OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2004 May 26 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** |
| 13 ** This file contains code use to implement APIs that are part of the |
| 14 ** VDBE. |
| 15 */ |
| 16 #include "sqliteInt.h" |
| 17 #include "vdbeInt.h" |
| 18 |
| 19 #ifndef SQLITE_OMIT_DEPRECATED |
| 20 /* |
| 21 ** Return TRUE (non-zero) of the statement supplied as an argument needs |
| 22 ** to be recompiled. A statement needs to be recompiled whenever the |
| 23 ** execution environment changes in a way that would alter the program |
| 24 ** that sqlite3_prepare() generates. For example, if new functions or |
| 25 ** collating sequences are registered or if an authorizer function is |
| 26 ** added or changed. |
| 27 */ |
| 28 int sqlite3_expired(sqlite3_stmt *pStmt){ |
| 29 Vdbe *p = (Vdbe*)pStmt; |
| 30 return p==0 || p->expired; |
| 31 } |
| 32 #endif |
| 33 |
| 34 /* |
| 35 ** Check on a Vdbe to make sure it has not been finalized. Log |
| 36 ** an error and return true if it has been finalized (or is otherwise |
| 37 ** invalid). Return false if it is ok. |
| 38 */ |
| 39 static int vdbeSafety(Vdbe *p){ |
| 40 if( p->db==0 ){ |
| 41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); |
| 42 return 1; |
| 43 }else{ |
| 44 return 0; |
| 45 } |
| 46 } |
| 47 static int vdbeSafetyNotNull(Vdbe *p){ |
| 48 if( p==0 ){ |
| 49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); |
| 50 return 1; |
| 51 }else{ |
| 52 return vdbeSafety(p); |
| 53 } |
| 54 } |
| 55 |
| 56 #ifndef SQLITE_OMIT_TRACE |
| 57 /* |
| 58 ** Invoke the profile callback. This routine is only called if we already |
| 59 ** know that the profile callback is defined and needs to be invoked. |
| 60 */ |
| 61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){ |
| 62 sqlite3_int64 iNow; |
| 63 sqlite3_int64 iElapse; |
| 64 assert( p->startTime>0 ); |
| 65 assert( db->xProfile!=0 || (db->mTrace & SQLITE_TRACE_PROFILE)!=0 ); |
| 66 assert( db->init.busy==0 ); |
| 67 assert( p->zSql!=0 ); |
| 68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); |
| 69 iElapse = (iNow - p->startTime)*1000000; |
| 70 if( db->xProfile ){ |
| 71 db->xProfile(db->pProfileArg, p->zSql, iElapse); |
| 72 } |
| 73 if( db->mTrace & SQLITE_TRACE_PROFILE ){ |
| 74 db->xTrace(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse); |
| 75 } |
| 76 p->startTime = 0; |
| 77 } |
| 78 /* |
| 79 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback |
| 80 ** is needed, and it invokes the callback if it is needed. |
| 81 */ |
| 82 # define checkProfileCallback(DB,P) \ |
| 83 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); } |
| 84 #else |
| 85 # define checkProfileCallback(DB,P) /*no-op*/ |
| 86 #endif |
| 87 |
| 88 /* |
| 89 ** The following routine destroys a virtual machine that is created by |
| 90 ** the sqlite3_compile() routine. The integer returned is an SQLITE_ |
| 91 ** success/failure code that describes the result of executing the virtual |
| 92 ** machine. |
| 93 ** |
| 94 ** This routine sets the error code and string returned by |
| 95 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). |
| 96 */ |
| 97 int sqlite3_finalize(sqlite3_stmt *pStmt){ |
| 98 int rc; |
| 99 if( pStmt==0 ){ |
| 100 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL |
| 101 ** pointer is a harmless no-op. */ |
| 102 rc = SQLITE_OK; |
| 103 }else{ |
| 104 Vdbe *v = (Vdbe*)pStmt; |
| 105 sqlite3 *db = v->db; |
| 106 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; |
| 107 sqlite3_mutex_enter(db->mutex); |
| 108 checkProfileCallback(db, v); |
| 109 rc = sqlite3VdbeFinalize(v); |
| 110 rc = sqlite3ApiExit(db, rc); |
| 111 sqlite3LeaveMutexAndCloseZombie(db); |
| 112 } |
| 113 return rc; |
| 114 } |
| 115 |
| 116 /* |
| 117 ** Terminate the current execution of an SQL statement and reset it |
| 118 ** back to its starting state so that it can be reused. A success code from |
| 119 ** the prior execution is returned. |
| 120 ** |
| 121 ** This routine sets the error code and string returned by |
| 122 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). |
| 123 */ |
| 124 int sqlite3_reset(sqlite3_stmt *pStmt){ |
| 125 int rc; |
| 126 if( pStmt==0 ){ |
| 127 rc = SQLITE_OK; |
| 128 }else{ |
| 129 Vdbe *v = (Vdbe*)pStmt; |
| 130 sqlite3 *db = v->db; |
| 131 sqlite3_mutex_enter(db->mutex); |
| 132 checkProfileCallback(db, v); |
| 133 rc = sqlite3VdbeReset(v); |
| 134 sqlite3VdbeRewind(v); |
| 135 assert( (rc & (db->errMask))==rc ); |
| 136 rc = sqlite3ApiExit(db, rc); |
| 137 sqlite3_mutex_leave(db->mutex); |
| 138 } |
| 139 return rc; |
| 140 } |
| 141 |
| 142 /* |
| 143 ** Set all the parameters in the compiled SQL statement to NULL. |
| 144 */ |
| 145 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ |
| 146 int i; |
| 147 int rc = SQLITE_OK; |
| 148 Vdbe *p = (Vdbe*)pStmt; |
| 149 #if SQLITE_THREADSAFE |
| 150 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; |
| 151 #endif |
| 152 sqlite3_mutex_enter(mutex); |
| 153 for(i=0; i<p->nVar; i++){ |
| 154 sqlite3VdbeMemRelease(&p->aVar[i]); |
| 155 p->aVar[i].flags = MEM_Null; |
| 156 } |
| 157 if( p->isPrepareV2 && p->expmask ){ |
| 158 p->expired = 1; |
| 159 } |
| 160 sqlite3_mutex_leave(mutex); |
| 161 return rc; |
| 162 } |
| 163 |
| 164 |
| 165 /**************************** sqlite3_value_ ******************************* |
| 166 ** The following routines extract information from a Mem or sqlite3_value |
| 167 ** structure. |
| 168 */ |
| 169 const void *sqlite3_value_blob(sqlite3_value *pVal){ |
| 170 Mem *p = (Mem*)pVal; |
| 171 if( p->flags & (MEM_Blob|MEM_Str) ){ |
| 172 if( ExpandBlob(p)!=SQLITE_OK ){ |
| 173 assert( p->flags==MEM_Null && p->z==0 ); |
| 174 return 0; |
| 175 } |
| 176 p->flags |= MEM_Blob; |
| 177 return p->n ? p->z : 0; |
| 178 }else{ |
| 179 return sqlite3_value_text(pVal); |
| 180 } |
| 181 } |
| 182 int sqlite3_value_bytes(sqlite3_value *pVal){ |
| 183 return sqlite3ValueBytes(pVal, SQLITE_UTF8); |
| 184 } |
| 185 int sqlite3_value_bytes16(sqlite3_value *pVal){ |
| 186 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); |
| 187 } |
| 188 double sqlite3_value_double(sqlite3_value *pVal){ |
| 189 return sqlite3VdbeRealValue((Mem*)pVal); |
| 190 } |
| 191 int sqlite3_value_int(sqlite3_value *pVal){ |
| 192 return (int)sqlite3VdbeIntValue((Mem*)pVal); |
| 193 } |
| 194 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ |
| 195 return sqlite3VdbeIntValue((Mem*)pVal); |
| 196 } |
| 197 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){ |
| 198 Mem *pMem = (Mem*)pVal; |
| 199 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0); |
| 200 } |
| 201 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ |
| 202 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); |
| 203 } |
| 204 #ifndef SQLITE_OMIT_UTF16 |
| 205 const void *sqlite3_value_text16(sqlite3_value* pVal){ |
| 206 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); |
| 207 } |
| 208 const void *sqlite3_value_text16be(sqlite3_value *pVal){ |
| 209 return sqlite3ValueText(pVal, SQLITE_UTF16BE); |
| 210 } |
| 211 const void *sqlite3_value_text16le(sqlite3_value *pVal){ |
| 212 return sqlite3ValueText(pVal, SQLITE_UTF16LE); |
| 213 } |
| 214 #endif /* SQLITE_OMIT_UTF16 */ |
| 215 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five |
| 216 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating |
| 217 ** point number string BLOB NULL |
| 218 */ |
| 219 int sqlite3_value_type(sqlite3_value* pVal){ |
| 220 static const u8 aType[] = { |
| 221 SQLITE_BLOB, /* 0x00 */ |
| 222 SQLITE_NULL, /* 0x01 */ |
| 223 SQLITE_TEXT, /* 0x02 */ |
| 224 SQLITE_NULL, /* 0x03 */ |
| 225 SQLITE_INTEGER, /* 0x04 */ |
| 226 SQLITE_NULL, /* 0x05 */ |
| 227 SQLITE_INTEGER, /* 0x06 */ |
| 228 SQLITE_NULL, /* 0x07 */ |
| 229 SQLITE_FLOAT, /* 0x08 */ |
| 230 SQLITE_NULL, /* 0x09 */ |
| 231 SQLITE_FLOAT, /* 0x0a */ |
| 232 SQLITE_NULL, /* 0x0b */ |
| 233 SQLITE_INTEGER, /* 0x0c */ |
| 234 SQLITE_NULL, /* 0x0d */ |
| 235 SQLITE_INTEGER, /* 0x0e */ |
| 236 SQLITE_NULL, /* 0x0f */ |
| 237 SQLITE_BLOB, /* 0x10 */ |
| 238 SQLITE_NULL, /* 0x11 */ |
| 239 SQLITE_TEXT, /* 0x12 */ |
| 240 SQLITE_NULL, /* 0x13 */ |
| 241 SQLITE_INTEGER, /* 0x14 */ |
| 242 SQLITE_NULL, /* 0x15 */ |
| 243 SQLITE_INTEGER, /* 0x16 */ |
| 244 SQLITE_NULL, /* 0x17 */ |
| 245 SQLITE_FLOAT, /* 0x18 */ |
| 246 SQLITE_NULL, /* 0x19 */ |
| 247 SQLITE_FLOAT, /* 0x1a */ |
| 248 SQLITE_NULL, /* 0x1b */ |
