Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1)

Side by Side Diff: third_party/sqlite/sqlite-src-3170000/src/vdbemem.c

Issue 2747283002: [sql] Import reference version of SQLite 3.17.. (Closed)
Patch Set: Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
16 ** name sqlite_value
17 */
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
20
21 #ifdef SQLITE_DEBUG
22 /*
23 ** Check invariants on a Mem object.
24 **
25 ** This routine is intended for use inside of assert() statements, like
26 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
27 */
28 int sqlite3VdbeCheckMemInvariants(Mem *p){
29 /* If MEM_Dyn is set then Mem.xDel!=0.
30 ** Mem.xDel is might not be initialized if MEM_Dyn is clear.
31 */
32 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
33
34 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
35 ** ensure that if Mem.szMalloc>0 then it is safe to do
36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
37 ** That saves a few cycles in inner loops. */
38 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
39
40 /* Cannot be both MEM_Int and MEM_Real at the same time */
41 assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );
42
43 /* The szMalloc field holds the correct memory allocation size */
44 assert( p->szMalloc==0
45 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );
46
47 /* If p holds a string or blob, the Mem.z must point to exactly
48 ** one of the following:
49 **
50 ** (1) Memory in Mem.zMalloc and managed by the Mem object
51 ** (2) Memory to be freed using Mem.xDel
52 ** (3) An ephemeral string or blob
53 ** (4) A static string or blob
54 */
55 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
56 assert(
57 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
58 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
59 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
60 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
61 );
62 }
63 return 1;
64 }
65 #endif
66
67
68 /*
69 ** If pMem is an object with a valid string representation, this routine
70 ** ensures the internal encoding for the string representation is
71 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
72 **
73 ** If pMem is not a string object, or the encoding of the string
74 ** representation is already stored using the requested encoding, then this
75 ** routine is a no-op.
76 **
77 ** SQLITE_OK is returned if the conversion is successful (or not required).
78 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
79 ** between formats.
80 */
81 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
82 #ifndef SQLITE_OMIT_UTF16
83 int rc;
84 #endif
85 assert( (pMem->flags&MEM_RowSet)==0 );
86 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
87 || desiredEnc==SQLITE_UTF16BE );
88 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
89 return SQLITE_OK;
90 }
91 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
92 #ifdef SQLITE_OMIT_UTF16
93 return SQLITE_ERROR;
94 #else
95
96 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
97 ** then the encoding of the value may not have changed.
98 */
99 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
100 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
101 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
102 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
103 return rc;
104 #endif
105 }
106
107 /*
108 ** Make sure pMem->z points to a writable allocation of at least
109 ** min(n,32) bytes.
110 **
111 ** If the bPreserve argument is true, then copy of the content of
112 ** pMem->z into the new allocation. pMem must be either a string or
113 ** blob if bPreserve is true. If bPreserve is false, any prior content
114 ** in pMem->z is discarded.
115 */
116 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
117 assert( sqlite3VdbeCheckMemInvariants(pMem) );
118 assert( (pMem->flags&MEM_RowSet)==0 );
119 testcase( pMem->db==0 );
120
121 /* If the bPreserve flag is set to true, then the memory cell must already
122 ** contain a valid string or blob value. */
123 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
124 testcase( bPreserve && pMem->z==0 );
125
126 assert( pMem->szMalloc==0
127 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
128 if( pMem->szMalloc<n ){
129 if( n<32 ) n = 32;
130 if( bPreserve && pMem->szMalloc>0 && pMem->z==pMem->zMalloc ){
131 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
132 bPreserve = 0;
133 }else{
134 if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
135 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
136 }
137 if( pMem->zMalloc==0 ){
138 sqlite3VdbeMemSetNull(pMem);
139 pMem->z = 0;
140 pMem->szMalloc = 0;
141 return SQLITE_NOMEM_BKPT;
142 }else{
143 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
144 }
145 }
146
147 if( bPreserve && pMem->z && pMem->z!=pMem->zMalloc ){
148 memcpy(pMem->zMalloc, pMem->z, pMem->n);
149 }
150 if( (pMem->flags&MEM_Dyn)!=0 ){
151 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
152 pMem->xDel((void *)(pMem->z));
153 }
154
155 pMem->z = pMem->zMalloc;
156 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
157 return SQLITE_OK;
158 }
159
160 /*
161 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
162 ** If pMem->zMalloc already meets or exceeds the requested size, this
163 ** routine is a no-op.
164 **
165 ** Any prior string or blob content in the pMem object may be discarded.
166 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
167 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
168 ** values are preserved.
169 **
170 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
171 ** if unable to complete the resizing.
172 */
173 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
174 assert( szNew>0 );
175 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
176 if( pMem->szMalloc<szNew ){
177 return sqlite3VdbeMemGrow(pMem, szNew, 0);
178 }
179 assert( (pMem->flags & MEM_Dyn)==0 );
180 pMem->z = pMem->zMalloc;
181 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real);
182 return SQLITE_OK;
183 }
184
185 /*
186 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
187 ** MEM.zMalloc, where it can be safely written.
188 **
189 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
190 */
191 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
192 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
193 assert( (pMem->flags&MEM_RowSet)==0 );
194 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
195 if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
196 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
197 if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
198 return SQLITE_NOMEM_BKPT;
199 }
200 pMem->z[pMem->n] = 0;
201 pMem->z[pMem->n+1] = 0;
202 pMem->flags |= MEM_Term;
203 }
204 }
205 pMem->flags &= ~MEM_Ephem;
206 #ifdef SQLITE_DEBUG
207 pMem->pScopyFrom = 0;
208 #endif
209
210 return SQLITE_OK;
211 }
212
213 /*
214 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
215 ** blob stored in dynamically allocated space.
216 */
217 #ifndef SQLITE_OMIT_INCRBLOB
218 int sqlite3VdbeMemExpandBlob(Mem *pMem){
219 int nByte;
220 assert( pMem->flags & MEM_Zero );
221 assert( pMem->flags&MEM_Blob );
222 assert( (pMem->flags&MEM_RowSet)==0 );
223 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
224
225 /* Set nByte to the number of bytes required to store the expanded blob. */
226 nByte = pMem->n + pMem->u.nZero;
227 if( nByte<=0 ){
228 nByte = 1;
229 }
230 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
231 return SQLITE_NOMEM_BKPT;
232 }
233
234 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
235 pMem->n += pMem->u.nZero;
236 pMem->flags &= ~(MEM_Zero|MEM_Term);
237 return SQLITE_OK;
238 }
239 #endif
240
241 /*
242 ** It is already known that pMem contains an unterminated string.
243 ** Add the zero terminator.
