Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1)

Side by Side Diff: third_party/sqlite/sqlite-src-3170000/src/vdbe.c

Issue 2747283002: [sql] Import reference version of SQLite 3.17.. (Closed)
Patch Set: Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files. The formatting
17 ** of the code in this file is, therefore, important. See other comments
18 ** in this file for details. If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell. This macro verifies that shallow copies are
27 ** not misused. A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content. If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy. This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38
39 /*
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly. This variable has no function other than to
44 ** help verify the correct operation of the library.
45 */
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
49
50 /*
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
54 **
55 ** This facility is used for testing purposes only. It does not function
56 ** in an ordinary build.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
61
62 /*
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed. The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times. This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
68 */
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
72
73 /*
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly. This variable has no function other than to
78 ** help verify the correct operation of the library.
79 */
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84 sqlite3_max_blobsize = p->n;
85 }
86 }
87 #endif
88
89 /*
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
92 */
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
95 #else
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
97 #endif
98
99 /*
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
105 */
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
109
110 /*
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
113 */
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
119
120 /*
121 ** Invoke the VDBE coverage callback, if that callback is defined. This
122 ** feature is used for test suite validation only and does not appear an
123 ** production builds.
124 **
125 ** M is an integer, 2 or 3, that indices how many different ways the
126 ** branch can go. It is usually 2. "I" is the direction the branch
127 ** goes. 0 means falls through. 1 means branch is taken. 2 means the
128 ** second alternative branch is taken.
129 **
130 ** iSrcLine is the source code line (from the __LINE__ macro) that
131 ** generated the VDBE instruction. This instrumentation assumes that all
132 ** source code is in a single file (the amalgamation). Special values 1
133 ** and 2 for the iSrcLine parameter mean that this particular branch is
134 ** always taken or never taken, respectively.
135 */
136 #if !defined(SQLITE_VDBE_COVERAGE)
137 # define VdbeBranchTaken(I,M)
138 #else
139 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
140 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
141 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
142 M = iSrcLine;
143 /* Assert the truth of VdbeCoverageAlwaysTaken() and
144 ** VdbeCoverageNeverTaken() */
145 assert( (M & I)==I );
146 }else{
147 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
148 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
149 iSrcLine,I,M);
150 }
151 }
152 #endif
153
154 /*
155 ** Convert the given register into a string if it isn't one
156 ** already. Return non-zero if a malloc() fails.
157 */
158 #define Stringify(P, enc) \
159 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
160 { goto no_mem; }
161
162 /*
163 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
164 ** a pointer to a dynamically allocated string where some other entity
165 ** is responsible for deallocating that string. Because the register
166 ** does not control the string, it might be deleted without the register
167 ** knowing it.
168 **
169 ** This routine converts an ephemeral string into a dynamically allocated
170 ** string that the register itself controls. In other words, it
171 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
172 */
173 #define Deephemeralize(P) \
174 if( ((P)->flags&MEM_Ephem)!=0 \
175 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
176
177 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
178 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
179
180 /*
181 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
182 ** if we run out of memory.
183 */
184 static VdbeCursor *allocateCursor(
185 Vdbe *p, /* The virtual machine */
186 int iCur, /* Index of the new VdbeCursor */
187 int nField, /* Number of fields in the table or index */
188 int iDb, /* Database the cursor belongs to, or -1 */
189 u8 eCurType /* Type of the new cursor */
190 ){
191 /* Find the memory cell that will be used to store the blob of memory
192 ** required for this VdbeCursor structure. It is convenient to use a
193 ** vdbe memory cell to manage the memory allocation required for a
194 ** VdbeCursor structure for the following reasons:
195 **
196 ** * Sometimes cursor numbers are used for a couple of different
197 ** purposes in a vdbe program. The different uses might require
198 ** different sized allocations. Memory cells provide growable
199 ** allocations.
200 **
201 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
202 ** be freed lazily via the sqlite3_release_memory() API. This
203 ** minimizes the number of malloc calls made by the system.