| 249 SQLITE_INTEGER, /* 0x1c */ |
| 250 SQLITE_NULL, /* 0x1d */ |
| 251 SQLITE_INTEGER, /* 0x1e */ |
| 252 SQLITE_NULL, /* 0x1f */ |
| 253 }; |
| 254 return aType[pVal->flags&MEM_AffMask]; |
| 255 } |
| 256 |
| 257 /* Make a copy of an sqlite3_value object |
| 258 */ |
| 259 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){ |
| 260 sqlite3_value *pNew; |
| 261 if( pOrig==0 ) return 0; |
| 262 pNew = sqlite3_malloc( sizeof(*pNew) ); |
| 263 if( pNew==0 ) return 0; |
| 264 memset(pNew, 0, sizeof(*pNew)); |
| 265 memcpy(pNew, pOrig, MEMCELLSIZE); |
| 266 pNew->flags &= ~MEM_Dyn; |
| 267 pNew->db = 0; |
| 268 if( pNew->flags&(MEM_Str|MEM_Blob) ){ |
| 269 pNew->flags &= ~(MEM_Static|MEM_Dyn); |
| 270 pNew->flags |= MEM_Ephem; |
| 271 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){ |
| 272 sqlite3ValueFree(pNew); |
| 273 pNew = 0; |
| 274 } |
| 275 } |
| 276 return pNew; |
| 277 } |
| 278 |
| 279 /* Destroy an sqlite3_value object previously obtained from |
| 280 ** sqlite3_value_dup(). |
| 281 */ |
| 282 void sqlite3_value_free(sqlite3_value *pOld){ |
| 283 sqlite3ValueFree(pOld); |
| 284 } |
| 285 |
| 286 |
| 287 /**************************** sqlite3_result_ ******************************* |
| 288 ** The following routines are used by user-defined functions to specify |
| 289 ** the function result. |
| 290 ** |
| 291 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the |
| 292 ** result as a string or blob but if the string or blob is too large, it |
| 293 ** then sets the error code to SQLITE_TOOBIG |
| 294 ** |
| 295 ** The invokeValueDestructor(P,X) routine invokes destructor function X() |
| 296 ** on value P is not going to be used and need to be destroyed. |
| 297 */ |
| 298 static void setResultStrOrError( |
| 299 sqlite3_context *pCtx, /* Function context */ |
| 300 const char *z, /* String pointer */ |
| 301 int n, /* Bytes in string, or negative */ |
| 302 u8 enc, /* Encoding of z. 0 for BLOBs */ |
| 303 void (*xDel)(void*) /* Destructor function */ |
| 304 ){ |
| 305 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){ |
| 306 sqlite3_result_error_toobig(pCtx); |
| 307 } |
| 308 } |
| 309 static int invokeValueDestructor( |
| 310 const void *p, /* Value to destroy */ |
| 311 void (*xDel)(void*), /* The destructor */ |
| 312 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */ |
| 313 ){ |
| 314 assert( xDel!=SQLITE_DYNAMIC ); |
| 315 if( xDel==0 ){ |
| 316 /* noop */ |
| 317 }else if( xDel==SQLITE_TRANSIENT ){ |
| 318 /* noop */ |
| 319 }else{ |
| 320 xDel((void*)p); |
| 321 } |
| 322 if( pCtx ) sqlite3_result_error_toobig(pCtx); |
| 323 return SQLITE_TOOBIG; |
| 324 } |
| 325 void sqlite3_result_blob( |
| 326 sqlite3_context *pCtx, |
| 327 const void *z, |
| 328 int n, |
| 329 void (*xDel)(void *) |
| 330 ){ |
| 331 assert( n>=0 ); |
| 332 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); |
| 333 setResultStrOrError(pCtx, z, n, 0, xDel); |
| 334 } |
| 335 void sqlite3_result_blob64( |
| 336 sqlite3_context *pCtx, |
| 337 const void *z, |
| 338 sqlite3_uint64 n, |
| 339 void (*xDel)(void *) |
| 340 ){ |
| 341 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); |
| 342 assert( xDel!=SQLITE_DYNAMIC ); |
| 343 if( n>0x7fffffff ){ |
| 344 (void)invokeValueDestructor(z, xDel, pCtx); |
| 345 }else{ |
| 346 setResultStrOrError(pCtx, z, (int)n, 0, xDel); |
| 347 } |
| 348 } |
| 349 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ |
| 350 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); |
| 351 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal); |
| 352 } |
| 353 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ |
| 354 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); |
| 355 pCtx->isError = SQLITE_ERROR; |
| 356 pCtx->fErrorOrAux = 1; |
| 357 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); |
| 358 } |
| 359 #ifndef SQLITE_OMIT_UTF16 |
| 360 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ |
| 361 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); |
| 362 pCtx->isError = SQLITE_ERROR; |
| 363 pCtx->fErrorOrAux = 1; |
| 364 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); |
| 365 } |
| 366 #endif |
| 367 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ |
| 368 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); |
| 369 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal); |
| 370 } |
| 371 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ |
| 372 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); |
| 373 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal); |
| 374 } |
| 375 void sqlite3_result_null(sqlite3_context *pCtx){ |
| 376 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); |
| 377 sqlite3VdbeMemSetNull(pCtx->pOut); |
| 378 } |
| 379 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){ |
| 380 Mem *pOut = pCtx->pOut; |
| 381 assert( sqlite3_mutex_held(pOut->db->mutex) ); |
| 382 pOut->eSubtype = eSubtype & 0xff; |
| 383 pOut->flags |= MEM_Subtype; |
| 384 } |
| 385 void sqlite3_result_text( |
| 386 sqlite3_context *pCtx, |
| 387 const char *z, |
| 388 int n, |
| 389 void (*xDel)(void *) |
| 390 ){ |
| 391 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); |
| 392 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); |
| 393 } |
| 394 void sqlite3_result_text64( |
| 395 sqlite3_context *pCtx, |
| 396 const char *z, |
| 397 sqlite3_uint64 n, |
| 398 void (*xDel)(void *), |
| 399 unsigned char enc |
| 400 ){ |
| 401 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); |
| 402 assert( xDel!=SQLITE_DYNAMIC ); |
| 403 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; |
| 404 if( n>0x7fffffff ){ |
| 405 (void)invokeValueDestructor(z, xDel, pCtx); |
| 406 }else{ |
| 407 setResultStrOrError(pCtx, z, (int)n, enc, xDel); |
| 408 } |
| 409 } |
| 410 #ifndef SQLITE_OMIT_UTF16 |
| 411 void sqlite3_result_text16( |
| 412 sqlite3_context *pCtx, |
| 413 const void *z, |
| 414 int n, |
| 415 void (*xDel)(void *) |
| 416 ){ |
| 417 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); |
| 418 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); |
| 419 } |
| 420 void sqlite3_result_text16be( |
| 421 sqlite3_context *pCtx, |
| 422 const void *z, |
| 423 int n, |
| 424 void (*xDel)(void *) |
| 425 ){ |
| 426 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); |
| 427 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); |
| 428 } |
| 429 void sqlite3_result_text16le( |
| 430 sqlite3_context *pCtx, |
| 431 const void *z, |
| 432 int n, |
| 433 void (*xDel)(void *) |
| 434 ){ |
| 435 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); |
| 436 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); |
| 437 } |
| 438 #endif /* SQLITE_OMIT_UTF16 */ |
| 439 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ |
| 440 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); |
| 441 sqlite3VdbeMemCopy(pCtx->pOut, pValue); |
| 442 } |
| 443 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ |
| 444 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); |
| 445 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n); |
| 446 } |
| 447 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){ |
| 448 Mem *pOut = pCtx->pOut; |
| 449 assert( sqlite3_mutex_held(pOut->db->mutex) ); |
| 450 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
| 451 return SQLITE_TOOBIG; |
| 452 } |
| 453 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n); |
| 454 return SQLITE_OK; |
| 455 } |
| 456 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ |
| 457 pCtx->isError = errCode; |
| 458 pCtx->fErrorOrAux = 1; |
| 459 #ifdef SQLITE_DEBUG |
| 460 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode; |
| 461 #endif |
| 462 if( pCtx->pOut->flags & MEM_Null ){ |
| 463 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, |
| 464 SQLITE_UTF8, SQLITE_STATIC); |
| 465 } |
| 466 } |
| 467 |
| 468 /* Force an SQLITE_TOOBIG error. */ |
| 469 void sqlite3_result_error_toobig(sqlite3_context *pCtx){ |
| 470 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); |
| 471 pCtx->isError = SQLITE_TOOBIG; |
| 472 pCtx->fErrorOrAux = 1; |
| 473 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, |
| 474 SQLITE_UTF8, SQLITE_STATIC); |
| 475 } |
| 476 |
| 477 /* An SQLITE_NOMEM error. */ |
| 478 void sqlite3_result_error_nomem(sqlite3_context *pCtx){ |
| 479 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); |
| 480 sqlite3VdbeMemSetNull(pCtx->pOut); |
| 481 pCtx->isError = SQLITE_NOMEM_BKPT; |
