OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2001 September 15 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** The code in this file implements the function that runs the |
| 13 ** bytecode of a prepared statement. |
| 14 ** |
| 15 ** Various scripts scan this source file in order to generate HTML |
| 16 ** documentation, headers files, or other derived files. The formatting |
| 17 ** of the code in this file is, therefore, important. See other comments |
| 18 ** in this file for details. If in doubt, do not deviate from existing |
| 19 ** commenting and indentation practices when changing or adding code. |
| 20 */ |
| 21 #include "sqliteInt.h" |
| 22 #include "vdbeInt.h" |
| 23 |
| 24 /* |
| 25 ** Invoke this macro on memory cells just prior to changing the |
| 26 ** value of the cell. This macro verifies that shallow copies are |
| 27 ** not misused. A shallow copy of a string or blob just copies a |
| 28 ** pointer to the string or blob, not the content. If the original |
| 29 ** is changed while the copy is still in use, the string or blob might |
| 30 ** be changed out from under the copy. This macro verifies that nothing |
| 31 ** like that ever happens. |
| 32 */ |
| 33 #ifdef SQLITE_DEBUG |
| 34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) |
| 35 #else |
| 36 # define memAboutToChange(P,M) |
| 37 #endif |
| 38 |
| 39 /* |
| 40 ** The following global variable is incremented every time a cursor |
| 41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test |
| 42 ** procedures use this information to make sure that indices are |
| 43 ** working correctly. This variable has no function other than to |
| 44 ** help verify the correct operation of the library. |
| 45 */ |
| 46 #ifdef SQLITE_TEST |
| 47 int sqlite3_search_count = 0; |
| 48 #endif |
| 49 |
| 50 /* |
| 51 ** When this global variable is positive, it gets decremented once before |
| 52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted |
| 53 ** field of the sqlite3 structure is set in order to simulate an interrupt. |
| 54 ** |
| 55 ** This facility is used for testing purposes only. It does not function |
| 56 ** in an ordinary build. |
| 57 */ |
| 58 #ifdef SQLITE_TEST |
| 59 int sqlite3_interrupt_count = 0; |
| 60 #endif |
| 61 |
| 62 /* |
| 63 ** The next global variable is incremented each type the OP_Sort opcode |
| 64 ** is executed. The test procedures use this information to make sure that |
| 65 ** sorting is occurring or not occurring at appropriate times. This variable |
| 66 ** has no function other than to help verify the correct operation of the |
| 67 ** library. |
| 68 */ |
| 69 #ifdef SQLITE_TEST |
| 70 int sqlite3_sort_count = 0; |
| 71 #endif |
| 72 |
| 73 /* |
| 74 ** The next global variable records the size of the largest MEM_Blob |
| 75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures |
| 76 ** use this information to make sure that the zero-blob functionality |
| 77 ** is working correctly. This variable has no function other than to |
| 78 ** help verify the correct operation of the library. |
| 79 */ |
| 80 #ifdef SQLITE_TEST |
| 81 int sqlite3_max_blobsize = 0; |
| 82 static void updateMaxBlobsize(Mem *p){ |
| 83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ |
| 84 sqlite3_max_blobsize = p->n; |
| 85 } |
| 86 } |
| 87 #endif |
| 88 |
| 89 /* |
| 90 ** This macro evaluates to true if either the update hook or the preupdate |
| 91 ** hook are enabled for database connect DB. |
| 92 */ |
| 93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK |
| 94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) |
| 95 #else |
| 96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) |
| 97 #endif |
| 98 |
| 99 /* |
| 100 ** The next global variable is incremented each time the OP_Found opcode |
| 101 ** is executed. This is used to test whether or not the foreign key |
| 102 ** operation implemented using OP_FkIsZero is working. This variable |
| 103 ** has no function other than to help verify the correct operation of the |
| 104 ** library. |
| 105 */ |
| 106 #ifdef SQLITE_TEST |
| 107 int sqlite3_found_count = 0; |
| 108 #endif |
| 109 |
| 110 /* |
| 111 ** Test a register to see if it exceeds the current maximum blob size. |
| 112 ** If it does, record the new maximum blob size. |
| 113 */ |
| 114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) |
| 115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) |
| 116 #else |
| 117 # define UPDATE_MAX_BLOBSIZE(P) |
| 118 #endif |
| 119 |
| 120 /* |
| 121 ** Invoke the VDBE coverage callback, if that callback is defined. This |
| 122 ** feature is used for test suite validation only and does not appear an |
| 123 ** production builds. |
| 124 ** |
| 125 ** M is an integer, 2 or 3, that indices how many different ways the |
| 126 ** branch can go. It is usually 2. "I" is the direction the branch |
| 127 ** goes. 0 means falls through. 1 means branch is taken. 2 means the |
| 128 ** second alternative branch is taken. |
| 129 ** |
| 130 ** iSrcLine is the source code line (from the __LINE__ macro) that |
| 131 ** generated the VDBE instruction. This instrumentation assumes that all |
| 132 ** source code is in a single file (the amalgamation). Special values 1 |
| 133 ** and 2 for the iSrcLine parameter mean that this particular branch is |
| 134 ** always taken or never taken, respectively. |
| 135 */ |
| 136 #if !defined(SQLITE_VDBE_COVERAGE) |
| 137 # define VdbeBranchTaken(I,M) |
| 138 #else |
| 139 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) |
| 140 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){ |
| 141 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){ |
| 142 M = iSrcLine; |
| 143 /* Assert the truth of VdbeCoverageAlwaysTaken() and |
| 144 ** VdbeCoverageNeverTaken() */ |
| 145 assert( (M & I)==I ); |
| 146 }else{ |
| 147 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ |
| 148 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, |
| 149 iSrcLine,I,M); |
| 150 } |
| 151 } |
| 152 #endif |
| 153 |
| 154 /* |
| 155 ** Convert the given register into a string if it isn't one |
| 156 ** already. Return non-zero if a malloc() fails. |
| 157 */ |
| 158 #define Stringify(P, enc) \ |
| 159 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \ |
| 160 { goto no_mem; } |
| 161 |
| 162 /* |
| 163 ** An ephemeral string value (signified by the MEM_Ephem flag) contains |
| 164 ** a pointer to a dynamically allocated string where some other entity |
| 165 ** is responsible for deallocating that string. Because the register |
| 166 ** does not control the string, it might be deleted without the register |
| 167 ** knowing it. |
| 168 ** |
| 169 ** This routine converts an ephemeral string into a dynamically allocated |
| 170 ** string that the register itself controls. In other words, it |
| 171 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. |
| 172 */ |
| 173 #define Deephemeralize(P) \ |
| 174 if( ((P)->flags&MEM_Ephem)!=0 \ |
| 175 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} |
| 176 |
| 177 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ |
| 178 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) |
| 179 |
| 180 /* |
| 181 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL |
| 182 ** if we run out of memory. |
| 183 */ |
| 184 static VdbeCursor *allocateCursor( |
| 185 Vdbe *p, /* The virtual machine */ |
| 186 int iCur, /* Index of the new VdbeCursor */ |
| 187 int nField, /* Number of fields in the table or index */ |
| 188 int iDb, /* Database the cursor belongs to, or -1 */ |
| 189 u8 eCurType /* Type of the new cursor */ |
| 190 ){ |
| 191 /* Find the memory cell that will be used to store the blob of memory |
| 192 ** required for this VdbeCursor structure. It is convenient to use a |
| 193 ** vdbe memory cell to manage the memory allocation required for a |
| 194 ** VdbeCursor structure for the following reasons: |
| 195 ** |
| 196 ** * Sometimes cursor numbers are used for a couple of different |
| 197 ** purposes in a vdbe program. The different uses might require |
| 198 ** different sized allocations. Memory cells provide growable |
| 199 ** allocations. |
| 200 ** |
| 201 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can |
| 202 ** be freed lazily via the sqlite3_release_memory() API. This |
| 203 ** minimizes the number of malloc calls made by the system. |
| 204 ** |
| 205 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from |
| 206 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. |
| 207 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. |
| 208 */ |
| 209 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; |
| 210 |
| 211 int nByte; |
| 212 VdbeCursor *pCx = 0; |
| 213 nByte = |
| 214 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + |
| 215 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); |
| 216 |
| 217 assert( iCur>=0 && iCur<p->nCursor ); |
| 218 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ |
| 219 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); |
| 220 p->apCsr[iCur] = 0; |
| 221 } |
| 222 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){ |
| 223 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z; |
| 224 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); |
| 225 pCx->eCurType = eCurType; |
| 226 pCx->iDb = iDb; |
| 227 pCx->nField = nField; |
| 228 pCx->aOffset = &pCx->aType[nField]; |
| 229 if( eCurType==CURTYPE_BTREE ){ |
| 230 pCx->uc.pCursor = (BtCursor*) |
| 231 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; |
| 232 sqlite3BtreeCursorZero(pCx->uc.pCursor); |
| 233 } |
| 234 } |
| 235 return pCx; |
| 236 } |
| 237 |
| 238 /* |
| 239 ** Try to convert a value into a numeric representation if we can |
| 240 ** do so without loss of information. In other words, if the string |
| 241 ** looks like a number, convert it into a number. If it does not |
| 242 ** look like a number, leave it alone. |
| 243 ** |
| 244 ** If the bTryForInt flag is true, then extra effort is made to give |
| 245 ** an integer representation. Strings that look like floating point |
| 246 ** values but which have no fractional component (example: '48.00') |
| 247 ** will have a MEM_Int representation when bTryForInt is true. |
| 248 ** |
| 249 ** If bTryForInt is false, then if the input string contains a decimal |
| 250 ** point or exponential notation, the result is only MEM_Real, even |
| 251 ** if there is an exact integer representation of the quantity. |
| 252 */ |
| 253 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ |
| 254 double rValue; |
| 255 i64 iValue; |
| 256 u8 enc = pRec->enc; |
| 257 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str ); |
| 258 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return; |
| 259 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){ |
| 260 pRec->u.i = iValue; |
| 261 pRec->flags |= MEM_Int; |
| 262 }else{ |
| 263 pRec->u.r = rValue; |
| 264 pRec->flags |= MEM_Real; |
| 265 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); |
| 266 } |
| 267 } |
| 268 |
| 269 /* |
| 270 ** Processing is determine by the affinity parameter: |
| 271 ** |
| 272 ** SQLITE_AFF_INTEGER: |
| 273 ** SQLITE_AFF_REAL: |
| 274 ** SQLITE_AFF_NUMERIC: |
| 275 ** Try to convert pRec to an integer representation or a |
| 276 ** floating-point representation if an integer representation |
| 277 ** is not possible. Note that the integer representation is |
| 278 ** always preferred, even if the affinity is REAL, because |
| 279 ** an integer representation is more space efficient on disk. |
| 280 ** |
| 281 ** SQLITE_AFF_TEXT: |
| 282 ** Convert pRec to a text representation. |
| 283 ** |
| 284 ** SQLITE_AFF_BLOB: |
| 285 ** No-op. pRec is unchanged. |
| 286 */ |
| 287 static void applyAffinity( |
| 288 Mem *pRec, /* The value to apply affinity to */ |
| 289 char affinity, /* The affinity to be applied */ |
| 290 u8 enc /* Use this text encoding */ |
| 291 ){ |
| 292 if( affinity>=SQLITE_AFF_NUMERIC ){ |
| 293 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL |
| 294 || affinity==SQLITE_AFF_NUMERIC ); |
| 295 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ |
| 296 if( (pRec->flags & MEM_Real)==0 ){ |
| 297 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); |
| 298 }else{ |
| 299 sqlite3VdbeIntegerAffinity(pRec); |
| 300 } |
| 301 } |
| 302 }else if( affinity==SQLITE_AFF_TEXT ){ |
| 303 /* Only attempt the conversion to TEXT if there is an integer or real |
| 304 ** representation (blob and NULL do not get converted) but no string |
| 305 ** representation. It would be harmless to repeat the conversion if |
| 306 ** there is already a string rep, but it is pointless to waste those |
| 307 ** CPU cycles. */ |
| 308 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ |
| 309 if( (pRec->flags&(MEM_Real|MEM_Int)) ){ |
| 310 sqlite3VdbeMemStringify(pRec, enc, 1); |
| 311 } |
| 312 } |
| 313 pRec->flags &= ~(MEM_Real|MEM_Int); |
| 314 } |
| 315 } |
| 316 |
| 317 /* |
| 318 ** Try to convert the type of a function argument or a result column |
| 319 ** into a numeric representation. Use either INTEGER or REAL whichever |
| 320 ** is appropriate. But only do the conversion if it is possible without |
| 321 ** loss of information and return the revised type of the argument. |
| 322 */ |
| 323 int sqlite3_value_numeric_type(sqlite3_value *pVal){ |
| 324 int eType = sqlite3_value_type(pVal); |
| 325 if( eType==SQLITE_TEXT ){ |
| 326 Mem *pMem = (Mem*)pVal; |
| 327 applyNumericAffinity(pMem, 0); |
| 328 eType = sqlite3_value_type(pVal); |
| 329 } |
| 330 return eType; |
| 331 } |
| 332 |
| 333 /* |
| 334 ** Exported version of applyAffinity(). This one works on sqlite3_value*, |
| 335 ** not the internal Mem* type. |
| 336 */ |
| 337 void sqlite3ValueApplyAffinity( |
| 338 sqlite3_value *pVal, |
| 339 u8 affinity, |
| 340 u8 enc |
| 341 ){ |
| 342 applyAffinity((Mem *)pVal, affinity, enc); |
| 343 } |
| 344 |
| 345 /* |
| 346 ** pMem currently only holds a string type (or maybe a BLOB that we can |
| 347 ** interpret as a string if we want to). Compute its corresponding |
| 348 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields |
| 349 ** accordingly. |
| 350 */ |
| 351 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ |
| 352 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 ); |
| 353 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); |
| 354 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){ |
| 355 return 0; |
| 356 } |
| 357 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){ |
| 358 return MEM_Int; |
| 359 } |
| 360 return MEM_Real; |
| 361 } |
| 362 |
| 363 /* |
| 364 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or |
| 365 ** none. |
| 366 ** |
| 367 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. |
| 368 ** But it does set pMem->u.r and pMem->u.i appropriately. |
| 369 */ |
| 370 static u16 numericType(Mem *pMem){ |
| 371 if( pMem->flags & (MEM_Int|MEM_Real) ){ |
| 372 return pMem->flags & (MEM_Int|MEM_Real); |
| 373 } |
| 374 if( pMem->flags & (MEM_Str|MEM_Blob) ){ |
| 375 return computeNumericType(pMem); |
| 376 } |
| 377 return 0; |
| 378 } |
| 379 |
| 380 #ifdef SQLITE_DEBUG |
| 381 /* |
| 382 ** Write a nice string representation of the contents of cell pMem |
| 383 ** into buffer zBuf, length nBuf. |
| 384 */ |
| 385 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ |
| 386 char *zCsr = zBuf; |
| 387 int f = pMem->flags; |
| 388 |
| 389 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; |
| 390 |
| 391 if( f&MEM_Blob ){ |
| 392 int i; |
| 393 char c; |
| 394 if( f & MEM_Dyn ){ |
| 395 c = 'z'; |
| 396 assert( (f & (MEM_Static|MEM_Ephem))==0 ); |
| 397 }else if( f & MEM_Static ){ |
| 398 c = 't'; |
| 399 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); |
| 400 }else if( f & MEM_Ephem ){ |
| 401 c = 'e'; |
| 402 assert( (f & (MEM_Static|MEM_Dyn))==0 ); |
| 403 }else{ |
| 404 c = 's'; |
| 405 } |
| 406 |
| 407 sqlite3_snprintf(100, zCsr, "%c", c); |
| 408 zCsr += sqlite3Strlen30(zCsr); |
| 409 sqlite3_snprintf(100, zCsr, "%d[", pMem->n); |
| 410 zCsr += sqlite3Strlen30(zCsr); |
| 411 for(i=0; i<16 && i<pMem->n; i++){ |
| 412 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); |
| 413 zCsr += sqlite3Strlen30(zCsr); |
| 414 } |
| 415 for(i=0; i<16 && i<pMem->n; i++){ |
| 416 char z = pMem->z[i]; |
| 417 if( z<32 || z>126 ) *zCsr++ = '.'; |
| 418 else *zCsr++ = z; |
| 419 } |
| 420 |
| 421 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]); |
| 422 zCsr += sqlite3Strlen30(zCsr); |
| 423 if( f & MEM_Zero ){ |
| 424 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero); |
| 425 zCsr += sqlite3Strlen30(zCsr); |
| 426 } |
| 427 *zCsr = '\0'; |
| 428 }else if( f & MEM_Str ){ |
| 429 int j, k; |
| 430 zBuf[0] = ' '; |
| 431 if( f & MEM_Dyn ){ |
| 432 zBuf[1] = 'z'; |
| 433 assert( (f & (MEM_Static|MEM_Ephem))==0 ); |
| 434 }else if( f & MEM_Static ){ |
| 435 zBuf[1] = 't'; |
| 436 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); |
| 437 }else if( f & MEM_Ephem ){ |
| 438 zBuf[1] = 'e'; |
| 439 assert( (f & (MEM_Static|MEM_Dyn))==0 ); |
| 440 }else{ |
| 441 zBuf[1] = 's'; |
| 442 } |
| 443 k = 2; |
| 444 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); |
| 445 k += sqlite3Strlen30(&zBuf[k]); |
| 446 zBuf[k++] = '['; |
| 447 for(j=0; j<15 && j<pMem->n; j++){ |
| 448 u8 c = pMem->z[j]; |
| 449 if( c>=0x20 && c<0x7f ){ |
| 450 zBuf[k++] = c; |
| 451 }else{ |
| 452 zBuf[k++] = '.'; |
| 453 } |
| 454 } |
| 455 zBuf[k++] = ']'; |
| 456 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); |
| 457 k += sqlite3Strlen30(&zBuf[k]); |
| 458 zBuf[k++] = 0; |
| 459 } |
| 460 } |
| 461 #endif |
| 462 |
| 463 #ifdef SQLITE_DEBUG |
| 464 /* |
| 465 ** Print the value of a register for tracing purposes: |
| 466 */ |
| 467 static void memTracePrint(Mem *p){ |
| 468 if( p->flags & MEM_Undefined ){ |
| 469 printf(" undefined"); |
| 470 }else if( p->flags & MEM_Null ){ |
| 471 printf(" NULL"); |
| 472 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ |
| 473 printf(" si:%lld", p->u.i); |
| 474 }else if( p->flags & MEM_Int ){ |
| 475 printf(" i:%lld", p->u.i); |
| 476 #ifndef SQLITE_OMIT_FLOATING_POINT |
| 477 }else if( p->flags & MEM_Real ){ |
| 478 printf(" r:%g", p->u.r); |
| 479 #endif |
| 480 }else if( p->flags & MEM_RowSet ){ |
| 481 printf(" (rowset)"); |
| 482 }else{ |
| 483 char zBuf[200]; |
| 484 sqlite3VdbeMemPrettyPrint(p, zBuf); |
| 485 printf(" %s", zBuf); |
| 486 } |
| 487 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); |
| 488 } |
| 489 static void registerTrace(int iReg, Mem *p){ |
| 490 printf("REG[%d] = ", iReg); |
| 491 memTracePrint(p); |
| 492 printf("\n"); |
| 493 } |
| 494 #endif |
| 495 |
| 496 #ifdef SQLITE_DEBUG |
| 497 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) |
| 498 #else |
| 499 # define REGISTER_TRACE(R,M) |
| 500 #endif |
| 501 |
| 502 |
| 503 #ifdef VDBE_PROFILE |
| 504 |
| 505 /* |
| 506 ** hwtime.h contains inline assembler code for implementing |
| 507 ** high-performance timing routines. |
| 508 */ |
| 509 #include "hwtime.h" |
| 510 |
| 511 #endif |
| 512 |
| 513 #ifndef NDEBUG |
| 514 /* |
| 515 ** This function is only called from within an assert() expression. It |
| 516 ** checks that the sqlite3.nTransaction variable is correctly set to |
| 517 ** the number of non-transaction savepoints currently in the |
| 518 ** linked list starting at sqlite3.pSavepoint. |
| 519 ** |
| 520 ** Usage: |
| 521 ** |
| 522 ** assert( checkSavepointCount(db) ); |
| 523 */ |
| 524 static int checkSavepointCount(sqlite3 *db){ |
| 525 int n = 0; |
| 526 Savepoint *p; |
| 527 for(p=db->pSavepoint; p; p=p->pNext) n++; |
| 528 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); |
| 529 return 1; |
| 530 } |
| 531 #endif |
| 532 |
| 533 /* |
| 534 ** Return the register of pOp->p2 after first preparing it to be |
| 535 ** overwritten with an integer value. |
| 536 */ |
| 537 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ |
| 538 sqlite3VdbeMemSetNull(pOut); |
| 539 pOut->flags = MEM_Int; |
| 540 return pOut; |
| 541 } |
| 542 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ |
| 543 Mem *pOut; |
| 544 assert( pOp->p2>0 ); |
| 545 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); |
| 546 pOut = &p->aMem[pOp->p2]; |
| 547 memAboutToChange(p, pOut); |
| 548 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ |
| 549 return out2PrereleaseWithClear(pOut); |
| 550 }else{ |
| 551 pOut->flags = MEM_Int; |
| 552 return pOut; |
| 553 } |
| 554 } |
| 555 |
| 556 |
| 557 /* |
| 558 ** Execute as much of a VDBE program as we can. |
| 559 ** This is the core of sqlite3_step(). |
| 560 */ |
| 561 int sqlite3VdbeExec( |
| 562 Vdbe *p /* The VDBE */ |
| 563 ){ |
| 564 Op *aOp = p->aOp; /* Copy of p->aOp */ |
| 565 Op *pOp = aOp; /* Current operation */ |
| 566 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) |
| 567 Op *pOrigOp; /* Value of pOp at the top of the loop */ |
| 568 #endif |
| 569 #ifdef SQLITE_DEBUG |
| 570 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ |
| 571 #endif |
| 572 int rc = SQLITE_OK; /* Value to return */ |
| 573 sqlite3 *db = p->db; /* The database */ |
| 574 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ |
| 575 u8 encoding = ENC(db); /* The database encoding */ |
| 576 int iCompare = 0; /* Result of last comparison */ |
| 577 unsigned nVmStep = 0; /* Number of virtual machine steps */ |
| 578 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
| 579 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */ |
| 580 #endif |
| 581 Mem *aMem = p->aMem; /* Copy of p->aMem */ |
| 582 Mem *pIn1 = 0; /* 1st input operand */ |
| 583 Mem *pIn2 = 0; /* 2nd input operand */ |
| 584 Mem *pIn3 = 0; /* 3rd input operand */ |
| 585 Mem *pOut = 0; /* Output operand */ |
| 586 #ifdef VDBE_PROFILE |
| 587 u64 start; /* CPU clock count at start of opcode */ |
| 588 #endif |
| 589 /*** INSERT STACK UNION HERE ***/ |
| 590 |
| 591 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ |
| 592 sqlite3VdbeEnter(p); |
| 593 if( p->rc==SQLITE_NOMEM ){ |
| 594 /* This happens if a malloc() inside a call to sqlite3_column_text() or |
| 595 ** sqlite3_column_text16() failed. */ |
| 596 goto no_mem; |
| 597 } |
| 598 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); |
| 599 assert( p->bIsReader || p->readOnly!=0 ); |
| 600 p->iCurrentTime = 0; |
| 601 assert( p->explain==0 ); |
| 602 p->pResultSet = 0; |
| 603 db->busyHandler.nBusy = 0; |
| 604 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; |
| 605 sqlite3VdbeIOTraceSql(p); |
| 606 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
| 607 if( db->xProgress ){ |
| 608 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; |
| 609 assert( 0 < db->nProgressOps ); |
| 610 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); |
| 611 } |
| 612 #endif |
| 613 #ifdef SQLITE_DEBUG |
| 614 sqlite3BeginBenignMalloc(); |
| 615 if( p->pc==0 |
| 616 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 |
| 617 ){ |
| 618 int i; |
| 619 int once = 1; |
| 620 sqlite3VdbePrintSql(p); |
| 621 if( p->db->flags & SQLITE_VdbeListing ){ |
| 622 printf("VDBE Program Listing:\n"); |
| 623 for(i=0; i<p->nOp; i++){ |
| 624 sqlite3VdbePrintOp(stdout, i, &aOp[i]); |
| 625 } |
| 626 } |
| 627 if( p->db->flags & SQLITE_VdbeEQP ){ |
| 628 for(i=0; i<p->nOp; i++){ |
| 629 if( aOp[i].opcode==OP_Explain ){ |
| 630 if( once ) printf("VDBE Query Plan:\n"); |
| 631 printf("%s\n", aOp[i].p4.z); |
| 632 once = 0; |
| 633 } |
| 634 } |
| 635 } |
| 636 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); |
| 637 } |
| 638 sqlite3EndBenignMalloc(); |
| 639 #endif |
| 640 for(pOp=&aOp[p->pc]; 1; pOp++){ |
| 641 /* Errors are detected by individual opcodes, with an immediate |
| 642 ** jumps to abort_due_to_error. */ |
| 643 assert( rc==SQLITE_OK ); |
| 644 |
| 645 assert( pOp>=aOp && pOp<&aOp[p->nOp]); |
| 646 #ifdef VDBE_PROFILE |
| 647 start = sqlite3Hwtime(); |
| 648 #endif |
| 649 nVmStep++; |
| 650 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| 651 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++; |
| 652 #endif |
| 653 |
| 654 /* Only allow tracing if SQLITE_DEBUG is defined. |
| 655 */ |
| 656 #ifdef SQLITE_DEBUG |
| 657 if( db->flags & SQLITE_VdbeTrace ){ |
| 658 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); |
| 659 } |
| 660 #endif |
| 661 |
| 662 |
| 663 /* Check to see if we need to simulate an interrupt. This only happens |
| 664 ** if we have a special test build. |
| 665 */ |
| 666 #ifdef SQLITE_TEST |
| 667 if( sqlite3_interrupt_count>0 ){ |
| 668 sqlite3_interrupt_count--; |
| 669 if( sqlite3_interrupt_count==0 ){ |
| 670 sqlite3_interrupt(db); |
| 671 } |
| 672 } |
| 673 #endif |
| 674 |
| 675 /* Sanity checking on other operands */ |
| 676 #ifdef SQLITE_DEBUG |
| 677 { |
| 678 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; |
| 679 if( (opProperty & OPFLG_IN1)!=0 ){ |
| 680 assert( pOp->p1>0 ); |
| 681 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); |
| 682 assert( memIsValid(&aMem[pOp->p1]) ); |
| 683 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); |
| 684 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); |
| 685 } |
| 686 if( (opProperty & OPFLG_IN2)!=0 ){ |
| 687 assert( pOp->p2>0 ); |
| 688 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); |
| 689 assert( memIsValid(&aMem[pOp->p2]) ); |
| 690 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); |
| 691 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); |
| 692 } |
| 693 if( (opProperty & OPFLG_IN3)!=0 ){ |
| 694 assert( pOp->p3>0 ); |
| 695 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); |
| 696 assert( memIsValid(&aMem[pOp->p3]) ); |
| 697 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); |
| 698 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); |
| 699 } |
| 700 if( (opProperty & OPFLG_OUT2)!=0 ){ |
| 701 assert( pOp->p2>0 ); |
| 702 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); |
| 703 memAboutToChange(p, &aMem[pOp->p2]); |
| 704 } |
| 705 if( (opProperty & OPFLG_OUT3)!=0 ){ |
| 706 assert( pOp->p3>0 ); |
| 707 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); |
| 708 memAboutToChange(p, &aMem[pOp->p3]); |
| 709 } |
| 710 } |
| 711 #endif |
| 712 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) |
| 713 pOrigOp = pOp; |
| 714 #endif |
| 715 |
| 716 switch( pOp->opcode ){ |
| 717 |
| 718 /***************************************************************************** |
| 719 ** What follows is a massive switch statement where each case implements a |
| 720 ** separate instruction in the virtual machine. If we follow the usual |
| 721 ** indentation conventions, each case should be indented by 6 spaces. But |
| 722 ** that is a lot of wasted space on the left margin. So the code within |
| 723 ** the switch statement will break with convention and be flush-left. Another |
| 724 ** big comment (similar to this one) will mark the point in the code where |
| 725 ** we transition back to normal indentation. |
| 726 ** |
| 727 ** The formatting of each case is important. The makefile for SQLite |
| 728 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this |
| 729 ** file looking for lines that begin with "case OP_". The opcodes.h files |
| 730 ** will be filled with #defines that give unique integer values to each |
| 731 ** opcode and the opcodes.c file is filled with an array of strings where |
| 732 ** each string is the symbolic name for the corresponding opcode. If the |
| 733 ** case statement is followed by a comment of the form "/# same as ... #/" |
| 734 ** that comment is used to determine the particular value of the opcode. |
| 735 ** |
| 736 ** Other keywords in the comment that follows each case are used to |
| 737 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. |
| 738 ** Keywords include: in1, in2, in3, out2, out3. See |
| 739 ** the mkopcodeh.awk script for additional information. |
| 740 ** |
| 741 ** Documentation about VDBE opcodes is generated by scanning this file |
| 742 ** for lines of that contain "Opcode:". That line and all subsequent |
| 743 ** comment lines are used in the generation of the opcode.html documentation |
| 744 ** file. |
| 745 ** |
| 746 ** SUMMARY: |
| 747 ** |
| 748 ** Formatting is important to scripts that scan this file. |
| 749 ** Do not deviate from the formatting style currently in use. |
| 750 ** |
| 751 *****************************************************************************/ |
| 752 |
| 753 /* Opcode: Goto * P2 * * * |
| 754 ** |
| 755 ** An unconditional jump to address P2. |
| 756 ** The next instruction executed will be |
| 757 ** the one at index P2 from the beginning of |
| 758 ** the program. |
| 759 ** |
| 760 ** The P1 parameter is not actually used by this opcode. However, it |
| 761 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell |
| 762 ** that this Goto is the bottom of a loop and that the lines from P2 down |
| 763 ** to the current line should be indented for EXPLAIN output. |
| 764 */ |
| 765 case OP_Goto: { /* jump */ |
| 766 jump_to_p2_and_check_for_interrupt: |
| 767 pOp = &aOp[pOp->p2 - 1]; |
| 768 |
| 769 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, |
| 770 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon |
| 771 ** completion. Check to see if sqlite3_interrupt() has been called |
| 772 ** or if the progress callback needs to be invoked. |
| 773 ** |
| 774 ** This code uses unstructured "goto" statements and does not look clean. |
| 775 ** But that is not due to sloppy coding habits. The code is written this |
| 776 ** way for performance, to avoid having to run the interrupt and progress |
| 777 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% |
| 778 ** faster according to "valgrind --tool=cachegrind" */ |
| 779 check_for_interrupt: |
| 780 if( db->u1.isInterrupted ) goto abort_due_to_interrupt; |
| 781 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
| 782 /* Call the progress callback if it is configured and the required number |
| 783 ** of VDBE ops have been executed (either since this invocation of |
| 784 ** sqlite3VdbeExec() or since last time the progress callback was called). |
| 785 ** If the progress callback returns non-zero, exit the virtual machine with |
| 786 ** a return code SQLITE_ABORT. |
| 787 */ |
| 788 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){ |
| 789 assert( db->nProgressOps!=0 ); |
| 790 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps); |
| 791 if( db->xProgress(db->pProgressArg) ){ |
| 792 rc = SQLITE_INTERRUPT; |
| 793 goto abort_due_to_error; |
| 794 } |
| 795 } |
| 796 #endif |
| 797 |
| 798 break; |
| 799 } |
| 800 |
| 801 /* Opcode: Gosub P1 P2 * * * |
| 802 ** |
| 803 ** Write the current address onto register P1 |
| 804 ** and then jump to address P2. |
| 805 */ |
| 806 case OP_Gosub: { /* jump */ |
| 807 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); |
| 808 pIn1 = &aMem[pOp->p1]; |
| 809 assert( VdbeMemDynamic(pIn1)==0 ); |
| 810 memAboutToChange(p, pIn1); |
| 811 pIn1->flags = MEM_Int; |
| 812 pIn1->u.i = (int)(pOp-aOp); |
| 813 REGISTER_TRACE(pOp->p1, pIn1); |
| 814 |
| 815 /* Most jump operations do a goto to this spot in order to update |
| 816 ** the pOp pointer. */ |
| 817 jump_to_p2: |
| 818 pOp = &aOp[pOp->p2 - 1]; |
| 819 break; |
| 820 } |
| 821 |
| 822 /* Opcode: Return P1 * * * * |
| 823 ** |
| 824 ** Jump to the next instruction after the address in register P1. After |
| 825 ** the jump, register P1 becomes undefined. |
| 826 */ |
| 827 case OP_Return: { /* in1 */ |
| 828 pIn1 = &aMem[pOp->p1]; |
| 829 assert( pIn1->flags==MEM_Int ); |
| 830 pOp = &aOp[pIn1->u.i]; |
| 831 pIn1->flags = MEM_Undefined; |
| 832 break; |
| 833 } |
| 834 |
| 835 /* Opcode: InitCoroutine P1 P2 P3 * * |
| 836 ** |
| 837 ** Set up register P1 so that it will Yield to the coroutine |
| 838 ** located at address P3. |
| 839 ** |
| 840 ** If P2!=0 then the coroutine implementation immediately follows |
| 841 ** this opcode. So jump over the coroutine implementation to |
| 842 ** address P2. |
| 843 ** |
| 844 ** See also: EndCoroutine |
| 845 */ |
| 846 case OP_InitCoroutine: { /* jump */ |
| 847 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); |
| 848 assert( pOp->p2>=0 && pOp->p2<p->nOp ); |
| 849 assert( pOp->p3>=0 && pOp->p3<p->nOp ); |
| 850 pOut = &aMem[pOp->p1]; |
| 851 assert( !VdbeMemDynamic(pOut) ); |
| 852 pOut->u.i = pOp->p3 - 1; |
| 853 pOut->flags = MEM_Int; |
| 854 if( pOp->p2 ) goto jump_to_p2; |
| 855 break; |
| 856 } |
| 857 |
| 858 /* Opcode: EndCoroutine P1 * * * * |
| 859 ** |
| 860 ** The instruction at the address in register P1 is a Yield. |
| 861 ** Jump to the P2 parameter of that Yield. |
| 862 ** After the jump, register P1 becomes undefined. |
| 863 ** |
| 864 ** See also: InitCoroutine |
| 865 */ |
| 866 case OP_EndCoroutine: { /* in1 */ |
| 867 VdbeOp *pCaller; |
| 868 pIn1 = &aMem[pOp->p1]; |
| 869 assert( pIn1->flags==MEM_Int ); |
| 870 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); |
| 871 pCaller = &aOp[pIn1->u.i]; |
| 872 assert( pCaller->opcode==OP_Yield ); |
| 873 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); |
| 874 pOp = &aOp[pCaller->p2 - 1]; |
| 875 pIn1->flags = MEM_Undefined; |
| 876 break; |
| 877 } |
| 878 |
| 879 /* Opcode: Yield P1 P2 * * * |
| 880 ** |
| 881 ** Swap the program counter with the value in register P1. This |
| 882 ** has the effect of yielding to a coroutine. |
| 883 ** |
| 884 ** If the coroutine that is launched by this instruction ends with |
| 885 ** Yield or Return then continue to the next instruction. But if |
| 886 ** the coroutine launched by this instruction ends with |
| 887 ** EndCoroutine, then jump to P2 rather than continuing with the |
| 888 ** next instruction. |
| 889 ** |
| 890 ** See also: InitCoroutine |
| 891 */ |
| 892 case OP_Yield: { /* in1, jump */ |
| 893 int pcDest; |
| 894 pIn1 = &aMem[pOp->p1]; |
| 895 assert( VdbeMemDynamic(pIn1)==0 ); |
| 896 pIn1->flags = MEM_Int; |
| 897 pcDest = (int)pIn1->u.i; |
| 898 pIn1->u.i = (int)(pOp - aOp); |
| 899 REGISTER_TRACE(pOp->p1, pIn1); |
| 900 pOp = &aOp[pcDest]; |
| 901 break; |
| 902 } |
| 903 |
| 904 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 |
| 905 ** Synopsis: if r[P3]=null halt |
| 906 ** |
| 907 ** Check the value in register P3. If it is NULL then Halt using |
| 908 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the |
| 909 ** value in register P3 is not NULL, then this routine is a no-op. |
| 910 ** The P5 parameter should be 1. |
| 911 */ |
| 912 case OP_HaltIfNull: { /* in3 */ |
| 913 pIn3 = &aMem[pOp->p3]; |
| 914 if( (pIn3->flags & MEM_Null)==0 ) break; |
| 915 /* Fall through into OP_Halt */ |
| 916 } |
| 917 |
| 918 /* Opcode: Halt P1 P2 * P4 P5 |
| 919 ** |
| 920 ** Exit immediately. All open cursors, etc are closed |
| 921 ** automatically. |
| 922 ** |
| 923 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), |
| 924 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). |
