OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2006 June 10 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This file contains code used to help implement virtual tables. |
| 13 */ |
| 14 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 15 #include "sqliteInt.h" |
| 16 |
| 17 /* |
| 18 ** Before a virtual table xCreate() or xConnect() method is invoked, the |
| 19 ** sqlite3.pVtabCtx member variable is set to point to an instance of |
| 20 ** this struct allocated on the stack. It is used by the implementation of |
| 21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which |
| 22 ** are invoked only from within xCreate and xConnect methods. |
| 23 */ |
| 24 struct VtabCtx { |
| 25 VTable *pVTable; /* The virtual table being constructed */ |
| 26 Table *pTab; /* The Table object to which the virtual table belongs */ |
| 27 VtabCtx *pPrior; /* Parent context (if any) */ |
| 28 int bDeclared; /* True after sqlite3_declare_vtab() is called */ |
| 29 }; |
| 30 |
| 31 /* |
| 32 ** Construct and install a Module object for a virtual table. When this |
| 33 ** routine is called, it is guaranteed that all appropriate locks are held |
| 34 ** and the module is not already part of the connection. |
| 35 */ |
| 36 Module *sqlite3VtabCreateModule( |
| 37 sqlite3 *db, /* Database in which module is registered */ |
| 38 const char *zName, /* Name assigned to this module */ |
| 39 const sqlite3_module *pModule, /* The definition of the module */ |
| 40 void *pAux, /* Context pointer for xCreate/xConnect */ |
| 41 void (*xDestroy)(void *) /* Module destructor function */ |
| 42 ){ |
| 43 Module *pMod; |
| 44 int nName = sqlite3Strlen30(zName); |
| 45 pMod = (Module *)sqlite3DbMallocRawNN(db, sizeof(Module) + nName + 1); |
| 46 if( pMod ){ |
| 47 Module *pDel; |
| 48 char *zCopy = (char *)(&pMod[1]); |
| 49 memcpy(zCopy, zName, nName+1); |
| 50 pMod->zName = zCopy; |
| 51 pMod->pModule = pModule; |
| 52 pMod->pAux = pAux; |
| 53 pMod->xDestroy = xDestroy; |
| 54 pMod->pEpoTab = 0; |
| 55 pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod); |
| 56 assert( pDel==0 || pDel==pMod ); |
| 57 if( pDel ){ |
| 58 sqlite3OomFault(db); |
| 59 sqlite3DbFree(db, pDel); |
| 60 pMod = 0; |
| 61 } |
| 62 } |
| 63 return pMod; |
| 64 } |
| 65 |
| 66 /* |
| 67 ** The actual function that does the work of creating a new module. |
| 68 ** This function implements the sqlite3_create_module() and |
| 69 ** sqlite3_create_module_v2() interfaces. |
| 70 */ |
| 71 static int createModule( |
| 72 sqlite3 *db, /* Database in which module is registered */ |
| 73 const char *zName, /* Name assigned to this module */ |
| 74 const sqlite3_module *pModule, /* The definition of the module */ |
| 75 void *pAux, /* Context pointer for xCreate/xConnect */ |
| 76 void (*xDestroy)(void *) /* Module destructor function */ |
| 77 ){ |
| 78 int rc = SQLITE_OK; |
| 79 |
| 80 sqlite3_mutex_enter(db->mutex); |
| 81 if( sqlite3HashFind(&db->aModule, zName) ){ |
| 82 rc = SQLITE_MISUSE_BKPT; |
| 83 }else{ |
| 84 (void)sqlite3VtabCreateModule(db, zName, pModule, pAux, xDestroy); |
| 85 } |
| 86 rc = sqlite3ApiExit(db, rc); |
| 87 if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux); |
| 88 sqlite3_mutex_leave(db->mutex); |
| 89 return rc; |
| 90 } |
| 91 |
| 92 |
| 93 /* |
| 94 ** External API function used to create a new virtual-table module. |
| 95 */ |
| 96 int sqlite3_create_module( |
| 97 sqlite3 *db, /* Database in which module is registered */ |
| 98 const char *zName, /* Name assigned to this module */ |
| 99 const sqlite3_module *pModule, /* The definition of the module */ |
| 100 void *pAux /* Context pointer for xCreate/xConnect */ |
| 101 ){ |
| 102 #ifdef SQLITE_ENABLE_API_ARMOR |
| 103 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; |
| 104 #endif |
| 105 return createModule(db, zName, pModule, pAux, 0); |
| 106 } |
| 107 |
| 108 /* |
| 109 ** External API function used to create a new virtual-table module. |
| 110 */ |
| 111 int sqlite3_create_module_v2( |
| 112 sqlite3 *db, /* Database in which module is registered */ |
| 113 const char *zName, /* Name assigned to this module */ |
| 114 const sqlite3_module *pModule, /* The definition of the module */ |
| 115 void *pAux, /* Context pointer for xCreate/xConnect */ |
| 116 void (*xDestroy)(void *) /* Module destructor function */ |
| 117 ){ |
| 118 #ifdef SQLITE_ENABLE_API_ARMOR |
| 119 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; |
| 120 #endif |
| 121 return createModule(db, zName, pModule, pAux, xDestroy); |
| 122 } |
| 123 |
| 124 /* |
| 125 ** Lock the virtual table so that it cannot be disconnected. |
| 126 ** Locks nest. Every lock should have a corresponding unlock. |
| 127 ** If an unlock is omitted, resources leaks will occur. |
| 128 ** |
| 129 ** If a disconnect is attempted while a virtual table is locked, |
| 130 ** the disconnect is deferred until all locks have been removed. |
| 131 */ |
| 132 void sqlite3VtabLock(VTable *pVTab){ |
| 133 pVTab->nRef++; |
| 134 } |
| 135 |
| 136 |
| 137 /* |
| 138 ** pTab is a pointer to a Table structure representing a virtual-table. |
| 139 ** Return a pointer to the VTable object used by connection db to access |
| 140 ** this virtual-table, if one has been created, or NULL otherwise. |
| 141 */ |
| 142 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ |
| 143 VTable *pVtab; |
| 144 assert( IsVirtual(pTab) ); |
| 145 for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); |
| 146 return pVtab; |
| 147 } |
| 148 |
| 149 /* |
| 150 ** Decrement the ref-count on a virtual table object. When the ref-count |