| 482 pCtx->fErrorOrAux = 1; |
| 483 sqlite3OomFault(pCtx->pOut->db); |
| 484 } |
| 485 |
| 486 /* |
| 487 ** This function is called after a transaction has been committed. It |
| 488 ** invokes callbacks registered with sqlite3_wal_hook() as required. |
| 489 */ |
| 490 static int doWalCallbacks(sqlite3 *db){ |
| 491 int rc = SQLITE_OK; |
| 492 #ifndef SQLITE_OMIT_WAL |
| 493 int i; |
| 494 for(i=0; i<db->nDb; i++){ |
| 495 Btree *pBt = db->aDb[i].pBt; |
| 496 if( pBt ){ |
| 497 int nEntry; |
| 498 sqlite3BtreeEnter(pBt); |
| 499 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); |
| 500 sqlite3BtreeLeave(pBt); |
| 501 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ |
| 502 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry); |
| 503 } |
| 504 } |
| 505 } |
| 506 #endif |
| 507 return rc; |
| 508 } |
| 509 |
| 510 |
| 511 /* |
| 512 ** Execute the statement pStmt, either until a row of data is ready, the |
| 513 ** statement is completely executed or an error occurs. |
| 514 ** |
| 515 ** This routine implements the bulk of the logic behind the sqlite_step() |
| 516 ** API. The only thing omitted is the automatic recompile if a |
| 517 ** schema change has occurred. That detail is handled by the |
| 518 ** outer sqlite3_step() wrapper procedure. |
| 519 */ |
| 520 static int sqlite3Step(Vdbe *p){ |
| 521 sqlite3 *db; |
| 522 int rc; |
| 523 |
| 524 assert(p); |
| 525 if( p->magic!=VDBE_MAGIC_RUN ){ |
| 526 /* We used to require that sqlite3_reset() be called before retrying |
| 527 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning |
| 528 ** with version 3.7.0, we changed this so that sqlite3_reset() would |
| 529 ** be called automatically instead of throwing the SQLITE_MISUSE error. |
| 530 ** This "automatic-reset" change is not technically an incompatibility, |
| 531 ** since any application that receives an SQLITE_MISUSE is broken by |
| 532 ** definition. |
| 533 ** |
| 534 ** Nevertheless, some published applications that were originally written |
| 535 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE |
| 536 ** returns, and those were broken by the automatic-reset change. As a |
| 537 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the |
| 538 ** legacy behavior of returning SQLITE_MISUSE for cases where the |
| 539 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED |
| 540 ** or SQLITE_BUSY error. |
| 541 */ |
| 542 #ifdef SQLITE_OMIT_AUTORESET |
| 543 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){ |
| 544 sqlite3_reset((sqlite3_stmt*)p); |
| 545 }else{ |
| 546 return SQLITE_MISUSE_BKPT; |
| 547 } |
| 548 #else |
| 549 sqlite3_reset((sqlite3_stmt*)p); |
| 550 #endif |
| 551 } |
| 552 |
| 553 /* Check that malloc() has not failed. If it has, return early. */ |
| 554 db = p->db; |
| 555 if( db->mallocFailed ){ |
| 556 p->rc = SQLITE_NOMEM; |
| 557 return SQLITE_NOMEM_BKPT; |
| 558 } |
| 559 |
| 560 if( p->pc<=0 && p->expired ){ |
| 561 p->rc = SQLITE_SCHEMA; |
| 562 rc = SQLITE_ERROR; |
| 563 goto end_of_step; |
| 564 } |
| 565 if( p->pc<0 ){ |
| 566 /* If there are no other statements currently running, then |
| 567 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt |
| 568 ** from interrupting a statement that has not yet started. |
| 569 */ |
| 570 if( db->nVdbeActive==0 ){ |
| 571 db->u1.isInterrupted = 0; |
| 572 } |
| 573 |
| 574 assert( db->nVdbeWrite>0 || db->autoCommit==0 |
| 575 || (db->nDeferredCons==0 && db->nDeferredImmCons==0) |
| 576 ); |
| 577 |
| 578 #ifndef SQLITE_OMIT_TRACE |
| 579 if( (db->xProfile || (db->mTrace & SQLITE_TRACE_PROFILE)!=0) |
| 580 && !db->init.busy && p->zSql ){ |
| 581 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); |
| 582 }else{ |
| 583 assert( p->startTime==0 ); |
| 584 } |
| 585 #endif |
| 586 |
| 587 db->nVdbeActive++; |
| 588 if( p->readOnly==0 ) db->nVdbeWrite++; |
| 589 if( p->bIsReader ) db->nVdbeRead++; |
| 590 p->pc = 0; |
| 591 } |
| 592 #ifdef SQLITE_DEBUG |
| 593 p->rcApp = SQLITE_OK; |
| 594 #endif |
| 595 #ifndef SQLITE_OMIT_EXPLAIN |
| 596 if( p->explain ){ |
| 597 rc = sqlite3VdbeList(p); |
| 598 }else |
| 599 #endif /* SQLITE_OMIT_EXPLAIN */ |
| 600 { |
| 601 db->nVdbeExec++; |
| 602 rc = sqlite3VdbeExec(p); |
| 603 db->nVdbeExec--; |
| 604 } |
| 605 |
| 606 #ifndef SQLITE_OMIT_TRACE |
| 607 /* If the statement completed successfully, invoke the profile callback */ |
| 608 if( rc!=SQLITE_ROW ) checkProfileCallback(db, p); |
| 609 #endif |
| 610 |
| 611 if( rc==SQLITE_DONE ){ |
| 612 assert( p->rc==SQLITE_OK ); |
| 613 p->rc = doWalCallbacks(db); |
| 614 if( p->rc!=SQLITE_OK ){ |
| 615 rc = SQLITE_ERROR; |
| 616 } |
| 617 } |
| 618 |
| 619 db->errCode = rc; |
| 620 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ |
| 621 p->rc = SQLITE_NOMEM_BKPT; |
| 622 } |
| 623 end_of_step: |
| 624 /* At this point local variable rc holds the value that should be |
| 625 ** returned if this statement was compiled using the legacy |
| 626 ** sqlite3_prepare() interface. According to the docs, this can only |
| 627 ** be one of the values in the first assert() below. Variable p->rc |
| 628 ** contains the value that would be returned if sqlite3_finalize() |
| 629 ** were called on statement p. |
| 630 */ |
| 631 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR |
| 632 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE |
| 633 ); |
| 634 assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp ); |
| 635 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ |
| 636 /* If this statement was prepared using sqlite3_prepare_v2(), and an |
| 637 ** error has occurred, then return the error code in p->rc to the |
| 638 ** caller. Set the error code in the database handle to the same value. |
| 639 */ |
| 640 rc = sqlite3VdbeTransferError(p); |
| 641 } |
| 642 return (rc&db->errMask); |
| 643 } |
| 644 |
| 645 /* |
| 646 ** This is the top-level implementation of sqlite3_step(). Call |
| 647 ** sqlite3Step() to do most of the work. If a schema error occurs, |
| 648 ** call sqlite3Reprepare() and try again. |
| 649 */ |
| 650 int sqlite3_step(sqlite3_stmt *pStmt){ |
| 651 int rc = SQLITE_OK; /* Result from sqlite3Step() */ |
| 652 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */ |
| 653 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */ |
| 654 int cnt = 0; /* Counter to prevent infinite loop of reprepares */ |
| 655 sqlite3 *db; /* The database connection */ |
| 656 |
| 657 if( vdbeSafetyNotNull(v) ){ |
| 658 return SQLITE_MISUSE_BKPT; |
| 659 } |
| 660 db = v->db; |
| 661 sqlite3_mutex_enter(db->mutex); |
| 662 v->doingRerun = 0; |
| 663 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA |
| 664 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){ |
| 665 int savedPc = v->pc; |
| 666 rc2 = rc = sqlite3Reprepare(v); |
| 667 if( rc!=SQLITE_OK) break; |
| 668 sqlite3_reset(pStmt); |
| 669 if( savedPc>=0 ) v->doingRerun = 1; |
| 670 assert( v->expired==0 ); |
| 671 } |
| 672 if( rc2!=SQLITE_OK ){ |
| 673 /* This case occurs after failing to recompile an sql statement. |
| 674 ** The error message from the SQL compiler has already been loaded |
| 675 ** into the database handle. This block copies the error message |
| 676 ** from the database handle into the statement and sets the statement |
| 677 ** program counter to 0 to ensure that when the statement is |
| 678 ** finalized or reset the parser error message is available via |
| 679 ** sqlite3_errmsg() and sqlite3_errcode(). |
| 680 */ |
| 681 const char *zErr = (const char *)sqlite3_value_text(db->pErr); |
| 682 sqlite3DbFree(db, v->zErrMsg); |
| 683 if( !db->mallocFailed ){ |
| 684 v->zErrMsg = sqlite3DbStrDup(db, zErr); |
| 685 v->rc = rc2; |
| 686 } else { |
| 687 v->zErrMsg = 0; |
| 688 v->rc = rc = SQLITE_NOMEM_BKPT; |
| 689 } |
| 690 } |
| 691 rc = sqlite3ApiExit(db, rc); |
| 692 sqlite3_mutex_leave(db->mutex); |
| 693 return rc; |
| 694 } |
| 695 |
| 696 |
| 697 /* |
| 698 ** Extract the user data from a sqlite3_context structure and return a |
| 699 ** pointer to it. |
| 700 */ |
| 701 void *sqlite3_user_data(sqlite3_context *p){ |
| 702 assert( p && p->pFunc ); |
| 703 return p->pFunc->pUserData; |
| 704 } |
| 705 |
| 706 /* |
| 707 ** Extract the user data from a sqlite3_context structure and return a |
| 708 ** pointer to it. |
| 709 ** |
| 710 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface |
| 711 ** returns a copy of the pointer to the database connection (the 1st |