| 925 ** For errors, it can be some other value. If P1!=0 then P2 will determine |
| 926 ** whether or not to rollback the current transaction. Do not rollback |
| 927 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, |
| 928 ** then back out all changes that have occurred during this execution of the |
| 929 ** VDBE, but do not rollback the transaction. |
| 930 ** |
| 931 ** If P4 is not null then it is an error message string. |
| 932 ** |
| 933 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. |
| 934 ** |
| 935 ** 0: (no change) |
| 936 ** 1: NOT NULL contraint failed: P4 |
| 937 ** 2: UNIQUE constraint failed: P4 |
| 938 ** 3: CHECK constraint failed: P4 |
| 939 ** 4: FOREIGN KEY constraint failed: P4 |
| 940 ** |
| 941 ** If P5 is not zero and P4 is NULL, then everything after the ":" is |
| 942 ** omitted. |
| 943 ** |
| 944 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of |
| 945 ** every program. So a jump past the last instruction of the program |
| 946 ** is the same as executing Halt. |
| 947 */ |
| 948 case OP_Halt: { |
| 949 VdbeFrame *pFrame; |
| 950 int pcx; |
| 951 |
| 952 pcx = (int)(pOp - aOp); |
| 953 if( pOp->p1==SQLITE_OK && p->pFrame ){ |
| 954 /* Halt the sub-program. Return control to the parent frame. */ |
| 955 pFrame = p->pFrame; |
| 956 p->pFrame = pFrame->pParent; |
| 957 p->nFrame--; |
| 958 sqlite3VdbeSetChanges(db, p->nChange); |
| 959 pcx = sqlite3VdbeFrameRestore(pFrame); |
| 960 if( pOp->p2==OE_Ignore ){ |
| 961 /* Instruction pcx is the OP_Program that invoked the sub-program |
| 962 ** currently being halted. If the p2 instruction of this OP_Halt |
| 963 ** instruction is set to OE_Ignore, then the sub-program is throwing |
| 964 ** an IGNORE exception. In this case jump to the address specified |
| 965 ** as the p2 of the calling OP_Program. */ |
| 966 pcx = p->aOp[pcx].p2-1; |
| 967 } |
| 968 aOp = p->aOp; |
| 969 aMem = p->aMem; |
| 970 pOp = &aOp[pcx]; |
| 971 break; |
| 972 } |
| 973 p->rc = pOp->p1; |
| 974 p->errorAction = (u8)pOp->p2; |
| 975 p->pc = pcx; |
| 976 assert( pOp->p5<=4 ); |
| 977 if( p->rc ){ |
| 978 if( pOp->p5 ){ |
| 979 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", |
| 980 "FOREIGN KEY" }; |
| 981 testcase( pOp->p5==1 ); |
| 982 testcase( pOp->p5==2 ); |
| 983 testcase( pOp->p5==3 ); |
| 984 testcase( pOp->p5==4 ); |
| 985 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); |
| 986 if( pOp->p4.z ){ |
| 987 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); |
| 988 } |
| 989 }else{ |
| 990 sqlite3VdbeError(p, "%s", pOp->p4.z); |
| 991 } |
| 992 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); |
| 993 } |
| 994 rc = sqlite3VdbeHalt(p); |
| 995 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); |
| 996 if( rc==SQLITE_BUSY ){ |
| 997 p->rc = SQLITE_BUSY; |
| 998 }else{ |
| 999 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); |
| 1000 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); |
| 1001 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; |
| 1002 } |
| 1003 goto vdbe_return; |
| 1004 } |
| 1005 |
| 1006 /* Opcode: Integer P1 P2 * * * |
| 1007 ** Synopsis: r[P2]=P1 |
| 1008 ** |
| 1009 ** The 32-bit integer value P1 is written into register P2. |
| 1010 */ |
| 1011 case OP_Integer: { /* out2 */ |
| 1012 pOut = out2Prerelease(p, pOp); |
| 1013 pOut->u.i = pOp->p1; |
| 1014 break; |
| 1015 } |
| 1016 |
| 1017 /* Opcode: Int64 * P2 * P4 * |
| 1018 ** Synopsis: r[P2]=P4 |
| 1019 ** |
| 1020 ** P4 is a pointer to a 64-bit integer value. |
| 1021 ** Write that value into register P2. |
| 1022 */ |
| 1023 case OP_Int64: { /* out2 */ |
| 1024 pOut = out2Prerelease(p, pOp); |
| 1025 assert( pOp->p4.pI64!=0 ); |
| 1026 pOut->u.i = *pOp->p4.pI64; |
| 1027 break; |
| 1028 } |
| 1029 |
| 1030 #ifndef SQLITE_OMIT_FLOATING_POINT |
| 1031 /* Opcode: Real * P2 * P4 * |
| 1032 ** Synopsis: r[P2]=P4 |
| 1033 ** |
| 1034 ** P4 is a pointer to a 64-bit floating point value. |
| 1035 ** Write that value into register P2. |
| 1036 */ |
| 1037 case OP_Real: { /* same as TK_FLOAT, out2 */ |
| 1038 pOut = out2Prerelease(p, pOp); |
| 1039 pOut->flags = MEM_Real; |
| 1040 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); |
| 1041 pOut->u.r = *pOp->p4.pReal; |
| 1042 break; |
| 1043 } |
| 1044 #endif |
| 1045 |
| 1046 /* Opcode: String8 * P2 * P4 * |
| 1047 ** Synopsis: r[P2]='P4' |
| 1048 ** |
| 1049 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed |
| 1050 ** into a String opcode before it is executed for the first time. During |
| 1051 ** this transformation, the length of string P4 is computed and stored |
| 1052 ** as the P1 parameter. |
| 1053 */ |
| 1054 case OP_String8: { /* same as TK_STRING, out2 */ |
| 1055 assert( pOp->p4.z!=0 ); |
| 1056 pOut = out2Prerelease(p, pOp); |
| 1057 pOp->opcode = OP_String; |
| 1058 pOp->p1 = sqlite3Strlen30(pOp->p4.z); |
| 1059 |
| 1060 #ifndef SQLITE_OMIT_UTF16 |
| 1061 if( encoding!=SQLITE_UTF8 ){ |
| 1062 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); |
| 1063 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); |
| 1064 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; |
| 1065 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); |
| 1066 assert( VdbeMemDynamic(pOut)==0 ); |
| 1067 pOut->szMalloc = 0; |
| 1068 pOut->flags |= MEM_Static; |
| 1069 if( pOp->p4type==P4_DYNAMIC ){ |
| 1070 sqlite3DbFree(db, pOp->p4.z); |
| 1071 } |
| 1072 pOp->p4type = P4_DYNAMIC; |
| 1073 pOp->p4.z = pOut->z; |
| 1074 pOp->p1 = pOut->n; |
| 1075 } |
| 1076 testcase( rc==SQLITE_TOOBIG ); |
| 1077 #endif |
| 1078 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
| 1079 goto too_big; |
| 1080 } |
| 1081 assert( rc==SQLITE_OK ); |
| 1082 /* Fall through to the next case, OP_String */ |
| 1083 } |
| 1084 |
| 1085 /* Opcode: String P1 P2 P3 P4 P5 |
| 1086 ** Synopsis: r[P2]='P4' (len=P1) |
| 1087 ** |
| 1088 ** The string value P4 of length P1 (bytes) is stored in register P2. |
| 1089 ** |
| 1090 ** If P3 is not zero and the content of register P3 is equal to P5, then |
| 1091 ** the datatype of the register P2 is converted to BLOB. The content is |
| 1092 ** the same sequence of bytes, it is merely interpreted as a BLOB instead |
| 1093 ** of a string, as if it had been CAST. In other words: |
| 1094 ** |
| 1095 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) |
| 1096 */ |
| 1097 case OP_String: { /* out2 */ |
| 1098 assert( pOp->p4.z!=0 ); |
| 1099 pOut = out2Prerelease(p, pOp); |
| 1100 pOut->flags = MEM_Str|MEM_Static|MEM_Term; |
| 1101 pOut->z = pOp->p4.z; |
| 1102 pOut->n = pOp->p1; |
| 1103 pOut->enc = encoding; |
| 1104 UPDATE_MAX_BLOBSIZE(pOut); |
| 1105 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS |
| 1106 if( pOp->p3>0 ){ |
| 1107 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); |
| 1108 pIn3 = &aMem[pOp->p3]; |
| 1109 assert( pIn3->flags & MEM_Int ); |
| 1110 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; |
| 1111 } |
| 1112 #endif |
| 1113 break; |
| 1114 } |
| 1115 |
| 1116 /* Opcode: Null P1 P2 P3 * * |
| 1117 ** Synopsis: r[P2..P3]=NULL |
| 1118 ** |
| 1119 ** Write a NULL into registers P2. If P3 greater than P2, then also write |
| 1120 ** NULL into register P3 and every register in between P2 and P3. If P3 |
| 1121 ** is less than P2 (typically P3 is zero) then only register P2 is |
| 1122 ** set to NULL. |
| 1123 ** |
| 1124 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that |
| 1125 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on |
| 1126 ** OP_Ne or OP_Eq. |
| 1127 */ |
| 1128 case OP_Null: { /* out2 */ |
| 1129 int cnt; |
| 1130 u16 nullFlag; |
| 1131 pOut = out2Prerelease(p, pOp); |
| 1132 cnt = pOp->p3-pOp->p2; |
| 1133 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); |
| 1134 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; |
| 1135 pOut->n = 0; |
| 1136 while( cnt>0 ){ |
| 1137 pOut++; |
| 1138 memAboutToChange(p, pOut); |
| 1139 sqlite3VdbeMemSetNull(pOut); |
| 1140 pOut->flags = nullFlag; |
| 1141 pOut->n = 0; |
| 1142 cnt--; |
| 1143 } |
| 1144 break; |
| 1145 } |
| 1146 |
| 1147 /* Opcode: SoftNull P1 * * * * |
| 1148 ** Synopsis: r[P1]=NULL |
| 1149 ** |
| 1150 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord |
| 1151 ** instruction, but do not free any string or blob memory associated with |
| 1152 ** the register, so that if the value was a string or blob that was |
| 1153 ** previously copied using OP_SCopy, the copies will continue to be valid. |
| 1154 */ |
| 1155 case OP_SoftNull: { |
| 1156 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); |
| 1157 pOut = &aMem[pOp->p1]; |
| 1158 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined; |
| 1159 break; |
| 1160 } |
| 1161 |
| 1162 /* Opcode: Blob P1 P2 * P4 * |
| 1163 ** Synopsis: r[P2]=P4 (len=P1) |
| 1164 ** |
| 1165 ** P4 points to a blob of data P1 bytes long. Store this |
| 1166 ** blob in register P2. |
| 1167 */ |
| 1168 case OP_Blob: { /* out2 */ |
| 1169 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); |
| 1170 pOut = out2Prerelease(p, pOp); |
| 1171 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); |
| 1172 pOut->enc = encoding; |
| 1173 UPDATE_MAX_BLOBSIZE(pOut); |
| 1174 break; |
| 1175 } |
| 1176 |
| 1177 /* Opcode: Variable P1 P2 * P4 * |
| 1178 ** Synopsis: r[P2]=parameter(P1,P4) |
| 1179 ** |
| 1180 ** Transfer the values of bound parameter P1 into register P2 |
| 1181 ** |
| 1182 ** If the parameter is named, then its name appears in P4. |
| 1183 ** The P4 value is used by sqlite3_bind_parameter_name(). |
| 1184 */ |
| 1185 case OP_Variable: { /* out2 */ |
| 1186 Mem *pVar; /* Value being transferred */ |
| 1187 |
| 1188 assert( pOp->p1>0 && pOp->p1<=p->nVar ); |
| 1189 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) ); |
| 1190 pVar = &p->aVar[pOp->p1 - 1]; |
| 1191 if( sqlite3VdbeMemTooBig(pVar) ){ |
| 1192 goto too_big; |
| 1193 } |
| 1194 pOut = &aMem[pOp->p2]; |
| 1195 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static); |
| 1196 UPDATE_MAX_BLOBSIZE(pOut); |
| 1197 break; |
| 1198 } |
| 1199 |
| 1200 /* Opcode: Move P1 P2 P3 * * |
| 1201 ** Synopsis: r[P2@P3]=r[P1@P3] |
| 1202 ** |
| 1203 ** Move the P3 values in register P1..P1+P3-1 over into |
| 1204 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are |
| 1205 ** left holding a NULL. It is an error for register ranges |
| 1206 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error |
| 1207 ** for P3 to be less than 1. |
| 1208 */ |
| 1209 case OP_Move: { |
| 1210 int n; /* Number of registers left to copy */ |
| 1211 int p1; /* Register to copy from */ |
| 1212 int p2; /* Register to copy to */ |
| 1213 |
| 1214 n = pOp->p3; |
| 1215 p1 = pOp->p1; |
| 1216 p2 = pOp->p2; |
| 1217 assert( n>0 && p1>0 && p2>0 ); |
| 1218 assert( p1+n<=p2 || p2+n<=p1 ); |
| 1219 |
| 1220 pIn1 = &aMem[p1]; |
| 1221 pOut = &aMem[p2]; |
| 1222 do{ |
| 1223 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); |
| 1224 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); |
| 1225 assert( memIsValid(pIn1) ); |
| 1226 memAboutToChange(p, pOut); |
| 1227 sqlite3VdbeMemMove(pOut, pIn1); |
| 1228 #ifdef SQLITE_DEBUG |
| 1229 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){ |
| 1230 pOut->pScopyFrom += pOp->p2 - p1; |
| 1231 } |
| 1232 #endif |
| 1233 Deephemeralize(pOut); |
| 1234 REGISTER_TRACE(p2++, pOut); |
| 1235 pIn1++; |
| 1236 pOut++; |
| 1237 }while( --n ); |
| 1238 break; |
| 1239 } |
| 1240 |
| 1241 /* Opcode: Copy P1 P2 P3 * * |
| 1242 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] |
| 1243 ** |
| 1244 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. |
| 1245 ** |
| 1246 ** This instruction makes a deep copy of the value. A duplicate |
| 1247 ** is made of any string or blob constant. See also OP_SCopy. |
| 1248 */ |
| 1249 case OP_Copy: { |
| 1250 int n; |
| 1251 |
| 1252 n = pOp->p3; |
| 1253 pIn1 = &aMem[pOp->p1]; |
| 1254 pOut = &aMem[pOp->p2]; |
| 1255 assert( pOut!=pIn1 ); |
| 1256 while( 1 ){ |
| 1257 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); |
| 1258 Deephemeralize(pOut); |
| 1259 #ifdef SQLITE_DEBUG |
| 1260 pOut->pScopyFrom = 0; |
| 1261 #endif |
| 1262 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); |
| 1263 if( (n--)==0 ) break; |
| 1264 pOut++; |
| 1265 pIn1++; |
| 1266 } |
| 1267 break; |
| 1268 } |
| 1269 |
| 1270 /* Opcode: SCopy P1 P2 * * * |
| 1271 ** Synopsis: r[P2]=r[P1] |
| 1272 ** |
| 1273 ** Make a shallow copy of register P1 into register P2. |
| 1274 ** |
| 1275 ** This instruction makes a shallow copy of the value. If the value |
| 1276 ** is a string or blob, then the copy is only a pointer to the |
| 1277 ** original and hence if the original changes so will the copy. |
| 1278 ** Worse, if the original is deallocated, the copy becomes invalid. |
| 1279 ** Thus the program must guarantee that the original will not change |
| 1280 ** during the lifetime of the copy. Use OP_Copy to make a complete |
| 1281 ** copy. |
| 1282 */ |
| 1283 case OP_SCopy: { /* out2 */ |
| 1284 pIn1 = &aMem[pOp->p1]; |
| 1285 pOut = &aMem[pOp->p2]; |
| 1286 assert( pOut!=pIn1 ); |
| 1287 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); |
| 1288 #ifdef SQLITE_DEBUG |
| 1289 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1; |
| 1290 #endif |
| 1291 break; |
| 1292 } |
| 1293 |
| 1294 /* Opcode: IntCopy P1 P2 * * * |
| 1295 ** Synopsis: r[P2]=r[P1] |
| 1296 ** |
| 1297 ** Transfer the integer value held in register P1 into register P2. |
| 1298 ** |
| 1299 ** This is an optimized version of SCopy that works only for integer |
| 1300 ** values. |
| 1301 */ |
| 1302 case OP_IntCopy: { /* out2 */ |
| 1303 pIn1 = &aMem[pOp->p1]; |
| 1304 assert( (pIn1->flags & MEM_Int)!=0 ); |
| 1305 pOut = &aMem[pOp->p2]; |
| 1306 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); |
| 1307 break; |
| 1308 } |
| 1309 |
| 1310 /* Opcode: ResultRow P1 P2 * * * |
| 1311 ** Synopsis: output=r[P1@P2] |
| 1312 ** |
| 1313 ** The registers P1 through P1+P2-1 contain a single row of |
| 1314 ** results. This opcode causes the sqlite3_step() call to terminate |
| 1315 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt |
| 1316 ** structure to provide access to the r(P1)..r(P1+P2-1) values as |
| 1317 ** the result row. |
| 1318 */ |
| 1319 case OP_ResultRow: { |
| 1320 Mem *pMem; |
| 1321 int i; |
| 1322 assert( p->nResColumn==pOp->p2 ); |
| 1323 assert( pOp->p1>0 ); |
| 1324 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); |
| 1325 |
| 1326 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK |
| 1327 /* Run the progress counter just before returning. |
| 1328 */ |
| 1329 if( db->xProgress!=0 |
| 1330 && nVmStep>=nProgressLimit |
| 1331 && db->xProgress(db->pProgressArg)!=0 |
| 1332 ){ |
| 1333 rc = SQLITE_INTERRUPT; |
| 1334 goto abort_due_to_error; |
| 1335 } |
| 1336 #endif |
| 1337 |
| 1338 /* If this statement has violated immediate foreign key constraints, do |
| 1339 ** not return the number of rows modified. And do not RELEASE the statement |
| 1340 ** transaction. It needs to be rolled back. */ |
| 1341 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){ |
| 1342 assert( db->flags&SQLITE_CountRows ); |
| 1343 assert( p->usesStmtJournal ); |
| 1344 goto abort_due_to_error; |
| 1345 } |
| 1346 |
| 1347 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then |
| 1348 ** DML statements invoke this opcode to return the number of rows |
| 1349 ** modified to the user. This is the only way that a VM that |
| 1350 ** opens a statement transaction may invoke this opcode. |
| 1351 ** |
| 1352 ** In case this is such a statement, close any statement transaction |
| 1353 ** opened by this VM before returning control to the user. This is to |
| 1354 ** ensure that statement-transactions are always nested, not overlapping. |
| 1355 ** If the open statement-transaction is not closed here, then the user |
| 1356 ** may step another VM that opens its own statement transaction. This |
| 1357 ** may lead to overlapping statement transactions. |
| 1358 ** |
| 1359 ** The statement transaction is never a top-level transaction. Hence |
| 1360 ** the RELEASE call below can never fail. |
| 1361 */ |
| 1362 assert( p->iStatement==0 || db->flags&SQLITE_CountRows ); |
| 1363 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE); |
| 1364 assert( rc==SQLITE_OK ); |
| 1365 |
| 1366 /* Invalidate all ephemeral cursor row caches */ |
| 1367 p->cacheCtr = (p->cacheCtr + 2)|1; |
| 1368 |
| 1369 /* Make sure the results of the current row are \000 terminated |
| 1370 ** and have an assigned type. The results are de-ephemeralized as |
| 1371 ** a side effect. |
| 1372 */ |
| 1373 pMem = p->pResultSet = &aMem[pOp->p1]; |
| 1374 for(i=0; i<pOp->p2; i++){ |
| 1375 assert( memIsValid(&pMem[i]) ); |
| 1376 Deephemeralize(&pMem[i]); |
| 1377 assert( (pMem[i].flags & MEM_Ephem)==0 |
| 1378 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 ); |
| 1379 sqlite3VdbeMemNulTerminate(&pMem[i]); |
| 1380 REGISTER_TRACE(pOp->p1+i, &pMem[i]); |
| 1381 } |
| 1382 if( db->mallocFailed ) goto no_mem; |
| 1383 |
| 1384 if( db->mTrace & SQLITE_TRACE_ROW ){ |
| 1385 db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); |
| 1386 } |
| 1387 |
| 1388 /* Return SQLITE_ROW |
| 1389 */ |
| 1390 p->pc = (int)(pOp - aOp) + 1; |
| 1391 rc = SQLITE_ROW; |
| 1392 goto vdbe_return; |
| 1393 } |
| 1394 |
| 1395 /* Opcode: Concat P1 P2 P3 * * |
| 1396 ** Synopsis: r[P3]=r[P2]+r[P1] |
| 1397 ** |
| 1398 ** Add the text in register P1 onto the end of the text in |
| 1399 ** register P2 and store the result in register P3. |
| 1400 ** If either the P1 or P2 text are NULL then store NULL in P3. |
| 1401 ** |
| 1402 ** P3 = P2 || P1 |
| 1403 ** |
| 1404 ** It is illegal for P1 and P3 to be the same register. Sometimes, |
| 1405 ** if P3 is the same register as P2, the implementation is able |
| 1406 ** to avoid a memcpy(). |
| 1407 */ |
| 1408 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ |
| 1409 i64 nByte; |
| 1410 |
| 1411 pIn1 = &aMem[pOp->p1]; |
| 1412 pIn2 = &aMem[pOp->p2]; |
| 1413 pOut = &aMem[pOp->p3]; |
| 1414 assert( pIn1!=pOut ); |
| 1415 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ |
| 1416 sqlite3VdbeMemSetNull(pOut); |
| 1417 break; |
| 1418 } |
| 1419 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem; |
| 1420 Stringify(pIn1, encoding); |
| 1421 Stringify(pIn2, encoding); |
| 1422 nByte = pIn1->n + pIn2->n; |
| 1423 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
| 1424 goto too_big; |
| 1425 } |
| 1426 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ |
| 1427 goto no_mem; |
| 1428 } |
| 1429 MemSetTypeFlag(pOut, MEM_Str); |
| 1430 if( pOut!=pIn2 ){ |
| 1431 memcpy(pOut->z, pIn2->z, pIn2->n); |
| 1432 } |
| 1433 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); |
| 1434 pOut->z[nByte]=0; |
| 1435 pOut->z[nByte+1] = 0; |
| 1436 pOut->flags |= MEM_Term; |
| 1437 pOut->n = (int)nByte; |
| 1438 pOut->enc = encoding; |
| 1439 UPDATE_MAX_BLOBSIZE(pOut); |
| 1440 break; |
| 1441 } |
| 1442 |
| 1443 /* Opcode: Add P1 P2 P3 * * |
| 1444 ** Synopsis: r[P3]=r[P1]+r[P2] |
| 1445 ** |
| 1446 ** Add the value in register P1 to the value in register P2 |
| 1447 ** and store the result in register P3. |
| 1448 ** If either input is NULL, the result is NULL. |
| 1449 */ |
| 1450 /* Opcode: Multiply P1 P2 P3 * * |
| 1451 ** Synopsis: r[P3]=r[P1]*r[P2] |
| 1452 ** |
| 1453 ** |
| 1454 ** Multiply the value in register P1 by the value in register P2 |
| 1455 ** and store the result in register P3. |
| 1456 ** If either input is NULL, the result is NULL. |
| 1457 */ |
| 1458 /* Opcode: Subtract P1 P2 P3 * * |
| 1459 ** Synopsis: r[P3]=r[P2]-r[P1] |
| 1460 ** |
| 1461 ** Subtract the value in register P1 from the value in register P2 |
| 1462 ** and store the result in register P3. |
| 1463 ** If either input is NULL, the result is NULL. |
| 1464 */ |
| 1465 /* Opcode: Divide P1 P2 P3 * * |
| 1466 ** Synopsis: r[P3]=r[P2]/r[P1] |
| 1467 ** |
| 1468 ** Divide the value in register P1 by the value in register P2 |
| 1469 ** and store the result in register P3 (P3=P2/P1). If the value in |
| 1470 ** register P1 is zero, then the result is NULL. If either input is |
| 1471 ** NULL, the result is NULL. |
| 1472 */ |
| 1473 /* Opcode: Remainder P1 P2 P3 * * |
| 1474 ** Synopsis: r[P3]=r[P2]%r[P1] |
| 1475 ** |
| 1476 ** Compute the remainder after integer register P2 is divided by |
| 1477 ** register P1 and store the result in register P3. |
| 1478 ** If the value in register P1 is zero the result is NULL. |
| 1479 ** If either operand is NULL, the result is NULL. |
| 1480 */ |
| 1481 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ |
| 1482 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ |
| 1483 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ |
| 1484 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ |
| 1485 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ |
| 1486 char bIntint; /* Started out as two integer operands */ |
| 1487 u16 flags; /* Combined MEM_* flags from both inputs */ |
| 1488 u16 type1; /* Numeric type of left operand */ |
| 1489 u16 type2; /* Numeric type of right operand */ |
| 1490 i64 iA; /* Integer value of left operand */ |
| 1491 i64 iB; /* Integer value of right operand */ |
| 1492 double rA; /* Real value of left operand */ |
| 1493 double rB; /* Real value of right operand */ |
| 1494 |
| 1495 pIn1 = &aMem[pOp->p1]; |
| 1496 type1 = numericType(pIn1); |
| 1497 pIn2 = &aMem[pOp->p2]; |
| 1498 type2 = numericType(pIn2); |
| 1499 pOut = &aMem[pOp->p3]; |
| 1500 flags = pIn1->flags | pIn2->flags; |
| 1501 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; |
| 1502 if( (type1 & type2 & MEM_Int)!=0 ){ |
| 1503 iA = pIn1->u.i; |
| 1504 iB = pIn2->u.i; |
| 1505 bIntint = 1; |
| 1506 switch( pOp->opcode ){ |
| 1507 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; |
| 1508 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; |
| 1509 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; |
| 1510 case OP_Divide: { |
| 1511 if( iA==0 ) goto arithmetic_result_is_null; |
| 1512 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; |
| 1513 iB /= iA; |
| 1514 break; |
| 1515 } |
| 1516 default: { |
| 1517 if( iA==0 ) goto arithmetic_result_is_null; |
| 1518 if( iA==-1 ) iA = 1; |
| 1519 iB %= iA; |
| 1520 break; |
| 1521 } |
| 1522 } |
| 1523 pOut->u.i = iB; |
| 1524 MemSetTypeFlag(pOut, MEM_Int); |
| 1525 }else{ |
| 1526 bIntint = 0; |
| 1527 fp_math: |
| 1528 rA = sqlite3VdbeRealValue(pIn1); |
| 1529 rB = sqlite3VdbeRealValue(pIn2); |
| 1530 switch( pOp->opcode ){ |
| 1531 case OP_Add: rB += rA; break; |
| 1532 case OP_Subtract: rB -= rA; break; |
| 1533 case OP_Multiply: rB *= rA; break; |
| 1534 case OP_Divide: { |
| 1535 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ |
| 1536 if( rA==(double)0 ) goto arithmetic_result_is_null; |
| 1537 rB /= rA; |
| 1538 break; |
| 1539 } |
| 1540 default: { |
| 1541 iA = (i64)rA; |
| 1542 iB = (i64)rB; |
| 1543 if( iA==0 ) goto arithmetic_result_is_null; |
| 1544 if( iA==-1 ) iA = 1; |
| 1545 rB = (double)(iB % iA); |
| 1546 break; |
| 1547 } |
| 1548 } |
| 1549 #ifdef SQLITE_OMIT_FLOATING_POINT |
| 1550 pOut->u.i = rB; |
| 1551 MemSetTypeFlag(pOut, MEM_Int); |
| 1552 #else |
| 1553 if( sqlite3IsNaN(rB) ){ |
| 1554 goto arithmetic_result_is_null; |
| 1555 } |
| 1556 pOut->u.r = rB; |
| 1557 MemSetTypeFlag(pOut, MEM_Real); |
| 1558 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){ |
| 1559 sqlite3VdbeIntegerAffinity(pOut); |
| 1560 } |
| 1561 #endif |
| 1562 } |
| 1563 break; |
| 1564 |
| 1565 arithmetic_result_is_null: |
| 1566 sqlite3VdbeMemSetNull(pOut); |
| 1567 break; |
| 1568 } |
| 1569 |
| 1570 /* Opcode: CollSeq P1 * * P4 |
| 1571 ** |
| 1572 ** P4 is a pointer to a CollSeq struct. If the next call to a user function |
| 1573 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will |
| 1574 ** be returned. This is used by the built-in min(), max() and nullif() |
| 1575 ** functions. |
| 1576 ** |
| 1577 ** If P1 is not zero, then it is a register that a subsequent min() or |
| 1578 ** max() aggregate will set to 1 if the current row is not the minimum or |
| 1579 ** maximum. The P1 register is initialized to 0 by this instruction. |
| 1580 ** |
| 1581 ** The interface used by the implementation of the aforementioned functions |
| 1582 ** to retrieve the collation sequence set by this opcode is not available |
| 1583 ** publicly. Only built-in functions have access to this feature. |
| 1584 */ |
| 1585 case OP_CollSeq: { |
| 1586 assert( pOp->p4type==P4_COLLSEQ ); |
| 1587 if( pOp->p1 ){ |
| 1588 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); |
| 1589 } |
| 1590 break; |
| 1591 } |
| 1592 |
| 1593 /* Opcode: Function0 P1 P2 P3 P4 P5 |
| 1594 ** Synopsis: r[P3]=func(r[P2@P5]) |
| 1595 ** |
| 1596 ** Invoke a user function (P4 is a pointer to a FuncDef object that |
| 1597 ** defines the function) with P5 arguments taken from register P2 and |
| 1598 ** successors. The result of the function is stored in register P3. |
| 1599 ** Register P3 must not be one of the function inputs. |
| 1600 ** |
| 1601 ** P1 is a 32-bit bitmask indicating whether or not each argument to the |
| 1602 ** function was determined to be constant at compile time. If the first |
| 1603 ** argument was constant then bit 0 of P1 is set. This is used to determine |
| 1604 ** whether meta data associated with a user function argument using the |
| 1605 ** sqlite3_set_auxdata() API may be safely retained until the next |
| 1606 ** invocation of this opcode. |
| 1607 ** |
| 1608 ** See also: Function, AggStep, AggFinal |
| 1609 */ |
| 1610 /* Opcode: Function P1 P2 P3 P4 P5 |
| 1611 ** Synopsis: r[P3]=func(r[P2@P5]) |
| 1612 ** |
| 1613 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that |
| 1614 ** contains a pointer to the function to be run) with P5 arguments taken |
| 1615 ** from register P2 and successors. The result of the function is stored |
| 1616 ** in register P3. Register P3 must not be one of the function inputs. |
| 1617 ** |
| 1618 ** P1 is a 32-bit bitmask indicating whether or not each argument to the |
| 1619 ** function was determined to be constant at compile time. If the first |
| 1620 ** argument was constant then bit 0 of P1 is set. This is used to determine |
| 1621 ** whether meta data associated with a user function argument using the |
| 1622 ** sqlite3_set_auxdata() API may be safely retained until the next |
| 1623 ** invocation of this opcode. |
| 1624 ** |
| 1625 ** SQL functions are initially coded as OP_Function0 with P4 pointing |
| 1626 ** to a FuncDef object. But on first evaluation, the P4 operand is |
| 1627 ** automatically converted into an sqlite3_context object and the operation |
| 1628 ** changed to this OP_Function opcode. In this way, the initialization of |
| 1629 ** the sqlite3_context object occurs only once, rather than once for each |
| 1630 ** evaluation of the function. |
| 1631 ** |
| 1632 ** See also: Function0, AggStep, AggFinal |
| 1633 */ |
| 1634 case OP_Function0: { |
| 1635 int n; |
| 1636 sqlite3_context *pCtx; |
| 1637 |
| 1638 assert( pOp->p4type==P4_FUNCDEF ); |
| 1639 n = pOp->p5; |
| 1640 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); |
| 1641 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); |
| 1642 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); |
| 1643 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); |
| 1644 if( pCtx==0 ) goto no_mem; |
| 1645 pCtx->pOut = 0; |
| 1646 pCtx->pFunc = pOp->p4.pFunc; |
| 1647 pCtx->iOp = (int)(pOp - aOp); |
| 1648 pCtx->pVdbe = p; |
| 1649 pCtx->argc = n; |
| 1650 pOp->p4type = P4_FUNCCTX; |
| 1651 pOp->p4.pCtx = pCtx; |
| 1652 pOp->opcode = OP_Function; |
| 1653 /* Fall through into OP_Function */ |
| 1654 } |
| 1655 case OP_Function: { |
| 1656 int i; |
| 1657 sqlite3_context *pCtx; |
| 1658 |
| 1659 assert( pOp->p4type==P4_FUNCCTX ); |
| 1660 pCtx = pOp->p4.pCtx; |
| 1661 |
| 1662 /* If this function is inside of a trigger, the register array in aMem[] |
| 1663 ** might change from one evaluation to the next. The next block of code |
| 1664 ** checks to see if the register array has changed, and if so it |
| 1665 ** reinitializes the relavant parts of the sqlite3_context object */ |
| 1666 pOut = &aMem[pOp->p3]; |
| 1667 if( pCtx->pOut != pOut ){ |
| 1668 pCtx->pOut = pOut; |
| 1669 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; |
| 1670 } |
| 1671 |
| 1672 memAboutToChange(p, pCtx->pOut); |
| 1673 #ifdef SQLITE_DEBUG |
| 1674 for(i=0; i<pCtx->argc; i++){ |
| 1675 assert( memIsValid(pCtx->argv[i]) ); |
| 1676 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); |
| 1677 } |
| 1678 #endif |
| 1679 MemSetTypeFlag(pCtx->pOut, MEM_Null); |
| 1680 pCtx->fErrorOrAux = 0; |
| 1681 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ |
| 1682 |
| 1683 /* If the function returned an error, throw an exception */ |
| 1684 if( pCtx->fErrorOrAux ){ |
| 1685 if( pCtx->isError ){ |
| 1686 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); |
| 1687 rc = pCtx->isError; |
| 1688 } |
| 1689 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); |
| 1690 if( rc ) goto abort_due_to_error; |
| 1691 } |
| 1692 |
| 1693 /* Copy the result of the function into register P3 */ |
| 1694 if( pOut->flags & (MEM_Str|MEM_Blob) ){ |
| 1695 sqlite3VdbeChangeEncoding(pCtx->pOut, encoding); |
| 1696 if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big; |
| 1697 } |
| 1698 |
| 1699 REGISTER_TRACE(pOp->p3, pCtx->pOut); |
| 1700 UPDATE_MAX_BLOBSIZE(pCtx->pOut); |
| 1701 break; |
| 1702 } |
| 1703 |
| 1704 /* Opcode: BitAnd P1 P2 P3 * * |
| 1705 ** Synopsis: r[P3]=r[P1]&r[P2] |
| 1706 ** |
| 1707 ** Take the bit-wise AND of the values in register P1 and P2 and |
| 1708 ** store the result in register P3. |
| 1709 ** If either input is NULL, the result is NULL. |
| 1710 */ |
| 1711 /* Opcode: BitOr P1 P2 P3 * * |
| 1712 ** Synopsis: r[P3]=r[P1]|r[P2] |
| 1713 ** |
| 1714 ** Take the bit-wise OR of the values in register P1 and P2 and |
| 1715 ** store the result in register P3. |
| 1716 ** If either input is NULL, the result is NULL. |
| 1717 */ |
| 1718 /* Opcode: ShiftLeft P1 P2 P3 * * |
| 1719 ** Synopsis: r[P3]=r[P2]<<r[P1] |
| 1720 ** |
| 1721 ** Shift the integer value in register P2 to the left by the |
| 1722 ** number of bits specified by the integer in register P1. |
| 1723 ** Store the result in register P3. |
| 1724 ** If either input is NULL, the result is NULL. |
| 1725 */ |
| 1726 /* Opcode: ShiftRight P1 P2 P3 * * |
| 1727 ** Synopsis: r[P3]=r[P2]>>r[P1] |
| 1728 ** |
| 1729 ** Shift the integer value in register P2 to the right by the |
| 1730 ** number of bits specified by the integer in register P1. |
| 1731 ** Store the result in register P3. |
| 1732 ** If either input is NULL, the result is NULL. |
| 1733 */ |
| 1734 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ |
| 1735 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ |
| 1736 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ |
| 1737 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ |
| 1738 i64 iA; |
| 1739 u64 uA; |
| 1740 i64 iB; |
| 1741 u8 op; |
| 1742 |
| 1743 pIn1 = &aMem[pOp->p1]; |
| 1744 pIn2 = &aMem[pOp->p2]; |
| 1745 pOut = &aMem[pOp->p3]; |
| 1746 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ |
| 1747 sqlite3VdbeMemSetNull(pOut); |
| 1748 break; |
| 1749 } |
| 1750 iA = sqlite3VdbeIntValue(pIn2); |
| 1751 iB = sqlite3VdbeIntValue(pIn1); |
| 1752 op = pOp->opcode; |
| 1753 if( op==OP_BitAnd ){ |
| 1754 iA &= iB; |
| 1755 }else if( op==OP_BitOr ){ |
| 1756 iA |= iB; |
| 1757 }else if( iB!=0 ){ |
| 1758 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); |
| 1759 |
| 1760 /* If shifting by a negative amount, shift in the other direction */ |
| 1761 if( iB<0 ){ |
| 1762 assert( OP_ShiftRight==OP_ShiftLeft+1 ); |
| 1763 op = 2*OP_ShiftLeft + 1 - op; |
| 1764 iB = iB>(-64) ? -iB : 64; |
| 1765 } |
| 1766 |
| 1767 if( iB>=64 ){ |
| 1768 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; |
| 1769 }else{ |
| 1770 memcpy(&uA, &iA, sizeof(uA)); |
| 1771 if( op==OP_ShiftLeft ){ |
| 1772 uA <<= iB; |
| 1773 }else{ |
| 1774 uA >>= iB; |
| 1775 /* Sign-extend on a right shift of a negative number */ |
| 1776 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); |
| 1777 } |
| 1778 memcpy(&iA, &uA, sizeof(iA)); |
| 1779 } |
| 1780 } |
| 1781 pOut->u.i = iA; |
| 1782 MemSetTypeFlag(pOut, MEM_Int); |
| 1783 break; |
| 1784 } |
| 1785 |
| 1786 /* Opcode: AddImm P1 P2 * * * |
| 1787 ** Synopsis: r[P1]=r[P1]+P2 |
| 1788 ** |
| 1789 ** Add the constant P2 to the value in register P1. |
| 1790 ** The result is always an integer. |
| 1791 ** |
| 1792 ** To force any register to be an integer, just add 0. |
| 1793 */ |
| 1794 case OP_AddImm: { /* in1 */ |
| 1795 pIn1 = &aMem[pOp->p1]; |
| 1796 memAboutToChange(p, pIn1); |
| 1797 sqlite3VdbeMemIntegerify(pIn1); |
| 1798 pIn1->u.i += pOp->p2; |
| 1799 break; |
| 1800 } |
| 1801 |
| 1802 /* Opcode: MustBeInt P1 P2 * * * |
| 1803 ** |
| 1804 ** Force the value in register P1 to be an integer. If the value |
| 1805 ** in P1 is not an integer and cannot be converted into an integer |
| 1806 ** without data loss, then jump immediately to P2, or if P2==0 |
| 1807 ** raise an SQLITE_MISMATCH exception. |
| 1808 */ |
| 1809 case OP_MustBeInt: { /* jump, in1 */ |
| 1810 pIn1 = &aMem[pOp->p1]; |
| 1811 if( (pIn1->flags & MEM_Int)==0 ){ |
| 1812 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); |
| 1813 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2); |
| 1814 if( (pIn1->flags & MEM_Int)==0 ){ |
| 1815 if( pOp->p2==0 ){ |
| 1816 rc = SQLITE_MISMATCH; |
| 1817 goto abort_due_to_error; |
| 1818 }else{ |
| 1819 goto jump_to_p2; |
| 1820 } |
| 1821 } |
| 1822 } |
| 1823 MemSetTypeFlag(pIn1, MEM_Int); |
| 1824 break; |
| 1825 } |
| 1826 |
| 1827 #ifndef SQLITE_OMIT_FLOATING_POINT |
| 1828 /* Opcode: RealAffinity P1 * * * * |
| 1829 ** |
| 1830 ** If register P1 holds an integer convert it to a real value. |
| 1831 ** |
| 1832 ** This opcode is used when extracting information from a column that |
| 1833 ** has REAL affinity. Such column values may still be stored as |
| 1834 ** integers, for space efficiency, but after extraction we want them |
| 1835 ** to have only a real value. |
| 1836 */ |
| 1837 case OP_RealAffinity: { /* in1 */ |
| 1838 pIn1 = &aMem[pOp->p1]; |
| 1839 if( pIn1->flags & MEM_Int ){ |
| 1840 sqlite3VdbeMemRealify(pIn1); |
| 1841 } |
| 1842 break; |
| 1843 } |
| 1844 #endif |
| 1845 |
| 1846 #ifndef SQLITE_OMIT_CAST |
| 1847 /* Opcode: Cast P1 P2 * * * |
| 1848 ** Synopsis: affinity(r[P1]) |
| 1849 ** |
| 1850 ** Force the value in register P1 to be the type defined by P2. |
| 1851 ** |
| 1852 ** <ul> |
| 1853 ** <li value="97"> TEXT |
| 1854 ** <li value="98"> BLOB |
| 1855 ** <li value="99"> NUMERIC |
| 1856 ** <li value="100"> INTEGER |
| 1857 ** <li value="101"> REAL |
| 1858 ** </ul> |
| 1859 ** |