| 151 ** reaches zero, call the xDisconnect() method to delete the object. |
| 152 */ |
| 153 void sqlite3VtabUnlock(VTable *pVTab){ |
| 154 sqlite3 *db = pVTab->db; |
| 155 |
| 156 assert( db ); |
| 157 assert( pVTab->nRef>0 ); |
| 158 assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE ); |
| 159 |
| 160 pVTab->nRef--; |
| 161 if( pVTab->nRef==0 ){ |
| 162 sqlite3_vtab *p = pVTab->pVtab; |
| 163 if( p ){ |
| 164 p->pModule->xDisconnect(p); |
| 165 } |
| 166 sqlite3DbFree(db, pVTab); |
| 167 } |
| 168 } |
| 169 |
| 170 /* |
| 171 ** Table p is a virtual table. This function moves all elements in the |
| 172 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated |
| 173 ** database connections to be disconnected at the next opportunity. |
| 174 ** Except, if argument db is not NULL, then the entry associated with |
| 175 ** connection db is left in the p->pVTable list. |
| 176 */ |
| 177 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ |
| 178 VTable *pRet = 0; |
| 179 VTable *pVTable = p->pVTable; |
| 180 p->pVTable = 0; |
| 181 |
| 182 /* Assert that the mutex (if any) associated with the BtShared database |
| 183 ** that contains table p is held by the caller. See header comments |
| 184 ** above function sqlite3VtabUnlockList() for an explanation of why |
| 185 ** this makes it safe to access the sqlite3.pDisconnect list of any |
| 186 ** database connection that may have an entry in the p->pVTable list. |
| 187 */ |
| 188 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); |
| 189 |
| 190 while( pVTable ){ |
| 191 sqlite3 *db2 = pVTable->db; |
| 192 VTable *pNext = pVTable->pNext; |
| 193 assert( db2 ); |
| 194 if( db2==db ){ |
| 195 pRet = pVTable; |
| 196 p->pVTable = pRet; |
| 197 pRet->pNext = 0; |
| 198 }else{ |
| 199 pVTable->pNext = db2->pDisconnect; |
| 200 db2->pDisconnect = pVTable; |
| 201 } |
| 202 pVTable = pNext; |
| 203 } |
| 204 |
| 205 assert( !db || pRet ); |
| 206 return pRet; |
| 207 } |
| 208 |
| 209 /* |
| 210 ** Table *p is a virtual table. This function removes the VTable object |
| 211 ** for table *p associated with database connection db from the linked |
| 212 ** list in p->pVTab. It also decrements the VTable ref count. This is |
| 213 ** used when closing database connection db to free all of its VTable |
| 214 ** objects without disturbing the rest of the Schema object (which may |
| 215 ** be being used by other shared-cache connections). |
| 216 */ |
| 217 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){ |
| 218 VTable **ppVTab; |
| 219 |
| 220 assert( IsVirtual(p) ); |
| 221 assert( sqlite3BtreeHoldsAllMutexes(db) ); |
| 222 assert( sqlite3_mutex_held(db->mutex) ); |
| 223 |
| 224 for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){ |
| 225 if( (*ppVTab)->db==db ){ |
| 226 VTable *pVTab = *ppVTab; |
| 227 *ppVTab = pVTab->pNext; |
| 228 sqlite3VtabUnlock(pVTab); |
| 229 break; |
| 230 } |
| 231 } |
| 232 } |
| 233 |
| 234 |
| 235 /* |
| 236 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. |
| 237 ** |
| 238 ** This function may only be called when the mutexes associated with all |
| 239 ** shared b-tree databases opened using connection db are held by the |
| 240 ** caller. This is done to protect the sqlite3.pDisconnect list. The |
| 241 ** sqlite3.pDisconnect list is accessed only as follows: |
| 242 ** |
| 243 ** 1) By this function. In this case, all BtShared mutexes and the mutex |
| 244 ** associated with the database handle itself must be held. |
| 245 ** |
| 246 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to |
| 247 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex |
| 248 ** associated with the database the virtual table is stored in is held |
| 249 ** or, if the virtual table is stored in a non-sharable database, then |
| 250 ** the database handle mutex is held. |
| 251 ** |
| 252 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously |
| 253 ** by multiple threads. It is thread-safe. |
| 254 */ |
| 255 void sqlite3VtabUnlockList(sqlite3 *db){ |
| 256 VTable *p = db->pDisconnect; |
| 257 db->pDisconnect = 0; |
| 258 |
| 259 assert( sqlite3BtreeHoldsAllMutexes(db) ); |
| 260 assert( sqlite3_mutex_held(db->mutex) ); |
| 261 |
| 262 if( p ){ |
| 263 sqlite3ExpirePreparedStatements(db); |
| 264 do { |
| 265 VTable *pNext = p->pNext; |
| 266 sqlite3VtabUnlock(p); |
| 267 p = pNext; |
| 268 }while( p ); |
| 269 } |
| 270 } |
| 271 |
| 272 /* |
| 273 ** Clear any and all virtual-table information from the Table record. |
| 274 ** This routine is called, for example, just before deleting the Table |
| 275 ** record. |
| 276 ** |
| 277 ** Since it is a virtual-table, the Table structure contains a pointer |
| 278 ** to the head of a linked list of VTable structures. Each VTable |
| 279 ** structure is associated with a single sqlite3* user of the schema. |
| 280 ** The reference count of the VTable structure associated with database |
| 281 ** connection db is decremented immediately (which may lead to the |
| 282 ** structure being xDisconnected and free). Any other VTable structures |
| 283 ** in the list are moved to the sqlite3.pDisconnect list of the associated |
| 284 ** database connection. |
| 285 */ |
| 286 void sqlite3VtabClear(sqlite3 *db, Table *p){ |
| 287 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); |
| 288 if( p->azModuleArg ){ |
| 289 int i; |
| 290 for(i=0; i<p->nModuleArg; i++){ |
| 291 if( i!=1 ) sqlite3DbFree(db, p->azModuleArg[i]); |
| 292 } |
| 293 sqlite3DbFree(db, p->azModuleArg); |
| 294 } |
| 295 } |
| 296 |
| 297 /* |
| 298 ** Add a new module argument to pTable->azModuleArg[]. |
| 299 ** The string is not copied - the pointer is stored. The |
