OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2003 September 6 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This file contains code used for creating, destroying, and populating |
| 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) |
| 14 */ |
| 15 #include "sqliteInt.h" |
| 16 #include "vdbeInt.h" |
| 17 |
| 18 /* |
| 19 ** Create a new virtual database engine. |
| 20 */ |
| 21 Vdbe *sqlite3VdbeCreate(Parse *pParse){ |
| 22 sqlite3 *db = pParse->db; |
| 23 Vdbe *p; |
| 24 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); |
| 25 if( p==0 ) return 0; |
| 26 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); |
| 27 p->db = db; |
| 28 if( db->pVdbe ){ |
| 29 db->pVdbe->pPrev = p; |
| 30 } |
| 31 p->pNext = db->pVdbe; |
| 32 p->pPrev = 0; |
| 33 db->pVdbe = p; |
| 34 p->magic = VDBE_MAGIC_INIT; |
| 35 p->pParse = pParse; |
| 36 assert( pParse->aLabel==0 ); |
| 37 assert( pParse->nLabel==0 ); |
| 38 assert( pParse->nOpAlloc==0 ); |
| 39 assert( pParse->szOpAlloc==0 ); |
| 40 return p; |
| 41 } |
| 42 |
| 43 /* |
| 44 ** Change the error string stored in Vdbe.zErrMsg |
| 45 */ |
| 46 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ |
| 47 va_list ap; |
| 48 sqlite3DbFree(p->db, p->zErrMsg); |
| 49 va_start(ap, zFormat); |
| 50 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); |
| 51 va_end(ap); |
| 52 } |
| 53 |
| 54 /* |
| 55 ** Remember the SQL string for a prepared statement. |
| 56 */ |
| 57 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ |
| 58 assert( isPrepareV2==1 || isPrepareV2==0 ); |
| 59 if( p==0 ) return; |
| 60 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG) |
| 61 if( !isPrepareV2 ) return; |
| 62 #endif |
| 63 assert( p->zSql==0 ); |
| 64 p->zSql = sqlite3DbStrNDup(p->db, z, n); |
| 65 p->isPrepareV2 = (u8)isPrepareV2; |
| 66 } |
| 67 |
| 68 /* |
| 69 ** Swap all content between two VDBE structures. |
| 70 */ |
| 71 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ |
| 72 Vdbe tmp, *pTmp; |
| 73 char *zTmp; |
| 74 assert( pA->db==pB->db ); |
| 75 tmp = *pA; |
| 76 *pA = *pB; |
| 77 *pB = tmp; |
| 78 pTmp = pA->pNext; |
| 79 pA->pNext = pB->pNext; |
| 80 pB->pNext = pTmp; |
| 81 pTmp = pA->pPrev; |
| 82 pA->pPrev = pB->pPrev; |
| 83 pB->pPrev = pTmp; |
| 84 zTmp = pA->zSql; |
| 85 pA->zSql = pB->zSql; |
| 86 pB->zSql = zTmp; |
| 87 pB->isPrepareV2 = pA->isPrepareV2; |
| 88 } |
| 89 |
| 90 /* |
| 91 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger |
| 92 ** than its current size. nOp is guaranteed to be less than or equal |
| 93 ** to 1024/sizeof(Op). |
| 94 ** |
| 95 ** If an out-of-memory error occurs while resizing the array, return |
| 96 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain |
| 97 ** unchanged (this is so that any opcodes already allocated can be |
| 98 ** correctly deallocated along with the rest of the Vdbe). |
| 99 */ |
| 100 static int growOpArray(Vdbe *v, int nOp){ |
| 101 VdbeOp *pNew; |
| 102 Parse *p = v->pParse; |
| 103 |
| 104 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force |
| 105 ** more frequent reallocs and hence provide more opportunities for |
| 106 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used |
| 107 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array |
| 108 ** by the minimum* amount required until the size reaches 512. Normal |
| 109 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current |
| 110 ** size of the op array or add 1KB of space, whichever is smaller. */ |
| 111 #ifdef SQLITE_TEST_REALLOC_STRESS |
| 112 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp); |
| 113 #else |
| 114 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); |
| 115 UNUSED_PARAMETER(nOp); |
| 116 #endif |
| 117 |
| 118 assert( nOp<=(1024/sizeof(Op)) ); |
| 119 assert( nNew>=(p->nOpAlloc+nOp) ); |
| 120 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); |
| 121 if( pNew ){ |
| 122 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); |
| 123 p->nOpAlloc = p->szOpAlloc/sizeof(Op); |
| 124 v->aOp = pNew; |
| 125 } |
| 126 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); |
| 127 } |
| 128 |
| 129 #ifdef SQLITE_DEBUG |
| 130 /* This routine is just a convenient place to set a breakpoint that will |
| 131 ** fire after each opcode is inserted and displayed using |
| 132 ** "PRAGMA vdbe_addoptrace=on". |
| 133 */ |
| 134 static void test_addop_breakpoint(void){ |
| 135 static int n = 0; |
| 136 n++; |
| 137 } |
| 138 #endif |
| 139 |
| 140 /* |
| 141 ** Add a new instruction to the list of instructions current in the |
| 142 ** VDBE. Return the address of the new instruction. |
| 143 ** |
| 144 ** Parameters: |
| 145 ** |
| 146 ** p Pointer to the VDBE |
| 147 ** |
| 148 ** op The opcode for this instruction |
| 149 ** |
| 150 ** p1, p2, p3 Operands |
| 151 ** |
| 152 ** Use the sqlite3VdbeResolveLabel() function to fix an address and |
| 153 ** the sqlite3VdbeChangeP4() function to change the value of the P4 |
| 154 ** operand. |
| 155 */ |
| 156 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ |
| 157 assert( p->pParse->nOpAlloc<=p->nOp ); |
| 158 if( growOpArray(p, 1) ) return 1; |
| 159 assert( p->pParse->nOpAlloc>p->nOp ); |
| 160 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); |
| 161 } |
| 162 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ |
| 163 int i; |
| 164 VdbeOp *pOp; |
| 165 |
| 166 i = p->nOp; |
| 167 assert( p->magic==VDBE_MAGIC_INIT ); |
| 168 assert( op>=0 && op<0xff ); |
| 169 if( p->pParse->nOpAlloc<=i ){ |
| 170 return growOp3(p, op, p1, p2, p3); |
| 171 } |
| 172 p->nOp++; |
| 173 pOp = &p->aOp[i]; |
| 174 pOp->opcode = (u8)op; |
| 175 pOp->p5 = 0; |
| 176 pOp->p1 = p1; |
| 177 pOp->p2 = p2; |
| 178 pOp->p3 = p3; |
| 179 pOp->p4.p = 0; |
| 180 pOp->p4type = P4_NOTUSED; |
| 181 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
| 182 pOp->zComment = 0; |
| 183 #endif |
| 184 #ifdef SQLITE_DEBUG |
| 185 if( p->db->flags & SQLITE_VdbeAddopTrace ){ |
| 186 int jj, kk; |
| 187 Parse *pParse = p->pParse; |
| 188 for(jj=kk=0; jj<pParse->nColCache; jj++){ |
| 189 struct yColCache *x = pParse->aColCache + jj; |
| 190 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn); |
| 191 kk++; |
| 192 } |
| 193 if( kk ) printf("\n"); |
| 194 sqlite3VdbePrintOp(0, i, &p->aOp[i]); |
| 195 test_addop_breakpoint(); |
| 196 } |
| 197 #endif |
| 198 #ifdef VDBE_PROFILE |
| 199 pOp->cycles = 0; |
| 200 pOp->cnt = 0; |
| 201 #endif |
| 202 #ifdef SQLITE_VDBE_COVERAGE |
| 203 pOp->iSrcLine = 0; |
| 204 #endif |
| 205 return i; |
| 206 } |
| 207 int sqlite3VdbeAddOp0(Vdbe *p, int op){ |
| 208 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); |
| 209 } |
| 210 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ |
| 211 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); |
| 212 } |
| 213 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ |
| 214 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); |
| 215 } |
| 216 |
| 217 /* Generate code for an unconditional jump to instruction iDest |
| 218 */ |
| 219 int sqlite3VdbeGoto(Vdbe *p, int iDest){ |
| 220 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); |
| 221 } |
| 222 |
| 223 /* Generate code to cause the string zStr to be loaded into |
| 224 ** register iDest |
| 225 */ |
| 226 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ |
| 227 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); |
| 228 } |
| 229 |
| 230 /* |
| 231 ** Generate code that initializes multiple registers to string or integer |
| 232 ** constants. The registers begin with iDest and increase consecutively. |
| 233 ** One register is initialized for each characgter in zTypes[]. For each |
| 234 ** "s" character in zTypes[], the register is a string if the argument is |
| 235 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character |
| 236 ** in zTypes[], the register is initialized to an integer. |
| 237 */ |
| 238 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ |
| 239 va_list ap; |
| 240 int i; |
| 241 char c; |
| 242 va_start(ap, zTypes); |
| 243 for(i=0; (c = zTypes[i])!=0; i++){ |
| 244 if( c=='s' ){ |
| 245 const char *z = va_arg(ap, const char*); |
| 246 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest++, 0, z, 0); |
| 247 }else{ |
| 248 assert( c=='i' ); |
| 249 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++); |
| 250 } |
| 251 } |
| 252 va_end(ap); |
| 253 } |
| 254 |
| 255 /* |
| 256 ** Add an opcode that includes the p4 value as a pointer. |
| 257 */ |
| 258 int sqlite3VdbeAddOp4( |
| 259 Vdbe *p, /* Add the opcode to this VM */ |
| 260 int op, /* The new opcode */ |
| 261 int p1, /* The P1 operand */ |
| 262 int p2, /* The P2 operand */ |
| 263 int p3, /* The P3 operand */ |
| 264 const char *zP4, /* The P4 operand */ |
| 265 int p4type /* P4 operand type */ |
| 266 ){ |
| 267 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); |
| 268 sqlite3VdbeChangeP4(p, addr, zP4, p4type); |
| 269 return addr; |
| 270 } |
| 271 |
| 272 /* |
| 273 ** Add an opcode that includes the p4 value with a P4_INT64 or |
| 274 ** P4_REAL type. |
| 275 */ |
| 276 int sqlite3VdbeAddOp4Dup8( |
| 277 Vdbe *p, /* Add the opcode to this VM */ |
| 278 int op, /* The new opcode */ |
| 279 int p1, /* The P1 operand */ |
| 280 int p2, /* The P2 operand */ |
| 281 int p3, /* The P3 operand */ |
| 282 const u8 *zP4, /* The P4 operand */ |
| 283 int p4type /* P4 operand type */ |
| 284 ){ |
| 285 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); |
| 286 if( p4copy ) memcpy(p4copy, zP4, 8); |
| 287 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); |
| 288 } |
| 289 |
| 290 /* |
| 291 ** Add an OP_ParseSchema opcode. This routine is broken out from |
| 292 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees |
| 293 ** as having been used. |
| 294 ** |
| 295 ** The zWhere string must have been obtained from sqlite3_malloc(). |
| 296 ** This routine will take ownership of the allocated memory. |
| 297 */ |
| 298 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){ |
| 299 int j; |
| 300 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); |
| 301 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); |
| 302 } |
| 303 |
| 304 /* |
| 305 ** Add an opcode that includes the p4 value as an integer. |
| 306 */ |
| 307 int sqlite3VdbeAddOp4Int( |
| 308 Vdbe *p, /* Add the opcode to this VM */ |
| 309 int op, /* The new opcode */ |
| 310 int p1, /* The P1 operand */ |
| 311 int p2, /* The P2 operand */ |
| 312 int p3, /* The P3 operand */ |
| 313 int p4 /* The P4 operand as an integer */ |
| 314 ){ |
| 315 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); |
| 316 if( p->db->mallocFailed==0 ){ |
| 317 VdbeOp *pOp = &p->aOp[addr]; |
| 318 pOp->p4type = P4_INT32; |
| 319 pOp->p4.i = p4; |
| 320 } |
| 321 return addr; |
| 322 } |
| 323 |
| 324 /* Insert the end of a co-routine |
| 325 */ |
| 326 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ |
| 327 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); |
| 328 |
| 329 /* Clear the temporary register cache, thereby ensuring that each |
| 330 ** co-routine has its own independent set of registers, because co-routines |
| 331 ** might expect their registers to be preserved across an OP_Yield, and |
| 332 ** that could cause problems if two or more co-routines are using the same |
| 333 ** temporary register. |
| 334 */ |
| 335 v->pParse->nTempReg = 0; |
| 336 v->pParse->nRangeReg = 0; |
| 337 } |
| 338 |
| 339 /* |
| 340 ** Create a new symbolic label for an instruction that has yet to be |
| 341 ** coded. The symbolic label is really just a negative number. The |
| 342 ** label can be used as the P2 value of an operation. Later, when |
| 343 ** the label is resolved to a specific address, the VDBE will scan |
| 344 ** through its operation list and change all values of P2 which match |
| 345 ** the label into the resolved address. |
| 346 ** |
| 347 ** The VDBE knows that a P2 value is a label because labels are |
| 348 ** always negative and P2 values are suppose to be non-negative. |
| 349 ** Hence, a negative P2 value is a label that has yet to be resolved. |
| 350 ** |
| 351 ** Zero is returned if a malloc() fails. |
| 352 */ |
| 353 int sqlite3VdbeMakeLabel(Vdbe *v){ |
| 354 Parse *p = v->pParse; |
| 355 int i = p->nLabel++; |
| 356 assert( v->magic==VDBE_MAGIC_INIT ); |
| 357 if( (i & (i-1))==0 ){ |
| 358 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, |
| 359 (i*2+1)*sizeof(p->aLabel[0])); |
| 360 } |
| 361 if( p->aLabel ){ |
| 362 p->aLabel[i] = -1; |
| 363 } |
| 364 return ADDR(i); |
| 365 } |
| 366 |
| 367 /* |
| 368 ** Resolve label "x" to be the address of the next instruction to |
| 369 ** be inserted. The parameter "x" must have been obtained from |
| 370 ** a prior call to sqlite3VdbeMakeLabel(). |
| 371 */ |
| 372 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ |
| 373 Parse *p = v->pParse; |
| 374 int j = ADDR(x); |
| 375 assert( v->magic==VDBE_MAGIC_INIT ); |
| 376 assert( j<p->nLabel ); |
| 377 assert( j>=0 ); |
| 378 if( p->aLabel ){ |
| 379 p->aLabel[j] = v->nOp; |
| 380 } |
| 381 } |
| 382 |
| 383 /* |
| 384 ** Mark the VDBE as one that can only be run one time. |
| 385 */ |
| 386 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ |
| 387 p->runOnlyOnce = 1; |
| 388 } |
| 389 |
| 390 /* |
| 391 ** Mark the VDBE as one that can only be run multiple times. |
| 392 */ |
| 393 void sqlite3VdbeReusable(Vdbe *p){ |
| 394 p->runOnlyOnce = 0; |
| 395 } |
| 396 |
| 397 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ |
| 398 |
| 399 /* |
| 400 ** The following type and function are used to iterate through all opcodes |
| 401 ** in a Vdbe main program and each of the sub-programs (triggers) it may |
| 402 ** invoke directly or indirectly. It should be used as follows: |
| 403 ** |
| 404 ** Op *pOp; |
| 405 ** VdbeOpIter sIter; |
| 406 ** |
| 407 ** memset(&sIter, 0, sizeof(sIter)); |
| 408 ** sIter.v = v; // v is of type Vdbe* |
| 409 ** while( (pOp = opIterNext(&sIter)) ){ |
| 410 ** // Do something with pOp |
| 411 ** } |
| 412 ** sqlite3DbFree(v->db, sIter.apSub); |
| 413 ** |
| 414 */ |
| 415 typedef struct VdbeOpIter VdbeOpIter; |
| 416 struct VdbeOpIter { |
| 417 Vdbe *v; /* Vdbe to iterate through the opcodes of */ |
| 418 SubProgram **apSub; /* Array of subprograms */ |
| 419 int nSub; /* Number of entries in apSub */ |
| 420 int iAddr; /* Address of next instruction to return */ |
| 421 int iSub; /* 0 = main program, 1 = first sub-program etc. */ |
| 422 }; |
| 423 static Op *opIterNext(VdbeOpIter *p){ |
| 424 Vdbe *v = p->v; |
| 425 Op *pRet = 0; |
| 426 Op *aOp; |
| 427 int nOp; |
| 428 |
| 429 if( p->iSub<=p->nSub ){ |
| 430 |
| 431 if( p->iSub==0 ){ |
| 432 aOp = v->aOp; |
| 433 nOp = v->nOp; |
| 434 }else{ |
| 435 aOp = p->apSub[p->iSub-1]->aOp; |
| 436 nOp = p->apSub[p->iSub-1]->nOp; |
| 437 } |
| 438 assert( p->iAddr<nOp ); |
| 439 |
| 440 pRet = &aOp[p->iAddr]; |
| 441 p->iAddr++; |
| 442 if( p->iAddr==nOp ){ |
| 443 p->iSub++; |
| 444 p->iAddr = 0; |
| 445 } |
| 446 |
| 447 if( pRet->p4type==P4_SUBPROGRAM ){ |
| 448 int nByte = (p->nSub+1)*sizeof(SubProgram*); |
| 449 int j; |
| 450 for(j=0; j<p->nSub; j++){ |
| 451 if( p->apSub[j]==pRet->p4.pProgram ) break; |
| 452 } |
| 453 if( j==p->nSub ){ |
| 454 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); |
| 455 if( !p->apSub ){ |
| 456 pRet = 0; |
| 457 }else{ |
| 458 p->apSub[p->nSub++] = pRet->p4.pProgram; |
| 459 } |
| 460 } |
| 461 } |
| 462 } |
| 463 |
| 464 return pRet; |
| 465 } |
| 466 |
| 467 /* |
| 468 ** Check if the program stored in the VM associated with pParse may |
| 469 ** throw an ABORT exception (causing the statement, but not entire transaction |
| 470 ** to be rolled back). This condition is true if the main program or any |
| 471 ** sub-programs contains any of the following: |
| 472 ** |
| 473 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. |
| 474 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. |
| 475 ** * OP_Destroy |
| 476 ** * OP_VUpdate |
| 477 ** * OP_VRename |
| 478 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) |
| 479 ** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...) |
| 480 ** |
| 481 ** Then check that the value of Parse.mayAbort is true if an |
| 482 ** ABORT may be thrown, or false otherwise. Return true if it does |
| 483 ** match, or false otherwise. This function is intended to be used as |
| 484 ** part of an assert statement in the compiler. Similar to: |
| 485 ** |
| 486 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); |
| 487 */ |
| 488 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ |
| 489 int hasAbort = 0; |
| 490 int hasFkCounter = 0; |
| 491 int hasCreateTable = 0; |
| 492 int hasInitCoroutine = 0; |
| 493 Op *pOp; |
| 494 VdbeOpIter sIter; |
| 495 memset(&sIter, 0, sizeof(sIter)); |
| 496 sIter.v = v; |
| 497 |
| 498 while( (pOp = opIterNext(&sIter))!=0 ){ |
| 499 int opcode = pOp->opcode; |
| 500 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename |
| 501 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) |
| 502 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) |
| 503 ){ |
| 504 hasAbort = 1; |
| 505 break; |
| 506 } |
| 507 if( opcode==OP_CreateTable ) hasCreateTable = 1; |
| 508 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; |
| 509 #ifndef SQLITE_OMIT_FOREIGN_KEY |
| 510 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ |
| 511 hasFkCounter = 1; |
| 512 } |
| 513 #endif |
| 514 } |
| 515 sqlite3DbFree(v->db, sIter.apSub); |
| 516 |
| 517 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. |
| 518 ** If malloc failed, then the while() loop above may not have iterated |
| 519 ** through all opcodes and hasAbort may be set incorrectly. Return |
| 520 ** true for this case to prevent the assert() in the callers frame |
| 521 ** from failing. */ |
| 522 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter |
| 523 || (hasCreateTable && hasInitCoroutine) ); |
| 524 } |
| 525 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ |
| 526 |
| 527 /* |
| 528 ** This routine is called after all opcodes have been inserted. It loops |
| 529 ** through all the opcodes and fixes up some details. |
| 530 ** |
| 531 ** (1) For each jump instruction with a negative P2 value (a label) |
| 532 ** resolve the P2 value to an actual address. |
| 533 ** |
| 534 ** (2) Compute the maximum number of arguments used by any SQL function |
| 535 ** and store that value in *pMaxFuncArgs. |
| 536 ** |
| 537 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately |
| 538 ** indicate what the prepared statement actually does. |
| 539 ** |
| 540 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it. |
| 541 ** |
| 542 ** (5) Reclaim the memory allocated for storing labels. |
| 543 ** |
| 544 ** This routine will only function correctly if the mkopcodeh.tcl generator |
| 545 ** script numbers the opcodes correctly. Changes to this routine must be |
| 546 ** coordinated with changes to mkopcodeh.tcl. |
| 547 */ |
| 548 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ |
| 549 int nMaxArgs = *pMaxFuncArgs; |
| 550 Op *pOp; |
| 551 Parse *pParse = p->pParse; |
| 552 int *aLabel = pParse->aLabel; |
| 553 p->readOnly = 1; |
| 554 p->bIsReader = 0; |
| 555 pOp = &p->aOp[p->nOp-1]; |
| 556 while(1){ |
| 557 |
| 558 /* Only JUMP opcodes and the short list of special opcodes in the switch |
| 559 ** below need to be considered. The mkopcodeh.tcl generator script groups |
| 560 ** all these opcodes together near the front of the opcode list. Skip |
| 561 ** any opcode that does not need processing by virtual of the fact that |
| 562 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. |
| 563 */ |
| 564 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ |
| 565 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing |
| 566 ** cases from this switch! */ |
| 567 switch( pOp->opcode ){ |
| 568 case OP_Transaction: { |
| 569 if( pOp->p2!=0 ) p->readOnly = 0; |
| 570 /* fall thru */ |
| 571 } |
| 572 case OP_AutoCommit: |
| 573 case OP_Savepoint: { |
| 574 p->bIsReader = 1; |
| 575 break; |
| 576 } |
| 577 #ifndef SQLITE_OMIT_WAL |
| 578 case OP_Checkpoint: |
| 579 #endif |
| 580 case OP_Vacuum: |
| 581 case OP_JournalMode: { |
| 582 p->readOnly = 0; |
| 583 p->bIsReader = 1; |
| 584 break; |
| 585 } |
| 586 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 587 case OP_VUpdate: { |
| 588 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; |
| 589 break; |
| 590 } |
| 591 case OP_VFilter: { |
| 592 int n; |
| 593 assert( (pOp - p->aOp) >= 3 ); |
| 594 assert( pOp[-1].opcode==OP_Integer ); |
| 595 n = pOp[-1].p1; |
| 596 if( n>nMaxArgs ) nMaxArgs = n; |
| 597 break; |
| 598 } |
| 599 #endif |
| 600 case OP_Next: |
| 601 case OP_NextIfOpen: |
| 602 case OP_SorterNext: { |
| 603 pOp->p4.xAdvance = sqlite3BtreeNext; |
| 604 pOp->p4type = P4_ADVANCE; |
| 605 break; |
| 606 } |
| 607 case OP_Prev: |
| 608 case OP_PrevIfOpen: { |
| 609 pOp->p4.xAdvance = sqlite3BtreePrevious; |
| 610 pOp->p4type = P4_ADVANCE; |
| 611 break; |
| 612 } |
| 613 } |
| 614 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 && pOp->p2<0 ){ |
| 615 assert( ADDR(pOp->p2)<pParse->nLabel ); |
| 616 pOp->p2 = aLabel[ADDR(pOp->p2)]; |
| 617 } |
| 618 } |
| 619 if( pOp==p->aOp ) break; |
| 620 pOp--; |
| 621 } |
| 622 sqlite3DbFree(p->db, pParse->aLabel); |
