Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(221)

Side by Side Diff: third_party/sqlite/sqlite-src-3170000/src/vdbeaux.c

Issue 2747283002: [sql] Import reference version of SQLite 3.17.. (Closed)
Patch Set: Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
14 */
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
17
18 /*
19 ** Create a new virtual database engine.
20 */
21 Vdbe *sqlite3VdbeCreate(Parse *pParse){
22 sqlite3 *db = pParse->db;
23 Vdbe *p;
24 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
25 if( p==0 ) return 0;
26 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
27 p->db = db;
28 if( db->pVdbe ){
29 db->pVdbe->pPrev = p;
30 }
31 p->pNext = db->pVdbe;
32 p->pPrev = 0;
33 db->pVdbe = p;
34 p->magic = VDBE_MAGIC_INIT;
35 p->pParse = pParse;
36 assert( pParse->aLabel==0 );
37 assert( pParse->nLabel==0 );
38 assert( pParse->nOpAlloc==0 );
39 assert( pParse->szOpAlloc==0 );
40 return p;
41 }
42
43 /*
44 ** Change the error string stored in Vdbe.zErrMsg
45 */
46 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
47 va_list ap;
48 sqlite3DbFree(p->db, p->zErrMsg);
49 va_start(ap, zFormat);
50 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
51 va_end(ap);
52 }
53
54 /*
55 ** Remember the SQL string for a prepared statement.
56 */
57 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
58 assert( isPrepareV2==1 || isPrepareV2==0 );
59 if( p==0 ) return;
60 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
61 if( !isPrepareV2 ) return;
62 #endif
63 assert( p->zSql==0 );
64 p->zSql = sqlite3DbStrNDup(p->db, z, n);
65 p->isPrepareV2 = (u8)isPrepareV2;
66 }
67
68 /*
69 ** Swap all content between two VDBE structures.
70 */
71 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
72 Vdbe tmp, *pTmp;
73 char *zTmp;
74 assert( pA->db==pB->db );
75 tmp = *pA;
76 *pA = *pB;
77 *pB = tmp;
78 pTmp = pA->pNext;
79 pA->pNext = pB->pNext;
80 pB->pNext = pTmp;
81 pTmp = pA->pPrev;
82 pA->pPrev = pB->pPrev;
83 pB->pPrev = pTmp;
84 zTmp = pA->zSql;
85 pA->zSql = pB->zSql;
86 pB->zSql = zTmp;
87 pB->isPrepareV2 = pA->isPrepareV2;
88 }
89
90 /*
91 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
92 ** than its current size. nOp is guaranteed to be less than or equal
93 ** to 1024/sizeof(Op).
94 **
95 ** If an out-of-memory error occurs while resizing the array, return
96 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
97 ** unchanged (this is so that any opcodes already allocated can be
98 ** correctly deallocated along with the rest of the Vdbe).
99 */
100 static int growOpArray(Vdbe *v, int nOp){
101 VdbeOp *pNew;
102 Parse *p = v->pParse;
103
104 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
105 ** more frequent reallocs and hence provide more opportunities for
106 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
107 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
108 ** by the minimum* amount required until the size reaches 512. Normal
109 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
110 ** size of the op array or add 1KB of space, whichever is smaller. */
111 #ifdef SQLITE_TEST_REALLOC_STRESS
112 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
113 #else
114 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
115 UNUSED_PARAMETER(nOp);
116 #endif
117
118 assert( nOp<=(1024/sizeof(Op)) );
119 assert( nNew>=(p->nOpAlloc+nOp) );
120 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
121 if( pNew ){
122 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
123 p->nOpAlloc = p->szOpAlloc/sizeof(Op);
124 v->aOp = pNew;
125 }
126 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
127 }
128
129 #ifdef SQLITE_DEBUG
130 /* This routine is just a convenient place to set a breakpoint that will
131 ** fire after each opcode is inserted and displayed using
132 ** "PRAGMA vdbe_addoptrace=on".
133 */
134 static void test_addop_breakpoint(void){
135 static int n = 0;
136 n++;
137 }
138 #endif
139
140 /*
141 ** Add a new instruction to the list of instructions current in the
142 ** VDBE. Return the address of the new instruction.
143 **
144 ** Parameters:
145 **
146 ** p Pointer to the VDBE
147 **
148 ** op The opcode for this instruction
149 **
150 ** p1, p2, p3 Operands
151 **
152 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
153 ** the sqlite3VdbeChangeP4() function to change the value of the P4
154 ** operand.
155 */
156 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
157 assert( p->pParse->nOpAlloc<=p->nOp );
158 if( growOpArray(p, 1) ) return 1;
159 assert( p->pParse->nOpAlloc>p->nOp );
160 return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
161 }
162 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
163 int i;
164 VdbeOp *pOp;
165
166 i = p->nOp;
167 assert( p->magic==VDBE_MAGIC_INIT );
168 assert( op>=0 && op<0xff );
169 if( p->pParse->nOpAlloc<=i ){
170 return growOp3(p, op, p1, p2, p3);
171 }
172 p->nOp++;
173 pOp = &p->aOp[i];
174 pOp->opcode = (u8)op;
175 pOp->p5 = 0;
176 pOp->p1 = p1;
177 pOp->p2 = p2;
178 pOp->p3 = p3;
179 pOp->p4.p = 0;
180 pOp->p4type = P4_NOTUSED;
181 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
182 pOp->zComment = 0;
183 #endif
184 #ifdef SQLITE_DEBUG
185 if( p->db->flags & SQLITE_VdbeAddopTrace ){
186 int jj, kk;
187 Parse *pParse = p->pParse;
188 for(jj=kk=0; jj<pParse->nColCache; jj++){
189 struct yColCache *x = pParse->aColCache + jj;
190 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
191 kk++;
192 }
193 if( kk ) printf("\n");
194 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
195 test_addop_breakpoint();
196 }
197 #endif
198 #ifdef VDBE_PROFILE
199 pOp->cycles = 0;
200 pOp->cnt = 0;
201 #endif
202 #ifdef SQLITE_VDBE_COVERAGE
203 pOp->iSrcLine = 0;
204 #endif
205 return i;
206 }
207 int sqlite3VdbeAddOp0(Vdbe *p, int op){
208 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
209 }
210 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
211 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
212 }
213 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
214 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
215 }
216
217 /* Generate code for an unconditional jump to instruction iDest
218 */
219 int sqlite3VdbeGoto(Vdbe *p, int iDest){
220 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
221 }
222
223 /* Generate code to cause the string zStr to be loaded into
224 ** register iDest
225 */
226 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
227 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
228 }
229
230 /*
231 ** Generate code that initializes multiple registers to string or integer
232 ** constants. The registers begin with iDest and increase consecutively.
233 ** One register is initialized for each characgter in zTypes[]. For each
234 ** "s" character in zTypes[], the register is a string if the argument is
235 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
236 ** in zTypes[], the register is initialized to an integer.
237 */
238 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
239 va_list ap;
240 int i;
241 char c;
242 va_start(ap, zTypes);
243 for(i=0; (c = zTypes[i])!=0; i++){
244 if( c=='s' ){
245 const char *z = va_arg(ap, const char*);
246 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest++, 0, z, 0);
247 }else{
248 assert( c=='i' );
249 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++);
250 }
251 }
252 va_end(ap);
253 }
254
255 /*
256 ** Add an opcode that includes the p4 value as a pointer.
257 */
258 int sqlite3VdbeAddOp4(
259 Vdbe *p, /* Add the opcode to this VM */
260 int op, /* The new opcode */
261 int p1, /* The P1 operand */
262 int p2, /* The P2 operand */
263 int p3, /* The P3 operand */
264 const char *zP4, /* The P4 operand */
265 int p4type /* P4 operand type */
266 ){
267 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
268 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
269 return addr;
270 }
271
272 /*
273 ** Add an opcode that includes the p4 value with a P4_INT64 or
274 ** P4_REAL type.
275 */
276 int sqlite3VdbeAddOp4Dup8(
277 Vdbe *p, /* Add the opcode to this VM */
278 int op, /* The new opcode */
279 int p1, /* The P1 operand */
280 int p2, /* The P2 operand */
281 int p3, /* The P3 operand */
282 const u8 *zP4, /* The P4 operand */
283 int p4type /* P4 operand type */
284 ){
285 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
286 if( p4copy ) memcpy(p4copy, zP4, 8);
287 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
288 }
289
290 /*
291 ** Add an OP_ParseSchema opcode. This routine is broken out from
292 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
293 ** as having been used.
294 **
295 ** The zWhere string must have been obtained from sqlite3_malloc().
296 ** This routine will take ownership of the allocated memory.
297 */
298 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
299 int j;
300 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
301 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
302 }
303
304 /*
305 ** Add an opcode that includes the p4 value as an integer.
306 */
307 int sqlite3VdbeAddOp4Int(
308 Vdbe *p, /* Add the opcode to this VM */
309 int op, /* The new opcode */
310 int p1, /* The P1 operand */
311 int p2, /* The P2 operand */
312 int p3, /* The P3 operand */
313 int p4 /* The P4 operand as an integer */
314 ){
315 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
316 if( p->db->mallocFailed==0 ){
317 VdbeOp *pOp = &p->aOp[addr];
318 pOp->p4type = P4_INT32;
319 pOp->p4.i = p4;
320 }
321 return addr;
322 }
323
324 /* Insert the end of a co-routine
325 */
326 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
327 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
328
329 /* Clear the temporary register cache, thereby ensuring that each
330 ** co-routine has its own independent set of registers, because co-routines
331 ** might expect their registers to be preserved across an OP_Yield, and
332 ** that could cause problems if two or more co-routines are using the same
333 ** temporary register.
334 */
335 v->pParse->nTempReg = 0;
336 v->pParse->nRangeReg = 0;
337 }
338
339 /*
340 ** Create a new symbolic label for an instruction that has yet to be
341 ** coded. The symbolic label is really just a negative number. The
342 ** label can be used as the P2 value of an operation. Later, when
343 ** the label is resolved to a specific address, the VDBE will scan
344 ** through its operation list and change all values of P2 which match
345 ** the label into the resolved address.
346 **
347 ** The VDBE knows that a P2 value is a label because labels are
348 ** always negative and P2 values are suppose to be non-negative.
349 ** Hence, a negative P2 value is a label that has yet to be resolved.
350 **
351 ** Zero is returned if a malloc() fails.
352 */
353 int sqlite3VdbeMakeLabel(Vdbe *v){
354 Parse *p = v->pParse;
355 int i = p->nLabel++;
356 assert( v->magic==VDBE_MAGIC_INIT );
357 if( (i & (i-1))==0 ){
358 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
359 (i*2+1)*sizeof(p->aLabel[0]));
360 }
361 if( p->aLabel ){
362 p->aLabel[i] = -1;
363 }
364 return ADDR(i);
365 }
366
367 /*
368 ** Resolve label "x" to be the address of the next instruction to
369 ** be inserted. The parameter "x" must have been obtained from
370 ** a prior call to sqlite3VdbeMakeLabel().
371 */
372 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
373 Parse *p = v->pParse;
374 int j = ADDR(x);
375 assert( v->magic==VDBE_MAGIC_INIT );
376 assert( j<p->nLabel );
377 assert( j>=0 );
378 if( p->aLabel ){
379 p->aLabel[j] = v->nOp;
380 }
381 }
382
383 /*
384 ** Mark the VDBE as one that can only be run one time.
385 */
386 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
387 p->runOnlyOnce = 1;
388 }
389
390 /*
391 ** Mark the VDBE as one that can only be run multiple times.
392 */
393 void sqlite3VdbeReusable(Vdbe *p){
394 p->runOnlyOnce = 0;
395 }
396
397 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
398
399 /*
400 ** The following type and function are used to iterate through all opcodes
401 ** in a Vdbe main program and each of the sub-programs (triggers) it may
402 ** invoke directly or indirectly. It should be used as follows:
403 **
404 ** Op *pOp;
405 ** VdbeOpIter sIter;
406 **
407 ** memset(&sIter, 0, sizeof(sIter));
408 ** sIter.v = v; // v is of type Vdbe*
409 ** while( (pOp = opIterNext(&sIter)) ){
410 ** // Do something with pOp
411 ** }
412 ** sqlite3DbFree(v->db, sIter.apSub);
413 **
414 */
415 typedef struct VdbeOpIter VdbeOpIter;
416 struct VdbeOpIter {
417 Vdbe *v; /* Vdbe to iterate through the opcodes of */
418 SubProgram **apSub; /* Array of subprograms */
419 int nSub; /* Number of entries in apSub */
420 int iAddr; /* Address of next instruction to return */
421 int iSub; /* 0 = main program, 1 = first sub-program etc. */
422 };
423 static Op *opIterNext(VdbeOpIter *p){
424 Vdbe *v = p->v;
425 Op *pRet = 0;
426 Op *aOp;
427 int nOp;
428
429 if( p->iSub<=p->nSub ){
430
431 if( p->iSub==0 ){
432 aOp = v->aOp;
433 nOp = v->nOp;
434 }else{
435 aOp = p->apSub[p->iSub-1]->aOp;
436 nOp = p->apSub[p->iSub-1]->nOp;
437 }
438 assert( p->iAddr<nOp );
439
440 pRet = &aOp[p->iAddr];
441 p->iAddr++;
442 if( p->iAddr==nOp ){
443 p->iSub++;
444 p->iAddr = 0;
445 }
446
447 if( pRet->p4type==P4_SUBPROGRAM ){
448 int nByte = (p->nSub+1)*sizeof(SubProgram*);
449 int j;
450 for(j=0; j<p->nSub; j++){
451 if( p->apSub[j]==pRet->p4.pProgram ) break;
452 }
453 if( j==p->nSub ){
454 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
455 if( !p->apSub ){
456 pRet = 0;
457 }else{
458 p->apSub[p->nSub++] = pRet->p4.pProgram;
459 }
460 }
461 }
462 }
463
464 return pRet;
465 }
466
467 /*
468 ** Check if the program stored in the VM associated with pParse may
469 ** throw an ABORT exception (causing the statement, but not entire transaction
470 ** to be rolled back). This condition is true if the main program or any
471 ** sub-programs contains any of the following:
472 **
473 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
474 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
475 ** * OP_Destroy
476 ** * OP_VUpdate
477 ** * OP_VRename
478 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
479 ** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...)
480 **
481 ** Then check that the value of Parse.mayAbort is true if an
482 ** ABORT may be thrown, or false otherwise. Return true if it does
483 ** match, or false otherwise. This function is intended to be used as
484 ** part of an assert statement in the compiler. Similar to:
485 **
486 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
487 */
488 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
489 int hasAbort = 0;
490 int hasFkCounter = 0;
491 int hasCreateTable = 0;
492 int hasInitCoroutine = 0;
493 Op *pOp;
494 VdbeOpIter sIter;
495 memset(&sIter, 0, sizeof(sIter));
496 sIter.v = v;
497
498 while( (pOp = opIterNext(&sIter))!=0 ){
499 int opcode = pOp->opcode;
500 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
501 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
502 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
503 ){
504 hasAbort = 1;
505 break;
506 }
507 if( opcode==OP_CreateTable ) hasCreateTable = 1;
508 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
509 #ifndef SQLITE_OMIT_FOREIGN_KEY
510 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
511 hasFkCounter = 1;
512 }
513 #endif
514 }
515 sqlite3DbFree(v->db, sIter.apSub);
516
517 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
518 ** If malloc failed, then the while() loop above may not have iterated
519 ** through all opcodes and hasAbort may be set incorrectly. Return
520 ** true for this case to prevent the assert() in the callers frame
521 ** from failing. */
522 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
523 || (hasCreateTable && hasInitCoroutine) );
524 }
525 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
526
527 /*
528 ** This routine is called after all opcodes have been inserted. It loops
529 ** through all the opcodes and fixes up some details.
530 **
531 ** (1) For each jump instruction with a negative P2 value (a label)
532 ** resolve the P2 value to an actual address.
533 **
534 ** (2) Compute the maximum number of arguments used by any SQL function
535 ** and store that value in *pMaxFuncArgs.
536 **
537 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
538 ** indicate what the prepared statement actually does.
539 **
540 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
541 **
542 ** (5) Reclaim the memory allocated for storing labels.
543 **
544 ** This routine will only function correctly if the mkopcodeh.tcl generator
545 ** script numbers the opcodes correctly. Changes to this routine must be
546 ** coordinated with changes to mkopcodeh.tcl.
547 */
548 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
549 int nMaxArgs = *pMaxFuncArgs;
550 Op *pOp;
551 Parse *pParse = p->pParse;
552 int *aLabel = pParse->aLabel;
553 p->readOnly = 1;
554 p->bIsReader = 0;
555 pOp = &p->aOp[p->nOp-1];
556 while(1){
557
558 /* Only JUMP opcodes and the short list of special opcodes in the switch
559 ** below need to be considered. The mkopcodeh.tcl generator script groups
560 ** all these opcodes together near the front of the opcode list. Skip
561 ** any opcode that does not need processing by virtual of the fact that
562 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
563 */
564 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
565 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
566 ** cases from this switch! */
567 switch( pOp->opcode ){
568 case OP_Transaction: {
569 if( pOp->p2!=0 ) p->readOnly = 0;
570 /* fall thru */
571 }
572 case OP_AutoCommit:
573 case OP_Savepoint: {
574 p->bIsReader = 1;
575 break;
576 }
577 #ifndef SQLITE_OMIT_WAL
578 case OP_Checkpoint:
579 #endif
580 case OP_Vacuum:
581 case OP_JournalMode: {
582 p->readOnly = 0;
583 p->bIsReader = 1;
584 break;
585 }
586 #ifndef SQLITE_OMIT_VIRTUALTABLE
587 case OP_VUpdate: {
588 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
589 break;
590 }
591 case OP_VFilter: {
592 int n;
593 assert( (pOp - p->aOp) >= 3 );
594 assert( pOp[-1].opcode==OP_Integer );
595 n = pOp[-1].p1;
596 if( n>nMaxArgs ) nMaxArgs = n;
597 break;
598 }
599 #endif
600 case OP_Next:
601 case OP_NextIfOpen:
602 case OP_SorterNext: {
603 pOp->p4.xAdvance = sqlite3BtreeNext;
604 pOp->p4type = P4_ADVANCE;
605 break;
606 }
607 case OP_Prev:
608 case OP_PrevIfOpen: {
609 pOp->p4.xAdvance = sqlite3BtreePrevious;
610 pOp->p4type = P4_ADVANCE;
611 break;
612 }
613 }
614 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 && pOp->p2<0 ){
615 assert( ADDR(pOp->p2)<pParse->nLabel );
616 pOp->p2 = aLabel[ADDR(pOp->p2)];
617 }
618 }
619 if( pOp==p->aOp ) break;
620 pOp--;
621 }
622 sqlite3DbFree(p->db, pParse->aLabel);
623 pParse->aLabel = 0;
624 pParse->nLabel = 0;
625 *pMaxFuncArgs = nMaxArgs;
626 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
627 }
628
629 /*
630 ** Return the address of the next instruction to be inserted.