| 1860 ** A NULL value is not changed by this routine. It remains NULL. |
| 1861 */ |
| 1862 case OP_Cast: { /* in1 */ |
| 1863 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); |
| 1864 testcase( pOp->p2==SQLITE_AFF_TEXT ); |
| 1865 testcase( pOp->p2==SQLITE_AFF_BLOB ); |
| 1866 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); |
| 1867 testcase( pOp->p2==SQLITE_AFF_INTEGER ); |
| 1868 testcase( pOp->p2==SQLITE_AFF_REAL ); |
| 1869 pIn1 = &aMem[pOp->p1]; |
| 1870 memAboutToChange(p, pIn1); |
| 1871 rc = ExpandBlob(pIn1); |
| 1872 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); |
| 1873 UPDATE_MAX_BLOBSIZE(pIn1); |
| 1874 if( rc ) goto abort_due_to_error; |
| 1875 break; |
| 1876 } |
| 1877 #endif /* SQLITE_OMIT_CAST */ |
| 1878 |
| 1879 /* Opcode: Eq P1 P2 P3 P4 P5 |
| 1880 ** Synopsis: IF r[P3]==r[P1] |
| 1881 ** |
| 1882 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then |
| 1883 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then |
| 1884 ** store the result of comparison in register P2. |
| 1885 ** |
| 1886 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - |
| 1887 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made |
| 1888 ** to coerce both inputs according to this affinity before the |
| 1889 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric |
| 1890 ** affinity is used. Note that the affinity conversions are stored |
| 1891 ** back into the input registers P1 and P3. So this opcode can cause |
| 1892 ** persistent changes to registers P1 and P3. |
| 1893 ** |
| 1894 ** Once any conversions have taken place, and neither value is NULL, |
| 1895 ** the values are compared. If both values are blobs then memcmp() is |
| 1896 ** used to determine the results of the comparison. If both values |
| 1897 ** are text, then the appropriate collating function specified in |
| 1898 ** P4 is used to do the comparison. If P4 is not specified then |
| 1899 ** memcmp() is used to compare text string. If both values are |
| 1900 ** numeric, then a numeric comparison is used. If the two values |
| 1901 ** are of different types, then numbers are considered less than |
| 1902 ** strings and strings are considered less than blobs. |
| 1903 ** |
| 1904 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either |
| 1905 ** true or false and is never NULL. If both operands are NULL then the result |
| 1906 ** of comparison is true. If either operand is NULL then the result is false. |
| 1907 ** If neither operand is NULL the result is the same as it would be if |
| 1908 ** the SQLITE_NULLEQ flag were omitted from P5. |
| 1909 ** |
| 1910 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the |
| 1911 ** content of r[P2] is only changed if the new value is NULL or 0 (false). |
| 1912 ** In other words, a prior r[P2] value will not be overwritten by 1 (true). |
| 1913 */ |
| 1914 /* Opcode: Ne P1 P2 P3 P4 P5 |
| 1915 ** Synopsis: IF r[P3]!=r[P1] |
| 1916 ** |
| 1917 ** This works just like the Eq opcode except that the jump is taken if |
| 1918 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for |
| 1919 ** additional information. |
| 1920 ** |
| 1921 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the |
| 1922 ** content of r[P2] is only changed if the new value is NULL or 1 (true). |
| 1923 ** In other words, a prior r[P2] value will not be overwritten by 0 (false). |
| 1924 */ |
| 1925 /* Opcode: Lt P1 P2 P3 P4 P5 |
| 1926 ** Synopsis: IF r[P3]<r[P1] |
| 1927 ** |
| 1928 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then |
| 1929 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5 store |
| 1930 ** the result of comparison (0 or 1 or NULL) into register P2. |
| 1931 ** |
| 1932 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or |
| 1933 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL |
| 1934 ** bit is clear then fall through if either operand is NULL. |
| 1935 ** |
| 1936 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - |
| 1937 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made |
| 1938 ** to coerce both inputs according to this affinity before the |
| 1939 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric |
| 1940 ** affinity is used. Note that the affinity conversions are stored |
| 1941 ** back into the input registers P1 and P3. So this opcode can cause |
| 1942 ** persistent changes to registers P1 and P3. |
| 1943 ** |
| 1944 ** Once any conversions have taken place, and neither value is NULL, |
| 1945 ** the values are compared. If both values are blobs then memcmp() is |
| 1946 ** used to determine the results of the comparison. If both values |
| 1947 ** are text, then the appropriate collating function specified in |
| 1948 ** P4 is used to do the comparison. If P4 is not specified then |
| 1949 ** memcmp() is used to compare text string. If both values are |
| 1950 ** numeric, then a numeric comparison is used. If the two values |
| 1951 ** are of different types, then numbers are considered less than |
| 1952 ** strings and strings are considered less than blobs. |
| 1953 */ |
| 1954 /* Opcode: Le P1 P2 P3 P4 P5 |
| 1955 ** Synopsis: IF r[P3]<=r[P1] |
| 1956 ** |
| 1957 ** This works just like the Lt opcode except that the jump is taken if |
| 1958 ** the content of register P3 is less than or equal to the content of |
| 1959 ** register P1. See the Lt opcode for additional information. |
| 1960 */ |
| 1961 /* Opcode: Gt P1 P2 P3 P4 P5 |
| 1962 ** Synopsis: IF r[P3]>r[P1] |
| 1963 ** |
| 1964 ** This works just like the Lt opcode except that the jump is taken if |
| 1965 ** the content of register P3 is greater than the content of |
| 1966 ** register P1. See the Lt opcode for additional information. |
| 1967 */ |
| 1968 /* Opcode: Ge P1 P2 P3 P4 P5 |
| 1969 ** Synopsis: IF r[P3]>=r[P1] |
| 1970 ** |
| 1971 ** This works just like the Lt opcode except that the jump is taken if |
| 1972 ** the content of register P3 is greater than or equal to the content of |
| 1973 ** register P1. See the Lt opcode for additional information. |
| 1974 */ |
| 1975 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ |
| 1976 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ |
| 1977 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ |
| 1978 case OP_Le: /* same as TK_LE, jump, in1, in3 */ |
| 1979 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ |
| 1980 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ |
| 1981 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ |
| 1982 char affinity; /* Affinity to use for comparison */ |
| 1983 u16 flags1; /* Copy of initial value of pIn1->flags */ |
| 1984 u16 flags3; /* Copy of initial value of pIn3->flags */ |
| 1985 |
| 1986 pIn1 = &aMem[pOp->p1]; |
| 1987 pIn3 = &aMem[pOp->p3]; |
| 1988 flags1 = pIn1->flags; |
| 1989 flags3 = pIn3->flags; |
| 1990 if( (flags1 | flags3)&MEM_Null ){ |
| 1991 /* One or both operands are NULL */ |
| 1992 if( pOp->p5 & SQLITE_NULLEQ ){ |
| 1993 /* If SQLITE_NULLEQ is set (which will only happen if the operator is |
| 1994 ** OP_Eq or OP_Ne) then take the jump or not depending on whether |
| 1995 ** or not both operands are null. |
| 1996 */ |
| 1997 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne ); |
| 1998 assert( (flags1 & MEM_Cleared)==0 ); |
| 1999 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 ); |
| 2000 if( (flags1&flags3&MEM_Null)!=0 |
| 2001 && (flags3&MEM_Cleared)==0 |
| 2002 ){ |
| 2003 res = 0; /* Operands are equal */ |
| 2004 }else{ |
| 2005 res = 1; /* Operands are not equal */ |
| 2006 } |
| 2007 }else{ |
| 2008 /* SQLITE_NULLEQ is clear and at least one operand is NULL, |
| 2009 ** then the result is always NULL. |
| 2010 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. |
| 2011 */ |
| 2012 if( pOp->p5 & SQLITE_STOREP2 ){ |
| 2013 pOut = &aMem[pOp->p2]; |
| 2014 iCompare = 1; /* Operands are not equal */ |
| 2015 memAboutToChange(p, pOut); |
| 2016 MemSetTypeFlag(pOut, MEM_Null); |
| 2017 REGISTER_TRACE(pOp->p2, pOut); |
| 2018 }else{ |
| 2019 VdbeBranchTaken(2,3); |
| 2020 if( pOp->p5 & SQLITE_JUMPIFNULL ){ |
| 2021 goto jump_to_p2; |
| 2022 } |
| 2023 } |
| 2024 break; |
| 2025 } |
| 2026 }else{ |
| 2027 /* Neither operand is NULL. Do a comparison. */ |
| 2028 affinity = pOp->p5 & SQLITE_AFF_MASK; |
| 2029 if( affinity>=SQLITE_AFF_NUMERIC ){ |
| 2030 if( (flags1 | flags3)&MEM_Str ){ |
| 2031 if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ |
| 2032 applyNumericAffinity(pIn1,0); |
| 2033 testcase( flags3!=pIn3->flags ); /* Possible if pIn1==pIn3 */ |
| 2034 flags3 = pIn3->flags; |
| 2035 } |
| 2036 if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ |
| 2037 applyNumericAffinity(pIn3,0); |
| 2038 } |
| 2039 } |
| 2040 /* Handle the common case of integer comparison here, as an |
| 2041 ** optimization, to avoid a call to sqlite3MemCompare() */ |
| 2042 if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){ |
| 2043 if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; } |
| 2044 if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; } |
| 2045 res = 0; |
| 2046 goto compare_op; |
| 2047 } |
| 2048 }else if( affinity==SQLITE_AFF_TEXT ){ |
| 2049 if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){ |
| 2050 testcase( pIn1->flags & MEM_Int ); |
| 2051 testcase( pIn1->flags & MEM_Real ); |
| 2052 sqlite3VdbeMemStringify(pIn1, encoding, 1); |
| 2053 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); |
| 2054 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); |
| 2055 assert( pIn1!=pIn3 ); |
| 2056 } |
| 2057 if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){ |
| 2058 testcase( pIn3->flags & MEM_Int ); |
| 2059 testcase( pIn3->flags & MEM_Real ); |
| 2060 sqlite3VdbeMemStringify(pIn3, encoding, 1); |
| 2061 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); |
| 2062 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); |
| 2063 } |
| 2064 } |
| 2065 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); |
| 2066 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); |
| 2067 } |
| 2068 compare_op: |
| 2069 switch( pOp->opcode ){ |
| 2070 case OP_Eq: res2 = res==0; break; |
| 2071 case OP_Ne: res2 = res; break; |
| 2072 case OP_Lt: res2 = res<0; break; |
| 2073 case OP_Le: res2 = res<=0; break; |
| 2074 case OP_Gt: res2 = res>0; break; |
| 2075 default: res2 = res>=0; break; |
| 2076 } |
| 2077 |
| 2078 /* Undo any changes made by applyAffinity() to the input registers. */ |
| 2079 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); |
| 2080 pIn1->flags = flags1; |
| 2081 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); |
| 2082 pIn3->flags = flags3; |
| 2083 |
| 2084 if( pOp->p5 & SQLITE_STOREP2 ){ |
| 2085 pOut = &aMem[pOp->p2]; |
| 2086 iCompare = res; |
| 2087 res2 = res2!=0; /* For this path res2 must be exactly 0 or 1 */ |
| 2088 if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){ |
| 2089 /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1 |
| 2090 ** and prevents OP_Ne from overwriting NULL with 0. This flag |
| 2091 ** is only used in contexts where either: |
| 2092 ** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0) |
| 2093 ** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1) |
| 2094 ** Therefore it is not necessary to check the content of r[P2] for |
| 2095 ** NULL. */ |
| 2096 assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq ); |
| 2097 assert( res2==0 || res2==1 ); |
| 2098 testcase( res2==0 && pOp->opcode==OP_Eq ); |
| 2099 testcase( res2==1 && pOp->opcode==OP_Eq ); |
| 2100 testcase( res2==0 && pOp->opcode==OP_Ne ); |
| 2101 testcase( res2==1 && pOp->opcode==OP_Ne ); |
| 2102 if( (pOp->opcode==OP_Eq)==res2 ) break; |
| 2103 } |
| 2104 memAboutToChange(p, pOut); |
| 2105 MemSetTypeFlag(pOut, MEM_Int); |
| 2106 pOut->u.i = res2; |
| 2107 REGISTER_TRACE(pOp->p2, pOut); |
| 2108 }else{ |
| 2109 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); |
| 2110 if( res2 ){ |
| 2111 goto jump_to_p2; |
| 2112 } |
| 2113 } |
| 2114 break; |
| 2115 } |
| 2116 |
| 2117 /* Opcode: ElseNotEq * P2 * * * |
| 2118 ** |
| 2119 ** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator. |
| 2120 ** If result of an OP_Eq comparison on the same two operands |
| 2121 ** would have be NULL or false (0), then then jump to P2. |
| 2122 ** If the result of an OP_Eq comparison on the two previous operands |
| 2123 ** would have been true (1), then fall through. |
| 2124 */ |
| 2125 case OP_ElseNotEq: { /* same as TK_ESCAPE, jump */ |
| 2126 assert( pOp>aOp ); |
| 2127 assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt ); |
| 2128 assert( pOp[-1].p5 & SQLITE_STOREP2 ); |
| 2129 VdbeBranchTaken(iCompare!=0, 2); |
| 2130 if( iCompare!=0 ) goto jump_to_p2; |
| 2131 break; |
| 2132 } |
| 2133 |
| 2134 |
| 2135 /* Opcode: Permutation * * * P4 * |
| 2136 ** |
| 2137 ** Set the permutation used by the OP_Compare operator in the next |
| 2138 ** instruction. The permutation is stored in the P4 operand. |
| 2139 ** |
| 2140 ** The permutation is only valid until the next OP_Compare that has |
| 2141 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should |
| 2142 ** occur immediately prior to the OP_Compare. |
| 2143 ** |
| 2144 ** The first integer in the P4 integer array is the length of the array |
| 2145 ** and does not become part of the permutation. |
| 2146 */ |
| 2147 case OP_Permutation: { |
| 2148 assert( pOp->p4type==P4_INTARRAY ); |
| 2149 assert( pOp->p4.ai ); |
| 2150 assert( pOp[1].opcode==OP_Compare ); |
| 2151 assert( pOp[1].p5 & OPFLAG_PERMUTE ); |
| 2152 break; |
| 2153 } |
| 2154 |
| 2155 /* Opcode: Compare P1 P2 P3 P4 P5 |
| 2156 ** Synopsis: r[P1@P3] <-> r[P2@P3] |
| 2157 ** |
| 2158 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this |
| 2159 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of |
| 2160 ** the comparison for use by the next OP_Jump instruct. |
| 2161 ** |
| 2162 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is |
| 2163 ** determined by the most recent OP_Permutation operator. If the |
| 2164 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential |
| 2165 ** order. |
| 2166 ** |
| 2167 ** P4 is a KeyInfo structure that defines collating sequences and sort |
| 2168 ** orders for the comparison. The permutation applies to registers |
| 2169 ** only. The KeyInfo elements are used sequentially. |
| 2170 ** |
| 2171 ** The comparison is a sort comparison, so NULLs compare equal, |
| 2172 ** NULLs are less than numbers, numbers are less than strings, |
| 2173 ** and strings are less than blobs. |
| 2174 */ |
| 2175 case OP_Compare: { |
| 2176 int n; |
| 2177 int i; |
| 2178 int p1; |
| 2179 int p2; |
| 2180 const KeyInfo *pKeyInfo; |
| 2181 int idx; |
| 2182 CollSeq *pColl; /* Collating sequence to use on this term */ |
| 2183 int bRev; /* True for DESCENDING sort order */ |
| 2184 int *aPermute; /* The permutation */ |
| 2185 |
| 2186 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ |
| 2187 aPermute = 0; |
| 2188 }else{ |
| 2189 assert( pOp>aOp ); |
| 2190 assert( pOp[-1].opcode==OP_Permutation ); |
| 2191 assert( pOp[-1].p4type==P4_INTARRAY ); |
| 2192 aPermute = pOp[-1].p4.ai + 1; |
| 2193 assert( aPermute!=0 ); |
| 2194 } |
| 2195 n = pOp->p3; |
| 2196 pKeyInfo = pOp->p4.pKeyInfo; |
| 2197 assert( n>0 ); |
| 2198 assert( pKeyInfo!=0 ); |
| 2199 p1 = pOp->p1; |
| 2200 p2 = pOp->p2; |
| 2201 #if SQLITE_DEBUG |
| 2202 if( aPermute ){ |
| 2203 int k, mx = 0; |
| 2204 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k]; |
| 2205 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); |
| 2206 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); |
| 2207 }else{ |
| 2208 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); |
| 2209 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); |
| 2210 } |
| 2211 #endif /* SQLITE_DEBUG */ |
| 2212 for(i=0; i<n; i++){ |
| 2213 idx = aPermute ? aPermute[i] : i; |
| 2214 assert( memIsValid(&aMem[p1+idx]) ); |
| 2215 assert( memIsValid(&aMem[p2+idx]) ); |
| 2216 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); |
| 2217 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); |
| 2218 assert( i<pKeyInfo->nField ); |
| 2219 pColl = pKeyInfo->aColl[i]; |
| 2220 bRev = pKeyInfo->aSortOrder[i]; |
| 2221 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); |
| 2222 if( iCompare ){ |
| 2223 if( bRev ) iCompare = -iCompare; |
| 2224 break; |
| 2225 } |
| 2226 } |
| 2227 break; |
| 2228 } |
| 2229 |
| 2230 /* Opcode: Jump P1 P2 P3 * * |
| 2231 ** |
| 2232 ** Jump to the instruction at address P1, P2, or P3 depending on whether |
| 2233 ** in the most recent OP_Compare instruction the P1 vector was less than |
| 2234 ** equal to, or greater than the P2 vector, respectively. |
| 2235 */ |
| 2236 case OP_Jump: { /* jump */ |
| 2237 if( iCompare<0 ){ |
| 2238 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1]; |
| 2239 }else if( iCompare==0 ){ |
| 2240 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1]; |
| 2241 }else{ |
| 2242 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1]; |
| 2243 } |
| 2244 break; |
| 2245 } |
| 2246 |
| 2247 /* Opcode: And P1 P2 P3 * * |
| 2248 ** Synopsis: r[P3]=(r[P1] && r[P2]) |
| 2249 ** |
| 2250 ** Take the logical AND of the values in registers P1 and P2 and |
| 2251 ** write the result into register P3. |
| 2252 ** |
| 2253 ** If either P1 or P2 is 0 (false) then the result is 0 even if |
| 2254 ** the other input is NULL. A NULL and true or two NULLs give |
| 2255 ** a NULL output. |
| 2256 */ |
| 2257 /* Opcode: Or P1 P2 P3 * * |
| 2258 ** Synopsis: r[P3]=(r[P1] || r[P2]) |
| 2259 ** |
| 2260 ** Take the logical OR of the values in register P1 and P2 and |
| 2261 ** store the answer in register P3. |
| 2262 ** |
| 2263 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) |
| 2264 ** even if the other input is NULL. A NULL and false or two NULLs |
| 2265 ** give a NULL output. |
| 2266 */ |
| 2267 case OP_And: /* same as TK_AND, in1, in2, out3 */ |
| 2268 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ |
| 2269 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ |
| 2270 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ |
| 2271 |
| 2272 pIn1 = &aMem[pOp->p1]; |
| 2273 if( pIn1->flags & MEM_Null ){ |
| 2274 v1 = 2; |
| 2275 }else{ |
| 2276 v1 = sqlite3VdbeIntValue(pIn1)!=0; |
| 2277 } |
| 2278 pIn2 = &aMem[pOp->p2]; |
| 2279 if( pIn2->flags & MEM_Null ){ |
| 2280 v2 = 2; |
| 2281 }else{ |
| 2282 v2 = sqlite3VdbeIntValue(pIn2)!=0; |
| 2283 } |
| 2284 if( pOp->opcode==OP_And ){ |
| 2285 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; |
| 2286 v1 = and_logic[v1*3+v2]; |
| 2287 }else{ |
| 2288 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; |
| 2289 v1 = or_logic[v1*3+v2]; |
| 2290 } |
| 2291 pOut = &aMem[pOp->p3]; |
| 2292 if( v1==2 ){ |
| 2293 MemSetTypeFlag(pOut, MEM_Null); |
| 2294 }else{ |
| 2295 pOut->u.i = v1; |
| 2296 MemSetTypeFlag(pOut, MEM_Int); |
| 2297 } |
| 2298 break; |
| 2299 } |
| 2300 |
| 2301 /* Opcode: Not P1 P2 * * * |
| 2302 ** Synopsis: r[P2]= !r[P1] |
| 2303 ** |
| 2304 ** Interpret the value in register P1 as a boolean value. Store the |
| 2305 ** boolean complement in register P2. If the value in register P1 is |
| 2306 ** NULL, then a NULL is stored in P2. |
| 2307 */ |
| 2308 case OP_Not: { /* same as TK_NOT, in1, out2 */ |
| 2309 pIn1 = &aMem[pOp->p1]; |
| 2310 pOut = &aMem[pOp->p2]; |
| 2311 sqlite3VdbeMemSetNull(pOut); |
| 2312 if( (pIn1->flags & MEM_Null)==0 ){ |
| 2313 pOut->flags = MEM_Int; |
| 2314 pOut->u.i = !sqlite3VdbeIntValue(pIn1); |
| 2315 } |
| 2316 break; |
| 2317 } |
| 2318 |
| 2319 /* Opcode: BitNot P1 P2 * * * |
| 2320 ** Synopsis: r[P1]= ~r[P1] |
| 2321 ** |
| 2322 ** Interpret the content of register P1 as an integer. Store the |
| 2323 ** ones-complement of the P1 value into register P2. If P1 holds |
| 2324 ** a NULL then store a NULL in P2. |
| 2325 */ |
| 2326 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ |
| 2327 pIn1 = &aMem[pOp->p1]; |
| 2328 pOut = &aMem[pOp->p2]; |
| 2329 sqlite3VdbeMemSetNull(pOut); |
| 2330 if( (pIn1->flags & MEM_Null)==0 ){ |
| 2331 pOut->flags = MEM_Int; |
| 2332 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); |
| 2333 } |
| 2334 break; |
| 2335 } |
| 2336 |
| 2337 /* Opcode: Once P1 P2 * * * |
| 2338 ** |
| 2339 ** If the P1 value is equal to the P1 value on the OP_Init opcode at |
| 2340 ** instruction 0, then jump to P2. If the two P1 values differ, then |
| 2341 ** set the P1 value on this opcode to equal the P1 value on the OP_Init |
| 2342 ** and fall through. |
| 2343 */ |
| 2344 case OP_Once: { /* jump */ |
| 2345 assert( p->aOp[0].opcode==OP_Init ); |
| 2346 VdbeBranchTaken(p->aOp[0].p1==pOp->p1, 2); |
| 2347 if( p->aOp[0].p1==pOp->p1 ){ |
| 2348 goto jump_to_p2; |
| 2349 }else{ |
| 2350 pOp->p1 = p->aOp[0].p1; |
| 2351 } |
| 2352 break; |
| 2353 } |
| 2354 |
| 2355 /* Opcode: If P1 P2 P3 * * |
| 2356 ** |
| 2357 ** Jump to P2 if the value in register P1 is true. The value |
| 2358 ** is considered true if it is numeric and non-zero. If the value |
| 2359 ** in P1 is NULL then take the jump if and only if P3 is non-zero. |
| 2360 */ |
| 2361 /* Opcode: IfNot P1 P2 P3 * * |
| 2362 ** |
| 2363 ** Jump to P2 if the value in register P1 is False. The value |
| 2364 ** is considered false if it has a numeric value of zero. If the value |
| 2365 ** in P1 is NULL then take the jump if and only if P3 is non-zero. |
| 2366 */ |
| 2367 case OP_If: /* jump, in1 */ |
| 2368 case OP_IfNot: { /* jump, in1 */ |
| 2369 int c; |
| 2370 pIn1 = &aMem[pOp->p1]; |
| 2371 if( pIn1->flags & MEM_Null ){ |
| 2372 c = pOp->p3; |
| 2373 }else{ |
| 2374 #ifdef SQLITE_OMIT_FLOATING_POINT |
| 2375 c = sqlite3VdbeIntValue(pIn1)!=0; |
| 2376 #else |
| 2377 c = sqlite3VdbeRealValue(pIn1)!=0.0; |
| 2378 #endif |
| 2379 if( pOp->opcode==OP_IfNot ) c = !c; |
| 2380 } |
| 2381 VdbeBranchTaken(c!=0, 2); |
| 2382 if( c ){ |
| 2383 goto jump_to_p2; |
| 2384 } |
| 2385 break; |
| 2386 } |
| 2387 |
| 2388 /* Opcode: IsNull P1 P2 * * * |
| 2389 ** Synopsis: if r[P1]==NULL goto P2 |
| 2390 ** |
| 2391 ** Jump to P2 if the value in register P1 is NULL. |
| 2392 */ |
| 2393 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ |
| 2394 pIn1 = &aMem[pOp->p1]; |
| 2395 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); |
| 2396 if( (pIn1->flags & MEM_Null)!=0 ){ |
| 2397 goto jump_to_p2; |
| 2398 } |
| 2399 break; |
| 2400 } |
| 2401 |
| 2402 /* Opcode: NotNull P1 P2 * * * |
| 2403 ** Synopsis: if r[P1]!=NULL goto P2 |
| 2404 ** |
| 2405 ** Jump to P2 if the value in register P1 is not NULL. |
| 2406 */ |
| 2407 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ |
| 2408 pIn1 = &aMem[pOp->p1]; |
| 2409 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); |
| 2410 if( (pIn1->flags & MEM_Null)==0 ){ |
| 2411 goto jump_to_p2; |
| 2412 } |
| 2413 break; |
| 2414 } |
| 2415 |
| 2416 /* Opcode: Column P1 P2 P3 P4 P5 |
| 2417 ** Synopsis: r[P3]=PX |
| 2418 ** |
| 2419 ** Interpret the data that cursor P1 points to as a structure built using |
| 2420 ** the MakeRecord instruction. (See the MakeRecord opcode for additional |
| 2421 ** information about the format of the data.) Extract the P2-th column |
| 2422 ** from this record. If there are less that (P2+1) |
| 2423 ** values in the record, extract a NULL. |
| 2424 ** |
| 2425 ** The value extracted is stored in register P3. |
| 2426 ** |
| 2427 ** If the column contains fewer than P2 fields, then extract a NULL. Or, |
| 2428 ** if the P4 argument is a P4_MEM use the value of the P4 argument as |
| 2429 ** the result. |
| 2430 ** |
| 2431 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor, |
| 2432 ** then the cache of the cursor is reset prior to extracting the column. |
| 2433 ** The first OP_Column against a pseudo-table after the value of the content |
| 2434 ** register has changed should have this bit set. |
| 2435 ** |
| 2436 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when |
| 2437 ** the result is guaranteed to only be used as the argument of a length() |
| 2438 ** or typeof() function, respectively. The loading of large blobs can be |
| 2439 ** skipped for length() and all content loading can be skipped for typeof(). |
| 2440 */ |
| 2441 case OP_Column: { |
| 2442 int p2; /* column number to retrieve */ |
| 2443 VdbeCursor *pC; /* The VDBE cursor */ |
| 2444 BtCursor *pCrsr; /* The BTree cursor */ |
| 2445 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ |
| 2446 int len; /* The length of the serialized data for the column */ |
| 2447 int i; /* Loop counter */ |
| 2448 Mem *pDest; /* Where to write the extracted value */ |
| 2449 Mem sMem; /* For storing the record being decoded */ |
| 2450 const u8 *zData; /* Part of the record being decoded */ |
| 2451 const u8 *zHdr; /* Next unparsed byte of the header */ |
| 2452 const u8 *zEndHdr; /* Pointer to first byte after the header */ |
| 2453 u32 offset; /* Offset into the data */ |
| 2454 u64 offset64; /* 64-bit offset */ |
| 2455 u32 avail; /* Number of bytes of available data */ |
| 2456 u32 t; /* A type code from the record header */ |
| 2457 Mem *pReg; /* PseudoTable input register */ |
| 2458 |
| 2459 pC = p->apCsr[pOp->p1]; |
| 2460 p2 = pOp->p2; |
| 2461 |
| 2462 /* If the cursor cache is stale, bring it up-to-date */ |
| 2463 rc = sqlite3VdbeCursorMoveto(&pC, &p2); |
| 2464 if( rc ) goto abort_due_to_error; |
| 2465 |
| 2466 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); |
| 2467 pDest = &aMem[pOp->p3]; |
| 2468 memAboutToChange(p, pDest); |
| 2469 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 2470 assert( pC!=0 ); |
| 2471 assert( p2<pC->nField ); |
| 2472 aOffset = pC->aOffset; |
| 2473 assert( pC->eCurType!=CURTYPE_VTAB ); |
| 2474 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); |
| 2475 assert( pC->eCurType!=CURTYPE_SORTER ); |
| 2476 |
| 2477 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ |
| 2478 if( pC->nullRow ){ |
| 2479 if( pC->eCurType==CURTYPE_PSEUDO ){ |
| 2480 assert( pC->uc.pseudoTableReg>0 ); |
| 2481 pReg = &aMem[pC->uc.pseudoTableReg]; |
| 2482 assert( pReg->flags & MEM_Blob ); |
| 2483 assert( memIsValid(pReg) ); |
| 2484 pC->payloadSize = pC->szRow = avail = pReg->n; |
| 2485 pC->aRow = (u8*)pReg->z; |
| 2486 }else{ |
| 2487 sqlite3VdbeMemSetNull(pDest); |
| 2488 goto op_column_out; |
| 2489 } |
| 2490 }else{ |
| 2491 pCrsr = pC->uc.pCursor; |
| 2492 assert( pC->eCurType==CURTYPE_BTREE ); |
| 2493 assert( pCrsr ); |
| 2494 assert( sqlite3BtreeCursorIsValid(pCrsr) ); |
| 2495 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); |
| 2496 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &avail); |
| 2497 assert( avail<=65536 ); /* Maximum page size is 64KiB */ |
| 2498 if( pC->payloadSize <= (u32)avail ){ |
| 2499 pC->szRow = pC->payloadSize; |
| 2500 }else if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
| 2501 goto too_big; |
| 2502 }else{ |
| 2503 pC->szRow = avail; |
| 2504 } |
| 2505 } |
| 2506 pC->cacheStatus = p->cacheCtr; |
| 2507 pC->iHdrOffset = getVarint32(pC->aRow, offset); |
| 2508 pC->nHdrParsed = 0; |
| 2509 aOffset[0] = offset; |
| 2510 |
| 2511 |
| 2512 if( avail<offset ){ /*OPTIMIZATION-IF-FALSE*/ |
| 2513 /* pC->aRow does not have to hold the entire row, but it does at least |
| 2514 ** need to cover the header of the record. If pC->aRow does not contain |
| 2515 ** the complete header, then set it to zero, forcing the header to be |
| 2516 ** dynamically allocated. */ |
| 2517 pC->aRow = 0; |
| 2518 pC->szRow = 0; |
| 2519 |
| 2520 /* Make sure a corrupt database has not given us an oversize header. |
| 2521 ** Do this now to avoid an oversize memory allocation. |
| 2522 ** |
| 2523 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte |
| 2524 ** types use so much data space that there can only be 4096 and 32 of |
| 2525 ** them, respectively. So the maximum header length results from a |
| 2526 ** 3-byte type for each of the maximum of 32768 columns plus three |
| 2527 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. |
| 2528 */ |
| 2529 if( offset > 98307 || offset > pC->payloadSize ){ |
| 2530 rc = SQLITE_CORRUPT_BKPT; |
| 2531 goto abort_due_to_error; |
| 2532 } |
| 2533 }else if( offset>0 ){ /*OPTIMIZATION-IF-TRUE*/ |
| 2534 /* The following goto is an optimization. It can be omitted and |
| 2535 ** everything will still work. But OP_Column is measurably faster |
| 2536 ** by skipping the subsequent conditional, which is always true. |
| 2537 */ |
| 2538 zData = pC->aRow; |
| 2539 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ |
| 2540 goto op_column_read_header; |
| 2541 } |
| 2542 } |
| 2543 |
| 2544 /* Make sure at least the first p2+1 entries of the header have been |
| 2545 ** parsed and valid information is in aOffset[] and pC->aType[]. |
| 2546 */ |
| 2547 if( pC->nHdrParsed<=p2 ){ |
| 2548 /* If there is more header available for parsing in the record, try |
| 2549 ** to extract additional fields up through the p2+1-th field |
| 2550 */ |
| 2551 if( pC->iHdrOffset<aOffset[0] ){ |
| 2552 /* Make sure zData points to enough of the record to cover the header. */ |
| 2553 if( pC->aRow==0 ){ |
| 2554 memset(&sMem, 0, sizeof(sMem)); |
| 2555 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem); |
| 2556 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
| 2557 zData = (u8*)sMem.z; |
| 2558 }else{ |
| 2559 zData = pC->aRow; |
| 2560 } |
| 2561 |
| 2562 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ |
| 2563 op_column_read_header: |
| 2564 i = pC->nHdrParsed; |
| 2565 offset64 = aOffset[i]; |
| 2566 zHdr = zData + pC->iHdrOffset; |
| 2567 zEndHdr = zData + aOffset[0]; |
| 2568 do{ |
| 2569 if( (t = zHdr[0])<0x80 ){ |
| 2570 zHdr++; |
| 2571 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); |
| 2572 }else{ |
| 2573 zHdr += sqlite3GetVarint32(zHdr, &t); |
| 2574 offset64 += sqlite3VdbeSerialTypeLen(t); |
| 2575 } |
| 2576 pC->aType[i++] = t; |
| 2577 aOffset[i] = (u32)(offset64 & 0xffffffff); |
| 2578 }while( i<=p2 && zHdr<zEndHdr ); |
| 2579 |
| 2580 /* The record is corrupt if any of the following are true: |
| 2581 ** (1) the bytes of the header extend past the declared header size |
| 2582 ** (2) the entire header was used but not all data was used |
| 2583 ** (3) the end of the data extends beyond the end of the record. |
| 2584 */ |
| 2585 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) |
| 2586 || (offset64 > pC->payloadSize) |
| 2587 ){ |
| 2588 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); |
| 2589 rc = SQLITE_CORRUPT_BKPT; |
| 2590 goto abort_due_to_error; |
| 2591 } |
| 2592 |
| 2593 pC->nHdrParsed = i; |
| 2594 pC->iHdrOffset = (u32)(zHdr - zData); |
| 2595 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); |
| 2596 }else{ |
| 2597 t = 0; |
| 2598 } |
| 2599 |
| 2600 /* If after trying to extract new entries from the header, nHdrParsed is |
| 2601 ** still not up to p2, that means that the record has fewer than p2 |
| 2602 ** columns. So the result will be either the default value or a NULL. |
| 2603 */ |
| 2604 if( pC->nHdrParsed<=p2 ){ |
| 2605 if( pOp->p4type==P4_MEM ){ |
| 2606 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); |
| 2607 }else{ |
| 2608 sqlite3VdbeMemSetNull(pDest); |
| 2609 } |
| 2610 goto op_column_out; |
| 2611 } |
| 2612 }else{ |
| 2613 t = pC->aType[p2]; |
| 2614 } |
| 2615 |
| 2616 /* Extract the content for the p2+1-th column. Control can only |
| 2617 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are |
| 2618 ** all valid. |
| 2619 */ |
| 2620 assert( p2<pC->nHdrParsed ); |
| 2621 assert( rc==SQLITE_OK ); |
| 2622 assert( sqlite3VdbeCheckMemInvariants(pDest) ); |
| 2623 if( VdbeMemDynamic(pDest) ){ |
| 2624 sqlite3VdbeMemSetNull(pDest); |
| 2625 } |
| 2626 assert( t==pC->aType[p2] ); |
| 2627 if( pC->szRow>=aOffset[p2+1] ){ |
| 2628 /* This is the common case where the desired content fits on the original |
| 2629 ** page - where the content is not on an overflow page */ |
| 2630 zData = pC->aRow + aOffset[p2]; |
| 2631 if( t<12 ){ |
| 2632 sqlite3VdbeSerialGet(zData, t, pDest); |
| 2633 }else{ |
| 2634 /* If the column value is a string, we need a persistent value, not |
| 2635 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent |
| 2636 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). |
| 2637 */ |
| 2638 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; |
| 2639 pDest->n = len = (t-12)/2; |
| 2640 pDest->enc = encoding; |
| 2641 if( pDest->szMalloc < len+2 ){ |
| 2642 pDest->flags = MEM_Null; |
| 2643 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; |
| 2644 }else{ |
| 2645 pDest->z = pDest->zMalloc; |
| 2646 } |
| 2647 memcpy(pDest->z, zData, len); |
| 2648 pDest->z[len] = 0; |
| 2649 pDest->z[len+1] = 0; |
| 2650 pDest->flags = aFlag[t&1]; |
| 2651 } |
| 2652 }else{ |
| 2653 pDest->enc = encoding; |
| 2654 /* This branch happens only when content is on overflow pages */ |
| 2655 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0 |
| 2656 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)) |
| 2657 || (len = sqlite3VdbeSerialTypeLen(t))==0 |
| 2658 ){ |
| 2659 /* Content is irrelevant for |
| 2660 ** 1. the typeof() function, |
| 2661 ** 2. the length(X) function if X is a blob, and |
| 2662 ** 3. if the content length is zero. |
| 2663 ** So we might as well use bogus content rather than reading |
| 2664 ** content from disk. */ |
| 2665 static u8 aZero[8]; /* This is the bogus content */ |
| 2666 sqlite3VdbeSerialGet(aZero, t, pDest); |
| 2667 }else{ |
| 2668 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest); |
| 2669 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
| 2670 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); |
| 2671 pDest->flags &= ~MEM_Ephem; |
| 2672 } |
| 2673 } |
| 2674 |
| 2675 op_column_out: |
| 2676 UPDATE_MAX_BLOBSIZE(pDest); |
| 2677 REGISTER_TRACE(pOp->p3, pDest); |
| 2678 break; |
| 2679 } |
| 2680 |
| 2681 /* Opcode: Affinity P1 P2 * P4 * |
| 2682 ** Synopsis: affinity(r[P1@P2]) |
| 2683 ** |
| 2684 ** Apply affinities to a range of P2 registers starting with P1. |
| 2685 ** |
| 2686 ** P4 is a string that is P2 characters long. The nth character of the |
| 2687 ** string indicates the column affinity that should be used for the nth |
| 2688 ** memory cell in the range. |
| 2689 */ |
| 2690 case OP_Affinity: { |
| 2691 const char *zAffinity; /* The affinity to be applied */ |
| 2692 char cAff; /* A single character of affinity */ |
| 2693 |
| 2694 zAffinity = pOp->p4.z; |
| 2695 assert( zAffinity!=0 ); |
| 2696 assert( zAffinity[pOp->p2]==0 ); |
| 2697 pIn1 = &aMem[pOp->p1]; |
| 2698 while( (cAff = *(zAffinity++))!=0 ){ |
| 2699 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); |
| 2700 assert( memIsValid(pIn1) ); |
| 2701 applyAffinity(pIn1, cAff, encoding); |
| 2702 pIn1++; |
| 2703 } |
| 2704 break; |
| 2705 } |
| 2706 |
| 2707 /* Opcode: MakeRecord P1 P2 P3 P4 * |
| 2708 ** Synopsis: r[P3]=mkrec(r[P1@P2]) |
| 2709 ** |
| 2710 ** Convert P2 registers beginning with P1 into the [record format] |