| 623 pParse->aLabel = 0; |
| 624 pParse->nLabel = 0; |
| 625 *pMaxFuncArgs = nMaxArgs; |
| 626 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); |
| 627 } |
| 628 |
| 629 /* |
| 630 ** Return the address of the next instruction to be inserted. |
| 631 */ |
| 632 int sqlite3VdbeCurrentAddr(Vdbe *p){ |
| 633 assert( p->magic==VDBE_MAGIC_INIT ); |
| 634 return p->nOp; |
| 635 } |
| 636 |
| 637 /* |
| 638 ** Verify that at least N opcode slots are available in p without |
| 639 ** having to malloc for more space (except when compiled using |
| 640 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing |
| 641 ** to verify that certain calls to sqlite3VdbeAddOpList() can never |
| 642 ** fail due to a OOM fault and hence that the return value from |
| 643 ** sqlite3VdbeAddOpList() will always be non-NULL. |
| 644 */ |
| 645 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) |
| 646 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ |
| 647 assert( p->nOp + N <= p->pParse->nOpAlloc ); |
| 648 } |
| 649 #endif |
| 650 |
| 651 /* |
| 652 ** Verify that the VM passed as the only argument does not contain |
| 653 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used |
| 654 ** by code in pragma.c to ensure that the implementation of certain |
| 655 ** pragmas comports with the flags specified in the mkpragmatab.tcl |
| 656 ** script. |
| 657 */ |
| 658 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) |
| 659 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ |
| 660 int i; |
| 661 for(i=0; i<p->nOp; i++){ |
| 662 assert( p->aOp[i].opcode!=OP_ResultRow ); |
| 663 } |
| 664 } |
| 665 #endif |
| 666 |
| 667 /* |
| 668 ** This function returns a pointer to the array of opcodes associated with |
| 669 ** the Vdbe passed as the first argument. It is the callers responsibility |
| 670 ** to arrange for the returned array to be eventually freed using the |
| 671 ** vdbeFreeOpArray() function. |
| 672 ** |
| 673 ** Before returning, *pnOp is set to the number of entries in the returned |
| 674 ** array. Also, *pnMaxArg is set to the larger of its current value and |
| 675 ** the number of entries in the Vdbe.apArg[] array required to execute the |
| 676 ** returned program. |
| 677 */ |
| 678 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ |
| 679 VdbeOp *aOp = p->aOp; |
| 680 assert( aOp && !p->db->mallocFailed ); |
| 681 |
| 682 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ |
| 683 assert( DbMaskAllZero(p->btreeMask) ); |
| 684 |
| 685 resolveP2Values(p, pnMaxArg); |
| 686 *pnOp = p->nOp; |
| 687 p->aOp = 0; |
| 688 return aOp; |
| 689 } |
| 690 |
| 691 /* |
| 692 ** Add a whole list of operations to the operation stack. Return a |
| 693 ** pointer to the first operation inserted. |
| 694 ** |
| 695 ** Non-zero P2 arguments to jump instructions are automatically adjusted |
| 696 ** so that the jump target is relative to the first operation inserted. |
| 697 */ |
| 698 VdbeOp *sqlite3VdbeAddOpList( |
| 699 Vdbe *p, /* Add opcodes to the prepared statement */ |
| 700 int nOp, /* Number of opcodes to add */ |
| 701 VdbeOpList const *aOp, /* The opcodes to be added */ |
| 702 int iLineno /* Source-file line number of first opcode */ |
| 703 ){ |
| 704 int i; |
| 705 VdbeOp *pOut, *pFirst; |
| 706 assert( nOp>0 ); |
| 707 assert( p->magic==VDBE_MAGIC_INIT ); |
| 708 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){ |
| 709 return 0; |
| 710 } |
| 711 pFirst = pOut = &p->aOp[p->nOp]; |
| 712 for(i=0; i<nOp; i++, aOp++, pOut++){ |
| 713 pOut->opcode = aOp->opcode; |
| 714 pOut->p1 = aOp->p1; |
| 715 pOut->p2 = aOp->p2; |
| 716 assert( aOp->p2>=0 ); |
| 717 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ |
| 718 pOut->p2 += p->nOp; |
| 719 } |
| 720 pOut->p3 = aOp->p3; |
| 721 pOut->p4type = P4_NOTUSED; |
| 722 pOut->p4.p = 0; |
| 723 pOut->p5 = 0; |
| 724 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
| 725 pOut->zComment = 0; |
| 726 #endif |
| 727 #ifdef SQLITE_VDBE_COVERAGE |
| 728 pOut->iSrcLine = iLineno+i; |
| 729 #else |
| 730 (void)iLineno; |
| 731 #endif |
| 732 #ifdef SQLITE_DEBUG |
| 733 if( p->db->flags & SQLITE_VdbeAddopTrace ){ |
| 734 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); |
| 735 } |
| 736 #endif |
| 737 } |
| 738 p->nOp += nOp; |
| 739 return pFirst; |
| 740 } |
| 741 |
| 742 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) |
| 743 /* |
| 744 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). |
| 745 */ |
| 746 void sqlite3VdbeScanStatus( |
| 747 Vdbe *p, /* VM to add scanstatus() to */ |
| 748 int addrExplain, /* Address of OP_Explain (or 0) */ |
| 749 int addrLoop, /* Address of loop counter */ |
| 750 int addrVisit, /* Address of rows visited counter */ |
| 751 LogEst nEst, /* Estimated number of output rows */ |
| 752 const char *zName /* Name of table or index being scanned */ |
| 753 ){ |
| 754 int nByte = (p->nScan+1) * sizeof(ScanStatus); |
| 755 ScanStatus *aNew; |
| 756 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); |
| 757 if( aNew ){ |
| 758 ScanStatus *pNew = &aNew[p->nScan++]; |
| 759 pNew->addrExplain = addrExplain; |
| 760 pNew->addrLoop = addrLoop; |
| 761 pNew->addrVisit = addrVisit; |
| 762 pNew->nEst = nEst; |
| 763 pNew->zName = sqlite3DbStrDup(p->db, zName); |
| 764 p->aScan = aNew; |
| 765 } |
| 766 } |
| 767 #endif |
| 768 |
| 769 |
| 770 /* |
| 771 ** Change the value of the opcode, or P1, P2, P3, or P5 operands |
| 772 ** for a specific instruction. |
| 773 */ |
| 774 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){ |
| 775 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; |
| 776 } |
| 777 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){ |
| 778 sqlite3VdbeGetOp(p,addr)->p1 = val; |
| 779 } |
| 780 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){ |
| 781 sqlite3VdbeGetOp(p,addr)->p2 = val; |
| 782 } |
| 783 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){ |
| 784 sqlite3VdbeGetOp(p,addr)->p3 = val; |
| 785 } |
| 786 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ |
| 787 assert( p->nOp>0 || p->db->mallocFailed ); |
| 788 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; |
| 789 } |
| 790 |
| 791 /* |
| 792 ** Change the P2 operand of instruction addr so that it points to |
| 793 ** the address of the next instruction to be coded. |
| 794 */ |
| 795 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ |
| 796 sqlite3VdbeChangeP2(p, addr, p->nOp); |
| 797 } |
| 798 |
| 799 |
| 800 /* |
| 801 ** If the input FuncDef structure is ephemeral, then free it. If |
| 802 ** the FuncDef is not ephermal, then do nothing. |
| 803 */ |
| 804 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ |
| 805 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ |
| 806 sqlite3DbFree(db, pDef); |
| 807 } |
| 808 } |
| 809 |
| 810 static void vdbeFreeOpArray(sqlite3 *, Op *, int); |
| 811 |
| 812 /* |
| 813 ** Delete a P4 value if necessary. |
| 814 */ |
| 815 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ |
| 816 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); |
| 817 sqlite3DbFree(db, p); |
| 818 } |
| 819 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ |
| 820 freeEphemeralFunction(db, p->pFunc); |
| 821 sqlite3DbFree(db, p); |
| 822 } |
| 823 static void freeP4(sqlite3 *db, int p4type, void *p4){ |
| 824 assert( db ); |
| 825 switch( p4type ){ |
| 826 case P4_FUNCCTX: { |
| 827 freeP4FuncCtx(db, (sqlite3_context*)p4); |
| 828 break; |
| 829 } |
| 830 case P4_REAL: |
| 831 case P4_INT64: |
| 832 case P4_DYNAMIC: |
| 833 case P4_INTARRAY: { |
| 834 sqlite3DbFree(db, p4); |
| 835 break; |
| 836 } |
| 837 case P4_KEYINFO: { |
| 838 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); |
| 839 break; |
| 840 } |
| 841 #ifdef SQLITE_ENABLE_CURSOR_HINTS |
| 842 case P4_EXPR: { |
| 843 sqlite3ExprDelete(db, (Expr*)p4); |
| 844 break; |
| 845 } |
| 846 #endif |
| 847 case P4_FUNCDEF: { |
| 848 freeEphemeralFunction(db, (FuncDef*)p4); |
| 849 break; |
| 850 } |
| 851 case P4_MEM: { |
| 852 if( db->pnBytesFreed==0 ){ |
| 853 sqlite3ValueFree((sqlite3_value*)p4); |
| 854 }else{ |
| 855 freeP4Mem(db, (Mem*)p4); |
| 856 } |
| 857 break; |
| 858 } |
| 859 case P4_VTAB : { |
| 860 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); |
| 861 break; |
| 862 } |
| 863 } |
| 864 } |
| 865 |
| 866 /* |
| 867 ** Free the space allocated for aOp and any p4 values allocated for the |
| 868 ** opcodes contained within. If aOp is not NULL it is assumed to contain |
| 869 ** nOp entries. |
| 870 */ |
| 871 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ |
| 872 if( aOp ){ |
| 873 Op *pOp; |
| 874 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ |
| 875 if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p); |
| 876 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
| 877 sqlite3DbFree(db, pOp->zComment); |
| 878 #endif |
| 879 } |
| 880 } |
| 881 sqlite3DbFree(db, aOp); |
| 882 } |
| 883 |
| 884 /* |
| 885 ** Link the SubProgram object passed as the second argument into the linked |
| 886 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program |
| 887 ** objects when the VM is no longer required. |
| 888 */ |
| 889 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ |
| 890 p->pNext = pVdbe->pProgram; |
| 891 pVdbe->pProgram = p; |
| 892 } |
| 893 |
| 894 /* |
| 895 ** Change the opcode at addr into OP_Noop |
| 896 */ |
| 897 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ |
| 898 VdbeOp *pOp; |
| 899 if( p->db->mallocFailed ) return 0; |
| 900 assert( addr>=0 && addr<p->nOp ); |
| 901 pOp = &p->aOp[addr]; |
| 902 freeP4(p->db, pOp->p4type, pOp->p4.p); |
| 903 pOp->p4type = P4_NOTUSED; |
| 904 pOp->p4.z = 0; |
| 905 pOp->opcode = OP_Noop; |
| 906 return 1; |
| 907 } |
| 908 |
| 909 /* |
| 910 ** If the last opcode is "op" and it is not a jump destination, |
| 911 ** then remove it. Return true if and only if an opcode was removed. |
| 912 */ |
| 913 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ |
| 914 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ |
| 915 return sqlite3VdbeChangeToNoop(p, p->nOp-1); |
| 916 }else{ |
| 917 return 0; |
| 918 } |
| 919 } |
| 920 |
| 921 /* |
| 922 ** Change the value of the P4 operand for a specific instruction. |
| 923 ** This routine is useful when a large program is loaded from a |
| 924 ** static array using sqlite3VdbeAddOpList but we want to make a |
| 925 ** few minor changes to the program. |
| 926 ** |
| 927 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of |
| 928 ** the string is made into memory obtained from sqlite3_malloc(). |
| 929 ** A value of n==0 means copy bytes of zP4 up to and including the |
| 930 ** first null byte. If n>0 then copy n+1 bytes of zP4. |
| 931 ** |
| 932 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points |
| 933 ** to a string or structure that is guaranteed to exist for the lifetime of |
| 934 ** the Vdbe. In these cases we can just copy the pointer. |
| 935 ** |
| 936 ** If addr<0 then change P4 on the most recently inserted instruction. |
| 937 */ |
| 938 static void SQLITE_NOINLINE vdbeChangeP4Full( |
| 939 Vdbe *p, |
| 940 Op *pOp, |
| 941 const char *zP4, |
| 942 int n |
| 943 ){ |
| 944 if( pOp->p4type ){ |
| 945 freeP4(p->db, pOp->p4type, pOp->p4.p); |
| 946 pOp->p4type = 0; |
| 947 pOp->p4.p = 0; |
| 948 } |
| 949 if( n<0 ){ |
| 950 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); |
| 951 }else{ |
| 952 if( n==0 ) n = sqlite3Strlen30(zP4); |
| 953 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); |
| 954 pOp->p4type = P4_DYNAMIC; |
| 955 } |
| 956 } |
| 957 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ |
| 958 Op *pOp; |
| 959 sqlite3 *db; |
| 960 assert( p!=0 ); |
| 961 db = p->db; |
| 962 assert( p->magic==VDBE_MAGIC_INIT ); |
| 963 assert( p->aOp!=0 || db->mallocFailed ); |
| 964 if( db->mallocFailed ){ |
| 965 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); |
| 966 return; |
| 967 } |
| 968 assert( p->nOp>0 ); |
| 969 assert( addr<p->nOp ); |
| 970 if( addr<0 ){ |
| 971 addr = p->nOp - 1; |
| 972 } |
| 973 pOp = &p->aOp[addr]; |
| 974 if( n>=0 || pOp->p4type ){ |
| 975 vdbeChangeP4Full(p, pOp, zP4, n); |
| 976 return; |
| 977 } |
| 978 if( n==P4_INT32 ){ |
| 979 /* Note: this cast is safe, because the origin data point was an int |
| 980 ** that was cast to a (const char *). */ |
| 981 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); |
| 982 pOp->p4type = P4_INT32; |
| 983 }else if( zP4!=0 ){ |
| 984 assert( n<0 ); |
| 985 pOp->p4.p = (void*)zP4; |
| 986 pOp->p4type = (signed char)n; |
| 987 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); |
| 988 } |
| 989 } |
| 990 |
| 991 /* |
| 992 ** Change the P4 operand of the most recently coded instruction |
| 993 ** to the value defined by the arguments. This is a high-speed |
| 994 ** version of sqlite3VdbeChangeP4(). |
| 995 ** |
| 996 ** The P4 operand must not have been previously defined. And the new |
| 997 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of |
| 998 ** those cases. |
| 999 */ |
| 1000 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ |
| 1001 VdbeOp *pOp; |
| 1002 assert( n!=P4_INT32 && n!=P4_VTAB ); |
| 1003 assert( n<=0 ); |
| 1004 if( p->db->mallocFailed ){ |
| 1005 freeP4(p->db, n, pP4); |
| 1006 }else{ |
| 1007 assert( pP4!=0 ); |
| 1008 assert( p->nOp>0 ); |
| 1009 pOp = &p->aOp[p->nOp-1]; |
| 1010 assert( pOp->p4type==P4_NOTUSED ); |
| 1011 pOp->p4type = n; |
| 1012 pOp->p4.p = pP4; |
| 1013 } |
| 1014 } |
| 1015 |
| 1016 /* |
| 1017 ** Set the P4 on the most recently added opcode to the KeyInfo for the |
| 1018 ** index given. |
| 1019 */ |
| 1020 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ |
| 1021 Vdbe *v = pParse->pVdbe; |
| 1022 KeyInfo *pKeyInfo; |
| 1023 assert( v!=0 ); |
| 1024 assert( pIdx!=0 ); |
| 1025 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); |
| 1026 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); |
| 1027 } |
| 1028 |
| 1029 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
| 1030 /* |
| 1031 ** Change the comment on the most recently coded instruction. Or |
| 1032 ** insert a No-op and add the comment to that new instruction. This |
| 1033 ** makes the code easier to read during debugging. None of this happens |
| 1034 ** in a production build. |
| 1035 */ |
| 1036 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ |
| 1037 assert( p->nOp>0 || p->aOp==0 ); |
| 1038 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); |
| 1039 if( p->nOp ){ |
| 1040 assert( p->aOp ); |
| 1041 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); |
| 1042 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); |
| 1043 } |
| 1044 } |
| 1045 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ |
| 1046 va_list ap; |
| 1047 if( p ){ |
| 1048 va_start(ap, zFormat); |
| 1049 vdbeVComment(p, zFormat, ap); |
| 1050 va_end(ap); |
| 1051 } |
| 1052 } |
| 1053 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ |
| 1054 va_list ap; |
| 1055 if( p ){ |
| 1056 sqlite3VdbeAddOp0(p, OP_Noop); |
| 1057 va_start(ap, zFormat); |
| 1058 vdbeVComment(p, zFormat, ap); |
| 1059 va_end(ap); |
| 1060 } |
| 1061 } |
| 1062 #endif /* NDEBUG */ |
| 1063 |
| 1064 #ifdef SQLITE_VDBE_COVERAGE |
| 1065 /* |
| 1066 ** Set the value if the iSrcLine field for the previously coded instruction. |
| 1067 */ |
| 1068 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ |
| 1069 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine; |
| 1070 } |
| 1071 #endif /* SQLITE_VDBE_COVERAGE */ |
| 1072 |
| 1073 /* |
| 1074 ** Return the opcode for a given address. If the address is -1, then |
| 1075 ** return the most recently inserted opcode. |
| 1076 ** |
| 1077 ** If a memory allocation error has occurred prior to the calling of this |
| 1078 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode |
| 1079 ** is readable but not writable, though it is cast to a writable value. |
| 1080 ** The return of a dummy opcode allows the call to continue functioning |
| 1081 ** after an OOM fault without having to check to see if the return from |
| 1082 ** this routine is a valid pointer. But because the dummy.opcode is 0, |
| 1083 ** dummy will never be written to. This is verified by code inspection and |
| 1084 ** by running with Valgrind. |
| 1085 */ |
| 1086 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ |
| 1087 /* C89 specifies that the constant "dummy" will be initialized to all |
| 1088 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ |
| 1089 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ |
| 1090 assert( p->magic==VDBE_MAGIC_INIT ); |
| 1091 if( addr<0 ){ |
| 1092 addr = p->nOp - 1; |
| 1093 } |
| 1094 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); |
| 1095 if( p->db->mallocFailed ){ |
| 1096 return (VdbeOp*)&dummy; |
| 1097 }else{ |
| 1098 return &p->aOp[addr]; |
| 1099 } |
| 1100 } |
| 1101 |
| 1102 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) |
| 1103 /* |
| 1104 ** Return an integer value for one of the parameters to the opcode pOp |
| 1105 ** determined by character c. |
| 1106 */ |
| 1107 static int translateP(char c, const Op *pOp){ |
| 1108 if( c=='1' ) return pOp->p1; |
| 1109 if( c=='2' ) return pOp->p2; |
| 1110 if( c=='3' ) return pOp->p3; |
| 1111 if( c=='4' ) return pOp->p4.i; |
| 1112 return pOp->p5; |
| 1113 } |
| 1114 |
| 1115 /* |
| 1116 ** Compute a string for the "comment" field of a VDBE opcode listing. |
| 1117 ** |
| 1118 ** The Synopsis: field in comments in the vdbe.c source file gets converted |
| 1119 ** to an extra string that is appended to the sqlite3OpcodeName(). In the |
| 1120 ** absence of other comments, this synopsis becomes the comment on the opcode. |
| 1121 ** Some translation occurs: |
| 1122 ** |
| 1123 ** "PX" -> "r[X]" |
| 1124 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 |
| 1125 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 |
| 1126 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x |
| 1127 */ |
| 1128 static int displayComment( |
| 1129 const Op *pOp, /* The opcode to be commented */ |
| 1130 const char *zP4, /* Previously obtained value for P4 */ |
| 1131 char *zTemp, /* Write result here */ |
| 1132 int nTemp /* Space available in zTemp[] */ |
| 1133 ){ |
| 1134 const char *zOpName; |
| 1135 const char *zSynopsis; |
| 1136 int nOpName; |
| 1137 int ii, jj; |
| 1138 char zAlt[50]; |
| 1139 zOpName = sqlite3OpcodeName(pOp->opcode); |
| 1140 nOpName = sqlite3Strlen30(zOpName); |
| 1141 if( zOpName[nOpName+1] ){ |
| 1142 int seenCom = 0; |
| 1143 char c; |
| 1144 zSynopsis = zOpName += nOpName + 1; |
| 1145 if( strncmp(zSynopsis,"IF ",3)==0 ){ |
| 1146 if( pOp->p5 & SQLITE_STOREP2 ){ |
| 1147 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3); |
| 1148 }else{ |
| 1149 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); |
| 1150 } |
| 1151 zSynopsis = zAlt; |
| 1152 } |
| 1153 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){ |
| 1154 if( c=='P' ){ |
| 1155 c = zSynopsis[++ii]; |
| 1156 if( c=='4' ){ |
| 1157 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4); |
| 1158 }else if( c=='X' ){ |
| 1159 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment); |
| 1160 seenCom = 1; |
| 1161 }else{ |
| 1162 int v1 = translateP(c, pOp); |
| 1163 int v2; |
| 1164 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1); |
| 1165 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ |
| 1166 ii += 3; |
| 1167 jj += sqlite3Strlen30(zTemp+jj); |
| 1168 v2 = translateP(zSynopsis[ii], pOp); |
| 1169 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ |
| 1170 ii += 2; |
| 1171 v2++; |
| 1172 } |
| 1173 if( v2>1 ){ |
| 1174 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1); |
| 1175 } |
| 1176 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ |
| 1177 ii += 4; |
| 1178 } |
| 1179 } |
| 1180 jj += sqlite3Strlen30(zTemp+jj); |
| 1181 }else{ |
| 1182 zTemp[jj++] = c; |
| 1183 } |
| 1184 } |
| 1185 if( !seenCom && jj<nTemp-5 && pOp->zComment ){ |
| 1186 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment); |
| 1187 jj += sqlite3Strlen30(zTemp+jj); |
| 1188 } |
| 1189 if( jj<nTemp ) zTemp[jj] = 0; |
| 1190 }else if( pOp->zComment ){ |
| 1191 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment); |
| 1192 jj = sqlite3Strlen30(zTemp); |
| 1193 }else{ |
| 1194 zTemp[0] = 0; |
| 1195 jj = 0; |
| 1196 } |
| 1197 return jj; |
| 1198 } |
| 1199 #endif /* SQLITE_DEBUG */ |
| 1200 |
| 1201 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) |
| 1202 /* |
| 1203 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text |
| 1204 ** that can be displayed in the P4 column of EXPLAIN output. |
| 1205 */ |
| 1206 static void displayP4Expr(StrAccum *p, Expr *pExpr){ |
| 1207 const char *zOp = 0; |
| 1208 switch( pExpr->op ){ |
| 1209 case TK_STRING: |
| 1210 sqlite3XPrintf(p, "%Q", pExpr->u.zToken); |
| 1211 break; |
| 1212 case TK_INTEGER: |
| 1213 sqlite3XPrintf(p, "%d", pExpr->u.iValue); |
| 1214 break; |
| 1215 case TK_NULL: |
| 1216 sqlite3XPrintf(p, "NULL"); |
| 1217 break; |
| 1218 case TK_REGISTER: { |
| 1219 sqlite3XPrintf(p, "r[%d]", pExpr->iTable); |
| 1220 break; |
| 1221 } |
| 1222 case TK_COLUMN: { |
| 1223 if( pExpr->iColumn<0 ){ |
| 1224 sqlite3XPrintf(p, "rowid"); |
| 1225 }else{ |
| 1226 sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn); |
| 1227 } |
