...
1371 **
1372 ** then nEq is set to 0.
1373 **
1374 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1375 ** number of rows that the index scan is expected to visit without
1376 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1377 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1378 ** to account for the range constraints pLower and pUpper.
1379 **
1380 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1381 ** used, a single range inequality reduces the search space by a factor of 4.
1382 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1383 ** rows visited by a factor of 64.
1384 */
1385 static int whereRangeScanEst(
1386 Parse *pParse, /* Parsing & code generating context */
1387 WhereLoopBuilder *pBuilder,
1388 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
1389 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
1390 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */
1391 ){
1392 int rc = SQLITE_OK;
1393 int nOut = pLoop->nOut;
1394 LogEst nNew;
1395
1396 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1397 Index *p = pLoop->u.btree.pIndex;
1398 int nEq = pLoop->u.btree.nEq;
1399
1400 if( p->nSample>0 && nEq<p->nSampleCol ){
1401 if( nEq==pBuilder->nRecValid ){
1402 UnpackedRecord *pRec = pBuilder->pRec;
1403 tRowcnt a[2];
1404 int nBtm = pLoop->u.btree.nBtm;
1405 int nTop = pLoop->u.btree.nTop;
1406
1407 /* Variable iLower will be set to the estimate of the number of rows in
1408 ** the index that are less than the lower bound of the range query. The
1409 ** lower bound being the concatenation of $P and $L, where $P is the
1410 ** key-prefix formed by the nEq values matched against the nEq left-most
1411 ** columns of the index, and $L is the value in pLower.
1412 **
1413 ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1414 ** is not a simple variable or literal value), the lower bound of the
1415 ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1416 ** if $L is available, whereKeyStats() is called for both ($P) and
1417 ** ($P:$L) and the larger of the two returned values is used.
1418 **
1419 ** Similarly, iUpper is to be set to the estimate of the number of rows
1420 ** less than the upper bound of the range query. Where the upper bound
1421 ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1422 ** of iUpper are requested of whereKeyStats() and the smaller used.
1423 **
1424 ** The number of rows between the two bounds is then just iUpper-iLower.
1425 */
1426 tRowcnt iLower; /* Rows less than the lower bound */
1427 tRowcnt iUpper; /* Rows less than the upper bound */
1428 int iLwrIdx = -2; /* aSample[] for the lower bound */
1429 int iUprIdx = -1; /* aSample[] for the upper bound */
1430
1431 if( pRec ){
1432 testcase( pRec->nField!=pBuilder->nRecValid );
1433 pRec->nField = pBuilder->nRecValid;
1434 }
1435 /* Determine iLower and iUpper using ($P) only. */
1436 if( nEq==0 ){
1437 iLower = 0;
1438 iUpper = p->nRowEst0;
1439 }else{
1440 /* Note: this call could be optimized away - since the same values must
1441 ** have been requested when testing key $P in whereEqualScanEst(). */
1442 whereKeyStats(pParse, p, pRec, 0, a);
1443 iLower = a[0];
1444 iUpper = a[0] + a[1];
1445 }
1446
1447 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1448 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1449 assert( p->aSortOrder!=0 );
1450 if( p->aSortOrder[nEq] ){
1451 /* The roles of pLower and pUpper are swapped for a DESC index */
1452 SWAP(WhereTerm*, pLower, pUpper);
1453 SWAP(int, nBtm, nTop);
1454 }
1455
1456 /* If possible, improve on the iLower estimate using ($P:$L). */
1457 if( pLower ){
1458 int n; /* Values extracted from pExpr */
1459 Expr *pExpr = pLower->pExpr->pRight;
1460 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1461 if( rc==SQLITE_OK && n ){
1462 tRowcnt iNew;
1463 u16 mask = WO_GT|WO_LE;
1464 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1465 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1466 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1467 if( iNew>iLower ) iLower = iNew;
1468 nOut--;
1469 pLower = 0;
1470 }
1471 }
1472
1473 /* If possible, improve on the iUpper estimate using ($P:$U). */
1474 if( pUpper ){
1475 int n; /* Values extracted from pExpr */
1476 Expr *pExpr = pUpper->pExpr->pRight;
1477 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1478 if( rc==SQLITE_OK && n ){
1479 tRowcnt iNew;
1480 u16 mask = WO_GT|WO_LE;
1481 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1482 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1483 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1484 if( iNew<iUpper ) iUpper = iNew;
1485 nOut--;
1486 pUpper = 0;
1487 }
1488 }
1489
1490 pBuilder->pRec = pRec;
1491 if( rc==SQLITE_OK ){
1492 if( iUpper>iLower ){
1493 nNew = sqlite3LogEst(iUpper - iLower);
1494 /* TUNING: If both iUpper and iLower are derived from the same
1495 ** sample, then assume they are 4x more selective. This brings
1496 ** the estimated selectivity more in line with what it would be
1497 ** if estimated without the use of STAT3/4 tables. */
1498 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) );
1499 }else{
1500 nNew = 10; assert( 10==sqlite3LogEst(2) );
1501 }
1502 if( nNew<nOut ){
1503 nOut = nNew;
1504 }
1505 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n",
1506 (u32)iLower, (u32)iUpper, nOut));
1507 }
1508 }else{
1509 int bDone = 0;
1510 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1511 if( bDone ) return rc;
1512 }
1513 }
1514 #else
1515 UNUSED_PARAMETER(pParse);
1516 UNUSED_PARAMETER(pBuilder);
1517 assert( pLower || pUpper );
1518 #endif
1519 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1520 nNew = whereRangeAdjust(pLower, nOut);
1521 nNew = whereRangeAdjust(pUpper, nNew);
1522
1523 /* TUNING: If there is both an upper and lower limit and neither limit
1524 ** has an application-defined likelihood(), assume the range is
1525 ** reduced by an additional 75%. This means that, by default, an open-ended
1526 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1527 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1528 ** match 1/64 of the index. */
1529 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1530 nNew -= 20;
1531 }
1532
1533 nOut -= (pLower!=0) + (pUpper!=0);
1534 if( nNew<10 ) nNew = 10;
1535 if( nNew<nOut ) nOut = nNew;
1536 #if defined(WHERETRACE_ENABLED)
1537 if( pLoop->nOut>nOut ){
1538 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1539 pLoop->nOut, nOut));
1540 }
1541 #endif
1542 pLoop->nOut = (LogEst)nOut;
1543 return rc;
1544 }
1545
1546 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1547 /*
1548 ** Estimate the number of rows that will be returned based on
1549 ** an equality constraint x=VALUE and where that VALUE occurs in
1550 ** the histogram data. This only works when x is the left-most
1551 ** column of an index and sqlite_stat3 histogram data is available
1552 ** for that index. When pExpr==NULL that means the constraint is
1553 ** "x IS NULL" instead of "x=VALUE".
1554 **
1555 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1556 ** If unable to make an estimate, leave *pnRow unchanged and return
1557 ** non-zero.
1558 **
1559 ** This routine can fail if it is unable to load a collating sequence
1560 ** required for string comparison, or if unable to allocate memory
1561 ** for a UTF conversion required for comparison. The error is stored
1562 ** in the pParse structure.
1563 */
1564 static int whereEqualScanEst(
1565 Parse *pParse, /* Parsing & code generating context */
1566 WhereLoopBuilder *pBuilder,
1567 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */
1568 tRowcnt *pnRow /* Write the revised row estimate here */
1569 ){
1570 Index *p = pBuilder->pNew->u.btree.pIndex;
1571 int nEq = pBuilder->pNew->u.btree.nEq;
1572 UnpackedRecord *pRec = pBuilder->pRec;
1573 int rc; /* Subfunction return code */
1574 tRowcnt a[2]; /* Statistics */
1575 int bOk;
1576
1577 assert( nEq>=1 );
1578 assert( nEq<=p->nColumn );
1579 assert( p->aSample!=0 );
1580 assert( p->nSample>0 );
1581 assert( pBuilder->nRecValid<nEq );
1582
1583 /* If values are not available for all fields of the index to the left
1584 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1585 if( pBuilder->nRecValid<(nEq-1) ){
1586 return SQLITE_NOTFOUND;
1587 }
1588
1589 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1590 ** below would return the same value. */
1591 if( nEq>=p->nColumn ){
1592 *pnRow = 1;
1593 return SQLITE_OK;
1594 }
1595
1596 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1597 pBuilder->pRec = pRec;
1598 if( rc!=SQLITE_OK ) return rc;
1599 if( bOk==0 ) return SQLITE_NOTFOUND;
1600 pBuilder->nRecValid = nEq;
1601
1602 whereKeyStats(pParse, p, pRec, 0, a);
1603 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1604 p->zName, nEq-1, (int)a[1]));
1605 *pnRow = a[1];
1606
1607 return rc;
1608 }
1609 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1610
1611 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1612 /*
1613 ** Estimate the number of rows that will be returned based on
1614 ** an IN constraint where the right-hand side of the IN operator
1615 ** is a list of values. Example:
1616 **
1617 ** WHERE x IN (1,2,3,4)
1618 **
1619 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1620 ** If unable to make an estimate, leave *pnRow unchanged and return
1621 ** non-zero.
1622 **
1623 ** This routine can fail if it is unable to load a collating sequence
1624 ** required for string comparison, or if unable to allocate memory
1625 ** for a UTF conversion required for comparison. The error is stored
1626 ** in the pParse structure.
1627 */
1628 static int whereInScanEst(
1629 Parse *pParse, /* Parsing & code generating context */
1630 WhereLoopBuilder *pBuilder,
1631 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1632 tRowcnt *pnRow /* Write the revised row estimate here */
1633 ){
1634 Index *p = pBuilder->pNew->u.btree.pIndex;
1635 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1636 int nRecValid = pBuilder->nRecValid;
1637 int rc = SQLITE_OK; /* Subfunction return code */
1638 tRowcnt nEst; /* Number of rows for a single term */
1639 tRowcnt nRowEst = 0; /* New estimate of the number of rows */
1640 int i; /* Loop counter */
1641
1642 assert( p->aSample!=0 );
1643 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1644 nEst = nRow0;
1645 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1646 nRowEst += nEst;
1647 pBuilder->nRecValid = nRecValid;
1648 }
1649
1650 if( rc==SQLITE_OK ){
1651 if( nRowEst > nRow0 ) nRowEst = nRow0;
1652 *pnRow = nRowEst;
1653 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1654 }
1655 assert( pBuilder->nRecValid==nRecValid );
1656 return rc;
1657 }
1658 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1659
1660
1661 #ifdef WHERETRACE_ENABLED
1662 /*
1663 ** Print the content of a WhereTerm object
1664 */
1665 static void whereTermPrint(WhereTerm *pTerm, int iTerm){
1666 if( pTerm==0 ){
1667 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1668 }else{
1669 char zType[4];
1670 char zLeft[50];
1671 memcpy(zType, "...", 4);
1672 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1673 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E';
1674 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1675 if( pTerm->eOperator & WO_SINGLE ){
1676 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1677 pTerm->leftCursor, pTerm->u.leftColumn);
1678 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1679 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld",
1680 pTerm->u.pOrInfo->indexable);
1681 }else{
1682 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1683 }
1684 sqlite3DebugPrintf(
1685 "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x",
1686 iTerm, pTerm, zType, zLeft, pTerm->truthProb,
1687 pTerm->eOperator, pTerm->wtFlags);
1688 if( pTerm->iField ){
1689 sqlite3DebugPrintf(" iField=%d\n", pTerm->iField);
1690 }else{
1691 sqlite3DebugPrintf("\n");
1692 }
1693 sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1694 }
1695 }
1696 #endif
1697
1698 #ifdef WHERETRACE_ENABLED
1699 /*
1700 ** Show the complete content of a WhereClause
1701 */
1702 void sqlite3WhereClausePrint(WhereClause *pWC){
1703 int i;
1704 for(i=0; i<pWC->nTerm; i++){
1705 whereTermPrint(&pWC->a[i], i);
1706 }
1707 }
1708 #endif
1709
1710 #ifdef WHERETRACE_ENABLED
1711 /*
1712 ** Print a WhereLoop object for debugging purposes
1713 */
1714 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
1715 WhereInfo *pWInfo = pWC->pWInfo;
1716 int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1717 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
1718 Table *pTab = pItem->pTab;
1719 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1720 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1721 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1722 sqlite3DebugPrintf(" %12s",
1723 pItem->zAlias ? pItem->zAlias : pTab->zName);
1724 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1725 const char *zName;
1726 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1727 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1728 int i = sqlite3Strlen30(zName) - 1;
1729 while( zName[i]!='_' ) i--;
1730 zName += i;
1731 }
1732 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1733 }else{
1734 sqlite3DebugPrintf("%20s","");
1735 }
1736 }else{
1737 char *z;
1738 if( p->u.vtab.idxStr ){
1739 z = sqlite3_mprintf("(%d,\"%s\",%x)",
1740 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1741 }else{
1742 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1743 }
1744 sqlite3DebugPrintf(" %-19s", z);
1745 sqlite3_free(z);
1746 }
1747 if( p->wsFlags & WHERE_SKIPSCAN ){
1748 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1749 }else{
1750 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1751 }
1752 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1753 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1754 int i;
1755 for(i=0; i<p->nLTerm; i++){
1756 whereTermPrint(p->aLTerm[i], i);
1757 }
1758 }
1759 }
1760 #endif
1761
1762 /*
1763 ** Convert bulk memory into a valid WhereLoop that can be passed
1764 ** to whereLoopClear harmlessly.
1765 */
1766 static void whereLoopInit(WhereLoop *p){
1767 p->aLTerm = p->aLTermSpace;
1768 p->nLTerm = 0;
1769 p->nLSlot = ArraySize(p->aLTermSpace);
1770 p->wsFlags = 0;
1771 }
1772
1773 /*
1774 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact.
1775 */
1776 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1777 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1778 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1779 sqlite3_free(p->u.vtab.idxStr);
1780 p->u.vtab.needFree = 0;
1781 p->u.vtab.idxStr = 0;
1782 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1783 sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1784 sqlite3DbFree(db, p->u.btree.pIndex);
1785 p->u.btree.pIndex = 0;
1786 }
1787 }
1788 }
1789
1790 /*
1791 ** Deallocate internal memory used by a WhereLoop object
1792 */
1793 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1794 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
1795 whereLoopClearUnion(db, p);
1796 whereLoopInit(p);
1797 }
1798
1799 /*
1800 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1801 */
1802 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1803 WhereTerm **paNew;
1804 if( p->nLSlot>=n ) return SQLITE_OK;
1805 n = (n+7)&~7;
1806 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1807 if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1808 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1809 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
1810 p->aLTerm = paNew;
1811 p->nLSlot = n;
1812 return SQLITE_OK;
1813 }
1814
1815 /*
1816 ** Transfer content from the second pLoop into the first.
1817 */
1818 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1819 whereLoopClearUnion(db, pTo);
1820 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1821 memset(&pTo->u, 0, sizeof(pTo->u));
1822 return SQLITE_NOMEM_BKPT;
1823 }
1824 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1825 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1826 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1827 pFrom->u.vtab.needFree = 0;
1828 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1829 pFrom->u.btree.pIndex = 0;
1830 }
1831 return SQLITE_OK;
1832 }
1833
1834 /*
1835 ** Delete a WhereLoop object
1836 */
1837 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1838 whereLoopClear(db, p);
1839 sqlite3DbFree(db, p);
1840 }
1841
1842 /*
1843 ** Free a WhereInfo structure
1844 */
1845 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1846 if( ALWAYS(pWInfo) ){
1847 int i;
1848 for(i=0; i<pWInfo->nLevel; i++){
1849 WhereLevel *pLevel = &pWInfo->a[i];
1850 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1851 sqlite3DbFree(db, pLevel->u.in.aInLoop);
1852 }
1853 }
1854 sqlite3WhereClauseClear(&pWInfo->sWC);
1855 while( pWInfo->pLoops ){
1856 WhereLoop *p = pWInfo->pLoops;
1857 pWInfo->pLoops = p->pNextLoop;
1858 whereLoopDelete(db, p);
1859 }
1860 sqlite3DbFree(db, pWInfo);
1861 }
1862 }
1863
1864 /*
1865 ** Return TRUE if all of the following are true:
1866 **
1867 ** (1) X has the same or lower cost that Y
1868 ** (2) X is a proper subset of Y
1869 ** (3) X skips at least as many columns as Y
1870 **
1871 ** By "proper subset" we mean that X uses fewer WHERE clause terms
1872 ** than Y and that every WHERE clause term used by X is also used
1873 ** by Y.