| 300 ** string will be freed automatically when the table is |
| 301 ** deleted. |
| 302 */ |
| 303 static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){ |
| 304 int nBytes = sizeof(char *)*(2+pTable->nModuleArg); |
| 305 char **azModuleArg; |
| 306 azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes); |
| 307 if( azModuleArg==0 ){ |
| 308 sqlite3DbFree(db, zArg); |
| 309 }else{ |
| 310 int i = pTable->nModuleArg++; |
| 311 azModuleArg[i] = zArg; |
| 312 azModuleArg[i+1] = 0; |
| 313 pTable->azModuleArg = azModuleArg; |
| 314 } |
| 315 } |
| 316 |
| 317 /* |
| 318 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE |
| 319 ** statement. The module name has been parsed, but the optional list |
| 320 ** of parameters that follow the module name are still pending. |
| 321 */ |
| 322 void sqlite3VtabBeginParse( |
| 323 Parse *pParse, /* Parsing context */ |
| 324 Token *pName1, /* Name of new table, or database name */ |
| 325 Token *pName2, /* Name of new table or NULL */ |
| 326 Token *pModuleName, /* Name of the module for the virtual table */ |
| 327 int ifNotExists /* No error if the table already exists */ |
| 328 ){ |
| 329 int iDb; /* The database the table is being created in */ |
| 330 Table *pTable; /* The new virtual table */ |
| 331 sqlite3 *db; /* Database connection */ |
| 332 |
| 333 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); |
| 334 pTable = pParse->pNewTable; |
| 335 if( pTable==0 ) return; |
| 336 assert( 0==pTable->pIndex ); |
| 337 |
| 338 db = pParse->db; |
| 339 iDb = sqlite3SchemaToIndex(db, pTable->pSchema); |
| 340 assert( iDb>=0 ); |
| 341 |
| 342 pTable->tabFlags |= TF_Virtual; |
| 343 pTable->nModuleArg = 0; |
| 344 addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName)); |
| 345 addModuleArgument(db, pTable, 0); |
| 346 addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName)); |
| 347 assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0) |
| 348 || (pParse->sNameToken.z==pName1->z && pName2->z==0) |
| 349 ); |
| 350 pParse->sNameToken.n = (int)( |
| 351 &pModuleName->z[pModuleName->n] - pParse->sNameToken.z |
| 352 ); |
| 353 |
| 354 #ifndef SQLITE_OMIT_AUTHORIZATION |
| 355 /* Creating a virtual table invokes the authorization callback twice. |
| 356 ** The first invocation, to obtain permission to INSERT a row into the |
| 357 ** sqlite_master table, has already been made by sqlite3StartTable(). |
| 358 ** The second call, to obtain permission to create the table, is made now. |
| 359 */ |
| 360 if( pTable->azModuleArg ){ |
| 361 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, |
| 362 pTable->azModuleArg[0], pParse->db->aDb[iDb].zDbSName); |
| 363 } |
| 364 #endif |
| 365 } |
| 366 |
| 367 /* |
| 368 ** This routine takes the module argument that has been accumulating |
| 369 ** in pParse->zArg[] and appends it to the list of arguments on the |
| 370 ** virtual table currently under construction in pParse->pTable. |
| 371 */ |
| 372 static void addArgumentToVtab(Parse *pParse){ |
| 373 if( pParse->sArg.z && pParse->pNewTable ){ |
| 374 const char *z = (const char*)pParse->sArg.z; |
| 375 int n = pParse->sArg.n; |
| 376 sqlite3 *db = pParse->db; |
| 377 addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); |
| 378 } |
| 379 } |
| 380 |
| 381 /* |
| 382 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement |
| 383 ** has been completely parsed. |
| 384 */ |
| 385 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ |
| 386 Table *pTab = pParse->pNewTable; /* The table being constructed */ |
| 387 sqlite3 *db = pParse->db; /* The database connection */ |
| 388 |
| 389 if( pTab==0 ) return; |
| 390 addArgumentToVtab(pParse); |
| 391 pParse->sArg.z = 0; |
| 392 if( pTab->nModuleArg<1 ) return; |
| 393 |
| 394 /* If the CREATE VIRTUAL TABLE statement is being entered for the |
| 395 ** first time (in other words if the virtual table is actually being |
| 396 ** created now instead of just being read out of sqlite_master) then |
| 397 ** do additional initialization work and store the statement text |
| 398 ** in the sqlite_master table. |
| 399 */ |
| 400 if( !db->init.busy ){ |
| 401 char *zStmt; |
| 402 char *zWhere; |
| 403 int iDb; |
| 404 int iReg; |
| 405 Vdbe *v; |
| 406 |
| 407 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ |
| 408 if( pEnd ){ |
| 409 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; |
| 410 } |
| 411 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); |
| 412 |
| 413 /* A slot for the record has already been allocated in the |
| 414 ** SQLITE_MASTER table. We just need to update that slot with all |
| 415 ** the information we've collected. |
| 416 ** |
| 417 ** The VM register number pParse->regRowid holds the rowid of an |
| 418 ** entry in the sqlite_master table tht was created for this vtab |
| 419 ** by sqlite3StartTable(). |
| 420 */ |
| 421 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| 422 sqlite3NestedParse(pParse, |
| 423 "UPDATE %Q.%s " |
| 424 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " |
| 425 "WHERE rowid=#%d", |
| 426 db->aDb[iDb].zDbSName, MASTER_NAME, |
| 427 pTab->zName, |
| 428 pTab->zName, |
| 429 zStmt, |
| 430 pParse->regRowid |
| 431 ); |
| 432 sqlite3DbFree(db, zStmt); |
| 433 v = sqlite3GetVdbe(pParse); |
| 434 sqlite3ChangeCookie(pParse, iDb); |
| 435 |
| 436 sqlite3VdbeAddOp0(v, OP_Expire); |
| 437 zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName); |
| 438 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere); |
| 439 |
| 440 iReg = ++pParse->nMem; |
| 441 sqlite3VdbeLoadString(v, iReg, pTab->zName); |