244 */
245 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
246 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
247 return SQLITE_NOMEM_BKPT;
248 }
249 pMem->z[pMem->n] = 0;
250 pMem->z[pMem->n+1] = 0;
251 pMem->flags |= MEM_Term;
252 return SQLITE_OK;
253 }
254
255 /*
256 ** Make sure the given Mem is \u0000 terminated.
257 */
258 int sqlite3VdbeMemNulTerminate(Mem *pMem){
259 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
260 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
261 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
262 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
263 return SQLITE_OK; /* Nothing to do */
264 }else{
265 return vdbeMemAddTerminator(pMem);
266 }
267 }
268
269 /*
270 ** Add MEM_Str to the set of representations for the given Mem. Numbers
271 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string
272 ** is a no-op.
273 **
274 ** Existing representations MEM_Int and MEM_Real are invalidated if
275 ** bForce is true but are retained if bForce is false.
276 **
277 ** A MEM_Null value will never be passed to this function. This function is
278 ** used for converting values to text for returning to the user (i.e. via
279 ** sqlite3_value_text()), or for ensuring that values to be used as btree
280 ** keys are strings. In the former case a NULL pointer is returned the
281 ** user and the latter is an internal programming error.
282 */
283 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
284 int fg = pMem->flags;
285 const int nByte = 32;
286
287 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
288 assert( !(fg&MEM_Zero) );
289 assert( !(fg&(MEM_Str|MEM_Blob)) );
290 assert( fg&(MEM_Int|MEM_Real) );
291 assert( (pMem->flags&MEM_RowSet)==0 );
292 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
293
294
295 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
296 pMem->enc = 0;
297 return SQLITE_NOMEM_BKPT;
298 }
299
300 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
301 ** string representation of the value. Then, if the required encoding
302 ** is UTF-16le or UTF-16be do a translation.
303 **
304 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
305 */
306 if( fg & MEM_Int ){
307 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
308 }else{
309 assert( fg & MEM_Real );
310 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
311 }
312 pMem->n = sqlite3Strlen30(pMem->z);
313 pMem->enc = SQLITE_UTF8;
314 pMem->flags |= MEM_Str|MEM_Term;
315 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
316 sqlite3VdbeChangeEncoding(pMem, enc);
317 return SQLITE_OK;
318 }
319
320 /*
321 ** Memory cell pMem contains the context of an aggregate function.
322 ** This routine calls the finalize method for that function. The
323 ** result of the aggregate is stored back into pMem.
324 **
325 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
326 ** otherwise.
327 */
328 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
329 int rc = SQLITE_OK;
330 if( ALWAYS(pFunc && pFunc->xFinalize) ){
331 sqlite3_context ctx;
332 Mem t;
333 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
334 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
335 memset(&ctx, 0, sizeof(ctx));
336 memset(&t, 0, sizeof(t));
337 t.flags = MEM_Null;
338 t.db = pMem->db;
339 ctx.pOut = &t;
340 ctx.pMem = pMem;
341 ctx.pFunc = pFunc;
342 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
343 assert( (pMem->flags & MEM_Dyn)==0 );
344 if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
345 memcpy(pMem, &t, sizeof(t));
346 rc = ctx.isError;
347 }
348 return rc;
349 }
350
351 /*
352 ** If the memory cell contains a value that must be freed by
353 ** invoking the external callback in Mem.xDel, then this routine
354 ** will free that value. It also sets Mem.flags to MEM_Null.
355 **
356 ** This is a helper routine for sqlite3VdbeMemSetNull() and
357 ** for sqlite3VdbeMemRelease(). Use those other routines as the
358 ** entry point for releasing Mem resources.
359 */
360 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
361 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
362 assert( VdbeMemDynamic(p) );
363 if( p->flags&MEM_Agg ){
364 sqlite3VdbeMemFinalize(p, p->u.pDef);
365 assert( (p->flags & MEM_Agg)==0 );
366 testcase( p->flags & MEM_Dyn );
367 }
368 if( p->flags&MEM_Dyn ){
369 assert( (p->flags&MEM_RowSet)==0 );
370 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
371 p->xDel((void *)p->z);
372 }else if( p->flags&MEM_RowSet ){
373 sqlite3RowSetClear(p->u.pRowSet);
374 }else if( p->flags&MEM_Frame ){
375 VdbeFrame *pFrame = p->u.pFrame;
376 pFrame->pParent = pFrame->v->pDelFrame;
377 pFrame->v->pDelFrame = pFrame;
378 }
379 p->flags = MEM_Null;
380 }
381
382 /*
383 ** Release memory held by the Mem p, both external memory cleared
384 ** by p->xDel and memory in p->zMalloc.
385 **
386 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
387 ** the unusual case where there really is memory in p that needs
388 ** to be freed.
389 */
390 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
391 if( VdbeMemDynamic(p) ){
392 vdbeMemClearExternAndSetNull(p);
393 }
394 if( p->szMalloc ){
395 sqlite3DbFree(p->db, p->zMalloc);
396 p->szMalloc = 0;
397 }
398 p->z = 0;
399 }
400
401 /*
402 ** Release any memory resources held by the Mem. Both the memory that is
403 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
404 **
405 ** Use this routine prior to clean up prior to abandoning a Mem, or to
406 ** reset a Mem back to its minimum memory utilization.
407 **
408 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
409 ** prior to inserting new content into the Mem.
410 */
411 void sqlite3VdbeMemRelease(Mem *p){
412 assert( sqlite3VdbeCheckMemInvariants(p) );
413 if( VdbeMemDynamic(p) || p->szMalloc ){
414 vdbeMemClear(p);
415 }
416 }
417
418 /*
419 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
420 ** If the double is out of range of a 64-bit signed integer then
421 ** return the closest available 64-bit signed integer.
422 */
423 static i64 doubleToInt64(double r){
424 #ifdef SQLITE_OMIT_FLOATING_POINT
425 /* When floating-point is omitted, double and int64 are the same thing */
426 return r;
427 #else
428 /*
429 ** Many compilers we encounter do not define constants for the
430 ** minimum and maximum 64-bit integers, or they define them
431 ** inconsistently. And many do not understand the "LL" notation.
432 ** So we define our own static constants here using nothing
433 ** larger than a 32-bit integer constant.
434 */
435 static const i64 maxInt = LARGEST_INT64;
436 static const i64 minInt = SMALLEST_INT64;
437
438 if( r<=(double)minInt ){
439 return minInt;
440 }else if( r>=(double)maxInt ){
441 return maxInt;
442 }else{
443 return (i64)r;
444 }
445 #endif
446 }
447
448 /*
449 ** Return some kind of integer value which is the best we can do
450 ** at representing the value that *pMem describes as an integer.
451 ** If pMem is an integer, then the value is exact. If pMem is
452 ** a floating-point then the value returned is the integer part.