1874 **
1875 ** If X is a proper subset of Y then Y is a better choice and ought
1876 ** to have a lower cost. This routine returns TRUE when that cost
1877 ** relationship is inverted and needs to be adjusted. The third rule
1878 ** was added because if X uses skip-scan less than Y it still might
1879 ** deserve a lower cost even if it is a proper subset of Y.
1880 */
1881 static int whereLoopCheaperProperSubset(
1882 const WhereLoop *pX, /* First WhereLoop to compare */
1883 const WhereLoop *pY /* Compare against this WhereLoop */
1884 ){
1885 int i, j;
1886 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
1887 return 0; /* X is not a subset of Y */
1888 }
1889 if( pY->nSkip > pX->nSkip ) return 0;
1890 if( pX->rRun >= pY->rRun ){
1891 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */
1892 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */
1893 }
1894 for(i=pX->nLTerm-1; i>=0; i--){
1895 if( pX->aLTerm[i]==0 ) continue;
1896 for(j=pY->nLTerm-1; j>=0; j--){
1897 if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
1898 }
1899 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */
1900 }
1901 return 1; /* All conditions meet */
1902 }
1903
1904 /*
1905 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
1906 ** that:
1907 **
1908 ** (1) pTemplate costs less than any other WhereLoops that are a proper
1909 ** subset of pTemplate
1910 **
1911 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate
1912 ** is a proper subset.
1913 **
1914 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
1915 ** WHERE clause terms than Y and that every WHERE clause term used by X is
1916 ** also used by Y.
1917 */
1918 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
1919 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
1920 for(; p; p=p->pNextLoop){
1921 if( p->iTab!=pTemplate->iTab ) continue;
1922 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
1923 if( whereLoopCheaperProperSubset(p, pTemplate) ){
1924 /* Adjust pTemplate cost downward so that it is cheaper than its
1925 ** subset p. */
1926 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1927 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
1928 pTemplate->rRun = p->rRun;
1929 pTemplate->nOut = p->nOut - 1;
1930 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
1931 /* Adjust pTemplate cost upward so that it is costlier than p since
1932 ** pTemplate is a proper subset of p */
1933 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1934 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
1935 pTemplate->rRun = p->rRun;
1936 pTemplate->nOut = p->nOut + 1;
1937 }
1938 }
1939 }
1940
1941 /*
1942 ** Search the list of WhereLoops in *ppPrev looking for one that can be
1943 ** supplanted by pTemplate.
1944 **
1945 ** Return NULL if the WhereLoop list contains an entry that can supplant
1946 ** pTemplate, in other words if pTemplate does not belong on the list.
1947 **
1948 ** If pX is a WhereLoop that pTemplate can supplant, then return the
1949 ** link that points to pX.
1950 **
1951 ** If pTemplate cannot supplant any existing element of the list but needs
1952 ** to be added to the list, then return a pointer to the tail of the list.
1953 */
1954 static WhereLoop **whereLoopFindLesser(
1955 WhereLoop **ppPrev,
1956 const WhereLoop *pTemplate
1957 ){
1958 WhereLoop *p;
1959 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
1960 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
1961 /* If either the iTab or iSortIdx values for two WhereLoop are different
1962 ** then those WhereLoops need to be considered separately. Neither is
1963 ** a candidate to replace the other. */
1964 continue;
1965 }
1966 /* In the current implementation, the rSetup value is either zero
1967 ** or the cost of building an automatic index (NlogN) and the NlogN
1968 ** is the same for compatible WhereLoops. */
1969 assert( p->rSetup==0 || pTemplate->rSetup==0
1970 || p->rSetup==pTemplate->rSetup );
1971
1972 /* whereLoopAddBtree() always generates and inserts the automatic index
1973 ** case first. Hence compatible candidate WhereLoops never have a larger
1974 ** rSetup. Call this SETUP-INVARIANT */
1975 assert( p->rSetup>=pTemplate->rSetup );
1976
1977 /* Any loop using an appliation-defined index (or PRIMARY KEY or
1978 ** UNIQUE constraint) with one or more == constraints is better
1979 ** than an automatic index. Unless it is a skip-scan. */
1980 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
1981 && (pTemplate->nSkip)==0
1982 && (pTemplate->wsFlags & WHERE_INDEXED)!=0
1983 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
1984 && (p->prereq & pTemplate->prereq)==pTemplate->prereq
1985 ){
1986 break;
1987 }
1988
1989 /* If existing WhereLoop p is better than pTemplate, pTemplate can be
1990 ** discarded. WhereLoop p is better if:
1991 ** (1) p has no more dependencies than pTemplate, and
1992 ** (2) p has an equal or lower cost than pTemplate
1993 */
1994 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */
1995 && p->rSetup<=pTemplate->rSetup /* (2a) */
1996 && p->rRun<=pTemplate->rRun /* (2b) */
1997 && p->nOut<=pTemplate->nOut /* (2c) */
1998 ){
1999 return 0; /* Discard pTemplate */
2000 }
2001
2002 /* If pTemplate is always better than p, then cause p to be overwritten
2003 ** with pTemplate. pTemplate is better than p if:
2004 ** (1) pTemplate has no more dependences than p, and
2005 ** (2) pTemplate has an equal or lower cost than p.
2006 */
2007 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */
2008 && p->rRun>=pTemplate->rRun /* (2a) */
2009 && p->nOut>=pTemplate->nOut /* (2b) */
2010 ){
2011 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2012 break; /* Cause p to be overwritten by pTemplate */
2013 }
2014 }
2015 return ppPrev;
2016 }
2017
2018 /*
2019 ** Insert or replace a WhereLoop entry using the template supplied.
2020 **
2021 ** An existing WhereLoop entry might be overwritten if the new template
2022 ** is better and has fewer dependencies. Or the template will be ignored
2023 ** and no insert will occur if an existing WhereLoop is faster and has
2024 ** fewer dependencies than the template. Otherwise a new WhereLoop is
2025 ** added based on the template.
2026 **
2027 ** If pBuilder->pOrSet is not NULL then we care about only the
2028 ** prerequisites and rRun and nOut costs of the N best loops. That
2029 ** information is gathered in the pBuilder->pOrSet object. This special
2030 ** processing mode is used only for OR clause processing.
2031 **
2032 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2033 ** still might overwrite similar loops with the new template if the
2034 ** new template is better. Loops may be overwritten if the following
2035 ** conditions are met:
2036 **
2037 ** (1) They have the same iTab.
2038 ** (2) They have the same iSortIdx.
2039 ** (3) The template has same or fewer dependencies than the current loop
2040 ** (4) The template has the same or lower cost than the current loop
2041 */
2042 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2043 WhereLoop **ppPrev, *p;
2044 WhereInfo *pWInfo = pBuilder->pWInfo;
2045 sqlite3 *db = pWInfo->pParse->db;
2046 int rc;
2047
2048 /* If pBuilder->pOrSet is defined, then only keep track of the costs
2049 ** and prereqs.
2050 */
2051 if( pBuilder->pOrSet!=0 ){
2052 if( pTemplate->nLTerm ){
2053 #if WHERETRACE_ENABLED
2054 u16 n = pBuilder->pOrSet->n;
2055 int x =
2056 #endif
2057 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2058 pTemplate->nOut);
2059 #if WHERETRACE_ENABLED /* 0x8 */
2060 if( sqlite3WhereTrace & 0x8 ){
2061 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n);
2062 whereLoopPrint(pTemplate, pBuilder->pWC);
2063 }
2064 #endif
2065 }
2066 return SQLITE_OK;
2067 }
2068
2069 /* Look for an existing WhereLoop to replace with pTemplate
2070 */
2071 whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2072 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2073
2074 if( ppPrev==0 ){
2075 /* There already exists a WhereLoop on the list that is better
2076 ** than pTemplate, so just ignore pTemplate */
2077 #if WHERETRACE_ENABLED /* 0x8 */
2078 if( sqlite3WhereTrace & 0x8 ){
2079 sqlite3DebugPrintf(" skip: ");
2080 whereLoopPrint(pTemplate, pBuilder->pWC);
2081 }
2082 #endif
2083 return SQLITE_OK;
2084 }else{
2085 p = *ppPrev;
2086 }
2087
2088 /* If we reach this point it means that either p[] should be overwritten
2089 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2090 ** WhereLoop and insert it.
2091 */
2092 #if WHERETRACE_ENABLED /* 0x8 */
2093 if( sqlite3WhereTrace & 0x8 ){
2094 if( p!=0 ){
2095 sqlite3DebugPrintf("replace: ");
2096 whereLoopPrint(p, pBuilder->pWC);
2097 }
2098 sqlite3DebugPrintf(" add: ");
2099 whereLoopPrint(pTemplate, pBuilder->pWC);
2100 }
2101 #endif
2102 if( p==0 ){
2103 /* Allocate a new WhereLoop to add to the end of the list */
2104 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2105 if( p==0 ) return SQLITE_NOMEM_BKPT;
2106 whereLoopInit(p);
2107 p->pNextLoop = 0;
2108 }else{
2109 /* We will be overwriting WhereLoop p[]. But before we do, first
2110 ** go through the rest of the list and delete any other entries besides
2111 ** p[] that are also supplated by pTemplate */
2112 WhereLoop **ppTail = &p->pNextLoop;
2113 WhereLoop *pToDel;
2114 while( *ppTail ){
2115 ppTail = whereLoopFindLesser(ppTail, pTemplate);
2116 if( ppTail==0 ) break;
2117 pToDel = *ppTail;
2118 if( pToDel==0 ) break;
2119 *ppTail = pToDel->pNextLoop;
2120 #if WHERETRACE_ENABLED /* 0x8 */
2121 if( sqlite3WhereTrace & 0x8 ){
2122 sqlite3DebugPrintf(" delete: ");
2123 whereLoopPrint(pToDel, pBuilder->pWC);
2124 }
2125 #endif
2126 whereLoopDelete(db, pToDel);
2127 }
2128 }
2129 rc = whereLoopXfer(db, p, pTemplate);
2130 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2131 Index *pIndex = p->u.btree.pIndex;
2132 if( pIndex && pIndex->tnum==0 ){
2133 p->u.btree.pIndex = 0;
2134 }
2135 }
2136 return rc;
2137 }
2138
2139 /*
2140 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2141 ** WHERE clause that reference the loop but which are not used by an
2142 ** index.
2143 *
2144 ** For every WHERE clause term that is not used by the index
2145 ** and which has a truth probability assigned by one of the likelihood(),
2146 ** likely(), or unlikely() SQL functions, reduce the estimated number
2147 ** of output rows by the probability specified.
2148 **
2149 ** TUNING: For every WHERE clause term that is not used by the index
2150 ** and which does not have an assigned truth probability, heuristics
2151 ** described below are used to try to estimate the truth probability.
2152 ** TODO --> Perhaps this is something that could be improved by better
2153 ** table statistics.
2154 **
2155 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75%
2156 ** value corresponds to -1 in LogEst notation, so this means decrement
2157 ** the WhereLoop.nOut field for every such WHERE clause term.
2158 **
2159 ** Heuristic 2: If there exists one or more WHERE clause terms of the
2160 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2161 ** final output row estimate is no greater than 1/4 of the total number
2162 ** of rows in the table. In other words, assume that x==EXPR will filter
2163 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the
2164 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2165 ** on the "x" column and so in that case only cap the output row estimate
2166 ** at 1/2 instead of 1/4.
2167 */
2168 static void whereLoopOutputAdjust(
2169 WhereClause *pWC, /* The WHERE clause */
2170 WhereLoop *pLoop, /* The loop to adjust downward */
2171 LogEst nRow /* Number of rows in the entire table */
2172 ){
2173 WhereTerm *pTerm, *pX;
2174 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2175 int i, j, k;
2176 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */
2177
2178 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2179 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2180 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2181 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2182 if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2183 for(j=pLoop->nLTerm-1; j>=0; j--){
2184 pX = pLoop->aLTerm[j];
2185 if( pX==0 ) continue;
2186 if( pX==pTerm ) break;
2187 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2188 }
2189 if( j<0 ){
2190 if( pTerm->truthProb<=0 ){
2191 /* If a truth probability is specified using the likelihood() hints,
2192 ** then use the probability provided by the application. */
2193 pLoop->nOut += pTerm->truthProb;
2194 }else{
2195 /* In the absence of explicit truth probabilities, use heuristics to
2196 ** guess a reasonable truth probability. */
2197 pLoop->nOut--;
2198 if( pTerm->eOperator&(WO_EQ|WO_IS) ){
2199 Expr *pRight = pTerm->pExpr->pRight;
2200 testcase( pTerm->pExpr->op==TK_IS );
2201 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2202 k = 10;
2203 }else{
2204 k = 20;
2205 }
2206 if( iReduce<k ) iReduce = k;
2207 }
2208 }
2209 }
2210 }
2211 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce;
2212 }
2213
2214 /*
2215 ** Term pTerm is a vector range comparison operation. The first comparison
2216 ** in the vector can be optimized using column nEq of the index. This
2217 ** function returns the total number of vector elements that can be used
2218 ** as part of the range comparison.
2219 **
2220 ** For example, if the query is:
2221 **
2222 ** WHERE a = ? AND (b, c, d) > (?, ?, ?)
2223 **
2224 ** and the index:
2225 **
2226 ** CREATE INDEX ... ON (a, b, c, d, e)
2227 **
2228 ** then this function would be invoked with nEq=1. The value returned in
2229 ** this case is 3.
2230 */
2231 static int whereRangeVectorLen(
2232 Parse *pParse, /* Parsing context */
2233 int iCur, /* Cursor open on pIdx */
2234 Index *pIdx, /* The index to be used for a inequality constraint */
2235 int nEq, /* Number of prior equality constraints on same index */
2236 WhereTerm *pTerm /* The vector inequality constraint */
2237 ){
2238 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2239 int i;
2240
2241 nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2242 for(i=1; i<nCmp; i++){
2243 /* Test if comparison i of pTerm is compatible with column (i+nEq)
2244 ** of the index. If not, exit the loop. */
2245 char aff; /* Comparison affinity */
2246 char idxaff = 0; /* Indexed columns affinity */
2247 CollSeq *pColl; /* Comparison collation sequence */
2248 Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2249 Expr *pRhs = pTerm->pExpr->pRight;
2250 if( pRhs->flags & EP_xIsSelect ){
2251 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2252 }else{
2253 pRhs = pRhs->x.pList->a[i].pExpr;
2254 }
2255
2256 /* Check that the LHS of the comparison is a column reference to
2257 ** the right column of the right source table. And that the sort
2258 ** order of the index column is the same as the sort order of the
2259 ** leftmost index column. */
2260 if( pLhs->op!=TK_COLUMN
2261 || pLhs->iTable!=iCur
2262 || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2263 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2264 ){
2265 break;
2266 }
2267
2268 testcase( pLhs->iColumn==XN_ROWID );
2269 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2270 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2271 if( aff!=idxaff ) break;
2272
2273 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2274 if( pColl==0 ) break;
2275 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2276 }
2277 return i;
2278 }
2279
2280 /*
2281 ** Adjust the cost C by the costMult facter T. This only occurs if
2282 ** compiled with -DSQLITE_ENABLE_COSTMULT
2283 */
2284 #ifdef SQLITE_ENABLE_COSTMULT
2285 # define ApplyCostMultiplier(C,T) C += T
2286 #else
2287 # define ApplyCostMultiplier(C,T)
2288 #endif
2289
2290 /*
2291 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2292 ** index pIndex. Try to match one more.