| 442 sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg); |
| 443 } |
| 444 |
| 445 /* If we are rereading the sqlite_master table create the in-memory |
| 446 ** record of the table. The xConnect() method is not called until |
| 447 ** the first time the virtual table is used in an SQL statement. This |
| 448 ** allows a schema that contains virtual tables to be loaded before |
| 449 ** the required virtual table implementations are registered. */ |
| 450 else { |
| 451 Table *pOld; |
| 452 Schema *pSchema = pTab->pSchema; |
| 453 const char *zName = pTab->zName; |
| 454 assert( sqlite3SchemaMutexHeld(db, 0, pSchema) ); |
| 455 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab); |
| 456 if( pOld ){ |
| 457 sqlite3OomFault(db); |
| 458 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ |
| 459 return; |
| 460 } |
| 461 pParse->pNewTable = 0; |
| 462 } |
| 463 } |
| 464 |
| 465 /* |
| 466 ** The parser calls this routine when it sees the first token |
| 467 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. |
| 468 */ |
| 469 void sqlite3VtabArgInit(Parse *pParse){ |
| 470 addArgumentToVtab(pParse); |
| 471 pParse->sArg.z = 0; |
| 472 pParse->sArg.n = 0; |
| 473 } |
| 474 |
| 475 /* |
| 476 ** The parser calls this routine for each token after the first token |
| 477 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. |
| 478 */ |
| 479 void sqlite3VtabArgExtend(Parse *pParse, Token *p){ |
| 480 Token *pArg = &pParse->sArg; |
| 481 if( pArg->z==0 ){ |
| 482 pArg->z = p->z; |
| 483 pArg->n = p->n; |
| 484 }else{ |
| 485 assert(pArg->z <= p->z); |
| 486 pArg->n = (int)(&p->z[p->n] - pArg->z); |
| 487 } |
| 488 } |
| 489 |
| 490 /* |
| 491 ** Invoke a virtual table constructor (either xCreate or xConnect). The |
| 492 ** pointer to the function to invoke is passed as the fourth parameter |
| 493 ** to this procedure. |
| 494 */ |
| 495 static int vtabCallConstructor( |
| 496 sqlite3 *db, |
| 497 Table *pTab, |
| 498 Module *pMod, |
| 499 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), |
| 500 char **pzErr |
| 501 ){ |
| 502 VtabCtx sCtx; |
| 503 VTable *pVTable; |
| 504 int rc; |
| 505 const char *const*azArg = (const char *const*)pTab->azModuleArg; |
| 506 int nArg = pTab->nModuleArg; |
| 507 char *zErr = 0; |
| 508 char *zModuleName; |
| 509 int iDb; |
| 510 VtabCtx *pCtx; |
| 511 |
| 512 /* Check that the virtual-table is not already being initialized */ |
| 513 for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){ |
| 514 if( pCtx->pTab==pTab ){ |
| 515 *pzErr = sqlite3MPrintf(db, |
| 516 "vtable constructor called recursively: %s", pTab->zName |
| 517 ); |
| 518 return SQLITE_LOCKED; |
| 519 } |
| 520 } |
| 521 |
| 522 zModuleName = sqlite3MPrintf(db, "%s", pTab->zName); |
| 523 if( !zModuleName ){ |
| 524 return SQLITE_NOMEM_BKPT; |
| 525 } |
| 526 |
| 527 pVTable = sqlite3DbMallocZero(db, sizeof(VTable)); |
| 528 if( !pVTable ){ |
| 529 sqlite3DbFree(db, zModuleName); |
| 530 return SQLITE_NOMEM_BKPT; |
| 531 } |
| 532 pVTable->db = db; |
| 533 pVTable->pMod = pMod; |
| 534 |
| 535 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| 536 pTab->azModuleArg[1] = db->aDb[iDb].zDbSName; |
| 537 |
| 538 /* Invoke the virtual table constructor */ |
| 539 assert( &db->pVtabCtx ); |
| 540 assert( xConstruct ); |
| 541 sCtx.pTab = pTab; |
| 542 sCtx.pVTable = pVTable; |
| 543 sCtx.pPrior = db->pVtabCtx; |
| 544 sCtx.bDeclared = 0; |
| 545 db->pVtabCtx = &sCtx; |
| 546 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); |
| 547 db->pVtabCtx = sCtx.pPrior; |
| 548 if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); |
| 549 assert( sCtx.pTab==pTab ); |
| 550 |
| 551 if( SQLITE_OK!=rc ){ |
| 552 if( zErr==0 ){ |
| 553 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); |
| 554 }else { |
| 555 *pzErr = sqlite3MPrintf(db, "%s", zErr); |
| 556 sqlite3_free(zErr); |
| 557 } |
| 558 sqlite3DbFree(db, pVTable); |
| 559 }else if( ALWAYS(pVTable->pVtab) ){ |
| 560 /* Justification of ALWAYS(): A correct vtab constructor must allocate |
| 561 ** the sqlite3_vtab object if successful. */ |
| 562 memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0])); |
| 563 pVTable->pVtab->pModule = pMod->pModule; |
| 564 pVTable->nRef = 1; |
| 565 if( sCtx.bDeclared==0 ){ |
| 566 const char *zFormat = "vtable constructor did not declare schema: %s"; |
| 567 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); |
| 568 sqlite3VtabUnlock(pVTable); |
| 569 rc = SQLITE_ERROR; |
| 570 }else{ |
| 571 int iCol; |
| 572 u8 oooHidden = 0; |
| 573 /* If everything went according to plan, link the new VTable structure |
| 574 ** into the linked list headed by pTab->pVTable. Then loop through the |
| 575 ** columns of the table to see if any of them contain the token "hidden". |
| 576 ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from |
| 577 ** the type string. */ |
| 578 pVTable->pNext = pTab->pVTable; |
| 579 pTab->pVTable = pVTable; |
| 580 |
| 581 for(iCol=0; iCol<pTab->nCol; iCol++){ |
| 582 char *zType = sqlite3ColumnType(&pTab->aCol[iCol], ""); |
| 583 int nType; |
| 584 int i = 0; |
| 585 nType = sqlite3Strlen30(zType); |
| 586 for(i=0; i<nType; i++){ |
| 587 if( 0==sqlite3StrNICmp("hidden", &zType[i], 6) |
| 588 && (i==0 || zType[i-1]==' ') |
| 589 && (zType[i+6]=='\0' || zType[i+6]==' ') |
| 590 ){ |
| 591 break; |
| 592 } |
| 593 } |
| 594 if( i<nType ){ |
| 595 int j; |
| 596 int nDel = 6 + (zType[i+6] ? 1 : 0); |
| 597 for(j=i; (j+nDel)<=nType; j++){ |
| 598 zType[j] = zType[j+nDel]; |
| 599 } |
| 600 if( zType[i]=='\0' && i>0 ){ |
| 601 assert(zType[i-1]==' '); |
| 602 zType[i-1] = '\0'; |
| 603 } |
| 604 pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN; |