204 **
205 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
206 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
207 ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
208 */
209 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
210
211 int nByte;
212 VdbeCursor *pCx = 0;
213 nByte =
214 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
215 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
216
217 assert( iCur>=0 && iCur<p->nCursor );
218 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
219 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
220 p->apCsr[iCur] = 0;
221 }
222 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
223 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
224 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
225 pCx->eCurType = eCurType;
226 pCx->iDb = iDb;
227 pCx->nField = nField;
228 pCx->aOffset = &pCx->aType[nField];
229 if( eCurType==CURTYPE_BTREE ){
230 pCx->uc.pCursor = (BtCursor*)
231 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
232 sqlite3BtreeCursorZero(pCx->uc.pCursor);
233 }
234 }
235 return pCx;
236 }
237
238 /*
239 ** Try to convert a value into a numeric representation if we can
240 ** do so without loss of information. In other words, if the string
241 ** looks like a number, convert it into a number. If it does not
242 ** look like a number, leave it alone.
243 **
244 ** If the bTryForInt flag is true, then extra effort is made to give
245 ** an integer representation. Strings that look like floating point
246 ** values but which have no fractional component (example: '48.00')
247 ** will have a MEM_Int representation when bTryForInt is true.
248 **
249 ** If bTryForInt is false, then if the input string contains a decimal
250 ** point or exponential notation, the result is only MEM_Real, even
251 ** if there is an exact integer representation of the quantity.
252 */
253 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
254 double rValue;
255 i64 iValue;
256 u8 enc = pRec->enc;
257 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
258 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
259 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
260 pRec->u.i = iValue;
261 pRec->flags |= MEM_Int;
262 }else{
263 pRec->u.r = rValue;
264 pRec->flags |= MEM_Real;
265 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
266 }
267 }
268
269 /*
270 ** Processing is determine by the affinity parameter:
271 **
272 ** SQLITE_AFF_INTEGER:
273 ** SQLITE_AFF_REAL:
274 ** SQLITE_AFF_NUMERIC:
275 ** Try to convert pRec to an integer representation or a
276 ** floating-point representation if an integer representation
277 ** is not possible. Note that the integer representation is
278 ** always preferred, even if the affinity is REAL, because
279 ** an integer representation is more space efficient on disk.
280 **
281 ** SQLITE_AFF_TEXT:
282 ** Convert pRec to a text representation.
283 **
284 ** SQLITE_AFF_BLOB:
285 ** No-op. pRec is unchanged.
286 */
287 static void applyAffinity(
288 Mem *pRec, /* The value to apply affinity to */
289 char affinity, /* The affinity to be applied */
290 u8 enc /* Use this text encoding */
291 ){
292 if( affinity>=SQLITE_AFF_NUMERIC ){
293 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
294 || affinity==SQLITE_AFF_NUMERIC );
295 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
296 if( (pRec->flags & MEM_Real)==0 ){
297 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
298 }else{
299 sqlite3VdbeIntegerAffinity(pRec);
300 }
301 }
302 }else if( affinity==SQLITE_AFF_TEXT ){
303 /* Only attempt the conversion to TEXT if there is an integer or real
304 ** representation (blob and NULL do not get converted) but no string
305 ** representation. It would be harmless to repeat the conversion if
306 ** there is already a string rep, but it is pointless to waste those
307 ** CPU cycles. */
308 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
309 if( (pRec->flags&(MEM_Real|MEM_Int)) ){
310 sqlite3VdbeMemStringify(pRec, enc, 1);
311 }
312 }
313 pRec->flags &= ~(MEM_Real|MEM_Int);
314 }
315 }
316
317 /*
318 ** Try to convert the type of a function argument or a result column
319 ** into a numeric representation. Use either INTEGER or REAL whichever
320 ** is appropriate. But only do the conversion if it is possible without
321 ** loss of information and return the revised type of the argument.
322 */
323 int sqlite3_value_numeric_type(sqlite3_value *pVal){
324 int eType = sqlite3_value_type(pVal);
325 if( eType==SQLITE_TEXT ){
326 Mem *pMem = (Mem*)pVal;
327 applyNumericAffinity(pMem, 0);
328 eType = sqlite3_value_type(pVal);
329 }
330 return eType;
331 }
332
333 /*
334 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
335 ** not the internal Mem* type.