| 1228 break; |
| 1229 } |
| 1230 case TK_LT: zOp = "LT"; break; |
| 1231 case TK_LE: zOp = "LE"; break; |
| 1232 case TK_GT: zOp = "GT"; break; |
| 1233 case TK_GE: zOp = "GE"; break; |
| 1234 case TK_NE: zOp = "NE"; break; |
| 1235 case TK_EQ: zOp = "EQ"; break; |
| 1236 case TK_IS: zOp = "IS"; break; |
| 1237 case TK_ISNOT: zOp = "ISNOT"; break; |
| 1238 case TK_AND: zOp = "AND"; break; |
| 1239 case TK_OR: zOp = "OR"; break; |
| 1240 case TK_PLUS: zOp = "ADD"; break; |
| 1241 case TK_STAR: zOp = "MUL"; break; |
| 1242 case TK_MINUS: zOp = "SUB"; break; |
| 1243 case TK_REM: zOp = "REM"; break; |
| 1244 case TK_BITAND: zOp = "BITAND"; break; |
| 1245 case TK_BITOR: zOp = "BITOR"; break; |
| 1246 case TK_SLASH: zOp = "DIV"; break; |
| 1247 case TK_LSHIFT: zOp = "LSHIFT"; break; |
| 1248 case TK_RSHIFT: zOp = "RSHIFT"; break; |
| 1249 case TK_CONCAT: zOp = "CONCAT"; break; |
| 1250 case TK_UMINUS: zOp = "MINUS"; break; |
| 1251 case TK_UPLUS: zOp = "PLUS"; break; |
| 1252 case TK_BITNOT: zOp = "BITNOT"; break; |
| 1253 case TK_NOT: zOp = "NOT"; break; |
| 1254 case TK_ISNULL: zOp = "ISNULL"; break; |
| 1255 case TK_NOTNULL: zOp = "NOTNULL"; break; |
| 1256 |
| 1257 default: |
| 1258 sqlite3XPrintf(p, "%s", "expr"); |
| 1259 break; |
| 1260 } |
| 1261 |
| 1262 if( zOp ){ |
| 1263 sqlite3XPrintf(p, "%s(", zOp); |
| 1264 displayP4Expr(p, pExpr->pLeft); |
| 1265 if( pExpr->pRight ){ |
| 1266 sqlite3StrAccumAppend(p, ",", 1); |
| 1267 displayP4Expr(p, pExpr->pRight); |
| 1268 } |
| 1269 sqlite3StrAccumAppend(p, ")", 1); |
| 1270 } |
| 1271 } |
| 1272 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ |
| 1273 |
| 1274 |
| 1275 #if VDBE_DISPLAY_P4 |
| 1276 /* |
| 1277 ** Compute a string that describes the P4 parameter for an opcode. |
| 1278 ** Use zTemp for any required temporary buffer space. |
| 1279 */ |
| 1280 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ |
| 1281 char *zP4 = zTemp; |
| 1282 StrAccum x; |
| 1283 assert( nTemp>=20 ); |
| 1284 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0); |
| 1285 switch( pOp->p4type ){ |
| 1286 case P4_KEYINFO: { |
| 1287 int j; |
| 1288 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; |
| 1289 assert( pKeyInfo->aSortOrder!=0 ); |
| 1290 sqlite3XPrintf(&x, "k(%d", pKeyInfo->nField); |
| 1291 for(j=0; j<pKeyInfo->nField; j++){ |
| 1292 CollSeq *pColl = pKeyInfo->aColl[j]; |
| 1293 const char *zColl = pColl ? pColl->zName : ""; |
| 1294 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; |
| 1295 sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl); |
| 1296 } |
| 1297 sqlite3StrAccumAppend(&x, ")", 1); |
| 1298 break; |
| 1299 } |
| 1300 #ifdef SQLITE_ENABLE_CURSOR_HINTS |
| 1301 case P4_EXPR: { |
| 1302 displayP4Expr(&x, pOp->p4.pExpr); |
| 1303 break; |
| 1304 } |
| 1305 #endif |
| 1306 case P4_COLLSEQ: { |
| 1307 CollSeq *pColl = pOp->p4.pColl; |
| 1308 sqlite3XPrintf(&x, "(%.20s)", pColl->zName); |
| 1309 break; |
| 1310 } |
| 1311 case P4_FUNCDEF: { |
| 1312 FuncDef *pDef = pOp->p4.pFunc; |
| 1313 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); |
| 1314 break; |
| 1315 } |
| 1316 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) |
| 1317 case P4_FUNCCTX: { |
| 1318 FuncDef *pDef = pOp->p4.pCtx->pFunc; |
| 1319 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg); |
| 1320 break; |
| 1321 } |
| 1322 #endif |
| 1323 case P4_INT64: { |
| 1324 sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64); |
| 1325 break; |
| 1326 } |
| 1327 case P4_INT32: { |
| 1328 sqlite3XPrintf(&x, "%d", pOp->p4.i); |
| 1329 break; |
| 1330 } |
| 1331 case P4_REAL: { |
| 1332 sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal); |
| 1333 break; |
| 1334 } |
| 1335 case P4_MEM: { |
| 1336 Mem *pMem = pOp->p4.pMem; |
| 1337 if( pMem->flags & MEM_Str ){ |
| 1338 zP4 = pMem->z; |
| 1339 }else if( pMem->flags & MEM_Int ){ |
| 1340 sqlite3XPrintf(&x, "%lld", pMem->u.i); |
| 1341 }else if( pMem->flags & MEM_Real ){ |
| 1342 sqlite3XPrintf(&x, "%.16g", pMem->u.r); |
| 1343 }else if( pMem->flags & MEM_Null ){ |
| 1344 zP4 = "NULL"; |
| 1345 }else{ |
| 1346 assert( pMem->flags & MEM_Blob ); |
| 1347 zP4 = "(blob)"; |
| 1348 } |
| 1349 break; |
| 1350 } |
| 1351 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 1352 case P4_VTAB: { |
| 1353 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; |
| 1354 sqlite3XPrintf(&x, "vtab:%p", pVtab); |
| 1355 break; |
| 1356 } |
| 1357 #endif |
| 1358 case P4_INTARRAY: { |
| 1359 int i; |
| 1360 int *ai = pOp->p4.ai; |
| 1361 int n = ai[0]; /* The first element of an INTARRAY is always the |
| 1362 ** count of the number of elements to follow */ |
| 1363 for(i=1; i<n; i++){ |
| 1364 sqlite3XPrintf(&x, ",%d", ai[i]); |
| 1365 } |
| 1366 zTemp[0] = '['; |
| 1367 sqlite3StrAccumAppend(&x, "]", 1); |
| 1368 break; |
| 1369 } |
| 1370 case P4_SUBPROGRAM: { |
| 1371 sqlite3XPrintf(&x, "program"); |
| 1372 break; |
| 1373 } |
| 1374 case P4_ADVANCE: { |
| 1375 zTemp[0] = 0; |
| 1376 break; |
| 1377 } |
| 1378 case P4_TABLE: { |
| 1379 sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName); |
| 1380 break; |
| 1381 } |
| 1382 default: { |
| 1383 zP4 = pOp->p4.z; |
| 1384 if( zP4==0 ){ |
| 1385 zP4 = zTemp; |
| 1386 zTemp[0] = 0; |
| 1387 } |
| 1388 } |
| 1389 } |
| 1390 sqlite3StrAccumFinish(&x); |
| 1391 assert( zP4!=0 ); |
| 1392 return zP4; |
| 1393 } |
| 1394 #endif /* VDBE_DISPLAY_P4 */ |
| 1395 |
| 1396 /* |
| 1397 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. |
| 1398 ** |
| 1399 ** The prepared statements need to know in advance the complete set of |
| 1400 ** attached databases that will be use. A mask of these databases |
| 1401 ** is maintained in p->btreeMask. The p->lockMask value is the subset of |
| 1402 ** p->btreeMask of databases that will require a lock. |
| 1403 */ |
| 1404 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ |
| 1405 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); |
| 1406 assert( i<(int)sizeof(p->btreeMask)*8 ); |
| 1407 DbMaskSet(p->btreeMask, i); |
| 1408 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ |
| 1409 DbMaskSet(p->lockMask, i); |
| 1410 } |
| 1411 } |
| 1412 |
| 1413 #if !defined(SQLITE_OMIT_SHARED_CACHE) |
| 1414 /* |
| 1415 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, |
| 1416 ** this routine obtains the mutex associated with each BtShared structure |
| 1417 ** that may be accessed by the VM passed as an argument. In doing so it also |
| 1418 ** sets the BtShared.db member of each of the BtShared structures, ensuring |
| 1419 ** that the correct busy-handler callback is invoked if required. |
| 1420 ** |
| 1421 ** If SQLite is not threadsafe but does support shared-cache mode, then |
| 1422 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables |
| 1423 ** of all of BtShared structures accessible via the database handle |
| 1424 ** associated with the VM. |
| 1425 ** |
| 1426 ** If SQLite is not threadsafe and does not support shared-cache mode, this |
| 1427 ** function is a no-op. |
| 1428 ** |
| 1429 ** The p->btreeMask field is a bitmask of all btrees that the prepared |
| 1430 ** statement p will ever use. Let N be the number of bits in p->btreeMask |
| 1431 ** corresponding to btrees that use shared cache. Then the runtime of |
| 1432 ** this routine is N*N. But as N is rarely more than 1, this should not |
| 1433 ** be a problem. |
| 1434 */ |
| 1435 void sqlite3VdbeEnter(Vdbe *p){ |
| 1436 int i; |
| 1437 sqlite3 *db; |
| 1438 Db *aDb; |
| 1439 int nDb; |
| 1440 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ |
| 1441 db = p->db; |
| 1442 aDb = db->aDb; |
| 1443 nDb = db->nDb; |
| 1444 for(i=0; i<nDb; i++){ |
| 1445 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ |
| 1446 sqlite3BtreeEnter(aDb[i].pBt); |
| 1447 } |
| 1448 } |
| 1449 } |
| 1450 #endif |
| 1451 |
| 1452 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 |
| 1453 /* |
| 1454 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). |
| 1455 */ |
| 1456 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ |
| 1457 int i; |
| 1458 sqlite3 *db; |
| 1459 Db *aDb; |
| 1460 int nDb; |
| 1461 db = p->db; |
| 1462 aDb = db->aDb; |
| 1463 nDb = db->nDb; |
| 1464 for(i=0; i<nDb; i++){ |
| 1465 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ |
| 1466 sqlite3BtreeLeave(aDb[i].pBt); |
| 1467 } |
| 1468 } |
| 1469 } |
| 1470 void sqlite3VdbeLeave(Vdbe *p){ |
| 1471 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ |
| 1472 vdbeLeave(p); |
| 1473 } |
| 1474 #endif |
| 1475 |
| 1476 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) |
| 1477 /* |
| 1478 ** Print a single opcode. This routine is used for debugging only. |
| 1479 */ |
| 1480 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ |
| 1481 char *zP4; |
| 1482 char zPtr[50]; |
| 1483 char zCom[100]; |
| 1484 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; |
| 1485 if( pOut==0 ) pOut = stdout; |
| 1486 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); |
| 1487 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
| 1488 displayComment(pOp, zP4, zCom, sizeof(zCom)); |
| 1489 #else |
| 1490 zCom[0] = 0; |
| 1491 #endif |
| 1492 /* NB: The sqlite3OpcodeName() function is implemented by code created |
| 1493 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the |
| 1494 ** information from the vdbe.c source text */ |
| 1495 fprintf(pOut, zFormat1, pc, |
| 1496 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, |
| 1497 zCom |
| 1498 ); |
| 1499 fflush(pOut); |
| 1500 } |
| 1501 #endif |
| 1502 |
| 1503 /* |
| 1504 ** Initialize an array of N Mem element. |
| 1505 */ |
| 1506 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ |
| 1507 while( (N--)>0 ){ |
| 1508 p->db = db; |
| 1509 p->flags = flags; |
| 1510 p->szMalloc = 0; |
| 1511 #ifdef SQLITE_DEBUG |
| 1512 p->pScopyFrom = 0; |
| 1513 #endif |
| 1514 p++; |
| 1515 } |
| 1516 } |
| 1517 |
| 1518 /* |
| 1519 ** Release an array of N Mem elements |
| 1520 */ |
| 1521 static void releaseMemArray(Mem *p, int N){ |
| 1522 if( p && N ){ |
| 1523 Mem *pEnd = &p[N]; |
| 1524 sqlite3 *db = p->db; |
| 1525 if( db->pnBytesFreed ){ |
| 1526 do{ |
| 1527 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); |
| 1528 }while( (++p)<pEnd ); |
| 1529 return; |
| 1530 } |
| 1531 do{ |
| 1532 assert( (&p[1])==pEnd || p[0].db==p[1].db ); |
| 1533 assert( sqlite3VdbeCheckMemInvariants(p) ); |
| 1534 |
| 1535 /* This block is really an inlined version of sqlite3VdbeMemRelease() |
| 1536 ** that takes advantage of the fact that the memory cell value is |
| 1537 ** being set to NULL after releasing any dynamic resources. |
| 1538 ** |
| 1539 ** The justification for duplicating code is that according to |
| 1540 ** callgrind, this causes a certain test case to hit the CPU 4.7 |
| 1541 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if |
| 1542 ** sqlite3MemRelease() were called from here. With -O2, this jumps |
| 1543 ** to 6.6 percent. The test case is inserting 1000 rows into a table |
| 1544 ** with no indexes using a single prepared INSERT statement, bind() |
| 1545 ** and reset(). Inserts are grouped into a transaction. |
| 1546 */ |
| 1547 testcase( p->flags & MEM_Agg ); |
| 1548 testcase( p->flags & MEM_Dyn ); |
| 1549 testcase( p->flags & MEM_Frame ); |
| 1550 testcase( p->flags & MEM_RowSet ); |
| 1551 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ |
| 1552 sqlite3VdbeMemRelease(p); |
| 1553 }else if( p->szMalloc ){ |
| 1554 sqlite3DbFree(db, p->zMalloc); |
| 1555 p->szMalloc = 0; |
| 1556 } |
| 1557 |
| 1558 p->flags = MEM_Undefined; |
| 1559 }while( (++p)<pEnd ); |
| 1560 } |
| 1561 } |
| 1562 |
| 1563 /* |
| 1564 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are |
| 1565 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). |
| 1566 */ |
| 1567 void sqlite3VdbeFrameDelete(VdbeFrame *p){ |
| 1568 int i; |
| 1569 Mem *aMem = VdbeFrameMem(p); |
| 1570 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; |
| 1571 for(i=0; i<p->nChildCsr; i++){ |
| 1572 sqlite3VdbeFreeCursor(p->v, apCsr[i]); |
| 1573 } |
| 1574 releaseMemArray(aMem, p->nChildMem); |
| 1575 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); |
| 1576 sqlite3DbFree(p->v->db, p); |
| 1577 } |
| 1578 |
| 1579 #ifndef SQLITE_OMIT_EXPLAIN |
| 1580 /* |
| 1581 ** Give a listing of the program in the virtual machine. |
| 1582 ** |
| 1583 ** The interface is the same as sqlite3VdbeExec(). But instead of |
| 1584 ** running the code, it invokes the callback once for each instruction. |
| 1585 ** This feature is used to implement "EXPLAIN". |
| 1586 ** |
| 1587 ** When p->explain==1, each instruction is listed. When |
| 1588 ** p->explain==2, only OP_Explain instructions are listed and these |
| 1589 ** are shown in a different format. p->explain==2 is used to implement |
| 1590 ** EXPLAIN QUERY PLAN. |
| 1591 ** |
| 1592 ** When p->explain==1, first the main program is listed, then each of |
| 1593 ** the trigger subprograms are listed one by one. |
| 1594 */ |
| 1595 int sqlite3VdbeList( |
| 1596 Vdbe *p /* The VDBE */ |
| 1597 ){ |
| 1598 int nRow; /* Stop when row count reaches this */ |
| 1599 int nSub = 0; /* Number of sub-vdbes seen so far */ |
| 1600 SubProgram **apSub = 0; /* Array of sub-vdbes */ |
| 1601 Mem *pSub = 0; /* Memory cell hold array of subprogs */ |
| 1602 sqlite3 *db = p->db; /* The database connection */ |
| 1603 int i; /* Loop counter */ |
| 1604 int rc = SQLITE_OK; /* Return code */ |
| 1605 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ |
| 1606 |
| 1607 assert( p->explain ); |
| 1608 assert( p->magic==VDBE_MAGIC_RUN ); |
| 1609 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); |
| 1610 |
| 1611 /* Even though this opcode does not use dynamic strings for |
| 1612 ** the result, result columns may become dynamic if the user calls |
| 1613 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. |
| 1614 */ |
| 1615 releaseMemArray(pMem, 8); |
| 1616 p->pResultSet = 0; |
| 1617 |
| 1618 if( p->rc==SQLITE_NOMEM_BKPT ){ |
| 1619 /* This happens if a malloc() inside a call to sqlite3_column_text() or |
| 1620 ** sqlite3_column_text16() failed. */ |
| 1621 sqlite3OomFault(db); |
| 1622 return SQLITE_ERROR; |
| 1623 } |
| 1624 |
| 1625 /* When the number of output rows reaches nRow, that means the |
| 1626 ** listing has finished and sqlite3_step() should return SQLITE_DONE. |
| 1627 ** nRow is the sum of the number of rows in the main program, plus |
| 1628 ** the sum of the number of rows in all trigger subprograms encountered |
| 1629 ** so far. The nRow value will increase as new trigger subprograms are |
| 1630 ** encountered, but p->pc will eventually catch up to nRow. |
| 1631 */ |
| 1632 nRow = p->nOp; |
| 1633 if( p->explain==1 ){ |
| 1634 /* The first 8 memory cells are used for the result set. So we will |
| 1635 ** commandeer the 9th cell to use as storage for an array of pointers |
| 1636 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 |
| 1637 ** cells. */ |
| 1638 assert( p->nMem>9 ); |
| 1639 pSub = &p->aMem[9]; |
| 1640 if( pSub->flags&MEM_Blob ){ |
| 1641 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is |
| 1642 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ |
| 1643 nSub = pSub->n/sizeof(Vdbe*); |
| 1644 apSub = (SubProgram **)pSub->z; |
| 1645 } |
| 1646 for(i=0; i<nSub; i++){ |
| 1647 nRow += apSub[i]->nOp; |
| 1648 } |
| 1649 } |
| 1650 |
| 1651 do{ |
| 1652 i = p->pc++; |
| 1653 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); |
| 1654 if( i>=nRow ){ |
| 1655 p->rc = SQLITE_OK; |
| 1656 rc = SQLITE_DONE; |
| 1657 }else if( db->u1.isInterrupted ){ |
| 1658 p->rc = SQLITE_INTERRUPT; |
| 1659 rc = SQLITE_ERROR; |
| 1660 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); |
| 1661 }else{ |
| 1662 char *zP4; |
| 1663 Op *pOp; |
| 1664 if( i<p->nOp ){ |
| 1665 /* The output line number is small enough that we are still in the |
| 1666 ** main program. */ |
| 1667 pOp = &p->aOp[i]; |
| 1668 }else{ |
| 1669 /* We are currently listing subprograms. Figure out which one and |
| 1670 ** pick up the appropriate opcode. */ |
| 1671 int j; |
| 1672 i -= p->nOp; |
| 1673 for(j=0; i>=apSub[j]->nOp; j++){ |
| 1674 i -= apSub[j]->nOp; |
| 1675 } |
| 1676 pOp = &apSub[j]->aOp[i]; |
| 1677 } |
| 1678 if( p->explain==1 ){ |
| 1679 pMem->flags = MEM_Int; |
| 1680 pMem->u.i = i; /* Program counter */ |
| 1681 pMem++; |
| 1682 |
| 1683 pMem->flags = MEM_Static|MEM_Str|MEM_Term; |
| 1684 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ |
| 1685 assert( pMem->z!=0 ); |
| 1686 pMem->n = sqlite3Strlen30(pMem->z); |
| 1687 pMem->enc = SQLITE_UTF8; |
| 1688 pMem++; |
| 1689 |
| 1690 /* When an OP_Program opcode is encounter (the only opcode that has |
| 1691 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms |
| 1692 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram |
| 1693 ** has not already been seen. |
| 1694 */ |
| 1695 if( pOp->p4type==P4_SUBPROGRAM ){ |
| 1696 int nByte = (nSub+1)*sizeof(SubProgram*); |
| 1697 int j; |
| 1698 for(j=0; j<nSub; j++){ |
| 1699 if( apSub[j]==pOp->p4.pProgram ) break; |
| 1700 } |
| 1701 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){ |
| 1702 apSub = (SubProgram **)pSub->z; |
| 1703 apSub[nSub++] = pOp->p4.pProgram; |
| 1704 pSub->flags |= MEM_Blob; |
| 1705 pSub->n = nSub*sizeof(SubProgram*); |
| 1706 } |
| 1707 } |
| 1708 } |
| 1709 |
| 1710 pMem->flags = MEM_Int; |
| 1711 pMem->u.i = pOp->p1; /* P1 */ |
| 1712 pMem++; |
| 1713 |
| 1714 pMem->flags = MEM_Int; |
| 1715 pMem->u.i = pOp->p2; /* P2 */ |
| 1716 pMem++; |
| 1717 |
| 1718 pMem->flags = MEM_Int; |
| 1719 pMem->u.i = pOp->p3; /* P3 */ |
| 1720 pMem++; |
| 1721 |
| 1722 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */ |
| 1723 assert( p->db->mallocFailed ); |
| 1724 return SQLITE_ERROR; |
| 1725 } |
| 1726 pMem->flags = MEM_Str|MEM_Term; |
| 1727 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc); |
| 1728 if( zP4!=pMem->z ){ |
| 1729 pMem->n = 0; |
| 1730 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0); |
| 1731 }else{ |
| 1732 assert( pMem->z!=0 ); |
| 1733 pMem->n = sqlite3Strlen30(pMem->z); |
| 1734 pMem->enc = SQLITE_UTF8; |
| 1735 } |
| 1736 pMem++; |
| 1737 |
| 1738 if( p->explain==1 ){ |
| 1739 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){ |
| 1740 assert( p->db->mallocFailed ); |
| 1741 return SQLITE_ERROR; |
| 1742 } |
| 1743 pMem->flags = MEM_Str|MEM_Term; |
| 1744 pMem->n = 2; |
| 1745 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ |
| 1746 pMem->enc = SQLITE_UTF8; |
| 1747 pMem++; |
| 1748 |
| 1749 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
| 1750 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){ |
| 1751 assert( p->db->mallocFailed ); |
| 1752 return SQLITE_ERROR; |
| 1753 } |
| 1754 pMem->flags = MEM_Str|MEM_Term; |
| 1755 pMem->n = displayComment(pOp, zP4, pMem->z, 500); |
| 1756 pMem->enc = SQLITE_UTF8; |
| 1757 #else |
| 1758 pMem->flags = MEM_Null; /* Comment */ |
| 1759 #endif |
| 1760 } |
| 1761 |
| 1762 p->nResColumn = 8 - 4*(p->explain-1); |
| 1763 p->pResultSet = &p->aMem[1]; |
| 1764 p->rc = SQLITE_OK; |
| 1765 rc = SQLITE_ROW; |
| 1766 } |
| 1767 return rc; |
| 1768 } |
| 1769 #endif /* SQLITE_OMIT_EXPLAIN */ |
| 1770 |
| 1771 #ifdef SQLITE_DEBUG |
| 1772 /* |
| 1773 ** Print the SQL that was used to generate a VDBE program. |
| 1774 */ |
| 1775 void sqlite3VdbePrintSql(Vdbe *p){ |
| 1776 const char *z = 0; |
| 1777 if( p->zSql ){ |
| 1778 z = p->zSql; |
| 1779 }else if( p->nOp>=1 ){ |
| 1780 const VdbeOp *pOp = &p->aOp[0]; |
| 1781 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ |
| 1782 z = pOp->p4.z; |
| 1783 while( sqlite3Isspace(*z) ) z++; |
| 1784 } |
| 1785 } |
| 1786 if( z ) printf("SQL: [%s]\n", z); |
| 1787 } |
| 1788 #endif |
| 1789 |
| 1790 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) |
| 1791 /* |
| 1792 ** Print an IOTRACE message showing SQL content. |
| 1793 */ |
| 1794 void sqlite3VdbeIOTraceSql(Vdbe *p){ |
| 1795 int nOp = p->nOp; |
| 1796 VdbeOp *pOp; |
| 1797 if( sqlite3IoTrace==0 ) return; |
| 1798 if( nOp<1 ) return; |
| 1799 pOp = &p->aOp[0]; |
| 1800 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ |
| 1801 int i, j; |
| 1802 char z[1000]; |
| 1803 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); |
| 1804 for(i=0; sqlite3Isspace(z[i]); i++){} |
| 1805 for(j=0; z[i]; i++){ |
| 1806 if( sqlite3Isspace(z[i]) ){ |
| 1807 if( z[i-1]!=' ' ){ |
| 1808 z[j++] = ' '; |
| 1809 } |
| 1810 }else{ |
| 1811 z[j++] = z[i]; |
| 1812 } |
| 1813 } |
| 1814 z[j] = 0; |
| 1815 sqlite3IoTrace("SQL %s\n", z); |
| 1816 } |
| 1817 } |
| 1818 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ |
| 1819 |
| 1820 /* An instance of this object describes bulk memory available for use |
| 1821 ** by subcomponents of a prepared statement. Space is allocated out |
| 1822 ** of a ReusableSpace object by the allocSpace() routine below. |
| 1823 */ |
| 1824 struct ReusableSpace { |
| 1825 u8 *pSpace; /* Available memory */ |
| 1826 int nFree; /* Bytes of available memory */ |
| 1827 int nNeeded; /* Total bytes that could not be allocated */ |
| 1828 }; |
| 1829 |
| 1830 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf |
| 1831 ** from the ReusableSpace object. Return a pointer to the allocated |
| 1832 ** memory on success. If insufficient memory is available in the |