| 605 oooHidden = TF_OOOHidden; |
| 606 }else{ |
| 607 pTab->tabFlags |= oooHidden; |
| 608 } |
| 609 } |
| 610 } |
| 611 } |
| 612 |
| 613 sqlite3DbFree(db, zModuleName); |
| 614 return rc; |
| 615 } |
| 616 |
| 617 /* |
| 618 ** This function is invoked by the parser to call the xConnect() method |
| 619 ** of the virtual table pTab. If an error occurs, an error code is returned |
| 620 ** and an error left in pParse. |
| 621 ** |
| 622 ** This call is a no-op if table pTab is not a virtual table. |
| 623 */ |
| 624 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ |
| 625 sqlite3 *db = pParse->db; |
| 626 const char *zMod; |
| 627 Module *pMod; |
| 628 int rc; |
| 629 |
| 630 assert( pTab ); |
| 631 if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){ |
| 632 return SQLITE_OK; |
| 633 } |
| 634 |
| 635 /* Locate the required virtual table module */ |
| 636 zMod = pTab->azModuleArg[0]; |
| 637 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); |
| 638 |
| 639 if( !pMod ){ |
| 640 const char *zModule = pTab->azModuleArg[0]; |
| 641 sqlite3ErrorMsg(pParse, "no such module: %s", zModule); |
| 642 rc = SQLITE_ERROR; |
| 643 }else{ |
| 644 char *zErr = 0; |
| 645 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); |
| 646 if( rc!=SQLITE_OK ){ |
| 647 sqlite3ErrorMsg(pParse, "%s", zErr); |
| 648 } |
| 649 sqlite3DbFree(db, zErr); |
| 650 } |
| 651 |
| 652 return rc; |
| 653 } |
| 654 /* |
| 655 ** Grow the db->aVTrans[] array so that there is room for at least one |
| 656 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. |
| 657 */ |
| 658 static int growVTrans(sqlite3 *db){ |
| 659 const int ARRAY_INCR = 5; |
| 660 |
| 661 /* Grow the sqlite3.aVTrans array if required */ |
| 662 if( (db->nVTrans%ARRAY_INCR)==0 ){ |
| 663 VTable **aVTrans; |
| 664 int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR); |
| 665 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); |
| 666 if( !aVTrans ){ |
| 667 return SQLITE_NOMEM_BKPT; |
| 668 } |
| 669 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); |
| 670 db->aVTrans = aVTrans; |
| 671 } |
| 672 |
| 673 return SQLITE_OK; |
| 674 } |
| 675 |
| 676 /* |
| 677 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should |
| 678 ** have already been reserved using growVTrans(). |
| 679 */ |
| 680 static void addToVTrans(sqlite3 *db, VTable *pVTab){ |
| 681 /* Add pVtab to the end of sqlite3.aVTrans */ |
| 682 db->aVTrans[db->nVTrans++] = pVTab; |
| 683 sqlite3VtabLock(pVTab); |
| 684 } |
| 685 |
| 686 /* |
| 687 ** This function is invoked by the vdbe to call the xCreate method |
| 688 ** of the virtual table named zTab in database iDb. |
| 689 ** |
| 690 ** If an error occurs, *pzErr is set to point to an English language |
| 691 ** description of the error and an SQLITE_XXX error code is returned. |
| 692 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. |
| 693 */ |
| 694 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ |
| 695 int rc = SQLITE_OK; |
| 696 Table *pTab; |
| 697 Module *pMod; |
| 698 const char *zMod; |
| 699 |
| 700 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); |
| 701 assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable ); |
| 702 |
| 703 /* Locate the required virtual table module */ |
| 704 zMod = pTab->azModuleArg[0]; |
| 705 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); |
| 706 |
| 707 /* If the module has been registered and includes a Create method, |
| 708 ** invoke it now. If the module has not been registered, return an |
| 709 ** error. Otherwise, do nothing. |
| 710 */ |
| 711 if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){ |
| 712 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod); |
| 713 rc = SQLITE_ERROR; |
| 714 }else{ |
| 715 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); |
| 716 } |
| 717 |
| 718 /* Justification of ALWAYS(): The xConstructor method is required to |
| 719 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ |
| 720 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ |
| 721 rc = growVTrans(db); |
| 722 if( rc==SQLITE_OK ){ |
| 723 addToVTrans(db, sqlite3GetVTable(db, pTab)); |
| 724 } |
| 725 } |
| 726 |
| 727 return rc; |
| 728 } |
| 729 |
| 730 /* |
| 731 ** This function is used to set the schema of a virtual table. It is only |
| 732 ** valid to call this function from within the xCreate() or xConnect() of a |
| 733 ** virtual table module. |
| 734 */ |
| 735 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ |
| 736 VtabCtx *pCtx; |
| 737 Parse *pParse; |
| 738 int rc = SQLITE_OK; |
| 739 Table *pTab; |
| 740 char *zErr = 0; |
| 741 |
| 742 #ifdef SQLITE_ENABLE_API_ARMOR |
| 743 if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){ |
| 744 return SQLITE_MISUSE_BKPT; |
| 745 } |
| 746 #endif |
| 747 sqlite3_mutex_enter(db->mutex); |
| 748 pCtx = db->pVtabCtx; |
| 749 if( !pCtx || pCtx->bDeclared ){ |
| 750 sqlite3Error(db, SQLITE_MISUSE); |
| 751 sqlite3_mutex_leave(db->mutex); |
| 752 return SQLITE_MISUSE_BKPT; |
| 753 } |
| 754 pTab = pCtx->pTab; |
| 755 assert( (pTab->tabFlags & TF_Virtual)!=0 ); |
| 756 |
| 757 pParse = sqlite3StackAllocZero(db, sizeof(*pParse)); |
| 758 if( pParse==0 ){ |
| 759 rc = SQLITE_NOMEM_BKPT; |
| 760 }else{ |
| 761 pParse->declareVtab = 1; |
| 762 pParse->db = db; |
| 763 pParse->nQueryLoop = 1; |
| 764 |
| 765 if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr) |
| 766 && pParse->pNewTable |
| 767 && !db->mallocFailed |
| 768 && !pParse->pNewTable->pSelect |
| 769 && (pParse->pNewTable->tabFlags & TF_Virtual)==0 |
| 770 ){ |
| 771 if( !pTab->aCol ){ |
| 772 Table *pNew = pParse->pNewTable; |