| 2711 ** use as a data record in a database table or as a key |
| 2712 ** in an index. The OP_Column opcode can decode the record later. |
| 2713 ** |
| 2714 ** P4 may be a string that is P2 characters long. The nth character of the |
| 2715 ** string indicates the column affinity that should be used for the nth |
| 2716 ** field of the index key. |
| 2717 ** |
| 2718 ** The mapping from character to affinity is given by the SQLITE_AFF_ |
| 2719 ** macros defined in sqliteInt.h. |
| 2720 ** |
| 2721 ** If P4 is NULL then all index fields have the affinity BLOB. |
| 2722 */ |
| 2723 case OP_MakeRecord: { |
| 2724 u8 *zNewRecord; /* A buffer to hold the data for the new record */ |
| 2725 Mem *pRec; /* The new record */ |
| 2726 u64 nData; /* Number of bytes of data space */ |
| 2727 int nHdr; /* Number of bytes of header space */ |
| 2728 i64 nByte; /* Data space required for this record */ |
| 2729 i64 nZero; /* Number of zero bytes at the end of the record */ |
| 2730 int nVarint; /* Number of bytes in a varint */ |
| 2731 u32 serial_type; /* Type field */ |
| 2732 Mem *pData0; /* First field to be combined into the record */ |
| 2733 Mem *pLast; /* Last field of the record */ |
| 2734 int nField; /* Number of fields in the record */ |
| 2735 char *zAffinity; /* The affinity string for the record */ |
| 2736 int file_format; /* File format to use for encoding */ |
| 2737 int i; /* Space used in zNewRecord[] header */ |
| 2738 int j; /* Space used in zNewRecord[] content */ |
| 2739 u32 len; /* Length of a field */ |
| 2740 |
| 2741 /* Assuming the record contains N fields, the record format looks |
| 2742 ** like this: |
| 2743 ** |
| 2744 ** ------------------------------------------------------------------------ |
| 2745 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | |
| 2746 ** ------------------------------------------------------------------------ |
| 2747 ** |
| 2748 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 |
| 2749 ** and so forth. |
| 2750 ** |
| 2751 ** Each type field is a varint representing the serial type of the |
| 2752 ** corresponding data element (see sqlite3VdbeSerialType()). The |
| 2753 ** hdr-size field is also a varint which is the offset from the beginning |
| 2754 ** of the record to data0. |
| 2755 */ |
| 2756 nData = 0; /* Number of bytes of data space */ |
| 2757 nHdr = 0; /* Number of bytes of header space */ |
| 2758 nZero = 0; /* Number of zero bytes at the end of the record */ |
| 2759 nField = pOp->p1; |
| 2760 zAffinity = pOp->p4.z; |
| 2761 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); |
| 2762 pData0 = &aMem[nField]; |
| 2763 nField = pOp->p2; |
| 2764 pLast = &pData0[nField-1]; |
| 2765 file_format = p->minWriteFileFormat; |
| 2766 |
| 2767 /* Identify the output register */ |
| 2768 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); |
| 2769 pOut = &aMem[pOp->p3]; |
| 2770 memAboutToChange(p, pOut); |
| 2771 |
| 2772 /* Apply the requested affinity to all inputs |
| 2773 */ |
| 2774 assert( pData0<=pLast ); |
| 2775 if( zAffinity ){ |
| 2776 pRec = pData0; |
| 2777 do{ |
| 2778 applyAffinity(pRec++, *(zAffinity++), encoding); |
| 2779 assert( zAffinity[0]==0 || pRec<=pLast ); |
| 2780 }while( zAffinity[0] ); |
| 2781 } |
| 2782 |
| 2783 #ifdef SQLITE_ENABLE_NULL_TRIM |
| 2784 /* NULLs can be safely trimmed from the end of the record, as long as |
| 2785 ** as the schema format is 2 or more and none of the omitted columns |
| 2786 ** have a non-NULL default value. Also, the record must be left with |
| 2787 ** at least one field. If P5>0 then it will be one more than the |
| 2788 ** index of the right-most column with a non-NULL default value */ |
| 2789 if( pOp->p5 ){ |
| 2790 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ |
| 2791 pLast--; |
| 2792 nField--; |
| 2793 } |
| 2794 } |
| 2795 #endif |
| 2796 |
| 2797 /* Loop through the elements that will make up the record to figure |
| 2798 ** out how much space is required for the new record. |
| 2799 */ |
| 2800 pRec = pLast; |
| 2801 do{ |
| 2802 assert( memIsValid(pRec) ); |
| 2803 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len); |
| 2804 if( pRec->flags & MEM_Zero ){ |
| 2805 if( nData ){ |
| 2806 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; |
| 2807 }else{ |
| 2808 nZero += pRec->u.nZero; |
| 2809 len -= pRec->u.nZero; |
| 2810 } |
| 2811 } |
| 2812 nData += len; |
| 2813 testcase( serial_type==127 ); |
| 2814 testcase( serial_type==128 ); |
| 2815 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type); |
| 2816 if( pRec==pData0 ) break; |
| 2817 pRec--; |
| 2818 }while(1); |
| 2819 |
| 2820 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint |
| 2821 ** which determines the total number of bytes in the header. The varint |
| 2822 ** value is the size of the header in bytes including the size varint |
| 2823 ** itself. */ |
| 2824 testcase( nHdr==126 ); |
| 2825 testcase( nHdr==127 ); |
| 2826 if( nHdr<=126 ){ |
| 2827 /* The common case */ |
| 2828 nHdr += 1; |
| 2829 }else{ |
| 2830 /* Rare case of a really large header */ |
| 2831 nVarint = sqlite3VarintLen(nHdr); |
| 2832 nHdr += nVarint; |
| 2833 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; |
| 2834 } |
| 2835 nByte = nHdr+nData; |
| 2836 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
| 2837 goto too_big; |
| 2838 } |
| 2839 |
| 2840 /* Make sure the output register has a buffer large enough to store |
| 2841 ** the new record. The output register (pOp->p3) is not allowed to |
| 2842 ** be one of the input registers (because the following call to |
| 2843 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). |
| 2844 */ |
| 2845 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ |
| 2846 goto no_mem; |
| 2847 } |
| 2848 zNewRecord = (u8 *)pOut->z; |
| 2849 |
| 2850 /* Write the record */ |
| 2851 i = putVarint32(zNewRecord, nHdr); |
| 2852 j = nHdr; |
| 2853 assert( pData0<=pLast ); |
| 2854 pRec = pData0; |
| 2855 do{ |
| 2856 serial_type = pRec->uTemp; |
| 2857 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more |
| 2858 ** additional varints, one per column. */ |
| 2859 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ |
| 2860 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record |
| 2861 ** immediately follow the header. */ |
| 2862 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */ |
| 2863 }while( (++pRec)<=pLast ); |
| 2864 assert( i==nHdr ); |
| 2865 assert( j==nByte ); |
| 2866 |
| 2867 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); |
| 2868 pOut->n = (int)nByte; |
| 2869 pOut->flags = MEM_Blob; |
| 2870 if( nZero ){ |
| 2871 pOut->u.nZero = nZero; |
| 2872 pOut->flags |= MEM_Zero; |
| 2873 } |
| 2874 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ |
| 2875 REGISTER_TRACE(pOp->p3, pOut); |
| 2876 UPDATE_MAX_BLOBSIZE(pOut); |
| 2877 break; |
| 2878 } |
| 2879 |
| 2880 /* Opcode: Count P1 P2 * * * |
| 2881 ** Synopsis: r[P2]=count() |
| 2882 ** |
| 2883 ** Store the number of entries (an integer value) in the table or index |
| 2884 ** opened by cursor P1 in register P2 |
| 2885 */ |
| 2886 #ifndef SQLITE_OMIT_BTREECOUNT |
| 2887 case OP_Count: { /* out2 */ |
| 2888 i64 nEntry; |
| 2889 BtCursor *pCrsr; |
| 2890 |
| 2891 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); |
| 2892 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; |
| 2893 assert( pCrsr ); |
| 2894 nEntry = 0; /* Not needed. Only used to silence a warning. */ |
| 2895 rc = sqlite3BtreeCount(pCrsr, &nEntry); |
| 2896 if( rc ) goto abort_due_to_error; |
| 2897 pOut = out2Prerelease(p, pOp); |
| 2898 pOut->u.i = nEntry; |
| 2899 break; |
| 2900 } |
| 2901 #endif |
| 2902 |
| 2903 /* Opcode: Savepoint P1 * * P4 * |
| 2904 ** |
| 2905 ** Open, release or rollback the savepoint named by parameter P4, depending |
| 2906 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an |
| 2907 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2. |
| 2908 */ |
| 2909 case OP_Savepoint: { |
| 2910 int p1; /* Value of P1 operand */ |
| 2911 char *zName; /* Name of savepoint */ |
| 2912 int nName; |
| 2913 Savepoint *pNew; |
| 2914 Savepoint *pSavepoint; |
| 2915 Savepoint *pTmp; |
| 2916 int iSavepoint; |
| 2917 int ii; |
| 2918 |
| 2919 p1 = pOp->p1; |
| 2920 zName = pOp->p4.z; |
| 2921 |
| 2922 /* Assert that the p1 parameter is valid. Also that if there is no open |
| 2923 ** transaction, then there cannot be any savepoints. |
| 2924 */ |
| 2925 assert( db->pSavepoint==0 || db->autoCommit==0 ); |
| 2926 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); |
| 2927 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); |
| 2928 assert( checkSavepointCount(db) ); |
| 2929 assert( p->bIsReader ); |
| 2930 |
| 2931 if( p1==SAVEPOINT_BEGIN ){ |
| 2932 if( db->nVdbeWrite>0 ){ |
| 2933 /* A new savepoint cannot be created if there are active write |
| 2934 ** statements (i.e. open read/write incremental blob handles). |
| 2935 */ |
| 2936 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); |
| 2937 rc = SQLITE_BUSY; |
| 2938 }else{ |
| 2939 nName = sqlite3Strlen30(zName); |
| 2940 |
| 2941 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 2942 /* This call is Ok even if this savepoint is actually a transaction |
| 2943 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. |
| 2944 ** If this is a transaction savepoint being opened, it is guaranteed |
| 2945 ** that the db->aVTrans[] array is empty. */ |
| 2946 assert( db->autoCommit==0 || db->nVTrans==0 ); |
| 2947 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, |
| 2948 db->nStatement+db->nSavepoint); |
| 2949 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
| 2950 #endif |
| 2951 |
| 2952 /* Create a new savepoint structure. */ |
| 2953 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); |
| 2954 if( pNew ){ |
| 2955 pNew->zName = (char *)&pNew[1]; |
| 2956 memcpy(pNew->zName, zName, nName+1); |
| 2957 |
| 2958 /* If there is no open transaction, then mark this as a special |
| 2959 ** "transaction savepoint". */ |
| 2960 if( db->autoCommit ){ |
| 2961 db->autoCommit = 0; |
| 2962 db->isTransactionSavepoint = 1; |
| 2963 }else{ |
| 2964 db->nSavepoint++; |
| 2965 } |
| 2966 |
| 2967 /* Link the new savepoint into the database handle's list. */ |
| 2968 pNew->pNext = db->pSavepoint; |
| 2969 db->pSavepoint = pNew; |
| 2970 pNew->nDeferredCons = db->nDeferredCons; |
| 2971 pNew->nDeferredImmCons = db->nDeferredImmCons; |
| 2972 } |
| 2973 } |
| 2974 }else{ |
| 2975 iSavepoint = 0; |
| 2976 |
| 2977 /* Find the named savepoint. If there is no such savepoint, then an |
| 2978 ** an error is returned to the user. */ |
| 2979 for( |
| 2980 pSavepoint = db->pSavepoint; |
| 2981 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); |
| 2982 pSavepoint = pSavepoint->pNext |
| 2983 ){ |
| 2984 iSavepoint++; |
| 2985 } |
| 2986 if( !pSavepoint ){ |
| 2987 sqlite3VdbeError(p, "no such savepoint: %s", zName); |
| 2988 rc = SQLITE_ERROR; |
| 2989 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ |
| 2990 /* It is not possible to release (commit) a savepoint if there are |
| 2991 ** active write statements. |
| 2992 */ |
| 2993 sqlite3VdbeError(p, "cannot release savepoint - " |
| 2994 "SQL statements in progress"); |
| 2995 rc = SQLITE_BUSY; |
| 2996 }else{ |
| 2997 |
| 2998 /* Determine whether or not this is a transaction savepoint. If so, |
| 2999 ** and this is a RELEASE command, then the current transaction |
| 3000 ** is committed. |
| 3001 */ |
| 3002 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; |
| 3003 if( isTransaction && p1==SAVEPOINT_RELEASE ){ |
| 3004 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ |
| 3005 goto vdbe_return; |
| 3006 } |
| 3007 db->autoCommit = 1; |
| 3008 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ |
| 3009 p->pc = (int)(pOp - aOp); |
| 3010 db->autoCommit = 0; |
| 3011 p->rc = rc = SQLITE_BUSY; |
| 3012 goto vdbe_return; |
| 3013 } |
| 3014 db->isTransactionSavepoint = 0; |
| 3015 rc = p->rc; |
| 3016 }else{ |
| 3017 int isSchemaChange; |
| 3018 iSavepoint = db->nSavepoint - iSavepoint - 1; |
| 3019 if( p1==SAVEPOINT_ROLLBACK ){ |
| 3020 isSchemaChange = (db->flags & SQLITE_InternChanges)!=0; |
| 3021 for(ii=0; ii<db->nDb; ii++){ |
| 3022 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, |
| 3023 SQLITE_ABORT_ROLLBACK, |
| 3024 isSchemaChange==0); |
| 3025 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
| 3026 } |
| 3027 }else{ |
| 3028 isSchemaChange = 0; |
| 3029 } |
| 3030 for(ii=0; ii<db->nDb; ii++){ |
| 3031 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); |
| 3032 if( rc!=SQLITE_OK ){ |
| 3033 goto abort_due_to_error; |
| 3034 } |
| 3035 } |
| 3036 if( isSchemaChange ){ |
| 3037 sqlite3ExpirePreparedStatements(db); |
| 3038 sqlite3ResetAllSchemasOfConnection(db); |
| 3039 db->flags = (db->flags | SQLITE_InternChanges); |
| 3040 } |
| 3041 } |
| 3042 |
| 3043 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all |
| 3044 ** savepoints nested inside of the savepoint being operated on. */ |
| 3045 while( db->pSavepoint!=pSavepoint ){ |
| 3046 pTmp = db->pSavepoint; |
| 3047 db->pSavepoint = pTmp->pNext; |
| 3048 sqlite3DbFree(db, pTmp); |
| 3049 db->nSavepoint--; |
| 3050 } |
| 3051 |
| 3052 /* If it is a RELEASE, then destroy the savepoint being operated on |
| 3053 ** too. If it is a ROLLBACK TO, then set the number of deferred |
| 3054 ** constraint violations present in the database to the value stored |
| 3055 ** when the savepoint was created. */ |
| 3056 if( p1==SAVEPOINT_RELEASE ){ |
| 3057 assert( pSavepoint==db->pSavepoint ); |
| 3058 db->pSavepoint = pSavepoint->pNext; |
| 3059 sqlite3DbFree(db, pSavepoint); |
| 3060 if( !isTransaction ){ |
| 3061 db->nSavepoint--; |
| 3062 } |
| 3063 }else{ |
| 3064 db->nDeferredCons = pSavepoint->nDeferredCons; |
| 3065 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; |
| 3066 } |
| 3067 |
| 3068 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ |
| 3069 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); |
| 3070 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
| 3071 } |
| 3072 } |
| 3073 } |
| 3074 if( rc ) goto abort_due_to_error; |
| 3075 |
| 3076 break; |
| 3077 } |
| 3078 |
| 3079 /* Opcode: AutoCommit P1 P2 * * * |
| 3080 ** |
| 3081 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll |
| 3082 ** back any currently active btree transactions. If there are any active |
| 3083 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if |
| 3084 ** there are active writing VMs or active VMs that use shared cache. |
| 3085 ** |
| 3086 ** This instruction causes the VM to halt. |
| 3087 */ |
| 3088 case OP_AutoCommit: { |
| 3089 int desiredAutoCommit; |
| 3090 int iRollback; |
| 3091 |
| 3092 desiredAutoCommit = pOp->p1; |
| 3093 iRollback = pOp->p2; |
| 3094 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); |
| 3095 assert( desiredAutoCommit==1 || iRollback==0 ); |
| 3096 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ |
| 3097 assert( p->bIsReader ); |
| 3098 |
| 3099 if( desiredAutoCommit!=db->autoCommit ){ |
| 3100 if( iRollback ){ |
| 3101 assert( desiredAutoCommit==1 ); |
| 3102 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); |
| 3103 db->autoCommit = 1; |
| 3104 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ |
| 3105 /* If this instruction implements a COMMIT and other VMs are writing |
| 3106 ** return an error indicating that the other VMs must complete first. |
| 3107 */ |
| 3108 sqlite3VdbeError(p, "cannot commit transaction - " |
| 3109 "SQL statements in progress"); |
| 3110 rc = SQLITE_BUSY; |
| 3111 goto abort_due_to_error; |
| 3112 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ |
| 3113 goto vdbe_return; |
| 3114 }else{ |
| 3115 db->autoCommit = (u8)desiredAutoCommit; |
| 3116 } |
| 3117 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ |
| 3118 p->pc = (int)(pOp - aOp); |
| 3119 db->autoCommit = (u8)(1-desiredAutoCommit); |
| 3120 p->rc = rc = SQLITE_BUSY; |
| 3121 goto vdbe_return; |
| 3122 } |
| 3123 assert( db->nStatement==0 ); |
| 3124 sqlite3CloseSavepoints(db); |
| 3125 if( p->rc==SQLITE_OK ){ |
| 3126 rc = SQLITE_DONE; |
| 3127 }else{ |
| 3128 rc = SQLITE_ERROR; |
| 3129 } |
| 3130 goto vdbe_return; |
| 3131 }else{ |
| 3132 sqlite3VdbeError(p, |
| 3133 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( |
| 3134 (iRollback)?"cannot rollback - no transaction is active": |
| 3135 "cannot commit - no transaction is active")); |
| 3136 |
| 3137 rc = SQLITE_ERROR; |
| 3138 goto abort_due_to_error; |
| 3139 } |
| 3140 break; |
| 3141 } |
| 3142 |
| 3143 /* Opcode: Transaction P1 P2 P3 P4 P5 |
| 3144 ** |
| 3145 ** Begin a transaction on database P1 if a transaction is not already |
| 3146 ** active. |
| 3147 ** If P2 is non-zero, then a write-transaction is started, or if a |
| 3148 ** read-transaction is already active, it is upgraded to a write-transaction. |
| 3149 ** If P2 is zero, then a read-transaction is started. |
| 3150 ** |
| 3151 ** P1 is the index of the database file on which the transaction is |
| 3152 ** started. Index 0 is the main database file and index 1 is the |
| 3153 ** file used for temporary tables. Indices of 2 or more are used for |
| 3154 ** attached databases. |
| 3155 ** |
| 3156 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is |
| 3157 ** true (this flag is set if the Vdbe may modify more than one row and may |
| 3158 ** throw an ABORT exception), a statement transaction may also be opened. |
| 3159 ** More specifically, a statement transaction is opened iff the database |
| 3160 ** connection is currently not in autocommit mode, or if there are other |
| 3161 ** active statements. A statement transaction allows the changes made by this |
| 3162 ** VDBE to be rolled back after an error without having to roll back the |
| 3163 ** entire transaction. If no error is encountered, the statement transaction |
| 3164 ** will automatically commit when the VDBE halts. |
| 3165 ** |
| 3166 ** If P5!=0 then this opcode also checks the schema cookie against P3 |
| 3167 ** and the schema generation counter against P4. |
| 3168 ** The cookie changes its value whenever the database schema changes. |
| 3169 ** This operation is used to detect when that the cookie has changed |
| 3170 ** and that the current process needs to reread the schema. If the schema |
| 3171 ** cookie in P3 differs from the schema cookie in the database header or |
| 3172 ** if the schema generation counter in P4 differs from the current |
| 3173 ** generation counter, then an SQLITE_SCHEMA error is raised and execution |
| 3174 ** halts. The sqlite3_step() wrapper function might then reprepare the |
| 3175 ** statement and rerun it from the beginning. |
| 3176 */ |
| 3177 case OP_Transaction: { |
| 3178 Btree *pBt; |
| 3179 int iMeta; |
| 3180 int iGen; |
| 3181 |
| 3182 assert( p->bIsReader ); |
| 3183 assert( p->readOnly==0 || pOp->p2==0 ); |
| 3184 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
| 3185 assert( DbMaskTest(p->btreeMask, pOp->p1) ); |
| 3186 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){ |
| 3187 rc = SQLITE_READONLY; |
| 3188 goto abort_due_to_error; |
| 3189 } |
| 3190 pBt = db->aDb[pOp->p1].pBt; |
| 3191 |
| 3192 if( pBt ){ |
| 3193 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); |
| 3194 testcase( rc==SQLITE_BUSY_SNAPSHOT ); |
| 3195 testcase( rc==SQLITE_BUSY_RECOVERY ); |
| 3196 if( rc!=SQLITE_OK ){ |
| 3197 if( (rc&0xff)==SQLITE_BUSY ){ |
| 3198 p->pc = (int)(pOp - aOp); |
| 3199 p->rc = rc; |
| 3200 goto vdbe_return; |
| 3201 } |
| 3202 goto abort_due_to_error; |
| 3203 } |
| 3204 |
| 3205 if( pOp->p2 && p->usesStmtJournal |
| 3206 && (db->autoCommit==0 || db->nVdbeRead>1) |
| 3207 ){ |
| 3208 assert( sqlite3BtreeIsInTrans(pBt) ); |
| 3209 if( p->iStatement==0 ){ |
| 3210 assert( db->nStatement>=0 && db->nSavepoint>=0 ); |
| 3211 db->nStatement++; |
| 3212 p->iStatement = db->nSavepoint + db->nStatement; |
| 3213 } |
| 3214 |
| 3215 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); |
| 3216 if( rc==SQLITE_OK ){ |
| 3217 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); |
| 3218 } |
| 3219 |
| 3220 /* Store the current value of the database handles deferred constraint |
| 3221 ** counter. If the statement transaction needs to be rolled back, |
| 3222 ** the value of this counter needs to be restored too. */ |
| 3223 p->nStmtDefCons = db->nDeferredCons; |
| 3224 p->nStmtDefImmCons = db->nDeferredImmCons; |
| 3225 } |
| 3226 |
| 3227 /* Gather the schema version number for checking: |
| 3228 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema |
| 3229 ** version is checked to ensure that the schema has not changed since the |
| 3230 ** SQL statement was prepared. |
| 3231 */ |
| 3232 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta); |
| 3233 iGen = db->aDb[pOp->p1].pSchema->iGeneration; |
| 3234 }else{ |
| 3235 iGen = iMeta = 0; |
| 3236 } |
| 3237 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); |
| 3238 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){ |
| 3239 sqlite3DbFree(db, p->zErrMsg); |
| 3240 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); |
| 3241 /* If the schema-cookie from the database file matches the cookie |
| 3242 ** stored with the in-memory representation of the schema, do |
| 3243 ** not reload the schema from the database file. |
| 3244 ** |
| 3245 ** If virtual-tables are in use, this is not just an optimization. |
| 3246 ** Often, v-tables store their data in other SQLite tables, which |
| 3247 ** are queried from within xNext() and other v-table methods using |
| 3248 ** prepared queries. If such a query is out-of-date, we do not want to |
| 3249 ** discard the database schema, as the user code implementing the |
| 3250 ** v-table would have to be ready for the sqlite3_vtab structure itself |
| 3251 ** to be invalidated whenever sqlite3_step() is called from within |
| 3252 ** a v-table method. |
| 3253 */ |
| 3254 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ |
| 3255 sqlite3ResetOneSchema(db, pOp->p1); |
| 3256 } |
| 3257 p->expired = 1; |
| 3258 rc = SQLITE_SCHEMA; |
| 3259 } |
| 3260 if( rc ) goto abort_due_to_error; |
| 3261 break; |
| 3262 } |
| 3263 |
| 3264 /* Opcode: ReadCookie P1 P2 P3 * * |
| 3265 ** |
| 3266 ** Read cookie number P3 from database P1 and write it into register P2. |
| 3267 ** P3==1 is the schema version. P3==2 is the database format. |
| 3268 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is |
| 3269 ** the main database file and P1==1 is the database file used to store |
| 3270 ** temporary tables. |
| 3271 ** |
| 3272 ** There must be a read-lock on the database (either a transaction |
| 3273 ** must be started or there must be an open cursor) before |
| 3274 ** executing this instruction. |
| 3275 */ |
| 3276 case OP_ReadCookie: { /* out2 */ |
| 3277 int iMeta; |
| 3278 int iDb; |
| 3279 int iCookie; |
| 3280 |
| 3281 assert( p->bIsReader ); |
| 3282 iDb = pOp->p1; |
| 3283 iCookie = pOp->p3; |
| 3284 assert( pOp->p3<SQLITE_N_BTREE_META ); |
| 3285 assert( iDb>=0 && iDb<db->nDb ); |
| 3286 assert( db->aDb[iDb].pBt!=0 ); |
| 3287 assert( DbMaskTest(p->btreeMask, iDb) ); |
| 3288 |
| 3289 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); |
| 3290 pOut = out2Prerelease(p, pOp); |
| 3291 pOut->u.i = iMeta; |
| 3292 break; |
| 3293 } |
| 3294 |
| 3295 /* Opcode: SetCookie P1 P2 P3 * * |
| 3296 ** |
| 3297 ** Write the integer value P3 into cookie number P2 of database P1. |
| 3298 ** P2==1 is the schema version. P2==2 is the database format. |
| 3299 ** P2==3 is the recommended pager cache |
| 3300 ** size, and so forth. P1==0 is the main database file and P1==1 is the |
| 3301 ** database file used to store temporary tables. |
| 3302 ** |
| 3303 ** A transaction must be started before executing this opcode. |
| 3304 */ |
| 3305 case OP_SetCookie: { |
| 3306 Db *pDb; |
| 3307 assert( pOp->p2<SQLITE_N_BTREE_META ); |
| 3308 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
| 3309 assert( DbMaskTest(p->btreeMask, pOp->p1) ); |
| 3310 assert( p->readOnly==0 ); |
| 3311 pDb = &db->aDb[pOp->p1]; |
| 3312 assert( pDb->pBt!=0 ); |
| 3313 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); |
| 3314 /* See note about index shifting on OP_ReadCookie */ |
| 3315 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); |
| 3316 if( pOp->p2==BTREE_SCHEMA_VERSION ){ |
| 3317 /* When the schema cookie changes, record the new cookie internally */ |
| 3318 pDb->pSchema->schema_cookie = pOp->p3; |
| 3319 db->flags |= SQLITE_InternChanges; |
| 3320 }else if( pOp->p2==BTREE_FILE_FORMAT ){ |
| 3321 /* Record changes in the file format */ |
| 3322 pDb->pSchema->file_format = pOp->p3; |
| 3323 } |
| 3324 if( pOp->p1==1 ){ |
| 3325 /* Invalidate all prepared statements whenever the TEMP database |
| 3326 ** schema is changed. Ticket #1644 */ |
| 3327 sqlite3ExpirePreparedStatements(db); |
| 3328 p->expired = 0; |
| 3329 } |
| 3330 if( rc ) goto abort_due_to_error; |
| 3331 break; |
| 3332 } |
| 3333 |
| 3334 /* Opcode: OpenRead P1 P2 P3 P4 P5 |
| 3335 ** Synopsis: root=P2 iDb=P3 |
| 3336 ** |
| 3337 ** Open a read-only cursor for the database table whose root page is |
| 3338 ** P2 in a database file. The database file is determined by P3. |
| 3339 ** P3==0 means the main database, P3==1 means the database used for |
| 3340 ** temporary tables, and P3>1 means used the corresponding attached |
| 3341 ** database. Give the new cursor an identifier of P1. The P1 |
| 3342 ** values need not be contiguous but all P1 values should be small integers. |
| 3343 ** It is an error for P1 to be negative. |
| 3344 ** |
| 3345 ** If P5!=0 then use the content of register P2 as the root page, not |
| 3346 ** the value of P2 itself. |
| 3347 ** |
| 3348 ** There will be a read lock on the database whenever there is an |
| 3349 ** open cursor. If the database was unlocked prior to this instruction |
| 3350 ** then a read lock is acquired as part of this instruction. A read |
| 3351 ** lock allows other processes to read the database but prohibits |
| 3352 ** any other process from modifying the database. The read lock is |
| 3353 ** released when all cursors are closed. If this instruction attempts |
| 3354 ** to get a read lock but fails, the script terminates with an |
| 3355 ** SQLITE_BUSY error code. |
| 3356 ** |
| 3357 ** The P4 value may be either an integer (P4_INT32) or a pointer to |
| 3358 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo |
| 3359 ** structure, then said structure defines the content and collating |
| 3360 ** sequence of the index being opened. Otherwise, if P4 is an integer |
| 3361 ** value, it is set to the number of columns in the table. |
| 3362 ** |
| 3363 ** See also: OpenWrite, ReopenIdx |
| 3364 */ |
| 3365 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 |
| 3366 ** Synopsis: root=P2 iDb=P3 |
| 3367 ** |
| 3368 ** The ReopenIdx opcode works exactly like ReadOpen except that it first |
| 3369 ** checks to see if the cursor on P1 is already open with a root page |
| 3370 ** number of P2 and if it is this opcode becomes a no-op. In other words, |
| 3371 ** if the cursor is already open, do not reopen it. |
| 3372 ** |
| 3373 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being |
| 3374 ** a P4_KEYINFO object. Furthermore, the P3 value must be the same as |
| 3375 ** every other ReopenIdx or OpenRead for the same cursor number. |
| 3376 ** |
| 3377 ** See the OpenRead opcode documentation for additional information. |
| 3378 */ |
| 3379 /* Opcode: OpenWrite P1 P2 P3 P4 P5 |
| 3380 ** Synopsis: root=P2 iDb=P3 |
| 3381 ** |
| 3382 ** Open a read/write cursor named P1 on the table or index whose root |
| 3383 ** page is P2. Or if P5!=0 use the content of register P2 to find the |
| 3384 ** root page. |
| 3385 ** |
| 3386 ** The P4 value may be either an integer (P4_INT32) or a pointer to |
| 3387 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo |
| 3388 ** structure, then said structure defines the content and collating |
| 3389 ** sequence of the index being opened. Otherwise, if P4 is an integer |
| 3390 ** value, it is set to the number of columns in the table, or to the |
| 3391 ** largest index of any column of the table that is actually used. |
| 3392 ** |
| 3393 ** This instruction works just like OpenRead except that it opens the cursor |
| 3394 ** in read/write mode. For a given table, there can be one or more read-only |
| 3395 ** cursors or a single read/write cursor but not both. |
| 3396 ** |
| 3397 ** See also OpenRead. |
| 3398 */ |
| 3399 case OP_ReopenIdx: { |
| 3400 int nField; |
| 3401 KeyInfo *pKeyInfo; |
| 3402 int p2; |
| 3403 int iDb; |
| 3404 int wrFlag; |
| 3405 Btree *pX; |
| 3406 VdbeCursor *pCur; |
| 3407 Db *pDb; |
| 3408 |
| 3409 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); |
| 3410 assert( pOp->p4type==P4_KEYINFO ); |
| 3411 pCur = p->apCsr[pOp->p1]; |
| 3412 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ |
| 3413 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ |
| 3414 goto open_cursor_set_hints; |
| 3415 } |
| 3416 /* If the cursor is not currently open or is open on a different |
| 3417 ** index, then fall through into OP_OpenRead to force a reopen */ |
| 3418 case OP_OpenRead: |
| 3419 case OP_OpenWrite: |
| 3420 |
| 3421 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); |
| 3422 assert( p->bIsReader ); |
| 3423 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx |
| 3424 || p->readOnly==0 ); |
| 3425 |
| 3426 if( p->expired ){ |
| 3427 rc = SQLITE_ABORT_ROLLBACK; |
| 3428 goto abort_due_to_error; |
| 3429 } |
| 3430 |
| 3431 nField = 0; |
| 3432 pKeyInfo = 0; |
| 3433 p2 = pOp->p2; |
| 3434 iDb = pOp->p3; |
| 3435 assert( iDb>=0 && iDb<db->nDb ); |
| 3436 assert( DbMaskTest(p->btreeMask, iDb) ); |
| 3437 pDb = &db->aDb[iDb]; |
| 3438 pX = pDb->pBt; |
| 3439 assert( pX!=0 ); |
| 3440 if( pOp->opcode==OP_OpenWrite ){ |
| 3441 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); |
| 3442 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); |
| 3443 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 3444 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ |
| 3445 p->minWriteFileFormat = pDb->pSchema->file_format; |
| 3446 } |
| 3447 }else{ |
| 3448 wrFlag = 0; |
| 3449 } |
| 3450 if( pOp->p5 & OPFLAG_P2ISREG ){ |
| 3451 assert( p2>0 ); |
| 3452 assert( p2<=(p->nMem+1 - p->nCursor) ); |
| 3453 pIn2 = &aMem[p2]; |
| 3454 assert( memIsValid(pIn2) ); |
| 3455 assert( (pIn2->flags & MEM_Int)!=0 ); |
| 3456 sqlite3VdbeMemIntegerify(pIn2); |
| 3457 p2 = (int)pIn2->u.i; |
| 3458 /* The p2 value always comes from a prior OP_CreateTable opcode and |
| 3459 ** that opcode will always set the p2 value to 2 or more or else fail. |
| 3460 ** If there were a failure, the prepared statement would have halted |
| 3461 ** before reaching this instruction. */ |
| 3462 assert( p2>=2 ); |
| 3463 } |
| 3464 if( pOp->p4type==P4_KEYINFO ){ |
| 3465 pKeyInfo = pOp->p4.pKeyInfo; |
| 3466 assert( pKeyInfo->enc==ENC(db) ); |
| 3467 assert( pKeyInfo->db==db ); |
| 3468 nField = pKeyInfo->nField+pKeyInfo->nXField; |
| 3469 }else if( pOp->p4type==P4_INT32 ){ |
| 3470 nField = pOp->p4.i; |
| 3471 } |
| 3472 assert( pOp->p1>=0 ); |
| 3473 assert( nField>=0 ); |
| 3474 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ |
| 3475 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE); |
| 3476 if( pCur==0 ) goto no_mem; |
| 3477 pCur->nullRow = 1; |
| 3478 pCur->isOrdered = 1; |
| 3479 pCur->pgnoRoot = p2; |
| 3480 #ifdef SQLITE_DEBUG |
| 3481 pCur->wrFlag = wrFlag; |
| 3482 #endif |
| 3483 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); |
| 3484 pCur->pKeyInfo = pKeyInfo; |
| 3485 /* Set the VdbeCursor.isTable variable. Previous versions of |
| 3486 ** SQLite used to check if the root-page flags were sane at this point |
| 3487 ** and report database corruption if they were not, but this check has |
| 3488 ** since moved into the btree layer. */ |
| 3489 pCur->isTable = pOp->p4type!=P4_KEYINFO; |
| 3490 |
| 3491 open_cursor_set_hints: |
| 3492 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); |
| 3493 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); |
| 3494 testcase( pOp->p5 & OPFLAG_BULKCSR ); |
| 3495 #ifdef SQLITE_ENABLE_CURSOR_HINTS |
| 3496 testcase( pOp->p2 & OPFLAG_SEEKEQ ); |
| 3497 #endif |
| 3498 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, |
| 3499 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); |
| 3500 if( rc ) goto abort_due_to_error; |
| 3501 break; |
| 3502 } |
| 3503 |
| 3504 /* Opcode: OpenEphemeral P1 P2 * P4 P5 |
| 3505 ** Synopsis: nColumn=P2 |
| 3506 ** |
| 3507 ** Open a new cursor P1 to a transient table. |
| 3508 ** The cursor is always opened read/write even if |
| 3509 ** the main database is read-only. The ephemeral |
| 3510 ** table is deleted automatically when the cursor is closed. |
| 3511 ** |
| 3512 ** P2 is the number of columns in the ephemeral table. |
| 3513 ** The cursor points to a BTree table if P4==0 and to a BTree index |
| 3514 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure |
| 3515 ** that defines the format of keys in the index. |
| 3516 ** |
| 3517 ** The P5 parameter can be a mask of the BTREE_* flags defined |
| 3518 ** in btree.h. These flags control aspects of the operation of |
| 3519 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are |
| 3520 ** added automatically. |
| 3521 */ |
| 3522 /* Opcode: OpenAutoindex P1 P2 * P4 * |
| 3523 ** Synopsis: nColumn=P2 |
| 3524 ** |
| 3525 ** This opcode works the same as OP_OpenEphemeral. It has a |
| 3526 ** different name to distinguish its use. Tables created using |
| 3527 ** by this opcode will be used for automatically created transient |
| 3528 ** indices in joins. |
| 3529 */ |
| 3530 case OP_OpenAutoindex: |
| 3531 case OP_OpenEphemeral: { |
| 3532 VdbeCursor *pCx; |
| 3533 KeyInfo *pKeyInfo; |
| 3534 |
| 3535 static const int vfsFlags = |
| 3536 SQLITE_OPEN_READWRITE | |
| 3537 SQLITE_OPEN_CREATE | |
| 3538 SQLITE_OPEN_EXCLUSIVE | |
| 3539 SQLITE_OPEN_DELETEONCLOSE | |
| 3540 SQLITE_OPEN_TRANSIENT_DB; |
| 3541 assert( pOp->p1>=0 ); |
| 3542 assert( pOp->p2>=0 ); |
| 3543 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE); |
| 3544 if( pCx==0 ) goto no_mem; |
| 3545 pCx->nullRow = 1; |
| 3546 pCx->isEphemeral = 1; |
| 3547 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx, |
| 3548 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags); |
| 3549 if( rc==SQLITE_OK ){ |
| 3550 rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1); |
| 3551 } |
| 3552 if( rc==SQLITE_OK ){ |
| 3553 /* If a transient index is required, create it by calling |
| 3554 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before |
| 3555 ** opening it. If a transient table is required, just use the |
| 3556 ** automatically created table with root-page 1 (an BLOB_INTKEY table). |
| 3557 */ |
| 3558 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ |
| 3559 int pgno; |