2293 **
2294 ** When this function is called, pBuilder->pNew->nOut contains the
2295 ** number of rows expected to be visited by filtering using the nEq
2296 ** terms only. If it is modified, this value is restored before this
2297 ** function returns.
2298 **
2299 ** If pProbe->tnum==0, that means pIndex is a fake index used for the
2300 ** INTEGER PRIMARY KEY.
2301 */
2302 static int whereLoopAddBtreeIndex(
2303 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */
2304 struct SrcList_item *pSrc, /* FROM clause term being analyzed */
2305 Index *pProbe, /* An index on pSrc */
2306 LogEst nInMul /* log(Number of iterations due to IN) */
2307 ){
2308 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */
2309 Parse *pParse = pWInfo->pParse; /* Parsing context */
2310 sqlite3 *db = pParse->db; /* Database connection malloc context */
2311 WhereLoop *pNew; /* Template WhereLoop under construction */
2312 WhereTerm *pTerm; /* A WhereTerm under consideration */
2313 int opMask; /* Valid operators for constraints */
2314 WhereScan scan; /* Iterator for WHERE terms */
2315 Bitmask saved_prereq; /* Original value of pNew->prereq */
2316 u16 saved_nLTerm; /* Original value of pNew->nLTerm */
2317 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */
2318 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */
2319 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */
2320 u16 saved_nSkip; /* Original value of pNew->nSkip */
2321 u32 saved_wsFlags; /* Original value of pNew->wsFlags */
2322 LogEst saved_nOut; /* Original value of pNew->nOut */
2323 int rc = SQLITE_OK; /* Return code */
2324 LogEst rSize; /* Number of rows in the table */
2325 LogEst rLogSize; /* Logarithm of table size */
2326 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2327
2328 pNew = pBuilder->pNew;
2329 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2330 WHERETRACE(0x800, ("BEGIN addBtreeIdx(%s), nEq=%d\n",
2331 pProbe->zName, pNew->u.btree.nEq));
2332
2333 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2334 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2335 if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2336 opMask = WO_LT|WO_LE;
2337 }else{
2338 assert( pNew->u.btree.nBtm==0 );
2339 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2340 }
2341 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2342
2343 assert( pNew->u.btree.nEq<pProbe->nColumn );
2344
2345 saved_nEq = pNew->u.btree.nEq;
2346 saved_nBtm = pNew->u.btree.nBtm;
2347 saved_nTop = pNew->u.btree.nTop;
2348 saved_nSkip = pNew->nSkip;
2349 saved_nLTerm = pNew->nLTerm;
2350 saved_wsFlags = pNew->wsFlags;
2351 saved_prereq = pNew->prereq;
2352 saved_nOut = pNew->nOut;
2353 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2354 opMask, pProbe);
2355 pNew->rSetup = 0;
2356 rSize = pProbe->aiRowLogEst[0];
2357 rLogSize = estLog(rSize);
2358 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2359 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */
2360 LogEst rCostIdx;
2361 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */
2362 int nIn = 0;
2363 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2364 int nRecValid = pBuilder->nRecValid;
2365 #endif
2366 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2367 && indexColumnNotNull(pProbe, saved_nEq)
2368 ){
2369 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2370 }
2371 if( pTerm->prereqRight & pNew->maskSelf ) continue;
2372
2373 /* Do not allow the upper bound of a LIKE optimization range constraint
2374 ** to mix with a lower range bound from some other source */
2375 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2376
2377 /* Do not allow IS constraints from the WHERE clause to be used by the
2378 ** right table of a LEFT JOIN. Only constraints in the ON clause are
2379 ** allowed */
2380 if( (pSrc->fg.jointype & JT_LEFT)!=0
2381 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2382 && (eOp & (WO_IS|WO_ISNULL))!=0
2383 ){
2384 testcase( eOp & WO_IS );
2385 testcase( eOp & WO_ISNULL );
2386 continue;
2387 }
2388
2389 pNew->wsFlags = saved_wsFlags;
2390 pNew->u.btree.nEq = saved_nEq;
2391 pNew->u.btree.nBtm = saved_nBtm;
2392 pNew->u.btree.nTop = saved_nTop;
2393 pNew->nLTerm = saved_nLTerm;
2394 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2395 pNew->aLTerm[pNew->nLTerm++] = pTerm;
2396 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2397
2398 assert( nInMul==0
2399 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2400 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2401 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2402 );
2403
2404 if( eOp & WO_IN ){
2405 Expr *pExpr = pTerm->pExpr;
2406 pNew->wsFlags |= WHERE_COLUMN_IN;
2407 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2408 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */
2409 int i;
2410 nIn = 46; assert( 46==sqlite3LogEst(25) );
2411
2412 /* The expression may actually be of the form (x, y) IN (SELECT...).
2413 ** In this case there is a separate term for each of (x) and (y).
2414 ** However, the nIn multiplier should only be applied once, not once
2415 ** for each such term. The following loop checks that pTerm is the
2416 ** first such term in use, and sets nIn back to 0 if it is not. */
2417 for(i=0; i<pNew->nLTerm-1; i++){
2418 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2419 }
2420 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2421 /* "x IN (value, value, ...)" */
2422 nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2423 assert( nIn>0 ); /* RHS always has 2 or more terms... The parser
2424 ** changes "x IN (?)" into "x=?". */
2425 }
2426 }else if( eOp & (WO_EQ|WO_IS) ){
2427 int iCol = pProbe->aiColumn[saved_nEq];
2428 pNew->wsFlags |= WHERE_COLUMN_EQ;
2429 assert( saved_nEq==pNew->u.btree.nEq );
2430 if( iCol==XN_ROWID
2431 || (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2432 ){
2433 if( iCol>=0 && pProbe->uniqNotNull==0 ){
2434 pNew->wsFlags |= WHERE_UNQ_WANTED;
2435 }else{
2436 pNew->wsFlags |= WHERE_ONEROW;
2437 }
2438 }
2439 }else if( eOp & WO_ISNULL ){
2440 pNew->wsFlags |= WHERE_COLUMN_NULL;
2441 }else if( eOp & (WO_GT|WO_GE) ){
2442 testcase( eOp & WO_GT );
2443 testcase( eOp & WO_GE );
2444 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2445 pNew->u.btree.nBtm = whereRangeVectorLen(
2446 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2447 );
2448 pBtm = pTerm;
2449 pTop = 0;
2450 if( pTerm->wtFlags & TERM_LIKEOPT ){
2451 /* Range contraints that come from the LIKE optimization are
2452 ** always used in pairs. */
2453 pTop = &pTerm[1];
2454 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2455 assert( pTop->wtFlags & TERM_LIKEOPT );
2456 assert( pTop->eOperator==WO_LT );
2457 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2458 pNew->aLTerm[pNew->nLTerm++] = pTop;
2459 pNew->wsFlags |= WHERE_TOP_LIMIT;
2460 pNew->u.btree.nTop = 1;
2461 }
2462 }else{
2463 assert( eOp & (WO_LT|WO_LE) );
2464 testcase( eOp & WO_LT );
2465 testcase( eOp & WO_LE );
2466 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2467 pNew->u.btree.nTop = whereRangeVectorLen(
2468 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2469 );
2470 pTop = pTerm;
2471 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2472 pNew->aLTerm[pNew->nLTerm-2] : 0;
2473 }
2474
2475 /* At this point pNew->nOut is set to the number of rows expected to
2476 ** be visited by the index scan before considering term pTerm, or the
2477 ** values of nIn and nInMul. In other words, assuming that all
2478 ** "x IN(...)" terms are replaced with "x = ?". This block updates
2479 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */
2480 assert( pNew->nOut==saved_nOut );
2481 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2482 /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4
2483 ** data, using some other estimate. */
2484 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2485 }else{
2486 int nEq = ++pNew->u.btree.nEq;
2487 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2488
2489 assert( pNew->nOut==saved_nOut );
2490 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2491 assert( (eOp & WO_IN) || nIn==0 );
2492 testcase( eOp & WO_IN );
2493 pNew->nOut += pTerm->truthProb;
2494 pNew->nOut -= nIn;
2495 }else{
2496 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2497 tRowcnt nOut = 0;
2498 if( nInMul==0
2499 && pProbe->nSample
2500 && pNew->u.btree.nEq<=pProbe->nSampleCol
2501 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2502 ){
2503 Expr *pExpr = pTerm->pExpr;
2504 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2505 testcase( eOp & WO_EQ );
2506 testcase( eOp & WO_IS );
2507 testcase( eOp & WO_ISNULL );
2508 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2509 }else{
2510 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2511 }
2512 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2513 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */
2514 if( nOut ){
2515 pNew->nOut = sqlite3LogEst(nOut);
2516 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2517 pNew->nOut -= nIn;
2518 }
2519 }
2520 if( nOut==0 )
2521 #endif
2522 {
2523 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2524 if( eOp & WO_ISNULL ){
2525 /* TUNING: If there is no likelihood() value, assume that a
2526 ** "col IS NULL" expression matches twice as many rows
2527 ** as (col=?). */
2528 pNew->nOut += 10;
2529 }
2530 }
2531 }
2532 }
2533
2534 /* Set rCostIdx to the cost of visiting selected rows in index. Add
2535 ** it to pNew->rRun, which is currently set to the cost of the index
2536 ** seek only. Then, if this is a non-covering index, add the cost of
2537 ** visiting the rows in the main table. */
2538 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2539 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2540 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2541 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2542 }
2543 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2544
2545 nOutUnadjusted = pNew->nOut;
2546 pNew->rRun += nInMul + nIn;
2547 pNew->nOut += nInMul + nIn;
2548 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2549 rc = whereLoopInsert(pBuilder, pNew);
2550
2551 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2552 pNew->nOut = saved_nOut;
2553 }else{
2554 pNew->nOut = nOutUnadjusted;
2555 }
2556
2557 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2558 && pNew->u.btree.nEq<pProbe->nColumn
2559 ){
2560 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2561 }
2562 pNew->nOut = saved_nOut;
2563 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2564 pBuilder->nRecValid = nRecValid;
2565 #endif
2566 }
2567 pNew->prereq = saved_prereq;
2568 pNew->u.btree.nEq = saved_nEq;
2569 pNew->u.btree.nBtm = saved_nBtm;
2570 pNew->u.btree.nTop = saved_nTop;
2571 pNew->nSkip = saved_nSkip;
2572 pNew->wsFlags = saved_wsFlags;
2573 pNew->nOut = saved_nOut;
2574 pNew->nLTerm = saved_nLTerm;
2575
2576 /* Consider using a skip-scan if there are no WHERE clause constraints
2577 ** available for the left-most terms of the index, and if the average
2578 ** number of repeats in the left-most terms is at least 18.
2579 **
2580 ** The magic number 18 is selected on the basis that scanning 17 rows
2581 ** is almost always quicker than an index seek (even though if the index
2582 ** contains fewer than 2^17 rows we assume otherwise in other parts of
2583 ** the code). And, even if it is not, it should not be too much slower.
2584 ** On the other hand, the extra seeks could end up being significantly
2585 ** more expensive. */
2586 assert( 42==sqlite3LogEst(18) );
2587 if( saved_nEq==saved_nSkip
2588 && saved_nEq+1<pProbe->nKeyCol
2589 && pProbe->noSkipScan==0
2590 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */
2591 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2592 ){
2593 LogEst nIter;
2594 pNew->u.btree.nEq++;
2595 pNew->nSkip++;
2596 pNew->aLTerm[pNew->nLTerm++] = 0;
2597 pNew->wsFlags |= WHERE_SKIPSCAN;
2598 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2599 pNew->nOut -= nIter;
2600 /* TUNING: Because uncertainties in the estimates for skip-scan queries,
2601 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2602 nIter += 5;
2603 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2604 pNew->nOut = saved_nOut;
2605 pNew->u.btree.nEq = saved_nEq;
2606 pNew->nSkip = saved_nSkip;
2607 pNew->wsFlags = saved_wsFlags;
2608 }
2609
2610 WHERETRACE(0x800, ("END addBtreeIdx(%s), nEq=%d, rc=%d\n",
2611 pProbe->zName, saved_nEq, rc));
2612 return rc;
2613 }
2614
2615 /*
2616 ** Return True if it is possible that pIndex might be useful in
2617 ** implementing the ORDER BY clause in pBuilder.
2618 **
2619 ** Return False if pBuilder does not contain an ORDER BY clause or
2620 ** if there is no way for pIndex to be useful in implementing that
2621 ** ORDER BY clause.
2622 */
2623 static int indexMightHelpWithOrderBy(
2624 WhereLoopBuilder *pBuilder,
2625 Index *pIndex,
2626 int iCursor
2627 ){
2628 ExprList *pOB;
2629 ExprList *aColExpr;
2630 int ii, jj;
2631
2632 if( pIndex->bUnordered ) return 0;
2633 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2634 for(ii=0; ii<pOB->nExpr; ii++){
2635 Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
2636 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2637 if( pExpr->iColumn<0 ) return 1;
2638 for(jj=0; jj<pIndex->nKeyCol; jj++){
2639 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2640 }
2641 }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2642 for(jj=0; jj<pIndex->nKeyCol; jj++){
2643 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2644 if( sqlite3ExprCompare(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2645 return 1;
2646 }
2647 }
2648 }
2649 }
2650 return 0;
2651 }
2652
2653 /*
2654 ** Return a bitmask where 1s indicate that the corresponding column of
2655 ** the table is used by an index. Only the first 63 columns are considered.
2656 */
2657 static Bitmask columnsInIndex(Index *pIdx){
2658 Bitmask m = 0;
2659 int j;
2660 for(j=pIdx->nColumn-1; j>=0; j--){
2661 int x = pIdx->aiColumn[j];
2662 if( x>=0 ){
2663 testcase( x==BMS-1 );
2664 testcase( x==BMS-2 );
2665 if( x<BMS-1 ) m |= MASKBIT(x);
2666 }
2667 }
2668 return m;
2669 }
2670
2671 /* Check to see if a partial index with pPartIndexWhere can be used
2672 ** in the current query. Return true if it can be and false if not.
2673 */
2674 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
2675 int i;
2676 WhereTerm *pTerm;
2677 while( pWhere->op==TK_AND ){
2678 if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0;
2679 pWhere = pWhere->pRight;
2680 }
2681 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2682 Expr *pExpr = pTerm->pExpr;
2683 if( sqlite3ExprImpliesExpr(pExpr, pWhere, iTab)
2684 && (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2685 ){
2686 return 1;
2687 }
2688 }
2689 return 0;
2690 }
2691
2692 /*
2693 ** Add all WhereLoop objects for a single table of the join where the table
2694 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be
2695 ** a b-tree table, not a virtual table.
2696 **
2697 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2698 ** are calculated as follows:
2699 **
2700 ** For a full scan, assuming the table (or index) contains nRow rows:
2701 **
2702 ** cost = nRow * 3.0 // full-table scan
2703 ** cost = nRow * K // scan of covering index
2704 ** cost = nRow * (K+3.0) // scan of non-covering index
2705 **
2706 ** where K is a value between 1.1 and 3.0 set based on the relative
2707 ** estimated average size of the index and table records.
2708 **
2709 ** For an index scan, where nVisit is the number of index rows visited
2710 ** by the scan, and nSeek is the number of seek operations required on
2711 ** the index b-tree:
2712 **
2713 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index
2714 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index
2715 **
2716 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2717 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2718 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2719 **
2720 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2721 ** of uncertainty. For this reason, scoring is designed to pick plans that
2722 ** "do the least harm" if the estimates are inaccurate. For example, a
2723 ** log(nRow) factor is omitted from a non-covering index scan in order to
2724 ** bias the scoring in favor of using an index, since the worst-case
2725 ** performance of using an index is far better than the worst-case performance
2726 ** of a full table scan.