| 773 Index *pIdx; |
| 774 pTab->aCol = pNew->aCol; |
| 775 pTab->nCol = pNew->nCol; |
| 776 pTab->tabFlags |= pNew->tabFlags & (TF_WithoutRowid|TF_NoVisibleRowid); |
| 777 pNew->nCol = 0; |
| 778 pNew->aCol = 0; |
| 779 assert( pTab->pIndex==0 ); |
| 780 if( !HasRowid(pNew) && pCtx->pVTable->pMod->pModule->xUpdate!=0 ){ |
| 781 rc = SQLITE_ERROR; |
| 782 } |
| 783 pIdx = pNew->pIndex; |
| 784 if( pIdx ){ |
| 785 assert( pIdx->pNext==0 ); |
| 786 pTab->pIndex = pIdx; |
| 787 pNew->pIndex = 0; |
| 788 pIdx->pTable = pTab; |
| 789 } |
| 790 } |
| 791 pCtx->bDeclared = 1; |
| 792 }else{ |
| 793 sqlite3ErrorWithMsg(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr); |
| 794 sqlite3DbFree(db, zErr); |
| 795 rc = SQLITE_ERROR; |
| 796 } |
| 797 pParse->declareVtab = 0; |
| 798 |
| 799 if( pParse->pVdbe ){ |
| 800 sqlite3VdbeFinalize(pParse->pVdbe); |
| 801 } |
| 802 sqlite3DeleteTable(db, pParse->pNewTable); |
| 803 sqlite3ParserReset(pParse); |
| 804 sqlite3StackFree(db, pParse); |
| 805 } |
| 806 |
| 807 assert( (rc&0xff)==rc ); |
| 808 rc = sqlite3ApiExit(db, rc); |
| 809 sqlite3_mutex_leave(db->mutex); |
| 810 return rc; |
| 811 } |
| 812 |
| 813 /* |
| 814 ** This function is invoked by the vdbe to call the xDestroy method |
| 815 ** of the virtual table named zTab in database iDb. This occurs |
| 816 ** when a DROP TABLE is mentioned. |
| 817 ** |
| 818 ** This call is a no-op if zTab is not a virtual table. |
| 819 */ |
| 820 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ |
| 821 int rc = SQLITE_OK; |
| 822 Table *pTab; |
| 823 |
| 824 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName); |
| 825 if( pTab!=0 && ALWAYS(pTab->pVTable!=0) ){ |
| 826 VTable *p; |
| 827 int (*xDestroy)(sqlite3_vtab *); |
| 828 for(p=pTab->pVTable; p; p=p->pNext){ |
| 829 assert( p->pVtab ); |
| 830 if( p->pVtab->nRef>0 ){ |
| 831 return SQLITE_LOCKED; |
| 832 } |
| 833 } |
| 834 p = vtabDisconnectAll(db, pTab); |
| 835 xDestroy = p->pMod->pModule->xDestroy; |
| 836 assert( xDestroy!=0 ); /* Checked before the virtual table is created */ |
| 837 rc = xDestroy(p->pVtab); |
| 838 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ |
| 839 if( rc==SQLITE_OK ){ |
| 840 assert( pTab->pVTable==p && p->pNext==0 ); |
| 841 p->pVtab = 0; |
| 842 pTab->pVTable = 0; |
| 843 sqlite3VtabUnlock(p); |
| 844 } |
| 845 } |
| 846 |
| 847 return rc; |
| 848 } |
| 849 |
| 850 /* |
| 851 ** This function invokes either the xRollback or xCommit method |
| 852 ** of each of the virtual tables in the sqlite3.aVTrans array. The method |
| 853 ** called is identified by the second argument, "offset", which is |
| 854 ** the offset of the method to call in the sqlite3_module structure. |
| 855 ** |
| 856 ** The array is cleared after invoking the callbacks. |
| 857 */ |
| 858 static void callFinaliser(sqlite3 *db, int offset){ |
| 859 int i; |
| 860 if( db->aVTrans ){ |
| 861 VTable **aVTrans = db->aVTrans; |
| 862 db->aVTrans = 0; |
| 863 for(i=0; i<db->nVTrans; i++){ |
| 864 VTable *pVTab = aVTrans[i]; |
| 865 sqlite3_vtab *p = pVTab->pVtab; |
| 866 if( p ){ |
| 867 int (*x)(sqlite3_vtab *); |
| 868 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); |
| 869 if( x ) x(p); |
| 870 } |
| 871 pVTab->iSavepoint = 0; |
| 872 sqlite3VtabUnlock(pVTab); |
| 873 } |
| 874 sqlite3DbFree(db, aVTrans); |
| 875 db->nVTrans = 0; |
| 876 } |
| 877 } |
| 878 |
| 879 /* |
| 880 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans |
| 881 ** array. Return the error code for the first error that occurs, or |
| 882 ** SQLITE_OK if all xSync operations are successful. |
| 883 ** |
| 884 ** If an error message is available, leave it in p->zErrMsg. |
| 885 */ |
| 886 int sqlite3VtabSync(sqlite3 *db, Vdbe *p){ |
| 887 int i; |
| 888 int rc = SQLITE_OK; |
| 889 VTable **aVTrans = db->aVTrans; |
| 890 |
| 891 db->aVTrans = 0; |
| 892 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ |
| 893 int (*x)(sqlite3_vtab *); |
| 894 sqlite3_vtab *pVtab = aVTrans[i]->pVtab; |
| 895 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ |
| 896 rc = x(pVtab); |
| 897 sqlite3VtabImportErrmsg(p, pVtab); |
| 898 } |
| 899 } |
| 900 db->aVTrans = aVTrans; |
| 901 return rc; |
| 902 } |
| 903 |
| 904 /* |
| 905 ** Invoke the xRollback method of all virtual tables in the |
| 906 ** sqlite3.aVTrans array. Then clear the array itself. |
| 907 */ |
| 908 int sqlite3VtabRollback(sqlite3 *db){ |
| 909 callFinaliser(db, offsetof(sqlite3_module,xRollback)); |
| 910 return SQLITE_OK; |
| 911 } |
| 912 |
| 913 /* |
| 914 ** Invoke the xCommit method of all virtual tables in the |
| 915 ** sqlite3.aVTrans array. Then clear the array itself. |
| 916 */ |
| 917 int sqlite3VtabCommit(sqlite3 *db){ |
| 918 callFinaliser(db, offsetof(sqlite3_module,xCommit)); |
| 919 return SQLITE_OK; |
| 920 } |
| 921 |
| 922 /* |
| 923 ** If the virtual table pVtab supports the transaction interface |
| 924 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is |
| 925 ** not currently open, invoke the xBegin method now. |
| 926 ** |
| 927 ** If the xBegin call is successful, place the sqlite3_vtab pointer |
| 928 ** in the sqlite3.aVTrans array. |
| 929 */ |
| 930 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ |
| 931 int rc = SQLITE_OK; |
| 932 const sqlite3_module *pModule; |
| 933 |
| 934 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater |
| 935 ** than zero, then this function is being called from within a |
| 936 ** virtual module xSync() callback. It is illegal to write to |
| 937 ** virtual module tables in this case, so return SQLITE_LOCKED. |
| 938 */ |
| 939 if( sqlite3VtabInSync(db) ){ |