631 */
632 int sqlite3VdbeCurrentAddr(Vdbe *p){
633 assert( p->magic==VDBE_MAGIC_INIT );
634 return p->nOp;
635 }
636
637 /*
638 ** Verify that at least N opcode slots are available in p without
639 ** having to malloc for more space (except when compiled using
640 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
641 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
642 ** fail due to a OOM fault and hence that the return value from
643 ** sqlite3VdbeAddOpList() will always be non-NULL.
644 */
645 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
646 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
647 assert( p->nOp + N <= p->pParse->nOpAlloc );
648 }
649 #endif
650
651 /*
652 ** Verify that the VM passed as the only argument does not contain
653 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
654 ** by code in pragma.c to ensure that the implementation of certain
655 ** pragmas comports with the flags specified in the mkpragmatab.tcl
656 ** script.
657 */
658 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
659 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
660 int i;
661 for(i=0; i<p->nOp; i++){
662 assert( p->aOp[i].opcode!=OP_ResultRow );
663 }
664 }
665 #endif
666
667 /*
668 ** This function returns a pointer to the array of opcodes associated with
669 ** the Vdbe passed as the first argument. It is the callers responsibility
670 ** to arrange for the returned array to be eventually freed using the
671 ** vdbeFreeOpArray() function.
672 **
673 ** Before returning, *pnOp is set to the number of entries in the returned
674 ** array. Also, *pnMaxArg is set to the larger of its current value and
675 ** the number of entries in the Vdbe.apArg[] array required to execute the
676 ** returned program.
677 */
678 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
679 VdbeOp *aOp = p->aOp;
680 assert( aOp && !p->db->mallocFailed );
681
682 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
683 assert( DbMaskAllZero(p->btreeMask) );
684
685 resolveP2Values(p, pnMaxArg);
686 *pnOp = p->nOp;
687 p->aOp = 0;
688 return aOp;
689 }
690
691 /*
692 ** Add a whole list of operations to the operation stack. Return a
693 ** pointer to the first operation inserted.
694 **
695 ** Non-zero P2 arguments to jump instructions are automatically adjusted
696 ** so that the jump target is relative to the first operation inserted.
697 */
698 VdbeOp *sqlite3VdbeAddOpList(
699 Vdbe *p, /* Add opcodes to the prepared statement */
700 int nOp, /* Number of opcodes to add */
701 VdbeOpList const *aOp, /* The opcodes to be added */
702 int iLineno /* Source-file line number of first opcode */
703 ){
704 int i;
705 VdbeOp *pOut, *pFirst;
706 assert( nOp>0 );
707 assert( p->magic==VDBE_MAGIC_INIT );
708 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
709 return 0;
710 }
711 pFirst = pOut = &p->aOp[p->nOp];
712 for(i=0; i<nOp; i++, aOp++, pOut++){
713 pOut->opcode = aOp->opcode;
714 pOut->p1 = aOp->p1;
715 pOut->p2 = aOp->p2;
716 assert( aOp->p2>=0 );
717 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
718 pOut->p2 += p->nOp;
719 }
720 pOut->p3 = aOp->p3;
721 pOut->p4type = P4_NOTUSED;
722 pOut->p4.p = 0;
723 pOut->p5 = 0;
724 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
725 pOut->zComment = 0;
726 #endif
727 #ifdef SQLITE_VDBE_COVERAGE
728 pOut->iSrcLine = iLineno+i;
729 #else
730 (void)iLineno;
731 #endif
732 #ifdef SQLITE_DEBUG
733 if( p->db->flags & SQLITE_VdbeAddopTrace ){
734 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
735 }
736 #endif
737 }
738 p->nOp += nOp;
739 return pFirst;
740 }
741
742 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
743 /*
744 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
745 */
746 void sqlite3VdbeScanStatus(
747 Vdbe *p, /* VM to add scanstatus() to */
748 int addrExplain, /* Address of OP_Explain (or 0) */
749 int addrLoop, /* Address of loop counter */
750 int addrVisit, /* Address of rows visited counter */
751 LogEst nEst, /* Estimated number of output rows */
752 const char *zName /* Name of table or index being scanned */
753 ){
754 int nByte = (p->nScan+1) * sizeof(ScanStatus);
755 ScanStatus *aNew;
756 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
757 if( aNew ){
758 ScanStatus *pNew = &aNew[p->nScan++];
759 pNew->addrExplain = addrExplain;
760 pNew->addrLoop = addrLoop;
761 pNew->addrVisit = addrVisit;
762 pNew->nEst = nEst;
763 pNew->zName = sqlite3DbStrDup(p->db, zName);
764 p->aScan = aNew;
765 }
766 }
767 #endif
768
769
770 /*
771 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
772 ** for a specific instruction.
773 */
774 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){
775 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
776 }
777 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
778 sqlite3VdbeGetOp(p,addr)->p1 = val;
779 }
780 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
781 sqlite3VdbeGetOp(p,addr)->p2 = val;
782 }
783 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
784 sqlite3VdbeGetOp(p,addr)->p3 = val;
785 }
786 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
787 assert( p->nOp>0 || p->db->mallocFailed );
788 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
789 }
790
791 /*
792 ** Change the P2 operand of instruction addr so that it points to
793 ** the address of the next instruction to be coded.
794 */
795 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
796 sqlite3VdbeChangeP2(p, addr, p->nOp);
797 }
798
799
800 /*
801 ** If the input FuncDef structure is ephemeral, then free it. If
802 ** the FuncDef is not ephermal, then do nothing.
803 */
804 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
805 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
806 sqlite3DbFree(db, pDef);
807 }
808 }
809
810 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
811
812 /*
813 ** Delete a P4 value if necessary.
814 */
815 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
816 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
817 sqlite3DbFree(db, p);
818 }
819 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
820 freeEphemeralFunction(db, p->pFunc);
821 sqlite3DbFree(db, p);
822 }
823 static void freeP4(sqlite3 *db, int p4type, void *p4){
824 assert( db );
825 switch( p4type ){
826 case P4_FUNCCTX: {
827 freeP4FuncCtx(db, (sqlite3_context*)p4);
828 break;
829 }
830 case P4_REAL:
831 case P4_INT64:
832 case P4_DYNAMIC:
833 case P4_INTARRAY: {
834 sqlite3DbFree(db, p4);
835 break;
836 }
837 case P4_KEYINFO: {
838 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
839 break;
840 }
841 #ifdef SQLITE_ENABLE_CURSOR_HINTS
842 case P4_EXPR: {
843 sqlite3ExprDelete(db, (Expr*)p4);
844 break;
845 }
846 #endif
847 case P4_FUNCDEF: {
848 freeEphemeralFunction(db, (FuncDef*)p4);
849 break;
850 }
851 case P4_MEM: {
852 if( db->pnBytesFreed==0 ){
853 sqlite3ValueFree((sqlite3_value*)p4);
854 }else{
855 freeP4Mem(db, (Mem*)p4);
856 }
857 break;
858 }
859 case P4_VTAB : {
860 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
861 break;
862 }
863 }
864 }
865
866 /*
867 ** Free the space allocated for aOp and any p4 values allocated for the
868 ** opcodes contained within. If aOp is not NULL it is assumed to contain
869 ** nOp entries.
870 */
871 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
872 if( aOp ){
873 Op *pOp;
874 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
875 if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p);
876 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
877 sqlite3DbFree(db, pOp->zComment);
878 #endif
879 }
880 }
881 sqlite3DbFree(db, aOp);
882 }
883
884 /*
885 ** Link the SubProgram object passed as the second argument into the linked
886 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
887 ** objects when the VM is no longer required.
888 */
889 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
890 p->pNext = pVdbe->pProgram;
891 pVdbe->pProgram = p;
892 }
893
894 /*
895 ** Change the opcode at addr into OP_Noop
896 */
897 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
898 VdbeOp *pOp;
899 if( p->db->mallocFailed ) return 0;
900 assert( addr>=0 && addr<p->nOp );
901 pOp = &p->aOp[addr];
902 freeP4(p->db, pOp->p4type, pOp->p4.p);
903 pOp->p4type = P4_NOTUSED;
904 pOp->p4.z = 0;
905 pOp->opcode = OP_Noop;
906 return 1;
907 }
908
909 /*
910 ** If the last opcode is "op" and it is not a jump destination,
911 ** then remove it. Return true if and only if an opcode was removed.
912 */
913 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
914 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
915 return sqlite3VdbeChangeToNoop(p, p->nOp-1);
916 }else{
917 return 0;
918 }
919 }
920
921 /*
922 ** Change the value of the P4 operand for a specific instruction.
923 ** This routine is useful when a large program is loaded from a
924 ** static array using sqlite3VdbeAddOpList but we want to make a
925 ** few minor changes to the program.
926 **
927 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
928 ** the string is made into memory obtained from sqlite3_malloc().
929 ** A value of n==0 means copy bytes of zP4 up to and including the
930 ** first null byte. If n>0 then copy n+1 bytes of zP4.
931 **
932 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
933 ** to a string or structure that is guaranteed to exist for the lifetime of
934 ** the Vdbe. In these cases we can just copy the pointer.
935 **
936 ** If addr<0 then change P4 on the most recently inserted instruction.
937 */
938 static void SQLITE_NOINLINE vdbeChangeP4Full(
939 Vdbe *p,
940 Op *pOp,
941 const char *zP4,
942 int n
943 ){
944 if( pOp->p4type ){
945 freeP4(p->db, pOp->p4type, pOp->p4.p);
946 pOp->p4type = 0;
947 pOp->p4.p = 0;
948 }
949 if( n<0 ){
950 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
951 }else{
952 if( n==0 ) n = sqlite3Strlen30(zP4);
953 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
954 pOp->p4type = P4_DYNAMIC;
955 }
956 }
957 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
958 Op *pOp;
959 sqlite3 *db;
960 assert( p!=0 );
961 db = p->db;
962 assert( p->magic==VDBE_MAGIC_INIT );
963 assert( p->aOp!=0 || db->mallocFailed );
964 if( db->mallocFailed ){
965 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
966 return;
967 }
968 assert( p->nOp>0 );
969 assert( addr<p->nOp );
970 if( addr<0 ){
971 addr = p->nOp - 1;
972 }
973 pOp = &p->aOp[addr];
974 if( n>=0 || pOp->p4type ){
975 vdbeChangeP4Full(p, pOp, zP4, n);
976 return;
977 }
978 if( n==P4_INT32 ){
979 /* Note: this cast is safe, because the origin data point was an int
980 ** that was cast to a (const char *). */
981 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
982 pOp->p4type = P4_INT32;
983 }else if( zP4!=0 ){
984 assert( n<0 );
985 pOp->p4.p = (void*)zP4;
986 pOp->p4type = (signed char)n;
987 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
988 }
989 }
990
991 /*
992 ** Change the P4 operand of the most recently coded instruction
993 ** to the value defined by the arguments. This is a high-speed
994 ** version of sqlite3VdbeChangeP4().
995 **
996 ** The P4 operand must not have been previously defined. And the new
997 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
998 ** those cases.
999 */
1000 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1001 VdbeOp *pOp;
1002 assert( n!=P4_INT32 && n!=P4_VTAB );
1003 assert( n<=0 );
1004 if( p->db->mallocFailed ){
1005 freeP4(p->db, n, pP4);
1006 }else{
1007 assert( pP4!=0 );
1008 assert( p->nOp>0 );
1009 pOp = &p->aOp[p->nOp-1];
1010 assert( pOp->p4type==P4_NOTUSED );
1011 pOp->p4type = n;
1012 pOp->p4.p = pP4;
1013 }
1014 }
1015
1016 /*
1017 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1018 ** index given.
1019 */
1020 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1021 Vdbe *v = pParse->pVdbe;
1022 KeyInfo *pKeyInfo;
1023 assert( v!=0 );
1024 assert( pIdx!=0 );
1025 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1026 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1027 }
1028
1029 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1030 /*
1031 ** Change the comment on the most recently coded instruction. Or
1032 ** insert a No-op and add the comment to that new instruction. This
1033 ** makes the code easier to read during debugging. None of this happens
1034 ** in a production build.
1035 */
1036 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1037 assert( p->nOp>0 || p->aOp==0 );
1038 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
1039 if( p->nOp ){
1040 assert( p->aOp );
1041 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1042 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1043 }
1044 }
1045 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1046 va_list ap;
1047 if( p ){
1048 va_start(ap, zFormat);
1049 vdbeVComment(p, zFormat, ap);
1050 va_end(ap);
1051 }
1052 }
1053 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1054 va_list ap;
1055 if( p ){
1056 sqlite3VdbeAddOp0(p, OP_Noop);
1057 va_start(ap, zFormat);
1058 vdbeVComment(p, zFormat, ap);
1059 va_end(ap);
1060 }
1061 }
1062 #endif /* NDEBUG */
1063
1064 #ifdef SQLITE_VDBE_COVERAGE
1065 /*
1066 ** Set the value if the iSrcLine field for the previously coded instruction.
1067 */
1068 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1069 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1070 }
1071 #endif /* SQLITE_VDBE_COVERAGE */
1072
1073 /*
1074 ** Return the opcode for a given address. If the address is -1, then
1075 ** return the most recently inserted opcode.
1076 **
1077 ** If a memory allocation error has occurred prior to the calling of this
1078 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1079 ** is readable but not writable, though it is cast to a writable value.
1080 ** The return of a dummy opcode allows the call to continue functioning
1081 ** after an OOM fault without having to check to see if the return from
1082 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1083 ** dummy will never be written to. This is verified by code inspection and
1084 ** by running with Valgrind.
1085 */
1086 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1087 /* C89 specifies that the constant "dummy" will be initialized to all
1088 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1089 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
1090 assert( p->magic==VDBE_MAGIC_INIT );
1091 if( addr<0 ){
1092 addr = p->nOp - 1;
1093 }
1094 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1095 if( p->db->mallocFailed ){
1096 return (VdbeOp*)&dummy;
1097 }else{
1098 return &p->aOp[addr];
1099 }
1100 }
1101
1102 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1103 /*
1104 ** Return an integer value for one of the parameters to the opcode pOp
1105 ** determined by character c.
1106 */
1107 static int translateP(char c, const Op *pOp){
1108 if( c=='1' ) return pOp->p1;
1109 if( c=='2' ) return pOp->p2;
1110 if( c=='3' ) return pOp->p3;
1111 if( c=='4' ) return pOp->p4.i;
1112 return pOp->p5;
1113 }
1114
1115 /*
1116 ** Compute a string for the "comment" field of a VDBE opcode listing.
1117 **
1118 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1119 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1120 ** absence of other comments, this synopsis becomes the comment on the opcode.
1121 ** Some translation occurs:
1122 **
1123 ** "PX" -> "r[X]"
1124 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1125 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1126 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1127 */
1128 static int displayComment(
1129 const Op *pOp, /* The opcode to be commented */
1130 const char *zP4, /* Previously obtained value for P4 */
1131 char *zTemp, /* Write result here */
1132 int nTemp /* Space available in zTemp[] */
1133 ){
1134 const char *zOpName;
1135 const char *zSynopsis;
1136 int nOpName;
1137 int ii, jj;
1138 char zAlt[50];
1139 zOpName = sqlite3OpcodeName(pOp->opcode);
1140 nOpName = sqlite3Strlen30(zOpName);
1141 if( zOpName[nOpName+1] ){
1142 int seenCom = 0;
1143 char c;
1144 zSynopsis = zOpName += nOpName + 1;
1145 if( strncmp(zSynopsis,"IF ",3)==0 ){
1146 if( pOp->p5 & SQLITE_STOREP2 ){
1147 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3);
1148 }else{
1149 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1150 }
1151 zSynopsis = zAlt;
1152 }
1153 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1154 if( c=='P' ){
1155 c = zSynopsis[++ii];
1156 if( c=='4' ){
1157 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1158 }else if( c=='X' ){
1159 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1160 seenCom = 1;
1161 }else{
1162 int v1 = translateP(c, pOp);
1163 int v2;
1164 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1165 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1166 ii += 3;
1167 jj += sqlite3Strlen30(zTemp+jj);
1168 v2 = translateP(zSynopsis[ii], pOp);
1169 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1170 ii += 2;
1171 v2++;
1172 }
1173 if( v2>1 ){
1174 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1175 }
1176 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1177 ii += 4;
1178 }
1179 }
1180 jj += sqlite3Strlen30(zTemp+jj);
1181 }else{
1182 zTemp[jj++] = c;
1183 }
1184 }
1185 if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1186 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1187 jj += sqlite3Strlen30(zTemp+jj);
1188 }
1189 if( jj<nTemp ) zTemp[jj] = 0;
1190 }else if( pOp->zComment ){
1191 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1192 jj = sqlite3Strlen30(zTemp);
1193 }else{
1194 zTemp[0] = 0;
1195 jj = 0;
1196 }
1197 return jj;
1198 }
1199 #endif /* SQLITE_DEBUG */
1200
1201 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1202 /*
1203 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1204 ** that can be displayed in the P4 column of EXPLAIN output.
1205 */
1206 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1207 const char *zOp = 0;
1208 switch( pExpr->op ){
1209 case TK_STRING:
1210 sqlite3XPrintf(p, "%Q", pExpr->u.zToken);
1211 break;
1212 case TK_INTEGER:
1213 sqlite3XPrintf(p, "%d", pExpr->u.iValue);
1214 break;
1215 case TK_NULL:
1216 sqlite3XPrintf(p, "NULL");
1217 break;
1218 case TK_REGISTER: {
1219 sqlite3XPrintf(p, "r[%d]", pExpr->iTable);
1220 break;
1221 }
1222 case TK_COLUMN: {
1223 if( pExpr->iColumn<0 ){
1224 sqlite3XPrintf(p, "rowid");
1225 }else{
1226 sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn);
1227 }
1228 break;
1229 }
1230 case TK_LT: zOp = "LT"; break;
1231 case TK_LE: zOp = "LE"; break;
1232 case TK_GT: zOp = "GT"; break;
1233 case TK_GE: zOp = "GE"; break;
1234 case TK_NE: zOp = "NE"; break;
1235 case TK_EQ: zOp = "EQ"; break;
1236 case TK_IS: zOp = "IS"; break;
1237 case TK_ISNOT: zOp = "ISNOT"; break;
1238 case TK_AND: zOp = "AND"; break;
1239 case TK_OR: zOp = "OR"; break;
1240 case TK_PLUS: zOp = "ADD"; break;
1241 case TK_STAR: zOp = "MUL"; break;
1242 case TK_MINUS: zOp = "SUB"; break;
1243 case TK_REM: zOp = "REM"; break;
1244 case TK_BITAND: zOp = "BITAND"; break;
1245 case TK_BITOR: zOp = "BITOR"; break;
1246 case TK_SLASH: zOp = "DIV"; break;
1247 case TK_LSHIFT: zOp = "LSHIFT"; break;
1248 case TK_RSHIFT: zOp = "RSHIFT"; break;
1249 case TK_CONCAT: zOp = "CONCAT"; break;
1250 case TK_UMINUS: zOp = "MINUS"; break;
1251 case TK_UPLUS: zOp = "PLUS"; break;
1252 case TK_BITNOT: zOp = "BITNOT"; break;
1253 case TK_NOT: zOp = "NOT"; break;
1254 case TK_ISNULL: zOp = "ISNULL"; break;
1255 case TK_NOTNULL: zOp = "NOTNULL"; break;
1256
1257 default:
1258 sqlite3XPrintf(p, "%s", "expr");
1259 break;
1260 }
1261
1262 if( zOp ){
1263 sqlite3XPrintf(p, "%s(", zOp);
1264 displayP4Expr(p, pExpr->pLeft);
1265 if( pExpr->pRight ){
1266 sqlite3StrAccumAppend(p, ",", 1);
1267 displayP4Expr(p, pExpr->pRight);
1268 }
1269 sqlite3StrAccumAppend(p, ")", 1);
1270 }
1271 }
1272 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1273
1274
1275 #if VDBE_DISPLAY_P4
1276 /*
1277 ** Compute a string that describes the P4 parameter for an opcode.