2727 */
2728 static int whereLoopAddBtree(
2729 WhereLoopBuilder *pBuilder, /* WHERE clause information */
2730 Bitmask mPrereq /* Extra prerequesites for using this table */
2731 ){
2732 WhereInfo *pWInfo; /* WHERE analysis context */
2733 Index *pProbe; /* An index we are evaluating */
2734 Index sPk; /* A fake index object for the primary key */
2735 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */
2736 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */
2737 SrcList *pTabList; /* The FROM clause */
2738 struct SrcList_item *pSrc; /* The FROM clause btree term to add */
2739 WhereLoop *pNew; /* Template WhereLoop object */
2740 int rc = SQLITE_OK; /* Return code */
2741 int iSortIdx = 1; /* Index number */
2742 int b; /* A boolean value */
2743 LogEst rSize; /* number of rows in the table */
2744 LogEst rLogSize; /* Logarithm of the number of rows in the table */
2745 WhereClause *pWC; /* The parsed WHERE clause */
2746 Table *pTab; /* Table being queried */
2747
2748 pNew = pBuilder->pNew;
2749 pWInfo = pBuilder->pWInfo;
2750 pTabList = pWInfo->pTabList;
2751 pSrc = pTabList->a + pNew->iTab;
2752 pTab = pSrc->pTab;
2753 pWC = pBuilder->pWC;
2754 assert( !IsVirtual(pSrc->pTab) );
2755
2756 if( pSrc->pIBIndex ){
2757 /* An INDEXED BY clause specifies a particular index to use */
2758 pProbe = pSrc->pIBIndex;
2759 }else if( !HasRowid(pTab) ){
2760 pProbe = pTab->pIndex;
2761 }else{
2762 /* There is no INDEXED BY clause. Create a fake Index object in local
2763 ** variable sPk to represent the rowid primary key index. Make this
2764 ** fake index the first in a chain of Index objects with all of the real
2765 ** indices to follow */
2766 Index *pFirst; /* First of real indices on the table */
2767 memset(&sPk, 0, sizeof(Index));
2768 sPk.nKeyCol = 1;
2769 sPk.nColumn = 1;
2770 sPk.aiColumn = &aiColumnPk;
2771 sPk.aiRowLogEst = aiRowEstPk;
2772 sPk.onError = OE_Replace;
2773 sPk.pTable = pTab;
2774 sPk.szIdxRow = pTab->szTabRow;
2775 aiRowEstPk[0] = pTab->nRowLogEst;
2776 aiRowEstPk[1] = 0;
2777 pFirst = pSrc->pTab->pIndex;
2778 if( pSrc->fg.notIndexed==0 ){
2779 /* The real indices of the table are only considered if the
2780 ** NOT INDEXED qualifier is omitted from the FROM clause */
2781 sPk.pNext = pFirst;
2782 }
2783 pProbe = &sPk;
2784 }
2785 rSize = pTab->nRowLogEst;
2786 rLogSize = estLog(rSize);
2787
2788 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2789 /* Automatic indexes */
2790 if( !pBuilder->pOrSet /* Not part of an OR optimization */
2791 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
2792 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
2793 && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */
2794 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */
2795 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */
2796 && !pSrc->fg.isCorrelated /* Not a correlated subquery */
2797 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */
2798 ){
2799 /* Generate auto-index WhereLoops */
2800 WhereTerm *pTerm;
2801 WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
2802 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
2803 if( pTerm->prereqRight & pNew->maskSelf ) continue;
2804 if( termCanDriveIndex(pTerm, pSrc, 0) ){
2805 pNew->u.btree.nEq = 1;
2806 pNew->nSkip = 0;
2807 pNew->u.btree.pIndex = 0;
2808 pNew->nLTerm = 1;
2809 pNew->aLTerm[0] = pTerm;
2810 /* TUNING: One-time cost for computing the automatic index is
2811 ** estimated to be X*N*log2(N) where N is the number of rows in
2812 ** the table being indexed and where X is 7 (LogEst=28) for normal
2813 ** tables or 1.375 (LogEst=4) for views and subqueries. The value
2814 ** of X is smaller for views and subqueries so that the query planner
2815 ** will be more aggressive about generating automatic indexes for
2816 ** those objects, since there is no opportunity to add schema
2817 ** indexes on subqueries and views. */
2818 pNew->rSetup = rLogSize + rSize + 4;
2819 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
2820 pNew->rSetup += 24;
2821 }
2822 ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
2823 if( pNew->rSetup<0 ) pNew->rSetup = 0;
2824 /* TUNING: Each index lookup yields 20 rows in the table. This
2825 ** is more than the usual guess of 10 rows, since we have no way
2826 ** of knowing how selective the index will ultimately be. It would
2827 ** not be unreasonable to make this value much larger. */
2828 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) );
2829 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
2830 pNew->wsFlags = WHERE_AUTO_INDEX;
2831 pNew->prereq = mPrereq | pTerm->prereqRight;
2832 rc = whereLoopInsert(pBuilder, pNew);
2833 }
2834 }
2835 }
2836 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
2837
2838 /* Loop over all indices
2839 */
2840 for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){
2841 if( pProbe->pPartIdxWhere!=0
2842 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){
2843 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */
2844 continue; /* Partial index inappropriate for this query */
2845 }
2846 rSize = pProbe->aiRowLogEst[0];
2847 pNew->u.btree.nEq = 0;
2848 pNew->u.btree.nBtm = 0;
2849 pNew->u.btree.nTop = 0;
2850 pNew->nSkip = 0;
2851 pNew->nLTerm = 0;
2852 pNew->iSortIdx = 0;
2853 pNew->rSetup = 0;
2854 pNew->prereq = mPrereq;
2855 pNew->nOut = rSize;
2856 pNew->u.btree.pIndex = pProbe;
2857 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
2858 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
2859 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
2860 if( pProbe->tnum<=0 ){
2861 /* Integer primary key index */
2862 pNew->wsFlags = WHERE_IPK;
2863
2864 /* Full table scan */
2865 pNew->iSortIdx = b ? iSortIdx : 0;
2866 /* TUNING: Cost of full table scan is (N*3.0). */
2867 pNew->rRun = rSize + 16;
2868 ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2869 whereLoopOutputAdjust(pWC, pNew, rSize);
2870 rc = whereLoopInsert(pBuilder, pNew);
2871 pNew->nOut = rSize;
2872 if( rc ) break;
2873 }else{
2874 Bitmask m;
2875 if( pProbe->isCovering ){
2876 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
2877 m = 0;
2878 }else{
2879 m = pSrc->colUsed & ~columnsInIndex(pProbe);
2880 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
2881 }
2882
2883 /* Full scan via index */
2884 if( b
2885 || !HasRowid(pTab)
2886 || pProbe->pPartIdxWhere!=0
2887 || ( m==0
2888 && pProbe->bUnordered==0
2889 && (pProbe->szIdxRow<pTab->szTabRow)
2890 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
2891 && sqlite3GlobalConfig.bUseCis
2892 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
2893 )
2894 ){
2895 pNew->iSortIdx = b ? iSortIdx : 0;
2896
2897 /* The cost of visiting the index rows is N*K, where K is
2898 ** between 1.1 and 3.0, depending on the relative sizes of the
2899 ** index and table rows. */
2900 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
2901 if( m!=0 ){
2902 /* If this is a non-covering index scan, add in the cost of
2903 ** doing table lookups. The cost will be 3x the number of
2904 ** lookups. Take into account WHERE clause terms that can be
2905 ** satisfied using just the index, and that do not require a
2906 ** table lookup. */
2907 LogEst nLookup = rSize + 16; /* Base cost: N*3 */
2908 int ii;
2909 int iCur = pSrc->iCursor;
2910 WhereClause *pWC2 = &pWInfo->sWC;
2911 for(ii=0; ii<pWC2->nTerm; ii++){
2912 WhereTerm *pTerm = &pWC2->a[ii];
2913 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
2914 break;
2915 }
2916 /* pTerm can be evaluated using just the index. So reduce
2917 ** the expected number of table lookups accordingly */
2918 if( pTerm->truthProb<=0 ){
2919 nLookup += pTerm->truthProb;
2920 }else{
2921 nLookup--;
2922 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
2923 }
2924 }
2925
2926 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
2927 }
2928 ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2929 whereLoopOutputAdjust(pWC, pNew, rSize);
2930 rc = whereLoopInsert(pBuilder, pNew);
2931 pNew->nOut = rSize;
2932 if( rc ) break;
2933 }
2934 }
2935
2936 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
2937 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2938 sqlite3Stat4ProbeFree(pBuilder->pRec);
2939 pBuilder->nRecValid = 0;
2940 pBuilder->pRec = 0;
2941 #endif
2942
2943 /* If there was an INDEXED BY clause, then only that one index is
2944 ** considered. */
2945 if( pSrc->pIBIndex ) break;
2946 }
2947 return rc;
2948 }
2949
2950 #ifndef SQLITE_OMIT_VIRTUALTABLE
2951
2952 /*
2953 ** Argument pIdxInfo is already populated with all constraints that may
2954 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
2955 ** function marks a subset of those constraints usable, invokes the
2956 ** xBestIndex method and adds the returned plan to pBuilder.
2957 **
2958 ** A constraint is marked usable if:
2959 **
2960 ** * Argument mUsable indicates that its prerequisites are available, and
2961 **
2962 ** * It is not one of the operators specified in the mExclude mask passed
2963 ** as the fourth argument (which in practice is either WO_IN or 0).
2964 **
2965 ** Argument mPrereq is a mask of tables that must be scanned before the
2966 ** virtual table in question. These are added to the plans prerequisites
2967 ** before it is added to pBuilder.
2968 **
2969 ** Output parameter *pbIn is set to true if the plan added to pBuilder
2970 ** uses one or more WO_IN terms, or false otherwise.
2971 */
2972 static int whereLoopAddVirtualOne(
2973 WhereLoopBuilder *pBuilder,
2974 Bitmask mPrereq, /* Mask of tables that must be used. */
2975 Bitmask mUsable, /* Mask of usable tables */
2976 u16 mExclude, /* Exclude terms using these operators */
2977 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */
2978 u16 mNoOmit, /* Do not omit these constraints */
2979 int *pbIn /* OUT: True if plan uses an IN(...) op */
2980 ){
2981 WhereClause *pWC = pBuilder->pWC;
2982 struct sqlite3_index_constraint *pIdxCons;
2983 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
2984 int i;
2985 int mxTerm;
2986 int rc = SQLITE_OK;
2987 WhereLoop *pNew = pBuilder->pNew;
2988 Parse *pParse = pBuilder->pWInfo->pParse;
2989 struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
2990 int nConstraint = pIdxInfo->nConstraint;
2991
2992 assert( (mUsable & mPrereq)==mPrereq );
2993 *pbIn = 0;
2994 pNew->prereq = mPrereq;
2995
2996 /* Set the usable flag on the subset of constraints identified by
2997 ** arguments mUsable and mExclude. */
2998 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
2999 for(i=0; i<nConstraint; i++, pIdxCons++){
3000 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3001 pIdxCons->usable = 0;
3002 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3003 && (pTerm->eOperator & mExclude)==0
3004 ){
3005 pIdxCons->usable = 1;
3006 }
3007 }
3008
3009 /* Initialize the output fields of the sqlite3_index_info structure */
3010 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3011 assert( pIdxInfo->needToFreeIdxStr==0 );
3012 pIdxInfo->idxStr = 0;
3013 pIdxInfo->idxNum = 0;
3014 pIdxInfo->orderByConsumed = 0;
3015 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3016 pIdxInfo->estimatedRows = 25;
3017 pIdxInfo->idxFlags = 0;
3018 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3019
3020 /* Invoke the virtual table xBestIndex() method */
3021 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3022 if( rc ) return rc;
3023
3024 mxTerm = -1;
3025 assert( pNew->nLSlot>=nConstraint );
3026 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3027 pNew->u.vtab.omitMask = 0;
3028 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3029 for(i=0; i<nConstraint; i++, pIdxCons++){
3030 int iTerm;
3031 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3032 WhereTerm *pTerm;
3033 int j = pIdxCons->iTermOffset;
3034 if( iTerm>=nConstraint
3035 || j<0
3036 || j>=pWC->nTerm
3037 || pNew->aLTerm[iTerm]!=0
3038 || pIdxCons->usable==0
3039 ){
3040 rc = SQLITE_ERROR;
3041 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3042 return rc;
3043 }
3044 testcase( iTerm==nConstraint-1 );
3045 testcase( j==0 );
3046 testcase( j==pWC->nTerm-1 );
3047 pTerm = &pWC->a[j];
3048 pNew->prereq |= pTerm->prereqRight;
3049 assert( iTerm<pNew->nLSlot );
3050 pNew->aLTerm[iTerm] = pTerm;
3051 if( iTerm>mxTerm ) mxTerm = iTerm;
3052 testcase( iTerm==15 );
3053 testcase( iTerm==16 );
3054 if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm;
3055 if( (pTerm->eOperator & WO_IN)!=0 ){
3056 /* A virtual table that is constrained by an IN clause may not
3057 ** consume the ORDER BY clause because (1) the order of IN terms
3058 ** is not necessarily related to the order of output terms and
3059 ** (2) Multiple outputs from a single IN value will not merge
3060 ** together. */
3061 pIdxInfo->orderByConsumed = 0;
3062 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3063 *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3064 }
3065 }
3066 }
3067 pNew->u.vtab.omitMask &= ~mNoOmit;
3068
3069 pNew->nLTerm = mxTerm+1;
3070 assert( pNew->nLTerm<=pNew->nLSlot );
3071 pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3072 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3073 pIdxInfo->needToFreeIdxStr = 0;
3074 pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3075 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3076 pIdxInfo->nOrderBy : 0);
3077 pNew->rSetup = 0;
3078 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3079 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3080
3081 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3082 ** that the scan will visit at most one row. Clear it otherwise. */
3083 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3084 pNew->wsFlags |= WHERE_ONEROW;
3085 }else{
3086 pNew->wsFlags &= ~WHERE_ONEROW;
3087 }
3088 rc = whereLoopInsert(pBuilder, pNew);
3089 if( pNew->u.vtab.needFree ){
3090 sqlite3_free(pNew->u.vtab.idxStr);
3091 pNew->u.vtab.needFree = 0;
3092 }
3093 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3094 *pbIn, (sqlite3_uint64)mPrereq,
3095 (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3096
3097 return rc;
3098 }
3099
3100
3101 /*
3102 ** Add all WhereLoop objects for a table of the join identified by
3103 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table.
3104 **
3105 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3106 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3107 ** entries that occur before the virtual table in the FROM clause and are
3108 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3109 ** mUnusable mask contains all FROM clause entries that occur after the
3110 ** virtual table and are separated from it by at least one LEFT or
3111 ** CROSS JOIN.