| 940 return SQLITE_LOCKED; |
| 941 } |
| 942 if( !pVTab ){ |
| 943 return SQLITE_OK; |
| 944 } |
| 945 pModule = pVTab->pVtab->pModule; |
| 946 |
| 947 if( pModule->xBegin ){ |
| 948 int i; |
| 949 |
| 950 /* If pVtab is already in the aVTrans array, return early */ |
| 951 for(i=0; i<db->nVTrans; i++){ |
| 952 if( db->aVTrans[i]==pVTab ){ |
| 953 return SQLITE_OK; |
| 954 } |
| 955 } |
| 956 |
| 957 /* Invoke the xBegin method. If successful, add the vtab to the |
| 958 ** sqlite3.aVTrans[] array. */ |
| 959 rc = growVTrans(db); |
| 960 if( rc==SQLITE_OK ){ |
| 961 rc = pModule->xBegin(pVTab->pVtab); |
| 962 if( rc==SQLITE_OK ){ |
| 963 int iSvpt = db->nStatement + db->nSavepoint; |
| 964 addToVTrans(db, pVTab); |
| 965 if( iSvpt && pModule->xSavepoint ){ |
| 966 pVTab->iSavepoint = iSvpt; |
| 967 rc = pModule->xSavepoint(pVTab->pVtab, iSvpt-1); |
| 968 } |
| 969 } |
| 970 } |
| 971 } |
| 972 return rc; |
| 973 } |
| 974 |
| 975 /* |
| 976 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all |
| 977 ** virtual tables that currently have an open transaction. Pass iSavepoint |
| 978 ** as the second argument to the virtual table method invoked. |
| 979 ** |
| 980 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is |
| 981 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is |
| 982 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with |
| 983 ** an open transaction is invoked. |
| 984 ** |
| 985 ** If any virtual table method returns an error code other than SQLITE_OK, |
| 986 ** processing is abandoned and the error returned to the caller of this |
| 987 ** function immediately. If all calls to virtual table methods are successful, |
| 988 ** SQLITE_OK is returned. |
| 989 */ |
| 990 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ |
| 991 int rc = SQLITE_OK; |
| 992 |
| 993 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); |
| 994 assert( iSavepoint>=-1 ); |
| 995 if( db->aVTrans ){ |
| 996 int i; |
| 997 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ |
| 998 VTable *pVTab = db->aVTrans[i]; |
| 999 const sqlite3_module *pMod = pVTab->pMod->pModule; |
| 1000 if( pVTab->pVtab && pMod->iVersion>=2 ){ |
| 1001 int (*xMethod)(sqlite3_vtab *, int); |
| 1002 switch( op ){ |
| 1003 case SAVEPOINT_BEGIN: |
| 1004 xMethod = pMod->xSavepoint; |
| 1005 pVTab->iSavepoint = iSavepoint+1; |
| 1006 break; |
| 1007 case SAVEPOINT_ROLLBACK: |
| 1008 xMethod = pMod->xRollbackTo; |
| 1009 break; |
| 1010 default: |
| 1011 xMethod = pMod->xRelease; |
| 1012 break; |
| 1013 } |
| 1014 if( xMethod && pVTab->iSavepoint>iSavepoint ){ |
| 1015 rc = xMethod(pVTab->pVtab, iSavepoint); |
| 1016 } |
| 1017 } |
| 1018 } |
| 1019 } |
| 1020 return rc; |
| 1021 } |
| 1022 |
| 1023 /* |
| 1024 ** The first parameter (pDef) is a function implementation. The |
| 1025 ** second parameter (pExpr) is the first argument to this function. |
| 1026 ** If pExpr is a column in a virtual table, then let the virtual |
| 1027 ** table implementation have an opportunity to overload the function. |
| 1028 ** |
| 1029 ** This routine is used to allow virtual table implementations to |
| 1030 ** overload MATCH, LIKE, GLOB, and REGEXP operators. |
| 1031 ** |
| 1032 ** Return either the pDef argument (indicating no change) or a |
| 1033 ** new FuncDef structure that is marked as ephemeral using the |
| 1034 ** SQLITE_FUNC_EPHEM flag. |
| 1035 */ |
| 1036 FuncDef *sqlite3VtabOverloadFunction( |
| 1037 sqlite3 *db, /* Database connection for reporting malloc problems */ |
| 1038 FuncDef *pDef, /* Function to possibly overload */ |
| 1039 int nArg, /* Number of arguments to the function */ |
| 1040 Expr *pExpr /* First argument to the function */ |
| 1041 ){ |
| 1042 Table *pTab; |
| 1043 sqlite3_vtab *pVtab; |
| 1044 sqlite3_module *pMod; |
| 1045 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0; |
| 1046 void *pArg = 0; |
| 1047 FuncDef *pNew; |
| 1048 int rc = 0; |
| 1049 char *zLowerName; |
| 1050 unsigned char *z; |
| 1051 |
| 1052 |
| 1053 /* Check to see the left operand is a column in a virtual table */ |
| 1054 if( NEVER(pExpr==0) ) return pDef; |
| 1055 if( pExpr->op!=TK_COLUMN ) return pDef; |
| 1056 pTab = pExpr->pTab; |
| 1057 if( NEVER(pTab==0) ) return pDef; |
| 1058 if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef; |
| 1059 pVtab = sqlite3GetVTable(db, pTab)->pVtab; |
| 1060 assert( pVtab!=0 ); |
| 1061 assert( pVtab->pModule!=0 ); |
| 1062 pMod = (sqlite3_module *)pVtab->pModule; |
| 1063 if( pMod->xFindFunction==0 ) return pDef; |
| 1064 |
| 1065 /* Call the xFindFunction method on the virtual table implementation |
| 1066 ** to see if the implementation wants to overload this function |
| 1067 */ |
| 1068 zLowerName = sqlite3DbStrDup(db, pDef->zName); |
| 1069 if( zLowerName ){ |
| 1070 for(z=(unsigned char*)zLowerName; *z; z++){ |
| 1071 *z = sqlite3UpperToLower[*z]; |
| 1072 } |
| 1073 rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xSFunc, &pArg); |
| 1074 sqlite3DbFree(db, zLowerName); |
| 1075 } |
| 1076 if( rc==0 ){ |
| 1077 return pDef; |
| 1078 } |
| 1079 |
| 1080 /* Create a new ephemeral function definition for the overloaded |
| 1081 ** function */ |
| 1082 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) |
| 1083 + sqlite3Strlen30(pDef->zName) + 1); |
| 1084 if( pNew==0 ){ |
| 1085 return pDef; |
| 1086 } |
| 1087 *pNew = *pDef; |
| 1088 pNew->zName = (const char*)&pNew[1]; |
| 1089 memcpy((char*)&pNew[1], pDef->zName, sqlite3Strlen30(pDef->zName)+1); |
| 1090 pNew->xSFunc = xSFunc; |
| 1091 pNew->pUserData = pArg; |
| 1092 pNew->funcFlags |= SQLITE_FUNC_EPHEM; |
| 1093 return pNew; |
| 1094 } |