336 */
337 void sqlite3ValueApplyAffinity(
338 sqlite3_value *pVal,
339 u8 affinity,
340 u8 enc
341 ){
342 applyAffinity((Mem *)pVal, affinity, enc);
343 }
344
345 /*
346 ** pMem currently only holds a string type (or maybe a BLOB that we can
347 ** interpret as a string if we want to). Compute its corresponding
348 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
349 ** accordingly.
350 */
351 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
352 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
353 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
354 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
355 return 0;
356 }
357 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
358 return MEM_Int;
359 }
360 return MEM_Real;
361 }
362
363 /*
364 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
365 ** none.
366 **
367 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
368 ** But it does set pMem->u.r and pMem->u.i appropriately.
369 */
370 static u16 numericType(Mem *pMem){
371 if( pMem->flags & (MEM_Int|MEM_Real) ){
372 return pMem->flags & (MEM_Int|MEM_Real);
373 }
374 if( pMem->flags & (MEM_Str|MEM_Blob) ){
375 return computeNumericType(pMem);
376 }
377 return 0;
378 }
379
380 #ifdef SQLITE_DEBUG
381 /*
382 ** Write a nice string representation of the contents of cell pMem
383 ** into buffer zBuf, length nBuf.
384 */
385 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
386 char *zCsr = zBuf;
387 int f = pMem->flags;
388
389 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
390
391 if( f&MEM_Blob ){
392 int i;
393 char c;
394 if( f & MEM_Dyn ){
395 c = 'z';
396 assert( (f & (MEM_Static|MEM_Ephem))==0 );
397 }else if( f & MEM_Static ){
398 c = 't';
399 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
400 }else if( f & MEM_Ephem ){
401 c = 'e';
402 assert( (f & (MEM_Static|MEM_Dyn))==0 );
403 }else{
404 c = 's';
405 }
406
407 sqlite3_snprintf(100, zCsr, "%c", c);
408 zCsr += sqlite3Strlen30(zCsr);
409 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
410 zCsr += sqlite3Strlen30(zCsr);
411 for(i=0; i<16 && i<pMem->n; i++){
412 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
413 zCsr += sqlite3Strlen30(zCsr);
414 }
415 for(i=0; i<16 && i<pMem->n; i++){
416 char z = pMem->z[i];
417 if( z<32 || z>126 ) *zCsr++ = '.';
418 else *zCsr++ = z;
419 }
420
421 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
422 zCsr += sqlite3Strlen30(zCsr);
423 if( f & MEM_Zero ){
424 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
425 zCsr += sqlite3Strlen30(zCsr);
426 }
427 *zCsr = '\0';
428 }else if( f & MEM_Str ){
429 int j, k;
430 zBuf[0] = ' ';
431 if( f & MEM_Dyn ){
432 zBuf[1] = 'z';
433 assert( (f & (MEM_Static|MEM_Ephem))==0 );
434 }else if( f & MEM_Static ){
435 zBuf[1] = 't';
436 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
437 }else if( f & MEM_Ephem ){
438 zBuf[1] = 'e';
439 assert( (f & (MEM_Static|MEM_Dyn))==0 );
440 }else{
441 zBuf[1] = 's';
442 }
443 k = 2;
444 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
445 k += sqlite3Strlen30(&zBuf[k]);
446 zBuf[k++] = '[';
447 for(j=0; j<15 && j<pMem->n; j++){
448 u8 c = pMem->z[j];
449 if( c>=0x20 && c<0x7f ){
450 zBuf[k++] = c;
451 }else{
452 zBuf[k++] = '.';
453 }
454 }
455 zBuf[k++] = ']';
456 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
457 k += sqlite3Strlen30(&zBuf[k]);
458 zBuf[k++] = 0;
459 }
460 }
461 #endif
462
463 #ifdef SQLITE_DEBUG
464 /*
465 ** Print the value of a register for tracing purposes:
466 */
467 static void memTracePrint(Mem *p){
468 if( p->flags & MEM_Undefined ){
469 printf(" undefined");
470 }else if( p->flags & MEM_Null ){
471 printf(" NULL");
472 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
473 printf(" si:%lld", p->u.i);
474 }else if( p->flags & MEM_Int ){
475 printf(" i:%lld", p->u.i);
476 #ifndef SQLITE_OMIT_FLOATING_POINT
477 }else if( p->flags & MEM_Real ){