| 3560 assert( pOp->p4type==P4_KEYINFO ); |
| 3561 rc = sqlite3BtreeCreateTable(pCx->pBtx, &pgno, BTREE_BLOBKEY | pOp->p5); |
| 3562 if( rc==SQLITE_OK ){ |
| 3563 assert( pgno==MASTER_ROOT+1 ); |
| 3564 assert( pKeyInfo->db==db ); |
| 3565 assert( pKeyInfo->enc==ENC(db) ); |
| 3566 rc = sqlite3BtreeCursor(pCx->pBtx, pgno, BTREE_WRCSR, |
| 3567 pKeyInfo, pCx->uc.pCursor); |
| 3568 } |
| 3569 pCx->isTable = 0; |
| 3570 }else{ |
| 3571 rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR, |
| 3572 0, pCx->uc.pCursor); |
| 3573 pCx->isTable = 1; |
| 3574 } |
| 3575 } |
| 3576 if( rc ) goto abort_due_to_error; |
| 3577 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); |
| 3578 break; |
| 3579 } |
| 3580 |
| 3581 /* Opcode: SorterOpen P1 P2 P3 P4 * |
| 3582 ** |
| 3583 ** This opcode works like OP_OpenEphemeral except that it opens |
| 3584 ** a transient index that is specifically designed to sort large |
| 3585 ** tables using an external merge-sort algorithm. |
| 3586 ** |
| 3587 ** If argument P3 is non-zero, then it indicates that the sorter may |
| 3588 ** assume that a stable sort considering the first P3 fields of each |
| 3589 ** key is sufficient to produce the required results. |
| 3590 */ |
| 3591 case OP_SorterOpen: { |
| 3592 VdbeCursor *pCx; |
| 3593 |
| 3594 assert( pOp->p1>=0 ); |
| 3595 assert( pOp->p2>=0 ); |
| 3596 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER); |
| 3597 if( pCx==0 ) goto no_mem; |
| 3598 pCx->pKeyInfo = pOp->p4.pKeyInfo; |
| 3599 assert( pCx->pKeyInfo->db==db ); |
| 3600 assert( pCx->pKeyInfo->enc==ENC(db) ); |
| 3601 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); |
| 3602 if( rc ) goto abort_due_to_error; |
| 3603 break; |
| 3604 } |
| 3605 |
| 3606 /* Opcode: SequenceTest P1 P2 * * * |
| 3607 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 |
| 3608 ** |
| 3609 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump |
| 3610 ** to P2. Regardless of whether or not the jump is taken, increment the |
| 3611 ** the sequence value. |
| 3612 */ |
| 3613 case OP_SequenceTest: { |
| 3614 VdbeCursor *pC; |
| 3615 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 3616 pC = p->apCsr[pOp->p1]; |
| 3617 assert( isSorter(pC) ); |
| 3618 if( (pC->seqCount++)==0 ){ |
| 3619 goto jump_to_p2; |
| 3620 } |
| 3621 break; |
| 3622 } |
| 3623 |
| 3624 /* Opcode: OpenPseudo P1 P2 P3 * * |
| 3625 ** Synopsis: P3 columns in r[P2] |
| 3626 ** |
| 3627 ** Open a new cursor that points to a fake table that contains a single |
| 3628 ** row of data. The content of that one row is the content of memory |
| 3629 ** register P2. In other words, cursor P1 becomes an alias for the |
| 3630 ** MEM_Blob content contained in register P2. |
| 3631 ** |
| 3632 ** A pseudo-table created by this opcode is used to hold a single |
| 3633 ** row output from the sorter so that the row can be decomposed into |
| 3634 ** individual columns using the OP_Column opcode. The OP_Column opcode |
| 3635 ** is the only cursor opcode that works with a pseudo-table. |
| 3636 ** |
| 3637 ** P3 is the number of fields in the records that will be stored by |
| 3638 ** the pseudo-table. |
| 3639 */ |
| 3640 case OP_OpenPseudo: { |
| 3641 VdbeCursor *pCx; |
| 3642 |
| 3643 assert( pOp->p1>=0 ); |
| 3644 assert( pOp->p3>=0 ); |
| 3645 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO); |
| 3646 if( pCx==0 ) goto no_mem; |
| 3647 pCx->nullRow = 1; |
| 3648 pCx->uc.pseudoTableReg = pOp->p2; |
| 3649 pCx->isTable = 1; |
| 3650 assert( pOp->p5==0 ); |
| 3651 break; |
| 3652 } |
| 3653 |
| 3654 /* Opcode: Close P1 * * * * |
| 3655 ** |
| 3656 ** Close a cursor previously opened as P1. If P1 is not |
| 3657 ** currently open, this instruction is a no-op. |
| 3658 */ |
| 3659 case OP_Close: { |
| 3660 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 3661 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); |
| 3662 p->apCsr[pOp->p1] = 0; |
| 3663 break; |
| 3664 } |
| 3665 |
| 3666 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK |
| 3667 /* Opcode: ColumnsUsed P1 * * P4 * |
| 3668 ** |
| 3669 ** This opcode (which only exists if SQLite was compiled with |
| 3670 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the |
| 3671 ** table or index for cursor P1 are used. P4 is a 64-bit integer |
| 3672 ** (P4_INT64) in which the first 63 bits are one for each of the |
| 3673 ** first 63 columns of the table or index that are actually used |
| 3674 ** by the cursor. The high-order bit is set if any column after |
| 3675 ** the 64th is used. |
| 3676 */ |
| 3677 case OP_ColumnsUsed: { |
| 3678 VdbeCursor *pC; |
| 3679 pC = p->apCsr[pOp->p1]; |
| 3680 assert( pC->eCurType==CURTYPE_BTREE ); |
| 3681 pC->maskUsed = *(u64*)pOp->p4.pI64; |
| 3682 break; |
| 3683 } |
| 3684 #endif |
| 3685 |
| 3686 /* Opcode: SeekGE P1 P2 P3 P4 * |
| 3687 ** Synopsis: key=r[P3@P4] |
| 3688 ** |
| 3689 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), |
| 3690 ** use the value in register P3 as the key. If cursor P1 refers |
| 3691 ** to an SQL index, then P3 is the first in an array of P4 registers |
| 3692 ** that are used as an unpacked index key. |
| 3693 ** |
| 3694 ** Reposition cursor P1 so that it points to the smallest entry that |
| 3695 ** is greater than or equal to the key value. If there are no records |
| 3696 ** greater than or equal to the key and P2 is not zero, then jump to P2. |
| 3697 ** |
| 3698 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this |
| 3699 ** opcode will always land on a record that equally equals the key, or |
| 3700 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this |
| 3701 ** opcode must be followed by an IdxLE opcode with the same arguments. |
| 3702 ** The IdxLE opcode will be skipped if this opcode succeeds, but the |
| 3703 ** IdxLE opcode will be used on subsequent loop iterations. |
| 3704 ** |
| 3705 ** This opcode leaves the cursor configured to move in forward order, |
| 3706 ** from the beginning toward the end. In other words, the cursor is |
| 3707 ** configured to use Next, not Prev. |
| 3708 ** |
| 3709 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe |
| 3710 */ |
| 3711 /* Opcode: SeekGT P1 P2 P3 P4 * |
| 3712 ** Synopsis: key=r[P3@P4] |
| 3713 ** |
| 3714 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), |
| 3715 ** use the value in register P3 as a key. If cursor P1 refers |
| 3716 ** to an SQL index, then P3 is the first in an array of P4 registers |
| 3717 ** that are used as an unpacked index key. |
| 3718 ** |
| 3719 ** Reposition cursor P1 so that it points to the smallest entry that |
| 3720 ** is greater than the key value. If there are no records greater than |
| 3721 ** the key and P2 is not zero, then jump to P2. |
| 3722 ** |
| 3723 ** This opcode leaves the cursor configured to move in forward order, |
| 3724 ** from the beginning toward the end. In other words, the cursor is |
| 3725 ** configured to use Next, not Prev. |
| 3726 ** |
| 3727 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe |
| 3728 */ |
| 3729 /* Opcode: SeekLT P1 P2 P3 P4 * |
| 3730 ** Synopsis: key=r[P3@P4] |
| 3731 ** |
| 3732 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), |
| 3733 ** use the value in register P3 as a key. If cursor P1 refers |
| 3734 ** to an SQL index, then P3 is the first in an array of P4 registers |
| 3735 ** that are used as an unpacked index key. |
| 3736 ** |
| 3737 ** Reposition cursor P1 so that it points to the largest entry that |
| 3738 ** is less than the key value. If there are no records less than |
| 3739 ** the key and P2 is not zero, then jump to P2. |
| 3740 ** |
| 3741 ** This opcode leaves the cursor configured to move in reverse order, |
| 3742 ** from the end toward the beginning. In other words, the cursor is |
| 3743 ** configured to use Prev, not Next. |
| 3744 ** |
| 3745 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe |
| 3746 */ |
| 3747 /* Opcode: SeekLE P1 P2 P3 P4 * |
| 3748 ** Synopsis: key=r[P3@P4] |
| 3749 ** |
| 3750 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), |
| 3751 ** use the value in register P3 as a key. If cursor P1 refers |
| 3752 ** to an SQL index, then P3 is the first in an array of P4 registers |
| 3753 ** that are used as an unpacked index key. |
| 3754 ** |
| 3755 ** Reposition cursor P1 so that it points to the largest entry that |
| 3756 ** is less than or equal to the key value. If there are no records |
| 3757 ** less than or equal to the key and P2 is not zero, then jump to P2. |
| 3758 ** |
| 3759 ** This opcode leaves the cursor configured to move in reverse order, |
| 3760 ** from the end toward the beginning. In other words, the cursor is |
| 3761 ** configured to use Prev, not Next. |
| 3762 ** |
| 3763 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this |
| 3764 ** opcode will always land on a record that equally equals the key, or |
| 3765 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this |
| 3766 ** opcode must be followed by an IdxGE opcode with the same arguments. |
| 3767 ** The IdxGE opcode will be skipped if this opcode succeeds, but the |
| 3768 ** IdxGE opcode will be used on subsequent loop iterations. |
| 3769 ** |
| 3770 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt |
| 3771 */ |
| 3772 case OP_SeekLT: /* jump, in3 */ |
| 3773 case OP_SeekLE: /* jump, in3 */ |
| 3774 case OP_SeekGE: /* jump, in3 */ |
| 3775 case OP_SeekGT: { /* jump, in3 */ |
| 3776 int res; /* Comparison result */ |
| 3777 int oc; /* Opcode */ |
| 3778 VdbeCursor *pC; /* The cursor to seek */ |
| 3779 UnpackedRecord r; /* The key to seek for */ |
| 3780 int nField; /* Number of columns or fields in the key */ |
| 3781 i64 iKey; /* The rowid we are to seek to */ |
| 3782 int eqOnly; /* Only interested in == results */ |
| 3783 |
| 3784 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 3785 assert( pOp->p2!=0 ); |
| 3786 pC = p->apCsr[pOp->p1]; |
| 3787 assert( pC!=0 ); |
| 3788 assert( pC->eCurType==CURTYPE_BTREE ); |
| 3789 assert( OP_SeekLE == OP_SeekLT+1 ); |
| 3790 assert( OP_SeekGE == OP_SeekLT+2 ); |
| 3791 assert( OP_SeekGT == OP_SeekLT+3 ); |
| 3792 assert( pC->isOrdered ); |
| 3793 assert( pC->uc.pCursor!=0 ); |
| 3794 oc = pOp->opcode; |
| 3795 eqOnly = 0; |
| 3796 pC->nullRow = 0; |
| 3797 #ifdef SQLITE_DEBUG |
| 3798 pC->seekOp = pOp->opcode; |
| 3799 #endif |
| 3800 |
| 3801 if( pC->isTable ){ |
| 3802 /* The BTREE_SEEK_EQ flag is only set on index cursors */ |
| 3803 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 |
| 3804 || CORRUPT_DB ); |
| 3805 |
| 3806 /* The input value in P3 might be of any type: integer, real, string, |
| 3807 ** blob, or NULL. But it needs to be an integer before we can do |
| 3808 ** the seek, so convert it. */ |
| 3809 pIn3 = &aMem[pOp->p3]; |
| 3810 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){ |
| 3811 applyNumericAffinity(pIn3, 0); |
| 3812 } |
| 3813 iKey = sqlite3VdbeIntValue(pIn3); |
| 3814 |
| 3815 /* If the P3 value could not be converted into an integer without |
| 3816 ** loss of information, then special processing is required... */ |
| 3817 if( (pIn3->flags & MEM_Int)==0 ){ |
| 3818 if( (pIn3->flags & MEM_Real)==0 ){ |
| 3819 /* If the P3 value cannot be converted into any kind of a number, |
| 3820 ** then the seek is not possible, so jump to P2 */ |
| 3821 VdbeBranchTaken(1,2); goto jump_to_p2; |
| 3822 break; |
| 3823 } |
| 3824 |
| 3825 /* If the approximation iKey is larger than the actual real search |
| 3826 ** term, substitute >= for > and < for <=. e.g. if the search term |
| 3827 ** is 4.9 and the integer approximation 5: |
| 3828 ** |
| 3829 ** (x > 4.9) -> (x >= 5) |
| 3830 ** (x <= 4.9) -> (x < 5) |
| 3831 */ |
| 3832 if( pIn3->u.r<(double)iKey ){ |
| 3833 assert( OP_SeekGE==(OP_SeekGT-1) ); |
| 3834 assert( OP_SeekLT==(OP_SeekLE-1) ); |
| 3835 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); |
| 3836 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; |
| 3837 } |
| 3838 |
| 3839 /* If the approximation iKey is smaller than the actual real search |
| 3840 ** term, substitute <= for < and > for >=. */ |
| 3841 else if( pIn3->u.r>(double)iKey ){ |
| 3842 assert( OP_SeekLE==(OP_SeekLT+1) ); |
| 3843 assert( OP_SeekGT==(OP_SeekGE+1) ); |
| 3844 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); |
| 3845 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; |
| 3846 } |
| 3847 } |
| 3848 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res); |
| 3849 pC->movetoTarget = iKey; /* Used by OP_Delete */ |
| 3850 if( rc!=SQLITE_OK ){ |
| 3851 goto abort_due_to_error; |
| 3852 } |
| 3853 }else{ |
| 3854 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and |
| 3855 ** OP_SeekLE opcodes are allowed, and these must be immediately followed |
| 3856 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key. |
| 3857 */ |
| 3858 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ |
| 3859 eqOnly = 1; |
| 3860 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); |
| 3861 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); |
| 3862 assert( pOp[1].p1==pOp[0].p1 ); |
| 3863 assert( pOp[1].p2==pOp[0].p2 ); |
| 3864 assert( pOp[1].p3==pOp[0].p3 ); |
| 3865 assert( pOp[1].p4.i==pOp[0].p4.i ); |
| 3866 } |
| 3867 |
| 3868 nField = pOp->p4.i; |
| 3869 assert( pOp->p4type==P4_INT32 ); |
| 3870 assert( nField>0 ); |
| 3871 r.pKeyInfo = pC->pKeyInfo; |
| 3872 r.nField = (u16)nField; |
| 3873 |
| 3874 /* The next line of code computes as follows, only faster: |
| 3875 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ |
| 3876 ** r.default_rc = -1; |
| 3877 ** }else{ |
| 3878 ** r.default_rc = +1; |
| 3879 ** } |
| 3880 */ |
| 3881 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); |
| 3882 assert( oc!=OP_SeekGT || r.default_rc==-1 ); |
| 3883 assert( oc!=OP_SeekLE || r.default_rc==-1 ); |
| 3884 assert( oc!=OP_SeekGE || r.default_rc==+1 ); |
| 3885 assert( oc!=OP_SeekLT || r.default_rc==+1 ); |
| 3886 |
| 3887 r.aMem = &aMem[pOp->p3]; |
| 3888 #ifdef SQLITE_DEBUG |
| 3889 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } |
| 3890 #endif |
| 3891 r.eqSeen = 0; |
| 3892 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res); |
| 3893 if( rc!=SQLITE_OK ){ |
| 3894 goto abort_due_to_error; |
| 3895 } |
| 3896 if( eqOnly && r.eqSeen==0 ){ |
| 3897 assert( res!=0 ); |
| 3898 goto seek_not_found; |
| 3899 } |
| 3900 } |
| 3901 pC->deferredMoveto = 0; |
| 3902 pC->cacheStatus = CACHE_STALE; |
| 3903 #ifdef SQLITE_TEST |
| 3904 sqlite3_search_count++; |
| 3905 #endif |
| 3906 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); |
| 3907 if( res<0 || (res==0 && oc==OP_SeekGT) ){ |
| 3908 res = 0; |
| 3909 rc = sqlite3BtreeNext(pC->uc.pCursor, &res); |
| 3910 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
| 3911 }else{ |
| 3912 res = 0; |
| 3913 } |
| 3914 }else{ |
| 3915 assert( oc==OP_SeekLT || oc==OP_SeekLE ); |
| 3916 if( res>0 || (res==0 && oc==OP_SeekLT) ){ |
| 3917 res = 0; |
| 3918 rc = sqlite3BtreePrevious(pC->uc.pCursor, &res); |
| 3919 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
| 3920 }else{ |
| 3921 /* res might be negative because the table is empty. Check to |
| 3922 ** see if this is the case. |
| 3923 */ |
| 3924 res = sqlite3BtreeEof(pC->uc.pCursor); |
| 3925 } |
| 3926 } |
| 3927 seek_not_found: |
| 3928 assert( pOp->p2>0 ); |
| 3929 VdbeBranchTaken(res!=0,2); |
| 3930 if( res ){ |
| 3931 goto jump_to_p2; |
| 3932 }else if( eqOnly ){ |
| 3933 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); |
| 3934 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ |
| 3935 } |
| 3936 break; |
| 3937 } |
| 3938 |
| 3939 /* Opcode: Found P1 P2 P3 P4 * |
| 3940 ** Synopsis: key=r[P3@P4] |
| 3941 ** |
| 3942 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If |
| 3943 ** P4>0 then register P3 is the first of P4 registers that form an unpacked |
| 3944 ** record. |
| 3945 ** |
| 3946 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 |
| 3947 ** is a prefix of any entry in P1 then a jump is made to P2 and |
| 3948 ** P1 is left pointing at the matching entry. |
| 3949 ** |
| 3950 ** This operation leaves the cursor in a state where it can be |
| 3951 ** advanced in the forward direction. The Next instruction will work, |
| 3952 ** but not the Prev instruction. |
| 3953 ** |
| 3954 ** See also: NotFound, NoConflict, NotExists. SeekGe |
| 3955 */ |
| 3956 /* Opcode: NotFound P1 P2 P3 P4 * |
| 3957 ** Synopsis: key=r[P3@P4] |
| 3958 ** |
| 3959 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If |
| 3960 ** P4>0 then register P3 is the first of P4 registers that form an unpacked |
| 3961 ** record. |
| 3962 ** |
| 3963 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 |
| 3964 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 |
| 3965 ** does contain an entry whose prefix matches the P3/P4 record then control |
| 3966 ** falls through to the next instruction and P1 is left pointing at the |
| 3967 ** matching entry. |
| 3968 ** |
| 3969 ** This operation leaves the cursor in a state where it cannot be |
| 3970 ** advanced in either direction. In other words, the Next and Prev |
| 3971 ** opcodes do not work after this operation. |
| 3972 ** |
| 3973 ** See also: Found, NotExists, NoConflict |
| 3974 */ |
| 3975 /* Opcode: NoConflict P1 P2 P3 P4 * |
| 3976 ** Synopsis: key=r[P3@P4] |
| 3977 ** |
| 3978 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If |
| 3979 ** P4>0 then register P3 is the first of P4 registers that form an unpacked |
| 3980 ** record. |
| 3981 ** |
| 3982 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 |
| 3983 ** contains any NULL value, jump immediately to P2. If all terms of the |
| 3984 ** record are not-NULL then a check is done to determine if any row in the |
| 3985 ** P1 index btree has a matching key prefix. If there are no matches, jump |
| 3986 ** immediately to P2. If there is a match, fall through and leave the P1 |
| 3987 ** cursor pointing to the matching row. |
| 3988 ** |
| 3989 ** This opcode is similar to OP_NotFound with the exceptions that the |
| 3990 ** branch is always taken if any part of the search key input is NULL. |
| 3991 ** |
| 3992 ** This operation leaves the cursor in a state where it cannot be |
| 3993 ** advanced in either direction. In other words, the Next and Prev |
| 3994 ** opcodes do not work after this operation. |
| 3995 ** |
| 3996 ** See also: NotFound, Found, NotExists |
| 3997 */ |
| 3998 case OP_NoConflict: /* jump, in3 */ |
| 3999 case OP_NotFound: /* jump, in3 */ |
| 4000 case OP_Found: { /* jump, in3 */ |
| 4001 int alreadyExists; |
| 4002 int takeJump; |
| 4003 int ii; |
| 4004 VdbeCursor *pC; |
| 4005 int res; |
| 4006 UnpackedRecord *pFree; |
| 4007 UnpackedRecord *pIdxKey; |
| 4008 UnpackedRecord r; |
| 4009 |
| 4010 #ifdef SQLITE_TEST |
| 4011 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; |
| 4012 #endif |
| 4013 |
| 4014 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4015 assert( pOp->p4type==P4_INT32 ); |
| 4016 pC = p->apCsr[pOp->p1]; |
| 4017 assert( pC!=0 ); |
| 4018 #ifdef SQLITE_DEBUG |
| 4019 pC->seekOp = pOp->opcode; |
| 4020 #endif |
| 4021 pIn3 = &aMem[pOp->p3]; |
| 4022 assert( pC->eCurType==CURTYPE_BTREE ); |
| 4023 assert( pC->uc.pCursor!=0 ); |
| 4024 assert( pC->isTable==0 ); |
| 4025 if( pOp->p4.i>0 ){ |
| 4026 r.pKeyInfo = pC->pKeyInfo; |
| 4027 r.nField = (u16)pOp->p4.i; |
| 4028 r.aMem = pIn3; |
| 4029 #ifdef SQLITE_DEBUG |
| 4030 for(ii=0; ii<r.nField; ii++){ |
| 4031 assert( memIsValid(&r.aMem[ii]) ); |
| 4032 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); |
| 4033 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); |
| 4034 } |
| 4035 #endif |
| 4036 pIdxKey = &r; |
| 4037 pFree = 0; |
| 4038 }else{ |
| 4039 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); |
| 4040 if( pIdxKey==0 ) goto no_mem; |
| 4041 assert( pIn3->flags & MEM_Blob ); |
| 4042 (void)ExpandBlob(pIn3); |
| 4043 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey); |
| 4044 } |
| 4045 pIdxKey->default_rc = 0; |
| 4046 takeJump = 0; |
| 4047 if( pOp->opcode==OP_NoConflict ){ |
| 4048 /* For the OP_NoConflict opcode, take the jump if any of the |
| 4049 ** input fields are NULL, since any key with a NULL will not |
| 4050 ** conflict */ |
| 4051 for(ii=0; ii<pIdxKey->nField; ii++){ |
| 4052 if( pIdxKey->aMem[ii].flags & MEM_Null ){ |
| 4053 takeJump = 1; |
| 4054 break; |
| 4055 } |
| 4056 } |
| 4057 } |
| 4058 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res); |
| 4059 if( pFree ) sqlite3DbFree(db, pFree); |
| 4060 if( rc!=SQLITE_OK ){ |
| 4061 goto abort_due_to_error; |
| 4062 } |
| 4063 pC->seekResult = res; |
| 4064 alreadyExists = (res==0); |
| 4065 pC->nullRow = 1-alreadyExists; |
| 4066 pC->deferredMoveto = 0; |
| 4067 pC->cacheStatus = CACHE_STALE; |
| 4068 if( pOp->opcode==OP_Found ){ |
| 4069 VdbeBranchTaken(alreadyExists!=0,2); |
| 4070 if( alreadyExists ) goto jump_to_p2; |
| 4071 }else{ |
| 4072 VdbeBranchTaken(takeJump||alreadyExists==0,2); |
| 4073 if( takeJump || !alreadyExists ) goto jump_to_p2; |
| 4074 } |
| 4075 break; |
| 4076 } |
| 4077 |
| 4078 /* Opcode: SeekRowid P1 P2 P3 * * |
| 4079 ** Synopsis: intkey=r[P3] |
| 4080 ** |
| 4081 ** P1 is the index of a cursor open on an SQL table btree (with integer |
| 4082 ** keys). If register P3 does not contain an integer or if P1 does not |
| 4083 ** contain a record with rowid P3 then jump immediately to P2. |
| 4084 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain |
| 4085 ** a record with rowid P3 then |
| 4086 ** leave the cursor pointing at that record and fall through to the next |
| 4087 ** instruction. |
| 4088 ** |
| 4089 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists |
| 4090 ** the P3 register must be guaranteed to contain an integer value. With this |
| 4091 ** opcode, register P3 might not contain an integer. |
| 4092 ** |
| 4093 ** The OP_NotFound opcode performs the same operation on index btrees |
| 4094 ** (with arbitrary multi-value keys). |
| 4095 ** |
| 4096 ** This opcode leaves the cursor in a state where it cannot be advanced |
| 4097 ** in either direction. In other words, the Next and Prev opcodes will |
| 4098 ** not work following this opcode. |
| 4099 ** |
| 4100 ** See also: Found, NotFound, NoConflict, SeekRowid |
| 4101 */ |
| 4102 /* Opcode: NotExists P1 P2 P3 * * |
| 4103 ** Synopsis: intkey=r[P3] |
| 4104 ** |
| 4105 ** P1 is the index of a cursor open on an SQL table btree (with integer |
| 4106 ** keys). P3 is an integer rowid. If P1 does not contain a record with |
| 4107 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an |
| 4108 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then |
| 4109 ** leave the cursor pointing at that record and fall through to the next |
| 4110 ** instruction. |
| 4111 ** |
| 4112 ** The OP_SeekRowid opcode performs the same operation but also allows the |
| 4113 ** P3 register to contain a non-integer value, in which case the jump is |
| 4114 ** always taken. This opcode requires that P3 always contain an integer. |
| 4115 ** |
| 4116 ** The OP_NotFound opcode performs the same operation on index btrees |
| 4117 ** (with arbitrary multi-value keys). |
| 4118 ** |
| 4119 ** This opcode leaves the cursor in a state where it cannot be advanced |
| 4120 ** in either direction. In other words, the Next and Prev opcodes will |
| 4121 ** not work following this opcode. |
| 4122 ** |
| 4123 ** See also: Found, NotFound, NoConflict, SeekRowid |
| 4124 */ |
| 4125 case OP_SeekRowid: { /* jump, in3 */ |
| 4126 VdbeCursor *pC; |
| 4127 BtCursor *pCrsr; |
| 4128 int res; |
| 4129 u64 iKey; |
| 4130 |
| 4131 pIn3 = &aMem[pOp->p3]; |
| 4132 if( (pIn3->flags & MEM_Int)==0 ){ |
| 4133 applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding); |
| 4134 if( (pIn3->flags & MEM_Int)==0 ) goto jump_to_p2; |
| 4135 } |
| 4136 /* Fall through into OP_NotExists */ |
| 4137 case OP_NotExists: /* jump, in3 */ |
| 4138 pIn3 = &aMem[pOp->p3]; |
| 4139 assert( pIn3->flags & MEM_Int ); |
| 4140 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4141 pC = p->apCsr[pOp->p1]; |
| 4142 assert( pC!=0 ); |
| 4143 #ifdef SQLITE_DEBUG |
| 4144 pC->seekOp = 0; |
| 4145 #endif |
| 4146 assert( pC->isTable ); |
| 4147 assert( pC->eCurType==CURTYPE_BTREE ); |
| 4148 pCrsr = pC->uc.pCursor; |
| 4149 assert( pCrsr!=0 ); |
| 4150 res = 0; |
| 4151 iKey = pIn3->u.i; |
| 4152 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res); |
| 4153 assert( rc==SQLITE_OK || res==0 ); |
| 4154 pC->movetoTarget = iKey; /* Used by OP_Delete */ |
| 4155 pC->nullRow = 0; |
| 4156 pC->cacheStatus = CACHE_STALE; |
| 4157 pC->deferredMoveto = 0; |
| 4158 VdbeBranchTaken(res!=0,2); |
| 4159 pC->seekResult = res; |
| 4160 if( res!=0 ){ |
| 4161 assert( rc==SQLITE_OK ); |
| 4162 if( pOp->p2==0 ){ |
| 4163 rc = SQLITE_CORRUPT_BKPT; |
| 4164 }else{ |
| 4165 goto jump_to_p2; |
| 4166 } |
| 4167 } |
| 4168 if( rc ) goto abort_due_to_error; |
| 4169 break; |
| 4170 } |
| 4171 |
| 4172 /* Opcode: Sequence P1 P2 * * * |
| 4173 ** Synopsis: r[P2]=cursor[P1].ctr++ |
| 4174 ** |
| 4175 ** Find the next available sequence number for cursor P1. |
| 4176 ** Write the sequence number into register P2. |
| 4177 ** The sequence number on the cursor is incremented after this |
| 4178 ** instruction. |
| 4179 */ |
| 4180 case OP_Sequence: { /* out2 */ |
| 4181 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4182 assert( p->apCsr[pOp->p1]!=0 ); |
| 4183 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); |
| 4184 pOut = out2Prerelease(p, pOp); |
| 4185 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; |
| 4186 break; |
| 4187 } |
| 4188 |
| 4189 |
| 4190 /* Opcode: NewRowid P1 P2 P3 * * |
| 4191 ** Synopsis: r[P2]=rowid |
| 4192 ** |
| 4193 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. |
| 4194 ** The record number is not previously used as a key in the database |
| 4195 ** table that cursor P1 points to. The new record number is written |
| 4196 ** written to register P2. |
| 4197 ** |
| 4198 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds |
| 4199 ** the largest previously generated record number. No new record numbers are |
| 4200 ** allowed to be less than this value. When this value reaches its maximum, |
| 4201 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' |
| 4202 ** generated record number. This P3 mechanism is used to help implement the |
| 4203 ** AUTOINCREMENT feature. |
| 4204 */ |
| 4205 case OP_NewRowid: { /* out2 */ |
| 4206 i64 v; /* The new rowid */ |
| 4207 VdbeCursor *pC; /* Cursor of table to get the new rowid */ |
| 4208 int res; /* Result of an sqlite3BtreeLast() */ |
| 4209 int cnt; /* Counter to limit the number of searches */ |
| 4210 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ |
| 4211 VdbeFrame *pFrame; /* Root frame of VDBE */ |
| 4212 |
| 4213 v = 0; |
| 4214 res = 0; |
| 4215 pOut = out2Prerelease(p, pOp); |
| 4216 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4217 pC = p->apCsr[pOp->p1]; |
| 4218 assert( pC!=0 ); |
| 4219 assert( pC->eCurType==CURTYPE_BTREE ); |
| 4220 assert( pC->uc.pCursor!=0 ); |
| 4221 { |
| 4222 /* The next rowid or record number (different terms for the same |
| 4223 ** thing) is obtained in a two-step algorithm. |
| 4224 ** |
| 4225 ** First we attempt to find the largest existing rowid and add one |
| 4226 ** to that. But if the largest existing rowid is already the maximum |
| 4227 ** positive integer, we have to fall through to the second |
| 4228 ** probabilistic algorithm |
| 4229 ** |
| 4230 ** The second algorithm is to select a rowid at random and see if |
| 4231 ** it already exists in the table. If it does not exist, we have |
| 4232 ** succeeded. If the random rowid does exist, we select a new one |
| 4233 ** and try again, up to 100 times. |
| 4234 */ |
| 4235 assert( pC->isTable ); |
| 4236 |
| 4237 #ifdef SQLITE_32BIT_ROWID |
| 4238 # define MAX_ROWID 0x7fffffff |
| 4239 #else |
| 4240 /* Some compilers complain about constants of the form 0x7fffffffffffffff. |
| 4241 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems |
| 4242 ** to provide the constant while making all compilers happy. |
| 4243 */ |
| 4244 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) |
| 4245 #endif |
| 4246 |
| 4247 if( !pC->useRandomRowid ){ |
| 4248 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); |
| 4249 if( rc!=SQLITE_OK ){ |
| 4250 goto abort_due_to_error; |
| 4251 } |
| 4252 if( res ){ |
| 4253 v = 1; /* IMP: R-61914-48074 */ |
| 4254 }else{ |
| 4255 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); |
| 4256 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); |
| 4257 if( v>=MAX_ROWID ){ |
| 4258 pC->useRandomRowid = 1; |
| 4259 }else{ |
| 4260 v++; /* IMP: R-29538-34987 */ |
| 4261 } |
| 4262 } |
| 4263 } |
| 4264 |
| 4265 #ifndef SQLITE_OMIT_AUTOINCREMENT |
| 4266 if( pOp->p3 ){ |
| 4267 /* Assert that P3 is a valid memory cell. */ |
| 4268 assert( pOp->p3>0 ); |
| 4269 if( p->pFrame ){ |
| 4270 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); |
| 4271 /* Assert that P3 is a valid memory cell. */ |
| 4272 assert( pOp->p3<=pFrame->nMem ); |
| 4273 pMem = &pFrame->aMem[pOp->p3]; |
| 4274 }else{ |
| 4275 /* Assert that P3 is a valid memory cell. */ |
| 4276 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); |
| 4277 pMem = &aMem[pOp->p3]; |
| 4278 memAboutToChange(p, pMem); |
| 4279 } |
| 4280 assert( memIsValid(pMem) ); |
| 4281 |
| 4282 REGISTER_TRACE(pOp->p3, pMem); |
| 4283 sqlite3VdbeMemIntegerify(pMem); |
| 4284 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ |
| 4285 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ |
| 4286 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ |
| 4287 goto abort_due_to_error; |
| 4288 } |
| 4289 if( v<pMem->u.i+1 ){ |
| 4290 v = pMem->u.i + 1; |
| 4291 } |
| 4292 pMem->u.i = v; |
| 4293 } |
| 4294 #endif |
| 4295 if( pC->useRandomRowid ){ |
| 4296 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the |
| 4297 ** largest possible integer (9223372036854775807) then the database |
| 4298 ** engine starts picking positive candidate ROWIDs at random until |
| 4299 ** it finds one that is not previously used. */ |
| 4300 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is |
| 4301 ** an AUTOINCREMENT table. */ |
| 4302 cnt = 0; |
| 4303 do{ |
| 4304 sqlite3_randomness(sizeof(v), &v); |
| 4305 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ |
| 4306 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v, |
| 4307 0, &res))==SQLITE_OK) |
| 4308 && (res==0) |
| 4309 && (++cnt<100)); |
| 4310 if( rc ) goto abort_due_to_error; |
| 4311 if( res==0 ){ |
| 4312 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ |
| 4313 goto abort_due_to_error; |
| 4314 } |
| 4315 assert( v>0 ); /* EV: R-40812-03570 */ |
| 4316 } |
| 4317 pC->deferredMoveto = 0; |
| 4318 pC->cacheStatus = CACHE_STALE; |
| 4319 } |
| 4320 pOut->u.i = v; |
| 4321 break; |
| 4322 } |
| 4323 |
| 4324 /* Opcode: Insert P1 P2 P3 P4 P5 |
| 4325 ** Synopsis: intkey=r[P3] data=r[P2] |
| 4326 ** |
| 4327 ** Write an entry into the table of cursor P1. A new entry is |
| 4328 ** created if it doesn't already exist or the data for an existing |
| 4329 ** entry is overwritten. The data is the value MEM_Blob stored in register |
| 4330 ** number P2. The key is stored in register P3. The key must |
| 4331 ** be a MEM_Int. |
| 4332 ** |
| 4333 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is |
| 4334 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, |
| 4335 ** then rowid is stored for subsequent return by the |
| 4336 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). |
| 4337 ** |
| 4338 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might |
| 4339 ** run faster by avoiding an unnecessary seek on cursor P1. However, |
| 4340 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior |
| 4341 ** seeks on the cursor or if the most recent seek used a key equal to P3. |
| 4342 ** |
| 4343 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an |
| 4344 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode |
| 4345 ** is part of an INSERT operation. The difference is only important to |
| 4346 ** the update hook. |
| 4347 ** |
| 4348 ** Parameter P4 may point to a Table structure, or may be NULL. If it is |
| 4349 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked |
| 4350 ** following a successful insert. |
| 4351 ** |
| 4352 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically |
| 4353 ** allocated, then ownership of P2 is transferred to the pseudo-cursor |
| 4354 ** and register P2 becomes ephemeral. If the cursor is changed, the |
| 4355 ** value of register P2 will then change. Make sure this does not |
| 4356 ** cause any problems.) |
| 4357 ** |
| 4358 ** This instruction only works on tables. The equivalent instruction |
| 4359 ** for indices is OP_IdxInsert. |
| 4360 */ |
| 4361 /* Opcode: InsertInt P1 P2 P3 P4 P5 |
| 4362 ** Synopsis: intkey=P3 data=r[P2] |
| 4363 ** |
| 4364 ** This works exactly like OP_Insert except that the key is the |
| 4365 ** integer value P3, not the value of the integer stored in register P3. |
| 4366 */ |
| 4367 case OP_Insert: |
| 4368 case OP_InsertInt: { |
| 4369 Mem *pData; /* MEM cell holding data for the record to be inserted */ |
| 4370 Mem *pKey; /* MEM cell holding key for the record */ |
| 4371 VdbeCursor *pC; /* Cursor to table into which insert is written */ |
| 4372 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ |
| 4373 const char *zDb; /* database name - used by the update hook */ |
| 4374 Table *pTab; /* Table structure - used by update and pre-update hooks */ |
| 4375 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */ |
| 4376 BtreePayload x; /* Payload to be inserted */ |
| 4377 |
| 4378 op = 0; |
| 4379 pData = &aMem[pOp->p2]; |
| 4380 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4381 assert( memIsValid(pData) ); |
| 4382 pC = p->apCsr[pOp->p1]; |
| 4383 assert( pC!=0 ); |
| 4384 assert( pC->eCurType==CURTYPE_BTREE ); |
| 4385 assert( pC->uc.pCursor!=0 ); |
| 4386 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); |
| 4387 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); |
| 4388 REGISTER_TRACE(pOp->p2, pData); |
| 4389 |
| 4390 if( pOp->opcode==OP_Insert ){ |
| 4391 pKey = &aMem[pOp->p3]; |
| 4392 assert( pKey->flags & MEM_Int ); |
| 4393 assert( memIsValid(pKey) ); |
| 4394 REGISTER_TRACE(pOp->p3, pKey); |
| 4395 x.nKey = pKey->u.i; |
| 4396 }else{ |
| 4397 assert( pOp->opcode==OP_InsertInt ); |
| 4398 x.nKey = pOp->p3; |
| 4399 } |
| 4400 |
| 4401 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ |
| 4402 assert( pC->iDb>=0 ); |
| 4403 zDb = db->aDb[pC->iDb].zDbSName; |
| 4404 pTab = pOp->p4.pTab; |
| 4405 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); |
| 4406 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); |
| 4407 }else{ |
| 4408 pTab = 0; /* Not needed. Silence a compiler warning. */ |
| 4409 zDb = 0; /* Not needed. Silence a compiler warning. */ |