1278 ** Use zTemp for any required temporary buffer space.
1279 */
1280 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1281 char *zP4 = zTemp;
1282 StrAccum x;
1283 assert( nTemp>=20 );
1284 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
1285 switch( pOp->p4type ){
1286 case P4_KEYINFO: {
1287 int j;
1288 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1289 assert( pKeyInfo->aSortOrder!=0 );
1290 sqlite3XPrintf(&x, "k(%d", pKeyInfo->nField);
1291 for(j=0; j<pKeyInfo->nField; j++){
1292 CollSeq *pColl = pKeyInfo->aColl[j];
1293 const char *zColl = pColl ? pColl->zName : "";
1294 if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1295 sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl);
1296 }
1297 sqlite3StrAccumAppend(&x, ")", 1);
1298 break;
1299 }
1300 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1301 case P4_EXPR: {
1302 displayP4Expr(&x, pOp->p4.pExpr);
1303 break;
1304 }
1305 #endif
1306 case P4_COLLSEQ: {
1307 CollSeq *pColl = pOp->p4.pColl;
1308 sqlite3XPrintf(&x, "(%.20s)", pColl->zName);
1309 break;
1310 }
1311 case P4_FUNCDEF: {
1312 FuncDef *pDef = pOp->p4.pFunc;
1313 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1314 break;
1315 }
1316 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1317 case P4_FUNCCTX: {
1318 FuncDef *pDef = pOp->p4.pCtx->pFunc;
1319 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1320 break;
1321 }
1322 #endif
1323 case P4_INT64: {
1324 sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64);
1325 break;
1326 }
1327 case P4_INT32: {
1328 sqlite3XPrintf(&x, "%d", pOp->p4.i);
1329 break;
1330 }
1331 case P4_REAL: {
1332 sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal);
1333 break;
1334 }
1335 case P4_MEM: {
1336 Mem *pMem = pOp->p4.pMem;
1337 if( pMem->flags & MEM_Str ){
1338 zP4 = pMem->z;
1339 }else if( pMem->flags & MEM_Int ){
1340 sqlite3XPrintf(&x, "%lld", pMem->u.i);
1341 }else if( pMem->flags & MEM_Real ){
1342 sqlite3XPrintf(&x, "%.16g", pMem->u.r);
1343 }else if( pMem->flags & MEM_Null ){
1344 zP4 = "NULL";
1345 }else{
1346 assert( pMem->flags & MEM_Blob );
1347 zP4 = "(blob)";
1348 }
1349 break;
1350 }
1351 #ifndef SQLITE_OMIT_VIRTUALTABLE
1352 case P4_VTAB: {
1353 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1354 sqlite3XPrintf(&x, "vtab:%p", pVtab);
1355 break;
1356 }
1357 #endif
1358 case P4_INTARRAY: {
1359 int i;
1360 int *ai = pOp->p4.ai;
1361 int n = ai[0]; /* The first element of an INTARRAY is always the
1362 ** count of the number of elements to follow */
1363 for(i=1; i<n; i++){
1364 sqlite3XPrintf(&x, ",%d", ai[i]);
1365 }
1366 zTemp[0] = '[';
1367 sqlite3StrAccumAppend(&x, "]", 1);
1368 break;
1369 }
1370 case P4_SUBPROGRAM: {
1371 sqlite3XPrintf(&x, "program");
1372 break;
1373 }
1374 case P4_ADVANCE: {
1375 zTemp[0] = 0;
1376 break;
1377 }
1378 case P4_TABLE: {
1379 sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName);
1380 break;
1381 }
1382 default: {
1383 zP4 = pOp->p4.z;
1384 if( zP4==0 ){
1385 zP4 = zTemp;
1386 zTemp[0] = 0;
1387 }
1388 }
1389 }
1390 sqlite3StrAccumFinish(&x);
1391 assert( zP4!=0 );
1392 return zP4;
1393 }
1394 #endif /* VDBE_DISPLAY_P4 */
1395
1396 /*
1397 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1398 **
1399 ** The prepared statements need to know in advance the complete set of
1400 ** attached databases that will be use. A mask of these databases
1401 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
1402 ** p->btreeMask of databases that will require a lock.
1403 */
1404 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1405 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1406 assert( i<(int)sizeof(p->btreeMask)*8 );
1407 DbMaskSet(p->btreeMask, i);
1408 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1409 DbMaskSet(p->lockMask, i);
1410 }
1411 }
1412
1413 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1414 /*
1415 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1416 ** this routine obtains the mutex associated with each BtShared structure
1417 ** that may be accessed by the VM passed as an argument. In doing so it also
1418 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1419 ** that the correct busy-handler callback is invoked if required.
1420 **
1421 ** If SQLite is not threadsafe but does support shared-cache mode, then
1422 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1423 ** of all of BtShared structures accessible via the database handle
1424 ** associated with the VM.
1425 **
1426 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1427 ** function is a no-op.
1428 **
1429 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1430 ** statement p will ever use. Let N be the number of bits in p->btreeMask
1431 ** corresponding to btrees that use shared cache. Then the runtime of
1432 ** this routine is N*N. But as N is rarely more than 1, this should not
1433 ** be a problem.
1434 */
1435 void sqlite3VdbeEnter(Vdbe *p){
1436 int i;
1437 sqlite3 *db;
1438 Db *aDb;
1439 int nDb;
1440 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1441 db = p->db;
1442 aDb = db->aDb;
1443 nDb = db->nDb;
1444 for(i=0; i<nDb; i++){
1445 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1446 sqlite3BtreeEnter(aDb[i].pBt);
1447 }
1448 }
1449 }
1450 #endif
1451
1452 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1453 /*
1454 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1455 */
1456 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1457 int i;
1458 sqlite3 *db;
1459 Db *aDb;
1460 int nDb;
1461 db = p->db;
1462 aDb = db->aDb;
1463 nDb = db->nDb;
1464 for(i=0; i<nDb; i++){
1465 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1466 sqlite3BtreeLeave(aDb[i].pBt);
1467 }
1468 }
1469 }
1470 void sqlite3VdbeLeave(Vdbe *p){
1471 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1472 vdbeLeave(p);
1473 }
1474 #endif
1475
1476 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1477 /*
1478 ** Print a single opcode. This routine is used for debugging only.
1479 */
1480 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
1481 char *zP4;
1482 char zPtr[50];
1483 char zCom[100];
1484 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1485 if( pOut==0 ) pOut = stdout;
1486 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1487 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1488 displayComment(pOp, zP4, zCom, sizeof(zCom));
1489 #else
1490 zCom[0] = 0;
1491 #endif
1492 /* NB: The sqlite3OpcodeName() function is implemented by code created
1493 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1494 ** information from the vdbe.c source text */
1495 fprintf(pOut, zFormat1, pc,
1496 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1497 zCom
1498 );
1499 fflush(pOut);
1500 }
1501 #endif
1502
1503 /*
1504 ** Initialize an array of N Mem element.
1505 */
1506 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1507 while( (N--)>0 ){
1508 p->db = db;
1509 p->flags = flags;
1510 p->szMalloc = 0;
1511 #ifdef SQLITE_DEBUG
1512 p->pScopyFrom = 0;
1513 #endif
1514 p++;
1515 }
1516 }
1517
1518 /*
1519 ** Release an array of N Mem elements
1520 */
1521 static void releaseMemArray(Mem *p, int N){
1522 if( p && N ){
1523 Mem *pEnd = &p[N];
1524 sqlite3 *db = p->db;
1525 if( db->pnBytesFreed ){
1526 do{
1527 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1528 }while( (++p)<pEnd );
1529 return;
1530 }
1531 do{
1532 assert( (&p[1])==pEnd || p[0].db==p[1].db );
1533 assert( sqlite3VdbeCheckMemInvariants(p) );
1534
1535 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1536 ** that takes advantage of the fact that the memory cell value is
1537 ** being set to NULL after releasing any dynamic resources.
1538 **
1539 ** The justification for duplicating code is that according to
1540 ** callgrind, this causes a certain test case to hit the CPU 4.7
1541 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1542 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1543 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1544 ** with no indexes using a single prepared INSERT statement, bind()
1545 ** and reset(). Inserts are grouped into a transaction.
1546 */
1547 testcase( p->flags & MEM_Agg );
1548 testcase( p->flags & MEM_Dyn );
1549 testcase( p->flags & MEM_Frame );
1550 testcase( p->flags & MEM_RowSet );
1551 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
1552 sqlite3VdbeMemRelease(p);
1553 }else if( p->szMalloc ){
1554 sqlite3DbFree(db, p->zMalloc);
1555 p->szMalloc = 0;
1556 }
1557
1558 p->flags = MEM_Undefined;
1559 }while( (++p)<pEnd );
1560 }
1561 }
1562
1563 /*
1564 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1565 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1566 */
1567 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1568 int i;
1569 Mem *aMem = VdbeFrameMem(p);
1570 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1571 for(i=0; i<p->nChildCsr; i++){
1572 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1573 }
1574 releaseMemArray(aMem, p->nChildMem);
1575 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
1576 sqlite3DbFree(p->v->db, p);
1577 }
1578
1579 #ifndef SQLITE_OMIT_EXPLAIN
1580 /*
1581 ** Give a listing of the program in the virtual machine.
1582 **
1583 ** The interface is the same as sqlite3VdbeExec(). But instead of
1584 ** running the code, it invokes the callback once for each instruction.
1585 ** This feature is used to implement "EXPLAIN".
1586 **
1587 ** When p->explain==1, each instruction is listed. When
1588 ** p->explain==2, only OP_Explain instructions are listed and these
1589 ** are shown in a different format. p->explain==2 is used to implement
1590 ** EXPLAIN QUERY PLAN.
1591 **
1592 ** When p->explain==1, first the main program is listed, then each of
1593 ** the trigger subprograms are listed one by one.
1594 */
1595 int sqlite3VdbeList(
1596 Vdbe *p /* The VDBE */
1597 ){
1598 int nRow; /* Stop when row count reaches this */
1599 int nSub = 0; /* Number of sub-vdbes seen so far */
1600 SubProgram **apSub = 0; /* Array of sub-vdbes */
1601 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1602 sqlite3 *db = p->db; /* The database connection */
1603 int i; /* Loop counter */
1604 int rc = SQLITE_OK; /* Return code */
1605 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
1606
1607 assert( p->explain );
1608 assert( p->magic==VDBE_MAGIC_RUN );
1609 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1610
1611 /* Even though this opcode does not use dynamic strings for
1612 ** the result, result columns may become dynamic if the user calls
1613 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1614 */
1615 releaseMemArray(pMem, 8);
1616 p->pResultSet = 0;
1617
1618 if( p->rc==SQLITE_NOMEM_BKPT ){
1619 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1620 ** sqlite3_column_text16() failed. */
1621 sqlite3OomFault(db);
1622 return SQLITE_ERROR;
1623 }
1624
1625 /* When the number of output rows reaches nRow, that means the
1626 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1627 ** nRow is the sum of the number of rows in the main program, plus
1628 ** the sum of the number of rows in all trigger subprograms encountered
1629 ** so far. The nRow value will increase as new trigger subprograms are
1630 ** encountered, but p->pc will eventually catch up to nRow.
1631 */
1632 nRow = p->nOp;
1633 if( p->explain==1 ){
1634 /* The first 8 memory cells are used for the result set. So we will
1635 ** commandeer the 9th cell to use as storage for an array of pointers
1636 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1637 ** cells. */
1638 assert( p->nMem>9 );
1639 pSub = &p->aMem[9];
1640 if( pSub->flags&MEM_Blob ){
1641 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1642 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
1643 nSub = pSub->n/sizeof(Vdbe*);
1644 apSub = (SubProgram **)pSub->z;
1645 }
1646 for(i=0; i<nSub; i++){
1647 nRow += apSub[i]->nOp;
1648 }
1649 }
1650
1651 do{
1652 i = p->pc++;
1653 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1654 if( i>=nRow ){
1655 p->rc = SQLITE_OK;
1656 rc = SQLITE_DONE;
1657 }else if( db->u1.isInterrupted ){
1658 p->rc = SQLITE_INTERRUPT;
1659 rc = SQLITE_ERROR;
1660 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
1661 }else{
1662 char *zP4;
1663 Op *pOp;
1664 if( i<p->nOp ){
1665 /* The output line number is small enough that we are still in the
1666 ** main program. */
1667 pOp = &p->aOp[i];
1668 }else{
1669 /* We are currently listing subprograms. Figure out which one and
1670 ** pick up the appropriate opcode. */
1671 int j;
1672 i -= p->nOp;
1673 for(j=0; i>=apSub[j]->nOp; j++){
1674 i -= apSub[j]->nOp;
1675 }
1676 pOp = &apSub[j]->aOp[i];
1677 }
1678 if( p->explain==1 ){
1679 pMem->flags = MEM_Int;
1680 pMem->u.i = i; /* Program counter */
1681 pMem++;
1682
1683 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1684 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1685 assert( pMem->z!=0 );
1686 pMem->n = sqlite3Strlen30(pMem->z);
1687 pMem->enc = SQLITE_UTF8;
1688 pMem++;
1689
1690 /* When an OP_Program opcode is encounter (the only opcode that has
1691 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1692 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1693 ** has not already been seen.
1694 */
1695 if( pOp->p4type==P4_SUBPROGRAM ){
1696 int nByte = (nSub+1)*sizeof(SubProgram*);
1697 int j;
1698 for(j=0; j<nSub; j++){
1699 if( apSub[j]==pOp->p4.pProgram ) break;
1700 }
1701 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
1702 apSub = (SubProgram **)pSub->z;
1703 apSub[nSub++] = pOp->p4.pProgram;
1704 pSub->flags |= MEM_Blob;
1705 pSub->n = nSub*sizeof(SubProgram*);
1706 }
1707 }
1708 }
1709
1710 pMem->flags = MEM_Int;
1711 pMem->u.i = pOp->p1; /* P1 */
1712 pMem++;
1713
1714 pMem->flags = MEM_Int;
1715 pMem->u.i = pOp->p2; /* P2 */
1716 pMem++;
1717
1718 pMem->flags = MEM_Int;
1719 pMem->u.i = pOp->p3; /* P3 */
1720 pMem++;
1721
1722 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
1723 assert( p->db->mallocFailed );
1724 return SQLITE_ERROR;
1725 }
1726 pMem->flags = MEM_Str|MEM_Term;
1727 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
1728 if( zP4!=pMem->z ){
1729 pMem->n = 0;
1730 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
1731 }else{
1732 assert( pMem->z!=0 );
1733 pMem->n = sqlite3Strlen30(pMem->z);
1734 pMem->enc = SQLITE_UTF8;
1735 }
1736 pMem++;
1737
1738 if( p->explain==1 ){
1739 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
1740 assert( p->db->mallocFailed );
1741 return SQLITE_ERROR;
1742 }
1743 pMem->flags = MEM_Str|MEM_Term;
1744 pMem->n = 2;
1745 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
1746 pMem->enc = SQLITE_UTF8;
1747 pMem++;
1748
1749 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1750 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
1751 assert( p->db->mallocFailed );
1752 return SQLITE_ERROR;
1753 }
1754 pMem->flags = MEM_Str|MEM_Term;
1755 pMem->n = displayComment(pOp, zP4, pMem->z, 500);
1756 pMem->enc = SQLITE_UTF8;
1757 #else
1758 pMem->flags = MEM_Null; /* Comment */
1759 #endif
1760 }
1761
1762 p->nResColumn = 8 - 4*(p->explain-1);
1763 p->pResultSet = &p->aMem[1];
1764 p->rc = SQLITE_OK;
1765 rc = SQLITE_ROW;
1766 }
1767 return rc;
1768 }
1769 #endif /* SQLITE_OMIT_EXPLAIN */
1770
1771 #ifdef SQLITE_DEBUG
1772 /*
1773 ** Print the SQL that was used to generate a VDBE program.
1774 */
1775 void sqlite3VdbePrintSql(Vdbe *p){
1776 const char *z = 0;
1777 if( p->zSql ){
1778 z = p->zSql;
1779 }else if( p->nOp>=1 ){
1780 const VdbeOp *pOp = &p->aOp[0];
1781 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1782 z = pOp->p4.z;
1783 while( sqlite3Isspace(*z) ) z++;
1784 }
1785 }
1786 if( z ) printf("SQL: [%s]\n", z);
1787 }
1788 #endif
1789
1790 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1791 /*
1792 ** Print an IOTRACE message showing SQL content.
1793 */
1794 void sqlite3VdbeIOTraceSql(Vdbe *p){
1795 int nOp = p->nOp;
1796 VdbeOp *pOp;
1797 if( sqlite3IoTrace==0 ) return;
1798 if( nOp<1 ) return;
1799 pOp = &p->aOp[0];
1800 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1801 int i, j;
1802 char z[1000];
1803 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
1804 for(i=0; sqlite3Isspace(z[i]); i++){}
1805 for(j=0; z[i]; i++){
1806 if( sqlite3Isspace(z[i]) ){
1807 if( z[i-1]!=' ' ){
1808 z[j++] = ' ';
1809 }
1810 }else{
1811 z[j++] = z[i];
1812 }
1813 }
1814 z[j] = 0;
1815 sqlite3IoTrace("SQL %s\n", z);
1816 }
1817 }
1818 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1819
1820 /* An instance of this object describes bulk memory available for use
1821 ** by subcomponents of a prepared statement. Space is allocated out
1822 ** of a ReusableSpace object by the allocSpace() routine below.