453 ** If pMem is a string or blob, then we make an attempt to convert
454 ** it into an integer and return that. If pMem represents an
455 ** an SQL-NULL value, return 0.
456 **
457 ** If pMem represents a string value, its encoding might be changed.
458 */
459 i64 sqlite3VdbeIntValue(Mem *pMem){
460 int flags;
461 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
462 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
463 flags = pMem->flags;
464 if( flags & MEM_Int ){
465 return pMem->u.i;
466 }else if( flags & MEM_Real ){
467 return doubleToInt64(pMem->u.r);
468 }else if( flags & (MEM_Str|MEM_Blob) ){
469 i64 value = 0;
470 assert( pMem->z || pMem->n==0 );
471 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
472 return value;
473 }else{
474 return 0;
475 }
476 }
477
478 /*
479 ** Return the best representation of pMem that we can get into a
480 ** double. If pMem is already a double or an integer, return its
481 ** value. If it is a string or blob, try to convert it to a double.
482 ** If it is a NULL, return 0.0.
483 */
484 double sqlite3VdbeRealValue(Mem *pMem){
485 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
486 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
487 if( pMem->flags & MEM_Real ){
488 return pMem->u.r;
489 }else if( pMem->flags & MEM_Int ){
490 return (double)pMem->u.i;
491 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
492 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
493 double val = (double)0;
494 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
495 return val;
496 }else{
497 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
498 return (double)0;
499 }
500 }
501
502 /*
503 ** The MEM structure is already a MEM_Real. Try to also make it a
504 ** MEM_Int if we can.
505 */
506 void sqlite3VdbeIntegerAffinity(Mem *pMem){
507 i64 ix;
508 assert( pMem->flags & MEM_Real );
509 assert( (pMem->flags & MEM_RowSet)==0 );
510 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
511 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
512
513 ix = doubleToInt64(pMem->u.r);
514
515 /* Only mark the value as an integer if
516 **
517 ** (1) the round-trip conversion real->int->real is a no-op, and
518 ** (2) The integer is neither the largest nor the smallest
519 ** possible integer (ticket #3922)
520 **
521 ** The second and third terms in the following conditional enforces
522 ** the second condition under the assumption that addition overflow causes
523 ** values to wrap around.
524 */
525 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
526 pMem->u.i = ix;
527 MemSetTypeFlag(pMem, MEM_Int);
528 }
529 }
530
531 /*
532 ** Convert pMem to type integer. Invalidate any prior representations.
533 */
534 int sqlite3VdbeMemIntegerify(Mem *pMem){
535 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
536 assert( (pMem->flags & MEM_RowSet)==0 );
537 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
538
539 pMem->u.i = sqlite3VdbeIntValue(pMem);
540 MemSetTypeFlag(pMem, MEM_Int);
541 return SQLITE_OK;
542 }
543
544 /*
545 ** Convert pMem so that it is of type MEM_Real.
546 ** Invalidate any prior representations.
547 */
548 int sqlite3VdbeMemRealify(Mem *pMem){
549 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
550 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
551
552 pMem->u.r = sqlite3VdbeRealValue(pMem);
553 MemSetTypeFlag(pMem, MEM_Real);
554 return SQLITE_OK;
555 }
556
557 /*
558 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
559 ** Invalidate any prior representations.
560 **
561 ** Every effort is made to force the conversion, even if the input
562 ** is a string that does not look completely like a number. Convert
563 ** as much of the string as we can and ignore the rest.
564 */
565 int sqlite3VdbeMemNumerify(Mem *pMem){
566 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
567 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
568 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
569 if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){
570 MemSetTypeFlag(pMem, MEM_Int);
571 }else{
572 pMem->u.r = sqlite3VdbeRealValue(pMem);
573 MemSetTypeFlag(pMem, MEM_Real);
574 sqlite3VdbeIntegerAffinity(pMem);
575 }
576 }
577 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
578 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
579 return SQLITE_OK;
580 }
581
582 /*
583 ** Cast the datatype of the value in pMem according to the affinity
584 ** "aff". Casting is different from applying affinity in that a cast
585 ** is forced. In other words, the value is converted into the desired
586 ** affinity even if that results in loss of data. This routine is
587 ** used (for example) to implement the SQL "cast()" operator.
588 */
589 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
590 if( pMem->flags & MEM_Null ) return;
591 switch( aff ){
592 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
593 if( (pMem->flags & MEM_Blob)==0 ){
594 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
595 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
596 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
597 }else{
598 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
599 }
600 break;
601 }
602 case SQLITE_AFF_NUMERIC: {
603 sqlite3VdbeMemNumerify(pMem);
604 break;
605 }
606 case SQLITE_AFF_INTEGER: {
607 sqlite3VdbeMemIntegerify(pMem);
608 break;
609 }
610 case SQLITE_AFF_REAL: {
611 sqlite3VdbeMemRealify(pMem);
612 break;
613 }
614 default: {
615 assert( aff==SQLITE_AFF_TEXT );
616 assert( MEM_Str==(MEM_Blob>>3) );
617 pMem->flags |= (pMem->flags&MEM_Blob)>>3;
618 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
619 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
620 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
621 break;
622 }
623 }
624 }
625
626 /*
627 ** Initialize bulk memory to be a consistent Mem object.
628 **
629 ** The minimum amount of initialization feasible is performed.
630 */
631 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
632 assert( (flags & ~MEM_TypeMask)==0 );
633 pMem->flags = flags;
634 pMem->db = db;
635 pMem->szMalloc = 0;
636 }
637
638
639 /*
640 ** Delete any previous value and set the value stored in *pMem to NULL.
641 **
642 ** This routine calls the Mem.xDel destructor to dispose of values that
643 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
644 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
645 ** routine to invoke the destructor and deallocates Mem.zMalloc.
646 **
647 ** Use this routine to reset the Mem prior to insert a new value.
648 **
649 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
650 */
651 void sqlite3VdbeMemSetNull(Mem *pMem){
652 if( VdbeMemDynamic(pMem) ){
653 vdbeMemClearExternAndSetNull(pMem);
654 }else{
655 pMem->flags = MEM_Null;
656 }
657 }
658 void sqlite3ValueSetNull(sqlite3_value *p){
659 sqlite3VdbeMemSetNull((Mem*)p);
660 }
661
662 /*
663 ** Delete any previous value and set the value to be a BLOB of length
664 ** n containing all zeros.
665 */
666 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
667 sqlite3VdbeMemRelease(pMem);
668 pMem->flags = MEM_Blob|MEM_Zero;
669 pMem->n = 0;
670 if( n<0 ) n = 0;
671 pMem->u.nZero = n;
672 pMem->enc = SQLITE_UTF8;
673 pMem->z = 0;
674 }
675
676 /*
677 ** The pMem is known to contain content that needs to be destroyed prior
678 ** to a value change. So invoke the destructor, then set the value to
679 ** a 64-bit integer.