478 printf(" r:%g", p->u.r);
479 #endif
480 }else if( p->flags & MEM_RowSet ){
481 printf(" (rowset)");
482 }else{
483 char zBuf[200];
484 sqlite3VdbeMemPrettyPrint(p, zBuf);
485 printf(" %s", zBuf);
486 }
487 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
488 }
489 static void registerTrace(int iReg, Mem *p){
490 printf("REG[%d] = ", iReg);
491 memTracePrint(p);
492 printf("\n");
493 }
494 #endif
495
496 #ifdef SQLITE_DEBUG
497 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
498 #else
499 # define REGISTER_TRACE(R,M)
500 #endif
501
502
503 #ifdef VDBE_PROFILE
504
505 /*
506 ** hwtime.h contains inline assembler code for implementing
507 ** high-performance timing routines.
508 */
509 #include "hwtime.h"
510
511 #endif
512
513 #ifndef NDEBUG
514 /*
515 ** This function is only called from within an assert() expression. It
516 ** checks that the sqlite3.nTransaction variable is correctly set to
517 ** the number of non-transaction savepoints currently in the
518 ** linked list starting at sqlite3.pSavepoint.
519 **
520 ** Usage:
521 **
522 ** assert( checkSavepointCount(db) );
523 */
524 static int checkSavepointCount(sqlite3 *db){
525 int n = 0;
526 Savepoint *p;
527 for(p=db->pSavepoint; p; p=p->pNext) n++;
528 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
529 return 1;
530 }
531 #endif
532
533 /*
534 ** Return the register of pOp->p2 after first preparing it to be
535 ** overwritten with an integer value.
536 */
537 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
538 sqlite3VdbeMemSetNull(pOut);
539 pOut->flags = MEM_Int;
540 return pOut;
541 }
542 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
543 Mem *pOut;
544 assert( pOp->p2>0 );
545 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
546 pOut = &p->aMem[pOp->p2];
547 memAboutToChange(p, pOut);
548 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
549 return out2PrereleaseWithClear(pOut);
550 }else{
551 pOut->flags = MEM_Int;
552 return pOut;
553 }
554 }
555
556
557 /*
558 ** Execute as much of a VDBE program as we can.
559 ** This is the core of sqlite3_step().
560 */
561 int sqlite3VdbeExec(
562 Vdbe *p /* The VDBE */
563 ){
564 Op *aOp = p->aOp; /* Copy of p->aOp */
565 Op *pOp = aOp; /* Current operation */
566 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
567 Op *pOrigOp; /* Value of pOp at the top of the loop */
568 #endif
569 #ifdef SQLITE_DEBUG
570 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */
571 #endif
572 int rc = SQLITE_OK; /* Value to return */
573 sqlite3 *db = p->db; /* The database */
574 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
575 u8 encoding = ENC(db); /* The database encoding */
576 int iCompare = 0; /* Result of last comparison */
577 unsigned nVmStep = 0; /* Number of virtual machine steps */
578 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
579 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
580 #endif
581 Mem *aMem = p->aMem; /* Copy of p->aMem */
582 Mem *pIn1 = 0; /* 1st input operand */
583 Mem *pIn2 = 0; /* 2nd input operand */
584 Mem *pIn3 = 0; /* 3rd input operand */
585 Mem *pOut = 0; /* Output operand */
586 #ifdef VDBE_PROFILE
587 u64 start; /* CPU clock count at start of opcode */
588 #endif
589 /*** INSERT STACK UNION HERE ***/
590
591 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
592 sqlite3VdbeEnter(p);
593 if( p->rc==SQLITE_NOMEM ){
594 /* This happens if a malloc() inside a call to sqlite3_column_text() or
595 ** sqlite3_column_text16() failed. */
596 goto no_mem;
597 }
598 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
599 assert( p->bIsReader || p->readOnly!=0 );
600 p->iCurrentTime = 0;
601 assert( p->explain==0 );
602 p->pResultSet = 0;
603 db->busyHandler.nBusy = 0;
604 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
605 sqlite3VdbeIOTraceSql(p);
606 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
607 if( db->xProgress ){