1823 */
1824 struct ReusableSpace {
1825 u8 *pSpace; /* Available memory */
1826 int nFree; /* Bytes of available memory */
1827 int nNeeded; /* Total bytes that could not be allocated */
1828 };
1829
1830 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
1831 ** from the ReusableSpace object. Return a pointer to the allocated
1832 ** memory on success. If insufficient memory is available in the
1833 ** ReusableSpace object, increase the ReusableSpace.nNeeded
1834 ** value by the amount needed and return NULL.
1835 **
1836 ** If pBuf is not initially NULL, that means that the memory has already
1837 ** been allocated by a prior call to this routine, so just return a copy
1838 ** of pBuf and leave ReusableSpace unchanged.
1839 **
1840 ** This allocator is employed to repurpose unused slots at the end of the
1841 ** opcode array of prepared state for other memory needs of the prepared
1842 ** statement.
1843 */
1844 static void *allocSpace(
1845 struct ReusableSpace *p, /* Bulk memory available for allocation */
1846 void *pBuf, /* Pointer to a prior allocation */
1847 int nByte /* Bytes of memory needed */
1848 ){
1849 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
1850 if( pBuf==0 ){
1851 nByte = ROUND8(nByte);
1852 if( nByte <= p->nFree ){
1853 p->nFree -= nByte;
1854 pBuf = &p->pSpace[p->nFree];
1855 }else{
1856 p->nNeeded += nByte;
1857 }
1858 }
1859 assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
1860 return pBuf;
1861 }
1862
1863 /*
1864 ** Rewind the VDBE back to the beginning in preparation for
1865 ** running it.
1866 */
1867 void sqlite3VdbeRewind(Vdbe *p){
1868 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1869 int i;
1870 #endif
1871 assert( p!=0 );
1872 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET );
1873
1874 /* There should be at least one opcode.
1875 */
1876 assert( p->nOp>0 );
1877
1878 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
1879 p->magic = VDBE_MAGIC_RUN;
1880
1881 #ifdef SQLITE_DEBUG
1882 for(i=0; i<p->nMem; i++){
1883 assert( p->aMem[i].db==p->db );
1884 }
1885 #endif
1886 p->pc = -1;
1887 p->rc = SQLITE_OK;
1888 p->errorAction = OE_Abort;
1889 p->nChange = 0;
1890 p->cacheCtr = 1;
1891 p->minWriteFileFormat = 255;
1892 p->iStatement = 0;
1893 p->nFkConstraint = 0;
1894 #ifdef VDBE_PROFILE
1895 for(i=0; i<p->nOp; i++){
1896 p->aOp[i].cnt = 0;
1897 p->aOp[i].cycles = 0;
1898 }
1899 #endif
1900 }
1901
1902 /*
1903 ** Prepare a virtual machine for execution for the first time after
1904 ** creating the virtual machine. This involves things such
1905 ** as allocating registers and initializing the program counter.
1906 ** After the VDBE has be prepped, it can be executed by one or more
1907 ** calls to sqlite3VdbeExec().
1908 **
1909 ** This function may be called exactly once on each virtual machine.
1910 ** After this routine is called the VM has been "packaged" and is ready
1911 ** to run. After this routine is called, further calls to
1912 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
1913 ** the Vdbe from the Parse object that helped generate it so that the
1914 ** the Vdbe becomes an independent entity and the Parse object can be
1915 ** destroyed.
1916 **
1917 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1918 ** to its initial state after it has been run.
1919 */
1920 void sqlite3VdbeMakeReady(
1921 Vdbe *p, /* The VDBE */
1922 Parse *pParse /* Parsing context */
1923 ){
1924 sqlite3 *db; /* The database connection */
1925 int nVar; /* Number of parameters */
1926 int nMem; /* Number of VM memory registers */
1927 int nCursor; /* Number of cursors required */
1928 int nArg; /* Number of arguments in subprograms */
1929 int n; /* Loop counter */
1930 struct ReusableSpace x; /* Reusable bulk memory */
1931
1932 assert( p!=0 );
1933 assert( p->nOp>0 );
1934 assert( pParse!=0 );
1935 assert( p->magic==VDBE_MAGIC_INIT );
1936 assert( pParse==p->pParse );
1937 db = p->db;
1938 assert( db->mallocFailed==0 );
1939 nVar = pParse->nVar;
1940 nMem = pParse->nMem;
1941 nCursor = pParse->nTab;
1942 nArg = pParse->nMaxArg;
1943
1944 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
1945 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
1946 ** space at the end of aMem[] for cursors 1 and greater.
1947 ** See also: allocateCursor().
1948 */
1949 nMem += nCursor;
1950 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
1951
1952 /* Figure out how much reusable memory is available at the end of the
1953 ** opcode array. This extra memory will be reallocated for other elements
1954 ** of the prepared statement.
1955 */
1956 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
1957 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
1958 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
1959 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
1960 assert( x.nFree>=0 );
1961 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
1962
1963 resolveP2Values(p, &nArg);
1964 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1965 if( pParse->explain && nMem<10 ){
1966 nMem = 10;
1967 }
1968 p->expired = 0;
1969
1970 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
1971 ** passes. On the first pass, we try to reuse unused memory at the
1972 ** end of the opcode array. If we are unable to satisfy all memory
1973 ** requirements by reusing the opcode array tail, then the second
1974 ** pass will fill in the remainder using a fresh memory allocation.
1975 **
1976 ** This two-pass approach that reuses as much memory as possible from
1977 ** the leftover memory at the end of the opcode array. This can significantly
1978 ** reduce the amount of memory held by a prepared statement.
1979 */
1980 do {
1981 x.nNeeded = 0;
1982 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
1983 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
1984 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
1985 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
1986 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1987 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
1988 #endif
1989 if( x.nNeeded==0 ) break;
1990 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
1991 x.nFree = x.nNeeded;
1992 }while( !db->mallocFailed );
1993
1994 p->pVList = pParse->pVList;
1995 pParse->pVList = 0;
1996 p->explain = pParse->explain;
1997 if( db->mallocFailed ){
1998 p->nVar = 0;
1999 p->nCursor = 0;
2000 p->nMem = 0;
2001 }else{
2002 p->nCursor = nCursor;
2003 p->nVar = (ynVar)nVar;
2004 initMemArray(p->aVar, nVar, db, MEM_Null);
2005 p->nMem = nMem;
2006 initMemArray(p->aMem, nMem, db, MEM_Undefined);
2007 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2008 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2009 memset(p->anExec, 0, p->nOp*sizeof(i64));
2010 #endif
2011 }
2012 sqlite3VdbeRewind(p);
2013 }
2014
2015 /*
2016 ** Close a VDBE cursor and release all the resources that cursor
2017 ** happens to hold.
2018 */
2019 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2020 if( pCx==0 ){
2021 return;
2022 }
2023 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
2024 switch( pCx->eCurType ){
2025 case CURTYPE_SORTER: {
2026 sqlite3VdbeSorterClose(p->db, pCx);
2027 break;
2028 }
2029 case CURTYPE_BTREE: {
2030 if( pCx->pBtx ){
2031 sqlite3BtreeClose(pCx->pBtx);
2032 /* The pCx->pCursor will be close automatically, if it exists, by
2033 ** the call above. */
2034 }else{
2035 assert( pCx->uc.pCursor!=0 );
2036 sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2037 }
2038 break;
2039 }
2040 #ifndef SQLITE_OMIT_VIRTUALTABLE
2041 case CURTYPE_VTAB: {
2042 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2043 const sqlite3_module *pModule = pVCur->pVtab->pModule;
2044 assert( pVCur->pVtab->nRef>0 );
2045 pVCur->pVtab->nRef--;
2046 pModule->xClose(pVCur);
2047 break;
2048 }
2049 #endif
2050 }
2051 }
2052
2053 /*
2054 ** Close all cursors in the current frame.
2055 */
2056 static void closeCursorsInFrame(Vdbe *p){
2057 if( p->apCsr ){
2058 int i;
2059 for(i=0; i<p->nCursor; i++){
2060 VdbeCursor *pC = p->apCsr[i];
2061 if( pC ){
2062 sqlite3VdbeFreeCursor(p, pC);
2063 p->apCsr[i] = 0;
2064 }
2065 }
2066 }
2067 }
2068
2069 /*
2070 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2071 ** is used, for example, when a trigger sub-program is halted to restore
2072 ** control to the main program.
2073 */
2074 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2075 Vdbe *v = pFrame->v;
2076 closeCursorsInFrame(v);
2077 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2078 v->anExec = pFrame->anExec;
2079 #endif
2080 v->aOp = pFrame->aOp;
2081 v->nOp = pFrame->nOp;
2082 v->aMem = pFrame->aMem;
2083 v->nMem = pFrame->nMem;
2084 v->apCsr = pFrame->apCsr;
2085 v->nCursor = pFrame->nCursor;
2086 v->db->lastRowid = pFrame->lastRowid;
2087 v->nChange = pFrame->nChange;
2088 v->db->nChange = pFrame->nDbChange;
2089 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2090 v->pAuxData = pFrame->pAuxData;
2091 pFrame->pAuxData = 0;
2092 return pFrame->pc;
2093 }
2094
2095 /*
2096 ** Close all cursors.
2097 **
2098 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2099 ** cell array. This is necessary as the memory cell array may contain
2100 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2101 ** open cursors.
2102 */
2103 static void closeAllCursors(Vdbe *p){
2104 if( p->pFrame ){
2105 VdbeFrame *pFrame;
2106 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2107 sqlite3VdbeFrameRestore(pFrame);
2108 p->pFrame = 0;
2109 p->nFrame = 0;
2110 }
2111 assert( p->nFrame==0 );
2112 closeCursorsInFrame(p);
2113 if( p->aMem ){
2114 releaseMemArray(p->aMem, p->nMem);
2115 }
2116 while( p->pDelFrame ){
2117 VdbeFrame *pDel = p->pDelFrame;
2118 p->pDelFrame = pDel->pParent;
2119 sqlite3VdbeFrameDelete(pDel);
2120 }
2121
2122 /* Delete any auxdata allocations made by the VM */
2123 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2124 assert( p->pAuxData==0 );
2125 }
2126
2127 /*
2128 ** Clean up the VM after a single run.
2129 */
2130 static void Cleanup(Vdbe *p){
2131 sqlite3 *db = p->db;
2132
2133 #ifdef SQLITE_DEBUG
2134 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
2135 ** Vdbe.aMem[] arrays have already been cleaned up. */
2136 int i;
2137 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
2138 if( p->aMem ){
2139 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
2140 }
2141 #endif
2142
2143 sqlite3DbFree(db, p->zErrMsg);
2144 p->zErrMsg = 0;
2145 p->pResultSet = 0;
2146 }
2147
2148 /*
2149 ** Set the number of result columns that will be returned by this SQL
2150 ** statement. This is now set at compile time, rather than during
2151 ** execution of the vdbe program so that sqlite3_column_count() can
2152 ** be called on an SQL statement before sqlite3_step().
2153 */
2154 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2155 Mem *pColName;
2156 int n;
2157 sqlite3 *db = p->db;
2158
2159 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2160 sqlite3DbFree(db, p->aColName);
2161 n = nResColumn*COLNAME_N;
2162 p->nResColumn = (u16)nResColumn;
2163 p->aColName = pColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2164 if( p->aColName==0 ) return;
2165 initMemArray(p->aColName, n, p->db, MEM_Null);
2166 }
2167
2168 /*
2169 ** Set the name of the idx'th column to be returned by the SQL statement.
2170 ** zName must be a pointer to a nul terminated string.
2171 **
2172 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2173 **
2174 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2175 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2176 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2177 */
2178 int sqlite3VdbeSetColName(
2179 Vdbe *p, /* Vdbe being configured */
2180 int idx, /* Index of column zName applies to */
2181 int var, /* One of the COLNAME_* constants */
2182 const char *zName, /* Pointer to buffer containing name */
2183 void (*xDel)(void*) /* Memory management strategy for zName */
2184 ){
2185 int rc;
2186 Mem *pColName;
2187 assert( idx<p->nResColumn );
2188 assert( var<COLNAME_N );
2189 if( p->db->mallocFailed ){
2190 assert( !zName || xDel!=SQLITE_DYNAMIC );
2191 return SQLITE_NOMEM_BKPT;
2192 }
2193 assert( p->aColName!=0 );
2194 pColName = &(p->aColName[idx+var*p->nResColumn]);
2195 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2196 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2197 return rc;
2198 }
2199
2200 /*
2201 ** A read or write transaction may or may not be active on database handle
2202 ** db. If a transaction is active, commit it. If there is a
2203 ** write-transaction spanning more than one database file, this routine
2204 ** takes care of the master journal trickery.
2205 */
2206 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2207 int i;
2208 int nTrans = 0; /* Number of databases with an active write-transaction
2209 ** that are candidates for a two-phase commit using a
2210 ** master-journal */
2211 int rc = SQLITE_OK;
2212 int needXcommit = 0;
2213
2214 #ifdef SQLITE_OMIT_VIRTUALTABLE
2215 /* With this option, sqlite3VtabSync() is defined to be simply
2216 ** SQLITE_OK so p is not used.
2217 */
2218 UNUSED_PARAMETER(p);
2219 #endif
2220
2221 /* Before doing anything else, call the xSync() callback for any
2222 ** virtual module tables written in this transaction. This has to
2223 ** be done before determining whether a master journal file is
2224 ** required, as an xSync() callback may add an attached database
2225 ** to the transaction.
2226 */
2227 rc = sqlite3VtabSync(db, p);
2228
2229 /* This loop determines (a) if the commit hook should be invoked and
2230 ** (b) how many database files have open write transactions, not
2231 ** including the temp database. (b) is important because if more than
2232 ** one database file has an open write transaction, a master journal
2233 ** file is required for an atomic commit.
2234 */
2235 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2236 Btree *pBt = db->aDb[i].pBt;
2237 if( sqlite3BtreeIsInTrans(pBt) ){
2238 /* Whether or not a database might need a master journal depends upon
2239 ** its journal mode (among other things). This matrix determines which
2240 ** journal modes use a master journal and which do not */
2241 static const u8 aMJNeeded[] = {
2242 /* DELETE */ 1,
2243 /* PERSIST */ 1,
2244 /* OFF */ 0,
2245 /* TRUNCATE */ 1,
2246 /* MEMORY */ 0,
2247 /* WAL */ 0
2248 };
2249 Pager *pPager; /* Pager associated with pBt */
2250 needXcommit = 1;
2251 sqlite3BtreeEnter(pBt);
2252 pPager = sqlite3BtreePager(pBt);
2253 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2254 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2255 ){
2256 assert( i!=1 );
2257 nTrans++;
2258 }
2259 rc = sqlite3PagerExclusiveLock(pPager);
2260 sqlite3BtreeLeave(pBt);
2261 }
2262 }
2263 if( rc!=SQLITE_OK ){
2264 return rc;
2265 }
2266
2267 /* If there are any write-transactions at all, invoke the commit hook */
2268 if( needXcommit && db->xCommitCallback ){
2269 rc = db->xCommitCallback(db->pCommitArg);
2270 if( rc ){
2271 return SQLITE_CONSTRAINT_COMMITHOOK;
2272 }
2273 }
2274
2275 /* The simple case - no more than one database file (not counting the
2276 ** TEMP database) has a transaction active. There is no need for the
2277 ** master-journal.
2278 **
2279 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2280 ** string, it means the main database is :memory: or a temp file. In
2281 ** that case we do not support atomic multi-file commits, so use the
2282 ** simple case then too.
2283 */
2284 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2285 || nTrans<=1
2286 ){
2287 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2288 Btree *pBt = db->aDb[i].pBt;
2289 if( pBt ){
2290 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2291 }
2292 }
2293
2294 /* Do the commit only if all databases successfully complete phase 1.
2295 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2296 ** IO error while deleting or truncating a journal file. It is unlikely,
2297 ** but could happen. In this case abandon processing and return the error.
2298 */
2299 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2300 Btree *pBt = db->aDb[i].pBt;
2301 if( pBt ){
2302 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2303 }
2304 }
2305 if( rc==SQLITE_OK ){
2306 sqlite3VtabCommit(db);
2307 }
2308 }
2309
2310 /* The complex case - There is a multi-file write-transaction active.
2311 ** This requires a master journal file to ensure the transaction is
2312 ** committed atomically.
2313 */
2314 #ifndef SQLITE_OMIT_DISKIO
2315 else{
2316 sqlite3_vfs *pVfs = db->pVfs;
2317 char *zMaster = 0; /* File-name for the master journal */
2318 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2319 sqlite3_file *pMaster = 0;
2320 i64 offset = 0;
2321 int res;
2322 int retryCount = 0;
2323 int nMainFile;
2324
2325 /* Select a master journal file name */
2326 nMainFile = sqlite3Strlen30(zMainFile);
2327 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
2328 if( zMaster==0 ) return SQLITE_NOMEM_BKPT;
2329 do {
2330 u32 iRandom;
2331 if( retryCount ){
2332 if( retryCount>100 ){
2333 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2334 sqlite3OsDelete(pVfs, zMaster, 0);
2335 break;
2336 }else if( retryCount==1 ){
2337 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2338 }
2339 }
2340 retryCount++;
2341 sqlite3_randomness(sizeof(iRandom), &iRandom);
2342 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
2343 (iRandom>>8)&0xffffff, iRandom&0xff);
2344 /* The antipenultimate character of the master journal name must
2345 ** be "9" to avoid name collisions when using 8+3 filenames. */
2346 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
2347 sqlite3FileSuffix3(zMainFile, zMaster);
2348 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2349 }while( rc==SQLITE_OK && res );
2350 if( rc==SQLITE_OK ){
2351 /* Open the master journal. */
2352 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2353 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2354 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2355 );
2356 }
2357 if( rc!=SQLITE_OK ){
2358 sqlite3DbFree(db, zMaster);
2359 return rc;
2360 }
2361
2362 /* Write the name of each database file in the transaction into the new
2363 ** master journal file. If an error occurs at this point close
2364 ** and delete the master journal file. All the individual journal files
2365 ** still have 'null' as the master journal pointer, so they will roll
2366 ** back independently if a failure occurs.
2367 */
2368 for(i=0; i<db->nDb; i++){
2369 Btree *pBt = db->aDb[i].pBt;
2370 if( sqlite3BtreeIsInTrans(pBt) ){
2371 char const *zFile = sqlite3BtreeGetJournalname(pBt);
2372 if( zFile==0 ){
2373 continue; /* Ignore TEMP and :memory: databases */
2374 }
2375 assert( zFile[0]!=0 );
2376 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2377 offset += sqlite3Strlen30(zFile)+1;
2378 if( rc!=SQLITE_OK ){
2379 sqlite3OsCloseFree(pMaster);
2380 sqlite3OsDelete(pVfs, zMaster, 0);
2381 sqlite3DbFree(db, zMaster);
2382 return rc;
2383 }
2384 }
2385 }
2386
2387 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2388 ** flag is set this is not required.