680 */
681 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
682 sqlite3VdbeMemSetNull(pMem);
683 pMem->u.i = val;
684 pMem->flags = MEM_Int;
685 }
686
687 /*
688 ** Delete any previous value and set the value stored in *pMem to val,
689 ** manifest type INTEGER.
690 */
691 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
692 if( VdbeMemDynamic(pMem) ){
693 vdbeReleaseAndSetInt64(pMem, val);
694 }else{
695 pMem->u.i = val;
696 pMem->flags = MEM_Int;
697 }
698 }
699
700 #ifndef SQLITE_OMIT_FLOATING_POINT
701 /*
702 ** Delete any previous value and set the value stored in *pMem to val,
703 ** manifest type REAL.
704 */
705 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
706 sqlite3VdbeMemSetNull(pMem);
707 if( !sqlite3IsNaN(val) ){
708 pMem->u.r = val;
709 pMem->flags = MEM_Real;
710 }
711 }
712 #endif
713
714 /*
715 ** Delete any previous value and set the value of pMem to be an
716 ** empty boolean index.
717 */
718 void sqlite3VdbeMemSetRowSet(Mem *pMem){
719 sqlite3 *db = pMem->db;
720 assert( db!=0 );
721 assert( (pMem->flags & MEM_RowSet)==0 );
722 sqlite3VdbeMemRelease(pMem);
723 pMem->zMalloc = sqlite3DbMallocRawNN(db, 64);
724 if( db->mallocFailed ){
725 pMem->flags = MEM_Null;
726 pMem->szMalloc = 0;
727 }else{
728 assert( pMem->zMalloc );
729 pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc);
730 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc);
731 assert( pMem->u.pRowSet!=0 );
732 pMem->flags = MEM_RowSet;
733 }
734 }
735
736 /*
737 ** Return true if the Mem object contains a TEXT or BLOB that is
738 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
739 */
740 int sqlite3VdbeMemTooBig(Mem *p){
741 assert( p->db!=0 );
742 if( p->flags & (MEM_Str|MEM_Blob) ){
743 int n = p->n;
744 if( p->flags & MEM_Zero ){
745 n += p->u.nZero;
746 }
747 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
748 }
749 return 0;
750 }
751
752 #ifdef SQLITE_DEBUG
753 /*
754 ** This routine prepares a memory cell for modification by breaking
755 ** its link to a shallow copy and by marking any current shallow
756 ** copies of this cell as invalid.
757 **
758 ** This is used for testing and debugging only - to make sure shallow
759 ** copies are not misused.
760 */
761 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
762 int i;
763 Mem *pX;
764 for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){
765 if( pX->pScopyFrom==pMem ){
766 pX->flags |= MEM_Undefined;
767 pX->pScopyFrom = 0;
768 }
769 }
770 pMem->pScopyFrom = 0;
771 }
772 #endif /* SQLITE_DEBUG */
773
774
775 /*
776 ** Make an shallow copy of pFrom into pTo. Prior contents of
777 ** pTo are freed. The pFrom->z field is not duplicated. If
778 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
779 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
780 */
781 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
782 vdbeMemClearExternAndSetNull(pTo);
783 assert( !VdbeMemDynamic(pTo) );
784 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
785 }
786 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
787 assert( (pFrom->flags & MEM_RowSet)==0 );
788 assert( pTo->db==pFrom->db );
789 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
790 memcpy(pTo, pFrom, MEMCELLSIZE);
791 if( (pFrom->flags&MEM_Static)==0 ){
792 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
793 assert( srcType==MEM_Ephem || srcType==MEM_Static );
794 pTo->flags |= srcType;
795 }
796 }
797
798 /*
799 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
800 ** freed before the copy is made.
801 */
802 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
803 int rc = SQLITE_OK;
804
805 assert( (pFrom->flags & MEM_RowSet)==0 );
806 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
807 memcpy(pTo, pFrom, MEMCELLSIZE);
808 pTo->flags &= ~MEM_Dyn;
809 if( pTo->flags&(MEM_Str|MEM_Blob) ){
810 if( 0==(pFrom->flags&MEM_Static) ){
811 pTo->flags |= MEM_Ephem;
812 rc = sqlite3VdbeMemMakeWriteable(pTo);
813 }
814 }
815
816 return rc;
817 }
818
819 /*
820 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
821 ** freed. If pFrom contains ephemeral data, a copy is made.
822 **
823 ** pFrom contains an SQL NULL when this routine returns.
824 */
825 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
826 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
827 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
828 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
829
830 sqlite3VdbeMemRelease(pTo);
831 memcpy(pTo, pFrom, sizeof(Mem));
832 pFrom->flags = MEM_Null;
833 pFrom->szMalloc = 0;
834 }
835
836 /*
837 ** Change the value of a Mem to be a string or a BLOB.
838 **
839 ** The memory management strategy depends on the value of the xDel
840 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
841 ** string is copied into a (possibly existing) buffer managed by the
842 ** Mem structure. Otherwise, any existing buffer is freed and the
843 ** pointer copied.
844 **
845 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
846 ** size limit) then no memory allocation occurs. If the string can be
847 ** stored without allocating memory, then it is. If a memory allocation
848 ** is required to store the string, then value of pMem is unchanged. In
849 ** either case, SQLITE_TOOBIG is returned.
850 */
851 int sqlite3VdbeMemSetStr(
852 Mem *pMem, /* Memory cell to set to string value */
853 const char *z, /* String pointer */
854 int n, /* Bytes in string, or negative */
855 u8 enc, /* Encoding of z. 0 for BLOBs */
856 void (*xDel)(void*) /* Destructor function */
857 ){
858 int nByte = n; /* New value for pMem->n */
859 int iLimit; /* Maximum allowed string or blob size */
860 u16 flags = 0; /* New value for pMem->flags */
861
862 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
863 assert( (pMem->flags & MEM_RowSet)==0 );
864
865 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
866 if( !z ){
867 sqlite3VdbeMemSetNull(pMem);
868 return SQLITE_OK;
869 }
870
871 if( pMem->db ){
872 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
873 }else{
874 iLimit = SQLITE_MAX_LENGTH;
875 }
876 flags = (enc==0?MEM_Blob:MEM_Str);
877 if( nByte<0 ){
878 assert( enc!=0 );
879 if( enc==SQLITE_UTF8 ){
880 nByte = sqlite3Strlen30(z);
881 if( nByte>iLimit ) nByte = iLimit+1;
882 }else{
883 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
884 }
885 flags |= MEM_Term;
886 }
887
888 /* The following block sets the new values of Mem.z and Mem.xDel. It
889 ** also sets a flag in local variable "flags" to indicate the memory
890 ** management (one of MEM_Dyn or MEM_Static).