| 712 ** parameter) of the sqlite3_create_function() and |
| 713 ** sqlite3_create_function16() routines that originally registered the |
| 714 ** application defined function. |
| 715 */ |
| 716 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ |
| 717 assert( p && p->pOut ); |
| 718 return p->pOut->db; |
| 719 } |
| 720 |
| 721 /* |
| 722 ** Return the current time for a statement. If the current time |
| 723 ** is requested more than once within the same run of a single prepared |
| 724 ** statement, the exact same time is returned for each invocation regardless |
| 725 ** of the amount of time that elapses between invocations. In other words, |
| 726 ** the time returned is always the time of the first call. |
| 727 */ |
| 728 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){ |
| 729 int rc; |
| 730 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 731 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime; |
| 732 assert( p->pVdbe!=0 ); |
| 733 #else |
| 734 sqlite3_int64 iTime = 0; |
| 735 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime; |
| 736 #endif |
| 737 if( *piTime==0 ){ |
| 738 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime); |
| 739 if( rc ) *piTime = 0; |
| 740 } |
| 741 return *piTime; |
| 742 } |
| 743 |
| 744 /* |
| 745 ** The following is the implementation of an SQL function that always |
| 746 ** fails with an error message stating that the function is used in the |
| 747 ** wrong context. The sqlite3_overload_function() API might construct |
| 748 ** SQL function that use this routine so that the functions will exist |
| 749 ** for name resolution but are actually overloaded by the xFindFunction |
| 750 ** method of virtual tables. |
| 751 */ |
| 752 void sqlite3InvalidFunction( |
| 753 sqlite3_context *context, /* The function calling context */ |
| 754 int NotUsed, /* Number of arguments to the function */ |
| 755 sqlite3_value **NotUsed2 /* Value of each argument */ |
| 756 ){ |
| 757 const char *zName = context->pFunc->zName; |
| 758 char *zErr; |
| 759 UNUSED_PARAMETER2(NotUsed, NotUsed2); |
| 760 zErr = sqlite3_mprintf( |
| 761 "unable to use function %s in the requested context", zName); |
| 762 sqlite3_result_error(context, zErr, -1); |
| 763 sqlite3_free(zErr); |
| 764 } |
| 765 |
| 766 /* |
| 767 ** Create a new aggregate context for p and return a pointer to |
| 768 ** its pMem->z element. |
| 769 */ |
| 770 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){ |
| 771 Mem *pMem = p->pMem; |
| 772 assert( (pMem->flags & MEM_Agg)==0 ); |
| 773 if( nByte<=0 ){ |
| 774 sqlite3VdbeMemSetNull(pMem); |
| 775 pMem->z = 0; |
| 776 }else{ |
| 777 sqlite3VdbeMemClearAndResize(pMem, nByte); |
| 778 pMem->flags = MEM_Agg; |
| 779 pMem->u.pDef = p->pFunc; |
| 780 if( pMem->z ){ |
| 781 memset(pMem->z, 0, nByte); |
| 782 } |
| 783 } |
| 784 return (void*)pMem->z; |
| 785 } |
| 786 |
| 787 /* |
| 788 ** Allocate or return the aggregate context for a user function. A new |
| 789 ** context is allocated on the first call. Subsequent calls return the |
| 790 ** same context that was returned on prior calls. |
| 791 */ |
| 792 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ |
| 793 assert( p && p->pFunc && p->pFunc->xFinalize ); |
| 794 assert( sqlite3_mutex_held(p->pOut->db->mutex) ); |
| 795 testcase( nByte<0 ); |
| 796 if( (p->pMem->flags & MEM_Agg)==0 ){ |
| 797 return createAggContext(p, nByte); |
| 798 }else{ |
| 799 return (void*)p->pMem->z; |
| 800 } |
| 801 } |
| 802 |
| 803 /* |
| 804 ** Return the auxiliary data pointer, if any, for the iArg'th argument to |
| 805 ** the user-function defined by pCtx. |
| 806 */ |
| 807 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ |
| 808 AuxData *pAuxData; |
| 809 |
| 810 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); |
| 811 #if SQLITE_ENABLE_STAT3_OR_STAT4 |
| 812 if( pCtx->pVdbe==0 ) return 0; |
| 813 #else |
| 814 assert( pCtx->pVdbe!=0 ); |
| 815 #endif |
| 816 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ |
| 817 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; |
| 818 } |
| 819 |
| 820 return (pAuxData ? pAuxData->pAux : 0); |
| 821 } |
| 822 |
| 823 /* |
| 824 ** Set the auxiliary data pointer and delete function, for the iArg'th |
| 825 ** argument to the user-function defined by pCtx. Any previous value is |
| 826 ** deleted by calling the delete function specified when it was set. |
| 827 */ |
| 828 void sqlite3_set_auxdata( |
| 829 sqlite3_context *pCtx, |
| 830 int iArg, |
| 831 void *pAux, |
| 832 void (*xDelete)(void*) |
| 833 ){ |
| 834 AuxData *pAuxData; |
| 835 Vdbe *pVdbe = pCtx->pVdbe; |
| 836 |
| 837 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) ); |
| 838 if( iArg<0 ) goto failed; |
| 839 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 840 if( pVdbe==0 ) goto failed; |
| 841 #else |
| 842 assert( pVdbe!=0 ); |
| 843 #endif |
| 844 |
| 845 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){ |
| 846 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break; |
| 847 } |
| 848 if( pAuxData==0 ){ |
| 849 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData)); |
| 850 if( !pAuxData ) goto failed; |
| 851 pAuxData->iOp = pCtx->iOp; |
| 852 pAuxData->iArg = iArg; |
| 853 pAuxData->pNext = pVdbe->pAuxData; |
| 854 pVdbe->pAuxData = pAuxData; |
| 855 if( pCtx->fErrorOrAux==0 ){ |
| 856 pCtx->isError = 0; |
| 857 pCtx->fErrorOrAux = 1; |
| 858 } |
| 859 }else if( pAuxData->xDelete ){ |
| 860 pAuxData->xDelete(pAuxData->pAux); |
| 861 } |
| 862 |
| 863 pAuxData->pAux = pAux; |
| 864 pAuxData->xDelete = xDelete; |
| 865 return; |
| 866 |
| 867 failed: |
| 868 if( xDelete ){ |
| 869 xDelete(pAux); |
| 870 } |
| 871 } |
| 872 |
| 873 #ifndef SQLITE_OMIT_DEPRECATED |
| 874 /* |
| 875 ** Return the number of times the Step function of an aggregate has been |
| 876 ** called. |
| 877 ** |
| 878 ** This function is deprecated. Do not use it for new code. It is |
| 879 ** provide only to avoid breaking legacy code. New aggregate function |
| 880 ** implementations should keep their own counts within their aggregate |
| 881 ** context. |
| 882 */ |
| 883 int sqlite3_aggregate_count(sqlite3_context *p){ |
| 884 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize ); |
| 885 return p->pMem->n; |
| 886 } |
| 887 #endif |
| 888 |
| 889 /* |
| 890 ** Return the number of columns in the result set for the statement pStmt. |
| 891 */ |
| 892 int sqlite3_column_count(sqlite3_stmt *pStmt){ |
| 893 Vdbe *pVm = (Vdbe *)pStmt; |
| 894 return pVm ? pVm->nResColumn : 0; |
| 895 } |
| 896 |
| 897 /* |
| 898 ** Return the number of values available from the current row of the |
| 899 ** currently executing statement pStmt. |
| 900 */ |
| 901 int sqlite3_data_count(sqlite3_stmt *pStmt){ |
| 902 Vdbe *pVm = (Vdbe *)pStmt; |
| 903 if( pVm==0 || pVm->pResultSet==0 ) return 0; |
| 904 return pVm->nResColumn; |
| 905 } |
| 906 |
| 907 /* |
| 908 ** Return a pointer to static memory containing an SQL NULL value. |
| 909 */ |
| 910 static const Mem *columnNullValue(void){ |
| 911 /* Even though the Mem structure contains an element |
| 912 ** of type i64, on certain architectures (x86) with certain compiler |
| 913 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary |
| 914 ** instead of an 8-byte one. This all works fine, except that when |
| 915 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s |
| 916 ** that a Mem structure is located on an 8-byte boundary. To prevent |
| 917 ** these assert()s from failing, when building with SQLITE_DEBUG defined |
| 918 ** using gcc, we force nullMem to be 8-byte aligned using the magical |
| 919 ** __attribute__((aligned(8))) macro. */ |
| 920 static const Mem nullMem |
| 921 #if defined(SQLITE_DEBUG) && defined(__GNUC__) |
| 922 __attribute__((aligned(8))) |
| 923 #endif |
| 924 = { |
| 925 /* .u = */ {0}, |
| 926 /* .flags = */ (u16)MEM_Null, |
| 927 /* .enc = */ (u8)0, |
| 928 /* .eSubtype = */ (u8)0, |
| 929 /* .n = */ (int)0, |
| 930 /* .z = */ (char*)0, |
| 931 /* .zMalloc = */ (char*)0, |
| 932 /* .szMalloc = */ (int)0, |
| 933 /* .uTemp = */ (u32)0, |
| 934 /* .db = */ (sqlite3*)0, |
| 935 /* .xDel = */ (void(*)(void*))0, |
| 936 #ifdef SQLITE_DEBUG |
| 937 /* .pScopyFrom = */ (Mem*)0, |
| 938 /* .pFiller = */ (void*)0, |
| 939 #endif |
| 940 }; |
| 941 return &nullMem; |
| 942 } |
| 943 |
| 944 /* |
| 945 ** Check to see if column iCol of the given statement is valid. If |