2389 */
2390 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2391 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2392 ){
2393 sqlite3OsCloseFree(pMaster);
2394 sqlite3OsDelete(pVfs, zMaster, 0);
2395 sqlite3DbFree(db, zMaster);
2396 return rc;
2397 }
2398
2399 /* Sync all the db files involved in the transaction. The same call
2400 ** sets the master journal pointer in each individual journal. If
2401 ** an error occurs here, do not delete the master journal file.
2402 **
2403 ** If the error occurs during the first call to
2404 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2405 ** master journal file will be orphaned. But we cannot delete it,
2406 ** in case the master journal file name was written into the journal
2407 ** file before the failure occurred.
2408 */
2409 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2410 Btree *pBt = db->aDb[i].pBt;
2411 if( pBt ){
2412 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
2413 }
2414 }
2415 sqlite3OsCloseFree(pMaster);
2416 assert( rc!=SQLITE_BUSY );
2417 if( rc!=SQLITE_OK ){
2418 sqlite3DbFree(db, zMaster);
2419 return rc;
2420 }
2421
2422 /* Delete the master journal file. This commits the transaction. After
2423 ** doing this the directory is synced again before any individual
2424 ** transaction files are deleted.
2425 */
2426 rc = sqlite3OsDelete(pVfs, zMaster, 1);
2427 sqlite3DbFree(db, zMaster);
2428 zMaster = 0;
2429 if( rc ){
2430 return rc;
2431 }
2432
2433 /* All files and directories have already been synced, so the following
2434 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2435 ** deleting or truncating journals. If something goes wrong while
2436 ** this is happening we don't really care. The integrity of the
2437 ** transaction is already guaranteed, but some stray 'cold' journals
2438 ** may be lying around. Returning an error code won't help matters.
2439 */
2440 disable_simulated_io_errors();
2441 sqlite3BeginBenignMalloc();
2442 for(i=0; i<db->nDb; i++){
2443 Btree *pBt = db->aDb[i].pBt;
2444 if( pBt ){
2445 sqlite3BtreeCommitPhaseTwo(pBt, 1);
2446 }
2447 }
2448 sqlite3EndBenignMalloc();
2449 enable_simulated_io_errors();
2450
2451 sqlite3VtabCommit(db);
2452 }
2453 #endif
2454
2455 return rc;
2456 }
2457
2458 /*
2459 ** This routine checks that the sqlite3.nVdbeActive count variable
2460 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2461 ** currently active. An assertion fails if the two counts do not match.
2462 ** This is an internal self-check only - it is not an essential processing
2463 ** step.
2464 **
2465 ** This is a no-op if NDEBUG is defined.
2466 */
2467 #ifndef NDEBUG
2468 static void checkActiveVdbeCnt(sqlite3 *db){
2469 Vdbe *p;
2470 int cnt = 0;
2471 int nWrite = 0;
2472 int nRead = 0;
2473 p = db->pVdbe;
2474 while( p ){
2475 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2476 cnt++;
2477 if( p->readOnly==0 ) nWrite++;
2478 if( p->bIsReader ) nRead++;
2479 }
2480 p = p->pNext;
2481 }
2482 assert( cnt==db->nVdbeActive );
2483 assert( nWrite==db->nVdbeWrite );
2484 assert( nRead==db->nVdbeRead );
2485 }
2486 #else
2487 #define checkActiveVdbeCnt(x)
2488 #endif
2489
2490 /*
2491 ** If the Vdbe passed as the first argument opened a statement-transaction,
2492 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2493 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2494 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2495 ** statement transaction is committed.
2496 **
2497 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2498 ** Otherwise SQLITE_OK.
2499 */
2500 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
2501 sqlite3 *const db = p->db;
2502 int rc = SQLITE_OK;
2503 int i;
2504 const int iSavepoint = p->iStatement-1;
2505
2506 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2507 assert( db->nStatement>0 );
2508 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2509
2510 for(i=0; i<db->nDb; i++){
2511 int rc2 = SQLITE_OK;
2512 Btree *pBt = db->aDb[i].pBt;
2513 if( pBt ){
2514 if( eOp==SAVEPOINT_ROLLBACK ){
2515 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2516 }
2517 if( rc2==SQLITE_OK ){
2518 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2519 }
2520 if( rc==SQLITE_OK ){
2521 rc = rc2;
2522 }
2523 }
2524 }
2525 db->nStatement--;
2526 p->iStatement = 0;
2527
2528 if( rc==SQLITE_OK ){
2529 if( eOp==SAVEPOINT_ROLLBACK ){
2530 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2531 }
2532 if( rc==SQLITE_OK ){
2533 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2534 }
2535 }
2536
2537 /* If the statement transaction is being rolled back, also restore the
2538 ** database handles deferred constraint counter to the value it had when
2539 ** the statement transaction was opened. */
2540 if( eOp==SAVEPOINT_ROLLBACK ){
2541 db->nDeferredCons = p->nStmtDefCons;
2542 db->nDeferredImmCons = p->nStmtDefImmCons;
2543 }
2544 return rc;
2545 }
2546 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2547 if( p->db->nStatement && p->iStatement ){
2548 return vdbeCloseStatement(p, eOp);
2549 }
2550 return SQLITE_OK;
2551 }
2552
2553
2554 /*
2555 ** This function is called when a transaction opened by the database
2556 ** handle associated with the VM passed as an argument is about to be
2557 ** committed. If there are outstanding deferred foreign key constraint
2558 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2559 **
2560 ** If there are outstanding FK violations and this function returns
2561 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2562 ** and write an error message to it. Then return SQLITE_ERROR.
2563 */
2564 #ifndef SQLITE_OMIT_FOREIGN_KEY
2565 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2566 sqlite3 *db = p->db;
2567 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2568 || (!deferred && p->nFkConstraint>0)
2569 ){
2570 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2571 p->errorAction = OE_Abort;
2572 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
2573 return SQLITE_ERROR;
2574 }
2575 return SQLITE_OK;
2576 }
2577 #endif
2578
2579 /*
2580 ** This routine is called the when a VDBE tries to halt. If the VDBE
2581 ** has made changes and is in autocommit mode, then commit those
2582 ** changes. If a rollback is needed, then do the rollback.
2583 **
2584 ** This routine is the only way to move the state of a VM from
2585 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2586 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
2587 **
2588 ** Return an error code. If the commit could not complete because of
2589 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2590 ** means the close did not happen and needs to be repeated.
2591 */
2592 int sqlite3VdbeHalt(Vdbe *p){
2593 int rc; /* Used to store transient return codes */
2594 sqlite3 *db = p->db;
2595
2596 /* This function contains the logic that determines if a statement or
2597 ** transaction will be committed or rolled back as a result of the
2598 ** execution of this virtual machine.
2599 **
2600 ** If any of the following errors occur:
2601 **
2602 ** SQLITE_NOMEM
2603 ** SQLITE_IOERR
2604 ** SQLITE_FULL
2605 ** SQLITE_INTERRUPT
2606 **
2607 ** Then the internal cache might have been left in an inconsistent
2608 ** state. We need to rollback the statement transaction, if there is
2609 ** one, or the complete transaction if there is no statement transaction.
2610 */
2611
2612 if( db->mallocFailed ){
2613 p->rc = SQLITE_NOMEM_BKPT;
2614 }
2615 closeAllCursors(p);
2616 if( p->magic!=VDBE_MAGIC_RUN ){
2617 return SQLITE_OK;
2618 }
2619 checkActiveVdbeCnt(db);
2620
2621 /* No commit or rollback needed if the program never started or if the
2622 ** SQL statement does not read or write a database file. */
2623 if( p->pc>=0 && p->bIsReader ){
2624 int mrc; /* Primary error code from p->rc */
2625 int eStatementOp = 0;
2626 int isSpecialError; /* Set to true if a 'special' error */
2627
2628 /* Lock all btrees used by the statement */
2629 sqlite3VdbeEnter(p);
2630
2631 /* Check for one of the special errors */
2632 mrc = p->rc & 0xff;
2633 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
2634 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
2635 if( isSpecialError ){
2636 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2637 ** no rollback is necessary. Otherwise, at least a savepoint
2638 ** transaction must be rolled back to restore the database to a
2639 ** consistent state.
2640 **
2641 ** Even if the statement is read-only, it is important to perform
2642 ** a statement or transaction rollback operation. If the error
2643 ** occurred while writing to the journal, sub-journal or database
2644 ** file as part of an effort to free up cache space (see function
2645 ** pagerStress() in pager.c), the rollback is required to restore
2646 ** the pager to a consistent state.
2647 */
2648 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
2649 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
2650 eStatementOp = SAVEPOINT_ROLLBACK;
2651 }else{
2652 /* We are forced to roll back the active transaction. Before doing
2653 ** so, abort any other statements this handle currently has active.
2654 */
2655 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2656 sqlite3CloseSavepoints(db);
2657 db->autoCommit = 1;
2658 p->nChange = 0;
2659 }
2660 }
2661 }
2662
2663 /* Check for immediate foreign key violations. */
2664 if( p->rc==SQLITE_OK ){
2665 sqlite3VdbeCheckFk(p, 0);
2666 }
2667
2668 /* If the auto-commit flag is set and this is the only active writer
2669 ** VM, then we do either a commit or rollback of the current transaction.
2670 **
2671 ** Note: This block also runs if one of the special errors handled
2672 ** above has occurred.
2673 */
2674 if( !sqlite3VtabInSync(db)
2675 && db->autoCommit
2676 && db->nVdbeWrite==(p->readOnly==0)
2677 ){
2678 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
2679 rc = sqlite3VdbeCheckFk(p, 1);
2680 if( rc!=SQLITE_OK ){
2681 if( NEVER(p->readOnly) ){
2682 sqlite3VdbeLeave(p);
2683 return SQLITE_ERROR;
2684 }
2685 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2686 }else{
2687 /* The auto-commit flag is true, the vdbe program was successful
2688 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2689 ** key constraints to hold up the transaction. This means a commit
2690 ** is required. */
2691 rc = vdbeCommit(db, p);
2692 }
2693 if( rc==SQLITE_BUSY && p->readOnly ){
2694 sqlite3VdbeLeave(p);
2695 return SQLITE_BUSY;
2696 }else if( rc!=SQLITE_OK ){
2697 p->rc = rc;
2698 sqlite3RollbackAll(db, SQLITE_OK);
2699 p->nChange = 0;
2700 }else{
2701 db->nDeferredCons = 0;
2702 db->nDeferredImmCons = 0;
2703 db->flags &= ~SQLITE_DeferFKs;
2704 sqlite3CommitInternalChanges(db);
2705 }
2706 }else{
2707 sqlite3RollbackAll(db, SQLITE_OK);
2708 p->nChange = 0;
2709 }
2710 db->nStatement = 0;
2711 }else if( eStatementOp==0 ){
2712 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
2713 eStatementOp = SAVEPOINT_RELEASE;
2714 }else if( p->errorAction==OE_Abort ){
2715 eStatementOp = SAVEPOINT_ROLLBACK;
2716 }else{
2717 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2718 sqlite3CloseSavepoints(db);
2719 db->autoCommit = 1;
2720 p->nChange = 0;
2721 }
2722 }
2723
2724 /* If eStatementOp is non-zero, then a statement transaction needs to
2725 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2726 ** do so. If this operation returns an error, and the current statement
2727 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2728 ** current statement error code.
2729 */
2730 if( eStatementOp ){
2731 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
2732 if( rc ){
2733 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
2734 p->rc = rc;
2735 sqlite3DbFree(db, p->zErrMsg);
2736 p->zErrMsg = 0;
2737 }
2738 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2739 sqlite3CloseSavepoints(db);
2740 db->autoCommit = 1;
2741 p->nChange = 0;
2742 }
2743 }
2744
2745 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2746 ** has been rolled back, update the database connection change-counter.
2747 */
2748 if( p->changeCntOn ){
2749 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
2750 sqlite3VdbeSetChanges(db, p->nChange);
2751 }else{
2752 sqlite3VdbeSetChanges(db, 0);
2753 }
2754 p->nChange = 0;
2755 }
2756
2757 /* Release the locks */
2758 sqlite3VdbeLeave(p);
2759 }
2760
2761 /* We have successfully halted and closed the VM. Record this fact. */
2762 if( p->pc>=0 ){
2763 db->nVdbeActive--;
2764 if( !p->readOnly ) db->nVdbeWrite--;
2765 if( p->bIsReader ) db->nVdbeRead--;
2766 assert( db->nVdbeActive>=db->nVdbeRead );
2767 assert( db->nVdbeRead>=db->nVdbeWrite );
2768 assert( db->nVdbeWrite>=0 );
2769 }
2770 p->magic = VDBE_MAGIC_HALT;
2771 checkActiveVdbeCnt(db);
2772 if( db->mallocFailed ){
2773 p->rc = SQLITE_NOMEM_BKPT;
2774 }
2775
2776 /* If the auto-commit flag is set to true, then any locks that were held
2777 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2778 ** to invoke any required unlock-notify callbacks.
2779 */
2780 if( db->autoCommit ){
2781 sqlite3ConnectionUnlocked(db);
2782 }
2783
2784 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
2785 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
2786 }
2787
2788
2789 /*
2790 ** Each VDBE holds the result of the most recent sqlite3_step() call
2791 ** in p->rc. This routine sets that result back to SQLITE_OK.
2792 */
2793 void sqlite3VdbeResetStepResult(Vdbe *p){
2794 p->rc = SQLITE_OK;
2795 }
2796
2797 /*
2798 ** Copy the error code and error message belonging to the VDBE passed
2799 ** as the first argument to its database handle (so that they will be
2800 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2801 **
2802 ** This function does not clear the VDBE error code or message, just
2803 ** copies them to the database handle.
2804 */
2805 int sqlite3VdbeTransferError(Vdbe *p){
2806 sqlite3 *db = p->db;
2807 int rc = p->rc;
2808 if( p->zErrMsg ){
2809 db->bBenignMalloc++;
2810 sqlite3BeginBenignMalloc();
2811 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
2812 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2813 sqlite3EndBenignMalloc();
2814 db->bBenignMalloc--;
2815 db->errCode = rc;
2816 }else{
2817 sqlite3Error(db, rc);
2818 }
2819 return rc;
2820 }
2821
2822 #ifdef SQLITE_ENABLE_SQLLOG
2823 /*
2824 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2825 ** invoke it.
2826 */
2827 static void vdbeInvokeSqllog(Vdbe *v){
2828 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2829 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2830 assert( v->db->init.busy==0 );
2831 if( zExpanded ){
2832 sqlite3GlobalConfig.xSqllog(
2833 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2834 );
2835 sqlite3DbFree(v->db, zExpanded);
2836 }
2837 }
2838 }
2839 #else
2840 # define vdbeInvokeSqllog(x)
2841 #endif
2842
2843 /*
2844 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
2845 ** Write any error messages into *pzErrMsg. Return the result code.
2846 **
2847 ** After this routine is run, the VDBE should be ready to be executed
2848 ** again.
2849 **
2850 ** To look at it another way, this routine resets the state of the
2851 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2852 ** VDBE_MAGIC_INIT.
2853 */
2854 int sqlite3VdbeReset(Vdbe *p){
2855 sqlite3 *db;
2856 db = p->db;
2857
2858 /* If the VM did not run to completion or if it encountered an
2859 ** error, then it might not have been halted properly. So halt
2860 ** it now.
2861 */
2862 sqlite3VdbeHalt(p);
2863
2864 /* If the VDBE has be run even partially, then transfer the error code
2865 ** and error message from the VDBE into the main database structure. But
2866 ** if the VDBE has just been set to run but has not actually executed any
2867 ** instructions yet, leave the main database error information unchanged.
2868 */
2869 if( p->pc>=0 ){
2870 vdbeInvokeSqllog(p);
2871 sqlite3VdbeTransferError(p);
2872 sqlite3DbFree(db, p->zErrMsg);
2873 p->zErrMsg = 0;
2874 if( p->runOnlyOnce ) p->expired = 1;
2875 }else if( p->rc && p->expired ){
2876 /* The expired flag was set on the VDBE before the first call
2877 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2878 ** called), set the database error in this case as well.
2879 */
2880 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
2881 sqlite3DbFree(db, p->zErrMsg);
2882 p->zErrMsg = 0;
2883 }
2884
2885 /* Reclaim all memory used by the VDBE
2886 */
2887 Cleanup(p);
2888
2889 /* Save profiling information from this VDBE run.
2890 */
2891 #ifdef VDBE_PROFILE
2892 {
2893 FILE *out = fopen("vdbe_profile.out", "a");
2894 if( out ){
2895 int i;
2896 fprintf(out, "---- ");
2897 for(i=0; i<p->nOp; i++){
2898 fprintf(out, "%02x", p->aOp[i].opcode);
2899 }
2900 fprintf(out, "\n");
2901 if( p->zSql ){
2902 char c, pc = 0;
2903 fprintf(out, "-- ");
2904 for(i=0; (c = p->zSql[i])!=0; i++){
2905 if( pc=='\n' ) fprintf(out, "-- ");
2906 putc(c, out);
2907 pc = c;
2908 }
2909 if( pc!='\n' ) fprintf(out, "\n");
2910 }
2911 for(i=0; i<p->nOp; i++){
2912 char zHdr[100];
2913 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
2914 p->aOp[i].cnt,
2915 p->aOp[i].cycles,
2916 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2917 );
2918 fprintf(out, "%s", zHdr);
2919 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
2920 }
2921 fclose(out);
2922 }
2923 }
2924 #endif
2925 p->iCurrentTime = 0;
2926 p->magic = VDBE_MAGIC_RESET;
2927 return p->rc & db->errMask;
2928 }
2929
2930 /*
2931 ** Clean up and delete a VDBE after execution. Return an integer which is
2932 ** the result code. Write any error message text into *pzErrMsg.
2933 */
2934 int sqlite3VdbeFinalize(Vdbe *p){
2935 int rc = SQLITE_OK;
2936 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
2937 rc = sqlite3VdbeReset(p);
2938 assert( (rc & p->db->errMask)==rc );
2939 }
2940 sqlite3VdbeDelete(p);
2941 return rc;
2942 }
2943
2944 /*
2945 ** If parameter iOp is less than zero, then invoke the destructor for
2946 ** all auxiliary data pointers currently cached by the VM passed as
2947 ** the first argument.
2948 **
2949 ** Or, if iOp is greater than or equal to zero, then the destructor is
2950 ** only invoked for those auxiliary data pointers created by the user
2951 ** function invoked by the OP_Function opcode at instruction iOp of
2952 ** VM pVdbe, and only then if:
2953 **
2954 ** * the associated function parameter is the 32nd or later (counting
2955 ** from left to right), or
2956 **
2957 ** * the corresponding bit in argument mask is clear (where the first
2958 ** function parameter corresponds to bit 0 etc.).