3112 **
3113 ** For example, if the query were:
3114 **
3115 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3116 **
3117 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3118 **
3119 ** All the tables in mPrereq must be scanned before the current virtual
3120 ** table. So any terms for which all prerequisites are satisfied by
3121 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3122 ** Conversely, all tables in mUnusable must be scanned after the current
3123 ** virtual table, so any terms for which the prerequisites overlap with
3124 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3125 */
3126 static int whereLoopAddVirtual(
3127 WhereLoopBuilder *pBuilder, /* WHERE clause information */
3128 Bitmask mPrereq, /* Tables that must be scanned before this one */
3129 Bitmask mUnusable /* Tables that must be scanned after this one */
3130 ){
3131 int rc = SQLITE_OK; /* Return code */
3132 WhereInfo *pWInfo; /* WHERE analysis context */
3133 Parse *pParse; /* The parsing context */
3134 WhereClause *pWC; /* The WHERE clause */
3135 struct SrcList_item *pSrc; /* The FROM clause term to search */
3136 sqlite3_index_info *p; /* Object to pass to xBestIndex() */
3137 int nConstraint; /* Number of constraints in p */
3138 int bIn; /* True if plan uses IN(...) operator */
3139 WhereLoop *pNew;
3140 Bitmask mBest; /* Tables used by best possible plan */
3141 u16 mNoOmit;
3142
3143 assert( (mPrereq & mUnusable)==0 );
3144 pWInfo = pBuilder->pWInfo;
3145 pParse = pWInfo->pParse;
3146 pWC = pBuilder->pWC;
3147 pNew = pBuilder->pNew;
3148 pSrc = &pWInfo->pTabList->a[pNew->iTab];
3149 assert( IsVirtual(pSrc->pTab) );
3150 p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3151 &mNoOmit);
3152 if( p==0 ) return SQLITE_NOMEM_BKPT;
3153 pNew->rSetup = 0;
3154 pNew->wsFlags = WHERE_VIRTUALTABLE;
3155 pNew->nLTerm = 0;
3156 pNew->u.vtab.needFree = 0;
3157 nConstraint = p->nConstraint;
3158 if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3159 sqlite3DbFree(pParse->db, p);
3160 return SQLITE_NOMEM_BKPT;
3161 }
3162
3163 /* First call xBestIndex() with all constraints usable. */
3164 WHERETRACE(0x40, (" VirtualOne: all usable\n"));
3165 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3166
3167 /* If the call to xBestIndex() with all terms enabled produced a plan
3168 ** that does not require any source tables (IOW: a plan with mBest==0),
3169 ** then there is no point in making any further calls to xBestIndex()
3170 ** since they will all return the same result (if the xBestIndex()
3171 ** implementation is sane). */
3172 if( rc==SQLITE_OK && (mBest = (pNew->prereq & ~mPrereq))!=0 ){
3173 int seenZero = 0; /* True if a plan with no prereqs seen */
3174 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */
3175 Bitmask mPrev = 0;
3176 Bitmask mBestNoIn = 0;
3177
3178 /* If the plan produced by the earlier call uses an IN(...) term, call
3179 ** xBestIndex again, this time with IN(...) terms disabled. */
3180 if( bIn ){
3181 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n"));
3182 rc = whereLoopAddVirtualOne(
3183 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3184 assert( bIn==0 );
3185 mBestNoIn = pNew->prereq & ~mPrereq;
3186 if( mBestNoIn==0 ){
3187 seenZero = 1;
3188 seenZeroNoIN = 1;
3189 }
3190 }
3191
3192 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3193 ** in the set of terms that apply to the current virtual table. */
3194 while( rc==SQLITE_OK ){
3195 int i;
3196 Bitmask mNext = ALLBITS;
3197 assert( mNext>0 );
3198 for(i=0; i<nConstraint; i++){
3199 Bitmask mThis = (
3200 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3201 );
3202 if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3203 }
3204 mPrev = mNext;
3205 if( mNext==ALLBITS ) break;
3206 if( mNext==mBest || mNext==mBestNoIn ) continue;
3207 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n",
3208 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3209 rc = whereLoopAddVirtualOne(
3210 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3211 if( pNew->prereq==mPrereq ){
3212 seenZero = 1;
3213 if( bIn==0 ) seenZeroNoIN = 1;
3214 }
3215 }
3216
3217 /* If the calls to xBestIndex() in the above loop did not find a plan
3218 ** that requires no source tables at all (i.e. one guaranteed to be
3219 ** usable), make a call here with all source tables disabled */
3220 if( rc==SQLITE_OK && seenZero==0 ){
3221 WHERETRACE(0x40, (" VirtualOne: all disabled\n"));
3222 rc = whereLoopAddVirtualOne(
3223 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3224 if( bIn==0 ) seenZeroNoIN = 1;
3225 }
3226
3227 /* If the calls to xBestIndex() have so far failed to find a plan
3228 ** that requires no source tables at all and does not use an IN(...)
3229 ** operator, make a final call to obtain one here. */
3230 if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3231 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n"));
3232 rc = whereLoopAddVirtualOne(
3233 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3234 }
3235 }
3236
3237 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3238 sqlite3DbFree(pParse->db, p);
3239 return rc;
3240 }
3241 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3242
3243 /*
3244 ** Add WhereLoop entries to handle OR terms. This works for either
3245 ** btrees or virtual tables.
3246 */
3247 static int whereLoopAddOr(
3248 WhereLoopBuilder *pBuilder,
3249 Bitmask mPrereq,
3250 Bitmask mUnusable
3251 ){
3252 WhereInfo *pWInfo = pBuilder->pWInfo;
3253 WhereClause *pWC;
3254 WhereLoop *pNew;
3255 WhereTerm *pTerm, *pWCEnd;
3256 int rc = SQLITE_OK;
3257 int iCur;
3258 WhereClause tempWC;
3259 WhereLoopBuilder sSubBuild;
3260 WhereOrSet sSum, sCur;
3261 struct SrcList_item *pItem;
3262
3263 pWC = pBuilder->pWC;
3264 pWCEnd = pWC->a + pWC->nTerm;
3265 pNew = pBuilder->pNew;
3266 memset(&sSum, 0, sizeof(sSum));
3267 pItem = pWInfo->pTabList->a + pNew->iTab;
3268 iCur = pItem->iCursor;
3269
3270 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3271 if( (pTerm->eOperator & WO_OR)!=0
3272 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3273 ){
3274 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3275 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3276 WhereTerm *pOrTerm;
3277 int once = 1;
3278 int i, j;
3279
3280 sSubBuild = *pBuilder;
3281 sSubBuild.pOrderBy = 0;
3282 sSubBuild.pOrSet = &sCur;
3283
3284 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3285 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3286 if( (pOrTerm->eOperator & WO_AND)!=0 ){
3287 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3288 }else if( pOrTerm->leftCursor==iCur ){
3289 tempWC.pWInfo = pWC->pWInfo;
3290 tempWC.pOuter = pWC;
3291 tempWC.op = TK_AND;
3292 tempWC.nTerm = 1;
3293 tempWC.a = pOrTerm;
3294 sSubBuild.pWC = &tempWC;
3295 }else{
3296 continue;
3297 }
3298 sCur.n = 0;
3299 #ifdef WHERETRACE_ENABLED
3300 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3301 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3302 if( sqlite3WhereTrace & 0x400 ){
3303 sqlite3WhereClausePrint(sSubBuild.pWC);
3304 }
3305 #endif
3306 #ifndef SQLITE_OMIT_VIRTUALTABLE
3307 if( IsVirtual(pItem->pTab) ){
3308 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3309 }else
3310 #endif
3311 {
3312 rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3313 }
3314 if( rc==SQLITE_OK ){
3315 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3316 }
3317 assert( rc==SQLITE_OK || sCur.n==0 );
3318 if( sCur.n==0 ){
3319 sSum.n = 0;
3320 break;
3321 }else if( once ){
3322 whereOrMove(&sSum, &sCur);
3323 once = 0;
3324 }else{
3325 WhereOrSet sPrev;
3326 whereOrMove(&sPrev, &sSum);
3327 sSum.n = 0;
3328 for(i=0; i<sPrev.n; i++){
3329 for(j=0; j<sCur.n; j++){
3330 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3331 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3332 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3333 }
3334 }
3335 }
3336 }
3337 pNew->nLTerm = 1;
3338 pNew->aLTerm[0] = pTerm;
3339 pNew->wsFlags = WHERE_MULTI_OR;
3340 pNew->rSetup = 0;
3341 pNew->iSortIdx = 0;
3342 memset(&pNew->u, 0, sizeof(pNew->u));
3343 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3344 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3345 ** of all sub-scans required by the OR-scan. However, due to rounding
3346 ** errors, it may be that the cost of the OR-scan is equal to its
3347 ** most expensive sub-scan. Add the smallest possible penalty
3348 ** (equivalent to multiplying the cost by 1.07) to ensure that
3349 ** this does not happen. Otherwise, for WHERE clauses such as the
3350 ** following where there is an index on "y":
3351 **
3352 ** WHERE likelihood(x=?, 0.99) OR y=?
3353 **
3354 ** the planner may elect to "OR" together a full-table scan and an
3355 ** index lookup. And other similarly odd results. */
3356 pNew->rRun = sSum.a[i].rRun + 1;
3357 pNew->nOut = sSum.a[i].nOut;
3358 pNew->prereq = sSum.a[i].prereq;
3359 rc = whereLoopInsert(pBuilder, pNew);
3360 }
3361 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3362 }
3363 }
3364 return rc;
3365 }
3366
3367 /*
3368 ** Add all WhereLoop objects for all tables
3369 */
3370 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3371 WhereInfo *pWInfo = pBuilder->pWInfo;
3372 Bitmask mPrereq = 0;
3373 Bitmask mPrior = 0;
3374 int iTab;
3375 SrcList *pTabList = pWInfo->pTabList;
3376 struct SrcList_item *pItem;
3377 struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel];
3378 sqlite3 *db = pWInfo->pParse->db;
3379 int rc = SQLITE_OK;
3380 WhereLoop *pNew;
3381 u8 priorJointype = 0;
3382
3383 /* Loop over the tables in the join, from left to right */
3384 pNew = pBuilder->pNew;
3385 whereLoopInit(pNew);
3386 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3387 Bitmask mUnusable = 0;
3388 pNew->iTab = iTab;
3389 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3390 if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){
3391 /* This condition is true when pItem is the FROM clause term on the
3392 ** right-hand-side of a LEFT or CROSS JOIN. */
3393 mPrereq = mPrior;
3394 }
3395 priorJointype = pItem->fg.jointype;
3396 #ifndef SQLITE_OMIT_VIRTUALTABLE
3397 if( IsVirtual(pItem->pTab) ){
3398 struct SrcList_item *p;
3399 for(p=&pItem[1]; p<pEnd; p++){
3400 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3401 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3402 }
3403 }
3404 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3405 }else
3406 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3407 {
3408 rc = whereLoopAddBtree(pBuilder, mPrereq);
3409 }
3410 if( rc==SQLITE_OK ){
3411 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3412 }
3413 mPrior |= pNew->maskSelf;
3414 if( rc || db->mallocFailed ) break;
3415 }
3416
3417 whereLoopClear(db, pNew);
3418 return rc;
3419 }
3420
3421 /*
3422 ** Examine a WherePath (with the addition of the extra WhereLoop of the 5th
3423 ** parameters) to see if it outputs rows in the requested ORDER BY
3424 ** (or GROUP BY) without requiring a separate sort operation. Return N:
3425 **
3426 ** N>0: N terms of the ORDER BY clause are satisfied
3427 ** N==0: No terms of the ORDER BY clause are satisfied
3428 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied.
3429 **
3430 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3431 ** strict. With GROUP BY and DISTINCT the only requirement is that
3432 ** equivalent rows appear immediately adjacent to one another. GROUP BY
3433 ** and DISTINCT do not require rows to appear in any particular order as long
3434 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT
3435 ** the pOrderBy terms can be matched in any order. With ORDER BY, the
3436 ** pOrderBy terms must be matched in strict left-to-right order.
3437 */
3438 static i8 wherePathSatisfiesOrderBy(
3439 WhereInfo *pWInfo, /* The WHERE clause */
3440 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */
3441 WherePath *pPath, /* The WherePath to check */
3442 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3443 u16 nLoop, /* Number of entries in pPath->aLoop[] */
3444 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */
3445 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */
3446 ){
3447 u8 revSet; /* True if rev is known */
3448 u8 rev; /* Composite sort order */
3449 u8 revIdx; /* Index sort order */
3450 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */
3451 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */
3452 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */
3453 u16 eqOpMask; /* Allowed equality operators */
3454 u16 nKeyCol; /* Number of key columns in pIndex */
3455 u16 nColumn; /* Total number of ordered columns in the index */
3456 u16 nOrderBy; /* Number terms in the ORDER BY clause */
3457 int iLoop; /* Index of WhereLoop in pPath being processed */
3458 int i, j; /* Loop counters */
3459 int iCur; /* Cursor number for current WhereLoop */
3460 int iColumn; /* A column number within table iCur */
3461 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3462 WhereTerm *pTerm; /* A single term of the WHERE clause */
3463 Expr *pOBExpr; /* An expression from the ORDER BY clause */
3464 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */
3465 Index *pIndex; /* The index associated with pLoop */
3466 sqlite3 *db = pWInfo->pParse->db; /* Database connection */
3467 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */
3468 Bitmask obDone; /* Mask of all ORDER BY terms */
3469 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */
3470 Bitmask ready; /* Mask of inner loops */
3471
3472 /*
3473 ** We say the WhereLoop is "one-row" if it generates no more than one
3474 ** row of output. A WhereLoop is one-row if all of the following are true:
3475 ** (a) All index columns match with WHERE_COLUMN_EQ.
3476 ** (b) The index is unique
3477 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3478 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3479 **
3480 ** We say the WhereLoop is "order-distinct" if the set of columns from
3481 ** that WhereLoop that are in the ORDER BY clause are different for every
3482 ** row of the WhereLoop. Every one-row WhereLoop is automatically
3483 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause
3484 ** is not order-distinct. To be order-distinct is not quite the same as being
3485 ** UNIQUE since a UNIQUE column or index can have multiple rows that
3486 ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3487 ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3488 **
3489 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3490 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3491 ** automatically order-distinct.
3492 */
3493
3494 assert( pOrderBy!=0 );
3495 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3496
3497 nOrderBy = pOrderBy->nExpr;
3498 testcase( nOrderBy==BMS-1 );
3499 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */
3500 isOrderDistinct = 1;
3501 obDone = MASKBIT(nOrderBy)-1;
3502 orderDistinctMask = 0;
3503 ready = 0;
3504 eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3505 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN;
3506 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3507 if( iLoop>0 ) ready |= pLoop->maskSelf;
3508 if( iLoop<nLoop ){
3509 pLoop = pPath->aLoop[iLoop];
3510 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3511 }else{
3512 pLoop = pLast;
3513 }
3514 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3515 if( pLoop->u.vtab.isOrdered ) obSat = obDone;
3516 break;
3517 }
3518 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3519
3520 /* Mark off any ORDER BY term X that is a column in the table of
3521 ** the current loop for which there is term in the WHERE
3522 ** clause of the form X IS NULL or X=? that reference only outer
3523 ** loops.
3524 */
3525 for(i=0; i<nOrderBy; i++){
3526 if( MASKBIT(i) & obSat ) continue;
3527 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3528 if( pOBExpr->op!=TK_COLUMN ) continue;
3529 if( pOBExpr->iTable!=iCur ) continue;
3530 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3531 ~ready, eqOpMask, 0);
3532 if( pTerm==0 ) continue;
3533 if( pTerm->eOperator==WO_IN ){
3534 /* IN terms are only valid for sorting in the ORDER BY LIMIT
3535 ** optimization, and then only if they are actually used
3536 ** by the query plan */
3537 assert( wctrlFlags & WHERE_ORDERBY_LIMIT );
3538 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3539 if( j>=pLoop->nLTerm ) continue;
3540 }
3541 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3542 const char *z1, *z2;
3543 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3544 if( !pColl ) pColl = db->pDfltColl;
3545 z1 = pColl->zName;
3546 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr);
3547 if( !pColl ) pColl = db->pDfltColl;
3548 z2 = pColl->zName;
3549 if( sqlite3StrICmp(z1, z2)!=0 ) continue;
3550 testcase( pTerm->pExpr->op==TK_IS );
3551 }
3552 obSat |= MASKBIT(i);
3553 }
3554
3555 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3556 if( pLoop->wsFlags & WHERE_IPK ){
3557 pIndex = 0;
3558 nKeyCol = 0;
3559 nColumn = 1;
3560 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3561 return 0;
3562 }else{
3563 nKeyCol = pIndex->nKeyCol;
3564 nColumn = pIndex->nColumn;
3565 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3566 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3567 || !HasRowid(pIndex->pTable));
3568 isOrderDistinct = IsUniqueIndex(pIndex);
3569 }
3570
3571 /* Loop through all columns of the index and deal with the ones
3572 ** that are not constrained by == or IN.