| 1833 ** ReusableSpace object, increase the ReusableSpace.nNeeded |
| 1834 ** value by the amount needed and return NULL. |
| 1835 ** |
| 1836 ** If pBuf is not initially NULL, that means that the memory has already |
| 1837 ** been allocated by a prior call to this routine, so just return a copy |
| 1838 ** of pBuf and leave ReusableSpace unchanged. |
| 1839 ** |
| 1840 ** This allocator is employed to repurpose unused slots at the end of the |
| 1841 ** opcode array of prepared state for other memory needs of the prepared |
| 1842 ** statement. |
| 1843 */ |
| 1844 static void *allocSpace( |
| 1845 struct ReusableSpace *p, /* Bulk memory available for allocation */ |
| 1846 void *pBuf, /* Pointer to a prior allocation */ |
| 1847 int nByte /* Bytes of memory needed */ |
| 1848 ){ |
| 1849 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); |
| 1850 if( pBuf==0 ){ |
| 1851 nByte = ROUND8(nByte); |
| 1852 if( nByte <= p->nFree ){ |
| 1853 p->nFree -= nByte; |
| 1854 pBuf = &p->pSpace[p->nFree]; |
| 1855 }else{ |
| 1856 p->nNeeded += nByte; |
| 1857 } |
| 1858 } |
| 1859 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); |
| 1860 return pBuf; |
| 1861 } |
| 1862 |
| 1863 /* |
| 1864 ** Rewind the VDBE back to the beginning in preparation for |
| 1865 ** running it. |
| 1866 */ |
| 1867 void sqlite3VdbeRewind(Vdbe *p){ |
| 1868 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) |
| 1869 int i; |
| 1870 #endif |
| 1871 assert( p!=0 ); |
| 1872 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET ); |
| 1873 |
| 1874 /* There should be at least one opcode. |
| 1875 */ |
| 1876 assert( p->nOp>0 ); |
| 1877 |
| 1878 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ |
| 1879 p->magic = VDBE_MAGIC_RUN; |
| 1880 |
| 1881 #ifdef SQLITE_DEBUG |
| 1882 for(i=0; i<p->nMem; i++){ |
| 1883 assert( p->aMem[i].db==p->db ); |
| 1884 } |
| 1885 #endif |
| 1886 p->pc = -1; |
| 1887 p->rc = SQLITE_OK; |
| 1888 p->errorAction = OE_Abort; |
| 1889 p->nChange = 0; |
| 1890 p->cacheCtr = 1; |
| 1891 p->minWriteFileFormat = 255; |
| 1892 p->iStatement = 0; |
| 1893 p->nFkConstraint = 0; |
| 1894 #ifdef VDBE_PROFILE |
| 1895 for(i=0; i<p->nOp; i++){ |
| 1896 p->aOp[i].cnt = 0; |
| 1897 p->aOp[i].cycles = 0; |
| 1898 } |
| 1899 #endif |
| 1900 } |
| 1901 |
| 1902 /* |
| 1903 ** Prepare a virtual machine for execution for the first time after |
| 1904 ** creating the virtual machine. This involves things such |
| 1905 ** as allocating registers and initializing the program counter. |
| 1906 ** After the VDBE has be prepped, it can be executed by one or more |
| 1907 ** calls to sqlite3VdbeExec(). |
| 1908 ** |
| 1909 ** This function may be called exactly once on each virtual machine. |
| 1910 ** After this routine is called the VM has been "packaged" and is ready |
| 1911 ** to run. After this routine is called, further calls to |
| 1912 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects |
| 1913 ** the Vdbe from the Parse object that helped generate it so that the |
| 1914 ** the Vdbe becomes an independent entity and the Parse object can be |
| 1915 ** destroyed. |
| 1916 ** |
| 1917 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back |
| 1918 ** to its initial state after it has been run. |
| 1919 */ |
| 1920 void sqlite3VdbeMakeReady( |
| 1921 Vdbe *p, /* The VDBE */ |
| 1922 Parse *pParse /* Parsing context */ |
| 1923 ){ |
| 1924 sqlite3 *db; /* The database connection */ |
| 1925 int nVar; /* Number of parameters */ |
| 1926 int nMem; /* Number of VM memory registers */ |
| 1927 int nCursor; /* Number of cursors required */ |
| 1928 int nArg; /* Number of arguments in subprograms */ |
| 1929 int n; /* Loop counter */ |
| 1930 struct ReusableSpace x; /* Reusable bulk memory */ |
| 1931 |
| 1932 assert( p!=0 ); |
| 1933 assert( p->nOp>0 ); |
| 1934 assert( pParse!=0 ); |
| 1935 assert( p->magic==VDBE_MAGIC_INIT ); |
| 1936 assert( pParse==p->pParse ); |
| 1937 db = p->db; |
| 1938 assert( db->mallocFailed==0 ); |
| 1939 nVar = pParse->nVar; |
| 1940 nMem = pParse->nMem; |
| 1941 nCursor = pParse->nTab; |
| 1942 nArg = pParse->nMaxArg; |
| 1943 |
| 1944 /* Each cursor uses a memory cell. The first cursor (cursor 0) can |
| 1945 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate |
| 1946 ** space at the end of aMem[] for cursors 1 and greater. |
| 1947 ** See also: allocateCursor(). |
| 1948 */ |
| 1949 nMem += nCursor; |
| 1950 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ |
| 1951 |
| 1952 /* Figure out how much reusable memory is available at the end of the |
| 1953 ** opcode array. This extra memory will be reallocated for other elements |
| 1954 ** of the prepared statement. |
| 1955 */ |
| 1956 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ |
| 1957 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ |
| 1958 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); |
| 1959 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ |
| 1960 assert( x.nFree>=0 ); |
| 1961 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); |
| 1962 |
| 1963 resolveP2Values(p, &nArg); |
| 1964 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); |
| 1965 if( pParse->explain && nMem<10 ){ |
| 1966 nMem = 10; |
| 1967 } |
| 1968 p->expired = 0; |
| 1969 |
| 1970 /* Memory for registers, parameters, cursor, etc, is allocated in one or two |
| 1971 ** passes. On the first pass, we try to reuse unused memory at the |
| 1972 ** end of the opcode array. If we are unable to satisfy all memory |
| 1973 ** requirements by reusing the opcode array tail, then the second |
| 1974 ** pass will fill in the remainder using a fresh memory allocation. |
| 1975 ** |
| 1976 ** This two-pass approach that reuses as much memory as possible from |
| 1977 ** the leftover memory at the end of the opcode array. This can significantly |
| 1978 ** reduce the amount of memory held by a prepared statement. |
| 1979 */ |
| 1980 do { |
| 1981 x.nNeeded = 0; |
| 1982 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); |
| 1983 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); |
| 1984 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); |
| 1985 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); |
| 1986 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| 1987 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64)); |
| 1988 #endif |
| 1989 if( x.nNeeded==0 ) break; |
| 1990 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); |
| 1991 x.nFree = x.nNeeded; |
| 1992 }while( !db->mallocFailed ); |
| 1993 |
| 1994 p->pVList = pParse->pVList; |
| 1995 pParse->pVList = 0; |
| 1996 p->explain = pParse->explain; |
| 1997 if( db->mallocFailed ){ |
| 1998 p->nVar = 0; |
| 1999 p->nCursor = 0; |
| 2000 p->nMem = 0; |
| 2001 }else{ |
| 2002 p->nCursor = nCursor; |
| 2003 p->nVar = (ynVar)nVar; |
| 2004 initMemArray(p->aVar, nVar, db, MEM_Null); |
| 2005 p->nMem = nMem; |
| 2006 initMemArray(p->aMem, nMem, db, MEM_Undefined); |
| 2007 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); |
| 2008 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| 2009 memset(p->anExec, 0, p->nOp*sizeof(i64)); |
| 2010 #endif |
| 2011 } |
| 2012 sqlite3VdbeRewind(p); |
| 2013 } |
| 2014 |
| 2015 /* |
| 2016 ** Close a VDBE cursor and release all the resources that cursor |
| 2017 ** happens to hold. |
| 2018 */ |
| 2019 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ |
| 2020 if( pCx==0 ){ |
| 2021 return; |
| 2022 } |
| 2023 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE ); |
| 2024 switch( pCx->eCurType ){ |
| 2025 case CURTYPE_SORTER: { |
| 2026 sqlite3VdbeSorterClose(p->db, pCx); |
| 2027 break; |
| 2028 } |
| 2029 case CURTYPE_BTREE: { |
| 2030 if( pCx->pBtx ){ |
| 2031 sqlite3BtreeClose(pCx->pBtx); |
| 2032 /* The pCx->pCursor will be close automatically, if it exists, by |
| 2033 ** the call above. */ |
| 2034 }else{ |
| 2035 assert( pCx->uc.pCursor!=0 ); |
| 2036 sqlite3BtreeCloseCursor(pCx->uc.pCursor); |
| 2037 } |
| 2038 break; |
| 2039 } |
| 2040 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 2041 case CURTYPE_VTAB: { |
| 2042 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; |
| 2043 const sqlite3_module *pModule = pVCur->pVtab->pModule; |
| 2044 assert( pVCur->pVtab->nRef>0 ); |
| 2045 pVCur->pVtab->nRef--; |
| 2046 pModule->xClose(pVCur); |
| 2047 break; |
| 2048 } |
| 2049 #endif |
| 2050 } |
| 2051 } |
| 2052 |
| 2053 /* |
| 2054 ** Close all cursors in the current frame. |
| 2055 */ |
| 2056 static void closeCursorsInFrame(Vdbe *p){ |
| 2057 if( p->apCsr ){ |
| 2058 int i; |
| 2059 for(i=0; i<p->nCursor; i++){ |
| 2060 VdbeCursor *pC = p->apCsr[i]; |
| 2061 if( pC ){ |
| 2062 sqlite3VdbeFreeCursor(p, pC); |
| 2063 p->apCsr[i] = 0; |
| 2064 } |
| 2065 } |
| 2066 } |
| 2067 } |
| 2068 |
| 2069 /* |
| 2070 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This |
| 2071 ** is used, for example, when a trigger sub-program is halted to restore |
| 2072 ** control to the main program. |
| 2073 */ |
| 2074 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ |
| 2075 Vdbe *v = pFrame->v; |
| 2076 closeCursorsInFrame(v); |
| 2077 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| 2078 v->anExec = pFrame->anExec; |
| 2079 #endif |
| 2080 v->aOp = pFrame->aOp; |
| 2081 v->nOp = pFrame->nOp; |
| 2082 v->aMem = pFrame->aMem; |
| 2083 v->nMem = pFrame->nMem; |
| 2084 v->apCsr = pFrame->apCsr; |
| 2085 v->nCursor = pFrame->nCursor; |
| 2086 v->db->lastRowid = pFrame->lastRowid; |
| 2087 v->nChange = pFrame->nChange; |
| 2088 v->db->nChange = pFrame->nDbChange; |
| 2089 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); |
| 2090 v->pAuxData = pFrame->pAuxData; |
| 2091 pFrame->pAuxData = 0; |
| 2092 return pFrame->pc; |
| 2093 } |
| 2094 |
| 2095 /* |
| 2096 ** Close all cursors. |
| 2097 ** |
| 2098 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory |
| 2099 ** cell array. This is necessary as the memory cell array may contain |
| 2100 ** pointers to VdbeFrame objects, which may in turn contain pointers to |
| 2101 ** open cursors. |
| 2102 */ |
| 2103 static void closeAllCursors(Vdbe *p){ |
| 2104 if( p->pFrame ){ |
| 2105 VdbeFrame *pFrame; |
| 2106 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); |
| 2107 sqlite3VdbeFrameRestore(pFrame); |
| 2108 p->pFrame = 0; |
| 2109 p->nFrame = 0; |
| 2110 } |
| 2111 assert( p->nFrame==0 ); |
| 2112 closeCursorsInFrame(p); |
| 2113 if( p->aMem ){ |
| 2114 releaseMemArray(p->aMem, p->nMem); |
| 2115 } |
| 2116 while( p->pDelFrame ){ |
| 2117 VdbeFrame *pDel = p->pDelFrame; |
| 2118 p->pDelFrame = pDel->pParent; |
| 2119 sqlite3VdbeFrameDelete(pDel); |
| 2120 } |
| 2121 |
| 2122 /* Delete any auxdata allocations made by the VM */ |
| 2123 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); |
| 2124 assert( p->pAuxData==0 ); |
| 2125 } |
| 2126 |
| 2127 /* |
| 2128 ** Clean up the VM after a single run. |
| 2129 */ |
| 2130 static void Cleanup(Vdbe *p){ |
| 2131 sqlite3 *db = p->db; |
| 2132 |
| 2133 #ifdef SQLITE_DEBUG |
| 2134 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and |
| 2135 ** Vdbe.aMem[] arrays have already been cleaned up. */ |
| 2136 int i; |
| 2137 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); |
| 2138 if( p->aMem ){ |
| 2139 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); |
| 2140 } |
| 2141 #endif |
| 2142 |
| 2143 sqlite3DbFree(db, p->zErrMsg); |
| 2144 p->zErrMsg = 0; |
| 2145 p->pResultSet = 0; |
| 2146 } |
| 2147 |
| 2148 /* |
| 2149 ** Set the number of result columns that will be returned by this SQL |
| 2150 ** statement. This is now set at compile time, rather than during |
| 2151 ** execution of the vdbe program so that sqlite3_column_count() can |
| 2152 ** be called on an SQL statement before sqlite3_step(). |
| 2153 */ |
| 2154 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ |
| 2155 Mem *pColName; |
| 2156 int n; |
| 2157 sqlite3 *db = p->db; |
| 2158 |
| 2159 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); |
| 2160 sqlite3DbFree(db, p->aColName); |
| 2161 n = nResColumn*COLNAME_N; |
| 2162 p->nResColumn = (u16)nResColumn; |
| 2163 p->aColName = pColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); |
| 2164 if( p->aColName==0 ) return; |
| 2165 initMemArray(p->aColName, n, p->db, MEM_Null); |
| 2166 } |
| 2167 |
| 2168 /* |
| 2169 ** Set the name of the idx'th column to be returned by the SQL statement. |
| 2170 ** zName must be a pointer to a nul terminated string. |
| 2171 ** |
| 2172 ** This call must be made after a call to sqlite3VdbeSetNumCols(). |
| 2173 ** |
| 2174 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC |
| 2175 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed |
| 2176 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. |
| 2177 */ |
| 2178 int sqlite3VdbeSetColName( |
| 2179 Vdbe *p, /* Vdbe being configured */ |
| 2180 int idx, /* Index of column zName applies to */ |
| 2181 int var, /* One of the COLNAME_* constants */ |
| 2182 const char *zName, /* Pointer to buffer containing name */ |
| 2183 void (*xDel)(void*) /* Memory management strategy for zName */ |
| 2184 ){ |
| 2185 int rc; |
| 2186 Mem *pColName; |
| 2187 assert( idx<p->nResColumn ); |
| 2188 assert( var<COLNAME_N ); |
| 2189 if( p->db->mallocFailed ){ |
| 2190 assert( !zName || xDel!=SQLITE_DYNAMIC ); |
| 2191 return SQLITE_NOMEM_BKPT; |
| 2192 } |
| 2193 assert( p->aColName!=0 ); |
| 2194 pColName = &(p->aColName[idx+var*p->nResColumn]); |
| 2195 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); |
| 2196 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); |
| 2197 return rc; |
| 2198 } |
| 2199 |
| 2200 /* |
| 2201 ** A read or write transaction may or may not be active on database handle |
| 2202 ** db. If a transaction is active, commit it. If there is a |
| 2203 ** write-transaction spanning more than one database file, this routine |
| 2204 ** takes care of the master journal trickery. |
| 2205 */ |
| 2206 static int vdbeCommit(sqlite3 *db, Vdbe *p){ |
| 2207 int i; |
| 2208 int nTrans = 0; /* Number of databases with an active write-transaction |
| 2209 ** that are candidates for a two-phase commit using a |
| 2210 ** master-journal */ |
| 2211 int rc = SQLITE_OK; |
| 2212 int needXcommit = 0; |
| 2213 |
| 2214 #ifdef SQLITE_OMIT_VIRTUALTABLE |
| 2215 /* With this option, sqlite3VtabSync() is defined to be simply |
| 2216 ** SQLITE_OK so p is not used. |
| 2217 */ |
| 2218 UNUSED_PARAMETER(p); |
| 2219 #endif |
| 2220 |
| 2221 /* Before doing anything else, call the xSync() callback for any |
| 2222 ** virtual module tables written in this transaction. This has to |
| 2223 ** be done before determining whether a master journal file is |
| 2224 ** required, as an xSync() callback may add an attached database |
| 2225 ** to the transaction. |
| 2226 */ |
| 2227 rc = sqlite3VtabSync(db, p); |
| 2228 |
| 2229 /* This loop determines (a) if the commit hook should be invoked and |
| 2230 ** (b) how many database files have open write transactions, not |
| 2231 ** including the temp database. (b) is important because if more than |
| 2232 ** one database file has an open write transaction, a master journal |
| 2233 ** file is required for an atomic commit. |
| 2234 */ |
| 2235 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
| 2236 Btree *pBt = db->aDb[i].pBt; |
| 2237 if( sqlite3BtreeIsInTrans(pBt) ){ |
| 2238 /* Whether or not a database might need a master journal depends upon |
| 2239 ** its journal mode (among other things). This matrix determines which |
| 2240 ** journal modes use a master journal and which do not */ |
| 2241 static const u8 aMJNeeded[] = { |
| 2242 /* DELETE */ 1, |
| 2243 /* PERSIST */ 1, |
| 2244 /* OFF */ 0, |
| 2245 /* TRUNCATE */ 1, |
| 2246 /* MEMORY */ 0, |
| 2247 /* WAL */ 0 |
| 2248 }; |
| 2249 Pager *pPager; /* Pager associated with pBt */ |
| 2250 needXcommit = 1; |
| 2251 sqlite3BtreeEnter(pBt); |
| 2252 pPager = sqlite3BtreePager(pBt); |
| 2253 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF |
| 2254 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] |
| 2255 ){ |
| 2256 assert( i!=1 ); |
| 2257 nTrans++; |
| 2258 } |
| 2259 rc = sqlite3PagerExclusiveLock(pPager); |
| 2260 sqlite3BtreeLeave(pBt); |
| 2261 } |
| 2262 } |
| 2263 if( rc!=SQLITE_OK ){ |
| 2264 return rc; |
| 2265 } |
| 2266 |
| 2267 /* If there are any write-transactions at all, invoke the commit hook */ |
| 2268 if( needXcommit && db->xCommitCallback ){ |
| 2269 rc = db->xCommitCallback(db->pCommitArg); |
| 2270 if( rc ){ |
| 2271 return SQLITE_CONSTRAINT_COMMITHOOK; |
| 2272 } |
| 2273 } |
| 2274 |
| 2275 /* The simple case - no more than one database file (not counting the |
| 2276 ** TEMP database) has a transaction active. There is no need for the |
| 2277 ** master-journal. |
| 2278 ** |
| 2279 ** If the return value of sqlite3BtreeGetFilename() is a zero length |
| 2280 ** string, it means the main database is :memory: or a temp file. In |
| 2281 ** that case we do not support atomic multi-file commits, so use the |
| 2282 ** simple case then too. |
| 2283 */ |
| 2284 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) |
| 2285 || nTrans<=1 |
| 2286 ){ |
| 2287 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
| 2288 Btree *pBt = db->aDb[i].pBt; |
| 2289 if( pBt ){ |
| 2290 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); |
| 2291 } |
| 2292 } |
| 2293 |
| 2294 /* Do the commit only if all databases successfully complete phase 1. |
| 2295 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an |
| 2296 ** IO error while deleting or truncating a journal file. It is unlikely, |
| 2297 ** but could happen. In this case abandon processing and return the error. |
| 2298 */ |
| 2299 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
| 2300 Btree *pBt = db->aDb[i].pBt; |
| 2301 if( pBt ){ |
| 2302 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); |
| 2303 } |
| 2304 } |
| 2305 if( rc==SQLITE_OK ){ |
| 2306 sqlite3VtabCommit(db); |
| 2307 } |
| 2308 } |
| 2309 |
| 2310 /* The complex case - There is a multi-file write-transaction active. |
| 2311 ** This requires a master journal file to ensure the transaction is |
| 2312 ** committed atomically. |
| 2313 */ |
| 2314 #ifndef SQLITE_OMIT_DISKIO |
| 2315 else{ |
| 2316 sqlite3_vfs *pVfs = db->pVfs; |
| 2317 char *zMaster = 0; /* File-name for the master journal */ |
| 2318 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); |
| 2319 sqlite3_file *pMaster = 0; |
| 2320 i64 offset = 0; |
| 2321 int res; |
| 2322 int retryCount = 0; |
| 2323 int nMainFile; |
| 2324 |
| 2325 /* Select a master journal file name */ |
| 2326 nMainFile = sqlite3Strlen30(zMainFile); |
| 2327 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile); |
| 2328 if( zMaster==0 ) return SQLITE_NOMEM_BKPT; |
| 2329 do { |
| 2330 u32 iRandom; |
| 2331 if( retryCount ){ |
| 2332 if( retryCount>100 ){ |
| 2333 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster); |
| 2334 sqlite3OsDelete(pVfs, zMaster, 0); |
| 2335 break; |
| 2336 }else if( retryCount==1 ){ |
| 2337 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster); |
| 2338 } |
| 2339 } |
| 2340 retryCount++; |
| 2341 sqlite3_randomness(sizeof(iRandom), &iRandom); |
| 2342 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X", |
| 2343 (iRandom>>8)&0xffffff, iRandom&0xff); |
| 2344 /* The antipenultimate character of the master journal name must |
| 2345 ** be "9" to avoid name collisions when using 8+3 filenames. */ |
| 2346 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' ); |
| 2347 sqlite3FileSuffix3(zMainFile, zMaster); |
| 2348 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); |
| 2349 }while( rc==SQLITE_OK && res ); |
| 2350 if( rc==SQLITE_OK ){ |
| 2351 /* Open the master journal. */ |
| 2352 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, |
| 2353 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| |
| 2354 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 |
| 2355 ); |
| 2356 } |
| 2357 if( rc!=SQLITE_OK ){ |
| 2358 sqlite3DbFree(db, zMaster); |
| 2359 return rc; |
| 2360 } |
| 2361 |
| 2362 /* Write the name of each database file in the transaction into the new |
| 2363 ** master journal file. If an error occurs at this point close |
| 2364 ** and delete the master journal file. All the individual journal files |
| 2365 ** still have 'null' as the master journal pointer, so they will roll |
| 2366 ** back independently if a failure occurs. |
| 2367 */ |
| 2368 for(i=0; i<db->nDb; i++){ |
| 2369 Btree *pBt = db->aDb[i].pBt; |
| 2370 if( sqlite3BtreeIsInTrans(pBt) ){ |
| 2371 char const *zFile = sqlite3BtreeGetJournalname(pBt); |
| 2372 if( zFile==0 ){ |
| 2373 continue; /* Ignore TEMP and :memory: databases */ |
| 2374 } |
| 2375 assert( zFile[0]!=0 ); |
| 2376 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); |
| 2377 offset += sqlite3Strlen30(zFile)+1; |
| 2378 if( rc!=SQLITE_OK ){ |
| 2379 sqlite3OsCloseFree(pMaster); |
| 2380 sqlite3OsDelete(pVfs, zMaster, 0); |
| 2381 sqlite3DbFree(db, zMaster); |
| 2382 return rc; |
| 2383 } |
| 2384 } |
| 2385 } |
| 2386 |
| 2387 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device |
| 2388 ** flag is set this is not required. |
| 2389 */ |
| 2390 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) |