2959 */
2960 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
2961 while( *pp ){
2962 AuxData *pAux = *pp;
2963 if( (iOp<0)
2964 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
2965 ){
2966 testcase( pAux->iArg==31 );
2967 if( pAux->xDelete ){
2968 pAux->xDelete(pAux->pAux);
2969 }
2970 *pp = pAux->pNext;
2971 sqlite3DbFree(db, pAux);
2972 }else{
2973 pp= &pAux->pNext;
2974 }
2975 }
2976 }
2977
2978 /*
2979 ** Free all memory associated with the Vdbe passed as the second argument,
2980 ** except for object itself, which is preserved.
2981 **
2982 ** The difference between this function and sqlite3VdbeDelete() is that
2983 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
2984 ** the database connection and frees the object itself.
2985 */
2986 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
2987 SubProgram *pSub, *pNext;
2988 assert( p->db==0 || p->db==db );
2989 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2990 for(pSub=p->pProgram; pSub; pSub=pNext){
2991 pNext = pSub->pNext;
2992 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
2993 sqlite3DbFree(db, pSub);
2994 }
2995 if( p->magic!=VDBE_MAGIC_INIT ){
2996 releaseMemArray(p->aVar, p->nVar);
2997 sqlite3DbFree(db, p->pVList);
2998 sqlite3DbFree(db, p->pFree);
2999 }
3000 vdbeFreeOpArray(db, p->aOp, p->nOp);
3001 sqlite3DbFree(db, p->aColName);
3002 sqlite3DbFree(db, p->zSql);
3003 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3004 {
3005 int i;
3006 for(i=0; i<p->nScan; i++){
3007 sqlite3DbFree(db, p->aScan[i].zName);
3008 }
3009 sqlite3DbFree(db, p->aScan);
3010 }
3011 #endif
3012 }
3013
3014 /*
3015 ** Delete an entire VDBE.
3016 */
3017 void sqlite3VdbeDelete(Vdbe *p){
3018 sqlite3 *db;
3019
3020 if( NEVER(p==0) ) return;
3021 db = p->db;
3022 assert( sqlite3_mutex_held(db->mutex) );
3023 sqlite3VdbeClearObject(db, p);
3024 if( p->pPrev ){
3025 p->pPrev->pNext = p->pNext;
3026 }else{
3027 assert( db->pVdbe==p );
3028 db->pVdbe = p->pNext;
3029 }
3030 if( p->pNext ){
3031 p->pNext->pPrev = p->pPrev;
3032 }
3033 p->magic = VDBE_MAGIC_DEAD;
3034 p->db = 0;
3035 sqlite3DbFree(db, p);
3036 }
3037
3038 /*
3039 ** The cursor "p" has a pending seek operation that has not yet been
3040 ** carried out. Seek the cursor now. If an error occurs, return
3041 ** the appropriate error code.
3042 */
3043 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
3044 int res, rc;
3045 #ifdef SQLITE_TEST
3046 extern int sqlite3_search_count;
3047 #endif
3048 assert( p->deferredMoveto );
3049 assert( p->isTable );
3050 assert( p->eCurType==CURTYPE_BTREE );
3051 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
3052 if( rc ) return rc;
3053 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3054 #ifdef SQLITE_TEST
3055 sqlite3_search_count++;
3056 #endif
3057 p->deferredMoveto = 0;
3058 p->cacheStatus = CACHE_STALE;
3059 return SQLITE_OK;
3060 }
3061
3062 /*
3063 ** Something has moved cursor "p" out of place. Maybe the row it was
3064 ** pointed to was deleted out from under it. Or maybe the btree was
3065 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3066 ** is supposed to be pointing. If the row was deleted out from under the
3067 ** cursor, set the cursor to point to a NULL row.
3068 */
3069 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3070 int isDifferentRow, rc;
3071 assert( p->eCurType==CURTYPE_BTREE );
3072 assert( p->uc.pCursor!=0 );
3073 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3074 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3075 p->cacheStatus = CACHE_STALE;
3076 if( isDifferentRow ) p->nullRow = 1;
3077 return rc;
3078 }
3079
3080 /*
3081 ** Check to ensure that the cursor is valid. Restore the cursor
3082 ** if need be. Return any I/O error from the restore operation.
3083 */
3084 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3085 assert( p->eCurType==CURTYPE_BTREE );
3086 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3087 return handleMovedCursor(p);
3088 }
3089 return SQLITE_OK;
3090 }
3091
3092 /*
3093 ** Make sure the cursor p is ready to read or write the row to which it
3094 ** was last positioned. Return an error code if an OOM fault or I/O error
3095 ** prevents us from positioning the cursor to its correct position.
3096 **
3097 ** If a MoveTo operation is pending on the given cursor, then do that
3098 ** MoveTo now. If no move is pending, check to see if the row has been
3099 ** deleted out from under the cursor and if it has, mark the row as
3100 ** a NULL row.
3101 **
3102 ** If the cursor is already pointing to the correct row and that row has
3103 ** not been deleted out from under the cursor, then this routine is a no-op.
3104 */
3105 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
3106 VdbeCursor *p = *pp;
3107 if( p->eCurType==CURTYPE_BTREE ){
3108 if( p->deferredMoveto ){
3109 int iMap;
3110 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){
3111 *pp = p->pAltCursor;
3112 *piCol = iMap - 1;
3113 return SQLITE_OK;
3114 }
3115 return handleDeferredMoveto(p);
3116 }
3117 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3118 return handleMovedCursor(p);
3119 }
3120 }
3121 return SQLITE_OK;
3122 }
3123
3124 /*
3125 ** The following functions:
3126 **
3127 ** sqlite3VdbeSerialType()
3128 ** sqlite3VdbeSerialTypeLen()
3129 ** sqlite3VdbeSerialLen()
3130 ** sqlite3VdbeSerialPut()
3131 ** sqlite3VdbeSerialGet()
3132 **
3133 ** encapsulate the code that serializes values for storage in SQLite
3134 ** data and index records. Each serialized value consists of a
3135 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3136 ** integer, stored as a varint.
3137 **
3138 ** In an SQLite index record, the serial type is stored directly before
3139 ** the blob of data that it corresponds to. In a table record, all serial
3140 ** types are stored at the start of the record, and the blobs of data at
3141 ** the end. Hence these functions allow the caller to handle the
3142 ** serial-type and data blob separately.
3143 **
3144 ** The following table describes the various storage classes for data:
3145 **
3146 ** serial type bytes of data type
3147 ** -------------- --------------- ---------------
3148 ** 0 0 NULL
3149 ** 1 1 signed integer
3150 ** 2 2 signed integer
3151 ** 3 3 signed integer
3152 ** 4 4 signed integer
3153 ** 5 6 signed integer
3154 ** 6 8 signed integer
3155 ** 7 8 IEEE float
3156 ** 8 0 Integer constant 0
3157 ** 9 0 Integer constant 1
3158 ** 10,11 reserved for expansion
3159 ** N>=12 and even (N-12)/2 BLOB
3160 ** N>=13 and odd (N-13)/2 text
3161 **
3162 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3163 ** of SQLite will not understand those serial types.
3164 */
3165
3166 /*
3167 ** Return the serial-type for the value stored in pMem.
3168 */
3169 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3170 int flags = pMem->flags;
3171 u32 n;
3172
3173 assert( pLen!=0 );
3174 if( flags&MEM_Null ){
3175 *pLen = 0;
3176 return 0;
3177 }
3178 if( flags&MEM_Int ){
3179 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3180 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3181 i64 i = pMem->u.i;
3182 u64 u;
3183 if( i<0 ){
3184 u = ~i;
3185 }else{
3186 u = i;
3187 }
3188 if( u<=127 ){
3189 if( (i&1)==i && file_format>=4 ){
3190 *pLen = 0;
3191 return 8+(u32)u;
3192 }else{
3193 *pLen = 1;
3194 return 1;
3195 }
3196 }
3197 if( u<=32767 ){ *pLen = 2; return 2; }
3198 if( u<=8388607 ){ *pLen = 3; return 3; }
3199 if( u<=2147483647 ){ *pLen = 4; return 4; }
3200 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3201 *pLen = 8;
3202 return 6;
3203 }
3204 if( flags&MEM_Real ){
3205 *pLen = 8;
3206 return 7;
3207 }
3208 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3209 assert( pMem->n>=0 );
3210 n = (u32)pMem->n;
3211 if( flags & MEM_Zero ){
3212 n += pMem->u.nZero;
3213 }
3214 *pLen = n;
3215 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3216 }
3217
3218 /*
3219 ** The sizes for serial types less than 128
3220 */
3221 static const u8 sqlite3SmallTypeSizes[] = {
3222 /* 0 1 2 3 4 5 6 7 8 9 */
3223 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3224 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3225 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3226 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3227 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3228 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3229 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3230 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3231 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3232 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3233 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3234 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3235 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3236 };
3237
3238 /*
3239 ** Return the length of the data corresponding to the supplied serial-type.
3240 */
3241 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3242 if( serial_type>=128 ){
3243 return (serial_type-12)/2;
3244 }else{
3245 assert( serial_type<12
3246 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3247 return sqlite3SmallTypeSizes[serial_type];
3248 }
3249 }
3250 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3251 assert( serial_type<128 );
3252 return sqlite3SmallTypeSizes[serial_type];
3253 }
3254
3255 /*
3256 ** If we are on an architecture with mixed-endian floating
3257 ** points (ex: ARM7) then swap the lower 4 bytes with the
3258 ** upper 4 bytes. Return the result.
3259 **
3260 ** For most architectures, this is a no-op.
3261 **
3262 ** (later): It is reported to me that the mixed-endian problem
3263 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3264 ** that early versions of GCC stored the two words of a 64-bit
3265 ** float in the wrong order. And that error has been propagated
3266 ** ever since. The blame is not necessarily with GCC, though.
3267 ** GCC might have just copying the problem from a prior compiler.
3268 ** I am also told that newer versions of GCC that follow a different
3269 ** ABI get the byte order right.
3270 **
3271 ** Developers using SQLite on an ARM7 should compile and run their
3272 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3273 ** enabled, some asserts below will ensure that the byte order of
3274 ** floating point values is correct.
3275 **
3276 ** (2007-08-30) Frank van Vugt has studied this problem closely
3277 ** and has send his findings to the SQLite developers. Frank
3278 ** writes that some Linux kernels offer floating point hardware
3279 ** emulation that uses only 32-bit mantissas instead of a full
3280 ** 48-bits as required by the IEEE standard. (This is the
3281 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3282 ** byte swapping becomes very complicated. To avoid problems,
3283 ** the necessary byte swapping is carried out using a 64-bit integer
3284 ** rather than a 64-bit float. Frank assures us that the code here
3285 ** works for him. We, the developers, have no way to independently
3286 ** verify this, but Frank seems to know what he is talking about
3287 ** so we trust him.
3288 */
3289 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3290 static u64 floatSwap(u64 in){
3291 union {
3292 u64 r;
3293 u32 i[2];
3294 } u;
3295 u32 t;
3296
3297 u.r = in;
3298 t = u.i[0];
3299 u.i[0] = u.i[1];
3300 u.i[1] = t;
3301 return u.r;
3302 }
3303 # define swapMixedEndianFloat(X) X = floatSwap(X)
3304 #else
3305 # define swapMixedEndianFloat(X)
3306 #endif
3307
3308 /*
3309 ** Write the serialized data blob for the value stored in pMem into
3310 ** buf. It is assumed that the caller has allocated sufficient space.
3311 ** Return the number of bytes written.
3312 **
3313 ** nBuf is the amount of space left in buf[]. The caller is responsible
3314 ** for allocating enough space to buf[] to hold the entire field, exclusive
3315 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3316 **
3317 ** Return the number of bytes actually written into buf[]. The number
3318 ** of bytes in the zero-filled tail is included in the return value only
3319 ** if those bytes were zeroed in buf[].
3320 */
3321 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3322 u32 len;
3323
3324 /* Integer and Real */
3325 if( serial_type<=7 && serial_type>0 ){
3326 u64 v;
3327 u32 i;
3328 if( serial_type==7 ){
3329 assert( sizeof(v)==sizeof(pMem->u.r) );
3330 memcpy(&v, &pMem->u.r, sizeof(v));
3331 swapMixedEndianFloat(v);
3332 }else{
3333 v = pMem->u.i;
3334 }
3335 len = i = sqlite3SmallTypeSizes[serial_type];
3336 assert( i>0 );
3337 do{
3338 buf[--i] = (u8)(v&0xFF);
3339 v >>= 8;
3340 }while( i );
3341 return len;
3342 }
3343
3344 /* String or blob */
3345 if( serial_type>=12 ){
3346 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3347 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3348 len = pMem->n;
3349 if( len>0 ) memcpy(buf, pMem->z, len);
3350 return len;
3351 }
3352
3353 /* NULL or constants 0 or 1 */
3354 return 0;
3355 }
3356
3357 /* Input "x" is a sequence of unsigned characters that represent a
3358 ** big-endian integer. Return the equivalent native integer
3359 */
3360 #define ONE_BYTE_INT(x) ((i8)(x)[0])
3361 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3362 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3363 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3364 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3365
3366 /*
3367 ** Deserialize the data blob pointed to by buf as serial type serial_type
3368 ** and store the result in pMem. Return the number of bytes read.
3369 **
3370 ** This function is implemented as two separate routines for performance.
3371 ** The few cases that require local variables are broken out into a separate
3372 ** routine so that in most cases the overhead of moving the stack pointer
3373 ** is avoided.
3374 */
3375 static u32 SQLITE_NOINLINE serialGet(
3376 const unsigned char *buf, /* Buffer to deserialize from */
3377 u32 serial_type, /* Serial type to deserialize */
3378 Mem *pMem /* Memory cell to write value into */
3379 ){
3380 u64 x = FOUR_BYTE_UINT(buf);
3381 u32 y = FOUR_BYTE_UINT(buf+4);
3382 x = (x<<32) + y;
3383 if( serial_type==6 ){
3384 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3385 ** twos-complement integer. */
3386 pMem->u.i = *(i64*)&x;
3387 pMem->flags = MEM_Int;
3388 testcase( pMem->u.i<0 );
3389 }else{
3390 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3391 ** floating point number. */
3392 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3393 /* Verify that integers and floating point values use the same
3394 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3395 ** defined that 64-bit floating point values really are mixed
3396 ** endian.
3397 */
3398 static const u64 t1 = ((u64)0x3ff00000)<<32;
3399 static const double r1 = 1.0;
3400 u64 t2 = t1;
3401 swapMixedEndianFloat(t2);
3402 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3403 #endif
3404 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3405 swapMixedEndianFloat(x);
3406 memcpy(&pMem->u.r, &x, sizeof(x));
3407 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
3408 }
3409 return 8;
3410 }
3411 u32 sqlite3VdbeSerialGet(
3412 const unsigned char *buf, /* Buffer to deserialize from */
3413 u32 serial_type, /* Serial type to deserialize */
3414 Mem *pMem /* Memory cell to write value into */
3415 ){
3416 switch( serial_type ){
3417 case 10: /* Reserved for future use */
3418 case 11: /* Reserved for future use */
3419 case 0: { /* Null */
3420 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3421 pMem->flags = MEM_Null;
3422 break;
3423 }
3424 case 1: {
3425 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3426 ** integer. */
3427 pMem->u.i = ONE_BYTE_INT(buf);
3428 pMem->flags = MEM_Int;
3429 testcase( pMem->u.i<0 );
3430 return 1;
3431 }
3432 case 2: { /* 2-byte signed integer */
3433 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3434 ** twos-complement integer. */
3435 pMem->u.i = TWO_BYTE_INT(buf);
3436 pMem->flags = MEM_Int;
3437 testcase( pMem->u.i<0 );
3438 return 2;
3439 }
3440 case 3: { /* 3-byte signed integer */
3441 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3442 ** twos-complement integer. */
3443 pMem->u.i = THREE_BYTE_INT(buf);
3444 pMem->flags = MEM_Int;
3445 testcase( pMem->u.i<0 );
3446 return 3;
3447 }
3448 case 4: { /* 4-byte signed integer */
3449 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3450 ** twos-complement integer. */
3451 pMem->u.i = FOUR_BYTE_INT(buf);
3452 #ifdef __HP_cc
3453 /* Work around a sign-extension bug in the HP compiler for HP/UX */
3454 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3455 #endif
3456 pMem->flags = MEM_Int;
3457 testcase( pMem->u.i<0 );
3458 return 4;
3459 }
3460 case 5: { /* 6-byte signed integer */
3461 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3462 ** twos-complement integer. */
3463 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3464 pMem->flags = MEM_Int;
3465 testcase( pMem->u.i<0 );
3466 return 6;
3467 }
3468 case 6: /* 8-byte signed integer */
3469 case 7: { /* IEEE floating point */
3470 /* These use local variables, so do them in a separate routine
3471 ** to avoid having to move the frame pointer in the common case */
3472 return serialGet(buf,serial_type,pMem);
3473 }
3474 case 8: /* Integer 0 */
3475 case 9: { /* Integer 1 */
3476 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3477 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3478 pMem->u.i = serial_type-8;
3479 pMem->flags = MEM_Int;
3480 return 0;
3481 }
3482 default: {
3483 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3484 ** length.
3485 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3486 ** (N-13)/2 bytes in length. */
3487 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3488 pMem->z = (char *)buf;
3489 pMem->n = (serial_type-12)/2;
3490 pMem->flags = aFlag[serial_type&1];
3491 return pMem->n;
3492 }
3493 }
3494 return 0;
3495 }
3496 /*
3497 ** This routine is used to allocate sufficient space for an UnpackedRecord
3498 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3499 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3500 **
3501 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3502 ** the unaligned buffer passed via the second and third arguments (presumably
3503 ** stack space). If the former, then *ppFree is set to a pointer that should
3504 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3505 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3506 ** before returning.
3507 **
3508 ** If an OOM error occurs, NULL is returned.
3509 */
3510 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3511 KeyInfo *pKeyInfo /* Description of the record */
3512 ){
3513 UnpackedRecord *p; /* Unpacked record to return */
3514 int nByte; /* Number of bytes required for *p */
3515 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
3516 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3517 if( !p ) return 0;
3518 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
3519 assert( pKeyInfo->aSortOrder!=0 );
3520 p->pKeyInfo = pKeyInfo;
3521 p->nField = pKeyInfo->nField + 1;
3522 return p;
3523 }
3524
3525 /*
3526 ** Given the nKey-byte encoding of a record in pKey[], populate the
3527 ** UnpackedRecord structure indicated by the fourth argument with the
3528 ** contents of the decoded record.