3573 */
3574 rev = revSet = 0;
3575 distinctColumns = 0;
3576 for(j=0; j<nColumn; j++){
3577 u8 bOnce = 1; /* True to run the ORDER BY search loop */
3578
3579 assert( j>=pLoop->u.btree.nEq
3580 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3581 );
3582 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3583 u16 eOp = pLoop->aLTerm[j]->eOperator;
3584
3585 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when
3586 ** doing WHERE_ORDERBY_LIMIT processing).
3587 **
3588 ** If the current term is a column of an ((?,?) IN (SELECT...))
3589 ** expression for which the SELECT returns more than one column,
3590 ** check that it is the only column used by this loop. Otherwise,
3591 ** if it is one of two or more, none of the columns can be
3592 ** considered to match an ORDER BY term. */
3593 if( (eOp & eqOpMask)!=0 ){
3594 if( eOp & WO_ISNULL ){
3595 testcase( isOrderDistinct );
3596 isOrderDistinct = 0;
3597 }
3598 continue;
3599 }else if( ALWAYS(eOp & WO_IN) ){
3600 /* ALWAYS() justification: eOp is an equality operator due to the
3601 ** j<pLoop->u.btree.nEq constraint above. Any equality other
3602 ** than WO_IN is captured by the previous "if". So this one
3603 ** always has to be WO_IN. */
3604 Expr *pX = pLoop->aLTerm[j]->pExpr;
3605 for(i=j+1; i<pLoop->u.btree.nEq; i++){
3606 if( pLoop->aLTerm[i]->pExpr==pX ){
3607 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3608 bOnce = 0;
3609 break;
3610 }
3611 }
3612 }
3613 }
3614
3615 /* Get the column number in the table (iColumn) and sort order
3616 ** (revIdx) for the j-th column of the index.
3617 */
3618 if( pIndex ){
3619 iColumn = pIndex->aiColumn[j];
3620 revIdx = pIndex->aSortOrder[j];
3621 if( iColumn==pIndex->pTable->iPKey ) iColumn = -1;
3622 }else{
3623 iColumn = XN_ROWID;
3624 revIdx = 0;
3625 }
3626
3627 /* An unconstrained column that might be NULL means that this
3628 ** WhereLoop is not well-ordered
3629 */
3630 if( isOrderDistinct
3631 && iColumn>=0
3632 && j>=pLoop->u.btree.nEq
3633 && pIndex->pTable->aCol[iColumn].notNull==0
3634 ){
3635 isOrderDistinct = 0;
3636 }
3637
3638 /* Find the ORDER BY term that corresponds to the j-th column
3639 ** of the index and mark that ORDER BY term off
3640 */
3641 isMatch = 0;
3642 for(i=0; bOnce && i<nOrderBy; i++){
3643 if( MASKBIT(i) & obSat ) continue;
3644 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3645 testcase( wctrlFlags & WHERE_GROUPBY );
3646 testcase( wctrlFlags & WHERE_DISTINCTBY );
3647 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3648 if( iColumn>=(-1) ){
3649 if( pOBExpr->op!=TK_COLUMN ) continue;
3650 if( pOBExpr->iTable!=iCur ) continue;
3651 if( pOBExpr->iColumn!=iColumn ) continue;
3652 }else{
3653 if( sqlite3ExprCompare(pOBExpr,pIndex->aColExpr->a[j].pExpr,iCur) ){
3654 continue;
3655 }
3656 }
3657 if( iColumn>=0 ){
3658 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3659 if( !pColl ) pColl = db->pDfltColl;
3660 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3661 }
3662 isMatch = 1;
3663 break;
3664 }
3665 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3666 /* Make sure the sort order is compatible in an ORDER BY clause.
3667 ** Sort order is irrelevant for a GROUP BY clause. */
3668 if( revSet ){
3669 if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
3670 }else{
3671 rev = revIdx ^ pOrderBy->a[i].sortOrder;
3672 if( rev ) *pRevMask |= MASKBIT(iLoop);
3673 revSet = 1;
3674 }
3675 }
3676 if( isMatch ){
3677 if( iColumn==XN_ROWID ){
3678 testcase( distinctColumns==0 );
3679 distinctColumns = 1;
3680 }
3681 obSat |= MASKBIT(i);
3682 }else{
3683 /* No match found */
3684 if( j==0 || j<nKeyCol ){
3685 testcase( isOrderDistinct!=0 );
3686 isOrderDistinct = 0;
3687 }
3688 break;
3689 }
3690 } /* end Loop over all index columns */
3691 if( distinctColumns ){
3692 testcase( isOrderDistinct==0 );
3693 isOrderDistinct = 1;
3694 }
3695 } /* end-if not one-row */
3696
3697 /* Mark off any other ORDER BY terms that reference pLoop */
3698 if( isOrderDistinct ){
3699 orderDistinctMask |= pLoop->maskSelf;
3700 for(i=0; i<nOrderBy; i++){
3701 Expr *p;
3702 Bitmask mTerm;
3703 if( MASKBIT(i) & obSat ) continue;
3704 p = pOrderBy->a[i].pExpr;
3705 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
3706 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
3707 if( (mTerm&~orderDistinctMask)==0 ){
3708 obSat |= MASKBIT(i);
3709 }
3710 }
3711 }
3712 } /* End the loop over all WhereLoops from outer-most down to inner-most */
3713 if( obSat==obDone ) return (i8)nOrderBy;
3714 if( !isOrderDistinct ){
3715 for(i=nOrderBy-1; i>0; i--){
3716 Bitmask m = MASKBIT(i) - 1;
3717 if( (obSat&m)==m ) return i;
3718 }
3719 return 0;
3720 }
3721 return -1;
3722 }
3723
3724
3725 /*
3726 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
3727 ** the planner assumes that the specified pOrderBy list is actually a GROUP
3728 ** BY clause - and so any order that groups rows as required satisfies the
3729 ** request.
3730 **
3731 ** Normally, in this case it is not possible for the caller to determine
3732 ** whether or not the rows are really being delivered in sorted order, or
3733 ** just in some other order that provides the required grouping. However,
3734 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
3735 ** this function may be called on the returned WhereInfo object. It returns
3736 ** true if the rows really will be sorted in the specified order, or false
3737 ** otherwise.
3738 **
3739 ** For example, assuming:
3740 **
3741 ** CREATE INDEX i1 ON t1(x, Y);
3742 **
3743 ** then
3744 **
3745 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1
3746 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0
3747 */
3748 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
3749 assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
3750 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
3751 return pWInfo->sorted;
3752 }
3753
3754 #ifdef WHERETRACE_ENABLED
3755 /* For debugging use only: */
3756 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
3757 static char zName[65];
3758 int i;
3759 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
3760 if( pLast ) zName[i++] = pLast->cId;
3761 zName[i] = 0;
3762 return zName;
3763 }
3764 #endif
3765
3766 /*
3767 ** Return the cost of sorting nRow rows, assuming that the keys have
3768 ** nOrderby columns and that the first nSorted columns are already in
3769 ** order.
3770 */
3771 static LogEst whereSortingCost(
3772 WhereInfo *pWInfo,
3773 LogEst nRow,
3774 int nOrderBy,
3775 int nSorted
3776 ){
3777 /* TUNING: Estimated cost of a full external sort, where N is
3778 ** the number of rows to sort is:
3779 **
3780 ** cost = (3.0 * N * log(N)).
3781 **
3782 ** Or, if the order-by clause has X terms but only the last Y
3783 ** terms are out of order, then block-sorting will reduce the
3784 ** sorting cost to:
3785 **
3786 ** cost = (3.0 * N * log(N)) * (Y/X)
3787 **
3788 ** The (Y/X) term is implemented using stack variable rScale
3789 ** below. */
3790 LogEst rScale, rSortCost;
3791 assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
3792 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
3793 rSortCost = nRow + rScale + 16;
3794
3795 /* Multiple by log(M) where M is the number of output rows.
3796 ** Use the LIMIT for M if it is smaller */
3797 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
3798 nRow = pWInfo->iLimit;
3799 }
3800 rSortCost += estLog(nRow);
3801 return rSortCost;
3802 }
3803
3804 /*
3805 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
3806 ** attempts to find the lowest cost path that visits each WhereLoop
3807 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields.
3808 **
3809 ** Assume that the total number of output rows that will need to be sorted
3810 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting
3811 ** costs if nRowEst==0.
3812 **
3813 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
3814 ** error occurs.
3815 */
3816 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
3817 int mxChoice; /* Maximum number of simultaneous paths tracked */
3818 int nLoop; /* Number of terms in the join */
3819 Parse *pParse; /* Parsing context */
3820 sqlite3 *db; /* The database connection */
3821 int iLoop; /* Loop counter over the terms of the join */
3822 int ii, jj; /* Loop counters */
3823 int mxI = 0; /* Index of next entry to replace */
3824 int nOrderBy; /* Number of ORDER BY clause terms */
3825 LogEst mxCost = 0; /* Maximum cost of a set of paths */
3826 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */
3827 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */
3828 WherePath *aFrom; /* All nFrom paths at the previous level */
3829 WherePath *aTo; /* The nTo best paths at the current level */
3830 WherePath *pFrom; /* An element of aFrom[] that we are working on */
3831 WherePath *pTo; /* An element of aTo[] that we are working on */
3832 WhereLoop *pWLoop; /* One of the WhereLoop objects */
3833 WhereLoop **pX; /* Used to divy up the pSpace memory */
3834 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */
3835 char *pSpace; /* Temporary memory used by this routine */
3836 int nSpace; /* Bytes of space allocated at pSpace */
3837
3838 pParse = pWInfo->pParse;
3839 db = pParse->db;
3840 nLoop = pWInfo->nLevel;
3841 /* TUNING: For simple queries, only the best path is tracked.
3842 ** For 2-way joins, the 5 best paths are followed.
3843 ** For joins of 3 or more tables, track the 10 best paths */
3844 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
3845 assert( nLoop<=pWInfo->pTabList->nSrc );
3846 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst));
3847
3848 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
3849 ** case the purpose of this call is to estimate the number of rows returned
3850 ** by the overall query. Once this estimate has been obtained, the caller
3851 ** will invoke this function a second time, passing the estimate as the
3852 ** nRowEst parameter. */
3853 if( pWInfo->pOrderBy==0 || nRowEst==0 ){
3854 nOrderBy = 0;
3855 }else{
3856 nOrderBy = pWInfo->pOrderBy->nExpr;
3857 }
3858
3859 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
3860 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
3861 nSpace += sizeof(LogEst) * nOrderBy;
3862 pSpace = sqlite3DbMallocRawNN(db, nSpace);
3863 if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
3864 aTo = (WherePath*)pSpace;
3865 aFrom = aTo+mxChoice;
3866 memset(aFrom, 0, sizeof(aFrom[0]));
3867 pX = (WhereLoop**)(aFrom+mxChoice);
3868 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
3869 pFrom->aLoop = pX;
3870 }
3871 if( nOrderBy ){
3872 /* If there is an ORDER BY clause and it is not being ignored, set up
3873 ** space for the aSortCost[] array. Each element of the aSortCost array
3874 ** is either zero - meaning it has not yet been initialized - or the
3875 ** cost of sorting nRowEst rows of data where the first X terms of
3876 ** the ORDER BY clause are already in order, where X is the array
3877 ** index. */
3878 aSortCost = (LogEst*)pX;
3879 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
3880 }
3881 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
3882 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
3883
3884 /* Seed the search with a single WherePath containing zero WhereLoops.
3885 **
3886 ** TUNING: Do not let the number of iterations go above 28. If the cost
3887 ** of computing an automatic index is not paid back within the first 28
3888 ** rows, then do not use the automatic index. */
3889 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) );
3890 nFrom = 1;
3891 assert( aFrom[0].isOrdered==0 );
3892 if( nOrderBy ){
3893 /* If nLoop is zero, then there are no FROM terms in the query. Since
3894 ** in this case the query may return a maximum of one row, the results
3895 ** are already in the requested order. Set isOrdered to nOrderBy to
3896 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
3897 ** -1, indicating that the result set may or may not be ordered,
3898 ** depending on the loops added to the current plan. */
3899 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
3900 }
3901
3902 /* Compute successively longer WherePaths using the previous generation
3903 ** of WherePaths as the basis for the next. Keep track of the mxChoice
3904 ** best paths at each generation */
3905 for(iLoop=0; iLoop<nLoop; iLoop++){
3906 nTo = 0;
3907 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
3908 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
3909 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */
3910 LogEst rCost; /* Cost of path (pFrom+pWLoop) */
3911 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */
3912 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */
3913 Bitmask maskNew; /* Mask of src visited by (..) */
3914 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */
3915
3916 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
3917 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
3918 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<10 ){
3919 /* Do not use an automatic index if the this loop is expected
3920 ** to run less than 2 times. */
3921 assert( 10==sqlite3LogEst(2) );
3922 continue;
3923 }
3924 /* At this point, pWLoop is a candidate to be the next loop.
3925 ** Compute its cost */
3926 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
3927 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
3928 nOut = pFrom->nRow + pWLoop->nOut;
3929 maskNew = pFrom->maskLoop | pWLoop->maskSelf;
3930 if( isOrdered<0 ){
3931 isOrdered = wherePathSatisfiesOrderBy(pWInfo,
3932 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
3933 iLoop, pWLoop, &revMask);
3934 }else{
3935 revMask = pFrom->revLoop;
3936 }
3937 if( isOrdered>=0 && isOrdered<nOrderBy ){
3938 if( aSortCost[isOrdered]==0 ){
3939 aSortCost[isOrdered] = whereSortingCost(
3940 pWInfo, nRowEst, nOrderBy, isOrdered
3941 );
3942 }
3943 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]);
3944
3945 WHERETRACE(0x002,
3946 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
3947 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
3948 rUnsorted, rCost));
3949 }else{
3950 rCost = rUnsorted;
3951 }
3952
3953 /* Check to see if pWLoop should be added to the set of
3954 ** mxChoice best-so-far paths.
3955 **
3956 ** First look for an existing path among best-so-far paths
3957 ** that covers the same set of loops and has the same isOrdered
3958 ** setting as the current path candidate.
3959 **
3960 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
3961 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
3962 ** of legal values for isOrdered, -1..64.