| 946 ** it is, return a pointer to the Mem for the value of that column. |
| 947 ** If iCol is not valid, return a pointer to a Mem which has a value |
| 948 ** of NULL. |
| 949 */ |
| 950 static Mem *columnMem(sqlite3_stmt *pStmt, int i){ |
| 951 Vdbe *pVm; |
| 952 Mem *pOut; |
| 953 |
| 954 pVm = (Vdbe *)pStmt; |
| 955 if( pVm==0 ) return (Mem*)columnNullValue(); |
| 956 assert( pVm->db ); |
| 957 sqlite3_mutex_enter(pVm->db->mutex); |
| 958 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ |
| 959 pOut = &pVm->pResultSet[i]; |
| 960 }else{ |
| 961 sqlite3Error(pVm->db, SQLITE_RANGE); |
| 962 pOut = (Mem*)columnNullValue(); |
| 963 } |
| 964 return pOut; |
| 965 } |
| 966 |
| 967 /* |
| 968 ** This function is called after invoking an sqlite3_value_XXX function on a |
| 969 ** column value (i.e. a value returned by evaluating an SQL expression in the |
| 970 ** select list of a SELECT statement) that may cause a malloc() failure. If |
| 971 ** malloc() has failed, the threads mallocFailed flag is cleared and the result |
| 972 ** code of statement pStmt set to SQLITE_NOMEM. |
| 973 ** |
| 974 ** Specifically, this is called from within: |
| 975 ** |
| 976 ** sqlite3_column_int() |
| 977 ** sqlite3_column_int64() |
| 978 ** sqlite3_column_text() |
| 979 ** sqlite3_column_text16() |
| 980 ** sqlite3_column_real() |
| 981 ** sqlite3_column_bytes() |
| 982 ** sqlite3_column_bytes16() |
| 983 ** sqiite3_column_blob() |
| 984 */ |
| 985 static void columnMallocFailure(sqlite3_stmt *pStmt) |
| 986 { |
| 987 /* If malloc() failed during an encoding conversion within an |
| 988 ** sqlite3_column_XXX API, then set the return code of the statement to |
| 989 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR |
| 990 ** and _finalize() will return NOMEM. |
| 991 */ |
| 992 Vdbe *p = (Vdbe *)pStmt; |
| 993 if( p ){ |
| 994 assert( p->db!=0 ); |
| 995 assert( sqlite3_mutex_held(p->db->mutex) ); |
| 996 p->rc = sqlite3ApiExit(p->db, p->rc); |
| 997 sqlite3_mutex_leave(p->db->mutex); |
| 998 } |
| 999 } |
| 1000 |
| 1001 /**************************** sqlite3_column_ ******************************* |
| 1002 ** The following routines are used to access elements of the current row |
| 1003 ** in the result set. |
| 1004 */ |
| 1005 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ |
| 1006 const void *val; |
| 1007 val = sqlite3_value_blob( columnMem(pStmt,i) ); |
| 1008 /* Even though there is no encoding conversion, value_blob() might |
| 1009 ** need to call malloc() to expand the result of a zeroblob() |
| 1010 ** expression. |
| 1011 */ |
| 1012 columnMallocFailure(pStmt); |
| 1013 return val; |
| 1014 } |
| 1015 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ |
| 1016 int val = sqlite3_value_bytes( columnMem(pStmt,i) ); |
| 1017 columnMallocFailure(pStmt); |
| 1018 return val; |
| 1019 } |
| 1020 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ |
| 1021 int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); |
| 1022 columnMallocFailure(pStmt); |
| 1023 return val; |
| 1024 } |
| 1025 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ |
| 1026 double val = sqlite3_value_double( columnMem(pStmt,i) ); |
| 1027 columnMallocFailure(pStmt); |
| 1028 return val; |
| 1029 } |
| 1030 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ |
| 1031 int val = sqlite3_value_int( columnMem(pStmt,i) ); |
| 1032 columnMallocFailure(pStmt); |
| 1033 return val; |
| 1034 } |
| 1035 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ |
| 1036 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); |
| 1037 columnMallocFailure(pStmt); |
| 1038 return val; |
| 1039 } |
| 1040 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ |
| 1041 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); |
| 1042 columnMallocFailure(pStmt); |
| 1043 return val; |
| 1044 } |
| 1045 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ |
| 1046 Mem *pOut = columnMem(pStmt, i); |
| 1047 if( pOut->flags&MEM_Static ){ |
| 1048 pOut->flags &= ~MEM_Static; |
| 1049 pOut->flags |= MEM_Ephem; |
| 1050 } |
| 1051 columnMallocFailure(pStmt); |
| 1052 return (sqlite3_value *)pOut; |
| 1053 } |
| 1054 #ifndef SQLITE_OMIT_UTF16 |
| 1055 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ |
| 1056 const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); |
| 1057 columnMallocFailure(pStmt); |
| 1058 return val; |
| 1059 } |
| 1060 #endif /* SQLITE_OMIT_UTF16 */ |
| 1061 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ |
| 1062 int iType = sqlite3_value_type( columnMem(pStmt,i) ); |
| 1063 columnMallocFailure(pStmt); |
| 1064 return iType; |
| 1065 } |
| 1066 |
| 1067 /* |
| 1068 ** Convert the N-th element of pStmt->pColName[] into a string using |
| 1069 ** xFunc() then return that string. If N is out of range, return 0. |
| 1070 ** |
| 1071 ** There are up to 5 names for each column. useType determines which |
| 1072 ** name is returned. Here are the names: |
| 1073 ** |
| 1074 ** 0 The column name as it should be displayed for output |
| 1075 ** 1 The datatype name for the column |
| 1076 ** 2 The name of the database that the column derives from |
| 1077 ** 3 The name of the table that the column derives from |
| 1078 ** 4 The name of the table column that the result column derives from |
| 1079 ** |
| 1080 ** If the result is not a simple column reference (if it is an expression |
| 1081 ** or a constant) then useTypes 2, 3, and 4 return NULL. |
| 1082 */ |
| 1083 static const void *columnName( |
| 1084 sqlite3_stmt *pStmt, |
| 1085 int N, |
| 1086 const void *(*xFunc)(Mem*), |
| 1087 int useType |
| 1088 ){ |
| 1089 const void *ret; |
| 1090 Vdbe *p; |
| 1091 int n; |
| 1092 sqlite3 *db; |
| 1093 #ifdef SQLITE_ENABLE_API_ARMOR |
| 1094 if( pStmt==0 ){ |
| 1095 (void)SQLITE_MISUSE_BKPT; |
| 1096 return 0; |
| 1097 } |
| 1098 #endif |
| 1099 ret = 0; |
| 1100 p = (Vdbe *)pStmt; |
| 1101 db = p->db; |
| 1102 assert( db!=0 ); |
| 1103 n = sqlite3_column_count(pStmt); |
| 1104 if( N<n && N>=0 ){ |
| 1105 N += useType*n; |
| 1106 sqlite3_mutex_enter(db->mutex); |
| 1107 assert( db->mallocFailed==0 ); |
| 1108 ret = xFunc(&p->aColName[N]); |
| 1109 /* A malloc may have failed inside of the xFunc() call. If this |
| 1110 ** is the case, clear the mallocFailed flag and return NULL. |
| 1111 */ |
| 1112 if( db->mallocFailed ){ |
| 1113 sqlite3OomClear(db); |
| 1114 ret = 0; |
| 1115 } |
| 1116 sqlite3_mutex_leave(db->mutex); |
| 1117 } |
| 1118 return ret; |
| 1119 } |
| 1120 |
| 1121 /* |
| 1122 ** Return the name of the Nth column of the result set returned by SQL |
| 1123 ** statement pStmt. |
| 1124 */ |
| 1125 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ |
| 1126 return columnName( |
| 1127 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); |
| 1128 } |
| 1129 #ifndef SQLITE_OMIT_UTF16 |
| 1130 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ |
| 1131 return columnName( |
| 1132 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); |
| 1133 } |
| 1134 #endif |
| 1135 |
| 1136 /* |
| 1137 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must |
| 1138 ** not define OMIT_DECLTYPE. |
| 1139 */ |
| 1140 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) |
| 1141 # error "Must not define both SQLITE_OMIT_DECLTYPE \ |
| 1142 and SQLITE_ENABLE_COLUMN_METADATA" |
| 1143 #endif |
| 1144 |
| 1145 #ifndef SQLITE_OMIT_DECLTYPE |
| 1146 /* |
| 1147 ** Return the column declaration type (if applicable) of the 'i'th column |
| 1148 ** of the result set of SQL statement pStmt. |
| 1149 */ |
| 1150 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ |
| 1151 return columnName( |
| 1152 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); |
| 1153 } |
| 1154 #ifndef SQLITE_OMIT_UTF16 |
| 1155 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ |
| 1156 return columnName( |
| 1157 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); |
| 1158 } |
| 1159 #endif /* SQLITE_OMIT_UTF16 */ |
| 1160 #endif /* SQLITE_OMIT_DECLTYPE */ |
| 1161 |
| 1162 #ifdef SQLITE_ENABLE_COLUMN_METADATA |
| 1163 /* |
| 1164 ** Return the name of the database from which a result column derives. |
| 1165 ** NULL is returned if the result column is an expression or constant or |
| 1166 ** anything else which is not an unambiguous reference to a database column. |
| 1167 */ |
| 1168 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ |
| 1169 return columnName( |
| 1170 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); |