| 2391 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) |
| 2392 ){ |
| 2393 sqlite3OsCloseFree(pMaster); |
| 2394 sqlite3OsDelete(pVfs, zMaster, 0); |
| 2395 sqlite3DbFree(db, zMaster); |
| 2396 return rc; |
| 2397 } |
| 2398 |
| 2399 /* Sync all the db files involved in the transaction. The same call |
| 2400 ** sets the master journal pointer in each individual journal. If |
| 2401 ** an error occurs here, do not delete the master journal file. |
| 2402 ** |
| 2403 ** If the error occurs during the first call to |
| 2404 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the |
| 2405 ** master journal file will be orphaned. But we cannot delete it, |
| 2406 ** in case the master journal file name was written into the journal |
| 2407 ** file before the failure occurred. |
| 2408 */ |
| 2409 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
| 2410 Btree *pBt = db->aDb[i].pBt; |
| 2411 if( pBt ){ |
| 2412 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); |
| 2413 } |
| 2414 } |
| 2415 sqlite3OsCloseFree(pMaster); |
| 2416 assert( rc!=SQLITE_BUSY ); |
| 2417 if( rc!=SQLITE_OK ){ |
| 2418 sqlite3DbFree(db, zMaster); |
| 2419 return rc; |
| 2420 } |
| 2421 |
| 2422 /* Delete the master journal file. This commits the transaction. After |
| 2423 ** doing this the directory is synced again before any individual |
| 2424 ** transaction files are deleted. |
| 2425 */ |
| 2426 rc = sqlite3OsDelete(pVfs, zMaster, 1); |
| 2427 sqlite3DbFree(db, zMaster); |
| 2428 zMaster = 0; |
| 2429 if( rc ){ |
| 2430 return rc; |
| 2431 } |
| 2432 |
| 2433 /* All files and directories have already been synced, so the following |
| 2434 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and |
| 2435 ** deleting or truncating journals. If something goes wrong while |
| 2436 ** this is happening we don't really care. The integrity of the |
| 2437 ** transaction is already guaranteed, but some stray 'cold' journals |
| 2438 ** may be lying around. Returning an error code won't help matters. |
| 2439 */ |
| 2440 disable_simulated_io_errors(); |
| 2441 sqlite3BeginBenignMalloc(); |
| 2442 for(i=0; i<db->nDb; i++){ |
| 2443 Btree *pBt = db->aDb[i].pBt; |
| 2444 if( pBt ){ |
| 2445 sqlite3BtreeCommitPhaseTwo(pBt, 1); |
| 2446 } |
| 2447 } |
| 2448 sqlite3EndBenignMalloc(); |
| 2449 enable_simulated_io_errors(); |
| 2450 |
| 2451 sqlite3VtabCommit(db); |
| 2452 } |
| 2453 #endif |
| 2454 |
| 2455 return rc; |
| 2456 } |
| 2457 |
| 2458 /* |
| 2459 ** This routine checks that the sqlite3.nVdbeActive count variable |
| 2460 ** matches the number of vdbe's in the list sqlite3.pVdbe that are |
| 2461 ** currently active. An assertion fails if the two counts do not match. |
| 2462 ** This is an internal self-check only - it is not an essential processing |
| 2463 ** step. |
| 2464 ** |
| 2465 ** This is a no-op if NDEBUG is defined. |
| 2466 */ |
| 2467 #ifndef NDEBUG |
| 2468 static void checkActiveVdbeCnt(sqlite3 *db){ |
| 2469 Vdbe *p; |
| 2470 int cnt = 0; |
| 2471 int nWrite = 0; |
| 2472 int nRead = 0; |
| 2473 p = db->pVdbe; |
| 2474 while( p ){ |
| 2475 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ |
| 2476 cnt++; |
| 2477 if( p->readOnly==0 ) nWrite++; |
| 2478 if( p->bIsReader ) nRead++; |
| 2479 } |
| 2480 p = p->pNext; |
| 2481 } |
| 2482 assert( cnt==db->nVdbeActive ); |
| 2483 assert( nWrite==db->nVdbeWrite ); |
| 2484 assert( nRead==db->nVdbeRead ); |
| 2485 } |
| 2486 #else |
| 2487 #define checkActiveVdbeCnt(x) |
| 2488 #endif |
| 2489 |
| 2490 /* |
| 2491 ** If the Vdbe passed as the first argument opened a statement-transaction, |
| 2492 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or |
| 2493 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement |
| 2494 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the |
| 2495 ** statement transaction is committed. |
| 2496 ** |
| 2497 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. |
| 2498 ** Otherwise SQLITE_OK. |
| 2499 */ |
| 2500 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ |
| 2501 sqlite3 *const db = p->db; |
| 2502 int rc = SQLITE_OK; |
| 2503 int i; |
| 2504 const int iSavepoint = p->iStatement-1; |
| 2505 |
| 2506 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); |
| 2507 assert( db->nStatement>0 ); |
| 2508 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); |
| 2509 |
| 2510 for(i=0; i<db->nDb; i++){ |
| 2511 int rc2 = SQLITE_OK; |
| 2512 Btree *pBt = db->aDb[i].pBt; |
| 2513 if( pBt ){ |
| 2514 if( eOp==SAVEPOINT_ROLLBACK ){ |
| 2515 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); |
| 2516 } |
| 2517 if( rc2==SQLITE_OK ){ |
| 2518 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); |
| 2519 } |
| 2520 if( rc==SQLITE_OK ){ |
| 2521 rc = rc2; |
| 2522 } |
| 2523 } |
| 2524 } |
| 2525 db->nStatement--; |
| 2526 p->iStatement = 0; |
| 2527 |
| 2528 if( rc==SQLITE_OK ){ |
| 2529 if( eOp==SAVEPOINT_ROLLBACK ){ |
| 2530 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); |
| 2531 } |
| 2532 if( rc==SQLITE_OK ){ |
| 2533 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); |
| 2534 } |
| 2535 } |
| 2536 |
| 2537 /* If the statement transaction is being rolled back, also restore the |
| 2538 ** database handles deferred constraint counter to the value it had when |
| 2539 ** the statement transaction was opened. */ |
| 2540 if( eOp==SAVEPOINT_ROLLBACK ){ |
| 2541 db->nDeferredCons = p->nStmtDefCons; |
| 2542 db->nDeferredImmCons = p->nStmtDefImmCons; |
| 2543 } |
| 2544 return rc; |
| 2545 } |
| 2546 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ |
| 2547 if( p->db->nStatement && p->iStatement ){ |
| 2548 return vdbeCloseStatement(p, eOp); |
| 2549 } |
| 2550 return SQLITE_OK; |
| 2551 } |
| 2552 |
| 2553 |
| 2554 /* |
| 2555 ** This function is called when a transaction opened by the database |
| 2556 ** handle associated with the VM passed as an argument is about to be |
| 2557 ** committed. If there are outstanding deferred foreign key constraint |
| 2558 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. |
| 2559 ** |
| 2560 ** If there are outstanding FK violations and this function returns |
| 2561 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY |
| 2562 ** and write an error message to it. Then return SQLITE_ERROR. |
| 2563 */ |
| 2564 #ifndef SQLITE_OMIT_FOREIGN_KEY |
| 2565 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ |
| 2566 sqlite3 *db = p->db; |
| 2567 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) |
| 2568 || (!deferred && p->nFkConstraint>0) |
| 2569 ){ |
| 2570 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; |
| 2571 p->errorAction = OE_Abort; |
| 2572 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); |
| 2573 return SQLITE_ERROR; |
| 2574 } |
| 2575 return SQLITE_OK; |
| 2576 } |
| 2577 #endif |
| 2578 |
| 2579 /* |
| 2580 ** This routine is called the when a VDBE tries to halt. If the VDBE |
| 2581 ** has made changes and is in autocommit mode, then commit those |
| 2582 ** changes. If a rollback is needed, then do the rollback. |
| 2583 ** |
| 2584 ** This routine is the only way to move the state of a VM from |
| 2585 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to |
| 2586 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. |
| 2587 ** |
| 2588 ** Return an error code. If the commit could not complete because of |
| 2589 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it |
| 2590 ** means the close did not happen and needs to be repeated. |
| 2591 */ |
| 2592 int sqlite3VdbeHalt(Vdbe *p){ |
| 2593 int rc; /* Used to store transient return codes */ |
| 2594 sqlite3 *db = p->db; |
| 2595 |
| 2596 /* This function contains the logic that determines if a statement or |
| 2597 ** transaction will be committed or rolled back as a result of the |
| 2598 ** execution of this virtual machine. |
| 2599 ** |
| 2600 ** If any of the following errors occur: |
| 2601 ** |
| 2602 ** SQLITE_NOMEM |
| 2603 ** SQLITE_IOERR |
| 2604 ** SQLITE_FULL |
| 2605 ** SQLITE_INTERRUPT |
| 2606 ** |
| 2607 ** Then the internal cache might have been left in an inconsistent |
| 2608 ** state. We need to rollback the statement transaction, if there is |
| 2609 ** one, or the complete transaction if there is no statement transaction. |
| 2610 */ |
| 2611 |
| 2612 if( db->mallocFailed ){ |
| 2613 p->rc = SQLITE_NOMEM_BKPT; |
| 2614 } |
| 2615 closeAllCursors(p); |
| 2616 if( p->magic!=VDBE_MAGIC_RUN ){ |
| 2617 return SQLITE_OK; |
| 2618 } |
| 2619 checkActiveVdbeCnt(db); |
| 2620 |
| 2621 /* No commit or rollback needed if the program never started or if the |
| 2622 ** SQL statement does not read or write a database file. */ |
| 2623 if( p->pc>=0 && p->bIsReader ){ |
| 2624 int mrc; /* Primary error code from p->rc */ |
| 2625 int eStatementOp = 0; |
| 2626 int isSpecialError; /* Set to true if a 'special' error */ |
| 2627 |
| 2628 /* Lock all btrees used by the statement */ |
| 2629 sqlite3VdbeEnter(p); |
| 2630 |
| 2631 /* Check for one of the special errors */ |
| 2632 mrc = p->rc & 0xff; |
| 2633 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR |
| 2634 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; |
| 2635 if( isSpecialError ){ |
| 2636 /* If the query was read-only and the error code is SQLITE_INTERRUPT, |
| 2637 ** no rollback is necessary. Otherwise, at least a savepoint |
| 2638 ** transaction must be rolled back to restore the database to a |
| 2639 ** consistent state. |
| 2640 ** |
| 2641 ** Even if the statement is read-only, it is important to perform |
| 2642 ** a statement or transaction rollback operation. If the error |
| 2643 ** occurred while writing to the journal, sub-journal or database |
| 2644 ** file as part of an effort to free up cache space (see function |
| 2645 ** pagerStress() in pager.c), the rollback is required to restore |
| 2646 ** the pager to a consistent state. |
| 2647 */ |
| 2648 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ |
| 2649 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ |
| 2650 eStatementOp = SAVEPOINT_ROLLBACK; |
| 2651 }else{ |
| 2652 /* We are forced to roll back the active transaction. Before doing |
| 2653 ** so, abort any other statements this handle currently has active. |
| 2654 */ |
| 2655 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); |
| 2656 sqlite3CloseSavepoints(db); |
| 2657 db->autoCommit = 1; |
| 2658 p->nChange = 0; |
| 2659 } |
| 2660 } |
| 2661 } |
| 2662 |
| 2663 /* Check for immediate foreign key violations. */ |
| 2664 if( p->rc==SQLITE_OK ){ |
| 2665 sqlite3VdbeCheckFk(p, 0); |
| 2666 } |
| 2667 |
| 2668 /* If the auto-commit flag is set and this is the only active writer |
| 2669 ** VM, then we do either a commit or rollback of the current transaction. |
| 2670 ** |
| 2671 ** Note: This block also runs if one of the special errors handled |
| 2672 ** above has occurred. |
| 2673 */ |
| 2674 if( !sqlite3VtabInSync(db) |
| 2675 && db->autoCommit |
| 2676 && db->nVdbeWrite==(p->readOnly==0) |
| 2677 ){ |
| 2678 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ |
| 2679 rc = sqlite3VdbeCheckFk(p, 1); |
| 2680 if( rc!=SQLITE_OK ){ |
| 2681 if( NEVER(p->readOnly) ){ |
| 2682 sqlite3VdbeLeave(p); |
| 2683 return SQLITE_ERROR; |
| 2684 } |
| 2685 rc = SQLITE_CONSTRAINT_FOREIGNKEY; |
| 2686 }else{ |
| 2687 /* The auto-commit flag is true, the vdbe program was successful |
| 2688 ** or hit an 'OR FAIL' constraint and there are no deferred foreign |
| 2689 ** key constraints to hold up the transaction. This means a commit |
| 2690 ** is required. */ |
| 2691 rc = vdbeCommit(db, p); |
| 2692 } |
| 2693 if( rc==SQLITE_BUSY && p->readOnly ){ |
| 2694 sqlite3VdbeLeave(p); |
| 2695 return SQLITE_BUSY; |
| 2696 }else if( rc!=SQLITE_OK ){ |
| 2697 p->rc = rc; |
| 2698 sqlite3RollbackAll(db, SQLITE_OK); |
| 2699 p->nChange = 0; |
| 2700 }else{ |
| 2701 db->nDeferredCons = 0; |
| 2702 db->nDeferredImmCons = 0; |
| 2703 db->flags &= ~SQLITE_DeferFKs; |
| 2704 sqlite3CommitInternalChanges(db); |
| 2705 } |
| 2706 }else{ |
| 2707 sqlite3RollbackAll(db, SQLITE_OK); |
| 2708 p->nChange = 0; |
| 2709 } |
| 2710 db->nStatement = 0; |
| 2711 }else if( eStatementOp==0 ){ |
| 2712 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ |
| 2713 eStatementOp = SAVEPOINT_RELEASE; |
| 2714 }else if( p->errorAction==OE_Abort ){ |
| 2715 eStatementOp = SAVEPOINT_ROLLBACK; |
| 2716 }else{ |
| 2717 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); |
| 2718 sqlite3CloseSavepoints(db); |
| 2719 db->autoCommit = 1; |
| 2720 p->nChange = 0; |
| 2721 } |
| 2722 } |
| 2723 |
| 2724 /* If eStatementOp is non-zero, then a statement transaction needs to |
| 2725 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to |
| 2726 ** do so. If this operation returns an error, and the current statement |
| 2727 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the |
| 2728 ** current statement error code. |
| 2729 */ |
| 2730 if( eStatementOp ){ |
| 2731 rc = sqlite3VdbeCloseStatement(p, eStatementOp); |
| 2732 if( rc ){ |
| 2733 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ |
| 2734 p->rc = rc; |
| 2735 sqlite3DbFree(db, p->zErrMsg); |
| 2736 p->zErrMsg = 0; |
| 2737 } |
| 2738 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); |
| 2739 sqlite3CloseSavepoints(db); |
| 2740 db->autoCommit = 1; |
| 2741 p->nChange = 0; |
| 2742 } |
| 2743 } |
| 2744 |
| 2745 /* If this was an INSERT, UPDATE or DELETE and no statement transaction |
| 2746 ** has been rolled back, update the database connection change-counter. |
| 2747 */ |
| 2748 if( p->changeCntOn ){ |
| 2749 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ |
| 2750 sqlite3VdbeSetChanges(db, p->nChange); |
| 2751 }else{ |
| 2752 sqlite3VdbeSetChanges(db, 0); |
| 2753 } |
| 2754 p->nChange = 0; |
| 2755 } |
| 2756 |
| 2757 /* Release the locks */ |
| 2758 sqlite3VdbeLeave(p); |
| 2759 } |
| 2760 |
| 2761 /* We have successfully halted and closed the VM. Record this fact. */ |
| 2762 if( p->pc>=0 ){ |
| 2763 db->nVdbeActive--; |
| 2764 if( !p->readOnly ) db->nVdbeWrite--; |
| 2765 if( p->bIsReader ) db->nVdbeRead--; |
| 2766 assert( db->nVdbeActive>=db->nVdbeRead ); |
| 2767 assert( db->nVdbeRead>=db->nVdbeWrite ); |
| 2768 assert( db->nVdbeWrite>=0 ); |
| 2769 } |
| 2770 p->magic = VDBE_MAGIC_HALT; |
| 2771 checkActiveVdbeCnt(db); |
| 2772 if( db->mallocFailed ){ |
| 2773 p->rc = SQLITE_NOMEM_BKPT; |
| 2774 } |
| 2775 |
| 2776 /* If the auto-commit flag is set to true, then any locks that were held |
| 2777 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() |
| 2778 ** to invoke any required unlock-notify callbacks. |
| 2779 */ |
| 2780 if( db->autoCommit ){ |
| 2781 sqlite3ConnectionUnlocked(db); |
| 2782 } |
| 2783 |
| 2784 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); |
| 2785 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); |
| 2786 } |
| 2787 |
| 2788 |
| 2789 /* |
| 2790 ** Each VDBE holds the result of the most recent sqlite3_step() call |
| 2791 ** in p->rc. This routine sets that result back to SQLITE_OK. |
| 2792 */ |
| 2793 void sqlite3VdbeResetStepResult(Vdbe *p){ |
| 2794 p->rc = SQLITE_OK; |
| 2795 } |
| 2796 |
| 2797 /* |
| 2798 ** Copy the error code and error message belonging to the VDBE passed |
| 2799 ** as the first argument to its database handle (so that they will be |
| 2800 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). |
| 2801 ** |
| 2802 ** This function does not clear the VDBE error code or message, just |
| 2803 ** copies them to the database handle. |
| 2804 */ |
| 2805 int sqlite3VdbeTransferError(Vdbe *p){ |
| 2806 sqlite3 *db = p->db; |
| 2807 int rc = p->rc; |
| 2808 if( p->zErrMsg ){ |
| 2809 db->bBenignMalloc++; |
| 2810 sqlite3BeginBenignMalloc(); |
| 2811 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); |
| 2812 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); |
| 2813 sqlite3EndBenignMalloc(); |
| 2814 db->bBenignMalloc--; |
| 2815 db->errCode = rc; |
| 2816 }else{ |
| 2817 sqlite3Error(db, rc); |
| 2818 } |
| 2819 return rc; |
| 2820 } |
| 2821 |
| 2822 #ifdef SQLITE_ENABLE_SQLLOG |
| 2823 /* |
| 2824 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, |
| 2825 ** invoke it. |
| 2826 */ |
| 2827 static void vdbeInvokeSqllog(Vdbe *v){ |
| 2828 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ |
| 2829 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); |
| 2830 assert( v->db->init.busy==0 ); |
| 2831 if( zExpanded ){ |
| 2832 sqlite3GlobalConfig.xSqllog( |
| 2833 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 |
| 2834 ); |
| 2835 sqlite3DbFree(v->db, zExpanded); |
| 2836 } |
| 2837 } |
| 2838 } |
| 2839 #else |
| 2840 # define vdbeInvokeSqllog(x) |
| 2841 #endif |
| 2842 |
| 2843 /* |
| 2844 ** Clean up a VDBE after execution but do not delete the VDBE just yet. |
| 2845 ** Write any error messages into *pzErrMsg. Return the result code. |
| 2846 ** |
| 2847 ** After this routine is run, the VDBE should be ready to be executed |
| 2848 ** again. |
| 2849 ** |
| 2850 ** To look at it another way, this routine resets the state of the |
| 2851 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to |
| 2852 ** VDBE_MAGIC_INIT. |
| 2853 */ |
| 2854 int sqlite3VdbeReset(Vdbe *p){ |
| 2855 sqlite3 *db; |
| 2856 db = p->db; |
| 2857 |
| 2858 /* If the VM did not run to completion or if it encountered an |
| 2859 ** error, then it might not have been halted properly. So halt |
| 2860 ** it now. |
| 2861 */ |
| 2862 sqlite3VdbeHalt(p); |
| 2863 |
| 2864 /* If the VDBE has be run even partially, then transfer the error code |
| 2865 ** and error message from the VDBE into the main database structure. But |
| 2866 ** if the VDBE has just been set to run but has not actually executed any |
| 2867 ** instructions yet, leave the main database error information unchanged. |
| 2868 */ |
| 2869 if( p->pc>=0 ){ |
| 2870 vdbeInvokeSqllog(p); |
| 2871 sqlite3VdbeTransferError(p); |
| 2872 sqlite3DbFree(db, p->zErrMsg); |
| 2873 p->zErrMsg = 0; |
| 2874 if( p->runOnlyOnce ) p->expired = 1; |
| 2875 }else if( p->rc && p->expired ){ |
| 2876 /* The expired flag was set on the VDBE before the first call |
| 2877 ** to sqlite3_step(). For consistency (since sqlite3_step() was |
| 2878 ** called), set the database error in this case as well. |
| 2879 */ |
| 2880 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); |
| 2881 sqlite3DbFree(db, p->zErrMsg); |
| 2882 p->zErrMsg = 0; |
| 2883 } |
| 2884 |
| 2885 /* Reclaim all memory used by the VDBE |
| 2886 */ |
| 2887 Cleanup(p); |
| 2888 |
| 2889 /* Save profiling information from this VDBE run. |
| 2890 */ |
| 2891 #ifdef VDBE_PROFILE |
| 2892 { |
| 2893 FILE *out = fopen("vdbe_profile.out", "a"); |
| 2894 if( out ){ |
| 2895 int i; |
| 2896 fprintf(out, "---- "); |
| 2897 for(i=0; i<p->nOp; i++){ |
| 2898 fprintf(out, "%02x", p->aOp[i].opcode); |
| 2899 } |
| 2900 fprintf(out, "\n"); |
| 2901 if( p->zSql ){ |
| 2902 char c, pc = 0; |
| 2903 fprintf(out, "-- "); |
| 2904 for(i=0; (c = p->zSql[i])!=0; i++){ |
| 2905 if( pc=='\n' ) fprintf(out, "-- "); |
| 2906 putc(c, out); |
| 2907 pc = c; |
| 2908 } |
| 2909 if( pc!='\n' ) fprintf(out, "\n"); |
| 2910 } |
| 2911 for(i=0; i<p->nOp; i++){ |
| 2912 char zHdr[100]; |
| 2913 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", |
| 2914 p->aOp[i].cnt, |
| 2915 p->aOp[i].cycles, |
| 2916 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 |
| 2917 ); |
| 2918 fprintf(out, "%s", zHdr); |
| 2919 sqlite3VdbePrintOp(out, i, &p->aOp[i]); |
| 2920 } |
| 2921 fclose(out); |
| 2922 } |
| 2923 } |
| 2924 #endif |
| 2925 p->iCurrentTime = 0; |
| 2926 p->magic = VDBE_MAGIC_RESET; |
| 2927 return p->rc & db->errMask; |
| 2928 } |
| 2929 |
| 2930 /* |
| 2931 ** Clean up and delete a VDBE after execution. Return an integer which is |
| 2932 ** the result code. Write any error message text into *pzErrMsg. |
| 2933 */ |
| 2934 int sqlite3VdbeFinalize(Vdbe *p){ |
| 2935 int rc = SQLITE_OK; |
| 2936 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ |
| 2937 rc = sqlite3VdbeReset(p); |
| 2938 assert( (rc & p->db->errMask)==rc ); |
| 2939 } |
| 2940 sqlite3VdbeDelete(p); |
| 2941 return rc; |
| 2942 } |
| 2943 |
| 2944 /* |
| 2945 ** If parameter iOp is less than zero, then invoke the destructor for |
| 2946 ** all auxiliary data pointers currently cached by the VM passed as |
| 2947 ** the first argument. |
| 2948 ** |
| 2949 ** Or, if iOp is greater than or equal to zero, then the destructor is |
| 2950 ** only invoked for those auxiliary data pointers created by the user |
| 2951 ** function invoked by the OP_Function opcode at instruction iOp of |
| 2952 ** VM pVdbe, and only then if: |
| 2953 ** |
| 2954 ** * the associated function parameter is the 32nd or later (counting |
| 2955 ** from left to right), or |
| 2956 ** |
| 2957 ** * the corresponding bit in argument mask is clear (where the first |
| 2958 ** function parameter corresponds to bit 0 etc.). |
| 2959 */ |
| 2960 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ |
| 2961 while( *pp ){ |
| 2962 AuxData *pAux = *pp; |
| 2963 if( (iOp<0) |
| 2964 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg)))) |
| 2965 ){ |
| 2966 testcase( pAux->iArg==31 ); |
| 2967 if( pAux->xDelete ){ |
| 2968 pAux->xDelete(pAux->pAux); |
| 2969 } |
| 2970 *pp = pAux->pNext; |
| 2971 sqlite3DbFree(db, pAux); |
| 2972 }else{ |