608 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
609 assert( 0 < db->nProgressOps );
610 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
611 }
612 #endif
613 #ifdef SQLITE_DEBUG
614 sqlite3BeginBenignMalloc();
615 if( p->pc==0
616 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
617 ){
618 int i;
619 int once = 1;
620 sqlite3VdbePrintSql(p);
621 if( p->db->flags & SQLITE_VdbeListing ){
622 printf("VDBE Program Listing:\n");
623 for(i=0; i<p->nOp; i++){
624 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
625 }
626 }
627 if( p->db->flags & SQLITE_VdbeEQP ){
628 for(i=0; i<p->nOp; i++){
629 if( aOp[i].opcode==OP_Explain ){
630 if( once ) printf("VDBE Query Plan:\n");
631 printf("%s\n", aOp[i].p4.z);
632 once = 0;
633 }
634 }
635 }
636 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
637 }
638 sqlite3EndBenignMalloc();
639 #endif
640 for(pOp=&aOp[p->pc]; 1; pOp++){
641 /* Errors are detected by individual opcodes, with an immediate
642 ** jumps to abort_due_to_error. */
643 assert( rc==SQLITE_OK );
644
645 assert( pOp>=aOp && pOp<&aOp[p->nOp]);
646 #ifdef VDBE_PROFILE
647 start = sqlite3Hwtime();
648 #endif
649 nVmStep++;
650 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
651 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
652 #endif
653
654 /* Only allow tracing if SQLITE_DEBUG is defined.
655 */
656 #ifdef SQLITE_DEBUG
657 if( db->flags & SQLITE_VdbeTrace ){
658 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
659 }
660 #endif
661
662
663 /* Check to see if we need to simulate an interrupt. This only happens
664 ** if we have a special test build.
665 */
666 #ifdef SQLITE_TEST
667 if( sqlite3_interrupt_count>0 ){
668 sqlite3_interrupt_count--;
669 if( sqlite3_interrupt_count==0 ){
670 sqlite3_interrupt(db);
671 }
672 }
673 #endif
674
675 /* Sanity checking on other operands */
676 #ifdef SQLITE_DEBUG
677 {
678 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
679 if( (opProperty & OPFLG_IN1)!=0 ){
680 assert( pOp->p1>0 );
681 assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
682 assert( memIsValid(&aMem[pOp->p1]) );
683 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
684 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
685 }
686 if( (opProperty & OPFLG_IN2)!=0 ){
687 assert( pOp->p2>0 );
688 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
689 assert( memIsValid(&aMem[pOp->p2]) );
690 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
691 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
692 }
693 if( (opProperty & OPFLG_IN3)!=0 ){
694 assert( pOp->p3>0 );
695 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
696 assert( memIsValid(&aMem[pOp->p3]) );
697 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
698 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
699 }
700 if( (opProperty & OPFLG_OUT2)!=0 ){
701 assert( pOp->p2>0 );
702 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
703 memAboutToChange(p, &aMem[pOp->p2]);
704 }
705 if( (opProperty & OPFLG_OUT3)!=0 ){
706 assert( pOp->p3>0 );
707 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
708 memAboutToChange(p, &aMem[pOp->p3]);
709 }
710 }
711 #endif
712 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
713 pOrigOp = pOp;
714 #endif
715
716 switch( pOp->opcode ){
717
718 /*****************************************************************************
719 ** What follows is a massive switch statement where each case implements a
720 ** separate instruction in the virtual machine. If we follow the usual
721 ** indentation conventions, each case should be indented by 6 spaces. But
722 ** that is a lot of wasted space on the left margin. So the code within
723 ** the switch statement will break with convention and be flush-left. Another
724 ** big comment (similar to this one) will mark the point in the code where
725 ** we transition back to normal indentation.