| 1171 } |
| 1172 #ifndef SQLITE_OMIT_UTF16 |
| 1173 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ |
| 1174 return columnName( |
| 1175 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); |
| 1176 } |
| 1177 #endif /* SQLITE_OMIT_UTF16 */ |
| 1178 |
| 1179 /* |
| 1180 ** Return the name of the table from which a result column derives. |
| 1181 ** NULL is returned if the result column is an expression or constant or |
| 1182 ** anything else which is not an unambiguous reference to a database column. |
| 1183 */ |
| 1184 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ |
| 1185 return columnName( |
| 1186 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); |
| 1187 } |
| 1188 #ifndef SQLITE_OMIT_UTF16 |
| 1189 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ |
| 1190 return columnName( |
| 1191 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); |
| 1192 } |
| 1193 #endif /* SQLITE_OMIT_UTF16 */ |
| 1194 |
| 1195 /* |
| 1196 ** Return the name of the table column from which a result column derives. |
| 1197 ** NULL is returned if the result column is an expression or constant or |
| 1198 ** anything else which is not an unambiguous reference to a database column. |
| 1199 */ |
| 1200 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ |
| 1201 return columnName( |
| 1202 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); |
| 1203 } |
| 1204 #ifndef SQLITE_OMIT_UTF16 |
| 1205 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ |
| 1206 return columnName( |
| 1207 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); |
| 1208 } |
| 1209 #endif /* SQLITE_OMIT_UTF16 */ |
| 1210 #endif /* SQLITE_ENABLE_COLUMN_METADATA */ |
| 1211 |
| 1212 |
| 1213 /******************************* sqlite3_bind_ *************************** |
| 1214 ** |
| 1215 ** Routines used to attach values to wildcards in a compiled SQL statement. |
| 1216 */ |
| 1217 /* |
| 1218 ** Unbind the value bound to variable i in virtual machine p. This is the |
| 1219 ** the same as binding a NULL value to the column. If the "i" parameter is |
| 1220 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. |
| 1221 ** |
| 1222 ** A successful evaluation of this routine acquires the mutex on p. |
| 1223 ** the mutex is released if any kind of error occurs. |
| 1224 ** |
| 1225 ** The error code stored in database p->db is overwritten with the return |
| 1226 ** value in any case. |
| 1227 */ |
| 1228 static int vdbeUnbind(Vdbe *p, int i){ |
| 1229 Mem *pVar; |
| 1230 if( vdbeSafetyNotNull(p) ){ |
| 1231 return SQLITE_MISUSE_BKPT; |
| 1232 } |
| 1233 sqlite3_mutex_enter(p->db->mutex); |
| 1234 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ |
| 1235 sqlite3Error(p->db, SQLITE_MISUSE); |
| 1236 sqlite3_mutex_leave(p->db->mutex); |
| 1237 sqlite3_log(SQLITE_MISUSE, |
| 1238 "bind on a busy prepared statement: [%s]", p->zSql); |
| 1239 return SQLITE_MISUSE_BKPT; |
| 1240 } |
| 1241 if( i<1 || i>p->nVar ){ |
| 1242 sqlite3Error(p->db, SQLITE_RANGE); |
| 1243 sqlite3_mutex_leave(p->db->mutex); |
| 1244 return SQLITE_RANGE; |
| 1245 } |
| 1246 i--; |
| 1247 pVar = &p->aVar[i]; |
| 1248 sqlite3VdbeMemRelease(pVar); |
| 1249 pVar->flags = MEM_Null; |
| 1250 sqlite3Error(p->db, SQLITE_OK); |
| 1251 |
| 1252 /* If the bit corresponding to this variable in Vdbe.expmask is set, then |
| 1253 ** binding a new value to this variable invalidates the current query plan. |
| 1254 ** |
| 1255 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host |
| 1256 ** parameter in the WHERE clause might influence the choice of query plan |
| 1257 ** for a statement, then the statement will be automatically recompiled, |
| 1258 ** as if there had been a schema change, on the first sqlite3_step() call |
| 1259 ** following any change to the bindings of that parameter. |
| 1260 */ |
| 1261 if( p->isPrepareV2 && |
| 1262 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff) |
| 1263 ){ |
| 1264 p->expired = 1; |
| 1265 } |
| 1266 return SQLITE_OK; |
| 1267 } |
| 1268 |
| 1269 /* |
| 1270 ** Bind a text or BLOB value. |
| 1271 */ |
| 1272 static int bindText( |
| 1273 sqlite3_stmt *pStmt, /* The statement to bind against */ |
| 1274 int i, /* Index of the parameter to bind */ |
| 1275 const void *zData, /* Pointer to the data to be bound */ |
| 1276 int nData, /* Number of bytes of data to be bound */ |
| 1277 void (*xDel)(void*), /* Destructor for the data */ |
| 1278 u8 encoding /* Encoding for the data */ |
| 1279 ){ |
| 1280 Vdbe *p = (Vdbe *)pStmt; |
| 1281 Mem *pVar; |
| 1282 int rc; |
| 1283 |
| 1284 rc = vdbeUnbind(p, i); |
| 1285 if( rc==SQLITE_OK ){ |
| 1286 if( zData!=0 ){ |
| 1287 pVar = &p->aVar[i-1]; |
| 1288 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); |
| 1289 if( rc==SQLITE_OK && encoding!=0 ){ |
| 1290 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); |
| 1291 } |
| 1292 sqlite3Error(p->db, rc); |
| 1293 rc = sqlite3ApiExit(p->db, rc); |
| 1294 } |
| 1295 sqlite3_mutex_leave(p->db->mutex); |
| 1296 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ |
| 1297 xDel((void*)zData); |
| 1298 } |
| 1299 return rc; |
| 1300 } |
| 1301 |
| 1302 |
| 1303 /* |
| 1304 ** Bind a blob value to an SQL statement variable. |
| 1305 */ |
| 1306 int sqlite3_bind_blob( |
| 1307 sqlite3_stmt *pStmt, |
| 1308 int i, |
| 1309 const void *zData, |
| 1310 int nData, |
| 1311 void (*xDel)(void*) |
| 1312 ){ |
| 1313 #ifdef SQLITE_ENABLE_API_ARMOR |
| 1314 if( nData<0 ) return SQLITE_MISUSE_BKPT; |
| 1315 #endif |
| 1316 return bindText(pStmt, i, zData, nData, xDel, 0); |
| 1317 } |
| 1318 int sqlite3_bind_blob64( |
| 1319 sqlite3_stmt *pStmt, |
| 1320 int i, |
| 1321 const void *zData, |
| 1322 sqlite3_uint64 nData, |
| 1323 void (*xDel)(void*) |
| 1324 ){ |
| 1325 assert( xDel!=SQLITE_DYNAMIC ); |
| 1326 if( nData>0x7fffffff ){ |
| 1327 return invokeValueDestructor(zData, xDel, 0); |
| 1328 }else{ |
| 1329 return bindText(pStmt, i, zData, (int)nData, xDel, 0); |
| 1330 } |
| 1331 } |
| 1332 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ |
| 1333 int rc; |
| 1334 Vdbe *p = (Vdbe *)pStmt; |
| 1335 rc = vdbeUnbind(p, i); |
| 1336 if( rc==SQLITE_OK ){ |
| 1337 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); |
| 1338 sqlite3_mutex_leave(p->db->mutex); |
| 1339 } |
| 1340 return rc; |
| 1341 } |
| 1342 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ |
| 1343 return sqlite3_bind_int64(p, i, (i64)iValue); |
| 1344 } |
| 1345 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ |
| 1346 int rc; |
| 1347 Vdbe *p = (Vdbe *)pStmt; |
| 1348 rc = vdbeUnbind(p, i); |
| 1349 if( rc==SQLITE_OK ){ |
| 1350 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); |
| 1351 sqlite3_mutex_leave(p->db->mutex); |
| 1352 } |
| 1353 return rc; |
| 1354 } |
| 1355 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ |
| 1356 int rc; |
| 1357 Vdbe *p = (Vdbe*)pStmt; |
| 1358 rc = vdbeUnbind(p, i); |
| 1359 if( rc==SQLITE_OK ){ |
| 1360 sqlite3_mutex_leave(p->db->mutex); |
| 1361 } |
| 1362 return rc; |
| 1363 } |
| 1364 int sqlite3_bind_text( |
| 1365 sqlite3_stmt *pStmt, |
| 1366 int i, |
| 1367 const char *zData, |
| 1368 int nData, |
| 1369 void (*xDel)(void*) |
| 1370 ){ |
| 1371 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); |
| 1372 } |
| 1373 int sqlite3_bind_text64( |
| 1374 sqlite3_stmt *pStmt, |
| 1375 int i, |
| 1376 const char *zData, |
| 1377 sqlite3_uint64 nData, |
| 1378 void (*xDel)(void*), |
| 1379 unsigned char enc |
| 1380 ){ |
| 1381 assert( xDel!=SQLITE_DYNAMIC ); |
| 1382 if( nData>0x7fffffff ){ |
| 1383 return invokeValueDestructor(zData, xDel, 0); |
| 1384 }else{ |
| 1385 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE; |
| 1386 return bindText(pStmt, i, zData, (int)nData, xDel, enc); |
| 1387 } |
| 1388 } |
| 1389 #ifndef SQLITE_OMIT_UTF16 |
| 1390 int sqlite3_bind_text16( |
| 1391 sqlite3_stmt *pStmt, |
| 1392 int i, |
| 1393 const void *zData, |
| 1394 int nData, |
| 1395 void (*xDel)(void*) |
| 1396 ){ |
| 1397 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); |
| 1398 } |
| 1399 #endif /* SQLITE_OMIT_UTF16 */ |
| 1400 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ |
| 1401 int rc; |
| 1402 switch( sqlite3_value_type((sqlite3_value*)pValue) ){ |
| 1403 case SQLITE_INTEGER: { |
| 1404 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); |
| 1405 break; |
| 1406 } |
| 1407 case SQLITE_FLOAT: { |
| 1408 rc = sqlite3_bind_double(pStmt, i, pValue->u.r); |