891 */
892 if( xDel==SQLITE_TRANSIENT ){
893 int nAlloc = nByte;
894 if( flags&MEM_Term ){
895 nAlloc += (enc==SQLITE_UTF8?1:2);
896 }
897 if( nByte>iLimit ){
898 return SQLITE_TOOBIG;
899 }
900 testcase( nAlloc==0 );
901 testcase( nAlloc==31 );
902 testcase( nAlloc==32 );
903 if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){
904 return SQLITE_NOMEM_BKPT;
905 }
906 memcpy(pMem->z, z, nAlloc);
907 }else if( xDel==SQLITE_DYNAMIC ){
908 sqlite3VdbeMemRelease(pMem);
909 pMem->zMalloc = pMem->z = (char *)z;
910 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
911 }else{
912 sqlite3VdbeMemRelease(pMem);
913 pMem->z = (char *)z;
914 pMem->xDel = xDel;
915 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
916 }
917
918 pMem->n = nByte;
919 pMem->flags = flags;
920 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
921
922 #ifndef SQLITE_OMIT_UTF16
923 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
924 return SQLITE_NOMEM_BKPT;
925 }
926 #endif
927
928 if( nByte>iLimit ){
929 return SQLITE_TOOBIG;
930 }
931
932 return SQLITE_OK;
933 }
934
935 /*
936 ** Move data out of a btree key or data field and into a Mem structure.
937 ** The data is payload from the entry that pCur is currently pointing
938 ** to. offset and amt determine what portion of the data or key to retrieve.
939 ** The result is written into the pMem element.
940 **
941 ** The pMem object must have been initialized. This routine will use
942 ** pMem->zMalloc to hold the content from the btree, if possible. New
943 ** pMem->zMalloc space will be allocated if necessary. The calling routine
944 ** is responsible for making sure that the pMem object is eventually
945 ** destroyed.
946 **
947 ** If this routine fails for any reason (malloc returns NULL or unable
948 ** to read from the disk) then the pMem is left in an inconsistent state.
949 */
950 static SQLITE_NOINLINE int vdbeMemFromBtreeResize(
951 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
952 u32 offset, /* Offset from the start of data to return bytes from. */
953 u32 amt, /* Number of bytes to return. */
954 Mem *pMem /* OUT: Return data in this Mem structure. */
955 ){
956 int rc;
957 pMem->flags = MEM_Null;
958 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+2)) ){
959 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
960 if( rc==SQLITE_OK ){
961 pMem->z[amt] = 0;
962 pMem->z[amt+1] = 0;
963 pMem->flags = MEM_Blob|MEM_Term;
964 pMem->n = (int)amt;
965 }else{
966 sqlite3VdbeMemRelease(pMem);
967 }
968 }
969 return rc;
970 }
971 int sqlite3VdbeMemFromBtree(
972 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
973 u32 offset, /* Offset from the start of data to return bytes from. */
974 u32 amt, /* Number of bytes to return. */
975 Mem *pMem /* OUT: Return data in this Mem structure. */
976 ){
977 char *zData; /* Data from the btree layer */
978 u32 available = 0; /* Number of bytes available on the local btree page */
979 int rc = SQLITE_OK; /* Return code */
980
981 assert( sqlite3BtreeCursorIsValid(pCur) );
982 assert( !VdbeMemDynamic(pMem) );
983
984 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
985 ** that both the BtShared and database handle mutexes are held. */
986 assert( (pMem->flags & MEM_RowSet)==0 );
987 zData = (char *)sqlite3BtreePayloadFetch(pCur, &available);
988 assert( zData!=0 );
989
990 if( offset+amt<=available ){
991 pMem->z = &zData[offset];
992 pMem->flags = MEM_Blob|MEM_Ephem;
993 pMem->n = (int)amt;
994 }else{
995 rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem);
996 }
997
998 return rc;
999 }
1000
1001 /*
1002 ** The pVal argument is known to be a value other than NULL.
1003 ** Convert it into a string with encoding enc and return a pointer
1004 ** to a zero-terminated version of that string.
1005 */
1006 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
1007 assert( pVal!=0 );
1008 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1009 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1010 assert( (pVal->flags & MEM_RowSet)==0 );
1011 assert( (pVal->flags & (MEM_Null))==0 );
1012 if( pVal->flags & (MEM_Blob|MEM_Str) ){
1013 if( ExpandBlob(pVal) ) return 0;
1014 pVal->flags |= MEM_Str;
1015 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1016 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1017 }
1018 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1019 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1020 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1021 return 0;
1022 }
1023 }
1024 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1025 }else{
1026 sqlite3VdbeMemStringify(pVal, enc, 0);
1027 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1028 }
1029 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1030 || pVal->db->mallocFailed );
1031 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1032 return pVal->z;
1033 }else{
1034 return 0;
1035 }
1036 }
1037
1038 /* This function is only available internally, it is not part of the
1039 ** external API. It works in a similar way to sqlite3_value_text(),
1040 ** except the data returned is in the encoding specified by the second
1041 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1042 ** SQLITE_UTF8.
1043 **
1044 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1045 ** If that is the case, then the result must be aligned on an even byte
1046 ** boundary.
1047 */
1048 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
1049 if( !pVal ) return 0;
1050 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1051 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1052 assert( (pVal->flags & MEM_RowSet)==0 );
1053 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1054 return pVal->z;
1055 }
1056 if( pVal->flags&MEM_Null ){
1057 return 0;
1058 }
1059 return valueToText(pVal, enc);
1060 }
1061
1062 /*
1063 ** Create a new sqlite3_value object.
1064 */
1065 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
1066 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
1067 if( p ){
1068 p->flags = MEM_Null;
1069 p->db = db;
1070 }
1071 return p;
1072 }
1073
1074 /*
1075 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1076 ** valueNew(). See comments above valueNew() for details.
1077 */
1078 struct ValueNewStat4Ctx {
1079 Parse *pParse;
1080 Index *pIdx;
1081 UnpackedRecord **ppRec;
1082 int iVal;
1083 };
1084
1085 /*
1086 ** Allocate and return a pointer to a new sqlite3_value object. If
1087 ** the second argument to this function is NULL, the object is allocated
1088 ** by calling sqlite3ValueNew().
1089 **
1090 ** Otherwise, if the second argument is non-zero, then this function is
1091 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1092 ** already been allocated, allocate the UnpackedRecord structure that
1093 ** that function will return to its caller here. Then return a pointer to
1094 ** an sqlite3_value within the UnpackedRecord.a[] array.