| 1095 |
| 1096 /* |
| 1097 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] |
| 1098 ** array so that an OP_VBegin will get generated for it. Add pTab to the |
| 1099 ** array if it is missing. If pTab is already in the array, this routine |
| 1100 ** is a no-op. |
| 1101 */ |
| 1102 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ |
| 1103 Parse *pToplevel = sqlite3ParseToplevel(pParse); |
| 1104 int i, n; |
| 1105 Table **apVtabLock; |
| 1106 |
| 1107 assert( IsVirtual(pTab) ); |
| 1108 for(i=0; i<pToplevel->nVtabLock; i++){ |
| 1109 if( pTab==pToplevel->apVtabLock[i] ) return; |
| 1110 } |
| 1111 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); |
| 1112 apVtabLock = sqlite3_realloc64(pToplevel->apVtabLock, n); |
| 1113 if( apVtabLock ){ |
| 1114 pToplevel->apVtabLock = apVtabLock; |
| 1115 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; |
| 1116 }else{ |
| 1117 sqlite3OomFault(pToplevel->db); |
| 1118 } |
| 1119 } |
| 1120 |
| 1121 /* |
| 1122 ** Check to see if virtual table module pMod can be have an eponymous |
| 1123 ** virtual table instance. If it can, create one if one does not already |
| 1124 ** exist. Return non-zero if the eponymous virtual table instance exists |
| 1125 ** when this routine returns, and return zero if it does not exist. |
| 1126 ** |
| 1127 ** An eponymous virtual table instance is one that is named after its |
| 1128 ** module, and more importantly, does not require a CREATE VIRTUAL TABLE |
| 1129 ** statement in order to come into existance. Eponymous virtual table |
| 1130 ** instances always exist. They cannot be DROP-ed. |
| 1131 ** |
| 1132 ** Any virtual table module for which xConnect and xCreate are the same |
| 1133 ** method can have an eponymous virtual table instance. |
| 1134 */ |
| 1135 int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){ |
| 1136 const sqlite3_module *pModule = pMod->pModule; |
| 1137 Table *pTab; |
| 1138 char *zErr = 0; |
| 1139 int rc; |
| 1140 sqlite3 *db = pParse->db; |
| 1141 if( pMod->pEpoTab ) return 1; |
| 1142 if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0; |
| 1143 pTab = sqlite3DbMallocZero(db, sizeof(Table)); |
| 1144 if( pTab==0 ) return 0; |
| 1145 pTab->zName = sqlite3DbStrDup(db, pMod->zName); |
| 1146 if( pTab->zName==0 ){ |
| 1147 sqlite3DbFree(db, pTab); |
| 1148 return 0; |
| 1149 } |
| 1150 pMod->pEpoTab = pTab; |
| 1151 pTab->nTabRef = 1; |
| 1152 pTab->pSchema = db->aDb[0].pSchema; |
| 1153 pTab->tabFlags |= TF_Virtual; |
| 1154 pTab->nModuleArg = 0; |
| 1155 pTab->iPKey = -1; |
| 1156 addModuleArgument(db, pTab, sqlite3DbStrDup(db, pTab->zName)); |
| 1157 addModuleArgument(db, pTab, 0); |
| 1158 addModuleArgument(db, pTab, sqlite3DbStrDup(db, pTab->zName)); |
| 1159 rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr); |
| 1160 if( rc ){ |
| 1161 sqlite3ErrorMsg(pParse, "%s", zErr); |
| 1162 sqlite3DbFree(db, zErr); |
| 1163 sqlite3VtabEponymousTableClear(db, pMod); |
| 1164 return 0; |
| 1165 } |
| 1166 return 1; |
| 1167 } |
| 1168 |
| 1169 /* |
| 1170 ** Erase the eponymous virtual table instance associated with |
| 1171 ** virtual table module pMod, if it exists. |
| 1172 */ |
| 1173 void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){ |
| 1174 Table *pTab = pMod->pEpoTab; |
| 1175 if( pTab!=0 ){ |
| 1176 /* Mark the table as Ephemeral prior to deleting it, so that the |
| 1177 ** sqlite3DeleteTable() routine will know that it is not stored in |
| 1178 ** the schema. */ |
| 1179 pTab->tabFlags |= TF_Ephemeral; |
| 1180 sqlite3DeleteTable(db, pTab); |
| 1181 pMod->pEpoTab = 0; |
| 1182 } |
| 1183 } |
| 1184 |
| 1185 /* |
| 1186 ** Return the ON CONFLICT resolution mode in effect for the virtual |
| 1187 ** table update operation currently in progress. |
| 1188 ** |
| 1189 ** The results of this routine are undefined unless it is called from |
| 1190 ** within an xUpdate method. |
| 1191 */ |
| 1192 int sqlite3_vtab_on_conflict(sqlite3 *db){ |
| 1193 static const unsigned char aMap[] = { |
| 1194 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE |
| 1195 }; |
| 1196 #ifdef SQLITE_ENABLE_API_ARMOR |
| 1197 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; |
| 1198 #endif |
| 1199 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); |
| 1200 assert( OE_Ignore==4 && OE_Replace==5 ); |
| 1201 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); |
| 1202 return (int)aMap[db->vtabOnConflict-1]; |
| 1203 } |
| 1204 |
| 1205 /* |
| 1206 ** Call from within the xCreate() or xConnect() methods to provide |
| 1207 ** the SQLite core with additional information about the behavior |
| 1208 ** of the virtual table being implemented. |
| 1209 */ |
| 1210 int sqlite3_vtab_config(sqlite3 *db, int op, ...){ |
| 1211 va_list ap; |
| 1212 int rc = SQLITE_OK; |
| 1213 |
| 1214 #ifdef SQLITE_ENABLE_API_ARMOR |
| 1215 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; |
| 1216 #endif |
| 1217 sqlite3_mutex_enter(db->mutex); |
| 1218 va_start(ap, op); |
| 1219 switch( op ){ |
| 1220 case SQLITE_VTAB_CONSTRAINT_SUPPORT: { |
| 1221 VtabCtx *p = db->pVtabCtx; |
| 1222 if( !p ){ |
| 1223 rc = SQLITE_MISUSE_BKPT; |
| 1224 }else{ |
| 1225 assert( p->pTab==0 || (p->pTab->tabFlags & TF_Virtual)!=0 ); |
| 1226 p->pVTable->bConstraint = (u8)va_arg(ap, int); |
| 1227 } |
| 1228 break; |
| 1229 } |
| 1230 default: |
| 1231 rc = SQLITE_MISUSE_BKPT; |
| 1232 break; |
| 1233 } |
| 1234 va_end(ap); |
| 1235 |
| 1236 if( rc!=SQLITE_OK ) sqlite3Error(db, rc); |
| 1237 sqlite3_mutex_leave(db->mutex); |
| 1238 return rc; |
| 1239 } |
| 1240 |
| 1241 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
OLD | NEW |