| 2973 pp= &pAux->pNext; |
| 2974 } |
| 2975 } |
| 2976 } |
| 2977 |
| 2978 /* |
| 2979 ** Free all memory associated with the Vdbe passed as the second argument, |
| 2980 ** except for object itself, which is preserved. |
| 2981 ** |
| 2982 ** The difference between this function and sqlite3VdbeDelete() is that |
| 2983 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with |
| 2984 ** the database connection and frees the object itself. |
| 2985 */ |
| 2986 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ |
| 2987 SubProgram *pSub, *pNext; |
| 2988 assert( p->db==0 || p->db==db ); |
| 2989 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); |
| 2990 for(pSub=p->pProgram; pSub; pSub=pNext){ |
| 2991 pNext = pSub->pNext; |
| 2992 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); |
| 2993 sqlite3DbFree(db, pSub); |
| 2994 } |
| 2995 if( p->magic!=VDBE_MAGIC_INIT ){ |
| 2996 releaseMemArray(p->aVar, p->nVar); |
| 2997 sqlite3DbFree(db, p->pVList); |
| 2998 sqlite3DbFree(db, p->pFree); |
| 2999 } |
| 3000 vdbeFreeOpArray(db, p->aOp, p->nOp); |
| 3001 sqlite3DbFree(db, p->aColName); |
| 3002 sqlite3DbFree(db, p->zSql); |
| 3003 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| 3004 { |
| 3005 int i; |
| 3006 for(i=0; i<p->nScan; i++){ |
| 3007 sqlite3DbFree(db, p->aScan[i].zName); |
| 3008 } |
| 3009 sqlite3DbFree(db, p->aScan); |
| 3010 } |
| 3011 #endif |
| 3012 } |
| 3013 |
| 3014 /* |
| 3015 ** Delete an entire VDBE. |
| 3016 */ |
| 3017 void sqlite3VdbeDelete(Vdbe *p){ |
| 3018 sqlite3 *db; |
| 3019 |
| 3020 if( NEVER(p==0) ) return; |
| 3021 db = p->db; |
| 3022 assert( sqlite3_mutex_held(db->mutex) ); |
| 3023 sqlite3VdbeClearObject(db, p); |
| 3024 if( p->pPrev ){ |
| 3025 p->pPrev->pNext = p->pNext; |
| 3026 }else{ |
| 3027 assert( db->pVdbe==p ); |
| 3028 db->pVdbe = p->pNext; |
| 3029 } |
| 3030 if( p->pNext ){ |
| 3031 p->pNext->pPrev = p->pPrev; |
| 3032 } |
| 3033 p->magic = VDBE_MAGIC_DEAD; |
| 3034 p->db = 0; |
| 3035 sqlite3DbFree(db, p); |
| 3036 } |
| 3037 |
| 3038 /* |
| 3039 ** The cursor "p" has a pending seek operation that has not yet been |
| 3040 ** carried out. Seek the cursor now. If an error occurs, return |
| 3041 ** the appropriate error code. |
| 3042 */ |
| 3043 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){ |
| 3044 int res, rc; |
| 3045 #ifdef SQLITE_TEST |
| 3046 extern int sqlite3_search_count; |
| 3047 #endif |
| 3048 assert( p->deferredMoveto ); |
| 3049 assert( p->isTable ); |
| 3050 assert( p->eCurType==CURTYPE_BTREE ); |
| 3051 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res); |
| 3052 if( rc ) return rc; |
| 3053 if( res!=0 ) return SQLITE_CORRUPT_BKPT; |
| 3054 #ifdef SQLITE_TEST |
| 3055 sqlite3_search_count++; |
| 3056 #endif |
| 3057 p->deferredMoveto = 0; |
| 3058 p->cacheStatus = CACHE_STALE; |
| 3059 return SQLITE_OK; |
| 3060 } |
| 3061 |
| 3062 /* |
| 3063 ** Something has moved cursor "p" out of place. Maybe the row it was |
| 3064 ** pointed to was deleted out from under it. Or maybe the btree was |
| 3065 ** rebalanced. Whatever the cause, try to restore "p" to the place it |
| 3066 ** is supposed to be pointing. If the row was deleted out from under the |
| 3067 ** cursor, set the cursor to point to a NULL row. |
| 3068 */ |
| 3069 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){ |
| 3070 int isDifferentRow, rc; |
| 3071 assert( p->eCurType==CURTYPE_BTREE ); |
| 3072 assert( p->uc.pCursor!=0 ); |
| 3073 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); |
| 3074 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); |
| 3075 p->cacheStatus = CACHE_STALE; |
| 3076 if( isDifferentRow ) p->nullRow = 1; |
| 3077 return rc; |
| 3078 } |
| 3079 |
| 3080 /* |
| 3081 ** Check to ensure that the cursor is valid. Restore the cursor |
| 3082 ** if need be. Return any I/O error from the restore operation. |
| 3083 */ |
| 3084 int sqlite3VdbeCursorRestore(VdbeCursor *p){ |
| 3085 assert( p->eCurType==CURTYPE_BTREE ); |
| 3086 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ |
| 3087 return handleMovedCursor(p); |
| 3088 } |
| 3089 return SQLITE_OK; |
| 3090 } |
| 3091 |
| 3092 /* |
| 3093 ** Make sure the cursor p is ready to read or write the row to which it |
| 3094 ** was last positioned. Return an error code if an OOM fault or I/O error |
| 3095 ** prevents us from positioning the cursor to its correct position. |
| 3096 ** |
| 3097 ** If a MoveTo operation is pending on the given cursor, then do that |
| 3098 ** MoveTo now. If no move is pending, check to see if the row has been |
| 3099 ** deleted out from under the cursor and if it has, mark the row as |
| 3100 ** a NULL row. |
| 3101 ** |
| 3102 ** If the cursor is already pointing to the correct row and that row has |
| 3103 ** not been deleted out from under the cursor, then this routine is a no-op. |
| 3104 */ |
| 3105 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){ |
| 3106 VdbeCursor *p = *pp; |
| 3107 if( p->eCurType==CURTYPE_BTREE ){ |
| 3108 if( p->deferredMoveto ){ |
| 3109 int iMap; |
| 3110 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){ |
| 3111 *pp = p->pAltCursor; |
| 3112 *piCol = iMap - 1; |
| 3113 return SQLITE_OK; |
| 3114 } |
| 3115 return handleDeferredMoveto(p); |
| 3116 } |
| 3117 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ |
| 3118 return handleMovedCursor(p); |
| 3119 } |
| 3120 } |
| 3121 return SQLITE_OK; |
| 3122 } |
| 3123 |
| 3124 /* |
| 3125 ** The following functions: |
| 3126 ** |
| 3127 ** sqlite3VdbeSerialType() |
| 3128 ** sqlite3VdbeSerialTypeLen() |
| 3129 ** sqlite3VdbeSerialLen() |
| 3130 ** sqlite3VdbeSerialPut() |
| 3131 ** sqlite3VdbeSerialGet() |
| 3132 ** |
| 3133 ** encapsulate the code that serializes values for storage in SQLite |
| 3134 ** data and index records. Each serialized value consists of a |
| 3135 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned |
| 3136 ** integer, stored as a varint. |
| 3137 ** |
| 3138 ** In an SQLite index record, the serial type is stored directly before |
| 3139 ** the blob of data that it corresponds to. In a table record, all serial |
| 3140 ** types are stored at the start of the record, and the blobs of data at |
| 3141 ** the end. Hence these functions allow the caller to handle the |
| 3142 ** serial-type and data blob separately. |
| 3143 ** |
| 3144 ** The following table describes the various storage classes for data: |
| 3145 ** |
| 3146 ** serial type bytes of data type |
| 3147 ** -------------- --------------- --------------- |
| 3148 ** 0 0 NULL |
| 3149 ** 1 1 signed integer |
| 3150 ** 2 2 signed integer |
| 3151 ** 3 3 signed integer |
| 3152 ** 4 4 signed integer |
| 3153 ** 5 6 signed integer |
| 3154 ** 6 8 signed integer |
| 3155 ** 7 8 IEEE float |
| 3156 ** 8 0 Integer constant 0 |
| 3157 ** 9 0 Integer constant 1 |
| 3158 ** 10,11 reserved for expansion |
| 3159 ** N>=12 and even (N-12)/2 BLOB |
| 3160 ** N>=13 and odd (N-13)/2 text |
| 3161 ** |
| 3162 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions |
| 3163 ** of SQLite will not understand those serial types. |
| 3164 */ |
| 3165 |
| 3166 /* |
| 3167 ** Return the serial-type for the value stored in pMem. |
| 3168 */ |
| 3169 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ |
| 3170 int flags = pMem->flags; |
| 3171 u32 n; |
| 3172 |
| 3173 assert( pLen!=0 ); |
| 3174 if( flags&MEM_Null ){ |
| 3175 *pLen = 0; |
| 3176 return 0; |
| 3177 } |
| 3178 if( flags&MEM_Int ){ |
| 3179 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ |
| 3180 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) |
| 3181 i64 i = pMem->u.i; |
| 3182 u64 u; |
| 3183 if( i<0 ){ |
| 3184 u = ~i; |
| 3185 }else{ |
| 3186 u = i; |
| 3187 } |
| 3188 if( u<=127 ){ |
| 3189 if( (i&1)==i && file_format>=4 ){ |
| 3190 *pLen = 0; |
| 3191 return 8+(u32)u; |
| 3192 }else{ |
| 3193 *pLen = 1; |
| 3194 return 1; |
| 3195 } |
| 3196 } |
| 3197 if( u<=32767 ){ *pLen = 2; return 2; } |
| 3198 if( u<=8388607 ){ *pLen = 3; return 3; } |
| 3199 if( u<=2147483647 ){ *pLen = 4; return 4; } |
| 3200 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } |
| 3201 *pLen = 8; |
| 3202 return 6; |
| 3203 } |
| 3204 if( flags&MEM_Real ){ |
| 3205 *pLen = 8; |
| 3206 return 7; |
| 3207 } |
| 3208 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); |
| 3209 assert( pMem->n>=0 ); |
| 3210 n = (u32)pMem->n; |
| 3211 if( flags & MEM_Zero ){ |
| 3212 n += pMem->u.nZero; |
| 3213 } |
| 3214 *pLen = n; |
| 3215 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); |
| 3216 } |
| 3217 |
| 3218 /* |
| 3219 ** The sizes for serial types less than 128 |
| 3220 */ |
| 3221 static const u8 sqlite3SmallTypeSizes[] = { |
| 3222 /* 0 1 2 3 4 5 6 7 8 9 */ |
| 3223 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, |
| 3224 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, |
| 3225 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, |
| 3226 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, |
| 3227 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, |
| 3228 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, |
| 3229 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, |
| 3230 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, |
| 3231 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, |
| 3232 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, |
| 3233 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, |
| 3234 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, |
| 3235 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 |
| 3236 }; |
| 3237 |
| 3238 /* |
| 3239 ** Return the length of the data corresponding to the supplied serial-type. |
| 3240 */ |
| 3241 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ |
| 3242 if( serial_type>=128 ){ |
| 3243 return (serial_type-12)/2; |
| 3244 }else{ |
| 3245 assert( serial_type<12 |
| 3246 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); |
| 3247 return sqlite3SmallTypeSizes[serial_type]; |
| 3248 } |
| 3249 } |
| 3250 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ |
| 3251 assert( serial_type<128 ); |
| 3252 return sqlite3SmallTypeSizes[serial_type]; |
| 3253 } |
| 3254 |
| 3255 /* |
| 3256 ** If we are on an architecture with mixed-endian floating |
| 3257 ** points (ex: ARM7) then swap the lower 4 bytes with the |
| 3258 ** upper 4 bytes. Return the result. |
| 3259 ** |
| 3260 ** For most architectures, this is a no-op. |
| 3261 ** |
| 3262 ** (later): It is reported to me that the mixed-endian problem |
| 3263 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems |
| 3264 ** that early versions of GCC stored the two words of a 64-bit |
| 3265 ** float in the wrong order. And that error has been propagated |
| 3266 ** ever since. The blame is not necessarily with GCC, though. |
| 3267 ** GCC might have just copying the problem from a prior compiler. |
| 3268 ** I am also told that newer versions of GCC that follow a different |
| 3269 ** ABI get the byte order right. |
| 3270 ** |
| 3271 ** Developers using SQLite on an ARM7 should compile and run their |
| 3272 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG |
| 3273 ** enabled, some asserts below will ensure that the byte order of |
| 3274 ** floating point values is correct. |
| 3275 ** |
| 3276 ** (2007-08-30) Frank van Vugt has studied this problem closely |
| 3277 ** and has send his findings to the SQLite developers. Frank |
| 3278 ** writes that some Linux kernels offer floating point hardware |
| 3279 ** emulation that uses only 32-bit mantissas instead of a full |
| 3280 ** 48-bits as required by the IEEE standard. (This is the |
| 3281 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point |
| 3282 ** byte swapping becomes very complicated. To avoid problems, |
| 3283 ** the necessary byte swapping is carried out using a 64-bit integer |
| 3284 ** rather than a 64-bit float. Frank assures us that the code here |
| 3285 ** works for him. We, the developers, have no way to independently |
| 3286 ** verify this, but Frank seems to know what he is talking about |
| 3287 ** so we trust him. |
| 3288 */ |
| 3289 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT |
| 3290 static u64 floatSwap(u64 in){ |
| 3291 union { |
| 3292 u64 r; |
| 3293 u32 i[2]; |
| 3294 } u; |
| 3295 u32 t; |
| 3296 |
| 3297 u.r = in; |
| 3298 t = u.i[0]; |
| 3299 u.i[0] = u.i[1]; |
| 3300 u.i[1] = t; |
| 3301 return u.r; |
| 3302 } |
| 3303 # define swapMixedEndianFloat(X) X = floatSwap(X) |
| 3304 #else |
| 3305 # define swapMixedEndianFloat(X) |
| 3306 #endif |
| 3307 |
| 3308 /* |
| 3309 ** Write the serialized data blob for the value stored in pMem into |
| 3310 ** buf. It is assumed that the caller has allocated sufficient space. |
| 3311 ** Return the number of bytes written. |
| 3312 ** |
| 3313 ** nBuf is the amount of space left in buf[]. The caller is responsible |
| 3314 ** for allocating enough space to buf[] to hold the entire field, exclusive |
| 3315 ** of the pMem->u.nZero bytes for a MEM_Zero value. |
| 3316 ** |
| 3317 ** Return the number of bytes actually written into buf[]. The number |
| 3318 ** of bytes in the zero-filled tail is included in the return value only |
| 3319 ** if those bytes were zeroed in buf[]. |
| 3320 */ |
| 3321 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){ |
| 3322 u32 len; |
| 3323 |
| 3324 /* Integer and Real */ |
| 3325 if( serial_type<=7 && serial_type>0 ){ |
| 3326 u64 v; |
| 3327 u32 i; |
| 3328 if( serial_type==7 ){ |
| 3329 assert( sizeof(v)==sizeof(pMem->u.r) ); |
| 3330 memcpy(&v, &pMem->u.r, sizeof(v)); |
| 3331 swapMixedEndianFloat(v); |
| 3332 }else{ |
| 3333 v = pMem->u.i; |
| 3334 } |
| 3335 len = i = sqlite3SmallTypeSizes[serial_type]; |
| 3336 assert( i>0 ); |
| 3337 do{ |
| 3338 buf[--i] = (u8)(v&0xFF); |
| 3339 v >>= 8; |
| 3340 }while( i ); |
| 3341 return len; |
| 3342 } |
| 3343 |
| 3344 /* String or blob */ |
| 3345 if( serial_type>=12 ){ |
| 3346 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) |
| 3347 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); |
| 3348 len = pMem->n; |
| 3349 if( len>0 ) memcpy(buf, pMem->z, len); |
| 3350 return len; |
| 3351 } |
| 3352 |
| 3353 /* NULL or constants 0 or 1 */ |
| 3354 return 0; |
| 3355 } |
| 3356 |
| 3357 /* Input "x" is a sequence of unsigned characters that represent a |
| 3358 ** big-endian integer. Return the equivalent native integer |
| 3359 */ |
| 3360 #define ONE_BYTE_INT(x) ((i8)(x)[0]) |
| 3361 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) |
| 3362 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) |
| 3363 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) |
| 3364 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) |
| 3365 |
| 3366 /* |
| 3367 ** Deserialize the data blob pointed to by buf as serial type serial_type |
| 3368 ** and store the result in pMem. Return the number of bytes read. |
| 3369 ** |
| 3370 ** This function is implemented as two separate routines for performance. |
| 3371 ** The few cases that require local variables are broken out into a separate |
| 3372 ** routine so that in most cases the overhead of moving the stack pointer |
| 3373 ** is avoided. |
| 3374 */ |
| 3375 static u32 SQLITE_NOINLINE serialGet( |
| 3376 const unsigned char *buf, /* Buffer to deserialize from */ |
| 3377 u32 serial_type, /* Serial type to deserialize */ |
| 3378 Mem *pMem /* Memory cell to write value into */ |
| 3379 ){ |
| 3380 u64 x = FOUR_BYTE_UINT(buf); |
| 3381 u32 y = FOUR_BYTE_UINT(buf+4); |
| 3382 x = (x<<32) + y; |
| 3383 if( serial_type==6 ){ |
| 3384 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit |
| 3385 ** twos-complement integer. */ |
| 3386 pMem->u.i = *(i64*)&x; |
| 3387 pMem->flags = MEM_Int; |
| 3388 testcase( pMem->u.i<0 ); |
| 3389 }else{ |
| 3390 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit |
| 3391 ** floating point number. */ |
| 3392 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) |
| 3393 /* Verify that integers and floating point values use the same |
| 3394 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is |
| 3395 ** defined that 64-bit floating point values really are mixed |
| 3396 ** endian. |
| 3397 */ |
| 3398 static const u64 t1 = ((u64)0x3ff00000)<<32; |
| 3399 static const double r1 = 1.0; |
| 3400 u64 t2 = t1; |
| 3401 swapMixedEndianFloat(t2); |
| 3402 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); |
| 3403 #endif |
| 3404 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); |
| 3405 swapMixedEndianFloat(x); |
| 3406 memcpy(&pMem->u.r, &x, sizeof(x)); |
| 3407 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real; |
| 3408 } |
| 3409 return 8; |
| 3410 } |
| 3411 u32 sqlite3VdbeSerialGet( |
| 3412 const unsigned char *buf, /* Buffer to deserialize from */ |
| 3413 u32 serial_type, /* Serial type to deserialize */ |
| 3414 Mem *pMem /* Memory cell to write value into */ |
| 3415 ){ |
| 3416 switch( serial_type ){ |
| 3417 case 10: /* Reserved for future use */ |
| 3418 case 11: /* Reserved for future use */ |
| 3419 case 0: { /* Null */ |
| 3420 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ |
| 3421 pMem->flags = MEM_Null; |
| 3422 break; |
| 3423 } |
| 3424 case 1: { |
| 3425 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement |
| 3426 ** integer. */ |
| 3427 pMem->u.i = ONE_BYTE_INT(buf); |
| 3428 pMem->flags = MEM_Int; |
| 3429 testcase( pMem->u.i<0 ); |
| 3430 return 1; |
| 3431 } |
| 3432 case 2: { /* 2-byte signed integer */ |
| 3433 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit |
| 3434 ** twos-complement integer. */ |
| 3435 pMem->u.i = TWO_BYTE_INT(buf); |
| 3436 pMem->flags = MEM_Int; |
| 3437 testcase( pMem->u.i<0 ); |
| 3438 return 2; |
| 3439 } |
| 3440 case 3: { /* 3-byte signed integer */ |
| 3441 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit |
| 3442 ** twos-complement integer. */ |
| 3443 pMem->u.i = THREE_BYTE_INT(buf); |
| 3444 pMem->flags = MEM_Int; |
| 3445 testcase( pMem->u.i<0 ); |
| 3446 return 3; |
| 3447 } |
| 3448 case 4: { /* 4-byte signed integer */ |
| 3449 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit |
| 3450 ** twos-complement integer. */ |
| 3451 pMem->u.i = FOUR_BYTE_INT(buf); |
| 3452 #ifdef __HP_cc |
| 3453 /* Work around a sign-extension bug in the HP compiler for HP/UX */ |
| 3454 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; |
| 3455 #endif |
| 3456 pMem->flags = MEM_Int; |
| 3457 testcase( pMem->u.i<0 ); |
| 3458 return 4; |
| 3459 } |
| 3460 case 5: { /* 6-byte signed integer */ |
| 3461 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit |
| 3462 ** twos-complement integer. */ |
| 3463 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); |
| 3464 pMem->flags = MEM_Int; |
| 3465 testcase( pMem->u.i<0 ); |
| 3466 return 6; |
| 3467 } |
| 3468 case 6: /* 8-byte signed integer */ |
| 3469 case 7: { /* IEEE floating point */ |
| 3470 /* These use local variables, so do them in a separate routine |
| 3471 ** to avoid having to move the frame pointer in the common case */ |
| 3472 return serialGet(buf,serial_type,pMem); |
| 3473 } |
| 3474 case 8: /* Integer 0 */ |
| 3475 case 9: { /* Integer 1 */ |
| 3476 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ |
| 3477 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ |
| 3478 pMem->u.i = serial_type-8; |
| 3479 pMem->flags = MEM_Int; |
| 3480 return 0; |
| 3481 } |
| 3482 default: { |
| 3483 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in |
| 3484 ** length. |
| 3485 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and |
| 3486 ** (N-13)/2 bytes in length. */ |
| 3487 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; |
| 3488 pMem->z = (char *)buf; |
| 3489 pMem->n = (serial_type-12)/2; |
| 3490 pMem->flags = aFlag[serial_type&1]; |
| 3491 return pMem->n; |
| 3492 } |
| 3493 } |
| 3494 return 0; |
| 3495 } |
| 3496 /* |
| 3497 ** This routine is used to allocate sufficient space for an UnpackedRecord |
| 3498 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if |
| 3499 ** the first argument is a pointer to KeyInfo structure pKeyInfo. |
| 3500 ** |
| 3501 ** The space is either allocated using sqlite3DbMallocRaw() or from within |
| 3502 ** the unaligned buffer passed via the second and third arguments (presumably |
| 3503 ** stack space). If the former, then *ppFree is set to a pointer that should |
| 3504 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the |
| 3505 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL |
| 3506 ** before returning. |
| 3507 ** |
| 3508 ** If an OOM error occurs, NULL is returned. |
| 3509 */ |
| 3510 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( |
| 3511 KeyInfo *pKeyInfo /* Description of the record */ |
| 3512 ){ |
| 3513 UnpackedRecord *p; /* Unpacked record to return */ |
| 3514 int nByte; /* Number of bytes required for *p */ |
| 3515 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); |
| 3516 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); |
| 3517 if( !p ) return 0; |
| 3518 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; |
| 3519 assert( pKeyInfo->aSortOrder!=0 ); |
| 3520 p->pKeyInfo = pKeyInfo; |
| 3521 p->nField = pKeyInfo->nField + 1; |
| 3522 return p; |
| 3523 } |
| 3524 |
| 3525 /* |
| 3526 ** Given the nKey-byte encoding of a record in pKey[], populate the |