3529 */
3530 void sqlite3VdbeRecordUnpack(
3531 KeyInfo *pKeyInfo, /* Information about the record format */
3532 int nKey, /* Size of the binary record */
3533 const void *pKey, /* The binary record */
3534 UnpackedRecord *p /* Populate this structure before returning. */
3535 ){
3536 const unsigned char *aKey = (const unsigned char *)pKey;
3537 int d;
3538 u32 idx; /* Offset in aKey[] to read from */
3539 u16 u; /* Unsigned loop counter */
3540 u32 szHdr;
3541 Mem *pMem = p->aMem;
3542
3543 p->default_rc = 0;
3544 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
3545 idx = getVarint32(aKey, szHdr);
3546 d = szHdr;
3547 u = 0;
3548 while( idx<szHdr && d<=nKey ){
3549 u32 serial_type;
3550
3551 idx += getVarint32(&aKey[idx], serial_type);
3552 pMem->enc = pKeyInfo->enc;
3553 pMem->db = pKeyInfo->db;
3554 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
3555 pMem->szMalloc = 0;
3556 pMem->z = 0;
3557 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
3558 pMem++;
3559 if( (++u)>=p->nField ) break;
3560 }
3561 assert( u<=pKeyInfo->nField + 1 );
3562 p->nField = u;
3563 }
3564
3565 #if SQLITE_DEBUG
3566 /*
3567 ** This function compares two index or table record keys in the same way
3568 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3569 ** this function deserializes and compares values using the
3570 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3571 ** in assert() statements to ensure that the optimized code in
3572 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
3573 **
3574 ** Return true if the result of comparison is equivalent to desiredResult.
3575 ** Return false if there is a disagreement.
3576 */
3577 static int vdbeRecordCompareDebug(
3578 int nKey1, const void *pKey1, /* Left key */
3579 const UnpackedRecord *pPKey2, /* Right key */
3580 int desiredResult /* Correct answer */
3581 ){
3582 u32 d1; /* Offset into aKey[] of next data element */
3583 u32 idx1; /* Offset into aKey[] of next header element */
3584 u32 szHdr1; /* Number of bytes in header */
3585 int i = 0;
3586 int rc = 0;
3587 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3588 KeyInfo *pKeyInfo;
3589 Mem mem1;
3590
3591 pKeyInfo = pPKey2->pKeyInfo;
3592 if( pKeyInfo->db==0 ) return 1;
3593 mem1.enc = pKeyInfo->enc;
3594 mem1.db = pKeyInfo->db;
3595 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
3596 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3597
3598 /* Compilers may complain that mem1.u.i is potentially uninitialized.
3599 ** We could initialize it, as shown here, to silence those complaints.
3600 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
3601 ** the unnecessary initialization has a measurable negative performance
3602 ** impact, since this routine is a very high runner. And so, we choose
3603 ** to ignore the compiler warnings and leave this variable uninitialized.
3604 */
3605 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
3606
3607 idx1 = getVarint32(aKey1, szHdr1);
3608 if( szHdr1>98307 ) return SQLITE_CORRUPT;
3609 d1 = szHdr1;
3610 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
3611 assert( pKeyInfo->aSortOrder!=0 );
3612 assert( pKeyInfo->nField>0 );
3613 assert( idx1<=szHdr1 || CORRUPT_DB );
3614 do{
3615 u32 serial_type1;
3616
3617 /* Read the serial types for the next element in each key. */
3618 idx1 += getVarint32( aKey1+idx1, serial_type1 );
3619
3620 /* Verify that there is enough key space remaining to avoid
3621 ** a buffer overread. The "d1+serial_type1+2" subexpression will
3622 ** always be greater than or equal to the amount of required key space.
3623 ** Use that approximation to avoid the more expensive call to
3624 ** sqlite3VdbeSerialTypeLen() in the common case.
3625 */
3626 if( d1+serial_type1+2>(u32)nKey1
3627 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3628 ){
3629 break;
3630 }
3631
3632 /* Extract the values to be compared.
3633 */
3634 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
3635
3636 /* Do the comparison
3637 */
3638 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
3639 if( rc!=0 ){
3640 assert( mem1.szMalloc==0 ); /* See comment below */
3641 if( pKeyInfo->aSortOrder[i] ){
3642 rc = -rc; /* Invert the result for DESC sort order. */
3643 }
3644 goto debugCompareEnd;
3645 }
3646 i++;
3647 }while( idx1<szHdr1 && i<pPKey2->nField );
3648
3649 /* No memory allocation is ever used on mem1. Prove this using
3650 ** the following assert(). If the assert() fails, it indicates a
3651 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
3652 */
3653 assert( mem1.szMalloc==0 );
3654
3655 /* rc==0 here means that one of the keys ran out of fields and
3656 ** all the fields up to that point were equal. Return the default_rc
3657 ** value. */
3658 rc = pPKey2->default_rc;
3659
3660 debugCompareEnd:
3661 if( desiredResult==0 && rc==0 ) return 1;
3662 if( desiredResult<0 && rc<0 ) return 1;
3663 if( desiredResult>0 && rc>0 ) return 1;
3664 if( CORRUPT_DB ) return 1;
3665 if( pKeyInfo->db->mallocFailed ) return 1;
3666 return 0;
3667 }
3668 #endif
3669
3670 #if SQLITE_DEBUG
3671 /*
3672 ** Count the number of fields (a.k.a. columns) in the record given by
3673 ** pKey,nKey. The verify that this count is less than or equal to the
3674 ** limit given by pKeyInfo->nField + pKeyInfo->nXField.
3675 **
3676 ** If this constraint is not satisfied, it means that the high-speed
3677 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
3678 ** not work correctly. If this assert() ever fires, it probably means
3679 ** that the KeyInfo.nField or KeyInfo.nXField values were computed
3680 ** incorrectly.
3681 */
3682 static void vdbeAssertFieldCountWithinLimits(
3683 int nKey, const void *pKey, /* The record to verify */
3684 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
3685 ){
3686 int nField = 0;
3687 u32 szHdr;
3688 u32 idx;
3689 u32 notUsed;
3690 const unsigned char *aKey = (const unsigned char*)pKey;
3691
3692 if( CORRUPT_DB ) return;
3693 idx = getVarint32(aKey, szHdr);
3694 assert( nKey>=0 );
3695 assert( szHdr<=(u32)nKey );
3696 while( idx<szHdr ){
3697 idx += getVarint32(aKey+idx, notUsed);
3698 nField++;
3699 }
3700 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField );
3701 }
3702 #else
3703 # define vdbeAssertFieldCountWithinLimits(A,B,C)
3704 #endif
3705
3706 /*
3707 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
3708 ** using the collation sequence pColl. As usual, return a negative , zero
3709 ** or positive value if *pMem1 is less than, equal to or greater than
3710 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3711 */
3712 static int vdbeCompareMemString(
3713 const Mem *pMem1,
3714 const Mem *pMem2,
3715 const CollSeq *pColl,
3716 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
3717 ){
3718 if( pMem1->enc==pColl->enc ){
3719 /* The strings are already in the correct encoding. Call the
3720 ** comparison function directly */
3721 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3722 }else{
3723 int rc;
3724 const void *v1, *v2;
3725 int n1, n2;
3726 Mem c1;
3727 Mem c2;
3728 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3729 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
3730 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3731 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3732 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3733 n1 = v1==0 ? 0 : c1.n;
3734 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3735 n2 = v2==0 ? 0 : c2.n;
3736 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
3737 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
3738 sqlite3VdbeMemRelease(&c1);
3739 sqlite3VdbeMemRelease(&c2);
3740 return rc;
3741 }
3742 }
3743
3744 /*
3745 ** The input pBlob is guaranteed to be a Blob that is not marked
3746 ** with MEM_Zero. Return true if it could be a zero-blob.
3747 */
3748 static int isAllZero(const char *z, int n){
3749 int i;
3750 for(i=0; i<n; i++){
3751 if( z[i] ) return 0;
3752 }
3753 return 1;
3754 }
3755
3756 /*
3757 ** Compare two blobs. Return negative, zero, or positive if the first
3758 ** is less than, equal to, or greater than the second, respectively.
3759 ** If one blob is a prefix of the other, then the shorter is the lessor.
3760 */
3761 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
3762 int c;
3763 int n1 = pB1->n;
3764 int n2 = pB2->n;
3765
3766 /* It is possible to have a Blob value that has some non-zero content
3767 ** followed by zero content. But that only comes up for Blobs formed
3768 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
3769 ** sqlite3MemCompare(). */
3770 assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
3771 assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
3772
3773 if( (pB1->flags|pB2->flags) & MEM_Zero ){
3774 if( pB1->flags & pB2->flags & MEM_Zero ){
3775 return pB1->u.nZero - pB2->u.nZero;
3776 }else if( pB1->flags & MEM_Zero ){
3777 if( !isAllZero(pB2->z, pB2->n) ) return -1;
3778 return pB1->u.nZero - n2;
3779 }else{
3780 if( !isAllZero(pB1->z, pB1->n) ) return +1;
3781 return n1 - pB2->u.nZero;
3782 }
3783 }
3784 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
3785 if( c ) return c;
3786 return n1 - n2;
3787 }
3788
3789 /*
3790 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
3791 ** number. Return negative, zero, or positive if the first (i64) is less than,
3792 ** equal to, or greater than the second (double).
3793 */
3794 static int sqlite3IntFloatCompare(i64 i, double r){
3795 if( sizeof(LONGDOUBLE_TYPE)>8 ){
3796 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
3797 if( x<r ) return -1;
3798 if( x>r ) return +1;
3799 return 0;
3800 }else{
3801 i64 y;
3802 double s;
3803 if( r<-9223372036854775808.0 ) return +1;
3804 if( r>9223372036854775807.0 ) return -1;
3805 y = (i64)r;
3806 if( i<y ) return -1;
3807 if( i>y ){
3808 if( y==SMALLEST_INT64 && r>0.0 ) return -1;
3809 return +1;
3810 }
3811 s = (double)i;
3812 if( s<r ) return -1;
3813 if( s>r ) return +1;
3814 return 0;
3815 }
3816 }
3817
3818 /*
3819 ** Compare the values contained by the two memory cells, returning
3820 ** negative, zero or positive if pMem1 is less than, equal to, or greater
3821 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3822 ** and reals) sorted numerically, followed by text ordered by the collating
3823 ** sequence pColl and finally blob's ordered by memcmp().
3824 **
3825 ** Two NULL values are considered equal by this function.
3826 */
3827 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
3828 int f1, f2;
3829 int combined_flags;
3830
3831 f1 = pMem1->flags;
3832 f2 = pMem2->flags;
3833 combined_flags = f1|f2;
3834 assert( (combined_flags & MEM_RowSet)==0 );
3835
3836 /* If one value is NULL, it is less than the other. If both values
3837 ** are NULL, return 0.
3838 */
3839 if( combined_flags&MEM_Null ){
3840 return (f2&MEM_Null) - (f1&MEM_Null);
3841 }
3842
3843 /* At least one of the two values is a number
3844 */
3845 if( combined_flags&(MEM_Int|MEM_Real) ){
3846 if( (f1 & f2 & MEM_Int)!=0 ){
3847 if( pMem1->u.i < pMem2->u.i ) return -1;
3848 if( pMem1->u.i > pMem2->u.i ) return +1;
3849 return 0;
3850 }
3851 if( (f1 & f2 & MEM_Real)!=0 ){
3852 if( pMem1->u.r < pMem2->u.r ) return -1;
3853 if( pMem1->u.r > pMem2->u.r ) return +1;
3854 return 0;
3855 }
3856 if( (f1&MEM_Int)!=0 ){
3857 if( (f2&MEM_Real)!=0 ){
3858 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
3859 }else{
3860 return -1;
3861 }
3862 }
3863 if( (f1&MEM_Real)!=0 ){
3864 if( (f2&MEM_Int)!=0 ){
3865 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
3866 }else{
3867 return -1;
3868 }
3869 }
3870 return +1;
3871 }
3872
3873 /* If one value is a string and the other is a blob, the string is less.
3874 ** If both are strings, compare using the collating functions.
3875 */
3876 if( combined_flags&MEM_Str ){
3877 if( (f1 & MEM_Str)==0 ){
3878 return 1;
3879 }
3880 if( (f2 & MEM_Str)==0 ){
3881 return -1;
3882 }
3883
3884 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
3885 assert( pMem1->enc==SQLITE_UTF8 ||
3886 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3887
3888 /* The collation sequence must be defined at this point, even if
3889 ** the user deletes the collation sequence after the vdbe program is
3890 ** compiled (this was not always the case).
3891 */
3892 assert( !pColl || pColl->xCmp );
3893
3894 if( pColl ){
3895 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
3896 }
3897 /* If a NULL pointer was passed as the collate function, fall through
3898 ** to the blob case and use memcmp(). */
3899 }
3900
3901 /* Both values must be blobs. Compare using memcmp(). */
3902 return sqlite3BlobCompare(pMem1, pMem2);
3903 }
3904
3905
3906 /*
3907 ** The first argument passed to this function is a serial-type that
3908 ** corresponds to an integer - all values between 1 and 9 inclusive
3909 ** except 7. The second points to a buffer containing an integer value
3910 ** serialized according to serial_type. This function deserializes
3911 ** and returns the value.
3912 */
3913 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
3914 u32 y;
3915 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
3916 switch( serial_type ){
3917 case 0:
3918 case 1:
3919 testcase( aKey[0]&0x80 );
3920 return ONE_BYTE_INT(aKey);
3921 case 2:
3922 testcase( aKey[0]&0x80 );
3923 return TWO_BYTE_INT(aKey);
3924 case 3:
3925 testcase( aKey[0]&0x80 );
3926 return THREE_BYTE_INT(aKey);
3927 case 4: {
3928 testcase( aKey[0]&0x80 );
3929 y = FOUR_BYTE_UINT(aKey);
3930 return (i64)*(int*)&y;
3931 }
3932 case 5: {
3933 testcase( aKey[0]&0x80 );
3934 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
3935 }
3936 case 6: {
3937 u64 x = FOUR_BYTE_UINT(aKey);
3938 testcase( aKey[0]&0x80 );
3939 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3940 return (i64)*(i64*)&x;
3941 }
3942 }
3943
3944 return (serial_type - 8);
3945 }
3946
3947 /*
3948 ** This function compares the two table rows or index records
3949 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
3950 ** or positive integer if key1 is less than, equal to or
3951 ** greater than key2. The {nKey1, pKey1} key must be a blob
3952 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
3953 ** key must be a parsed key such as obtained from
3954 ** sqlite3VdbeParseRecord.
3955 **
3956 ** If argument bSkip is non-zero, it is assumed that the caller has already
3957 ** determined that the first fields of the keys are equal.
3958 **
3959 ** Key1 and Key2 do not have to contain the same number of fields. If all
3960 ** fields that appear in both keys are equal, then pPKey2->default_rc is
3961 ** returned.
3962 **
3963 ** If database corruption is discovered, set pPKey2->errCode to
3964 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
3965 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
3966 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
3967 */
3968 int sqlite3VdbeRecordCompareWithSkip(
3969 int nKey1, const void *pKey1, /* Left key */
3970 UnpackedRecord *pPKey2, /* Right key */
3971 int bSkip /* If true, skip the first field */
3972 ){
3973 u32 d1; /* Offset into aKey[] of next data element */
3974 int i; /* Index of next field to compare */
3975 u32 szHdr1; /* Size of record header in bytes */
3976 u32 idx1; /* Offset of first type in header */
3977 int rc = 0; /* Return value */
3978 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
3979 KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
3980 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3981 Mem mem1;
3982
3983 /* If bSkip is true, then the caller has already determined that the first
3984 ** two elements in the keys are equal. Fix the various stack variables so
3985 ** that this routine begins comparing at the second field. */
3986 if( bSkip ){
3987 u32 s1;
3988 idx1 = 1 + getVarint32(&aKey1[1], s1);
3989 szHdr1 = aKey1[0];
3990 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
3991 i = 1;
3992 pRhs++;
3993 }else{
3994 idx1 = getVarint32(aKey1, szHdr1);
3995 d1 = szHdr1;
3996 if( d1>(unsigned)nKey1 ){
3997 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
3998 return 0; /* Corruption */
3999 }
4000 i = 0;
4001 }
4002
4003 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4004 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
4005 || CORRUPT_DB );
4006 assert( pPKey2->pKeyInfo->aSortOrder!=0 );
4007 assert( pPKey2->pKeyInfo->nField>0 );
4008 assert( idx1<=szHdr1 || CORRUPT_DB );
4009 do{
4010 u32 serial_type;
4011
4012 /* RHS is an integer */
4013 if( pRhs->flags & MEM_Int ){
4014 serial_type = aKey1[idx1];
4015 testcase( serial_type==12 );
4016 if( serial_type>=10 ){
4017 rc = +1;
4018 }else if( serial_type==0 ){
4019 rc = -1;
4020 }else if( serial_type==7 ){
4021 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4022 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4023 }else{
4024 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4025 i64 rhs = pRhs->u.i;
4026 if( lhs<rhs ){
4027 rc = -1;
4028 }else if( lhs>rhs ){
4029 rc = +1;
4030 }
4031 }
4032 }
4033
4034 /* RHS is real */
4035 else if( pRhs->flags & MEM_Real ){
4036 serial_type = aKey1[idx1];
4037 if( serial_type>=10 ){
4038 /* Serial types 12 or greater are strings and blobs (greater than
4039 ** numbers). Types 10 and 11 are currently "reserved for future
4040 ** use", so it doesn't really matter what the results of comparing
4041 ** them to numberic values are. */
4042 rc = +1;
4043 }else if( serial_type==0 ){
4044 rc = -1;
4045 }else{
4046 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4047 if( serial_type==7 ){
4048 if( mem1.u.r<pRhs->u.r ){
4049 rc = -1;
4050 }else if( mem1.u.r>pRhs->u.r ){
4051 rc = +1;
4052 }
4053 }else{
4054 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4055 }
4056 }
4057 }
4058
4059 /* RHS is a string */
4060 else if( pRhs->flags & MEM_Str ){
4061 getVarint32(&aKey1[idx1], serial_type);
4062 testcase( serial_type==12 );
4063 if( serial_type<12 ){
4064 rc = -1;
4065 }else if( !(serial_type & 0x01) ){
4066 rc = +1;
4067 }else{
4068 mem1.n = (serial_type - 12) / 2;
4069 testcase( (d1+mem1.n)==(unsigned)nKey1 );
4070 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4071 if( (d1+mem1.n) > (unsigned)nKey1 ){
4072 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4073 return 0; /* Corruption */
4074 }else if( pKeyInfo->aColl[i] ){
4075 mem1.enc = pKeyInfo->enc;
4076 mem1.db = pKeyInfo->db;
4077 mem1.flags = MEM_Str;
4078 mem1.z = (char*)&aKey1[d1];
4079 rc = vdbeCompareMemString(
4080 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4081 );
4082 }else{
4083 int nCmp = MIN(mem1.n, pRhs->n);
4084 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4085 if( rc==0 ) rc = mem1.n - pRhs->n;
4086 }
4087 }
4088 }
4089
4090 /* RHS is a blob */
4091 else if( pRhs->flags & MEM_Blob ){
4092 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4093 getVarint32(&aKey1[idx1], serial_type);
4094 testcase( serial_type==12 );
4095 if( serial_type<12 || (serial_type & 0x01) ){
4096 rc = -1;
4097 }else{
4098 int nStr = (serial_type - 12) / 2;
4099 testcase( (d1+nStr)==(unsigned)nKey1 );
4100 testcase( (d1+nStr+1)==(unsigned)nKey1 );
4101 if( (d1+nStr) > (unsigned)nKey1 ){
4102 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4103 return 0; /* Corruption */
4104 }else if( pRhs->flags & MEM_Zero ){
4105 if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4106 rc = 1;
4107 }else{
4108 rc = nStr - pRhs->u.nZero;
4109 }
4110 }else{
4111 int nCmp = MIN(nStr, pRhs->n);
4112 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4113 if( rc==0 ) rc = nStr - pRhs->n;
4114 }
4115 }
4116 }
4117
4118 /* RHS is null */
4119 else{
4120 serial_type = aKey1[idx1];
4121 rc = (serial_type!=0);
4122 }
4123
4124 if( rc!=0 ){
4125 if( pKeyInfo->aSortOrder[i] ){
4126 rc = -rc;
4127 }
4128 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4129 assert( mem1.szMalloc==0 ); /* See comment below */
4130 return rc;
4131 }
4132
4133 i++;
4134 pRhs++;
4135 d1 += sqlite3VdbeSerialTypeLen(serial_type);
4136 idx1 += sqlite3VarintLen(serial_type);
4137 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
4138
4139 /* No memory allocation is ever used on mem1. Prove this using
4140 ** the following assert(). If the assert() fails, it indicates a
4141 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4142 assert( mem1.szMalloc==0 );
4143
4144 /* rc==0 here means that one or both of the keys ran out of fields and
4145 ** all the fields up to that point were equal. Return the default_rc
4146 ** value. */
4147 assert( CORRUPT_DB
4148 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4149 || pKeyInfo->db->mallocFailed
4150 );
4151 pPKey2->eqSeen = 1;
4152 return pPKey2->default_rc;
4153 }
4154 int sqlite3VdbeRecordCompare(
4155 int nKey1, const void *pKey1, /* Left key */
4156 UnpackedRecord *pPKey2 /* Right key */
4157 ){
4158 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4159 }
4160
4161
4162 /*
4163 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4164 ** that (a) the first field of pPKey2 is an integer, and (b) the
4165 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4166 ** byte (i.e. is less than 128).