726 **
727 ** The formatting of each case is important. The makefile for SQLite
728 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
729 ** file looking for lines that begin with "case OP_". The opcodes.h files
730 ** will be filled with #defines that give unique integer values to each
731 ** opcode and the opcodes.c file is filled with an array of strings where
732 ** each string is the symbolic name for the corresponding opcode. If the
733 ** case statement is followed by a comment of the form "/# same as ... #/"
734 ** that comment is used to determine the particular value of the opcode.
735 **
736 ** Other keywords in the comment that follows each case are used to
737 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
738 ** Keywords include: in1, in2, in3, out2, out3. See
739 ** the mkopcodeh.awk script for additional information.
740 **
741 ** Documentation about VDBE opcodes is generated by scanning this file
742 ** for lines of that contain "Opcode:". That line and all subsequent
743 ** comment lines are used in the generation of the opcode.html documentation
744 ** file.
745 **
746 ** SUMMARY:
747 **
748 ** Formatting is important to scripts that scan this file.
749 ** Do not deviate from the formatting style currently in use.
750 **
751 *****************************************************************************/
752
753 /* Opcode: Goto * P2 * * *
754 **
755 ** An unconditional jump to address P2.
756 ** The next instruction executed will be
757 ** the one at index P2 from the beginning of
758 ** the program.
759 **
760 ** The P1 parameter is not actually used by this opcode. However, it
761 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
762 ** that this Goto is the bottom of a loop and that the lines from P2 down
763 ** to the current line should be indented for EXPLAIN output.
764 */
765 case OP_Goto: { /* jump */
766 jump_to_p2_and_check_for_interrupt:
767 pOp = &aOp[pOp->p2 - 1];
768
769 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
770 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
771 ** completion. Check to see if sqlite3_interrupt() has been called
772 ** or if the progress callback needs to be invoked.
773 **
774 ** This code uses unstructured "goto" statements and does not look clean.
775 ** But that is not due to sloppy coding habits. The code is written this
776 ** way for performance, to avoid having to run the interrupt and progress
777 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
778 ** faster according to "valgrind --tool=cachegrind" */
779 check_for_interrupt:
780 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
781 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
782 /* Call the progress callback if it is configured and the required number
783 ** of VDBE ops have been executed (either since this invocation of
784 ** sqlite3VdbeExec() or since last time the progress callback was called).
785 ** If the progress callback returns non-zero, exit the virtual machine with
786 ** a return code SQLITE_ABORT.
787 */
788 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
789 assert( db->nProgressOps!=0 );
790 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
791 if( db->xProgress(db->pProgressArg) ){
792 rc = SQLITE_INTERRUPT;
793 goto abort_due_to_error;
794 }
795 }
796 #endif
797
798 break;
799 }
800
801 /* Opcode: Gosub P1 P2 * * *
802 **
803 ** Write the current address onto register P1
804 ** and then jump to address P2.
805 */
806 case OP_Gosub: { /* jump */
807 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
808 pIn1 = &aMem[pOp->p1];
809 assert( VdbeMemDynamic(pIn1)==0 );
810 memAboutToChange(p, pIn1);
811 pIn1->flags = MEM_Int;
812 pIn1->u.i = (int)(pOp-aOp);
813 REGISTER_TRACE(pOp->p1, pIn1);
814
815 /* Most jump operations do a goto to this spot in order to update
816 ** the pOp pointer. */
817 jump_to_p2:
818 pOp = &aOp[pOp->p2 - 1];
819 break;
820 }
821
822 /* Opcode: Return P1 * * * *
823 **
824 ** Jump to the next instruction after the address in register P1. After
825 ** the jump, register P1 becomes undefined.
826 */
827 case OP_Return: { /* in1 */
828 pIn1 = &aMem[pOp->p1];
829 assert( pIn1->flags==MEM_Int );
830 pOp = &aOp[pIn1->u.i];
831 pIn1->flags = MEM_Undefined;
832 break;
833 }
834
835 /* Opcode: InitCoroutine P1 P2 P3 * *
836 **
837 ** Set up register P1 so that it will Yield to the coroutine
838 ** located at address P3.