| 1409 break; |
| 1410 } |
| 1411 case SQLITE_BLOB: { |
| 1412 if( pValue->flags & MEM_Zero ){ |
| 1413 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); |
| 1414 }else{ |
| 1415 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); |
| 1416 } |
| 1417 break; |
| 1418 } |
| 1419 case SQLITE_TEXT: { |
| 1420 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT, |
| 1421 pValue->enc); |
| 1422 break; |
| 1423 } |
| 1424 default: { |
| 1425 rc = sqlite3_bind_null(pStmt, i); |
| 1426 break; |
| 1427 } |
| 1428 } |
| 1429 return rc; |
| 1430 } |
| 1431 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ |
| 1432 int rc; |
| 1433 Vdbe *p = (Vdbe *)pStmt; |
| 1434 rc = vdbeUnbind(p, i); |
| 1435 if( rc==SQLITE_OK ){ |
| 1436 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); |
| 1437 sqlite3_mutex_leave(p->db->mutex); |
| 1438 } |
| 1439 return rc; |
| 1440 } |
| 1441 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){ |
| 1442 int rc; |
| 1443 Vdbe *p = (Vdbe *)pStmt; |
| 1444 sqlite3_mutex_enter(p->db->mutex); |
| 1445 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
| 1446 rc = SQLITE_TOOBIG; |
| 1447 }else{ |
| 1448 assert( (n & 0x7FFFFFFF)==n ); |
| 1449 rc = sqlite3_bind_zeroblob(pStmt, i, n); |
| 1450 } |
| 1451 rc = sqlite3ApiExit(p->db, rc); |
| 1452 sqlite3_mutex_leave(p->db->mutex); |
| 1453 return rc; |
| 1454 } |
| 1455 |
| 1456 /* |
| 1457 ** Return the number of wildcards that can be potentially bound to. |
| 1458 ** This routine is added to support DBD::SQLite. |
| 1459 */ |
| 1460 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ |
| 1461 Vdbe *p = (Vdbe*)pStmt; |
| 1462 return p ? p->nVar : 0; |
| 1463 } |
| 1464 |
| 1465 /* |
| 1466 ** Return the name of a wildcard parameter. Return NULL if the index |
| 1467 ** is out of range or if the wildcard is unnamed. |
| 1468 ** |
| 1469 ** The result is always UTF-8. |
| 1470 */ |
| 1471 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ |
| 1472 Vdbe *p = (Vdbe*)pStmt; |
| 1473 if( p==0 ) return 0; |
| 1474 return sqlite3VListNumToName(p->pVList, i); |
| 1475 } |
| 1476 |
| 1477 /* |
| 1478 ** Given a wildcard parameter name, return the index of the variable |
| 1479 ** with that name. If there is no variable with the given name, |
| 1480 ** return 0. |
| 1481 */ |
| 1482 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ |
| 1483 if( p==0 || zName==0 ) return 0; |
| 1484 return sqlite3VListNameToNum(p->pVList, zName, nName); |
| 1485 } |
| 1486 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ |
| 1487 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); |
| 1488 } |
| 1489 |
| 1490 /* |
| 1491 ** Transfer all bindings from the first statement over to the second. |
| 1492 */ |
| 1493 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ |
| 1494 Vdbe *pFrom = (Vdbe*)pFromStmt; |
| 1495 Vdbe *pTo = (Vdbe*)pToStmt; |
| 1496 int i; |
| 1497 assert( pTo->db==pFrom->db ); |
| 1498 assert( pTo->nVar==pFrom->nVar ); |
| 1499 sqlite3_mutex_enter(pTo->db->mutex); |
| 1500 for(i=0; i<pFrom->nVar; i++){ |
| 1501 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); |
| 1502 } |
| 1503 sqlite3_mutex_leave(pTo->db->mutex); |
| 1504 return SQLITE_OK; |
| 1505 } |
| 1506 |
| 1507 #ifndef SQLITE_OMIT_DEPRECATED |
| 1508 /* |
| 1509 ** Deprecated external interface. Internal/core SQLite code |
| 1510 ** should call sqlite3TransferBindings. |
| 1511 ** |
| 1512 ** It is misuse to call this routine with statements from different |
| 1513 ** database connections. But as this is a deprecated interface, we |
| 1514 ** will not bother to check for that condition. |
| 1515 ** |
| 1516 ** If the two statements contain a different number of bindings, then |
| 1517 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise |
| 1518 ** SQLITE_OK is returned. |
| 1519 */ |
| 1520 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ |
| 1521 Vdbe *pFrom = (Vdbe*)pFromStmt; |
| 1522 Vdbe *pTo = (Vdbe*)pToStmt; |
| 1523 if( pFrom->nVar!=pTo->nVar ){ |
| 1524 return SQLITE_ERROR; |
| 1525 } |
| 1526 if( pTo->isPrepareV2 && pTo->expmask ){ |
| 1527 pTo->expired = 1; |
| 1528 } |
| 1529 if( pFrom->isPrepareV2 && pFrom->expmask ){ |
| 1530 pFrom->expired = 1; |
| 1531 } |
| 1532 return sqlite3TransferBindings(pFromStmt, pToStmt); |
| 1533 } |
| 1534 #endif |
| 1535 |
| 1536 /* |
| 1537 ** Return the sqlite3* database handle to which the prepared statement given |
| 1538 ** in the argument belongs. This is the same database handle that was |
| 1539 ** the first argument to the sqlite3_prepare() that was used to create |
| 1540 ** the statement in the first place. |
| 1541 */ |
| 1542 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ |
| 1543 return pStmt ? ((Vdbe*)pStmt)->db : 0; |
| 1544 } |
| 1545 |
| 1546 /* |
| 1547 ** Return true if the prepared statement is guaranteed to not modify the |
| 1548 ** database. |
| 1549 */ |
| 1550 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ |
| 1551 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; |
| 1552 } |
| 1553 |
| 1554 /* |
| 1555 ** Return true if the prepared statement is in need of being reset. |
| 1556 */ |
| 1557 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){ |
| 1558 Vdbe *v = (Vdbe*)pStmt; |
| 1559 return v!=0 && v->magic==VDBE_MAGIC_RUN && v->pc>=0; |
| 1560 } |
| 1561 |
| 1562 /* |
| 1563 ** Return a pointer to the next prepared statement after pStmt associated |
| 1564 ** with database connection pDb. If pStmt is NULL, return the first |
| 1565 ** prepared statement for the database connection. Return NULL if there |
| 1566 ** are no more. |
| 1567 */ |
| 1568 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ |
| 1569 sqlite3_stmt *pNext; |
| 1570 #ifdef SQLITE_ENABLE_API_ARMOR |
| 1571 if( !sqlite3SafetyCheckOk(pDb) ){ |
| 1572 (void)SQLITE_MISUSE_BKPT; |
| 1573 return 0; |
| 1574 } |
| 1575 #endif |
| 1576 sqlite3_mutex_enter(pDb->mutex); |
| 1577 if( pStmt==0 ){ |
| 1578 pNext = (sqlite3_stmt*)pDb->pVdbe; |
| 1579 }else{ |
| 1580 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; |
| 1581 } |
| 1582 sqlite3_mutex_leave(pDb->mutex); |
| 1583 return pNext; |
| 1584 } |
| 1585 |
| 1586 /* |
| 1587 ** Return the value of a status counter for a prepared statement |
| 1588 */ |
| 1589 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ |
| 1590 Vdbe *pVdbe = (Vdbe*)pStmt; |
| 1591 u32 v; |
| 1592 #ifdef SQLITE_ENABLE_API_ARMOR |
| 1593 if( !pStmt ){ |
| 1594 (void)SQLITE_MISUSE_BKPT; |
| 1595 return 0; |
| 1596 } |
| 1597 #endif |
| 1598 v = pVdbe->aCounter[op]; |
| 1599 if( resetFlag ) pVdbe->aCounter[op] = 0; |
| 1600 return (int)v; |
| 1601 } |
| 1602 |
| 1603 /* |
| 1604 ** Return the SQL associated with a prepared statement |
| 1605 */ |
| 1606 const char *sqlite3_sql(sqlite3_stmt *pStmt){ |
| 1607 Vdbe *p = (Vdbe *)pStmt; |
| 1608 return p ? p->zSql : 0; |
| 1609 } |
| 1610 |
| 1611 /* |
| 1612 ** Return the SQL associated with a prepared statement with |
| 1613 ** bound parameters expanded. Space to hold the returned string is |
| 1614 ** obtained from sqlite3_malloc(). The caller is responsible for |
| 1615 ** freeing the returned string by passing it to sqlite3_free(). |
| 1616 ** |
| 1617 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of |
| 1618 ** expanded bound parameters. |
| 1619 */ |
| 1620 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){ |
| 1621 #ifdef SQLITE_OMIT_TRACE |
| 1622 return 0; |
| 1623 #else |
| 1624 char *z = 0; |
| 1625 const char *zSql = sqlite3_sql(pStmt); |
| 1626 if( zSql ){ |
| 1627 Vdbe *p = (Vdbe *)pStmt; |
| 1628 sqlite3_mutex_enter(p->db->mutex); |
| 1629 z = sqlite3VdbeExpandSql(p, zSql); |
| 1630 sqlite3_mutex_leave(p->db->mutex); |
| 1631 } |
| 1632 return z; |
| 1633 #endif |
| 1634 } |
| 1635 |
| 1636 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK |
| 1637 /* |
| 1638 ** Allocate and populate an UnpackedRecord structure based on the serialized |
| 1639 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure |
| 1640 ** if successful, or a NULL pointer if an OOM error is encountered. |
| 1641 */ |
| 1642 static UnpackedRecord *vdbeUnpackRecord( |
| 1643 KeyInfo *pKeyInfo, |
| 1644 int nKey, |
| 1645 const void *pKey |
| 1646 ){ |
| 1647 UnpackedRecord *pRet; /* Return value */ |
| 1648 |
| 1649 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo); |
| 1650 if( pRet ){ |
| 1651 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nField+1)); |