4167 **
4168 ** To avoid concerns about buffer overreads, this routine is only used
4169 ** on schemas where the maximum valid header size is 63 bytes or less.
4170 */
4171 static int vdbeRecordCompareInt(
4172 int nKey1, const void *pKey1, /* Left key */
4173 UnpackedRecord *pPKey2 /* Right key */
4174 ){
4175 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4176 int serial_type = ((const u8*)pKey1)[1];
4177 int res;
4178 u32 y;
4179 u64 x;
4180 i64 v;
4181 i64 lhs;
4182
4183 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4184 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4185 switch( serial_type ){
4186 case 1: { /* 1-byte signed integer */
4187 lhs = ONE_BYTE_INT(aKey);
4188 testcase( lhs<0 );
4189 break;
4190 }
4191 case 2: { /* 2-byte signed integer */
4192 lhs = TWO_BYTE_INT(aKey);
4193 testcase( lhs<0 );
4194 break;
4195 }
4196 case 3: { /* 3-byte signed integer */
4197 lhs = THREE_BYTE_INT(aKey);
4198 testcase( lhs<0 );
4199 break;
4200 }
4201 case 4: { /* 4-byte signed integer */
4202 y = FOUR_BYTE_UINT(aKey);
4203 lhs = (i64)*(int*)&y;
4204 testcase( lhs<0 );
4205 break;
4206 }
4207 case 5: { /* 6-byte signed integer */
4208 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4209 testcase( lhs<0 );
4210 break;
4211 }
4212 case 6: { /* 8-byte signed integer */
4213 x = FOUR_BYTE_UINT(aKey);
4214 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4215 lhs = *(i64*)&x;
4216 testcase( lhs<0 );
4217 break;
4218 }
4219 case 8:
4220 lhs = 0;
4221 break;
4222 case 9:
4223 lhs = 1;
4224 break;
4225
4226 /* This case could be removed without changing the results of running
4227 ** this code. Including it causes gcc to generate a faster switch
4228 ** statement (since the range of switch targets now starts at zero and
4229 ** is contiguous) but does not cause any duplicate code to be generated
4230 ** (as gcc is clever enough to combine the two like cases). Other
4231 ** compilers might be similar. */
4232 case 0: case 7:
4233 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4234
4235 default:
4236 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4237 }
4238
4239 v = pPKey2->aMem[0].u.i;
4240 if( v>lhs ){
4241 res = pPKey2->r1;
4242 }else if( v<lhs ){
4243 res = pPKey2->r2;
4244 }else if( pPKey2->nField>1 ){
4245 /* The first fields of the two keys are equal. Compare the trailing
4246 ** fields. */
4247 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4248 }else{
4249 /* The first fields of the two keys are equal and there are no trailing
4250 ** fields. Return pPKey2->default_rc in this case. */
4251 res = pPKey2->default_rc;
4252 pPKey2->eqSeen = 1;
4253 }
4254
4255 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4256 return res;
4257 }
4258
4259 /*
4260 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4261 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4262 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4263 ** at the start of (pKey1/nKey1) fits in a single byte.
4264 */
4265 static int vdbeRecordCompareString(
4266 int nKey1, const void *pKey1, /* Left key */
4267 UnpackedRecord *pPKey2 /* Right key */
4268 ){
4269 const u8 *aKey1 = (const u8*)pKey1;
4270 int serial_type;
4271 int res;
4272
4273 assert( pPKey2->aMem[0].flags & MEM_Str );
4274 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4275 getVarint32(&aKey1[1], serial_type);
4276 if( serial_type<12 ){
4277 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
4278 }else if( !(serial_type & 0x01) ){
4279 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
4280 }else{
4281 int nCmp;
4282 int nStr;
4283 int szHdr = aKey1[0];
4284
4285 nStr = (serial_type-12) / 2;
4286 if( (szHdr + nStr) > nKey1 ){
4287 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4288 return 0; /* Corruption */
4289 }
4290 nCmp = MIN( pPKey2->aMem[0].n, nStr );
4291 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4292
4293 if( res==0 ){
4294 res = nStr - pPKey2->aMem[0].n;
4295 if( res==0 ){
4296 if( pPKey2->nField>1 ){
4297 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4298 }else{
4299 res = pPKey2->default_rc;
4300 pPKey2->eqSeen = 1;
4301 }
4302 }else if( res>0 ){
4303 res = pPKey2->r2;
4304 }else{
4305 res = pPKey2->r1;
4306 }
4307 }else if( res>0 ){
4308 res = pPKey2->r2;
4309 }else{
4310 res = pPKey2->r1;
4311 }
4312 }
4313
4314 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4315 || CORRUPT_DB
4316 || pPKey2->pKeyInfo->db->mallocFailed
4317 );
4318 return res;
4319 }
4320
4321 /*
4322 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4323 ** suitable for comparing serialized records to the unpacked record passed
4324 ** as the only argument.
4325 */
4326 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4327 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4328 ** that the size-of-header varint that occurs at the start of each record
4329 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4330 ** also assumes that it is safe to overread a buffer by at least the
4331 ** maximum possible legal header size plus 8 bytes. Because there is
4332 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4333 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4334 ** limit the size of the header to 64 bytes in cases where the first field
4335 ** is an integer.
4336 **
4337 ** The easiest way to enforce this limit is to consider only records with
4338 ** 13 fields or less. If the first field is an integer, the maximum legal
4339 ** header size is (12*5 + 1 + 1) bytes. */
4340 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
4341 int flags = p->aMem[0].flags;
4342 if( p->pKeyInfo->aSortOrder[0] ){
4343 p->r1 = 1;
4344 p->r2 = -1;
4345 }else{
4346 p->r1 = -1;
4347 p->r2 = 1;
4348 }
4349 if( (flags & MEM_Int) ){
4350 return vdbeRecordCompareInt;
4351 }
4352 testcase( flags & MEM_Real );
4353 testcase( flags & MEM_Null );
4354 testcase( flags & MEM_Blob );
4355 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
4356 assert( flags & MEM_Str );
4357 return vdbeRecordCompareString;
4358 }
4359 }
4360
4361 return sqlite3VdbeRecordCompare;
4362 }
4363
4364 /*
4365 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4366 ** Read the rowid (the last field in the record) and store it in *rowid.
4367 ** Return SQLITE_OK if everything works, or an error code otherwise.
4368 **
4369 ** pCur might be pointing to text obtained from a corrupt database file.
4370 ** So the content cannot be trusted. Do appropriate checks on the content.
4371 */
4372 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4373 i64 nCellKey = 0;
4374 int rc;
4375 u32 szHdr; /* Size of the header */
4376 u32 typeRowid; /* Serial type of the rowid */
4377 u32 lenRowid; /* Size of the rowid */
4378 Mem m, v;
4379
4380 /* Get the size of the index entry. Only indices entries of less
4381 ** than 2GiB are support - anything large must be database corruption.
4382 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4383 ** this code can safely assume that nCellKey is 32-bits
4384 */
4385 assert( sqlite3BtreeCursorIsValid(pCur) );
4386 nCellKey = sqlite3BtreePayloadSize(pCur);
4387 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4388
4389 /* Read in the complete content of the index entry */
4390 sqlite3VdbeMemInit(&m, db, 0);
4391 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4392 if( rc ){
4393 return rc;
4394 }
4395
4396 /* The index entry must begin with a header size */
4397 (void)getVarint32((u8*)m.z, szHdr);
4398 testcase( szHdr==3 );
4399 testcase( szHdr==m.n );
4400 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
4401 goto idx_rowid_corruption;
4402 }
4403
4404 /* The last field of the index should be an integer - the ROWID.
4405 ** Verify that the last entry really is an integer. */
4406 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
4407 testcase( typeRowid==1 );
4408 testcase( typeRowid==2 );
4409 testcase( typeRowid==3 );
4410 testcase( typeRowid==4 );
4411 testcase( typeRowid==5 );
4412 testcase( typeRowid==6 );
4413 testcase( typeRowid==8 );
4414 testcase( typeRowid==9 );
4415 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4416 goto idx_rowid_corruption;
4417 }
4418 lenRowid = sqlite3SmallTypeSizes[typeRowid];
4419 testcase( (u32)m.n==szHdr+lenRowid );
4420 if( unlikely((u32)m.n<szHdr+lenRowid) ){
4421 goto idx_rowid_corruption;
4422 }
4423
4424 /* Fetch the integer off the end of the index record */
4425 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4426 *rowid = v.u.i;
4427 sqlite3VdbeMemRelease(&m);
4428 return SQLITE_OK;
4429
4430 /* Jump here if database corruption is detected after m has been
4431 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4432 idx_rowid_corruption:
4433 testcase( m.szMalloc!=0 );
4434 sqlite3VdbeMemRelease(&m);
4435 return SQLITE_CORRUPT_BKPT;
4436 }
4437
4438 /*
4439 ** Compare the key of the index entry that cursor pC is pointing to against
4440 ** the key string in pUnpacked. Write into *pRes a number
4441 ** that is negative, zero, or positive if pC is less than, equal to,
4442 ** or greater than pUnpacked. Return SQLITE_OK on success.
4443 **
4444 ** pUnpacked is either created without a rowid or is truncated so that it
4445 ** omits the rowid at the end. The rowid at the end of the index entry
4446 ** is ignored as well. Hence, this routine only compares the prefixes
4447 ** of the keys prior to the final rowid, not the entire key.
4448 */
4449 int sqlite3VdbeIdxKeyCompare(
4450 sqlite3 *db, /* Database connection */
4451 VdbeCursor *pC, /* The cursor to compare against */
4452 UnpackedRecord *pUnpacked, /* Unpacked version of key */
4453 int *res /* Write the comparison result here */
4454 ){
4455 i64 nCellKey = 0;
4456 int rc;
4457 BtCursor *pCur;
4458 Mem m;
4459
4460 assert( pC->eCurType==CURTYPE_BTREE );
4461 pCur = pC->uc.pCursor;
4462 assert( sqlite3BtreeCursorIsValid(pCur) );
4463 nCellKey = sqlite3BtreePayloadSize(pCur);
4464 /* nCellKey will always be between 0 and 0xffffffff because of the way
4465 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4466 if( nCellKey<=0 || nCellKey>0x7fffffff ){
4467 *res = 0;
4468 return SQLITE_CORRUPT_BKPT;
4469 }
4470 sqlite3VdbeMemInit(&m, db, 0);
4471 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4472 if( rc ){
4473 return rc;
4474 }
4475 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
4476 sqlite3VdbeMemRelease(&m);
4477 return SQLITE_OK;
4478 }
4479
4480 /*
4481 ** This routine sets the value to be returned by subsequent calls to
4482 ** sqlite3_changes() on the database handle 'db'.
4483 */
4484 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
4485 assert( sqlite3_mutex_held(db->mutex) );
4486 db->nChange = nChange;
4487 db->nTotalChange += nChange;
4488 }
4489
4490 /*
4491 ** Set a flag in the vdbe to update the change counter when it is finalised
4492 ** or reset.
4493 */
4494 void sqlite3VdbeCountChanges(Vdbe *v){
4495 v->changeCntOn = 1;
4496 }
4497
4498 /*
4499 ** Mark every prepared statement associated with a database connection
4500 ** as expired.
4501 **
4502 ** An expired statement means that recompilation of the statement is
4503 ** recommend. Statements expire when things happen that make their
4504 ** programs obsolete. Removing user-defined functions or collating
4505 ** sequences, or changing an authorization function are the types of
4506 ** things that make prepared statements obsolete.
4507 */
4508 void sqlite3ExpirePreparedStatements(sqlite3 *db){
4509 Vdbe *p;
4510 for(p = db->pVdbe; p; p=p->pNext){
4511 p->expired = 1;
4512 }
4513 }
4514
4515 /*
4516 ** Return the database associated with the Vdbe.
4517 */
4518 sqlite3 *sqlite3VdbeDb(Vdbe *v){
4519 return v->db;
4520 }
4521
4522 /*
4523 ** Return a pointer to an sqlite3_value structure containing the value bound
4524 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4525 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4526 ** constants) to the value before returning it.
4527 **
4528 ** The returned value must be freed by the caller using sqlite3ValueFree().
4529 */
4530 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
4531 assert( iVar>0 );
4532 if( v ){
4533 Mem *pMem = &v->aVar[iVar-1];
4534 if( 0==(pMem->flags & MEM_Null) ){
4535 sqlite3_value *pRet = sqlite3ValueNew(v->db);
4536 if( pRet ){
4537 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4538 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
4539 }
4540 return pRet;
4541 }
4542 }
4543 return 0;
4544 }
4545
4546 /*
4547 ** Configure SQL variable iVar so that binding a new value to it signals
4548 ** to sqlite3_reoptimize() that re-preparing the statement may result
4549 ** in a better query plan.
4550 */
4551 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
4552 assert( iVar>0 );
4553 if( iVar>32 ){
4554 v->expmask = 0xffffffff;
4555 }else{
4556 v->expmask |= ((u32)1 << (iVar-1));
4557 }
4558 }
4559
4560 #ifndef SQLITE_OMIT_VIRTUALTABLE
4561 /*
4562 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4563 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4564 ** in memory obtained from sqlite3DbMalloc).
4565 */
4566 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
4567 if( pVtab->zErrMsg ){
4568 sqlite3 *db = p->db;
4569 sqlite3DbFree(db, p->zErrMsg);
4570 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4571 sqlite3_free(pVtab->zErrMsg);
4572 pVtab->zErrMsg = 0;
4573 }
4574 }
4575 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4576
4577 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4578
4579 /*
4580 ** If the second argument is not NULL, release any allocations associated
4581 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
4582 ** structure itself, using sqlite3DbFree().
4583 **
4584 ** This function is used to free UnpackedRecord structures allocated by
4585 ** the vdbeUnpackRecord() function found in vdbeapi.c.
4586 */
4587 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
4588 if( p ){
4589 int i;
4590 for(i=0; i<nField; i++){
4591 Mem *pMem = &p->aMem[i];
4592 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
4593 }
4594 sqlite3DbFree(db, p);
4595 }
4596 }
4597 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
4598
4599 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4600 /*
4601 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
4602 ** then cursor passed as the second argument should point to the row about
4603 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
4604 ** the required value will be read from the row the cursor points to.
4605 */
4606 void sqlite3VdbePreUpdateHook(
4607 Vdbe *v, /* Vdbe pre-update hook is invoked by */
4608 VdbeCursor *pCsr, /* Cursor to grab old.* values from */
4609 int op, /* SQLITE_INSERT, UPDATE or DELETE */
4610 const char *zDb, /* Database name */
4611 Table *pTab, /* Modified table */
4612 i64 iKey1, /* Initial key value */
4613 int iReg /* Register for new.* record */
4614 ){
4615 sqlite3 *db = v->db;
4616 i64 iKey2;
4617 PreUpdate preupdate;
4618 const char *zTbl = pTab->zName;
4619 static const u8 fakeSortOrder = 0;
4620
4621 assert( db->pPreUpdate==0 );
4622 memset(&preupdate, 0, sizeof(PreUpdate));
4623 if( HasRowid(pTab)==0 ){
4624 iKey1 = iKey2 = 0;
4625 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
4626 }else{
4627 if( op==SQLITE_UPDATE ){
4628 iKey2 = v->aMem[iReg].u.i;
4629 }else{
4630 iKey2 = iKey1;
4631 }
4632 }
4633
4634 assert( pCsr->nField==pTab->nCol
4635 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
4636 );
4637
4638 preupdate.v = v;
4639 preupdate.pCsr = pCsr;
4640 preupdate.op = op;
4641 preupdate.iNewReg = iReg;
4642 preupdate.keyinfo.db = db;
4643 preupdate.keyinfo.enc = ENC(db);
4644 preupdate.keyinfo.nField = pTab->nCol;
4645 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder;
4646 preupdate.iKey1 = iKey1;
4647 preupdate.iKey2 = iKey2;
4648 preupdate.pTab = pTab;
4649
4650 db->pPreUpdate = &preupdate;
4651 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
4652 db->pPreUpdate = 0;
4653 sqlite3DbFree(db, preupdate.aRecord);
4654 vdbeFreeUnpacked(db, preupdate.keyinfo.nField+1, preupdate.pUnpacked);
4655 vdbeFreeUnpacked(db, preupdate.keyinfo.nField+1, preupdate.pNewUnpacked);
4656 if( preupdate.aNew ){
4657 int i;
4658 for(i=0; i<pCsr->nField; i++){
4659 sqlite3VdbeMemRelease(&preupdate.aNew[i]);
4660 }
4661 sqlite3DbFree(db, preupdate.aNew);
4662 }
4663 }
4664 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3170000/src/vdbeapi.c ('k') | third_party/sqlite/sqlite-src-3170000/src/vdbeblob.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698