| 4410 } |
| 4411 |
| 4412 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK |
| 4413 /* Invoke the pre-update hook, if any */ |
| 4414 if( db->xPreUpdateCallback |
| 4415 && pOp->p4type==P4_TABLE |
| 4416 && !(pOp->p5 & OPFLAG_ISUPDATE) |
| 4417 ){ |
| 4418 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey, pOp->p2); |
| 4419 } |
| 4420 if( pOp->p5 & OPFLAG_ISNOOP ) break; |
| 4421 #endif |
| 4422 |
| 4423 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; |
| 4424 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; |
| 4425 if( pData->flags & MEM_Null ){ |
| 4426 x.pData = 0; |
| 4427 x.nData = 0; |
| 4428 }else{ |
| 4429 assert( pData->flags & (MEM_Blob|MEM_Str) ); |
| 4430 x.pData = pData->z; |
| 4431 x.nData = pData->n; |
| 4432 } |
| 4433 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); |
| 4434 if( pData->flags & MEM_Zero ){ |
| 4435 x.nZero = pData->u.nZero; |
| 4436 }else{ |
| 4437 x.nZero = 0; |
| 4438 } |
| 4439 x.pKey = 0; |
| 4440 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, |
| 4441 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult |
| 4442 ); |
| 4443 pC->deferredMoveto = 0; |
| 4444 pC->cacheStatus = CACHE_STALE; |
| 4445 |
| 4446 /* Invoke the update-hook if required. */ |
| 4447 if( rc ) goto abort_due_to_error; |
| 4448 if( db->xUpdateCallback && op ){ |
| 4449 db->xUpdateCallback(db->pUpdateArg, op, zDb, pTab->zName, x.nKey); |
| 4450 } |
| 4451 break; |
| 4452 } |
| 4453 |
| 4454 /* Opcode: Delete P1 P2 P3 P4 P5 |
| 4455 ** |
| 4456 ** Delete the record at which the P1 cursor is currently pointing. |
| 4457 ** |
| 4458 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then |
| 4459 ** the cursor will be left pointing at either the next or the previous |
| 4460 ** record in the table. If it is left pointing at the next record, then |
| 4461 ** the next Next instruction will be a no-op. As a result, in this case |
| 4462 ** it is ok to delete a record from within a Next loop. If |
| 4463 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be |
| 4464 ** left in an undefined state. |
| 4465 ** |
| 4466 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this |
| 4467 ** delete one of several associated with deleting a table row and all its |
| 4468 ** associated index entries. Exactly one of those deletes is the "primary" |
| 4469 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are |
| 4470 ** marked with the AUXDELETE flag. |
| 4471 ** |
| 4472 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row |
| 4473 ** change count is incremented (otherwise not). |
| 4474 ** |
| 4475 ** P1 must not be pseudo-table. It has to be a real table with |
| 4476 ** multiple rows. |
| 4477 ** |
| 4478 ** If P4 is not NULL then it points to a Table object. In this case either |
| 4479 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must |
| 4480 ** have been positioned using OP_NotFound prior to invoking this opcode in |
| 4481 ** this case. Specifically, if one is configured, the pre-update hook is |
| 4482 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, |
| 4483 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. |
| 4484 ** |
| 4485 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address |
| 4486 ** of the memory cell that contains the value that the rowid of the row will |
| 4487 ** be set to by the update. |
| 4488 */ |
| 4489 case OP_Delete: { |
| 4490 VdbeCursor *pC; |
| 4491 const char *zDb; |
| 4492 Table *pTab; |
| 4493 int opflags; |
| 4494 |
| 4495 opflags = pOp->p2; |
| 4496 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4497 pC = p->apCsr[pOp->p1]; |
| 4498 assert( pC!=0 ); |
| 4499 assert( pC->eCurType==CURTYPE_BTREE ); |
| 4500 assert( pC->uc.pCursor!=0 ); |
| 4501 assert( pC->deferredMoveto==0 ); |
| 4502 |
| 4503 #ifdef SQLITE_DEBUG |
| 4504 if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){ |
| 4505 /* If p5 is zero, the seek operation that positioned the cursor prior to |
| 4506 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of |
| 4507 ** the row that is being deleted */ |
| 4508 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); |
| 4509 assert( pC->movetoTarget==iKey ); |
| 4510 } |
| 4511 #endif |
| 4512 |
| 4513 /* If the update-hook or pre-update-hook will be invoked, set zDb to |
| 4514 ** the name of the db to pass as to it. Also set local pTab to a copy |
| 4515 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was |
| 4516 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set |
| 4517 ** VdbeCursor.movetoTarget to the current rowid. */ |
| 4518 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ |
| 4519 assert( pC->iDb>=0 ); |
| 4520 assert( pOp->p4.pTab!=0 ); |
| 4521 zDb = db->aDb[pC->iDb].zDbSName; |
| 4522 pTab = pOp->p4.pTab; |
| 4523 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ |
| 4524 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); |
| 4525 } |
| 4526 }else{ |
| 4527 zDb = 0; /* Not needed. Silence a compiler warning. */ |
| 4528 pTab = 0; /* Not needed. Silence a compiler warning. */ |
| 4529 } |
| 4530 |
| 4531 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK |
| 4532 /* Invoke the pre-update-hook if required. */ |
| 4533 if( db->xPreUpdateCallback && pOp->p4.pTab ){ |
| 4534 assert( !(opflags & OPFLAG_ISUPDATE) |
| 4535 || HasRowid(pTab)==0 |
| 4536 || (aMem[pOp->p3].flags & MEM_Int) |
| 4537 ); |
| 4538 sqlite3VdbePreUpdateHook(p, pC, |
| 4539 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, |
| 4540 zDb, pTab, pC->movetoTarget, |
| 4541 pOp->p3 |
| 4542 ); |
| 4543 } |
| 4544 if( opflags & OPFLAG_ISNOOP ) break; |
| 4545 #endif |
| 4546 |
| 4547 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ |
| 4548 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); |
| 4549 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); |
| 4550 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); |
| 4551 |
| 4552 #ifdef SQLITE_DEBUG |
| 4553 if( p->pFrame==0 ){ |
| 4554 if( pC->isEphemeral==0 |
| 4555 && (pOp->p5 & OPFLAG_AUXDELETE)==0 |
| 4556 && (pC->wrFlag & OPFLAG_FORDELETE)==0 |
| 4557 ){ |
| 4558 nExtraDelete++; |
| 4559 } |
| 4560 if( pOp->p2 & OPFLAG_NCHANGE ){ |
| 4561 nExtraDelete--; |
| 4562 } |
| 4563 } |
| 4564 #endif |
| 4565 |
| 4566 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); |
| 4567 pC->cacheStatus = CACHE_STALE; |
| 4568 pC->seekResult = 0; |
| 4569 if( rc ) goto abort_due_to_error; |
| 4570 |
| 4571 /* Invoke the update-hook if required. */ |
| 4572 if( opflags & OPFLAG_NCHANGE ){ |
| 4573 p->nChange++; |
| 4574 if( db->xUpdateCallback && HasRowid(pTab) ){ |
| 4575 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, |
| 4576 pC->movetoTarget); |
| 4577 assert( pC->iDb>=0 ); |
| 4578 } |
| 4579 } |
| 4580 |
| 4581 break; |
| 4582 } |
| 4583 /* Opcode: ResetCount * * * * * |
| 4584 ** |
| 4585 ** The value of the change counter is copied to the database handle |
| 4586 ** change counter (returned by subsequent calls to sqlite3_changes()). |
| 4587 ** Then the VMs internal change counter resets to 0. |
| 4588 ** This is used by trigger programs. |
| 4589 */ |
| 4590 case OP_ResetCount: { |
| 4591 sqlite3VdbeSetChanges(db, p->nChange); |
| 4592 p->nChange = 0; |
| 4593 break; |
| 4594 } |
| 4595 |
| 4596 /* Opcode: SorterCompare P1 P2 P3 P4 |
| 4597 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 |
| 4598 ** |
| 4599 ** P1 is a sorter cursor. This instruction compares a prefix of the |
| 4600 ** record blob in register P3 against a prefix of the entry that |
| 4601 ** the sorter cursor currently points to. Only the first P4 fields |
| 4602 ** of r[P3] and the sorter record are compared. |
| 4603 ** |
| 4604 ** If either P3 or the sorter contains a NULL in one of their significant |
| 4605 ** fields (not counting the P4 fields at the end which are ignored) then |
| 4606 ** the comparison is assumed to be equal. |
| 4607 ** |
| 4608 ** Fall through to next instruction if the two records compare equal to |
| 4609 ** each other. Jump to P2 if they are different. |
| 4610 */ |
| 4611 case OP_SorterCompare: { |
| 4612 VdbeCursor *pC; |
| 4613 int res; |
| 4614 int nKeyCol; |
| 4615 |
| 4616 pC = p->apCsr[pOp->p1]; |
| 4617 assert( isSorter(pC) ); |
| 4618 assert( pOp->p4type==P4_INT32 ); |
| 4619 pIn3 = &aMem[pOp->p3]; |
| 4620 nKeyCol = pOp->p4.i; |
| 4621 res = 0; |
| 4622 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); |
| 4623 VdbeBranchTaken(res!=0,2); |
| 4624 if( rc ) goto abort_due_to_error; |
| 4625 if( res ) goto jump_to_p2; |
| 4626 break; |
| 4627 }; |
| 4628 |
| 4629 /* Opcode: SorterData P1 P2 P3 * * |
| 4630 ** Synopsis: r[P2]=data |
| 4631 ** |
| 4632 ** Write into register P2 the current sorter data for sorter cursor P1. |
| 4633 ** Then clear the column header cache on cursor P3. |
| 4634 ** |
| 4635 ** This opcode is normally use to move a record out of the sorter and into |
| 4636 ** a register that is the source for a pseudo-table cursor created using |
| 4637 ** OpenPseudo. That pseudo-table cursor is the one that is identified by |
| 4638 ** parameter P3. Clearing the P3 column cache as part of this opcode saves |
| 4639 ** us from having to issue a separate NullRow instruction to clear that cache. |
| 4640 */ |
| 4641 case OP_SorterData: { |
| 4642 VdbeCursor *pC; |
| 4643 |
| 4644 pOut = &aMem[pOp->p2]; |
| 4645 pC = p->apCsr[pOp->p1]; |
| 4646 assert( isSorter(pC) ); |
| 4647 rc = sqlite3VdbeSorterRowkey(pC, pOut); |
| 4648 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); |
| 4649 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4650 if( rc ) goto abort_due_to_error; |
| 4651 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; |
| 4652 break; |
| 4653 } |
| 4654 |
| 4655 /* Opcode: RowData P1 P2 P3 * * |
| 4656 ** Synopsis: r[P2]=data |
| 4657 ** |
| 4658 ** Write into register P2 the complete row content for the row at |
| 4659 ** which cursor P1 is currently pointing. |
| 4660 ** There is no interpretation of the data. |
| 4661 ** It is just copied onto the P2 register exactly as |
| 4662 ** it is found in the database file. |
| 4663 ** |
| 4664 ** If cursor P1 is an index, then the content is the key of the row. |
| 4665 ** If cursor P2 is a table, then the content extracted is the data. |
| 4666 ** |
| 4667 ** If the P1 cursor must be pointing to a valid row (not a NULL row) |
| 4668 ** of a real table, not a pseudo-table. |
| 4669 ** |
| 4670 ** If P3!=0 then this opcode is allowed to make an ephermeral pointer |
| 4671 ** into the database page. That means that the content of the output |
| 4672 ** register will be invalidated as soon as the cursor moves - including |
| 4673 ** moves caused by other cursors that "save" the the current cursors |
| 4674 ** position in order that they can write to the same table. If P3==0 |
| 4675 ** then a copy of the data is made into memory. P3!=0 is faster, but |
| 4676 ** P3==0 is safer. |
| 4677 ** |
| 4678 ** If P3!=0 then the content of the P2 register is unsuitable for use |
| 4679 ** in OP_Result and any OP_Result will invalidate the P2 register content. |
| 4680 ** The P2 register content is invalidated by opcodes like OP_Function or |
| 4681 ** by any use of another cursor pointing to the same table. |
| 4682 */ |
| 4683 case OP_RowData: { |
| 4684 VdbeCursor *pC; |
| 4685 BtCursor *pCrsr; |
| 4686 u32 n; |
| 4687 |
| 4688 pOut = out2Prerelease(p, pOp); |
| 4689 |
| 4690 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4691 pC = p->apCsr[pOp->p1]; |
| 4692 assert( pC!=0 ); |
| 4693 assert( pC->eCurType==CURTYPE_BTREE ); |
| 4694 assert( isSorter(pC)==0 ); |
| 4695 assert( pC->nullRow==0 ); |
| 4696 assert( pC->uc.pCursor!=0 ); |
| 4697 pCrsr = pC->uc.pCursor; |
| 4698 |
| 4699 /* The OP_RowData opcodes always follow OP_NotExists or |
| 4700 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions |
| 4701 ** that might invalidate the cursor. |
| 4702 ** If this where not the case, on of the following assert()s |
| 4703 ** would fail. Should this ever change (because of changes in the code |
| 4704 ** generator) then the fix would be to insert a call to |
| 4705 ** sqlite3VdbeCursorMoveto(). |
| 4706 */ |
| 4707 assert( pC->deferredMoveto==0 ); |
| 4708 assert( sqlite3BtreeCursorIsValid(pCrsr) ); |
| 4709 #if 0 /* Not required due to the previous to assert() statements */ |
| 4710 rc = sqlite3VdbeCursorMoveto(pC); |
| 4711 if( rc!=SQLITE_OK ) goto abort_due_to_error; |
| 4712 #endif |
| 4713 |
| 4714 n = sqlite3BtreePayloadSize(pCrsr); |
| 4715 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
| 4716 goto too_big; |
| 4717 } |
| 4718 testcase( n==0 ); |
| 4719 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut); |
| 4720 if( rc ) goto abort_due_to_error; |
| 4721 if( !pOp->p3 ) Deephemeralize(pOut); |
| 4722 UPDATE_MAX_BLOBSIZE(pOut); |
| 4723 REGISTER_TRACE(pOp->p2, pOut); |
| 4724 break; |
| 4725 } |
| 4726 |
| 4727 /* Opcode: Rowid P1 P2 * * * |
| 4728 ** Synopsis: r[P2]=rowid |
| 4729 ** |
| 4730 ** Store in register P2 an integer which is the key of the table entry that |
| 4731 ** P1 is currently point to. |
| 4732 ** |
| 4733 ** P1 can be either an ordinary table or a virtual table. There used to |
| 4734 ** be a separate OP_VRowid opcode for use with virtual tables, but this |
| 4735 ** one opcode now works for both table types. |
| 4736 */ |
| 4737 case OP_Rowid: { /* out2 */ |
| 4738 VdbeCursor *pC; |
| 4739 i64 v; |
| 4740 sqlite3_vtab *pVtab; |
| 4741 const sqlite3_module *pModule; |
| 4742 |
| 4743 pOut = out2Prerelease(p, pOp); |
| 4744 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4745 pC = p->apCsr[pOp->p1]; |
| 4746 assert( pC!=0 ); |
| 4747 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); |
| 4748 if( pC->nullRow ){ |
| 4749 pOut->flags = MEM_Null; |
| 4750 break; |
| 4751 }else if( pC->deferredMoveto ){ |
| 4752 v = pC->movetoTarget; |
| 4753 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 4754 }else if( pC->eCurType==CURTYPE_VTAB ){ |
| 4755 assert( pC->uc.pVCur!=0 ); |
| 4756 pVtab = pC->uc.pVCur->pVtab; |
| 4757 pModule = pVtab->pModule; |
| 4758 assert( pModule->xRowid ); |
| 4759 rc = pModule->xRowid(pC->uc.pVCur, &v); |
| 4760 sqlite3VtabImportErrmsg(p, pVtab); |
| 4761 if( rc ) goto abort_due_to_error; |
| 4762 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 4763 }else{ |
| 4764 assert( pC->eCurType==CURTYPE_BTREE ); |
| 4765 assert( pC->uc.pCursor!=0 ); |
| 4766 rc = sqlite3VdbeCursorRestore(pC); |
| 4767 if( rc ) goto abort_due_to_error; |
| 4768 if( pC->nullRow ){ |
| 4769 pOut->flags = MEM_Null; |
| 4770 break; |
| 4771 } |
| 4772 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); |
| 4773 } |
| 4774 pOut->u.i = v; |
| 4775 break; |
| 4776 } |
| 4777 |
| 4778 /* Opcode: NullRow P1 * * * * |
| 4779 ** |
| 4780 ** Move the cursor P1 to a null row. Any OP_Column operations |
| 4781 ** that occur while the cursor is on the null row will always |
| 4782 ** write a NULL. |
| 4783 */ |
| 4784 case OP_NullRow: { |
| 4785 VdbeCursor *pC; |
| 4786 |
| 4787 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4788 pC = p->apCsr[pOp->p1]; |
| 4789 assert( pC!=0 ); |
| 4790 pC->nullRow = 1; |
| 4791 pC->cacheStatus = CACHE_STALE; |
| 4792 if( pC->eCurType==CURTYPE_BTREE ){ |
| 4793 assert( pC->uc.pCursor!=0 ); |
| 4794 sqlite3BtreeClearCursor(pC->uc.pCursor); |
| 4795 } |
| 4796 break; |
| 4797 } |
| 4798 |
| 4799 /* Opcode: Last P1 P2 P3 * * |
| 4800 ** |
| 4801 ** The next use of the Rowid or Column or Prev instruction for P1 |
| 4802 ** will refer to the last entry in the database table or index. |
| 4803 ** If the table or index is empty and P2>0, then jump immediately to P2. |
| 4804 ** If P2 is 0 or if the table or index is not empty, fall through |
| 4805 ** to the following instruction. |
| 4806 ** |
| 4807 ** This opcode leaves the cursor configured to move in reverse order, |
| 4808 ** from the end toward the beginning. In other words, the cursor is |
| 4809 ** configured to use Prev, not Next. |
| 4810 ** |
| 4811 ** If P3 is -1, then the cursor is positioned at the end of the btree |
| 4812 ** for the purpose of appending a new entry onto the btree. In that |
| 4813 ** case P2 must be 0. It is assumed that the cursor is used only for |
| 4814 ** appending and so if the cursor is valid, then the cursor must already |
| 4815 ** be pointing at the end of the btree and so no changes are made to |
| 4816 ** the cursor. |
| 4817 */ |
| 4818 case OP_Last: { /* jump */ |
| 4819 VdbeCursor *pC; |
| 4820 BtCursor *pCrsr; |
| 4821 int res; |
| 4822 |
| 4823 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4824 pC = p->apCsr[pOp->p1]; |
| 4825 assert( pC!=0 ); |
| 4826 assert( pC->eCurType==CURTYPE_BTREE ); |
| 4827 pCrsr = pC->uc.pCursor; |
| 4828 res = 0; |
| 4829 assert( pCrsr!=0 ); |
| 4830 pC->seekResult = pOp->p3; |
| 4831 #ifdef SQLITE_DEBUG |
| 4832 pC->seekOp = OP_Last; |
| 4833 #endif |
| 4834 if( pOp->p3==0 || !sqlite3BtreeCursorIsValidNN(pCrsr) ){ |
| 4835 rc = sqlite3BtreeLast(pCrsr, &res); |
| 4836 pC->nullRow = (u8)res; |
| 4837 pC->deferredMoveto = 0; |
| 4838 pC->cacheStatus = CACHE_STALE; |
| 4839 if( rc ) goto abort_due_to_error; |
| 4840 if( pOp->p2>0 ){ |
| 4841 VdbeBranchTaken(res!=0,2); |
| 4842 if( res ) goto jump_to_p2; |
| 4843 } |
| 4844 }else{ |
| 4845 assert( pOp->p2==0 ); |
| 4846 } |
| 4847 break; |
| 4848 } |
| 4849 |
| 4850 |
| 4851 /* Opcode: SorterSort P1 P2 * * * |
| 4852 ** |
| 4853 ** After all records have been inserted into the Sorter object |
| 4854 ** identified by P1, invoke this opcode to actually do the sorting. |
| 4855 ** Jump to P2 if there are no records to be sorted. |
| 4856 ** |
| 4857 ** This opcode is an alias for OP_Sort and OP_Rewind that is used |
| 4858 ** for Sorter objects. |
| 4859 */ |
| 4860 /* Opcode: Sort P1 P2 * * * |
| 4861 ** |
| 4862 ** This opcode does exactly the same thing as OP_Rewind except that |
| 4863 ** it increments an undocumented global variable used for testing. |
| 4864 ** |
| 4865 ** Sorting is accomplished by writing records into a sorting index, |
| 4866 ** then rewinding that index and playing it back from beginning to |
| 4867 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the |
| 4868 ** rewinding so that the global variable will be incremented and |
| 4869 ** regression tests can determine whether or not the optimizer is |
| 4870 ** correctly optimizing out sorts. |
| 4871 */ |
| 4872 case OP_SorterSort: /* jump */ |
| 4873 case OP_Sort: { /* jump */ |
| 4874 #ifdef SQLITE_TEST |
| 4875 sqlite3_sort_count++; |
| 4876 sqlite3_search_count--; |
| 4877 #endif |
| 4878 p->aCounter[SQLITE_STMTSTATUS_SORT]++; |
| 4879 /* Fall through into OP_Rewind */ |
| 4880 } |
| 4881 /* Opcode: Rewind P1 P2 * * * |
| 4882 ** |
| 4883 ** The next use of the Rowid or Column or Next instruction for P1 |
| 4884 ** will refer to the first entry in the database table or index. |
| 4885 ** If the table or index is empty, jump immediately to P2. |
| 4886 ** If the table or index is not empty, fall through to the following |
| 4887 ** instruction. |
| 4888 ** |
| 4889 ** This opcode leaves the cursor configured to move in forward order, |
| 4890 ** from the beginning toward the end. In other words, the cursor is |
| 4891 ** configured to use Next, not Prev. |
| 4892 */ |
| 4893 case OP_Rewind: { /* jump */ |
| 4894 VdbeCursor *pC; |
| 4895 BtCursor *pCrsr; |
| 4896 int res; |
| 4897 |
| 4898 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 4899 pC = p->apCsr[pOp->p1]; |
| 4900 assert( pC!=0 ); |
| 4901 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); |
| 4902 res = 1; |
| 4903 #ifdef SQLITE_DEBUG |
| 4904 pC->seekOp = OP_Rewind; |
| 4905 #endif |
| 4906 if( isSorter(pC) ){ |
| 4907 rc = sqlite3VdbeSorterRewind(pC, &res); |
| 4908 }else{ |
| 4909 assert( pC->eCurType==CURTYPE_BTREE ); |
| 4910 pCrsr = pC->uc.pCursor; |
| 4911 assert( pCrsr ); |
| 4912 rc = sqlite3BtreeFirst(pCrsr, &res); |
| 4913 pC->deferredMoveto = 0; |
| 4914 pC->cacheStatus = CACHE_STALE; |
| 4915 } |
| 4916 if( rc ) goto abort_due_to_error; |
| 4917 pC->nullRow = (u8)res; |
| 4918 assert( pOp->p2>0 && pOp->p2<p->nOp ); |
| 4919 VdbeBranchTaken(res!=0,2); |
| 4920 if( res ) goto jump_to_p2; |
| 4921 break; |
| 4922 } |
| 4923 |
| 4924 /* Opcode: Next P1 P2 P3 P4 P5 |
| 4925 ** |
| 4926 ** Advance cursor P1 so that it points to the next key/data pair in its |
| 4927 ** table or index. If there are no more key/value pairs then fall through |
| 4928 ** to the following instruction. But if the cursor advance was successful, |
| 4929 ** jump immediately to P2. |
| 4930 ** |
| 4931 ** The Next opcode is only valid following an SeekGT, SeekGE, or |
| 4932 ** OP_Rewind opcode used to position the cursor. Next is not allowed |
| 4933 ** to follow SeekLT, SeekLE, or OP_Last. |
| 4934 ** |
| 4935 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have |
| 4936 ** been opened prior to this opcode or the program will segfault. |
| 4937 ** |
| 4938 ** The P3 value is a hint to the btree implementation. If P3==1, that |
| 4939 ** means P1 is an SQL index and that this instruction could have been |
| 4940 ** omitted if that index had been unique. P3 is usually 0. P3 is |
| 4941 ** always either 0 or 1. |
| 4942 ** |
| 4943 ** P4 is always of type P4_ADVANCE. The function pointer points to |
| 4944 ** sqlite3BtreeNext(). |
| 4945 ** |
| 4946 ** If P5 is positive and the jump is taken, then event counter |
| 4947 ** number P5-1 in the prepared statement is incremented. |
| 4948 ** |
| 4949 ** See also: Prev, NextIfOpen |
| 4950 */ |
| 4951 /* Opcode: NextIfOpen P1 P2 P3 P4 P5 |
| 4952 ** |
| 4953 ** This opcode works just like Next except that if cursor P1 is not |
| 4954 ** open it behaves a no-op. |
| 4955 */ |
| 4956 /* Opcode: Prev P1 P2 P3 P4 P5 |
| 4957 ** |
| 4958 ** Back up cursor P1 so that it points to the previous key/data pair in its |
| 4959 ** table or index. If there is no previous key/value pairs then fall through |
| 4960 ** to the following instruction. But if the cursor backup was successful, |
| 4961 ** jump immediately to P2. |
| 4962 ** |
| 4963 ** |
| 4964 ** The Prev opcode is only valid following an SeekLT, SeekLE, or |
| 4965 ** OP_Last opcode used to position the cursor. Prev is not allowed |
| 4966 ** to follow SeekGT, SeekGE, or OP_Rewind. |
| 4967 ** |
| 4968 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is |
| 4969 ** not open then the behavior is undefined. |
| 4970 ** |
| 4971 ** The P3 value is a hint to the btree implementation. If P3==1, that |
| 4972 ** means P1 is an SQL index and that this instruction could have been |
| 4973 ** omitted if that index had been unique. P3 is usually 0. P3 is |
| 4974 ** always either 0 or 1. |
| 4975 ** |
| 4976 ** P4 is always of type P4_ADVANCE. The function pointer points to |
| 4977 ** sqlite3BtreePrevious(). |
| 4978 ** |
| 4979 ** If P5 is positive and the jump is taken, then event counter |
| 4980 ** number P5-1 in the prepared statement is incremented. |
| 4981 */ |
| 4982 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5 |
| 4983 ** |
| 4984 ** This opcode works just like Prev except that if cursor P1 is not |
| 4985 ** open it behaves a no-op. |
| 4986 */ |
| 4987 /* Opcode: SorterNext P1 P2 * * P5 |
| 4988 ** |
| 4989 ** This opcode works just like OP_Next except that P1 must be a |
| 4990 ** sorter object for which the OP_SorterSort opcode has been |
| 4991 ** invoked. This opcode advances the cursor to the next sorted |
| 4992 ** record, or jumps to P2 if there are no more sorted records. |
| 4993 */ |
| 4994 case OP_SorterNext: { /* jump */ |
| 4995 VdbeCursor *pC; |
| 4996 int res; |
| 4997 |
| 4998 pC = p->apCsr[pOp->p1]; |
| 4999 assert( isSorter(pC) ); |
| 5000 res = 0; |
| 5001 rc = sqlite3VdbeSorterNext(db, pC, &res); |
| 5002 goto next_tail; |
| 5003 case OP_PrevIfOpen: /* jump */ |
| 5004 case OP_NextIfOpen: /* jump */ |
| 5005 if( p->apCsr[pOp->p1]==0 ) break; |
| 5006 /* Fall through */ |
| 5007 case OP_Prev: /* jump */ |
| 5008 case OP_Next: /* jump */ |
| 5009 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 5010 assert( pOp->p5<ArraySize(p->aCounter) ); |
| 5011 pC = p->apCsr[pOp->p1]; |
| 5012 res = pOp->p3; |
| 5013 assert( pC!=0 ); |
| 5014 assert( pC->deferredMoveto==0 ); |
| 5015 assert( pC->eCurType==CURTYPE_BTREE ); |
| 5016 assert( res==0 || (res==1 && pC->isTable==0) ); |
| 5017 testcase( res==1 ); |
| 5018 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); |
| 5019 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); |
| 5020 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext ); |
| 5021 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious); |
| 5022 |
| 5023 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind. |
| 5024 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */ |
| 5025 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen |
| 5026 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE |
| 5027 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found); |
| 5028 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen |
| 5029 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE |
| 5030 || pC->seekOp==OP_Last ); |
| 5031 |
| 5032 rc = pOp->p4.xAdvance(pC->uc.pCursor, &res); |
| 5033 next_tail: |
| 5034 pC->cacheStatus = CACHE_STALE; |
| 5035 VdbeBranchTaken(res==0,2); |
| 5036 if( rc ) goto abort_due_to_error; |
| 5037 if( res==0 ){ |
| 5038 pC->nullRow = 0; |
| 5039 p->aCounter[pOp->p5]++; |
| 5040 #ifdef SQLITE_TEST |
| 5041 sqlite3_search_count++; |
| 5042 #endif |
| 5043 goto jump_to_p2_and_check_for_interrupt; |
| 5044 }else{ |
| 5045 pC->nullRow = 1; |
| 5046 } |
| 5047 goto check_for_interrupt; |
| 5048 } |
| 5049 |
| 5050 /* Opcode: IdxInsert P1 P2 P3 P4 P5 |
| 5051 ** Synopsis: key=r[P2] |
| 5052 ** |
| 5053 ** Register P2 holds an SQL index key made using the |
| 5054 ** MakeRecord instructions. This opcode writes that key |
| 5055 ** into the index P1. Data for the entry is nil. |
| 5056 ** |
| 5057 ** If P4 is not zero, then it is the number of values in the unpacked |
| 5058 ** key of reg(P2). In that case, P3 is the index of the first register |
| 5059 ** for the unpacked key. The availability of the unpacked key can sometimes |
| 5060 ** be an optimization. |
| 5061 ** |
| 5062 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer |
| 5063 ** that this insert is likely to be an append. |
| 5064 ** |
| 5065 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is |
| 5066 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, |
| 5067 ** then the change counter is unchanged. |
| 5068 ** |
| 5069 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might |
| 5070 ** run faster by avoiding an unnecessary seek on cursor P1. However, |
| 5071 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior |
| 5072 ** seeks on the cursor or if the most recent seek used a key equivalent |
| 5073 ** to P2. |
| 5074 ** |
| 5075 ** This instruction only works for indices. The equivalent instruction |
| 5076 ** for tables is OP_Insert. |
| 5077 */ |
| 5078 /* Opcode: SorterInsert P1 P2 * * * |
| 5079 ** Synopsis: key=r[P2] |
| 5080 ** |
| 5081 ** Register P2 holds an SQL index key made using the |
| 5082 ** MakeRecord instructions. This opcode writes that key |
| 5083 ** into the sorter P1. Data for the entry is nil. |
| 5084 */ |
| 5085 case OP_SorterInsert: /* in2 */ |
| 5086 case OP_IdxInsert: { /* in2 */ |
| 5087 VdbeCursor *pC; |
| 5088 BtreePayload x; |
| 5089 |
| 5090 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 5091 pC = p->apCsr[pOp->p1]; |
| 5092 assert( pC!=0 ); |
| 5093 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) ); |
| 5094 pIn2 = &aMem[pOp->p2]; |
| 5095 assert( pIn2->flags & MEM_Blob ); |
| 5096 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; |
| 5097 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert ); |
| 5098 assert( pC->isTable==0 ); |
| 5099 rc = ExpandBlob(pIn2); |
| 5100 if( rc ) goto abort_due_to_error; |
| 5101 if( pOp->opcode==OP_SorterInsert ){ |
| 5102 rc = sqlite3VdbeSorterWrite(pC, pIn2); |
| 5103 }else{ |
| 5104 x.nKey = pIn2->n; |
| 5105 x.pKey = pIn2->z; |
| 5106 x.aMem = aMem + pOp->p3; |
| 5107 x.nMem = (u16)pOp->p4.i; |
| 5108 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, |
| 5109 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), |
| 5110 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) |
| 5111 ); |
| 5112 assert( pC->deferredMoveto==0 ); |
| 5113 pC->cacheStatus = CACHE_STALE; |
| 5114 } |
| 5115 if( rc) goto abort_due_to_error; |
| 5116 break; |
| 5117 } |
| 5118 |
| 5119 /* Opcode: IdxDelete P1 P2 P3 * * |
| 5120 ** Synopsis: key=r[P2@P3] |
| 5121 ** |
| 5122 ** The content of P3 registers starting at register P2 form |
| 5123 ** an unpacked index key. This opcode removes that entry from the |
| 5124 ** index opened by cursor P1. |
| 5125 */ |
| 5126 case OP_IdxDelete: { |
| 5127 VdbeCursor *pC; |
| 5128 BtCursor *pCrsr; |
| 5129 int res; |
| 5130 UnpackedRecord r; |
| 5131 |
| 5132 assert( pOp->p3>0 ); |
| 5133 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); |
| 5134 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 5135 pC = p->apCsr[pOp->p1]; |
| 5136 assert( pC!=0 ); |
| 5137 assert( pC->eCurType==CURTYPE_BTREE ); |
| 5138 pCrsr = pC->uc.pCursor; |
| 5139 assert( pCrsr!=0 ); |
| 5140 assert( pOp->p5==0 ); |
| 5141 r.pKeyInfo = pC->pKeyInfo; |
| 5142 r.nField = (u16)pOp->p3; |
| 5143 r.default_rc = 0; |
| 5144 r.aMem = &aMem[pOp->p2]; |
| 5145 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res); |
| 5146 if( rc ) goto abort_due_to_error; |
| 5147 if( res==0 ){ |
| 5148 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); |
| 5149 if( rc ) goto abort_due_to_error; |
| 5150 } |
| 5151 assert( pC->deferredMoveto==0 ); |
| 5152 pC->cacheStatus = CACHE_STALE; |
| 5153 pC->seekResult = 0; |
| 5154 break; |
| 5155 } |
| 5156 |
| 5157 /* Opcode: Seek P1 * P3 P4 * |
| 5158 ** Synopsis: Move P3 to P1.rowid |
| 5159 ** |
| 5160 ** P1 is an open index cursor and P3 is a cursor on the corresponding |
| 5161 ** table. This opcode does a deferred seek of the P3 table cursor |
| 5162 ** to the row that corresponds to the current row of P1. |
| 5163 ** |
| 5164 ** This is a deferred seek. Nothing actually happens until |
| 5165 ** the cursor is used to read a record. That way, if no reads |
| 5166 ** occur, no unnecessary I/O happens. |
| 5167 ** |
| 5168 ** P4 may be an array of integers (type P4_INTARRAY) containing |
| 5169 ** one entry for each column in the P3 table. If array entry a(i) |
| 5170 ** is non-zero, then reading column a(i)-1 from cursor P3 is |
| 5171 ** equivalent to performing the deferred seek and then reading column i |
| 5172 ** from P1. This information is stored in P3 and used to redirect |
| 5173 ** reads against P3 over to P1, thus possibly avoiding the need to |
| 5174 ** seek and read cursor P3. |
| 5175 */ |
| 5176 /* Opcode: IdxRowid P1 P2 * * * |
| 5177 ** Synopsis: r[P2]=rowid |
| 5178 ** |
| 5179 ** Write into register P2 an integer which is the last entry in the record at |
| 5180 ** the end of the index key pointed to by cursor P1. This integer should be |
| 5181 ** the rowid of the table entry to which this index entry points. |
| 5182 ** |
| 5183 ** See also: Rowid, MakeRecord. |
| 5184 */ |
| 5185 case OP_Seek: |
| 5186 case OP_IdxRowid: { /* out2 */ |
| 5187 VdbeCursor *pC; /* The P1 index cursor */ |
| 5188 VdbeCursor *pTabCur; /* The P2 table cursor (OP_Seek only) */ |
| 5189 i64 rowid; /* Rowid that P1 current points to */ |
| 5190 |
| 5191 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 5192 pC = p->apCsr[pOp->p1]; |
| 5193 assert( pC!=0 ); |
| 5194 assert( pC->eCurType==CURTYPE_BTREE ); |
| 5195 assert( pC->uc.pCursor!=0 ); |
| 5196 assert( pC->isTable==0 ); |
| 5197 assert( pC->deferredMoveto==0 ); |
| 5198 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); |
| 5199 |
| 5200 /* The IdxRowid and Seek opcodes are combined because of the commonality |
| 5201 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ |
| 5202 rc = sqlite3VdbeCursorRestore(pC); |
| 5203 |
| 5204 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted |
| 5205 ** out from under the cursor. That will never happens for an IdxRowid |
| 5206 ** or Seek opcode */ |
| 5207 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error; |
| 5208 |
| 5209 if( !pC->nullRow ){ |
| 5210 rowid = 0; /* Not needed. Only used to silence a warning. */ |
| 5211 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); |
| 5212 if( rc!=SQLITE_OK ){ |
| 5213 goto abort_due_to_error; |
| 5214 } |
| 5215 if( pOp->opcode==OP_Seek ){ |
| 5216 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); |
| 5217 pTabCur = p->apCsr[pOp->p3]; |
| 5218 assert( pTabCur!=0 ); |
| 5219 assert( pTabCur->eCurType==CURTYPE_BTREE ); |
| 5220 assert( pTabCur->uc.pCursor!=0 ); |
| 5221 assert( pTabCur->isTable ); |
| 5222 pTabCur->nullRow = 0; |
| 5223 pTabCur->movetoTarget = rowid; |
| 5224 pTabCur->deferredMoveto = 1; |
| 5225 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); |
| 5226 pTabCur->aAltMap = pOp->p4.ai; |
| 5227 pTabCur->pAltCursor = pC; |
| 5228 }else{ |
| 5229 pOut = out2Prerelease(p, pOp); |
| 5230 pOut->u.i = rowid; |
| 5231 } |
| 5232 }else{ |
| 5233 assert( pOp->opcode==OP_IdxRowid ); |
| 5234 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); |
| 5235 } |
| 5236 break; |
| 5237 } |
| 5238 |
| 5239 /* Opcode: IdxGE P1 P2 P3 P4 P5 |
| 5240 ** Synopsis: key=r[P3@P4] |
| 5241 ** |
| 5242 ** The P4 register values beginning with P3 form an unpacked index |
| 5243 ** key that omits the PRIMARY KEY. Compare this key value against the index |
| 5244 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID |
| 5245 ** fields at the end. |
| 5246 ** |
| 5247 ** If the P1 index entry is greater than or equal to the key value |
| 5248 ** then jump to P2. Otherwise fall through to the next instruction. |
| 5249 */ |
| 5250 /* Opcode: IdxGT P1 P2 P3 P4 P5 |
| 5251 ** Synopsis: key=r[P3@P4] |
| 5252 ** |
| 5253 ** The P4 register values beginning with P3 form an unpacked index |
| 5254 ** key that omits the PRIMARY KEY. Compare this key value against the index |
| 5255 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID |
| 5256 ** fields at the end. |
| 5257 ** |
| 5258 ** If the P1 index entry is greater than the key value |
| 5259 ** then jump to P2. Otherwise fall through to the next instruction. |
| 5260 */ |
| 5261 /* Opcode: IdxLT P1 P2 P3 P4 P5 |
| 5262 ** Synopsis: key=r[P3@P4] |
| 5263 ** |
| 5264 ** The P4 register values beginning with P3 form an unpacked index |
| 5265 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against |
| 5266 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or |
| 5267 ** ROWID on the P1 index. |
| 5268 ** |
| 5269 ** If the P1 index entry is less than the key value then jump to P2. |
| 5270 ** Otherwise fall through to the next instruction. |
| 5271 */ |
| 5272 /* Opcode: IdxLE P1 P2 P3 P4 P5 |
| 5273 ** Synopsis: key=r[P3@P4] |