1095 */
1096 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
1097 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1098 if( p ){
1099 UnpackedRecord *pRec = p->ppRec[0];
1100
1101 if( pRec==0 ){
1102 Index *pIdx = p->pIdx; /* Index being probed */
1103 int nByte; /* Bytes of space to allocate */
1104 int i; /* Counter variable */
1105 int nCol = pIdx->nColumn; /* Number of index columns including rowid */
1106
1107 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
1108 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1109 if( pRec ){
1110 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
1111 if( pRec->pKeyInfo ){
1112 assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol );
1113 assert( pRec->pKeyInfo->enc==ENC(db) );
1114 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
1115 for(i=0; i<nCol; i++){
1116 pRec->aMem[i].flags = MEM_Null;
1117 pRec->aMem[i].db = db;
1118 }
1119 }else{
1120 sqlite3DbFree(db, pRec);
1121 pRec = 0;
1122 }
1123 }
1124 if( pRec==0 ) return 0;
1125 p->ppRec[0] = pRec;
1126 }
1127
1128 pRec->nField = p->iVal+1;
1129 return &pRec->aMem[p->iVal];
1130 }
1131 #else
1132 UNUSED_PARAMETER(p);
1133 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1134 return sqlite3ValueNew(db);
1135 }
1136
1137 /*
1138 ** The expression object indicated by the second argument is guaranteed
1139 ** to be a scalar SQL function. If
1140 **
1141 ** * all function arguments are SQL literals,
1142 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1143 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1144 **
1145 ** then this routine attempts to invoke the SQL function. Assuming no
1146 ** error occurs, output parameter (*ppVal) is set to point to a value
1147 ** object containing the result before returning SQLITE_OK.
1148 **
1149 ** Affinity aff is applied to the result of the function before returning.
1150 ** If the result is a text value, the sqlite3_value object uses encoding
1151 ** enc.
1152 **
1153 ** If the conditions above are not met, this function returns SQLITE_OK
1154 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1155 ** NULL and an SQLite error code returned.
1156 */
1157 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1158 static int valueFromFunction(
1159 sqlite3 *db, /* The database connection */
1160 Expr *p, /* The expression to evaluate */
1161 u8 enc, /* Encoding to use */
1162 u8 aff, /* Affinity to use */
1163 sqlite3_value **ppVal, /* Write the new value here */
1164 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1165 ){
1166 sqlite3_context ctx; /* Context object for function invocation */
1167 sqlite3_value **apVal = 0; /* Function arguments */
1168 int nVal = 0; /* Size of apVal[] array */
1169 FuncDef *pFunc = 0; /* Function definition */
1170 sqlite3_value *pVal = 0; /* New value */
1171 int rc = SQLITE_OK; /* Return code */
1172 ExprList *pList = 0; /* Function arguments */
1173 int i; /* Iterator variable */
1174
1175 assert( pCtx!=0 );
1176 assert( (p->flags & EP_TokenOnly)==0 );
1177 pList = p->x.pList;
1178 if( pList ) nVal = pList->nExpr;
1179 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
1180 assert( pFunc );
1181 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
1182 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1183 ){
1184 return SQLITE_OK;
1185 }
1186
1187 if( pList ){
1188 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1189 if( apVal==0 ){
1190 rc = SQLITE_NOMEM_BKPT;
1191 goto value_from_function_out;
1192 }
1193 for(i=0; i<nVal; i++){
1194 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
1195 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
1196 }
1197 }
1198
1199 pVal = valueNew(db, pCtx);
1200 if( pVal==0 ){
1201 rc = SQLITE_NOMEM_BKPT;
1202 goto value_from_function_out;
1203 }
1204
1205 assert( pCtx->pParse->rc==SQLITE_OK );
1206 memset(&ctx, 0, sizeof(ctx));
1207 ctx.pOut = pVal;
1208 ctx.pFunc = pFunc;
1209 pFunc->xSFunc(&ctx, nVal, apVal);
1210 if( ctx.isError ){
1211 rc = ctx.isError;
1212 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
1213 }else{
1214 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
1215 assert( rc==SQLITE_OK );
1216 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1217 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1218 rc = SQLITE_TOOBIG;
1219 pCtx->pParse->nErr++;
1220 }
1221 }
1222 pCtx->pParse->rc = rc;
1223
1224 value_from_function_out:
1225 if( rc!=SQLITE_OK ){
1226 pVal = 0;
1227 }
1228 if( apVal ){
1229 for(i=0; i<nVal; i++){
1230 sqlite3ValueFree(apVal[i]);
1231 }
1232 sqlite3DbFree(db, apVal);
1233 }
1234
1235 *ppVal = pVal;
1236 return rc;
1237 }
1238 #else
1239 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1240 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1241
1242 /*
1243 ** Extract a value from the supplied expression in the manner described
1244 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1245 ** using valueNew().
1246 **
1247 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1248 ** has been allocated, it is freed before returning. Or, if pCtx is not
1249 ** NULL, it is assumed that the caller will free any allocated object
1250 ** in all cases.
1251 */
1252 static int valueFromExpr(
1253 sqlite3 *db, /* The database connection */
1254 Expr *pExpr, /* The expression to evaluate */
1255 u8 enc, /* Encoding to use */
1256 u8 affinity, /* Affinity to use */
1257 sqlite3_value **ppVal, /* Write the new value here */
1258 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1259 ){
1260 int op;
1261 char *zVal = 0;
1262 sqlite3_value *pVal = 0;
1263 int negInt = 1;
1264 const char *zNeg = "";
1265 int rc = SQLITE_OK;
1266
1267 assert( pExpr!=0 );
1268 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
1269 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1270
1271 /* Compressed expressions only appear when parsing the DEFAULT clause
1272 ** on a table column definition, and hence only when pCtx==0. This
1273 ** check ensures that an EP_TokenOnly expression is never passed down
1274 ** into valueFromFunction(). */
1275 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1276
1277 if( op==TK_CAST ){
1278 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1279 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
1280 testcase( rc!=SQLITE_OK );
1281 if( *ppVal ){
1282 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
1283 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
1284 }
1285 return rc;
1286 }
1287
1288 /* Handle negative integers in a single step. This is needed in the
1289 ** case when the value is -9223372036854775808.