3963 */
3964 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
3965 if( pTo->maskLoop==maskNew
3966 && ((pTo->isOrdered^isOrdered)&0x80)==0
3967 ){
3968 testcase( jj==nTo-1 );
3969 break;
3970 }
3971 }
3972 if( jj>=nTo ){
3973 /* None of the existing best-so-far paths match the candidate. */
3974 if( nTo>=mxChoice
3975 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
3976 ){
3977 /* The current candidate is no better than any of the mxChoice
3978 ** paths currently in the best-so-far buffer. So discard
3979 ** this candidate as not viable. */
3980 #ifdef WHERETRACE_ENABLED /* 0x4 */
3981 if( sqlite3WhereTrace&0x4 ){
3982 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d order=%c\n",
3983 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
3984 isOrdered>=0 ? isOrdered+'0' : '?');
3985 }
3986 #endif
3987 continue;
3988 }
3989 /* If we reach this points it means that the new candidate path
3990 ** needs to be added to the set of best-so-far paths. */
3991 if( nTo<mxChoice ){
3992 /* Increase the size of the aTo set by one */
3993 jj = nTo++;
3994 }else{
3995 /* New path replaces the prior worst to keep count below mxChoice */
3996 jj = mxI;
3997 }
3998 pTo = &aTo[jj];
3999 #ifdef WHERETRACE_ENABLED /* 0x4 */
4000 if( sqlite3WhereTrace&0x4 ){
4001 sqlite3DebugPrintf("New %s cost=%-3d,%3d order=%c\n",
4002 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
4003 isOrdered>=0 ? isOrdered+'0' : '?');
4004 }
4005 #endif
4006 }else{
4007 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4008 ** same set of loops and has the sam isOrdered setting as the
4009 ** candidate path. Check to see if the candidate should replace
4010 ** pTo or if the candidate should be skipped */
4011 if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){
4012 #ifdef WHERETRACE_ENABLED /* 0x4 */
4013 if( sqlite3WhereTrace&0x4 ){
4014 sqlite3DebugPrintf(
4015 "Skip %s cost=%-3d,%3d order=%c",
4016 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
4017 isOrdered>=0 ? isOrdered+'0' : '?');
4018 sqlite3DebugPrintf(" vs %s cost=%-3d,%d order=%c\n",
4019 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4020 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4021 }
4022 #endif
4023 /* Discard the candidate path from further consideration */
4024 testcase( pTo->rCost==rCost );
4025 continue;
4026 }
4027 testcase( pTo->rCost==rCost+1 );
4028 /* Control reaches here if the candidate path is better than the
4029 ** pTo path. Replace pTo with the candidate. */
4030 #ifdef WHERETRACE_ENABLED /* 0x4 */
4031 if( sqlite3WhereTrace&0x4 ){
4032 sqlite3DebugPrintf(
4033 "Update %s cost=%-3d,%3d order=%c",
4034 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
4035 isOrdered>=0 ? isOrdered+'0' : '?');
4036 sqlite3DebugPrintf(" was %s cost=%-3d,%3d order=%c\n",
4037 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4038 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4039 }
4040 #endif
4041 }
4042 /* pWLoop is a winner. Add it to the set of best so far */
4043 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4044 pTo->revLoop = revMask;
4045 pTo->nRow = nOut;
4046 pTo->rCost = rCost;
4047 pTo->rUnsorted = rUnsorted;
4048 pTo->isOrdered = isOrdered;
4049 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4050 pTo->aLoop[iLoop] = pWLoop;
4051 if( nTo>=mxChoice ){
4052 mxI = 0;
4053 mxCost = aTo[0].rCost;
4054 mxUnsorted = aTo[0].nRow;
4055 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4056 if( pTo->rCost>mxCost
4057 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4058 ){
4059 mxCost = pTo->rCost;
4060 mxUnsorted = pTo->rUnsorted;
4061 mxI = jj;
4062 }
4063 }
4064 }
4065 }
4066 }
4067
4068 #ifdef WHERETRACE_ENABLED /* >=2 */
4069 if( sqlite3WhereTrace & 0x02 ){
4070 sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4071 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4072 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4073 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4074 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4075 if( pTo->isOrdered>0 ){
4076 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4077 }else{
4078 sqlite3DebugPrintf("\n");
4079 }
4080 }
4081 }
4082 #endif
4083
4084 /* Swap the roles of aFrom and aTo for the next generation */
4085 pFrom = aTo;
4086 aTo = aFrom;
4087 aFrom = pFrom;
4088 nFrom = nTo;
4089 }
4090
4091 if( nFrom==0 ){
4092 sqlite3ErrorMsg(pParse, "no query solution");
4093 sqlite3DbFree(db, pSpace);
4094 return SQLITE_ERROR;
4095 }
4096
4097 /* Find the lowest cost path. pFrom will be left pointing to that path */
4098 pFrom = aFrom;
4099 for(ii=1; ii<nFrom; ii++){
4100 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4101 }
4102 assert( pWInfo->nLevel==nLoop );
4103 /* Load the lowest cost path into pWInfo */
4104 for(iLoop=0; iLoop<nLoop; iLoop++){
4105 WhereLevel *pLevel = pWInfo->a + iLoop;
4106 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4107 pLevel->iFrom = pWLoop->iTab;
4108 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4109 }
4110 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4111 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4112 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4113 && nRowEst
4114 ){
4115 Bitmask notUsed;
4116 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pDistinctSet, pFrom,
4117 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4118 if( rc==pWInfo->pDistinctSet->nExpr ){
4119 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4120 }
4121 }
4122 if( pWInfo->pOrderBy ){
4123 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4124 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4125 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4126 }
4127 }else{
4128 pWInfo->nOBSat = pFrom->isOrdered;
4129 pWInfo->revMask = pFrom->revLoop;
4130 if( pWInfo->nOBSat<=0 ){
4131 pWInfo->nOBSat = 0;
4132 if( nLoop>0 ){
4133 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4134 if( (wsFlags & WHERE_ONEROW)==0
4135 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4136 ){
4137 Bitmask m = 0;
4138 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4139 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4140 testcase( wsFlags & WHERE_IPK );
4141 testcase( wsFlags & WHERE_COLUMN_IN );
4142 if( rc==pWInfo->pOrderBy->nExpr ){
4143 pWInfo->bOrderedInnerLoop = 1;
4144 pWInfo->revMask = m;
4145 }
4146 }
4147 }
4148 }
4149 }
4150 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4151 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4152 ){
4153 Bitmask revMask = 0;
4154 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4155 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4156 );
4157 assert( pWInfo->sorted==0 );
4158 if( nOrder==pWInfo->pOrderBy->nExpr ){
4159 pWInfo->sorted = 1;
4160 pWInfo->revMask = revMask;
4161 }
4162 }
4163 }
4164
4165
4166 pWInfo->nRowOut = pFrom->nRow;
4167
4168 /* Free temporary memory and return success */
4169 sqlite3DbFree(db, pSpace);
4170 return SQLITE_OK;
4171 }
4172
4173 /*
4174 ** Most queries use only a single table (they are not joins) and have
4175 ** simple == constraints against indexed fields. This routine attempts
4176 ** to plan those simple cases using much less ceremony than the
4177 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4178 ** times for the common case.
4179 **
4180 ** Return non-zero on success, if this query can be handled by this
4181 ** no-frills query planner. Return zero if this query needs the
4182 ** general-purpose query planner.
4183 */
4184 static int whereShortCut(WhereLoopBuilder *pBuilder){
4185 WhereInfo *pWInfo;
4186 struct SrcList_item *pItem;
4187 WhereClause *pWC;
4188 WhereTerm *pTerm;
4189 WhereLoop *pLoop;
4190 int iCur;
4191 int j;
4192 Table *pTab;
4193 Index *pIdx;
4194
4195 pWInfo = pBuilder->pWInfo;
4196 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4197 assert( pWInfo->pTabList->nSrc>=1 );
4198 pItem = pWInfo->pTabList->a;
4199 pTab = pItem->pTab;
4200 if( IsVirtual(pTab) ) return 0;
4201 if( pItem->fg.isIndexedBy ) return 0;
4202 iCur = pItem->iCursor;
4203 pWC = &pWInfo->sWC;
4204 pLoop = pBuilder->pNew;
4205 pLoop->wsFlags = 0;
4206 pLoop->nSkip = 0;
4207 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4208 if( pTerm ){
4209 testcase( pTerm->eOperator & WO_IS );
4210 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4211 pLoop->aLTerm[0] = pTerm;
4212 pLoop->nLTerm = 1;
4213 pLoop->u.btree.nEq = 1;
4214 /* TUNING: Cost of a rowid lookup is 10 */
4215 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */
4216 }else{
4217 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4218 int opMask;
4219 assert( pLoop->aLTermSpace==pLoop->aLTerm );
4220 if( !IsUniqueIndex(pIdx)
4221 || pIdx->pPartIdxWhere!=0
4222 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4223 ) continue;
4224 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4225 for(j=0; j<pIdx->nKeyCol; j++){
4226 pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4227 if( pTerm==0 ) break;
4228 testcase( pTerm->eOperator & WO_IS );
4229 pLoop->aLTerm[j] = pTerm;
4230 }
4231 if( j!=pIdx->nKeyCol ) continue;
4232 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4233 if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){
4234 pLoop->wsFlags |= WHERE_IDX_ONLY;
4235 }
4236 pLoop->nLTerm = j;
4237 pLoop->u.btree.nEq = j;
4238 pLoop->u.btree.pIndex = pIdx;
4239 /* TUNING: Cost of a unique index lookup is 15 */
4240 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */
4241 break;
4242 }
4243 }
4244 if( pLoop->wsFlags ){
4245 pLoop->nOut = (LogEst)1;
4246 pWInfo->a[0].pWLoop = pLoop;
4247 pLoop->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
4248 pWInfo->a[0].iTabCur = iCur;
4249 pWInfo->nRowOut = 1;
4250 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr;
4251 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4252 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4253 }
4254 #ifdef SQLITE_DEBUG
4255 pLoop->cId = '0';
4256 #endif
4257 return 1;
4258 }
4259 return 0;
4260 }
4261
4262 /*
4263 ** Generate the beginning of the loop used for WHERE clause processing.
4264 ** The return value is a pointer to an opaque structure that contains
4265 ** information needed to terminate the loop. Later, the calling routine
4266 ** should invoke sqlite3WhereEnd() with the return value of this function
4267 ** in order to complete the WHERE clause processing.
4268 **
4269 ** If an error occurs, this routine returns NULL.
4270 **
4271 ** The basic idea is to do a nested loop, one loop for each table in
4272 ** the FROM clause of a select. (INSERT and UPDATE statements are the
4273 ** same as a SELECT with only a single table in the FROM clause.) For
4274 ** example, if the SQL is this:
4275 **
4276 ** SELECT * FROM t1, t2, t3 WHERE ...;
4277 **
4278 ** Then the code generated is conceptually like the following:
4279 **
4280 ** foreach row1 in t1 do \ Code generated
4281 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
4282 ** foreach row3 in t3 do /
4283 ** ...
4284 ** end \ Code generated
4285 ** end |-- by sqlite3WhereEnd()
4286 ** end /
4287 **
4288 ** Note that the loops might not be nested in the order in which they
4289 ** appear in the FROM clause if a different order is better able to make
4290 ** use of indices. Note also that when the IN operator appears in
4291 ** the WHERE clause, it might result in additional nested loops for
4292 ** scanning through all values on the right-hand side of the IN.
4293 **
4294 ** There are Btree cursors associated with each table. t1 uses cursor
4295 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
4296 ** And so forth. This routine generates code to open those VDBE cursors
4297 ** and sqlite3WhereEnd() generates the code to close them.
4298 **
4299 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4300 ** in pTabList pointing at their appropriate entries. The [...] code
4301 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4302 ** data from the various tables of the loop.
4303 **
4304 ** If the WHERE clause is empty, the foreach loops must each scan their
4305 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
4306 ** the tables have indices and there are terms in the WHERE clause that
4307 ** refer to those indices, a complete table scan can be avoided and the
4308 ** code will run much faster. Most of the work of this routine is checking
4309 ** to see if there are indices that can be used to speed up the loop.
4310 **
4311 ** Terms of the WHERE clause are also used to limit which rows actually
4312 ** make it to the "..." in the middle of the loop. After each "foreach",
4313 ** terms of the WHERE clause that use only terms in that loop and outer
4314 ** loops are evaluated and if false a jump is made around all subsequent
4315 ** inner loops (or around the "..." if the test occurs within the inner-
4316 ** most loop)
4317 **
4318 ** OUTER JOINS
4319 **
4320 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4321 **
4322 ** foreach row1 in t1 do
4323 ** flag = 0
4324 ** foreach row2 in t2 do
4325 ** start:
4326 ** ...
4327 ** flag = 1
4328 ** end
4329 ** if flag==0 then
4330 ** move the row2 cursor to a null row
4331 ** goto start
4332 ** fi
4333 ** end
4334 **
4335 ** ORDER BY CLAUSE PROCESSING
4336 **
4337 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4338 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4339 ** if there is one. If there is no ORDER BY clause or if this routine
4340 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4341 **
4342 ** The iIdxCur parameter is the cursor number of an index. If
4343 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4344 ** to use for OR clause processing. The WHERE clause should use this
4345 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4346 ** the first cursor in an array of cursors for all indices. iIdxCur should
4347 ** be used to compute the appropriate cursor depending on which index is
4348 ** used.
4349 */
4350 WhereInfo *sqlite3WhereBegin(
4351 Parse *pParse, /* The parser context */
4352 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */
4353 Expr *pWhere, /* The WHERE clause */
4354 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */
4355 ExprList *pDistinctSet, /* Try not to output two rows that duplicate these */
4356 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */
4357 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4358 ** If WHERE_USE_LIMIT, then the limit amount */
4359 ){
4360 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
4361 int nTabList; /* Number of elements in pTabList */
4362 WhereInfo *pWInfo; /* Will become the return value of this function */
4363 Vdbe *v = pParse->pVdbe; /* The virtual database engine */
4364 Bitmask notReady; /* Cursors that are not yet positioned */
4365 WhereLoopBuilder sWLB; /* The WhereLoop builder */
4366 WhereMaskSet *pMaskSet; /* The expression mask set */
4367 WhereLevel *pLevel; /* A single level in pWInfo->a[] */
4368 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */
4369 int ii; /* Loop counter */
4370 sqlite3 *db; /* Database connection */
4371 int rc; /* Return code */
4372 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */
4373
4374 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4375 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4376 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4377 ));
4378
4379 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4380 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4381 || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4382
4383 /* Variable initialization */
4384 db = pParse->db;
4385 memset(&sWLB, 0, sizeof(sWLB));
4386
4387 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4388 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4389 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4390 sWLB.pOrderBy = pOrderBy;
4391
4392 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4393 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4394 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4395 wctrlFlags &= ~WHERE_WANT_DISTINCT;
4396 }
4397
4398 /* The number of tables in the FROM clause is limited by the number of
4399 ** bits in a Bitmask
4400 */
4401 testcase( pTabList->nSrc==BMS );
4402 if( pTabList->nSrc>BMS ){
4403 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4404 return 0;
4405 }
4406
4407 /* This function normally generates a nested loop for all tables in
4408 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4409 ** only generate code for the first table in pTabList and assume that
4410 ** any cursors associated with subsequent tables are uninitialized.
4411 */
4412 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4413
4414 /* Allocate and initialize the WhereInfo structure that will become the
4415 ** return value. A single allocation is used to store the WhereInfo
4416 ** struct, the contents of WhereInfo.a[], the WhereClause structure
4417 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4418 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4419 ** some architectures. Hence the ROUND8() below.
4420 */
4421 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4422 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4423 if( db->mallocFailed ){
4424 sqlite3DbFree(db, pWInfo);
4425 pWInfo = 0;
4426 goto whereBeginError;
4427 }
4428 pWInfo->pParse = pParse;
4429 pWInfo->pTabList = pTabList;
4430 pWInfo->pOrderBy = pOrderBy;
4431 pWInfo->pDistinctSet = pDistinctSet;
4432 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4433 pWInfo->nLevel = nTabList;
4434 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
4435 pWInfo->wctrlFlags = wctrlFlags;
4436 pWInfo->iLimit = iAuxArg;
4437 pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4438 memset(&pWInfo->nOBSat, 0,
4439 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4440 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4441 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */
4442 pMaskSet = &pWInfo->sMaskSet;
4443 sWLB.pWInfo = pWInfo;
4444 sWLB.pWC = &pWInfo->sWC;
4445 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4446 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4447 whereLoopInit(sWLB.pNew);
4448 #ifdef SQLITE_DEBUG
4449 sWLB.pNew->cId = '*';
4450 #endif
4451
4452 /* Split the WHERE clause into separate subexpressions where each
4453 ** subexpression is separated by an AND operator.
4454 */
4455 initMaskSet(pMaskSet);
4456 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4457 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4458
4459 /* Special case: a WHERE clause that is constant. Evaluate the
4460 ** expression and either jump over all of the code or fall thru.
4461 */
4462 for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4463 if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){
4464 sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak,
4465 SQLITE_JUMPIFNULL);
4466 sWLB.pWC->a[ii].wtFlags |= TERM_CODED;
4467 }
4468 }
4469
4470 /* Special case: No FROM clause
4471 */
4472 if( nTabList==0 ){
4473 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4474 if( wctrlFlags & WHERE_WANT_DISTINCT ){
4475 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4476 }
4477 }
4478
4479 /* Assign a bit from the bitmask to every term in the FROM clause.
4480 **
4481 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4482 **
4483 ** The rule of the previous sentence ensures thta if X is the bitmask for
4484 ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4485 ** Knowing the bitmask for all tables to the left of a left join is
4486 ** important. Ticket #3015.