| 5274 ** |
| 5275 ** The P4 register values beginning with P3 form an unpacked index |
| 5276 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against |
| 5277 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or |
| 5278 ** ROWID on the P1 index. |
| 5279 ** |
| 5280 ** If the P1 index entry is less than or equal to the key value then jump |
| 5281 ** to P2. Otherwise fall through to the next instruction. |
| 5282 */ |
| 5283 case OP_IdxLE: /* jump */ |
| 5284 case OP_IdxGT: /* jump */ |
| 5285 case OP_IdxLT: /* jump */ |
| 5286 case OP_IdxGE: { /* jump */ |
| 5287 VdbeCursor *pC; |
| 5288 int res; |
| 5289 UnpackedRecord r; |
| 5290 |
| 5291 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 5292 pC = p->apCsr[pOp->p1]; |
| 5293 assert( pC!=0 ); |
| 5294 assert( pC->isOrdered ); |
| 5295 assert( pC->eCurType==CURTYPE_BTREE ); |
| 5296 assert( pC->uc.pCursor!=0); |
| 5297 assert( pC->deferredMoveto==0 ); |
| 5298 assert( pOp->p5==0 || pOp->p5==1 ); |
| 5299 assert( pOp->p4type==P4_INT32 ); |
| 5300 r.pKeyInfo = pC->pKeyInfo; |
| 5301 r.nField = (u16)pOp->p4.i; |
| 5302 if( pOp->opcode<OP_IdxLT ){ |
| 5303 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); |
| 5304 r.default_rc = -1; |
| 5305 }else{ |
| 5306 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); |
| 5307 r.default_rc = 0; |
| 5308 } |
| 5309 r.aMem = &aMem[pOp->p3]; |
| 5310 #ifdef SQLITE_DEBUG |
| 5311 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); } |
| 5312 #endif |
| 5313 res = 0; /* Not needed. Only used to silence a warning. */ |
| 5314 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); |
| 5315 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); |
| 5316 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ |
| 5317 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); |
| 5318 res = -res; |
| 5319 }else{ |
| 5320 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); |
| 5321 res++; |
| 5322 } |
| 5323 VdbeBranchTaken(res>0,2); |
| 5324 if( rc ) goto abort_due_to_error; |
| 5325 if( res>0 ) goto jump_to_p2; |
| 5326 break; |
| 5327 } |
| 5328 |
| 5329 /* Opcode: Destroy P1 P2 P3 * * |
| 5330 ** |
| 5331 ** Delete an entire database table or index whose root page in the database |
| 5332 ** file is given by P1. |
| 5333 ** |
| 5334 ** The table being destroyed is in the main database file if P3==0. If |
| 5335 ** P3==1 then the table to be clear is in the auxiliary database file |
| 5336 ** that is used to store tables create using CREATE TEMPORARY TABLE. |
| 5337 ** |
| 5338 ** If AUTOVACUUM is enabled then it is possible that another root page |
| 5339 ** might be moved into the newly deleted root page in order to keep all |
| 5340 ** root pages contiguous at the beginning of the database. The former |
| 5341 ** value of the root page that moved - its value before the move occurred - |
| 5342 ** is stored in register P2. If no page |
| 5343 ** movement was required (because the table being dropped was already |
| 5344 ** the last one in the database) then a zero is stored in register P2. |
| 5345 ** If AUTOVACUUM is disabled then a zero is stored in register P2. |
| 5346 ** |
| 5347 ** See also: Clear |
| 5348 */ |
| 5349 case OP_Destroy: { /* out2 */ |
| 5350 int iMoved; |
| 5351 int iDb; |
| 5352 |
| 5353 assert( p->readOnly==0 ); |
| 5354 assert( pOp->p1>1 ); |
| 5355 pOut = out2Prerelease(p, pOp); |
| 5356 pOut->flags = MEM_Null; |
| 5357 if( db->nVdbeRead > db->nVDestroy+1 ){ |
| 5358 rc = SQLITE_LOCKED; |
| 5359 p->errorAction = OE_Abort; |
| 5360 goto abort_due_to_error; |
| 5361 }else{ |
| 5362 iDb = pOp->p3; |
| 5363 assert( DbMaskTest(p->btreeMask, iDb) ); |
| 5364 iMoved = 0; /* Not needed. Only to silence a warning. */ |
| 5365 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); |
| 5366 pOut->flags = MEM_Int; |
| 5367 pOut->u.i = iMoved; |
| 5368 if( rc ) goto abort_due_to_error; |
| 5369 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 5370 if( iMoved!=0 ){ |
| 5371 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); |
| 5372 /* All OP_Destroy operations occur on the same btree */ |
| 5373 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); |
| 5374 resetSchemaOnFault = iDb+1; |
| 5375 } |
| 5376 #endif |
| 5377 } |
| 5378 break; |
| 5379 } |
| 5380 |
| 5381 /* Opcode: Clear P1 P2 P3 |
| 5382 ** |
| 5383 ** Delete all contents of the database table or index whose root page |
| 5384 ** in the database file is given by P1. But, unlike Destroy, do not |
| 5385 ** remove the table or index from the database file. |
| 5386 ** |
| 5387 ** The table being clear is in the main database file if P2==0. If |
| 5388 ** P2==1 then the table to be clear is in the auxiliary database file |
| 5389 ** that is used to store tables create using CREATE TEMPORARY TABLE. |
| 5390 ** |
| 5391 ** If the P3 value is non-zero, then the table referred to must be an |
| 5392 ** intkey table (an SQL table, not an index). In this case the row change |
| 5393 ** count is incremented by the number of rows in the table being cleared. |
| 5394 ** If P3 is greater than zero, then the value stored in register P3 is |
| 5395 ** also incremented by the number of rows in the table being cleared. |
| 5396 ** |
| 5397 ** See also: Destroy |
| 5398 */ |
| 5399 case OP_Clear: { |
| 5400 int nChange; |
| 5401 |
| 5402 nChange = 0; |
| 5403 assert( p->readOnly==0 ); |
| 5404 assert( DbMaskTest(p->btreeMask, pOp->p2) ); |
| 5405 rc = sqlite3BtreeClearTable( |
| 5406 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0) |
| 5407 ); |
| 5408 if( pOp->p3 ){ |
| 5409 p->nChange += nChange; |
| 5410 if( pOp->p3>0 ){ |
| 5411 assert( memIsValid(&aMem[pOp->p3]) ); |
| 5412 memAboutToChange(p, &aMem[pOp->p3]); |
| 5413 aMem[pOp->p3].u.i += nChange; |
| 5414 } |
| 5415 } |
| 5416 if( rc ) goto abort_due_to_error; |
| 5417 break; |
| 5418 } |
| 5419 |
| 5420 /* Opcode: ResetSorter P1 * * * * |
| 5421 ** |
| 5422 ** Delete all contents from the ephemeral table or sorter |
| 5423 ** that is open on cursor P1. |
| 5424 ** |
| 5425 ** This opcode only works for cursors used for sorting and |
| 5426 ** opened with OP_OpenEphemeral or OP_SorterOpen. |
| 5427 */ |
| 5428 case OP_ResetSorter: { |
| 5429 VdbeCursor *pC; |
| 5430 |
| 5431 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 5432 pC = p->apCsr[pOp->p1]; |
| 5433 assert( pC!=0 ); |
| 5434 if( isSorter(pC) ){ |
| 5435 sqlite3VdbeSorterReset(db, pC->uc.pSorter); |
| 5436 }else{ |
| 5437 assert( pC->eCurType==CURTYPE_BTREE ); |
| 5438 assert( pC->isEphemeral ); |
| 5439 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); |
| 5440 if( rc ) goto abort_due_to_error; |
| 5441 } |
| 5442 break; |
| 5443 } |
| 5444 |
| 5445 /* Opcode: CreateTable P1 P2 * * * |
| 5446 ** Synopsis: r[P2]=root iDb=P1 |
| 5447 ** |
| 5448 ** Allocate a new table in the main database file if P1==0 or in the |
| 5449 ** auxiliary database file if P1==1 or in an attached database if |
| 5450 ** P1>1. Write the root page number of the new table into |
| 5451 ** register P2 |
| 5452 ** |
| 5453 ** The difference between a table and an index is this: A table must |
| 5454 ** have a 4-byte integer key and can have arbitrary data. An index |
| 5455 ** has an arbitrary key but no data. |
| 5456 ** |
| 5457 ** See also: CreateIndex |
| 5458 */ |
| 5459 /* Opcode: CreateIndex P1 P2 * * * |
| 5460 ** Synopsis: r[P2]=root iDb=P1 |
| 5461 ** |
| 5462 ** Allocate a new index in the main database file if P1==0 or in the |
| 5463 ** auxiliary database file if P1==1 or in an attached database if |
| 5464 ** P1>1. Write the root page number of the new table into |
| 5465 ** register P2. |
| 5466 ** |
| 5467 ** See documentation on OP_CreateTable for additional information. |
| 5468 */ |
| 5469 case OP_CreateIndex: /* out2 */ |
| 5470 case OP_CreateTable: { /* out2 */ |
| 5471 int pgno; |
| 5472 int flags; |
| 5473 Db *pDb; |
| 5474 |
| 5475 pOut = out2Prerelease(p, pOp); |
| 5476 pgno = 0; |
| 5477 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
| 5478 assert( DbMaskTest(p->btreeMask, pOp->p1) ); |
| 5479 assert( p->readOnly==0 ); |
| 5480 pDb = &db->aDb[pOp->p1]; |
| 5481 assert( pDb->pBt!=0 ); |
| 5482 if( pOp->opcode==OP_CreateTable ){ |
| 5483 /* flags = BTREE_INTKEY; */ |
| 5484 flags = BTREE_INTKEY; |
| 5485 }else{ |
| 5486 flags = BTREE_BLOBKEY; |
| 5487 } |
| 5488 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); |
| 5489 if( rc ) goto abort_due_to_error; |
| 5490 pOut->u.i = pgno; |
| 5491 break; |
| 5492 } |
| 5493 |
| 5494 /* Opcode: ParseSchema P1 * * P4 * |
| 5495 ** |
| 5496 ** Read and parse all entries from the SQLITE_MASTER table of database P1 |
| 5497 ** that match the WHERE clause P4. |
| 5498 ** |
| 5499 ** This opcode invokes the parser to create a new virtual machine, |
| 5500 ** then runs the new virtual machine. It is thus a re-entrant opcode. |
| 5501 */ |
| 5502 case OP_ParseSchema: { |
| 5503 int iDb; |
| 5504 const char *zMaster; |
| 5505 char *zSql; |
| 5506 InitData initData; |
| 5507 |
| 5508 /* Any prepared statement that invokes this opcode will hold mutexes |
| 5509 ** on every btree. This is a prerequisite for invoking |
| 5510 ** sqlite3InitCallback(). |
| 5511 */ |
| 5512 #ifdef SQLITE_DEBUG |
| 5513 for(iDb=0; iDb<db->nDb; iDb++){ |
| 5514 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); |
| 5515 } |
| 5516 #endif |
| 5517 |
| 5518 iDb = pOp->p1; |
| 5519 assert( iDb>=0 && iDb<db->nDb ); |
| 5520 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) ); |
| 5521 /* Used to be a conditional */ { |
| 5522 zMaster = MASTER_NAME; |
| 5523 initData.db = db; |
| 5524 initData.iDb = pOp->p1; |
| 5525 initData.pzErrMsg = &p->zErrMsg; |
| 5526 zSql = sqlite3MPrintf(db, |
| 5527 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", |
| 5528 db->aDb[iDb].zDbSName, zMaster, pOp->p4.z); |
| 5529 if( zSql==0 ){ |
| 5530 rc = SQLITE_NOMEM_BKPT; |
| 5531 }else{ |
| 5532 assert( db->init.busy==0 ); |
| 5533 db->init.busy = 1; |
| 5534 initData.rc = SQLITE_OK; |
| 5535 assert( !db->mallocFailed ); |
| 5536 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); |
| 5537 if( rc==SQLITE_OK ) rc = initData.rc; |
| 5538 sqlite3DbFree(db, zSql); |
| 5539 db->init.busy = 0; |
| 5540 } |
| 5541 } |
| 5542 if( rc ){ |
| 5543 sqlite3ResetAllSchemasOfConnection(db); |
| 5544 if( rc==SQLITE_NOMEM ){ |
| 5545 goto no_mem; |
| 5546 } |
| 5547 goto abort_due_to_error; |
| 5548 } |
| 5549 break; |
| 5550 } |
| 5551 |
| 5552 #if !defined(SQLITE_OMIT_ANALYZE) |
| 5553 /* Opcode: LoadAnalysis P1 * * * * |
| 5554 ** |
| 5555 ** Read the sqlite_stat1 table for database P1 and load the content |
| 5556 ** of that table into the internal index hash table. This will cause |
| 5557 ** the analysis to be used when preparing all subsequent queries. |
| 5558 */ |
| 5559 case OP_LoadAnalysis: { |
| 5560 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
| 5561 rc = sqlite3AnalysisLoad(db, pOp->p1); |
| 5562 if( rc ) goto abort_due_to_error; |
| 5563 break; |
| 5564 } |
| 5565 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ |
| 5566 |
| 5567 /* Opcode: DropTable P1 * * P4 * |
| 5568 ** |
| 5569 ** Remove the internal (in-memory) data structures that describe |
| 5570 ** the table named P4 in database P1. This is called after a table |
| 5571 ** is dropped from disk (using the Destroy opcode) in order to keep |
| 5572 ** the internal representation of the |
| 5573 ** schema consistent with what is on disk. |
| 5574 */ |
| 5575 case OP_DropTable: { |
| 5576 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); |
| 5577 break; |
| 5578 } |
| 5579 |
| 5580 /* Opcode: DropIndex P1 * * P4 * |
| 5581 ** |
| 5582 ** Remove the internal (in-memory) data structures that describe |
| 5583 ** the index named P4 in database P1. This is called after an index |
| 5584 ** is dropped from disk (using the Destroy opcode) |
| 5585 ** in order to keep the internal representation of the |
| 5586 ** schema consistent with what is on disk. |
| 5587 */ |
| 5588 case OP_DropIndex: { |
| 5589 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); |
| 5590 break; |
| 5591 } |
| 5592 |
| 5593 /* Opcode: DropTrigger P1 * * P4 * |
| 5594 ** |
| 5595 ** Remove the internal (in-memory) data structures that describe |
| 5596 ** the trigger named P4 in database P1. This is called after a trigger |
| 5597 ** is dropped from disk (using the Destroy opcode) in order to keep |
| 5598 ** the internal representation of the |
| 5599 ** schema consistent with what is on disk. |
| 5600 */ |
| 5601 case OP_DropTrigger: { |
| 5602 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); |
| 5603 break; |
| 5604 } |
| 5605 |
| 5606 |
| 5607 #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| 5608 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 |
| 5609 ** |
| 5610 ** Do an analysis of the currently open database. Store in |
| 5611 ** register P1 the text of an error message describing any problems. |
| 5612 ** If no problems are found, store a NULL in register P1. |
| 5613 ** |
| 5614 ** The register P3 contains the maximum number of allowed errors. |
| 5615 ** At most reg(P3) errors will be reported. |
| 5616 ** In other words, the analysis stops as soon as reg(P1) errors are |
| 5617 ** seen. Reg(P1) is updated with the number of errors remaining. |
| 5618 ** |
| 5619 ** The root page numbers of all tables in the database are integers |
| 5620 ** stored in P4_INTARRAY argument. |
| 5621 ** |
| 5622 ** If P5 is not zero, the check is done on the auxiliary database |
| 5623 ** file, not the main database file. |
| 5624 ** |
| 5625 ** This opcode is used to implement the integrity_check pragma. |
| 5626 */ |
| 5627 case OP_IntegrityCk: { |
| 5628 int nRoot; /* Number of tables to check. (Number of root pages.) */ |
| 5629 int *aRoot; /* Array of rootpage numbers for tables to be checked */ |
| 5630 int nErr; /* Number of errors reported */ |
| 5631 char *z; /* Text of the error report */ |
| 5632 Mem *pnErr; /* Register keeping track of errors remaining */ |
| 5633 |
| 5634 assert( p->bIsReader ); |
| 5635 nRoot = pOp->p2; |
| 5636 aRoot = pOp->p4.ai; |
| 5637 assert( nRoot>0 ); |
| 5638 assert( aRoot[nRoot]==0 ); |
| 5639 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); |
| 5640 pnErr = &aMem[pOp->p3]; |
| 5641 assert( (pnErr->flags & MEM_Int)!=0 ); |
| 5642 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); |
| 5643 pIn1 = &aMem[pOp->p1]; |
| 5644 assert( pOp->p5<db->nDb ); |
| 5645 assert( DbMaskTest(p->btreeMask, pOp->p5) ); |
| 5646 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, |
| 5647 (int)pnErr->u.i, &nErr); |
| 5648 pnErr->u.i -= nErr; |
| 5649 sqlite3VdbeMemSetNull(pIn1); |
| 5650 if( nErr==0 ){ |
| 5651 assert( z==0 ); |
| 5652 }else if( z==0 ){ |
| 5653 goto no_mem; |
| 5654 }else{ |
| 5655 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); |
| 5656 } |
| 5657 UPDATE_MAX_BLOBSIZE(pIn1); |
| 5658 sqlite3VdbeChangeEncoding(pIn1, encoding); |
| 5659 break; |
| 5660 } |
| 5661 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| 5662 |
| 5663 /* Opcode: RowSetAdd P1 P2 * * * |
| 5664 ** Synopsis: rowset(P1)=r[P2] |
| 5665 ** |
| 5666 ** Insert the integer value held by register P2 into a boolean index |
| 5667 ** held in register P1. |
| 5668 ** |
| 5669 ** An assertion fails if P2 is not an integer. |
| 5670 */ |
| 5671 case OP_RowSetAdd: { /* in1, in2 */ |
| 5672 pIn1 = &aMem[pOp->p1]; |
| 5673 pIn2 = &aMem[pOp->p2]; |
| 5674 assert( (pIn2->flags & MEM_Int)!=0 ); |
| 5675 if( (pIn1->flags & MEM_RowSet)==0 ){ |
| 5676 sqlite3VdbeMemSetRowSet(pIn1); |
| 5677 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; |
| 5678 } |
| 5679 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i); |
| 5680 break; |
| 5681 } |
| 5682 |
| 5683 /* Opcode: RowSetRead P1 P2 P3 * * |
| 5684 ** Synopsis: r[P3]=rowset(P1) |
| 5685 ** |
| 5686 ** Extract the smallest value from boolean index P1 and put that value into |
| 5687 ** register P3. Or, if boolean index P1 is initially empty, leave P3 |
| 5688 ** unchanged and jump to instruction P2. |
| 5689 */ |
| 5690 case OP_RowSetRead: { /* jump, in1, out3 */ |
| 5691 i64 val; |
| 5692 |
| 5693 pIn1 = &aMem[pOp->p1]; |
| 5694 if( (pIn1->flags & MEM_RowSet)==0 |
| 5695 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0 |
| 5696 ){ |
| 5697 /* The boolean index is empty */ |
| 5698 sqlite3VdbeMemSetNull(pIn1); |
| 5699 VdbeBranchTaken(1,2); |
| 5700 goto jump_to_p2_and_check_for_interrupt; |
| 5701 }else{ |
| 5702 /* A value was pulled from the index */ |
| 5703 VdbeBranchTaken(0,2); |
| 5704 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); |
| 5705 } |
| 5706 goto check_for_interrupt; |
| 5707 } |
| 5708 |
| 5709 /* Opcode: RowSetTest P1 P2 P3 P4 |
| 5710 ** Synopsis: if r[P3] in rowset(P1) goto P2 |
| 5711 ** |
| 5712 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 |
| 5713 ** contains a RowSet object and that RowSet object contains |
| 5714 ** the value held in P3, jump to register P2. Otherwise, insert the |
| 5715 ** integer in P3 into the RowSet and continue on to the |
| 5716 ** next opcode. |
| 5717 ** |
| 5718 ** The RowSet object is optimized for the case where successive sets |
| 5719 ** of integers, where each set contains no duplicates. Each set |
| 5720 ** of values is identified by a unique P4 value. The first set |
| 5721 ** must have P4==0, the final set P4=-1. P4 must be either -1 or |
| 5722 ** non-negative. For non-negative values of P4 only the lower 4 |
| 5723 ** bits are significant. |
| 5724 ** |
| 5725 ** This allows optimizations: (a) when P4==0 there is no need to test |
| 5726 ** the rowset object for P3, as it is guaranteed not to contain it, |
| 5727 ** (b) when P4==-1 there is no need to insert the value, as it will |
| 5728 ** never be tested for, and (c) when a value that is part of set X is |
| 5729 ** inserted, there is no need to search to see if the same value was |
| 5730 ** previously inserted as part of set X (only if it was previously |
| 5731 ** inserted as part of some other set). |
| 5732 */ |
| 5733 case OP_RowSetTest: { /* jump, in1, in3 */ |
| 5734 int iSet; |
| 5735 int exists; |
| 5736 |
| 5737 pIn1 = &aMem[pOp->p1]; |
| 5738 pIn3 = &aMem[pOp->p3]; |
| 5739 iSet = pOp->p4.i; |
| 5740 assert( pIn3->flags&MEM_Int ); |
| 5741 |
| 5742 /* If there is anything other than a rowset object in memory cell P1, |
| 5743 ** delete it now and initialize P1 with an empty rowset |
| 5744 */ |
| 5745 if( (pIn1->flags & MEM_RowSet)==0 ){ |
| 5746 sqlite3VdbeMemSetRowSet(pIn1); |
| 5747 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem; |
| 5748 } |
| 5749 |
| 5750 assert( pOp->p4type==P4_INT32 ); |
| 5751 assert( iSet==-1 || iSet>=0 ); |
| 5752 if( iSet ){ |
| 5753 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i); |
| 5754 VdbeBranchTaken(exists!=0,2); |
| 5755 if( exists ) goto jump_to_p2; |
| 5756 } |
| 5757 if( iSet>=0 ){ |
| 5758 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i); |
| 5759 } |
| 5760 break; |
| 5761 } |
| 5762 |
| 5763 |
| 5764 #ifndef SQLITE_OMIT_TRIGGER |
| 5765 |
| 5766 /* Opcode: Program P1 P2 P3 P4 P5 |
| 5767 ** |
| 5768 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). |
| 5769 ** |
| 5770 ** P1 contains the address of the memory cell that contains the first memory |
| 5771 ** cell in an array of values used as arguments to the sub-program. P2 |
| 5772 ** contains the address to jump to if the sub-program throws an IGNORE |
| 5773 ** exception using the RAISE() function. Register P3 contains the address |
| 5774 ** of a memory cell in this (the parent) VM that is used to allocate the |
| 5775 ** memory required by the sub-vdbe at runtime. |
| 5776 ** |
| 5777 ** P4 is a pointer to the VM containing the trigger program. |
| 5778 ** |
| 5779 ** If P5 is non-zero, then recursive program invocation is enabled. |
| 5780 */ |
| 5781 case OP_Program: { /* jump */ |
| 5782 int nMem; /* Number of memory registers for sub-program */ |
| 5783 int nByte; /* Bytes of runtime space required for sub-program */ |
| 5784 Mem *pRt; /* Register to allocate runtime space */ |
| 5785 Mem *pMem; /* Used to iterate through memory cells */ |
| 5786 Mem *pEnd; /* Last memory cell in new array */ |
| 5787 VdbeFrame *pFrame; /* New vdbe frame to execute in */ |
| 5788 SubProgram *pProgram; /* Sub-program to execute */ |
| 5789 void *t; /* Token identifying trigger */ |
| 5790 |
| 5791 pProgram = pOp->p4.pProgram; |
| 5792 pRt = &aMem[pOp->p3]; |
| 5793 assert( pProgram->nOp>0 ); |
| 5794 |
| 5795 /* If the p5 flag is clear, then recursive invocation of triggers is |
| 5796 ** disabled for backwards compatibility (p5 is set if this sub-program |
| 5797 ** is really a trigger, not a foreign key action, and the flag set |
| 5798 ** and cleared by the "PRAGMA recursive_triggers" command is clear). |
| 5799 ** |
| 5800 ** It is recursive invocation of triggers, at the SQL level, that is |
| 5801 ** disabled. In some cases a single trigger may generate more than one |
| 5802 ** SubProgram (if the trigger may be executed with more than one different |
| 5803 ** ON CONFLICT algorithm). SubProgram structures associated with a |
| 5804 ** single trigger all have the same value for the SubProgram.token |
| 5805 ** variable. */ |
| 5806 if( pOp->p5 ){ |
| 5807 t = pProgram->token; |
| 5808 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); |
| 5809 if( pFrame ) break; |
| 5810 } |
| 5811 |
| 5812 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ |
| 5813 rc = SQLITE_ERROR; |
| 5814 sqlite3VdbeError(p, "too many levels of trigger recursion"); |
| 5815 goto abort_due_to_error; |
| 5816 } |
| 5817 |
| 5818 /* Register pRt is used to store the memory required to save the state |
| 5819 ** of the current program, and the memory required at runtime to execute |
| 5820 ** the trigger program. If this trigger has been fired before, then pRt |
| 5821 ** is already allocated. Otherwise, it must be initialized. */ |
| 5822 if( (pRt->flags&MEM_Frame)==0 ){ |
| 5823 /* SubProgram.nMem is set to the number of memory cells used by the |
| 5824 ** program stored in SubProgram.aOp. As well as these, one memory |
| 5825 ** cell is required for each cursor used by the program. Set local |
| 5826 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. |
| 5827 */ |
| 5828 nMem = pProgram->nMem + pProgram->nCsr; |
| 5829 assert( nMem>0 ); |
| 5830 if( pProgram->nCsr==0 ) nMem++; |
| 5831 nByte = ROUND8(sizeof(VdbeFrame)) |
| 5832 + nMem * sizeof(Mem) |
| 5833 + pProgram->nCsr * sizeof(VdbeCursor *); |
| 5834 pFrame = sqlite3DbMallocZero(db, nByte); |
| 5835 if( !pFrame ){ |
| 5836 goto no_mem; |
| 5837 } |
| 5838 sqlite3VdbeMemRelease(pRt); |
| 5839 pRt->flags = MEM_Frame; |
| 5840 pRt->u.pFrame = pFrame; |
| 5841 |
| 5842 pFrame->v = p; |
| 5843 pFrame->nChildMem = nMem; |
| 5844 pFrame->nChildCsr = pProgram->nCsr; |
| 5845 pFrame->pc = (int)(pOp - aOp); |
| 5846 pFrame->aMem = p->aMem; |
| 5847 pFrame->nMem = p->nMem; |
| 5848 pFrame->apCsr = p->apCsr; |
| 5849 pFrame->nCursor = p->nCursor; |
| 5850 pFrame->aOp = p->aOp; |
| 5851 pFrame->nOp = p->nOp; |
| 5852 pFrame->token = pProgram->token; |
| 5853 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| 5854 pFrame->anExec = p->anExec; |
| 5855 #endif |
| 5856 |
| 5857 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; |
| 5858 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ |
| 5859 pMem->flags = MEM_Undefined; |
| 5860 pMem->db = db; |
| 5861 } |
| 5862 }else{ |
| 5863 pFrame = pRt->u.pFrame; |
| 5864 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem |
| 5865 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); |
| 5866 assert( pProgram->nCsr==pFrame->nChildCsr ); |
| 5867 assert( (int)(pOp - aOp)==pFrame->pc ); |
| 5868 } |
| 5869 |
| 5870 p->nFrame++; |
| 5871 pFrame->pParent = p->pFrame; |
| 5872 pFrame->lastRowid = db->lastRowid; |
| 5873 pFrame->nChange = p->nChange; |
| 5874 pFrame->nDbChange = p->db->nChange; |
| 5875 assert( pFrame->pAuxData==0 ); |
| 5876 pFrame->pAuxData = p->pAuxData; |
| 5877 p->pAuxData = 0; |
| 5878 p->nChange = 0; |
| 5879 p->pFrame = pFrame; |
| 5880 p->aMem = aMem = VdbeFrameMem(pFrame); |
| 5881 p->nMem = pFrame->nChildMem; |
| 5882 p->nCursor = (u16)pFrame->nChildCsr; |
| 5883 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; |
| 5884 p->aOp = aOp = pProgram->aOp; |
| 5885 p->nOp = pProgram->nOp; |
| 5886 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| 5887 p->anExec = 0; |
| 5888 #endif |
| 5889 pOp = &aOp[-1]; |
| 5890 |
| 5891 break; |
| 5892 } |
| 5893 |
| 5894 /* Opcode: Param P1 P2 * * * |
| 5895 ** |
| 5896 ** This opcode is only ever present in sub-programs called via the |
| 5897 ** OP_Program instruction. Copy a value currently stored in a memory |
| 5898 ** cell of the calling (parent) frame to cell P2 in the current frames |
| 5899 ** address space. This is used by trigger programs to access the new.* |
| 5900 ** and old.* values. |
| 5901 ** |
| 5902 ** The address of the cell in the parent frame is determined by adding |
| 5903 ** the value of the P1 argument to the value of the P1 argument to the |
| 5904 ** calling OP_Program instruction. |
| 5905 */ |
| 5906 case OP_Param: { /* out2 */ |
| 5907 VdbeFrame *pFrame; |
| 5908 Mem *pIn; |
| 5909 pOut = out2Prerelease(p, pOp); |
| 5910 pFrame = p->pFrame; |
| 5911 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; |
| 5912 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); |
| 5913 break; |
| 5914 } |
| 5915 |
| 5916 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ |
| 5917 |
| 5918 #ifndef SQLITE_OMIT_FOREIGN_KEY |
| 5919 /* Opcode: FkCounter P1 P2 * * * |
| 5920 ** Synopsis: fkctr[P1]+=P2 |
| 5921 ** |
| 5922 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). |
| 5923 ** If P1 is non-zero, the database constraint counter is incremented |
| 5924 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the |
| 5925 ** statement counter is incremented (immediate foreign key constraints). |
| 5926 */ |
| 5927 case OP_FkCounter: { |
| 5928 if( db->flags & SQLITE_DeferFKs ){ |
| 5929 db->nDeferredImmCons += pOp->p2; |
| 5930 }else if( pOp->p1 ){ |
| 5931 db->nDeferredCons += pOp->p2; |
| 5932 }else{ |
| 5933 p->nFkConstraint += pOp->p2; |
| 5934 } |
| 5935 break; |
| 5936 } |
| 5937 |
| 5938 /* Opcode: FkIfZero P1 P2 * * * |
| 5939 ** Synopsis: if fkctr[P1]==0 goto P2 |
| 5940 ** |
| 5941 ** This opcode tests if a foreign key constraint-counter is currently zero. |
| 5942 ** If so, jump to instruction P2. Otherwise, fall through to the next |
| 5943 ** instruction. |
| 5944 ** |
| 5945 ** If P1 is non-zero, then the jump is taken if the database constraint-counter |
| 5946 ** is zero (the one that counts deferred constraint violations). If P1 is |
| 5947 ** zero, the jump is taken if the statement constraint-counter is zero |
| 5948 ** (immediate foreign key constraint violations). |
| 5949 */ |
| 5950 case OP_FkIfZero: { /* jump */ |
| 5951 if( pOp->p1 ){ |
| 5952 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); |
| 5953 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; |
| 5954 }else{ |
| 5955 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); |
| 5956 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; |
| 5957 } |
| 5958 break; |
| 5959 } |
| 5960 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ |
| 5961 |
| 5962 #ifndef SQLITE_OMIT_AUTOINCREMENT |
| 5963 /* Opcode: MemMax P1 P2 * * * |
| 5964 ** Synopsis: r[P1]=max(r[P1],r[P2]) |
| 5965 ** |
| 5966 ** P1 is a register in the root frame of this VM (the root frame is |
| 5967 ** different from the current frame if this instruction is being executed |
| 5968 ** within a sub-program). Set the value of register P1 to the maximum of |
| 5969 ** its current value and the value in register P2. |
| 5970 ** |
| 5971 ** This instruction throws an error if the memory cell is not initially |
| 5972 ** an integer. |
| 5973 */ |
| 5974 case OP_MemMax: { /* in2 */ |
| 5975 VdbeFrame *pFrame; |
| 5976 if( p->pFrame ){ |
| 5977 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); |
| 5978 pIn1 = &pFrame->aMem[pOp->p1]; |
| 5979 }else{ |
| 5980 pIn1 = &aMem[pOp->p1]; |
| 5981 } |
| 5982 assert( memIsValid(pIn1) ); |
| 5983 sqlite3VdbeMemIntegerify(pIn1); |
| 5984 pIn2 = &aMem[pOp->p2]; |
| 5985 sqlite3VdbeMemIntegerify(pIn2); |
| 5986 if( pIn1->u.i<pIn2->u.i){ |
| 5987 pIn1->u.i = pIn2->u.i; |
| 5988 } |
| 5989 break; |
| 5990 } |
| 5991 #endif /* SQLITE_OMIT_AUTOINCREMENT */ |
| 5992 |
| 5993 /* Opcode: IfPos P1 P2 P3 * * |
| 5994 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 |
| 5995 ** |
| 5996 ** Register P1 must contain an integer. |
| 5997 ** If the value of register P1 is 1 or greater, subtract P3 from the |
| 5998 ** value in P1 and jump to P2. |
| 5999 ** |
| 6000 ** If the initial value of register P1 is less than 1, then the |
| 6001 ** value is unchanged and control passes through to the next instruction. |
| 6002 */ |
| 6003 case OP_IfPos: { /* jump, in1 */ |
| 6004 pIn1 = &aMem[pOp->p1]; |
| 6005 assert( pIn1->flags&MEM_Int ); |
| 6006 VdbeBranchTaken( pIn1->u.i>0, 2); |
| 6007 if( pIn1->u.i>0 ){ |
| 6008 pIn1->u.i -= pOp->p3; |
| 6009 goto jump_to_p2; |
| 6010 } |
| 6011 break; |
| 6012 } |
| 6013 |
| 6014 /* Opcode: OffsetLimit P1 P2 P3 * * |
| 6015 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) |
| 6016 ** |
| 6017 ** This opcode performs a commonly used computation associated with |
| 6018 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3] |
| 6019 ** holds the offset counter. The opcode computes the combined value |
| 6020 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] |
| 6021 ** value computed is the total number of rows that will need to be |
| 6022 ** visited in order to complete the query. |
| 6023 ** |
| 6024 ** If r[P3] is zero or negative, that means there is no OFFSET |
| 6025 ** and r[P2] is set to be the value of the LIMIT, r[P1]. |
| 6026 ** |
| 6027 ** if r[P1] is zero or negative, that means there is no LIMIT |
| 6028 ** and r[P2] is set to -1. |
| 6029 ** |
| 6030 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. |
| 6031 */ |
| 6032 case OP_OffsetLimit: { /* in1, out2, in3 */ |
| 6033 i64 x; |
| 6034 pIn1 = &aMem[pOp->p1]; |
| 6035 pIn3 = &aMem[pOp->p3]; |
| 6036 pOut = out2Prerelease(p, pOp); |
| 6037 assert( pIn1->flags & MEM_Int ); |
| 6038 assert( pIn3->flags & MEM_Int ); |
| 6039 x = pIn1->u.i; |
| 6040 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ |
| 6041 /* If the LIMIT is less than or equal to zero, loop forever. This |
| 6042 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then |
| 6043 ** also loop forever. This is undocumented. In fact, one could argue |
| 6044 ** that the loop should terminate. But assuming 1 billion iterations |
| 6045 ** per second (far exceeding the capabilities of any current hardware) |
| 6046 ** it would take nearly 300 years to actually reach the limit. So |
| 6047 ** looping forever is a reasonable approximation. */ |
| 6048 pOut->u.i = -1; |
| 6049 }else{ |
| 6050 pOut->u.i = x; |
| 6051 } |
| 6052 break; |
| 6053 } |
| 6054 |
| 6055 /* Opcode: IfNotZero P1 P2 * * * |
| 6056 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 |
| 6057 ** |
| 6058 ** Register P1 must contain an integer. If the content of register P1 is |
| 6059 ** initially greater than zero, then decrement the value in register P1. |
| 6060 ** If it is non-zero (negative or positive) and then also jump to P2. |
| 6061 ** If register P1 is initially zero, leave it unchanged and fall through. |
| 6062 */ |
| 6063 case OP_IfNotZero: { /* jump, in1 */ |
| 6064 pIn1 = &aMem[pOp->p1]; |
| 6065 assert( pIn1->flags&MEM_Int ); |
| 6066 VdbeBranchTaken(pIn1->u.i<0, 2); |
| 6067 if( pIn1->u.i ){ |
| 6068 if( pIn1->u.i>0 ) pIn1->u.i--; |
| 6069 goto jump_to_p2; |
| 6070 } |
| 6071 break; |
| 6072 } |
| 6073 |
| 6074 /* Opcode: DecrJumpZero P1 P2 * * * |
| 6075 ** Synopsis: if (--r[P1])==0 goto P2 |
| 6076 ** |
| 6077 ** Register P1 must hold an integer. Decrement the value in P1 |
| 6078 ** and jump to P2 if the new value is exactly zero. |
| 6079 */ |
| 6080 case OP_DecrJumpZero: { /* jump, in1 */ |
| 6081 pIn1 = &aMem[pOp->p1]; |
| 6082 assert( pIn1->flags&MEM_Int ); |
| 6083 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; |
| 6084 VdbeBranchTaken(pIn1->u.i==0, 2); |
| 6085 if( pIn1->u.i==0 ) goto jump_to_p2; |
| 6086 break; |
| 6087 } |
| 6088 |
| 6089 |
| 6090 /* Opcode: AggStep0 * P2 P3 P4 P5 |
| 6091 ** Synopsis: accum=r[P3] step(r[P2@P5]) |
| 6092 ** |
| 6093 ** Execute the step function for an aggregate. The |
| 6094 ** function has P5 arguments. P4 is a pointer to the FuncDef |
| 6095 ** structure that specifies the function. Register P3 is the |
| 6096 ** accumulator. |
| 6097 ** |
| 6098 ** The P5 arguments are taken from register P2 and its |
| 6099 ** successors. |
| 6100 */ |
| 6101 /* Opcode: AggStep * P2 P3 P4 P5 |
| 6102 ** Synopsis: accum=r[P3] step(r[P2@P5]) |
| 6103 ** |
| 6104 ** Execute the step function for an aggregate. The |
| 6105 ** function has P5 arguments. P4 is a pointer to an sqlite3_context |
| 6106 ** object that is used to run the function. Register P3 is |
| 6107 ** as the accumulator. |
| 6108 ** |
| 6109 ** The P5 arguments are taken from register P2 and its |
| 6110 ** successors. |
| 6111 ** |
| 6112 ** This opcode is initially coded as OP_AggStep0. On first evaluation, |
| 6113 ** the FuncDef stored in P4 is converted into an sqlite3_context and |
| 6114 ** the opcode is changed. In this way, the initialization of the |
| 6115 ** sqlite3_context only happens once, instead of on each call to the |
| 6116 ** step function. |
| 6117 */ |
| 6118 case OP_AggStep0: { |
| 6119 int n; |
| 6120 sqlite3_context *pCtx; |
| 6121 |
| 6122 assert( pOp->p4type==P4_FUNCDEF ); |
| 6123 n = pOp->p5; |
| 6124 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); |
| 6125 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); |
| 6126 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); |
| 6127 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*)); |
| 6128 if( pCtx==0 ) goto no_mem; |
| 6129 pCtx->pMem = 0; |
| 6130 pCtx->pFunc = pOp->p4.pFunc; |
| 6131 pCtx->iOp = (int)(pOp - aOp); |
| 6132 pCtx->pVdbe = p; |
| 6133 pCtx->argc = n; |
| 6134 pOp->p4type = P4_FUNCCTX; |
| 6135 pOp->p4.pCtx = pCtx; |
| 6136 pOp->opcode = OP_AggStep; |
| 6137 /* Fall through into OP_AggStep */ |
| 6138 } |
| 6139 case OP_AggStep: { |
| 6140 int i; |
| 6141 sqlite3_context *pCtx; |
| 6142 Mem *pMem; |
| 6143 Mem t; |
| 6144 |
| 6145 assert( pOp->p4type==P4_FUNCCTX ); |
| 6146 pCtx = pOp->p4.pCtx; |
| 6147 pMem = &aMem[pOp->p3]; |
| 6148 |
| 6149 /* If this function is inside of a trigger, the register array in aMem[] |
| 6150 ** might change from one evaluation to the next. The next block of code |
| 6151 ** checks to see if the register array has changed, and if so it |
| 6152 ** reinitializes the relavant parts of the sqlite3_context object */ |
| 6153 if( pCtx->pMem != pMem ){ |