| 1652 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet); |
| 1653 } |
| 1654 return pRet; |
| 1655 } |
| 1656 |
| 1657 /* |
| 1658 ** This function is called from within a pre-update callback to retrieve |
| 1659 ** a field of the row currently being updated or deleted. |
| 1660 */ |
| 1661 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ |
| 1662 PreUpdate *p = db->pPreUpdate; |
| 1663 Mem *pMem; |
| 1664 int rc = SQLITE_OK; |
| 1665 |
| 1666 /* Test that this call is being made from within an SQLITE_DELETE or |
| 1667 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */ |
| 1668 if( !p || p->op==SQLITE_INSERT ){ |
| 1669 rc = SQLITE_MISUSE_BKPT; |
| 1670 goto preupdate_old_out; |
| 1671 } |
| 1672 if( p->pPk ){ |
| 1673 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx); |
| 1674 } |
| 1675 if( iIdx>=p->pCsr->nField || iIdx<0 ){ |
| 1676 rc = SQLITE_RANGE; |
| 1677 goto preupdate_old_out; |
| 1678 } |
| 1679 |
| 1680 /* If the old.* record has not yet been loaded into memory, do so now. */ |
| 1681 if( p->pUnpacked==0 ){ |
| 1682 u32 nRec; |
| 1683 u8 *aRec; |
| 1684 |
| 1685 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor); |
| 1686 aRec = sqlite3DbMallocRaw(db, nRec); |
| 1687 if( !aRec ) goto preupdate_old_out; |
| 1688 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec); |
| 1689 if( rc==SQLITE_OK ){ |
| 1690 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec); |
| 1691 if( !p->pUnpacked ) rc = SQLITE_NOMEM; |
| 1692 } |
| 1693 if( rc!=SQLITE_OK ){ |
| 1694 sqlite3DbFree(db, aRec); |
| 1695 goto preupdate_old_out; |
| 1696 } |
| 1697 p->aRecord = aRec; |
| 1698 } |
| 1699 |
| 1700 pMem = *ppValue = &p->pUnpacked->aMem[iIdx]; |
| 1701 if( iIdx==p->pTab->iPKey ){ |
| 1702 sqlite3VdbeMemSetInt64(pMem, p->iKey1); |
| 1703 }else if( iIdx>=p->pUnpacked->nField ){ |
| 1704 *ppValue = (sqlite3_value *)columnNullValue(); |
| 1705 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){ |
| 1706 if( pMem->flags & MEM_Int ){ |
| 1707 sqlite3VdbeMemRealify(pMem); |
| 1708 } |
| 1709 } |
| 1710 |
| 1711 preupdate_old_out: |
| 1712 sqlite3Error(db, rc); |
| 1713 return sqlite3ApiExit(db, rc); |
| 1714 } |
| 1715 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ |
| 1716 |
| 1717 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK |
| 1718 /* |
| 1719 ** This function is called from within a pre-update callback to retrieve |
| 1720 ** the number of columns in the row being updated, deleted or inserted. |
| 1721 */ |
| 1722 int sqlite3_preupdate_count(sqlite3 *db){ |
| 1723 PreUpdate *p = db->pPreUpdate; |
| 1724 return (p ? p->keyinfo.nField : 0); |
| 1725 } |
| 1726 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ |
| 1727 |
| 1728 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK |
| 1729 /* |
| 1730 ** This function is designed to be called from within a pre-update callback |
| 1731 ** only. It returns zero if the change that caused the callback was made |
| 1732 ** immediately by a user SQL statement. Or, if the change was made by a |
| 1733 ** trigger program, it returns the number of trigger programs currently |
| 1734 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a |
| 1735 ** top-level trigger etc.). |
| 1736 ** |
| 1737 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL |
| 1738 ** or SET DEFAULT action is considered a trigger. |
| 1739 */ |
| 1740 int sqlite3_preupdate_depth(sqlite3 *db){ |
| 1741 PreUpdate *p = db->pPreUpdate; |
| 1742 return (p ? p->v->nFrame : 0); |
| 1743 } |
| 1744 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ |
| 1745 |
| 1746 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK |
| 1747 /* |
| 1748 ** This function is called from within a pre-update callback to retrieve |
| 1749 ** a field of the row currently being updated or inserted. |
| 1750 */ |
| 1751 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){ |
| 1752 PreUpdate *p = db->pPreUpdate; |
| 1753 int rc = SQLITE_OK; |
| 1754 Mem *pMem; |
| 1755 |
| 1756 if( !p || p->op==SQLITE_DELETE ){ |
| 1757 rc = SQLITE_MISUSE_BKPT; |
| 1758 goto preupdate_new_out; |
| 1759 } |
| 1760 if( p->pPk && p->op!=SQLITE_UPDATE ){ |
| 1761 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx); |
| 1762 } |
| 1763 if( iIdx>=p->pCsr->nField || iIdx<0 ){ |
| 1764 rc = SQLITE_RANGE; |
| 1765 goto preupdate_new_out; |
| 1766 } |
| 1767 |
| 1768 if( p->op==SQLITE_INSERT ){ |
| 1769 /* For an INSERT, memory cell p->iNewReg contains the serialized record |
| 1770 ** that is being inserted. Deserialize it. */ |
| 1771 UnpackedRecord *pUnpack = p->pNewUnpacked; |
| 1772 if( !pUnpack ){ |
| 1773 Mem *pData = &p->v->aMem[p->iNewReg]; |
| 1774 rc = ExpandBlob(pData); |
| 1775 if( rc!=SQLITE_OK ) goto preupdate_new_out; |
| 1776 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z); |
| 1777 if( !pUnpack ){ |
| 1778 rc = SQLITE_NOMEM; |
| 1779 goto preupdate_new_out; |
| 1780 } |
| 1781 p->pNewUnpacked = pUnpack; |
| 1782 } |
| 1783 pMem = &pUnpack->aMem[iIdx]; |
| 1784 if( iIdx==p->pTab->iPKey ){ |
| 1785 sqlite3VdbeMemSetInt64(pMem, p->iKey2); |
| 1786 }else if( iIdx>=pUnpack->nField ){ |
| 1787 pMem = (sqlite3_value *)columnNullValue(); |
| 1788 } |
| 1789 }else{ |
| 1790 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required |
| 1791 ** value. Make a copy of the cell contents and return a pointer to it. |
| 1792 ** It is not safe to return a pointer to the memory cell itself as the |
| 1793 ** caller may modify the value text encoding. |
| 1794 */ |
| 1795 assert( p->op==SQLITE_UPDATE ); |
| 1796 if( !p->aNew ){ |
| 1797 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField); |
| 1798 if( !p->aNew ){ |
| 1799 rc = SQLITE_NOMEM; |
| 1800 goto preupdate_new_out; |
| 1801 } |
| 1802 } |
| 1803 assert( iIdx>=0 && iIdx<p->pCsr->nField ); |
| 1804 pMem = &p->aNew[iIdx]; |
| 1805 if( pMem->flags==0 ){ |
| 1806 if( iIdx==p->pTab->iPKey ){ |
| 1807 sqlite3VdbeMemSetInt64(pMem, p->iKey2); |
| 1808 }else{ |
| 1809 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]); |
| 1810 if( rc!=SQLITE_OK ) goto preupdate_new_out; |
| 1811 } |
| 1812 } |
| 1813 } |
| 1814 *ppValue = pMem; |
| 1815 |
| 1816 preupdate_new_out: |
| 1817 sqlite3Error(db, rc); |
| 1818 return sqlite3ApiExit(db, rc); |
| 1819 } |
| 1820 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ |
| 1821 |
| 1822 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| 1823 /* |
| 1824 ** Return status data for a single loop within query pStmt. |
| 1825 */ |
| 1826 int sqlite3_stmt_scanstatus( |
| 1827 sqlite3_stmt *pStmt, /* Prepared statement being queried */ |
| 1828 int idx, /* Index of loop to report on */ |
| 1829 int iScanStatusOp, /* Which metric to return */ |
| 1830 void *pOut /* OUT: Write the answer here */ |
| 1831 ){ |
| 1832 Vdbe *p = (Vdbe*)pStmt; |
| 1833 ScanStatus *pScan; |
| 1834 if( idx<0 || idx>=p->nScan ) return 1; |
| 1835 pScan = &p->aScan[idx]; |
| 1836 switch( iScanStatusOp ){ |
| 1837 case SQLITE_SCANSTAT_NLOOP: { |
| 1838 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop]; |
| 1839 break; |
| 1840 } |
| 1841 case SQLITE_SCANSTAT_NVISIT: { |
| 1842 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit]; |
| 1843 break; |
| 1844 } |
| 1845 case SQLITE_SCANSTAT_EST: { |
| 1846 double r = 1.0; |
| 1847 LogEst x = pScan->nEst; |
| 1848 while( x<100 ){ |
| 1849 x += 10; |
| 1850 r *= 0.5; |
| 1851 } |
| 1852 *(double*)pOut = r*sqlite3LogEstToInt(x); |
| 1853 break; |
| 1854 } |
| 1855 case SQLITE_SCANSTAT_NAME: { |
| 1856 *(const char**)pOut = pScan->zName; |
| 1857 break; |
| 1858 } |
| 1859 case SQLITE_SCANSTAT_EXPLAIN: { |
| 1860 if( pScan->addrExplain ){ |
| 1861 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z; |
| 1862 }else{ |
| 1863 *(const char**)pOut = 0; |
| 1864 } |
| 1865 break; |
| 1866 } |
| 1867 case SQLITE_SCANSTAT_SELECTID: { |
| 1868 if( pScan->addrExplain ){ |
| 1869 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1; |
| 1870 }else{ |
| 1871 *(int*)pOut = -1; |
| 1872 } |
| 1873 break; |
| 1874 } |
| 1875 default: { |
| 1876 return 1; |
| 1877 } |
| 1878 } |
| 1879 return 0; |
| 1880 } |
| 1881 |
| 1882 /* |
| 1883 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data. |
| 1884 */ |
| 1885 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){ |
| 1886 Vdbe *p = (Vdbe*)pStmt; |
| 1887 memset(p->anExec, 0, p->nOp * sizeof(i64)); |
| 1888 } |
| 1889 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */ |
OLD | NEW |