| 3527 ** UnpackedRecord structure indicated by the fourth argument with the |
| 3528 ** contents of the decoded record. |
| 3529 */ |
| 3530 void sqlite3VdbeRecordUnpack( |
| 3531 KeyInfo *pKeyInfo, /* Information about the record format */ |
| 3532 int nKey, /* Size of the binary record */ |
| 3533 const void *pKey, /* The binary record */ |
| 3534 UnpackedRecord *p /* Populate this structure before returning. */ |
| 3535 ){ |
| 3536 const unsigned char *aKey = (const unsigned char *)pKey; |
| 3537 int d; |
| 3538 u32 idx; /* Offset in aKey[] to read from */ |
| 3539 u16 u; /* Unsigned loop counter */ |
| 3540 u32 szHdr; |
| 3541 Mem *pMem = p->aMem; |
| 3542 |
| 3543 p->default_rc = 0; |
| 3544 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
| 3545 idx = getVarint32(aKey, szHdr); |
| 3546 d = szHdr; |
| 3547 u = 0; |
| 3548 while( idx<szHdr && d<=nKey ){ |
| 3549 u32 serial_type; |
| 3550 |
| 3551 idx += getVarint32(&aKey[idx], serial_type); |
| 3552 pMem->enc = pKeyInfo->enc; |
| 3553 pMem->db = pKeyInfo->db; |
| 3554 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ |
| 3555 pMem->szMalloc = 0; |
| 3556 pMem->z = 0; |
| 3557 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); |
| 3558 pMem++; |
| 3559 if( (++u)>=p->nField ) break; |
| 3560 } |
| 3561 assert( u<=pKeyInfo->nField + 1 ); |
| 3562 p->nField = u; |
| 3563 } |
| 3564 |
| 3565 #if SQLITE_DEBUG |
| 3566 /* |
| 3567 ** This function compares two index or table record keys in the same way |
| 3568 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), |
| 3569 ** this function deserializes and compares values using the |
| 3570 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used |
| 3571 ** in assert() statements to ensure that the optimized code in |
| 3572 ** sqlite3VdbeRecordCompare() returns results with these two primitives. |
| 3573 ** |
| 3574 ** Return true if the result of comparison is equivalent to desiredResult. |
| 3575 ** Return false if there is a disagreement. |
| 3576 */ |
| 3577 static int vdbeRecordCompareDebug( |
| 3578 int nKey1, const void *pKey1, /* Left key */ |
| 3579 const UnpackedRecord *pPKey2, /* Right key */ |
| 3580 int desiredResult /* Correct answer */ |
| 3581 ){ |
| 3582 u32 d1; /* Offset into aKey[] of next data element */ |
| 3583 u32 idx1; /* Offset into aKey[] of next header element */ |
| 3584 u32 szHdr1; /* Number of bytes in header */ |
| 3585 int i = 0; |
| 3586 int rc = 0; |
| 3587 const unsigned char *aKey1 = (const unsigned char *)pKey1; |
| 3588 KeyInfo *pKeyInfo; |
| 3589 Mem mem1; |
| 3590 |
| 3591 pKeyInfo = pPKey2->pKeyInfo; |
| 3592 if( pKeyInfo->db==0 ) return 1; |
| 3593 mem1.enc = pKeyInfo->enc; |
| 3594 mem1.db = pKeyInfo->db; |
| 3595 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ |
| 3596 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ |
| 3597 |
| 3598 /* Compilers may complain that mem1.u.i is potentially uninitialized. |
| 3599 ** We could initialize it, as shown here, to silence those complaints. |
| 3600 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing |
| 3601 ** the unnecessary initialization has a measurable negative performance |
| 3602 ** impact, since this routine is a very high runner. And so, we choose |
| 3603 ** to ignore the compiler warnings and leave this variable uninitialized. |
| 3604 */ |
| 3605 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ |
| 3606 |
| 3607 idx1 = getVarint32(aKey1, szHdr1); |
| 3608 if( szHdr1>98307 ) return SQLITE_CORRUPT; |
| 3609 d1 = szHdr1; |
| 3610 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB ); |
| 3611 assert( pKeyInfo->aSortOrder!=0 ); |
| 3612 assert( pKeyInfo->nField>0 ); |
| 3613 assert( idx1<=szHdr1 || CORRUPT_DB ); |
| 3614 do{ |
| 3615 u32 serial_type1; |
| 3616 |
| 3617 /* Read the serial types for the next element in each key. */ |
| 3618 idx1 += getVarint32( aKey1+idx1, serial_type1 ); |
| 3619 |
| 3620 /* Verify that there is enough key space remaining to avoid |
| 3621 ** a buffer overread. The "d1+serial_type1+2" subexpression will |
| 3622 ** always be greater than or equal to the amount of required key space. |
| 3623 ** Use that approximation to avoid the more expensive call to |
| 3624 ** sqlite3VdbeSerialTypeLen() in the common case. |
| 3625 */ |
| 3626 if( d1+serial_type1+2>(u32)nKey1 |
| 3627 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1 |
| 3628 ){ |
| 3629 break; |
| 3630 } |
| 3631 |
| 3632 /* Extract the values to be compared. |
| 3633 */ |
| 3634 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); |
| 3635 |
| 3636 /* Do the comparison |
| 3637 */ |
| 3638 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]); |
| 3639 if( rc!=0 ){ |
| 3640 assert( mem1.szMalloc==0 ); /* See comment below */ |
| 3641 if( pKeyInfo->aSortOrder[i] ){ |
| 3642 rc = -rc; /* Invert the result for DESC sort order. */ |
| 3643 } |
| 3644 goto debugCompareEnd; |
| 3645 } |
| 3646 i++; |
| 3647 }while( idx1<szHdr1 && i<pPKey2->nField ); |
| 3648 |
| 3649 /* No memory allocation is ever used on mem1. Prove this using |
| 3650 ** the following assert(). If the assert() fails, it indicates a |
| 3651 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). |
| 3652 */ |
| 3653 assert( mem1.szMalloc==0 ); |
| 3654 |
| 3655 /* rc==0 here means that one of the keys ran out of fields and |
| 3656 ** all the fields up to that point were equal. Return the default_rc |
| 3657 ** value. */ |
| 3658 rc = pPKey2->default_rc; |
| 3659 |
| 3660 debugCompareEnd: |
| 3661 if( desiredResult==0 && rc==0 ) return 1; |
| 3662 if( desiredResult<0 && rc<0 ) return 1; |
| 3663 if( desiredResult>0 && rc>0 ) return 1; |
| 3664 if( CORRUPT_DB ) return 1; |
| 3665 if( pKeyInfo->db->mallocFailed ) return 1; |
| 3666 return 0; |
| 3667 } |
| 3668 #endif |
| 3669 |
| 3670 #if SQLITE_DEBUG |
| 3671 /* |
| 3672 ** Count the number of fields (a.k.a. columns) in the record given by |
| 3673 ** pKey,nKey. The verify that this count is less than or equal to the |
| 3674 ** limit given by pKeyInfo->nField + pKeyInfo->nXField. |
| 3675 ** |
| 3676 ** If this constraint is not satisfied, it means that the high-speed |
| 3677 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will |
| 3678 ** not work correctly. If this assert() ever fires, it probably means |
| 3679 ** that the KeyInfo.nField or KeyInfo.nXField values were computed |
| 3680 ** incorrectly. |
| 3681 */ |
| 3682 static void vdbeAssertFieldCountWithinLimits( |
| 3683 int nKey, const void *pKey, /* The record to verify */ |
| 3684 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ |
| 3685 ){ |
| 3686 int nField = 0; |
| 3687 u32 szHdr; |
| 3688 u32 idx; |
| 3689 u32 notUsed; |
| 3690 const unsigned char *aKey = (const unsigned char*)pKey; |
| 3691 |
| 3692 if( CORRUPT_DB ) return; |
| 3693 idx = getVarint32(aKey, szHdr); |
| 3694 assert( nKey>=0 ); |
| 3695 assert( szHdr<=(u32)nKey ); |
| 3696 while( idx<szHdr ){ |
| 3697 idx += getVarint32(aKey+idx, notUsed); |
| 3698 nField++; |
| 3699 } |
| 3700 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField ); |
| 3701 } |
| 3702 #else |
| 3703 # define vdbeAssertFieldCountWithinLimits(A,B,C) |
| 3704 #endif |
| 3705 |
| 3706 /* |
| 3707 ** Both *pMem1 and *pMem2 contain string values. Compare the two values |
| 3708 ** using the collation sequence pColl. As usual, return a negative , zero |
| 3709 ** or positive value if *pMem1 is less than, equal to or greater than |
| 3710 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". |
| 3711 */ |
| 3712 static int vdbeCompareMemString( |
| 3713 const Mem *pMem1, |
| 3714 const Mem *pMem2, |
| 3715 const CollSeq *pColl, |
| 3716 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ |
| 3717 ){ |
| 3718 if( pMem1->enc==pColl->enc ){ |
| 3719 /* The strings are already in the correct encoding. Call the |
| 3720 ** comparison function directly */ |
| 3721 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); |
| 3722 }else{ |
| 3723 int rc; |
| 3724 const void *v1, *v2; |
| 3725 int n1, n2; |
| 3726 Mem c1; |
| 3727 Mem c2; |
| 3728 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); |
| 3729 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); |
| 3730 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); |
| 3731 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); |
| 3732 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); |
| 3733 n1 = v1==0 ? 0 : c1.n; |
| 3734 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); |
| 3735 n2 = v2==0 ? 0 : c2.n; |
| 3736 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); |
| 3737 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM_BKPT; |
| 3738 sqlite3VdbeMemRelease(&c1); |
| 3739 sqlite3VdbeMemRelease(&c2); |
| 3740 return rc; |
| 3741 } |
| 3742 } |
| 3743 |
| 3744 /* |
| 3745 ** The input pBlob is guaranteed to be a Blob that is not marked |
| 3746 ** with MEM_Zero. Return true if it could be a zero-blob. |
| 3747 */ |
| 3748 static int isAllZero(const char *z, int n){ |
| 3749 int i; |
| 3750 for(i=0; i<n; i++){ |
| 3751 if( z[i] ) return 0; |
| 3752 } |
| 3753 return 1; |
| 3754 } |
| 3755 |
| 3756 /* |
| 3757 ** Compare two blobs. Return negative, zero, or positive if the first |
| 3758 ** is less than, equal to, or greater than the second, respectively. |
| 3759 ** If one blob is a prefix of the other, then the shorter is the lessor. |
| 3760 */ |
| 3761 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ |
| 3762 int c; |
| 3763 int n1 = pB1->n; |
| 3764 int n2 = pB2->n; |
| 3765 |
| 3766 /* It is possible to have a Blob value that has some non-zero content |
| 3767 ** followed by zero content. But that only comes up for Blobs formed |
| 3768 ** by the OP_MakeRecord opcode, and such Blobs never get passed into |
| 3769 ** sqlite3MemCompare(). */ |
| 3770 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); |
| 3771 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); |
| 3772 |
| 3773 if( (pB1->flags|pB2->flags) & MEM_Zero ){ |
| 3774 if( pB1->flags & pB2->flags & MEM_Zero ){ |
| 3775 return pB1->u.nZero - pB2->u.nZero; |
| 3776 }else if( pB1->flags & MEM_Zero ){ |
| 3777 if( !isAllZero(pB2->z, pB2->n) ) return -1; |
| 3778 return pB1->u.nZero - n2; |
| 3779 }else{ |
| 3780 if( !isAllZero(pB1->z, pB1->n) ) return +1; |
| 3781 return n1 - pB2->u.nZero; |
| 3782 } |
| 3783 } |
| 3784 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); |
| 3785 if( c ) return c; |
| 3786 return n1 - n2; |
| 3787 } |
| 3788 |
| 3789 /* |
| 3790 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point |
| 3791 ** number. Return negative, zero, or positive if the first (i64) is less than, |
| 3792 ** equal to, or greater than the second (double). |
| 3793 */ |
| 3794 static int sqlite3IntFloatCompare(i64 i, double r){ |
| 3795 if( sizeof(LONGDOUBLE_TYPE)>8 ){ |
| 3796 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; |
| 3797 if( x<r ) return -1; |
| 3798 if( x>r ) return +1; |
| 3799 return 0; |
| 3800 }else{ |
| 3801 i64 y; |
| 3802 double s; |
| 3803 if( r<-9223372036854775808.0 ) return +1; |
| 3804 if( r>9223372036854775807.0 ) return -1; |
| 3805 y = (i64)r; |
| 3806 if( i<y ) return -1; |
| 3807 if( i>y ){ |
| 3808 if( y==SMALLEST_INT64 && r>0.0 ) return -1; |
| 3809 return +1; |
| 3810 } |
| 3811 s = (double)i; |
| 3812 if( s<r ) return -1; |
| 3813 if( s>r ) return +1; |
| 3814 return 0; |
| 3815 } |
| 3816 } |
| 3817 |
| 3818 /* |
| 3819 ** Compare the values contained by the two memory cells, returning |
| 3820 ** negative, zero or positive if pMem1 is less than, equal to, or greater |
| 3821 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers |
| 3822 ** and reals) sorted numerically, followed by text ordered by the collating |
| 3823 ** sequence pColl and finally blob's ordered by memcmp(). |
| 3824 ** |
| 3825 ** Two NULL values are considered equal by this function. |
| 3826 */ |
| 3827 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ |
| 3828 int f1, f2; |
| 3829 int combined_flags; |
| 3830 |
| 3831 f1 = pMem1->flags; |
| 3832 f2 = pMem2->flags; |
| 3833 combined_flags = f1|f2; |
| 3834 assert( (combined_flags & MEM_RowSet)==0 ); |
| 3835 |
| 3836 /* If one value is NULL, it is less than the other. If both values |
| 3837 ** are NULL, return 0. |
| 3838 */ |
| 3839 if( combined_flags&MEM_Null ){ |
| 3840 return (f2&MEM_Null) - (f1&MEM_Null); |
| 3841 } |
| 3842 |
| 3843 /* At least one of the two values is a number |
| 3844 */ |
| 3845 if( combined_flags&(MEM_Int|MEM_Real) ){ |
| 3846 if( (f1 & f2 & MEM_Int)!=0 ){ |
| 3847 if( pMem1->u.i < pMem2->u.i ) return -1; |
| 3848 if( pMem1->u.i > pMem2->u.i ) return +1; |
| 3849 return 0; |
| 3850 } |
| 3851 if( (f1 & f2 & MEM_Real)!=0 ){ |
| 3852 if( pMem1->u.r < pMem2->u.r ) return -1; |
| 3853 if( pMem1->u.r > pMem2->u.r ) return +1; |
| 3854 return 0; |
| 3855 } |
| 3856 if( (f1&MEM_Int)!=0 ){ |
| 3857 if( (f2&MEM_Real)!=0 ){ |
| 3858 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); |
| 3859 }else{ |
| 3860 return -1; |
| 3861 } |
| 3862 } |
| 3863 if( (f1&MEM_Real)!=0 ){ |
| 3864 if( (f2&MEM_Int)!=0 ){ |
| 3865 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); |
| 3866 }else{ |
| 3867 return -1; |
| 3868 } |
| 3869 } |
| 3870 return +1; |
| 3871 } |
| 3872 |
| 3873 /* If one value is a string and the other is a blob, the string is less. |
| 3874 ** If both are strings, compare using the collating functions. |
| 3875 */ |
| 3876 if( combined_flags&MEM_Str ){ |
| 3877 if( (f1 & MEM_Str)==0 ){ |
| 3878 return 1; |
| 3879 } |
| 3880 if( (f2 & MEM_Str)==0 ){ |
| 3881 return -1; |
| 3882 } |
| 3883 |
| 3884 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); |
| 3885 assert( pMem1->enc==SQLITE_UTF8 || |
| 3886 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); |
| 3887 |
| 3888 /* The collation sequence must be defined at this point, even if |
| 3889 ** the user deletes the collation sequence after the vdbe program is |
| 3890 ** compiled (this was not always the case). |
| 3891 */ |
| 3892 assert( !pColl || pColl->xCmp ); |
| 3893 |
| 3894 if( pColl ){ |
| 3895 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); |
| 3896 } |
| 3897 /* If a NULL pointer was passed as the collate function, fall through |
| 3898 ** to the blob case and use memcmp(). */ |
| 3899 } |
| 3900 |
| 3901 /* Both values must be blobs. Compare using memcmp(). */ |
| 3902 return sqlite3BlobCompare(pMem1, pMem2); |
| 3903 } |
| 3904 |
| 3905 |
| 3906 /* |
| 3907 ** The first argument passed to this function is a serial-type that |
| 3908 ** corresponds to an integer - all values between 1 and 9 inclusive |
| 3909 ** except 7. The second points to a buffer containing an integer value |
| 3910 ** serialized according to serial_type. This function deserializes |
| 3911 ** and returns the value. |
| 3912 */ |
| 3913 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ |
| 3914 u32 y; |
| 3915 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); |
| 3916 switch( serial_type ){ |
| 3917 case 0: |
| 3918 case 1: |
| 3919 testcase( aKey[0]&0x80 ); |
| 3920 return ONE_BYTE_INT(aKey); |
| 3921 case 2: |
| 3922 testcase( aKey[0]&0x80 ); |
| 3923 return TWO_BYTE_INT(aKey); |
| 3924 case 3: |
| 3925 testcase( aKey[0]&0x80 ); |
| 3926 return THREE_BYTE_INT(aKey); |
| 3927 case 4: { |
| 3928 testcase( aKey[0]&0x80 ); |
| 3929 y = FOUR_BYTE_UINT(aKey); |
| 3930 return (i64)*(int*)&y; |
| 3931 } |
| 3932 case 5: { |
| 3933 testcase( aKey[0]&0x80 ); |
| 3934 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); |
| 3935 } |
| 3936 case 6: { |
| 3937 u64 x = FOUR_BYTE_UINT(aKey); |
| 3938 testcase( aKey[0]&0x80 ); |
| 3939 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); |
| 3940 return (i64)*(i64*)&x; |
| 3941 } |
| 3942 } |
| 3943 |
| 3944 return (serial_type - 8); |
| 3945 } |
| 3946 |
| 3947 /* |
| 3948 ** This function compares the two table rows or index records |
| 3949 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero |
| 3950 ** or positive integer if key1 is less than, equal to or |
| 3951 ** greater than key2. The {nKey1, pKey1} key must be a blob |
| 3952 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 |
| 3953 ** key must be a parsed key such as obtained from |
| 3954 ** sqlite3VdbeParseRecord. |
| 3955 ** |
| 3956 ** If argument bSkip is non-zero, it is assumed that the caller has already |
| 3957 ** determined that the first fields of the keys are equal. |
| 3958 ** |
| 3959 ** Key1 and Key2 do not have to contain the same number of fields. If all |
| 3960 ** fields that appear in both keys are equal, then pPKey2->default_rc is |
| 3961 ** returned. |
| 3962 ** |
| 3963 ** If database corruption is discovered, set pPKey2->errCode to |
| 3964 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, |
| 3965 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the |
| 3966 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). |
| 3967 */ |
| 3968 int sqlite3VdbeRecordCompareWithSkip( |
| 3969 int nKey1, const void *pKey1, /* Left key */ |
| 3970 UnpackedRecord *pPKey2, /* Right key */ |
| 3971 int bSkip /* If true, skip the first field */ |
| 3972 ){ |
| 3973 u32 d1; /* Offset into aKey[] of next data element */ |
| 3974 int i; /* Index of next field to compare */ |
| 3975 u32 szHdr1; /* Size of record header in bytes */ |
| 3976 u32 idx1; /* Offset of first type in header */ |
| 3977 int rc = 0; /* Return value */ |
| 3978 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ |
| 3979 KeyInfo *pKeyInfo = pPKey2->pKeyInfo; |
| 3980 const unsigned char *aKey1 = (const unsigned char *)pKey1; |
| 3981 Mem mem1; |
| 3982 |
| 3983 /* If bSkip is true, then the caller has already determined that the first |
| 3984 ** two elements in the keys are equal. Fix the various stack variables so |
| 3985 ** that this routine begins comparing at the second field. */ |
| 3986 if( bSkip ){ |
| 3987 u32 s1; |
| 3988 idx1 = 1 + getVarint32(&aKey1[1], s1); |
| 3989 szHdr1 = aKey1[0]; |
| 3990 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); |
| 3991 i = 1; |
| 3992 pRhs++; |
| 3993 }else{ |
| 3994 idx1 = getVarint32(aKey1, szHdr1); |
| 3995 d1 = szHdr1; |
| 3996 if( d1>(unsigned)nKey1 ){ |
| 3997 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; |
| 3998 return 0; /* Corruption */ |
| 3999 } |
| 4000 i = 0; |
| 4001 } |
| 4002 |
| 4003 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ |
| 4004 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField |
| 4005 || CORRUPT_DB ); |
| 4006 assert( pPKey2->pKeyInfo->aSortOrder!=0 ); |
| 4007 assert( pPKey2->pKeyInfo->nField>0 ); |
| 4008 assert( idx1<=szHdr1 || CORRUPT_DB ); |
| 4009 do{ |
| 4010 u32 serial_type; |
| 4011 |
| 4012 /* RHS is an integer */ |
| 4013 if( pRhs->flags & MEM_Int ){ |
| 4014 serial_type = aKey1[idx1]; |
| 4015 testcase( serial_type==12 ); |
| 4016 if( serial_type>=10 ){ |
| 4017 rc = +1; |
| 4018 }else if( serial_type==0 ){ |
| 4019 rc = -1; |
| 4020 }else if( serial_type==7 ){ |
| 4021 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); |
| 4022 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); |
| 4023 }else{ |
| 4024 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); |
| 4025 i64 rhs = pRhs->u.i; |
| 4026 if( lhs<rhs ){ |
| 4027 rc = -1; |
| 4028 }else if( lhs>rhs ){ |
| 4029 rc = +1; |
| 4030 } |
| 4031 } |
| 4032 } |
| 4033 |
| 4034 /* RHS is real */ |
| 4035 else if( pRhs->flags & MEM_Real ){ |
| 4036 serial_type = aKey1[idx1]; |
| 4037 if( serial_type>=10 ){ |
| 4038 /* Serial types 12 or greater are strings and blobs (greater than |
| 4039 ** numbers). Types 10 and 11 are currently "reserved for future |
| 4040 ** use", so it doesn't really matter what the results of comparing |
| 4041 ** them to numberic values are. */ |
| 4042 rc = +1; |
| 4043 }else if( serial_type==0 ){ |
| 4044 rc = -1; |
| 4045 }else{ |
| 4046 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); |
| 4047 if( serial_type==7 ){ |
| 4048 if( mem1.u.r<pRhs->u.r ){ |
| 4049 rc = -1; |
| 4050 }else if( mem1.u.r>pRhs->u.r ){ |
| 4051 rc = +1; |
| 4052 } |
| 4053 }else{ |
| 4054 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); |
| 4055 } |
| 4056 } |
| 4057 } |
| 4058 |
| 4059 /* RHS is a string */ |
| 4060 else if( pRhs->flags & MEM_Str ){ |
| 4061 getVarint32(&aKey1[idx1], serial_type); |
| 4062 testcase( serial_type==12 ); |
| 4063 if( serial_type<12 ){ |
| 4064 rc = -1; |
| 4065 }else if( !(serial_type & 0x01) ){ |
| 4066 rc = +1; |
| 4067 }else{ |
| 4068 mem1.n = (serial_type - 12) / 2; |
| 4069 testcase( (d1+mem1.n)==(unsigned)nKey1 ); |
| 4070 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); |
| 4071 if( (d1+mem1.n) > (unsigned)nKey1 ){ |
| 4072 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; |
| 4073 return 0; /* Corruption */ |
| 4074 }else if( pKeyInfo->aColl[i] ){ |
| 4075 mem1.enc = pKeyInfo->enc; |
| 4076 mem1.db = pKeyInfo->db; |
| 4077 mem1.flags = MEM_Str; |
| 4078 mem1.z = (char*)&aKey1[d1]; |
| 4079 rc = vdbeCompareMemString( |
| 4080 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode |
| 4081 ); |
| 4082 }else{ |
| 4083 int nCmp = MIN(mem1.n, pRhs->n); |
| 4084 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); |
| 4085 if( rc==0 ) rc = mem1.n - pRhs->n; |
| 4086 } |
| 4087 } |
| 4088 } |
| 4089 |
| 4090 /* RHS is a blob */ |
| 4091 else if( pRhs->flags & MEM_Blob ){ |