| 6154 pCtx->pMem = pMem; |
| 6155 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; |
| 6156 } |
| 6157 |
| 6158 #ifdef SQLITE_DEBUG |
| 6159 for(i=0; i<pCtx->argc; i++){ |
| 6160 assert( memIsValid(pCtx->argv[i]) ); |
| 6161 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); |
| 6162 } |
| 6163 #endif |
| 6164 |
| 6165 pMem->n++; |
| 6166 sqlite3VdbeMemInit(&t, db, MEM_Null); |
| 6167 pCtx->pOut = &t; |
| 6168 pCtx->fErrorOrAux = 0; |
| 6169 pCtx->skipFlag = 0; |
| 6170 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ |
| 6171 if( pCtx->fErrorOrAux ){ |
| 6172 if( pCtx->isError ){ |
| 6173 sqlite3VdbeError(p, "%s", sqlite3_value_text(&t)); |
| 6174 rc = pCtx->isError; |
| 6175 } |
| 6176 sqlite3VdbeMemRelease(&t); |
| 6177 if( rc ) goto abort_due_to_error; |
| 6178 }else{ |
| 6179 assert( t.flags==MEM_Null ); |
| 6180 } |
| 6181 if( pCtx->skipFlag ){ |
| 6182 assert( pOp[-1].opcode==OP_CollSeq ); |
| 6183 i = pOp[-1].p1; |
| 6184 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); |
| 6185 } |
| 6186 break; |
| 6187 } |
| 6188 |
| 6189 /* Opcode: AggFinal P1 P2 * P4 * |
| 6190 ** Synopsis: accum=r[P1] N=P2 |
| 6191 ** |
| 6192 ** Execute the finalizer function for an aggregate. P1 is |
| 6193 ** the memory location that is the accumulator for the aggregate. |
| 6194 ** |
| 6195 ** P2 is the number of arguments that the step function takes and |
| 6196 ** P4 is a pointer to the FuncDef for this function. The P2 |
| 6197 ** argument is not used by this opcode. It is only there to disambiguate |
| 6198 ** functions that can take varying numbers of arguments. The |
| 6199 ** P4 argument is only needed for the degenerate case where |
| 6200 ** the step function was not previously called. |
| 6201 */ |
| 6202 case OP_AggFinal: { |
| 6203 Mem *pMem; |
| 6204 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); |
| 6205 pMem = &aMem[pOp->p1]; |
| 6206 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); |
| 6207 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); |
| 6208 if( rc ){ |
| 6209 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); |
| 6210 goto abort_due_to_error; |
| 6211 } |
| 6212 sqlite3VdbeChangeEncoding(pMem, encoding); |
| 6213 UPDATE_MAX_BLOBSIZE(pMem); |
| 6214 if( sqlite3VdbeMemTooBig(pMem) ){ |
| 6215 goto too_big; |
| 6216 } |
| 6217 break; |
| 6218 } |
| 6219 |
| 6220 #ifndef SQLITE_OMIT_WAL |
| 6221 /* Opcode: Checkpoint P1 P2 P3 * * |
| 6222 ** |
| 6223 ** Checkpoint database P1. This is a no-op if P1 is not currently in |
| 6224 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, |
| 6225 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns |
| 6226 ** SQLITE_BUSY or not, respectively. Write the number of pages in the |
| 6227 ** WAL after the checkpoint into mem[P3+1] and the number of pages |
| 6228 ** in the WAL that have been checkpointed after the checkpoint |
| 6229 ** completes into mem[P3+2]. However on an error, mem[P3+1] and |
| 6230 ** mem[P3+2] are initialized to -1. |
| 6231 */ |
| 6232 case OP_Checkpoint: { |
| 6233 int i; /* Loop counter */ |
| 6234 int aRes[3]; /* Results */ |
| 6235 Mem *pMem; /* Write results here */ |
| 6236 |
| 6237 assert( p->readOnly==0 ); |
| 6238 aRes[0] = 0; |
| 6239 aRes[1] = aRes[2] = -1; |
| 6240 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE |
| 6241 || pOp->p2==SQLITE_CHECKPOINT_FULL |
| 6242 || pOp->p2==SQLITE_CHECKPOINT_RESTART |
| 6243 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE |
| 6244 ); |
| 6245 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); |
| 6246 if( rc ){ |
| 6247 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; |
| 6248 rc = SQLITE_OK; |
| 6249 aRes[0] = 1; |
| 6250 } |
| 6251 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ |
| 6252 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); |
| 6253 } |
| 6254 break; |
| 6255 }; |
| 6256 #endif |
| 6257 |
| 6258 #ifndef SQLITE_OMIT_PRAGMA |
| 6259 /* Opcode: JournalMode P1 P2 P3 * * |
| 6260 ** |
| 6261 ** Change the journal mode of database P1 to P3. P3 must be one of the |
| 6262 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback |
| 6263 ** modes (delete, truncate, persist, off and memory), this is a simple |
| 6264 ** operation. No IO is required. |
| 6265 ** |
| 6266 ** If changing into or out of WAL mode the procedure is more complicated. |
| 6267 ** |
| 6268 ** Write a string containing the final journal-mode to register P2. |
| 6269 */ |
| 6270 case OP_JournalMode: { /* out2 */ |
| 6271 Btree *pBt; /* Btree to change journal mode of */ |
| 6272 Pager *pPager; /* Pager associated with pBt */ |
| 6273 int eNew; /* New journal mode */ |
| 6274 int eOld; /* The old journal mode */ |
| 6275 #ifndef SQLITE_OMIT_WAL |
| 6276 const char *zFilename; /* Name of database file for pPager */ |
| 6277 #endif |
| 6278 |
| 6279 pOut = out2Prerelease(p, pOp); |
| 6280 eNew = pOp->p3; |
| 6281 assert( eNew==PAGER_JOURNALMODE_DELETE |
| 6282 || eNew==PAGER_JOURNALMODE_TRUNCATE |
| 6283 || eNew==PAGER_JOURNALMODE_PERSIST |
| 6284 || eNew==PAGER_JOURNALMODE_OFF |
| 6285 || eNew==PAGER_JOURNALMODE_MEMORY |
| 6286 || eNew==PAGER_JOURNALMODE_WAL |
| 6287 || eNew==PAGER_JOURNALMODE_QUERY |
| 6288 ); |
| 6289 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
| 6290 assert( p->readOnly==0 ); |
| 6291 |
| 6292 pBt = db->aDb[pOp->p1].pBt; |
| 6293 pPager = sqlite3BtreePager(pBt); |
| 6294 eOld = sqlite3PagerGetJournalMode(pPager); |
| 6295 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; |
| 6296 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; |
| 6297 |
| 6298 #ifndef SQLITE_OMIT_WAL |
| 6299 zFilename = sqlite3PagerFilename(pPager, 1); |
| 6300 |
| 6301 /* Do not allow a transition to journal_mode=WAL for a database |
| 6302 ** in temporary storage or if the VFS does not support shared memory |
| 6303 */ |
| 6304 if( eNew==PAGER_JOURNALMODE_WAL |
| 6305 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ |
| 6306 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ |
| 6307 ){ |
| 6308 eNew = eOld; |
| 6309 } |
| 6310 |
| 6311 if( (eNew!=eOld) |
| 6312 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) |
| 6313 ){ |
| 6314 if( !db->autoCommit || db->nVdbeRead>1 ){ |
| 6315 rc = SQLITE_ERROR; |
| 6316 sqlite3VdbeError(p, |
| 6317 "cannot change %s wal mode from within a transaction", |
| 6318 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") |
| 6319 ); |
| 6320 goto abort_due_to_error; |
| 6321 }else{ |
| 6322 |
| 6323 if( eOld==PAGER_JOURNALMODE_WAL ){ |
| 6324 /* If leaving WAL mode, close the log file. If successful, the call |
| 6325 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log |
| 6326 ** file. An EXCLUSIVE lock may still be held on the database file |
| 6327 ** after a successful return. |
| 6328 */ |
| 6329 rc = sqlite3PagerCloseWal(pPager, db); |
| 6330 if( rc==SQLITE_OK ){ |
| 6331 sqlite3PagerSetJournalMode(pPager, eNew); |
| 6332 } |
| 6333 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ |
| 6334 /* Cannot transition directly from MEMORY to WAL. Use mode OFF |
| 6335 ** as an intermediate */ |
| 6336 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); |
| 6337 } |
| 6338 |
| 6339 /* Open a transaction on the database file. Regardless of the journal |
| 6340 ** mode, this transaction always uses a rollback journal. |
| 6341 */ |
| 6342 assert( sqlite3BtreeIsInTrans(pBt)==0 ); |
| 6343 if( rc==SQLITE_OK ){ |
| 6344 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); |
| 6345 } |
| 6346 } |
| 6347 } |
| 6348 #endif /* ifndef SQLITE_OMIT_WAL */ |
| 6349 |
| 6350 if( rc ) eNew = eOld; |
| 6351 eNew = sqlite3PagerSetJournalMode(pPager, eNew); |
| 6352 |
| 6353 pOut->flags = MEM_Str|MEM_Static|MEM_Term; |
| 6354 pOut->z = (char *)sqlite3JournalModename(eNew); |
| 6355 pOut->n = sqlite3Strlen30(pOut->z); |
| 6356 pOut->enc = SQLITE_UTF8; |
| 6357 sqlite3VdbeChangeEncoding(pOut, encoding); |
| 6358 if( rc ) goto abort_due_to_error; |
| 6359 break; |
| 6360 }; |
| 6361 #endif /* SQLITE_OMIT_PRAGMA */ |
| 6362 |
| 6363 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) |
| 6364 /* Opcode: Vacuum P1 * * * * |
| 6365 ** |
| 6366 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more |
| 6367 ** for an attached database. The "temp" database may not be vacuumed. |
| 6368 */ |
| 6369 case OP_Vacuum: { |
| 6370 assert( p->readOnly==0 ); |
| 6371 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1); |
| 6372 if( rc ) goto abort_due_to_error; |
| 6373 break; |
| 6374 } |
| 6375 #endif |
| 6376 |
| 6377 #if !defined(SQLITE_OMIT_AUTOVACUUM) |
| 6378 /* Opcode: IncrVacuum P1 P2 * * * |
| 6379 ** |
| 6380 ** Perform a single step of the incremental vacuum procedure on |
| 6381 ** the P1 database. If the vacuum has finished, jump to instruction |
| 6382 ** P2. Otherwise, fall through to the next instruction. |
| 6383 */ |
| 6384 case OP_IncrVacuum: { /* jump */ |
| 6385 Btree *pBt; |
| 6386 |
| 6387 assert( pOp->p1>=0 && pOp->p1<db->nDb ); |
| 6388 assert( DbMaskTest(p->btreeMask, pOp->p1) ); |
| 6389 assert( p->readOnly==0 ); |
| 6390 pBt = db->aDb[pOp->p1].pBt; |
| 6391 rc = sqlite3BtreeIncrVacuum(pBt); |
| 6392 VdbeBranchTaken(rc==SQLITE_DONE,2); |
| 6393 if( rc ){ |
| 6394 if( rc!=SQLITE_DONE ) goto abort_due_to_error; |
| 6395 rc = SQLITE_OK; |
| 6396 goto jump_to_p2; |
| 6397 } |
| 6398 break; |
| 6399 } |
| 6400 #endif |
| 6401 |
| 6402 /* Opcode: Expire P1 * * * * |
| 6403 ** |
| 6404 ** Cause precompiled statements to expire. When an expired statement |
| 6405 ** is executed using sqlite3_step() it will either automatically |
| 6406 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) |
| 6407 ** or it will fail with SQLITE_SCHEMA. |
| 6408 ** |
| 6409 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, |
| 6410 ** then only the currently executing statement is expired. |
| 6411 */ |
| 6412 case OP_Expire: { |
| 6413 if( !pOp->p1 ){ |
| 6414 sqlite3ExpirePreparedStatements(db); |
| 6415 }else{ |
| 6416 p->expired = 1; |
| 6417 } |
| 6418 break; |
| 6419 } |
| 6420 |
| 6421 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 6422 /* Opcode: TableLock P1 P2 P3 P4 * |
| 6423 ** Synopsis: iDb=P1 root=P2 write=P3 |
| 6424 ** |
| 6425 ** Obtain a lock on a particular table. This instruction is only used when |
| 6426 ** the shared-cache feature is enabled. |
| 6427 ** |
| 6428 ** P1 is the index of the database in sqlite3.aDb[] of the database |
| 6429 ** on which the lock is acquired. A readlock is obtained if P3==0 or |
| 6430 ** a write lock if P3==1. |
| 6431 ** |
| 6432 ** P2 contains the root-page of the table to lock. |
| 6433 ** |
| 6434 ** P4 contains a pointer to the name of the table being locked. This is only |
| 6435 ** used to generate an error message if the lock cannot be obtained. |
| 6436 */ |
| 6437 case OP_TableLock: { |
| 6438 u8 isWriteLock = (u8)pOp->p3; |
| 6439 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){ |
| 6440 int p1 = pOp->p1; |
| 6441 assert( p1>=0 && p1<db->nDb ); |
| 6442 assert( DbMaskTest(p->btreeMask, p1) ); |
| 6443 assert( isWriteLock==0 || isWriteLock==1 ); |
| 6444 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); |
| 6445 if( rc ){ |
| 6446 if( (rc&0xFF)==SQLITE_LOCKED ){ |
| 6447 const char *z = pOp->p4.z; |
| 6448 sqlite3VdbeError(p, "database table is locked: %s", z); |
| 6449 } |
| 6450 goto abort_due_to_error; |
| 6451 } |
| 6452 } |
| 6453 break; |
| 6454 } |
| 6455 #endif /* SQLITE_OMIT_SHARED_CACHE */ |
| 6456 |
| 6457 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 6458 /* Opcode: VBegin * * * P4 * |
| 6459 ** |
| 6460 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the |
| 6461 ** xBegin method for that table. |
| 6462 ** |
| 6463 ** Also, whether or not P4 is set, check that this is not being called from |
| 6464 ** within a callback to a virtual table xSync() method. If it is, the error |
| 6465 ** code will be set to SQLITE_LOCKED. |
| 6466 */ |
| 6467 case OP_VBegin: { |
| 6468 VTable *pVTab; |
| 6469 pVTab = pOp->p4.pVtab; |
| 6470 rc = sqlite3VtabBegin(db, pVTab); |
| 6471 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); |
| 6472 if( rc ) goto abort_due_to_error; |
| 6473 break; |
| 6474 } |
| 6475 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 6476 |
| 6477 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 6478 /* Opcode: VCreate P1 P2 * * * |
| 6479 ** |
| 6480 ** P2 is a register that holds the name of a virtual table in database |
| 6481 ** P1. Call the xCreate method for that table. |
| 6482 */ |
| 6483 case OP_VCreate: { |
| 6484 Mem sMem; /* For storing the record being decoded */ |
| 6485 const char *zTab; /* Name of the virtual table */ |
| 6486 |
| 6487 memset(&sMem, 0, sizeof(sMem)); |
| 6488 sMem.db = db; |
| 6489 /* Because P2 is always a static string, it is impossible for the |
| 6490 ** sqlite3VdbeMemCopy() to fail */ |
| 6491 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); |
| 6492 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); |
| 6493 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); |
| 6494 assert( rc==SQLITE_OK ); |
| 6495 zTab = (const char*)sqlite3_value_text(&sMem); |
| 6496 assert( zTab || db->mallocFailed ); |
| 6497 if( zTab ){ |
| 6498 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); |
| 6499 } |
| 6500 sqlite3VdbeMemRelease(&sMem); |
| 6501 if( rc ) goto abort_due_to_error; |
| 6502 break; |
| 6503 } |
| 6504 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 6505 |
| 6506 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 6507 /* Opcode: VDestroy P1 * * P4 * |
| 6508 ** |
| 6509 ** P4 is the name of a virtual table in database P1. Call the xDestroy method |
| 6510 ** of that table. |
| 6511 */ |
| 6512 case OP_VDestroy: { |
| 6513 db->nVDestroy++; |
| 6514 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); |
| 6515 db->nVDestroy--; |
| 6516 if( rc ) goto abort_due_to_error; |
| 6517 break; |
| 6518 } |
| 6519 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 6520 |
| 6521 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 6522 /* Opcode: VOpen P1 * * P4 * |
| 6523 ** |
| 6524 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. |
| 6525 ** P1 is a cursor number. This opcode opens a cursor to the virtual |
| 6526 ** table and stores that cursor in P1. |
| 6527 */ |
| 6528 case OP_VOpen: { |
| 6529 VdbeCursor *pCur; |
| 6530 sqlite3_vtab_cursor *pVCur; |
| 6531 sqlite3_vtab *pVtab; |
| 6532 const sqlite3_module *pModule; |
| 6533 |
| 6534 assert( p->bIsReader ); |
| 6535 pCur = 0; |
| 6536 pVCur = 0; |
| 6537 pVtab = pOp->p4.pVtab->pVtab; |
| 6538 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ |
| 6539 rc = SQLITE_LOCKED; |
| 6540 goto abort_due_to_error; |
| 6541 } |
| 6542 pModule = pVtab->pModule; |
| 6543 rc = pModule->xOpen(pVtab, &pVCur); |
| 6544 sqlite3VtabImportErrmsg(p, pVtab); |
| 6545 if( rc ) goto abort_due_to_error; |
| 6546 |
| 6547 /* Initialize sqlite3_vtab_cursor base class */ |
| 6548 pVCur->pVtab = pVtab; |
| 6549 |
| 6550 /* Initialize vdbe cursor object */ |
| 6551 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB); |
| 6552 if( pCur ){ |
| 6553 pCur->uc.pVCur = pVCur; |
| 6554 pVtab->nRef++; |
| 6555 }else{ |
| 6556 assert( db->mallocFailed ); |
| 6557 pModule->xClose(pVCur); |
| 6558 goto no_mem; |
| 6559 } |
| 6560 break; |
| 6561 } |
| 6562 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 6563 |
| 6564 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 6565 /* Opcode: VFilter P1 P2 P3 P4 * |
| 6566 ** Synopsis: iplan=r[P3] zplan='P4' |
| 6567 ** |
| 6568 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if |
| 6569 ** the filtered result set is empty. |
| 6570 ** |
| 6571 ** P4 is either NULL or a string that was generated by the xBestIndex |
| 6572 ** method of the module. The interpretation of the P4 string is left |
| 6573 ** to the module implementation. |
| 6574 ** |
| 6575 ** This opcode invokes the xFilter method on the virtual table specified |
| 6576 ** by P1. The integer query plan parameter to xFilter is stored in register |
| 6577 ** P3. Register P3+1 stores the argc parameter to be passed to the |
| 6578 ** xFilter method. Registers P3+2..P3+1+argc are the argc |
| 6579 ** additional parameters which are passed to |
| 6580 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. |
| 6581 ** |
| 6582 ** A jump is made to P2 if the result set after filtering would be empty. |
| 6583 */ |
| 6584 case OP_VFilter: { /* jump */ |
| 6585 int nArg; |
| 6586 int iQuery; |
| 6587 const sqlite3_module *pModule; |
| 6588 Mem *pQuery; |
| 6589 Mem *pArgc; |
| 6590 sqlite3_vtab_cursor *pVCur; |
| 6591 sqlite3_vtab *pVtab; |
| 6592 VdbeCursor *pCur; |
| 6593 int res; |
| 6594 int i; |
| 6595 Mem **apArg; |
| 6596 |
| 6597 pQuery = &aMem[pOp->p3]; |
| 6598 pArgc = &pQuery[1]; |
| 6599 pCur = p->apCsr[pOp->p1]; |
| 6600 assert( memIsValid(pQuery) ); |
| 6601 REGISTER_TRACE(pOp->p3, pQuery); |
| 6602 assert( pCur->eCurType==CURTYPE_VTAB ); |
| 6603 pVCur = pCur->uc.pVCur; |
| 6604 pVtab = pVCur->pVtab; |
| 6605 pModule = pVtab->pModule; |
| 6606 |
| 6607 /* Grab the index number and argc parameters */ |
| 6608 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); |
| 6609 nArg = (int)pArgc->u.i; |
| 6610 iQuery = (int)pQuery->u.i; |
| 6611 |
| 6612 /* Invoke the xFilter method */ |
| 6613 res = 0; |
| 6614 apArg = p->apArg; |
| 6615 for(i = 0; i<nArg; i++){ |
| 6616 apArg[i] = &pArgc[i+1]; |
| 6617 } |
| 6618 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); |
| 6619 sqlite3VtabImportErrmsg(p, pVtab); |
| 6620 if( rc ) goto abort_due_to_error; |
| 6621 res = pModule->xEof(pVCur); |
| 6622 pCur->nullRow = 0; |
| 6623 VdbeBranchTaken(res!=0,2); |
| 6624 if( res ) goto jump_to_p2; |
| 6625 break; |
| 6626 } |
| 6627 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 6628 |
| 6629 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 6630 /* Opcode: VColumn P1 P2 P3 * * |
| 6631 ** Synopsis: r[P3]=vcolumn(P2) |
| 6632 ** |
| 6633 ** Store the value of the P2-th column of |
| 6634 ** the row of the virtual-table that the |
| 6635 ** P1 cursor is pointing to into register P3. |
| 6636 */ |
| 6637 case OP_VColumn: { |
| 6638 sqlite3_vtab *pVtab; |
| 6639 const sqlite3_module *pModule; |
| 6640 Mem *pDest; |
| 6641 sqlite3_context sContext; |
| 6642 |
| 6643 VdbeCursor *pCur = p->apCsr[pOp->p1]; |
| 6644 assert( pCur->eCurType==CURTYPE_VTAB ); |
| 6645 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); |
| 6646 pDest = &aMem[pOp->p3]; |
| 6647 memAboutToChange(p, pDest); |
| 6648 if( pCur->nullRow ){ |
| 6649 sqlite3VdbeMemSetNull(pDest); |
| 6650 break; |
| 6651 } |
| 6652 pVtab = pCur->uc.pVCur->pVtab; |
| 6653 pModule = pVtab->pModule; |
| 6654 assert( pModule->xColumn ); |
| 6655 memset(&sContext, 0, sizeof(sContext)); |
| 6656 sContext.pOut = pDest; |
| 6657 MemSetTypeFlag(pDest, MEM_Null); |
| 6658 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); |
| 6659 sqlite3VtabImportErrmsg(p, pVtab); |
| 6660 if( sContext.isError ){ |
| 6661 rc = sContext.isError; |
| 6662 } |
| 6663 sqlite3VdbeChangeEncoding(pDest, encoding); |
| 6664 REGISTER_TRACE(pOp->p3, pDest); |
| 6665 UPDATE_MAX_BLOBSIZE(pDest); |
| 6666 |
| 6667 if( sqlite3VdbeMemTooBig(pDest) ){ |
| 6668 goto too_big; |
| 6669 } |
| 6670 if( rc ) goto abort_due_to_error; |
| 6671 break; |
| 6672 } |
| 6673 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 6674 |
| 6675 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 6676 /* Opcode: VNext P1 P2 * * * |
| 6677 ** |
| 6678 ** Advance virtual table P1 to the next row in its result set and |
| 6679 ** jump to instruction P2. Or, if the virtual table has reached |
| 6680 ** the end of its result set, then fall through to the next instruction. |
| 6681 */ |
| 6682 case OP_VNext: { /* jump */ |
| 6683 sqlite3_vtab *pVtab; |
| 6684 const sqlite3_module *pModule; |
| 6685 int res; |
| 6686 VdbeCursor *pCur; |
| 6687 |
| 6688 res = 0; |
| 6689 pCur = p->apCsr[pOp->p1]; |
| 6690 assert( pCur->eCurType==CURTYPE_VTAB ); |
| 6691 if( pCur->nullRow ){ |
| 6692 break; |
| 6693 } |
| 6694 pVtab = pCur->uc.pVCur->pVtab; |
| 6695 pModule = pVtab->pModule; |
| 6696 assert( pModule->xNext ); |
| 6697 |
| 6698 /* Invoke the xNext() method of the module. There is no way for the |
| 6699 ** underlying implementation to return an error if one occurs during |
| 6700 ** xNext(). Instead, if an error occurs, true is returned (indicating that |
| 6701 ** data is available) and the error code returned when xColumn or |
| 6702 ** some other method is next invoked on the save virtual table cursor. |
| 6703 */ |
| 6704 rc = pModule->xNext(pCur->uc.pVCur); |
| 6705 sqlite3VtabImportErrmsg(p, pVtab); |
| 6706 if( rc ) goto abort_due_to_error; |
| 6707 res = pModule->xEof(pCur->uc.pVCur); |
| 6708 VdbeBranchTaken(!res,2); |
| 6709 if( !res ){ |
| 6710 /* If there is data, jump to P2 */ |
| 6711 goto jump_to_p2_and_check_for_interrupt; |
| 6712 } |
| 6713 goto check_for_interrupt; |
| 6714 } |
| 6715 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 6716 |
| 6717 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 6718 /* Opcode: VRename P1 * * P4 * |
| 6719 ** |
| 6720 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. |
| 6721 ** This opcode invokes the corresponding xRename method. The value |
| 6722 ** in register P1 is passed as the zName argument to the xRename method. |
| 6723 */ |
| 6724 case OP_VRename: { |
| 6725 sqlite3_vtab *pVtab; |
| 6726 Mem *pName; |
| 6727 |
| 6728 pVtab = pOp->p4.pVtab->pVtab; |
| 6729 pName = &aMem[pOp->p1]; |
| 6730 assert( pVtab->pModule->xRename ); |
| 6731 assert( memIsValid(pName) ); |
| 6732 assert( p->readOnly==0 ); |
| 6733 REGISTER_TRACE(pOp->p1, pName); |
| 6734 assert( pName->flags & MEM_Str ); |
| 6735 testcase( pName->enc==SQLITE_UTF8 ); |
| 6736 testcase( pName->enc==SQLITE_UTF16BE ); |
| 6737 testcase( pName->enc==SQLITE_UTF16LE ); |
| 6738 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); |
| 6739 if( rc ) goto abort_due_to_error; |
| 6740 rc = pVtab->pModule->xRename(pVtab, pName->z); |
| 6741 sqlite3VtabImportErrmsg(p, pVtab); |
| 6742 p->expired = 0; |
| 6743 if( rc ) goto abort_due_to_error; |
| 6744 break; |
| 6745 } |
| 6746 #endif |
| 6747 |
| 6748 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 6749 /* Opcode: VUpdate P1 P2 P3 P4 P5 |
| 6750 ** Synopsis: data=r[P3@P2] |
| 6751 ** |
| 6752 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. |
| 6753 ** This opcode invokes the corresponding xUpdate method. P2 values |
| 6754 ** are contiguous memory cells starting at P3 to pass to the xUpdate |
| 6755 ** invocation. The value in register (P3+P2-1) corresponds to the |
| 6756 ** p2th element of the argv array passed to xUpdate. |
| 6757 ** |
| 6758 ** The xUpdate method will do a DELETE or an INSERT or both. |
| 6759 ** The argv[0] element (which corresponds to memory cell P3) |
| 6760 ** is the rowid of a row to delete. If argv[0] is NULL then no |
| 6761 ** deletion occurs. The argv[1] element is the rowid of the new |
| 6762 ** row. This can be NULL to have the virtual table select the new |
| 6763 ** rowid for itself. The subsequent elements in the array are |
| 6764 ** the values of columns in the new row. |
| 6765 ** |
| 6766 ** If P2==1 then no insert is performed. argv[0] is the rowid of |
| 6767 ** a row to delete. |
| 6768 ** |
| 6769 ** P1 is a boolean flag. If it is set to true and the xUpdate call |
| 6770 ** is successful, then the value returned by sqlite3_last_insert_rowid() |
| 6771 ** is set to the value of the rowid for the row just inserted. |
| 6772 ** |
| 6773 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to |
| 6774 ** apply in the case of a constraint failure on an insert or update. |
| 6775 */ |
| 6776 case OP_VUpdate: { |
| 6777 sqlite3_vtab *pVtab; |
| 6778 const sqlite3_module *pModule; |
| 6779 int nArg; |
| 6780 int i; |
| 6781 sqlite_int64 rowid; |
| 6782 Mem **apArg; |
| 6783 Mem *pX; |
| 6784 |
| 6785 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback |
| 6786 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace |
| 6787 ); |
| 6788 assert( p->readOnly==0 ); |
| 6789 pVtab = pOp->p4.pVtab->pVtab; |
| 6790 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ |
| 6791 rc = SQLITE_LOCKED; |
| 6792 goto abort_due_to_error; |
| 6793 } |
| 6794 pModule = pVtab->pModule; |
| 6795 nArg = pOp->p2; |
| 6796 assert( pOp->p4type==P4_VTAB ); |
| 6797 if( ALWAYS(pModule->xUpdate) ){ |
| 6798 u8 vtabOnConflict = db->vtabOnConflict; |
| 6799 apArg = p->apArg; |
| 6800 pX = &aMem[pOp->p3]; |
| 6801 for(i=0; i<nArg; i++){ |
| 6802 assert( memIsValid(pX) ); |
| 6803 memAboutToChange(p, pX); |
| 6804 apArg[i] = pX; |
| 6805 pX++; |
| 6806 } |
| 6807 db->vtabOnConflict = pOp->p5; |
| 6808 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); |
| 6809 db->vtabOnConflict = vtabOnConflict; |
| 6810 sqlite3VtabImportErrmsg(p, pVtab); |
| 6811 if( rc==SQLITE_OK && pOp->p1 ){ |
| 6812 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); |
| 6813 db->lastRowid = rowid; |
| 6814 } |
| 6815 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ |
| 6816 if( pOp->p5==OE_Ignore ){ |
| 6817 rc = SQLITE_OK; |
| 6818 }else{ |
| 6819 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); |
| 6820 } |
| 6821 }else{ |
| 6822 p->nChange++; |
| 6823 } |
| 6824 if( rc ) goto abort_due_to_error; |
| 6825 } |
| 6826 break; |
| 6827 } |
| 6828 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 6829 |
| 6830 #ifndef SQLITE_OMIT_PAGER_PRAGMAS |
| 6831 /* Opcode: Pagecount P1 P2 * * * |
| 6832 ** |
| 6833 ** Write the current number of pages in database P1 to memory cell P2. |
| 6834 */ |
| 6835 case OP_Pagecount: { /* out2 */ |
| 6836 pOut = out2Prerelease(p, pOp); |
| 6837 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); |
| 6838 break; |
| 6839 } |
| 6840 #endif |
| 6841 |
| 6842 |
| 6843 #ifndef SQLITE_OMIT_PAGER_PRAGMAS |
| 6844 /* Opcode: MaxPgcnt P1 P2 P3 * * |
| 6845 ** |
| 6846 ** Try to set the maximum page count for database P1 to the value in P3. |
| 6847 ** Do not let the maximum page count fall below the current page count and |
| 6848 ** do not change the maximum page count value if P3==0. |
| 6849 ** |
| 6850 ** Store the maximum page count after the change in register P2. |
| 6851 */ |
| 6852 case OP_MaxPgcnt: { /* out2 */ |
| 6853 unsigned int newMax; |
| 6854 Btree *pBt; |
| 6855 |
| 6856 pOut = out2Prerelease(p, pOp); |
| 6857 pBt = db->aDb[pOp->p1].pBt; |
| 6858 newMax = 0; |
| 6859 if( pOp->p3 ){ |
| 6860 newMax = sqlite3BtreeLastPage(pBt); |
| 6861 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; |
| 6862 } |
| 6863 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); |
| 6864 break; |
| 6865 } |
| 6866 #endif |
| 6867 |
| 6868 |
| 6869 /* Opcode: Init P1 P2 * P4 * |
| 6870 ** Synopsis: Start at P2 |
| 6871 ** |
| 6872 ** Programs contain a single instance of this opcode as the very first |
| 6873 ** opcode. |
| 6874 ** |
| 6875 ** If tracing is enabled (by the sqlite3_trace()) interface, then |
| 6876 ** the UTF-8 string contained in P4 is emitted on the trace callback. |
| 6877 ** Or if P4 is blank, use the string returned by sqlite3_sql(). |
| 6878 ** |
| 6879 ** If P2 is not zero, jump to instruction P2. |
| 6880 ** |
| 6881 ** Increment the value of P1 so that OP_Once opcodes will jump the |
| 6882 ** first time they are evaluated for this run. |
| 6883 */ |
| 6884 case OP_Init: { /* jump */ |
| 6885 char *zTrace; |
| 6886 int i; |
| 6887 |
| 6888 /* If the P4 argument is not NULL, then it must be an SQL comment string. |
| 6889 ** The "--" string is broken up to prevent false-positives with srcck1.c. |
| 6890 ** |
| 6891 ** This assert() provides evidence for: |
| 6892 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that |
| 6893 ** would have been returned by the legacy sqlite3_trace() interface by |
| 6894 ** using the X argument when X begins with "--" and invoking |
| 6895 ** sqlite3_expanded_sql(P) otherwise. |
| 6896 */ |
| 6897 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); |
| 6898 assert( pOp==p->aOp ); /* Always instruction 0 */ |
| 6899 |
| 6900 #ifndef SQLITE_OMIT_TRACE |
| 6901 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 |
| 6902 && !p->doingRerun |
| 6903 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 |
| 6904 ){ |
| 6905 #ifndef SQLITE_OMIT_DEPRECATED |
| 6906 if( db->mTrace & SQLITE_TRACE_LEGACY ){ |
| 6907 void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace; |
| 6908 char *z = sqlite3VdbeExpandSql(p, zTrace); |
| 6909 x(db->pTraceArg, z); |
| 6910 sqlite3_free(z); |
| 6911 }else |
| 6912 #endif |
| 6913 { |
| 6914 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); |
| 6915 } |
| 6916 } |
| 6917 #ifdef SQLITE_USE_FCNTL_TRACE |
| 6918 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); |
| 6919 if( zTrace ){ |
| 6920 int j; |
| 6921 for(j=0; j<db->nDb; j++){ |
| 6922 if( DbMaskTest(p->btreeMask, j)==0 ) continue; |
| 6923 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); |
| 6924 } |
| 6925 } |
| 6926 #endif /* SQLITE_USE_FCNTL_TRACE */ |
| 6927 #ifdef SQLITE_DEBUG |
| 6928 if( (db->flags & SQLITE_SqlTrace)!=0 |
| 6929 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 |
| 6930 ){ |
| 6931 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); |
| 6932 } |
| 6933 #endif /* SQLITE_DEBUG */ |
| 6934 #endif /* SQLITE_OMIT_TRACE */ |
| 6935 assert( pOp->p2>0 ); |
| 6936 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ |
| 6937 for(i=1; i<p->nOp; i++){ |
| 6938 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; |
| 6939 } |
| 6940 pOp->p1 = 0; |
| 6941 } |
| 6942 pOp->p1++; |
| 6943 goto jump_to_p2; |
| 6944 } |
| 6945 |
| 6946 #ifdef SQLITE_ENABLE_CURSOR_HINTS |
| 6947 /* Opcode: CursorHint P1 * * P4 * |
| 6948 ** |
| 6949 ** Provide a hint to cursor P1 that it only needs to return rows that |
| 6950 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer |
| 6951 ** to values currently held in registers. TK_COLUMN terms in the P4 |
| 6952 ** expression refer to columns in the b-tree to which cursor P1 is pointing. |
| 6953 */ |
| 6954 case OP_CursorHint: { |
| 6955 VdbeCursor *pC; |
| 6956 |
| 6957 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
| 6958 assert( pOp->p4type==P4_EXPR ); |
| 6959 pC = p->apCsr[pOp->p1]; |
| 6960 if( pC ){ |
| 6961 assert( pC->eCurType==CURTYPE_BTREE ); |
| 6962 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, |
| 6963 pOp->p4.pExpr, aMem); |
| 6964 } |
| 6965 break; |
| 6966 } |
| 6967 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ |
| 6968 |
| 6969 /* Opcode: Noop * * * * * |
| 6970 ** |
| 6971 ** Do nothing. This instruction is often useful as a jump |
| 6972 ** destination. |
| 6973 */ |
| 6974 /* |
| 6975 ** The magic Explain opcode are only inserted when explain==2 (which |
| 6976 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) |
| 6977 ** This opcode records information from the optimizer. It is the |
| 6978 ** the same as a no-op. This opcodesnever appears in a real VM program. |
| 6979 */ |
| 6980 default: { /* This is really OP_Noop and OP_Explain */ |
| 6981 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); |
| 6982 break; |
| 6983 } |
| 6984 |
| 6985 /***************************************************************************** |
| 6986 ** The cases of the switch statement above this line should all be indented |
| 6987 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the |
| 6988 ** readability. From this point on down, the normal indentation rules are |
| 6989 ** restored. |
| 6990 *****************************************************************************/ |
| 6991 } |
| 6992 |
| 6993 #ifdef VDBE_PROFILE |
| 6994 { |
| 6995 u64 endTime = sqlite3Hwtime(); |
| 6996 if( endTime>start ) pOrigOp->cycles += endTime - start; |
| 6997 pOrigOp->cnt++; |
| 6998 } |
| 6999 #endif |
| 7000 |
| 7001 /* The following code adds nothing to the actual functionality |
| 7002 ** of the program. It is only here for testing and debugging. |
| 7003 ** On the other hand, it does burn CPU cycles every time through |
| 7004 ** the evaluator loop. So we can leave it out when NDEBUG is defined. |
| 7005 */ |
| 7006 #ifndef NDEBUG |
| 7007 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); |
| 7008 |
| 7009 #ifdef SQLITE_DEBUG |
| 7010 if( db->flags & SQLITE_VdbeTrace ){ |
| 7011 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; |
| 7012 if( rc!=0 ) printf("rc=%d\n",rc); |
| 7013 if( opProperty & (OPFLG_OUT2) ){ |
| 7014 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); |
| 7015 } |
| 7016 if( opProperty & OPFLG_OUT3 ){ |
| 7017 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); |
| 7018 } |
| 7019 } |
| 7020 #endif /* SQLITE_DEBUG */ |
| 7021 #endif /* NDEBUG */ |
| 7022 } /* The end of the for(;;) loop the loops through opcodes */ |
| 7023 |
| 7024 /* If we reach this point, it means that execution is finished with |
| 7025 ** an error of some kind. |
| 7026 */ |
| 7027 abort_due_to_error: |
| 7028 if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT; |
| 7029 assert( rc ); |
| 7030 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ |
| 7031 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); |
| 7032 } |
| 7033 p->rc = rc; |
| 7034 sqlite3SystemError(db, rc); |
| 7035 testcase( sqlite3GlobalConfig.xLog!=0 ); |
| 7036 sqlite3_log(rc, "statement aborts at %d: [%s] %s", |
| 7037 (int)(pOp - aOp), p->zSql, p->zErrMsg); |
| 7038 sqlite3VdbeHalt(p); |
| 7039 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); |
| 7040 rc = SQLITE_ERROR; |
| 7041 if( resetSchemaOnFault>0 ){ |
| 7042 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); |
| 7043 } |
| 7044 |
| 7045 /* This is the only way out of this procedure. We have to |
| 7046 ** release the mutexes on btrees that were acquired at the |
| 7047 ** top. */ |
| 7048 vdbe_return: |
| 7049 testcase( nVmStep>0 ); |
| 7050 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; |
| 7051 sqlite3VdbeLeave(p); |
| 7052 assert( rc!=SQLITE_OK || nExtraDelete==0 |
| 7053 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 |
| 7054 ); |
| 7055 return rc; |
| 7056 |
| 7057 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH |
| 7058 ** is encountered. |
| 7059 */ |
| 7060 too_big: |
| 7061 sqlite3VdbeError(p, "string or blob too big"); |
| 7062 rc = SQLITE_TOOBIG; |
| 7063 goto abort_due_to_error; |
| 7064 |
| 7065 /* Jump to here if a malloc() fails. |
| 7066 */ |
| 7067 no_mem: |
| 7068 sqlite3OomFault(db); |
| 7069 sqlite3VdbeError(p, "out of memory"); |
| 7070 rc = SQLITE_NOMEM_BKPT; |
| 7071 goto abort_due_to_error; |
| 7072 |
| 7073 /* Jump to here if the sqlite3_interrupt() API sets the interrupt |
| 7074 ** flag. |
| 7075 */ |
| 7076 abort_due_to_interrupt: |
| 7077 assert( db->u1.isInterrupted ); |
| 7078 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; |
| 7079 p->rc = rc; |
| 7080 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); |
| 7081 goto abort_due_to_error; |
| 7082 } |
OLD | NEW |