1290 */
1291 if( op==TK_UMINUS
1292 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1293 pExpr = pExpr->pLeft;
1294 op = pExpr->op;
1295 negInt = -1;
1296 zNeg = "-";
1297 }
1298
1299 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1300 pVal = valueNew(db, pCtx);
1301 if( pVal==0 ) goto no_mem;
1302 if( ExprHasProperty(pExpr, EP_IntValue) ){
1303 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1304 }else{
1305 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1306 if( zVal==0 ) goto no_mem;
1307 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1308 }
1309 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
1310 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1311 }else{
1312 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1313 }
1314 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
1315 if( enc!=SQLITE_UTF8 ){
1316 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1317 }
1318 }else if( op==TK_UMINUS ) {
1319 /* This branch happens for multiple negative signs. Ex: -(-5) */
1320 if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal)
1321 && pVal!=0
1322 ){
1323 sqlite3VdbeMemNumerify(pVal);
1324 if( pVal->flags & MEM_Real ){
1325 pVal->u.r = -pVal->u.r;
1326 }else if( pVal->u.i==SMALLEST_INT64 ){
1327 pVal->u.r = -(double)SMALLEST_INT64;
1328 MemSetTypeFlag(pVal, MEM_Real);
1329 }else{
1330 pVal->u.i = -pVal->u.i;
1331 }
1332 sqlite3ValueApplyAffinity(pVal, affinity, enc);
1333 }
1334 }else if( op==TK_NULL ){
1335 pVal = valueNew(db, pCtx);
1336 if( pVal==0 ) goto no_mem;
1337 sqlite3VdbeMemNumerify(pVal);
1338 }
1339 #ifndef SQLITE_OMIT_BLOB_LITERAL
1340 else if( op==TK_BLOB ){
1341 int nVal;
1342 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1343 assert( pExpr->u.zToken[1]=='\'' );
1344 pVal = valueNew(db, pCtx);
1345 if( !pVal ) goto no_mem;
1346 zVal = &pExpr->u.zToken[2];
1347 nVal = sqlite3Strlen30(zVal)-1;
1348 assert( zVal[nVal]=='\'' );
1349 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1350 0, SQLITE_DYNAMIC);
1351 }
1352 #endif
1353
1354 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1355 else if( op==TK_FUNCTION && pCtx!=0 ){
1356 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1357 }
1358 #endif
1359
1360 *ppVal = pVal;
1361 return rc;
1362
1363 no_mem:
1364 sqlite3OomFault(db);
1365 sqlite3DbFree(db, zVal);
1366 assert( *ppVal==0 );
1367 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1368 if( pCtx==0 ) sqlite3ValueFree(pVal);
1369 #else
1370 assert( pCtx==0 ); sqlite3ValueFree(pVal);
1371 #endif
1372 return SQLITE_NOMEM_BKPT;
1373 }
1374
1375 /*
1376 ** Create a new sqlite3_value object, containing the value of pExpr.
1377 **
1378 ** This only works for very simple expressions that consist of one constant
1379 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1380 ** be converted directly into a value, then the value is allocated and
1381 ** a pointer written to *ppVal. The caller is responsible for deallocating
1382 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1383 ** cannot be converted to a value, then *ppVal is set to NULL.
1384 */
1385 int sqlite3ValueFromExpr(
1386 sqlite3 *db, /* The database connection */
1387 Expr *pExpr, /* The expression to evaluate */
1388 u8 enc, /* Encoding to use */
1389 u8 affinity, /* Affinity to use */
1390 sqlite3_value **ppVal /* Write the new value here */
1391 ){
1392 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
1393 }
1394
1395 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1396 /*
1397 ** The implementation of the sqlite_record() function. This function accepts
1398 ** a single argument of any type. The return value is a formatted database
1399 ** record (a blob) containing the argument value.
1400 **
1401 ** This is used to convert the value stored in the 'sample' column of the
1402 ** sqlite_stat3 table to the record format SQLite uses internally.
1403 */
1404 static void recordFunc(
1405 sqlite3_context *context,
1406 int argc,
1407 sqlite3_value **argv
1408 ){
1409 const int file_format = 1;
1410 u32 iSerial; /* Serial type */
1411 int nSerial; /* Bytes of space for iSerial as varint */
1412 u32 nVal; /* Bytes of space required for argv[0] */
1413 int nRet;
1414 sqlite3 *db;
1415 u8 *aRet;
1416
1417 UNUSED_PARAMETER( argc );
1418 iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal);
1419 nSerial = sqlite3VarintLen(iSerial);
1420 db = sqlite3_context_db_handle(context);
1421
1422 nRet = 1 + nSerial + nVal;
1423 aRet = sqlite3DbMallocRawNN(db, nRet);
1424 if( aRet==0 ){
1425 sqlite3_result_error_nomem(context);
1426 }else{
1427 aRet[0] = nSerial+1;
1428 putVarint32(&aRet[1], iSerial);
1429 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
1430 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
1431 sqlite3DbFree(db, aRet);
1432 }
1433 }
1434
1435 /*
1436 ** Register built-in functions used to help read ANALYZE data.
1437 */
1438 void sqlite3AnalyzeFunctions(void){
1439 static FuncDef aAnalyzeTableFuncs[] = {
1440 FUNCTION(sqlite_record, 1, 0, 0, recordFunc),
1441 };
1442 sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs));
1443 }
1444
1445 /*
1446 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1447 **
1448 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1449 ** pAlloc if one does not exist and the new value is added to the
1450 ** UnpackedRecord object.
1451 **
1452 ** A value is extracted in the following cases:
1453 **
1454 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1455 **
1456 ** * The expression is a bound variable, and this is a reprepare, or
1457 **
1458 ** * The expression is a literal value.
1459 **
1460 ** On success, *ppVal is made to point to the extracted value. The caller
1461 ** is responsible for ensuring that the value is eventually freed.
1462 */
1463 static int stat4ValueFromExpr(
1464 Parse *pParse, /* Parse context */
1465 Expr *pExpr, /* The expression to extract a value from */
1466 u8 affinity, /* Affinity to use */
1467 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
1468 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1469 ){
1470 int rc = SQLITE_OK;
1471 sqlite3_value *pVal = 0;
1472 sqlite3 *db = pParse->db;
1473
1474 /* Skip over any TK_COLLATE nodes */
1475 pExpr = sqlite3ExprSkipCollate(pExpr);
1476
1477 if( !pExpr ){
1478 pVal = valueNew(db, pAlloc);
1479 if( pVal ){
1480 sqlite3VdbeMemSetNull((Mem*)pVal);
1481 }
1482 }else if( pExpr->op==TK_VARIABLE
1483 || NEVER(pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
1484 ){
1485 Vdbe *v;
1486 int iBindVar = pExpr->iColumn;
1487 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1488 if( (v = pParse->pReprepare)!=0 ){
1489 pVal = valueNew(db, pAlloc);
1490 if( pVal ){
1491 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1492 if( rc==SQLITE_OK ){
1493 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1494 }
1495 pVal->db = pParse->db;
1496 }
1497 }
1498 }else{
1499 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1500 }
1501
1502 assert( pVal==0 || pVal->db==db );
1503 *ppVal = pVal;
1504 return rc;
1505 }
1506
1507 /*
1508 ** This function is used to allocate and populate UnpackedRecord
1509 ** structures intended to be compared against sample index keys stored
1510 ** in the sqlite_stat4 table.