4487 **
4488 ** Note that bitmasks are created for all pTabList->nSrc tables in
4489 ** pTabList, not just the first nTabList tables. nTabList is normally
4490 ** equal to pTabList->nSrc but might be shortened to 1 if the
4491 ** WHERE_OR_SUBCLAUSE flag is set.
4492 */
4493 for(ii=0; ii<pTabList->nSrc; ii++){
4494 createMask(pMaskSet, pTabList->a[ii].iCursor);
4495 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4496 }
4497 #ifdef SQLITE_DEBUG
4498 for(ii=0; ii<pTabList->nSrc; ii++){
4499 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4500 assert( m==MASKBIT(ii) );
4501 }
4502 #endif
4503
4504 /* Analyze all of the subexpressions. */
4505 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4506 if( db->mallocFailed ) goto whereBeginError;
4507
4508 if( wctrlFlags & WHERE_WANT_DISTINCT ){
4509 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pDistinctSet) ){
4510 /* The DISTINCT marking is pointless. Ignore it. */
4511 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4512 }else if( pOrderBy==0 ){
4513 /* Try to ORDER BY the result set to make distinct processing easier */
4514 pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4515 pWInfo->pOrderBy = pDistinctSet;
4516 }
4517 }
4518
4519 /* Construct the WhereLoop objects */
4520 #if defined(WHERETRACE_ENABLED)
4521 if( sqlite3WhereTrace & 0xffff ){
4522 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4523 if( wctrlFlags & WHERE_USE_LIMIT ){
4524 sqlite3DebugPrintf(", limit: %d", iAuxArg);
4525 }
4526 sqlite3DebugPrintf(")\n");
4527 }
4528 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4529 sqlite3WhereClausePrint(sWLB.pWC);
4530 }
4531 #endif
4532
4533 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4534 rc = whereLoopAddAll(&sWLB);
4535 if( rc ) goto whereBeginError;
4536
4537 #ifdef WHERETRACE_ENABLED
4538 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */
4539 WhereLoop *p;
4540 int i;
4541 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4542 "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4543 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4544 p->cId = zLabel[i%sizeof(zLabel)];
4545 whereLoopPrint(p, sWLB.pWC);
4546 }
4547 }
4548 #endif
4549
4550 wherePathSolver(pWInfo, 0);
4551 if( db->mallocFailed ) goto whereBeginError;
4552 if( pWInfo->pOrderBy ){
4553 wherePathSolver(pWInfo, pWInfo->nRowOut+1);
4554 if( db->mallocFailed ) goto whereBeginError;
4555 }
4556 }
4557 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
4558 pWInfo->revMask = ALLBITS;
4559 }
4560 if( pParse->nErr || NEVER(db->mallocFailed) ){
4561 goto whereBeginError;
4562 }
4563 #ifdef WHERETRACE_ENABLED
4564 if( sqlite3WhereTrace ){
4565 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
4566 if( pWInfo->nOBSat>0 ){
4567 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
4568 }
4569 switch( pWInfo->eDistinct ){
4570 case WHERE_DISTINCT_UNIQUE: {
4571 sqlite3DebugPrintf(" DISTINCT=unique");
4572 break;
4573 }
4574 case WHERE_DISTINCT_ORDERED: {
4575 sqlite3DebugPrintf(" DISTINCT=ordered");
4576 break;
4577 }
4578 case WHERE_DISTINCT_UNORDERED: {
4579 sqlite3DebugPrintf(" DISTINCT=unordered");
4580 break;
4581 }
4582 }
4583 sqlite3DebugPrintf("\n");
4584 for(ii=0; ii<pWInfo->nLevel; ii++){
4585 whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
4586 }
4587 }
4588 #endif
4589 /* Attempt to omit tables from the join that do not effect the result */
4590 if( pWInfo->nLevel>=2
4591 && pDistinctSet!=0
4592 && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
4593 ){
4594 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pDistinctSet);
4595 if( sWLB.pOrderBy ){
4596 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
4597 }
4598 while( pWInfo->nLevel>=2 ){
4599 WhereTerm *pTerm, *pEnd;
4600 pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop;
4601 if( (pWInfo->pTabList->a[pLoop->iTab].fg.jointype & JT_LEFT)==0 ) break;
4602 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
4603 && (pLoop->wsFlags & WHERE_ONEROW)==0
4604 ){
4605 break;
4606 }
4607 if( (tabUsed & pLoop->maskSelf)!=0 ) break;
4608 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
4609 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4610 if( (pTerm->prereqAll & pLoop->maskSelf)!=0
4611 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
4612 ){
4613 break;
4614 }
4615 }
4616 if( pTerm<pEnd ) break;
4617 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
4618 pWInfo->nLevel--;
4619 nTabList--;
4620 }
4621 }
4622 WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
4623 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
4624
4625 /* If the caller is an UPDATE or DELETE statement that is requesting
4626 ** to use a one-pass algorithm, determine if this is appropriate.
4627 */
4628 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
4629 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
4630 int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
4631 int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
4632 if( bOnerow
4633 || ((wctrlFlags & WHERE_ONEPASS_MULTIROW)!=0
4634 && 0==(wsFlags & WHERE_VIRTUALTABLE))
4635 ){
4636 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
4637 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
4638 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
4639 bFordelete = OPFLAG_FORDELETE;
4640 }
4641 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
4642 }
4643 }
4644 }
4645
4646 /* Open all tables in the pTabList and any indices selected for
4647 ** searching those tables.
4648 */
4649 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
4650 Table *pTab; /* Table to open */
4651 int iDb; /* Index of database containing table/index */
4652 struct SrcList_item *pTabItem;
4653
4654 pTabItem = &pTabList->a[pLevel->iFrom];
4655 pTab = pTabItem->pTab;
4656 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4657 pLoop = pLevel->pWLoop;
4658 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
4659 /* Do nothing */
4660 }else
4661 #ifndef SQLITE_OMIT_VIRTUALTABLE
4662 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
4663 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
4664 int iCur = pTabItem->iCursor;
4665 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
4666 }else if( IsVirtual(pTab) ){
4667 /* noop */
4668 }else
4669 #endif
4670 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
4671 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
4672 int op = OP_OpenRead;
4673 if( pWInfo->eOnePass!=ONEPASS_OFF ){
4674 op = OP_OpenWrite;
4675 pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
4676 };
4677 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
4678 assert( pTabItem->iCursor==pLevel->iTabCur );
4679 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
4680 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
4681 if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){
4682 Bitmask b = pTabItem->colUsed;
4683 int n = 0;
4684 for(; b; b=b>>1, n++){}
4685 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
4686 assert( n<=pTab->nCol );
4687 }
4688 #ifdef SQLITE_ENABLE_CURSOR_HINTS
4689 if( pLoop->u.btree.pIndex!=0 ){
4690 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
4691 }else
4692 #endif
4693 {
4694 sqlite3VdbeChangeP5(v, bFordelete);
4695 }
4696 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4697 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
4698 (const u8*)&pTabItem->colUsed, P4_INT64);
4699 #endif
4700 }else{
4701 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4702 }
4703 if( pLoop->wsFlags & WHERE_INDEXED ){
4704 Index *pIx = pLoop->u.btree.pIndex;
4705 int iIndexCur;
4706 int op = OP_OpenRead;
4707 /* iAuxArg is always set if to a positive value if ONEPASS is possible */
4708 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
4709 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
4710 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
4711 ){
4712 /* This is one term of an OR-optimization using the PRIMARY KEY of a
4713 ** WITHOUT ROWID table. No need for a separate index */
4714 iIndexCur = pLevel->iTabCur;
4715 op = 0;
4716 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
4717 Index *pJ = pTabItem->pTab->pIndex;
4718 iIndexCur = iAuxArg;
4719 assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
4720 while( ALWAYS(pJ) && pJ!=pIx ){
4721 iIndexCur++;
4722 pJ = pJ->pNext;
4723 }
4724 op = OP_OpenWrite;
4725 pWInfo->aiCurOnePass[1] = iIndexCur;
4726 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
4727 iIndexCur = iAuxArg;
4728 op = OP_ReopenIdx;
4729 }else{
4730 iIndexCur = pParse->nTab++;
4731 }
4732 pLevel->iIdxCur = iIndexCur;
4733 assert( pIx->pSchema==pTab->pSchema );
4734 assert( iIndexCur>=0 );
4735 if( op ){
4736 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
4737 sqlite3VdbeSetP4KeyInfo(pParse, pIx);
4738 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
4739 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
4740 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
4741 ){
4742 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
4743 }
4744 VdbeComment((v, "%s", pIx->zName));
4745 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4746 {
4747 u64 colUsed = 0;
4748 int ii, jj;
4749 for(ii=0; ii<pIx->nColumn; ii++){
4750 jj = pIx->aiColumn[ii];
4751 if( jj<0 ) continue;
4752 if( jj>63 ) jj = 63;
4753 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
4754 colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
4755 }
4756 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
4757 (u8*)&colUsed, P4_INT64);
4758 }
4759 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
4760 }
4761 }
4762 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
4763 }
4764 pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
4765 if( db->mallocFailed ) goto whereBeginError;
4766
4767 /* Generate the code to do the search. Each iteration of the for
4768 ** loop below generates code for a single nested loop of the VM
4769 ** program.
4770 */
4771 notReady = ~(Bitmask)0;
4772 for(ii=0; ii<nTabList; ii++){
4773 int addrExplain;
4774 int wsFlags;
4775 pLevel = &pWInfo->a[ii];
4776 wsFlags = pLevel->pWLoop->wsFlags;
4777 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
4778 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
4779 constructAutomaticIndex(pParse, &pWInfo->sWC,
4780 &pTabList->a[pLevel->iFrom], notReady, pLevel);
4781 if( db->mallocFailed ) goto whereBeginError;
4782 }
4783 #endif
4784 addrExplain = sqlite3WhereExplainOneScan(
4785 pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags
4786 );
4787 pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
4788 notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady);
4789 pWInfo->iContinue = pLevel->addrCont;
4790 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
4791 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
4792 }
4793 }
4794
4795 /* Done. */
4796 VdbeModuleComment((v, "Begin WHERE-core"));
4797 return pWInfo;
4798
4799 /* Jump here if malloc fails */
4800 whereBeginError:
4801 if( pWInfo ){
4802 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4803 whereInfoFree(db, pWInfo);
4804 }
4805 return 0;
4806 }
4807
4808 /*
4809 ** Generate the end of the WHERE loop. See comments on
4810 ** sqlite3WhereBegin() for additional information.
4811 */
4812 void sqlite3WhereEnd(WhereInfo *pWInfo){
4813 Parse *pParse = pWInfo->pParse;
4814 Vdbe *v = pParse->pVdbe;
4815 int i;
4816 WhereLevel *pLevel;
4817 WhereLoop *pLoop;
4818 SrcList *pTabList = pWInfo->pTabList;
4819 sqlite3 *db = pParse->db;
4820
4821 /* Generate loop termination code.
4822 */
4823 VdbeModuleComment((v, "End WHERE-core"));
4824 sqlite3ExprCacheClear(pParse);
4825 for(i=pWInfo->nLevel-1; i>=0; i--){
4826 int addr;
4827 pLevel = &pWInfo->a[i];
4828 pLoop = pLevel->pWLoop;
4829 sqlite3VdbeResolveLabel(v, pLevel->addrCont);
4830 if( pLevel->op!=OP_Noop ){
4831 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
4832 sqlite3VdbeChangeP5(v, pLevel->p5);
4833 VdbeCoverage(v);
4834 VdbeCoverageIf(v, pLevel->op==OP_Next);
4835 VdbeCoverageIf(v, pLevel->op==OP_Prev);
4836 VdbeCoverageIf(v, pLevel->op==OP_VNext);
4837 }
4838 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
4839 struct InLoop *pIn;
4840 int j;
4841 sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
4842 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
4843 sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
4844 if( pIn->eEndLoopOp!=OP_Noop ){
4845 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
4846 VdbeCoverage(v);
4847 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen);
4848 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen);
4849 }
4850 sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
4851 }
4852 }
4853 sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
4854 if( pLevel->addrSkip ){
4855 sqlite3VdbeGoto(v, pLevel->addrSkip);
4856 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
4857 sqlite3VdbeJumpHere(v, pLevel->addrSkip);
4858 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
4859 }
4860 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
4861 if( pLevel->addrLikeRep ){
4862 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
4863 pLevel->addrLikeRep);
4864 VdbeCoverage(v);
4865 }
4866 #endif
4867 if( pLevel->iLeftJoin ){
4868 int ws = pLoop->wsFlags;
4869 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
4870 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
4871 if( (ws & WHERE_IDX_ONLY)==0 ){
4872 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
4873 }
4874 if( (ws & WHERE_INDEXED)
4875 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
4876 ){
4877 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
4878 }
4879 if( pLevel->op==OP_Return ){
4880 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
4881 }else{
4882 sqlite3VdbeGoto(v, pLevel->addrFirst);
4883 }
4884 sqlite3VdbeJumpHere(v, addr);
4885 }
4886 VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
4887 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
4888 }
4889
4890 /* The "break" point is here, just past the end of the outer loop.
4891 ** Set it.
4892 */
4893 sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
4894
4895 assert( pWInfo->nLevel<=pTabList->nSrc );
4896 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
4897 int k, last;
4898 VdbeOp *pOp;
4899 Index *pIdx = 0;
4900 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
4901 Table *pTab = pTabItem->pTab;
4902 assert( pTab!=0 );
4903 pLoop = pLevel->pWLoop;
4904
4905 /* For a co-routine, change all OP_Column references to the table of
4906 ** the co-routine into OP_Copy of result contained in a register.
4907 ** OP_Rowid becomes OP_Null.
4908 */
4909 if( pTabItem->fg.viaCoroutine && !db->mallocFailed ){
4910 translateColumnToCopy(v, pLevel->addrBody, pLevel->iTabCur,
4911 pTabItem->regResult, 0);
4912 continue;
4913 }
4914
4915 /* If this scan uses an index, make VDBE code substitutions to read data
4916 ** from the index instead of from the table where possible. In some cases
4917 ** this optimization prevents the table from ever being read, which can
4918 ** yield a significant performance boost.
4919 **
4920 ** Calls to the code generator in between sqlite3WhereBegin and
4921 ** sqlite3WhereEnd will have created code that references the table
4922 ** directly. This loop scans all that code looking for opcodes
4923 ** that reference the table and converts them into opcodes that
4924 ** reference the index.
4925 */
4926 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
4927 pIdx = pLoop->u.btree.pIndex;
4928 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
4929 pIdx = pLevel->u.pCovidx;
4930 }
4931 if( pIdx
4932 && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable))
4933 && !db->mallocFailed
4934 ){
4935 last = sqlite3VdbeCurrentAddr(v);
4936 k = pLevel->addrBody;
4937 pOp = sqlite3VdbeGetOp(v, k);
4938 for(; k<last; k++, pOp++){
4939 if( pOp->p1!=pLevel->iTabCur ) continue;
4940 if( pOp->opcode==OP_Column ){
4941 int x = pOp->p2;
4942 assert( pIdx->pTable==pTab );
4943 if( !HasRowid(pTab) ){
4944 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
4945 x = pPk->aiColumn[x];
4946 assert( x>=0 );
4947 }
4948 x = sqlite3ColumnOfIndex(pIdx, x);
4949 if( x>=0 ){
4950 pOp->p2 = x;
4951 pOp->p1 = pLevel->iIdxCur;
4952 }
4953 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
4954 || pWInfo->eOnePass );
4955 }else if( pOp->opcode==OP_Rowid ){
4956 pOp->p1 = pLevel->iIdxCur;
4957 pOp->opcode = OP_IdxRowid;
4958 }
4959 }
4960 }
4961 }
4962
4963 /* Final cleanup
4964 */
4965 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4966 whereInfoFree(db, pWInfo);
4967 return;
4968 }
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3170000/src/walker.c ('k') | third_party/sqlite/sqlite-src-3170000/src/whereInt.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698