| 4092 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); |
| 4093 getVarint32(&aKey1[idx1], serial_type); |
| 4094 testcase( serial_type==12 ); |
| 4095 if( serial_type<12 || (serial_type & 0x01) ){ |
| 4096 rc = -1; |
| 4097 }else{ |
| 4098 int nStr = (serial_type - 12) / 2; |
| 4099 testcase( (d1+nStr)==(unsigned)nKey1 ); |
| 4100 testcase( (d1+nStr+1)==(unsigned)nKey1 ); |
| 4101 if( (d1+nStr) > (unsigned)nKey1 ){ |
| 4102 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; |
| 4103 return 0; /* Corruption */ |
| 4104 }else if( pRhs->flags & MEM_Zero ){ |
| 4105 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ |
| 4106 rc = 1; |
| 4107 }else{ |
| 4108 rc = nStr - pRhs->u.nZero; |
| 4109 } |
| 4110 }else{ |
| 4111 int nCmp = MIN(nStr, pRhs->n); |
| 4112 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); |
| 4113 if( rc==0 ) rc = nStr - pRhs->n; |
| 4114 } |
| 4115 } |
| 4116 } |
| 4117 |
| 4118 /* RHS is null */ |
| 4119 else{ |
| 4120 serial_type = aKey1[idx1]; |
| 4121 rc = (serial_type!=0); |
| 4122 } |
| 4123 |
| 4124 if( rc!=0 ){ |
| 4125 if( pKeyInfo->aSortOrder[i] ){ |
| 4126 rc = -rc; |
| 4127 } |
| 4128 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); |
| 4129 assert( mem1.szMalloc==0 ); /* See comment below */ |
| 4130 return rc; |
| 4131 } |
| 4132 |
| 4133 i++; |
| 4134 pRhs++; |
| 4135 d1 += sqlite3VdbeSerialTypeLen(serial_type); |
| 4136 idx1 += sqlite3VarintLen(serial_type); |
| 4137 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 ); |
| 4138 |
| 4139 /* No memory allocation is ever used on mem1. Prove this using |
| 4140 ** the following assert(). If the assert() fails, it indicates a |
| 4141 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ |
| 4142 assert( mem1.szMalloc==0 ); |
| 4143 |
| 4144 /* rc==0 here means that one or both of the keys ran out of fields and |
| 4145 ** all the fields up to that point were equal. Return the default_rc |
| 4146 ** value. */ |
| 4147 assert( CORRUPT_DB |
| 4148 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) |
| 4149 || pKeyInfo->db->mallocFailed |
| 4150 ); |
| 4151 pPKey2->eqSeen = 1; |
| 4152 return pPKey2->default_rc; |
| 4153 } |
| 4154 int sqlite3VdbeRecordCompare( |
| 4155 int nKey1, const void *pKey1, /* Left key */ |
| 4156 UnpackedRecord *pPKey2 /* Right key */ |
| 4157 ){ |
| 4158 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); |
| 4159 } |
| 4160 |
| 4161 |
| 4162 /* |
| 4163 ** This function is an optimized version of sqlite3VdbeRecordCompare() |
| 4164 ** that (a) the first field of pPKey2 is an integer, and (b) the |
| 4165 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single |
| 4166 ** byte (i.e. is less than 128). |
| 4167 ** |
| 4168 ** To avoid concerns about buffer overreads, this routine is only used |
| 4169 ** on schemas where the maximum valid header size is 63 bytes or less. |
| 4170 */ |
| 4171 static int vdbeRecordCompareInt( |
| 4172 int nKey1, const void *pKey1, /* Left key */ |
| 4173 UnpackedRecord *pPKey2 /* Right key */ |
| 4174 ){ |
| 4175 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; |
| 4176 int serial_type = ((const u8*)pKey1)[1]; |
| 4177 int res; |
| 4178 u32 y; |
| 4179 u64 x; |
| 4180 i64 v; |
| 4181 i64 lhs; |
| 4182 |
| 4183 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); |
| 4184 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); |
| 4185 switch( serial_type ){ |
| 4186 case 1: { /* 1-byte signed integer */ |
| 4187 lhs = ONE_BYTE_INT(aKey); |
| 4188 testcase( lhs<0 ); |
| 4189 break; |
| 4190 } |
| 4191 case 2: { /* 2-byte signed integer */ |
| 4192 lhs = TWO_BYTE_INT(aKey); |
| 4193 testcase( lhs<0 ); |
| 4194 break; |
| 4195 } |
| 4196 case 3: { /* 3-byte signed integer */ |
| 4197 lhs = THREE_BYTE_INT(aKey); |
| 4198 testcase( lhs<0 ); |
| 4199 break; |
| 4200 } |
| 4201 case 4: { /* 4-byte signed integer */ |
| 4202 y = FOUR_BYTE_UINT(aKey); |
| 4203 lhs = (i64)*(int*)&y; |
| 4204 testcase( lhs<0 ); |
| 4205 break; |
| 4206 } |
| 4207 case 5: { /* 6-byte signed integer */ |
| 4208 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); |
| 4209 testcase( lhs<0 ); |
| 4210 break; |
| 4211 } |
| 4212 case 6: { /* 8-byte signed integer */ |
| 4213 x = FOUR_BYTE_UINT(aKey); |
| 4214 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); |
| 4215 lhs = *(i64*)&x; |
| 4216 testcase( lhs<0 ); |
| 4217 break; |
| 4218 } |
| 4219 case 8: |
| 4220 lhs = 0; |
| 4221 break; |
| 4222 case 9: |
| 4223 lhs = 1; |
| 4224 break; |
| 4225 |
| 4226 /* This case could be removed without changing the results of running |
| 4227 ** this code. Including it causes gcc to generate a faster switch |
| 4228 ** statement (since the range of switch targets now starts at zero and |
| 4229 ** is contiguous) but does not cause any duplicate code to be generated |
| 4230 ** (as gcc is clever enough to combine the two like cases). Other |
| 4231 ** compilers might be similar. */ |
| 4232 case 0: case 7: |
| 4233 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); |
| 4234 |
| 4235 default: |
| 4236 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); |
| 4237 } |
| 4238 |
| 4239 v = pPKey2->aMem[0].u.i; |
| 4240 if( v>lhs ){ |
| 4241 res = pPKey2->r1; |
| 4242 }else if( v<lhs ){ |
| 4243 res = pPKey2->r2; |
| 4244 }else if( pPKey2->nField>1 ){ |
| 4245 /* The first fields of the two keys are equal. Compare the trailing |
| 4246 ** fields. */ |
| 4247 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); |
| 4248 }else{ |
| 4249 /* The first fields of the two keys are equal and there are no trailing |
| 4250 ** fields. Return pPKey2->default_rc in this case. */ |
| 4251 res = pPKey2->default_rc; |
| 4252 pPKey2->eqSeen = 1; |
| 4253 } |
| 4254 |
| 4255 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); |
| 4256 return res; |
| 4257 } |
| 4258 |
| 4259 /* |
| 4260 ** This function is an optimized version of sqlite3VdbeRecordCompare() |
| 4261 ** that (a) the first field of pPKey2 is a string, that (b) the first field |
| 4262 ** uses the collation sequence BINARY and (c) that the size-of-header varint |
| 4263 ** at the start of (pKey1/nKey1) fits in a single byte. |
| 4264 */ |
| 4265 static int vdbeRecordCompareString( |
| 4266 int nKey1, const void *pKey1, /* Left key */ |
| 4267 UnpackedRecord *pPKey2 /* Right key */ |
| 4268 ){ |
| 4269 const u8 *aKey1 = (const u8*)pKey1; |
| 4270 int serial_type; |
| 4271 int res; |
| 4272 |
| 4273 assert( pPKey2->aMem[0].flags & MEM_Str ); |
| 4274 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); |
| 4275 getVarint32(&aKey1[1], serial_type); |
| 4276 if( serial_type<12 ){ |
| 4277 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ |
| 4278 }else if( !(serial_type & 0x01) ){ |
| 4279 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ |
| 4280 }else{ |
| 4281 int nCmp; |
| 4282 int nStr; |
| 4283 int szHdr = aKey1[0]; |
| 4284 |
| 4285 nStr = (serial_type-12) / 2; |
| 4286 if( (szHdr + nStr) > nKey1 ){ |
| 4287 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; |
| 4288 return 0; /* Corruption */ |
| 4289 } |
| 4290 nCmp = MIN( pPKey2->aMem[0].n, nStr ); |
| 4291 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp); |
| 4292 |
| 4293 if( res==0 ){ |
| 4294 res = nStr - pPKey2->aMem[0].n; |
| 4295 if( res==0 ){ |
| 4296 if( pPKey2->nField>1 ){ |
| 4297 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); |
| 4298 }else{ |
| 4299 res = pPKey2->default_rc; |
| 4300 pPKey2->eqSeen = 1; |
| 4301 } |
| 4302 }else if( res>0 ){ |
| 4303 res = pPKey2->r2; |
| 4304 }else{ |
| 4305 res = pPKey2->r1; |
| 4306 } |
| 4307 }else if( res>0 ){ |
| 4308 res = pPKey2->r2; |
| 4309 }else{ |
| 4310 res = pPKey2->r1; |
| 4311 } |
| 4312 } |
| 4313 |
| 4314 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) |
| 4315 || CORRUPT_DB |
| 4316 || pPKey2->pKeyInfo->db->mallocFailed |
| 4317 ); |
| 4318 return res; |
| 4319 } |
| 4320 |
| 4321 /* |
| 4322 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function |
| 4323 ** suitable for comparing serialized records to the unpacked record passed |
| 4324 ** as the only argument. |
| 4325 */ |
| 4326 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ |
| 4327 /* varintRecordCompareInt() and varintRecordCompareString() both assume |
| 4328 ** that the size-of-header varint that occurs at the start of each record |
| 4329 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() |
| 4330 ** also assumes that it is safe to overread a buffer by at least the |
| 4331 ** maximum possible legal header size plus 8 bytes. Because there is |
| 4332 ** guaranteed to be at least 74 (but not 136) bytes of padding following each |
| 4333 ** buffer passed to varintRecordCompareInt() this makes it convenient to |
| 4334 ** limit the size of the header to 64 bytes in cases where the first field |
| 4335 ** is an integer. |
| 4336 ** |
| 4337 ** The easiest way to enforce this limit is to consider only records with |
| 4338 ** 13 fields or less. If the first field is an integer, the maximum legal |
| 4339 ** header size is (12*5 + 1 + 1) bytes. */ |
| 4340 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){ |
| 4341 int flags = p->aMem[0].flags; |
| 4342 if( p->pKeyInfo->aSortOrder[0] ){ |
| 4343 p->r1 = 1; |
| 4344 p->r2 = -1; |
| 4345 }else{ |
| 4346 p->r1 = -1; |
| 4347 p->r2 = 1; |
| 4348 } |
| 4349 if( (flags & MEM_Int) ){ |
| 4350 return vdbeRecordCompareInt; |
| 4351 } |
| 4352 testcase( flags & MEM_Real ); |
| 4353 testcase( flags & MEM_Null ); |
| 4354 testcase( flags & MEM_Blob ); |
| 4355 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ |
| 4356 assert( flags & MEM_Str ); |
| 4357 return vdbeRecordCompareString; |
| 4358 } |
| 4359 } |
| 4360 |
| 4361 return sqlite3VdbeRecordCompare; |
| 4362 } |
| 4363 |
| 4364 /* |
| 4365 ** pCur points at an index entry created using the OP_MakeRecord opcode. |
| 4366 ** Read the rowid (the last field in the record) and store it in *rowid. |
| 4367 ** Return SQLITE_OK if everything works, or an error code otherwise. |
| 4368 ** |
| 4369 ** pCur might be pointing to text obtained from a corrupt database file. |
| 4370 ** So the content cannot be trusted. Do appropriate checks on the content. |
| 4371 */ |
| 4372 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ |
| 4373 i64 nCellKey = 0; |
| 4374 int rc; |
| 4375 u32 szHdr; /* Size of the header */ |
| 4376 u32 typeRowid; /* Serial type of the rowid */ |
| 4377 u32 lenRowid; /* Size of the rowid */ |
| 4378 Mem m, v; |
| 4379 |
| 4380 /* Get the size of the index entry. Only indices entries of less |
| 4381 ** than 2GiB are support - anything large must be database corruption. |
| 4382 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so |
| 4383 ** this code can safely assume that nCellKey is 32-bits |
| 4384 */ |
| 4385 assert( sqlite3BtreeCursorIsValid(pCur) ); |
| 4386 nCellKey = sqlite3BtreePayloadSize(pCur); |
| 4387 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); |
| 4388 |
| 4389 /* Read in the complete content of the index entry */ |
| 4390 sqlite3VdbeMemInit(&m, db, 0); |
| 4391 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); |
| 4392 if( rc ){ |
| 4393 return rc; |
| 4394 } |
| 4395 |
| 4396 /* The index entry must begin with a header size */ |
| 4397 (void)getVarint32((u8*)m.z, szHdr); |
| 4398 testcase( szHdr==3 ); |
| 4399 testcase( szHdr==m.n ); |
| 4400 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ |
| 4401 goto idx_rowid_corruption; |
| 4402 } |
| 4403 |
| 4404 /* The last field of the index should be an integer - the ROWID. |
| 4405 ** Verify that the last entry really is an integer. */ |
| 4406 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); |
| 4407 testcase( typeRowid==1 ); |
| 4408 testcase( typeRowid==2 ); |
| 4409 testcase( typeRowid==3 ); |
| 4410 testcase( typeRowid==4 ); |
| 4411 testcase( typeRowid==5 ); |
| 4412 testcase( typeRowid==6 ); |
| 4413 testcase( typeRowid==8 ); |
| 4414 testcase( typeRowid==9 ); |
| 4415 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ |
| 4416 goto idx_rowid_corruption; |
| 4417 } |
| 4418 lenRowid = sqlite3SmallTypeSizes[typeRowid]; |
| 4419 testcase( (u32)m.n==szHdr+lenRowid ); |
| 4420 if( unlikely((u32)m.n<szHdr+lenRowid) ){ |
| 4421 goto idx_rowid_corruption; |
| 4422 } |
| 4423 |
| 4424 /* Fetch the integer off the end of the index record */ |
| 4425 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); |
| 4426 *rowid = v.u.i; |
| 4427 sqlite3VdbeMemRelease(&m); |
| 4428 return SQLITE_OK; |
| 4429 |
| 4430 /* Jump here if database corruption is detected after m has been |
| 4431 ** allocated. Free the m object and return SQLITE_CORRUPT. */ |
| 4432 idx_rowid_corruption: |
| 4433 testcase( m.szMalloc!=0 ); |
| 4434 sqlite3VdbeMemRelease(&m); |
| 4435 return SQLITE_CORRUPT_BKPT; |
| 4436 } |
| 4437 |
| 4438 /* |
| 4439 ** Compare the key of the index entry that cursor pC is pointing to against |
| 4440 ** the key string in pUnpacked. Write into *pRes a number |
| 4441 ** that is negative, zero, or positive if pC is less than, equal to, |
| 4442 ** or greater than pUnpacked. Return SQLITE_OK on success. |
| 4443 ** |
| 4444 ** pUnpacked is either created without a rowid or is truncated so that it |
| 4445 ** omits the rowid at the end. The rowid at the end of the index entry |
| 4446 ** is ignored as well. Hence, this routine only compares the prefixes |
| 4447 ** of the keys prior to the final rowid, not the entire key. |
| 4448 */ |
| 4449 int sqlite3VdbeIdxKeyCompare( |
| 4450 sqlite3 *db, /* Database connection */ |
| 4451 VdbeCursor *pC, /* The cursor to compare against */ |
| 4452 UnpackedRecord *pUnpacked, /* Unpacked version of key */ |
| 4453 int *res /* Write the comparison result here */ |
| 4454 ){ |
| 4455 i64 nCellKey = 0; |
| 4456 int rc; |
| 4457 BtCursor *pCur; |
| 4458 Mem m; |
| 4459 |
| 4460 assert( pC->eCurType==CURTYPE_BTREE ); |
| 4461 pCur = pC->uc.pCursor; |
| 4462 assert( sqlite3BtreeCursorIsValid(pCur) ); |
| 4463 nCellKey = sqlite3BtreePayloadSize(pCur); |
| 4464 /* nCellKey will always be between 0 and 0xffffffff because of the way |
| 4465 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ |
| 4466 if( nCellKey<=0 || nCellKey>0x7fffffff ){ |
| 4467 *res = 0; |
| 4468 return SQLITE_CORRUPT_BKPT; |
| 4469 } |
| 4470 sqlite3VdbeMemInit(&m, db, 0); |
| 4471 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m); |
| 4472 if( rc ){ |
| 4473 return rc; |
| 4474 } |
| 4475 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); |
| 4476 sqlite3VdbeMemRelease(&m); |
| 4477 return SQLITE_OK; |
| 4478 } |
| 4479 |
| 4480 /* |
| 4481 ** This routine sets the value to be returned by subsequent calls to |
| 4482 ** sqlite3_changes() on the database handle 'db'. |
| 4483 */ |
| 4484 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ |
| 4485 assert( sqlite3_mutex_held(db->mutex) ); |
| 4486 db->nChange = nChange; |
| 4487 db->nTotalChange += nChange; |
| 4488 } |
| 4489 |
| 4490 /* |
| 4491 ** Set a flag in the vdbe to update the change counter when it is finalised |
| 4492 ** or reset. |
| 4493 */ |
| 4494 void sqlite3VdbeCountChanges(Vdbe *v){ |
| 4495 v->changeCntOn = 1; |
| 4496 } |
| 4497 |
| 4498 /* |
| 4499 ** Mark every prepared statement associated with a database connection |
| 4500 ** as expired. |
| 4501 ** |
| 4502 ** An expired statement means that recompilation of the statement is |
| 4503 ** recommend. Statements expire when things happen that make their |
| 4504 ** programs obsolete. Removing user-defined functions or collating |
| 4505 ** sequences, or changing an authorization function are the types of |
| 4506 ** things that make prepared statements obsolete. |
| 4507 */ |
| 4508 void sqlite3ExpirePreparedStatements(sqlite3 *db){ |
| 4509 Vdbe *p; |
| 4510 for(p = db->pVdbe; p; p=p->pNext){ |
| 4511 p->expired = 1; |
| 4512 } |
| 4513 } |
| 4514 |
| 4515 /* |
| 4516 ** Return the database associated with the Vdbe. |
| 4517 */ |
| 4518 sqlite3 *sqlite3VdbeDb(Vdbe *v){ |
| 4519 return v->db; |
| 4520 } |
| 4521 |
| 4522 /* |
| 4523 ** Return a pointer to an sqlite3_value structure containing the value bound |
| 4524 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return |
| 4525 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* |
| 4526 ** constants) to the value before returning it. |
| 4527 ** |
| 4528 ** The returned value must be freed by the caller using sqlite3ValueFree(). |
| 4529 */ |
| 4530 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ |
| 4531 assert( iVar>0 ); |
| 4532 if( v ){ |
| 4533 Mem *pMem = &v->aVar[iVar-1]; |
| 4534 if( 0==(pMem->flags & MEM_Null) ){ |
| 4535 sqlite3_value *pRet = sqlite3ValueNew(v->db); |
| 4536 if( pRet ){ |
| 4537 sqlite3VdbeMemCopy((Mem *)pRet, pMem); |
| 4538 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); |
| 4539 } |
| 4540 return pRet; |
| 4541 } |
| 4542 } |
| 4543 return 0; |
| 4544 } |
| 4545 |
| 4546 /* |
| 4547 ** Configure SQL variable iVar so that binding a new value to it signals |
| 4548 ** to sqlite3_reoptimize() that re-preparing the statement may result |
| 4549 ** in a better query plan. |
| 4550 */ |
| 4551 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ |
| 4552 assert( iVar>0 ); |
| 4553 if( iVar>32 ){ |
| 4554 v->expmask = 0xffffffff; |
| 4555 }else{ |
| 4556 v->expmask |= ((u32)1 << (iVar-1)); |
| 4557 } |
| 4558 } |
| 4559 |
| 4560 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 4561 /* |
| 4562 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored |
| 4563 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored |
| 4564 ** in memory obtained from sqlite3DbMalloc). |
| 4565 */ |
| 4566 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ |
| 4567 if( pVtab->zErrMsg ){ |
| 4568 sqlite3 *db = p->db; |
| 4569 sqlite3DbFree(db, p->zErrMsg); |
| 4570 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); |
| 4571 sqlite3_free(pVtab->zErrMsg); |
| 4572 pVtab->zErrMsg = 0; |
| 4573 } |
| 4574 } |
| 4575 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 4576 |
| 4577 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK |
| 4578 |
| 4579 /* |
| 4580 ** If the second argument is not NULL, release any allocations associated |
| 4581 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord |
| 4582 ** structure itself, using sqlite3DbFree(). |
| 4583 ** |
| 4584 ** This function is used to free UnpackedRecord structures allocated by |
| 4585 ** the vdbeUnpackRecord() function found in vdbeapi.c. |
| 4586 */ |
| 4587 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ |
| 4588 if( p ){ |
| 4589 int i; |
| 4590 for(i=0; i<nField; i++){ |
| 4591 Mem *pMem = &p->aMem[i]; |
| 4592 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem); |
| 4593 } |
| 4594 sqlite3DbFree(db, p); |
| 4595 } |
| 4596 } |
| 4597 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ |
| 4598 |
| 4599 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK |
| 4600 /* |
| 4601 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, |
| 4602 ** then cursor passed as the second argument should point to the row about |
| 4603 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), |
| 4604 ** the required value will be read from the row the cursor points to. |
| 4605 */ |
| 4606 void sqlite3VdbePreUpdateHook( |
| 4607 Vdbe *v, /* Vdbe pre-update hook is invoked by */ |
| 4608 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ |
| 4609 int op, /* SQLITE_INSERT, UPDATE or DELETE */ |
| 4610 const char *zDb, /* Database name */ |
| 4611 Table *pTab, /* Modified table */ |
| 4612 i64 iKey1, /* Initial key value */ |
| 4613 int iReg /* Register for new.* record */ |
| 4614 ){ |
| 4615 sqlite3 *db = v->db; |
| 4616 i64 iKey2; |
| 4617 PreUpdate preupdate; |
| 4618 const char *zTbl = pTab->zName; |
| 4619 static const u8 fakeSortOrder = 0; |
| 4620 |
| 4621 assert( db->pPreUpdate==0 ); |
| 4622 memset(&preupdate, 0, sizeof(PreUpdate)); |
| 4623 if( HasRowid(pTab)==0 ){ |
| 4624 iKey1 = iKey2 = 0; |
| 4625 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); |
| 4626 }else{ |
| 4627 if( op==SQLITE_UPDATE ){ |
| 4628 iKey2 = v->aMem[iReg].u.i; |
| 4629 }else{ |
| 4630 iKey2 = iKey1; |
| 4631 } |
| 4632 } |
| 4633 |
| 4634 assert( pCsr->nField==pTab->nCol |
| 4635 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1) |
| 4636 ); |
| 4637 |
| 4638 preupdate.v = v; |
| 4639 preupdate.pCsr = pCsr; |
| 4640 preupdate.op = op; |
| 4641 preupdate.iNewReg = iReg; |
| 4642 preupdate.keyinfo.db = db; |
| 4643 preupdate.keyinfo.enc = ENC(db); |
| 4644 preupdate.keyinfo.nField = pTab->nCol; |
| 4645 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder; |
| 4646 preupdate.iKey1 = iKey1; |
| 4647 preupdate.iKey2 = iKey2; |
| 4648 preupdate.pTab = pTab; |
| 4649 |
| 4650 db->pPreUpdate = &preupdate; |
| 4651 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); |
| 4652 db->pPreUpdate = 0; |
| 4653 sqlite3DbFree(db, preupdate.aRecord); |
| 4654 vdbeFreeUnpacked(db, preupdate.keyinfo.nField+1, preupdate.pUnpacked); |
| 4655 vdbeFreeUnpacked(db, preupdate.keyinfo.nField+1, preupdate.pNewUnpacked); |
| 4656 if( preupdate.aNew ){ |
| 4657 int i; |
| 4658 for(i=0; i<pCsr->nField; i++){ |
| 4659 sqlite3VdbeMemRelease(&preupdate.aNew[i]); |
| 4660 } |
| 4661 sqlite3DbFree(db, preupdate.aNew); |
| 4662 } |
| 4663 } |
| 4664 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ |
OLD | NEW |