1511 **
1512 ** A single call to this function populates zero or more fields of the
1513 ** record starting with field iVal (fields are numbered from left to
1514 ** right starting with 0). A single field is populated if:
1515 **
1516 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1517 **
1518 ** * The expression is a bound variable, and this is a reprepare, or
1519 **
1520 ** * The sqlite3ValueFromExpr() function is able to extract a value
1521 ** from the expression (i.e. the expression is a literal value).
1522 **
1523 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1524 ** vector components that match either of the two latter criteria listed
1525 ** above.
1526 **
1527 ** Before any value is appended to the record, the affinity of the
1528 ** corresponding column within index pIdx is applied to it. Before
1529 ** this function returns, output parameter *pnExtract is set to the
1530 ** number of values appended to the record.
1531 **
1532 ** When this function is called, *ppRec must either point to an object
1533 ** allocated by an earlier call to this function, or must be NULL. If it
1534 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1535 ** is allocated (and *ppRec set to point to it) before returning.
1536 **
1537 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1538 ** error if a value cannot be extracted from pExpr. If an error does
1539 ** occur, an SQLite error code is returned.
1540 */
1541 int sqlite3Stat4ProbeSetValue(
1542 Parse *pParse, /* Parse context */
1543 Index *pIdx, /* Index being probed */
1544 UnpackedRecord **ppRec, /* IN/OUT: Probe record */
1545 Expr *pExpr, /* The expression to extract a value from */
1546 int nElem, /* Maximum number of values to append */
1547 int iVal, /* Array element to populate */
1548 int *pnExtract /* OUT: Values appended to the record */
1549 ){
1550 int rc = SQLITE_OK;
1551 int nExtract = 0;
1552
1553 if( pExpr==0 || pExpr->op!=TK_SELECT ){
1554 int i;
1555 struct ValueNewStat4Ctx alloc;
1556
1557 alloc.pParse = pParse;
1558 alloc.pIdx = pIdx;
1559 alloc.ppRec = ppRec;
1560
1561 for(i=0; i<nElem; i++){
1562 sqlite3_value *pVal = 0;
1563 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
1564 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1565 alloc.iVal = iVal+i;
1566 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1567 if( !pVal ) break;
1568 nExtract++;
1569 }
1570 }
1571
1572 *pnExtract = nExtract;
1573 return rc;
1574 }
1575
1576 /*
1577 ** Attempt to extract a value from expression pExpr using the methods
1578 ** as described for sqlite3Stat4ProbeSetValue() above.
1579 **
1580 ** If successful, set *ppVal to point to a new value object and return
1581 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1582 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1583 ** does occur, return an SQLite error code. The final value of *ppVal
1584 ** is undefined in this case.
1585 */
1586 int sqlite3Stat4ValueFromExpr(
1587 Parse *pParse, /* Parse context */
1588 Expr *pExpr, /* The expression to extract a value from */
1589 u8 affinity, /* Affinity to use */
1590 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1591 ){
1592 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1593 }
1594
1595 /*
1596 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1597 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1598 ** sqlite3_value object is allocated.
1599 **
1600 ** If *ppVal is initially NULL then the caller is responsible for
1601 ** ensuring that the value written into *ppVal is eventually freed.
1602 */
1603 int sqlite3Stat4Column(
1604 sqlite3 *db, /* Database handle */
1605 const void *pRec, /* Pointer to buffer containing record */
1606 int nRec, /* Size of buffer pRec in bytes */
1607 int iCol, /* Column to extract */
1608 sqlite3_value **ppVal /* OUT: Extracted value */
1609 ){
1610 u32 t; /* a column type code */
1611 int nHdr; /* Size of the header in the record */
1612 int iHdr; /* Next unread header byte */
1613 int iField; /* Next unread data byte */
1614 int szField; /* Size of the current data field */
1615 int i; /* Column index */
1616 u8 *a = (u8*)pRec; /* Typecast byte array */
1617 Mem *pMem = *ppVal; /* Write result into this Mem object */
1618
1619 assert( iCol>0 );
1620 iHdr = getVarint32(a, nHdr);
1621 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1622 iField = nHdr;
1623 for(i=0; i<=iCol; i++){
1624 iHdr += getVarint32(&a[iHdr], t);
1625 testcase( iHdr==nHdr );
1626 testcase( iHdr==nHdr+1 );
1627 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1628 szField = sqlite3VdbeSerialTypeLen(t);
1629 iField += szField;
1630 }
1631 testcase( iField==nRec );
1632 testcase( iField==nRec+1 );
1633 if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
1634 if( pMem==0 ){
1635 pMem = *ppVal = sqlite3ValueNew(db);
1636 if( pMem==0 ) return SQLITE_NOMEM_BKPT;
1637 }
1638 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1639 pMem->enc = ENC(db);
1640 return SQLITE_OK;
1641 }
1642
1643 /*
1644 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1645 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1646 ** the object.
1647 */
1648 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1649 if( pRec ){
1650 int i;
1651 int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField;
1652 Mem *aMem = pRec->aMem;
1653 sqlite3 *db = aMem[0].db;
1654 for(i=0; i<nCol; i++){
1655 sqlite3VdbeMemRelease(&aMem[i]);
1656 }
1657 sqlite3KeyInfoUnref(pRec->pKeyInfo);
1658 sqlite3DbFree(db, pRec);
1659 }
1660 }
1661 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1662
1663 /*
1664 ** Change the string value of an sqlite3_value object
1665 */
1666 void sqlite3ValueSetStr(
1667 sqlite3_value *v, /* Value to be set */
1668 int n, /* Length of string z */
1669 const void *z, /* Text of the new string */
1670 u8 enc, /* Encoding to use */
1671 void (*xDel)(void*) /* Destructor for the string */
1672 ){
1673 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1674 }
1675
1676 /*
1677 ** Free an sqlite3_value object
1678 */
1679 void sqlite3ValueFree(sqlite3_value *v){
1680 if( !v ) return;
1681 sqlite3VdbeMemRelease((Mem *)v);
1682 sqlite3DbFree(((Mem*)v)->db, v);
1683 }
1684
1685 /*
1686 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1687 ** sqlite3_value object assuming that it uses the encoding "enc".
1688 ** The valueBytes() routine is a helper function.
1689 */
1690 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1691 return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1692 }
1693 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1694 Mem *p = (Mem*)pVal;
1695 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1696 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1697 return p->n;
1698 }
1699 if( (p->flags & MEM_Blob)!=0 ){
1700 if( p->flags & MEM_Zero ){
1701 return p->n + p->u.nZero;
1702 }else{
1703 return p->n;
1704 }
1705 }
1706 if( p->flags & MEM_Null ) return 0;
1707 return valueBytes(pVal, enc);
1708 }
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3170000/src/vdbeblob.c ('k') | third_party/sqlite/sqlite-src-3170000/src/vdbesort.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698