839 **
840 ** If P2!=0 then the coroutine implementation immediately follows
841 ** this opcode. So jump over the coroutine implementation to
842 ** address P2.
843 **
844 ** See also: EndCoroutine
845 */
846 case OP_InitCoroutine: { /* jump */
847 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
848 assert( pOp->p2>=0 && pOp->p2<p->nOp );
849 assert( pOp->p3>=0 && pOp->p3<p->nOp );
850 pOut = &aMem[pOp->p1];
851 assert( !VdbeMemDynamic(pOut) );
852 pOut->u.i = pOp->p3 - 1;
853 pOut->flags = MEM_Int;
854 if( pOp->p2 ) goto jump_to_p2;
855 break;
856 }
857
858 /* Opcode: EndCoroutine P1 * * * *
859 **
860 ** The instruction at the address in register P1 is a Yield.
861 ** Jump to the P2 parameter of that Yield.
862 ** After the jump, register P1 becomes undefined.
863 **
864 ** See also: InitCoroutine
865 */
866 case OP_EndCoroutine: { /* in1 */
867 VdbeOp *pCaller;
868 pIn1 = &aMem[pOp->p1];
869 assert( pIn1->flags==MEM_Int );
870 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
871 pCaller = &aOp[pIn1->u.i];
872 assert( pCaller->opcode==OP_Yield );
873 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
874 pOp = &aOp[pCaller->p2 - 1];
875 pIn1->flags = MEM_Undefined;
876 break;
877 }
878
879 /* Opcode: Yield P1 P2 * * *
880 **
881 ** Swap the program counter with the value in register P1. This
882 ** has the effect of yielding to a coroutine.
883 **
884 ** If the coroutine that is launched by this instruction ends with
885 ** Yield or Return then continue to the next instruction. But if
886 ** the coroutine launched by this instruction ends with
887 ** EndCoroutine, then jump to P2 rather than continuing with the
888 ** next instruction.
889 **
890 ** See also: InitCoroutine
891 */
892 case OP_Yield: { /* in1, jump */
893 int pcDest;
894 pIn1 = &aMem[pOp->p1];
895 assert( VdbeMemDynamic(pIn1)==0 );
896 pIn1->flags = MEM_Int;
897 pcDest = (int)pIn1->u.i;
898 pIn1->u.i = (int)(pOp - aOp);
899 REGISTER_TRACE(pOp->p1, pIn1);
900 pOp = &aOp[pcDest];
901 break;
902 }
903
904 /* Opcode: HaltIfNull P1 P2 P3 P4 P5
905 ** Synopsis: if r[P3]=null halt
906 **
907 ** Check the value in register P3. If it is NULL then Halt using
908 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
909 ** value in register P3 is not NULL, then this routine is a no-op.
910 ** The P5 parameter should be 1.
911 */
912 case OP_HaltIfNull: { /* in3 */
913 pIn3 = &aMem[pOp->p3];
914 if( (pIn3->flags & MEM_Null)==0 ) break;
915 /* Fall through into OP_Halt */
916 }
917
918 /* Opcode: Halt P1 P2 * P4 P5
919 **
920 ** Exit immediately. All open cursors, etc are closed
921 ** automatically.
922 **
923 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
924 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
925 ** For errors, it can be some other value. If P1!=0 then P2 will determine
926 ** whether or not to rollback the current transaction. Do not rollback
927 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
928 ** then back out all changes that have occurred during this execution of the
929 ** VDBE, but do not rollback the transaction.
930 **
931 ** If P4 is not null then it is an error message string.
932 **
933 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
934 **
935 ** 0: (no change)
936 ** 1: NOT NULL contraint failed: P4
937 ** 2: UNIQUE constraint failed: P4
938 ** 3: CHECK constraint failed: P4
939 ** 4: FOREIGN KEY constraint failed: P4
940 **
941 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
942 ** omitted.
943 **
944 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
945 ** every program. So a jump past the last instruction of the program
946 ** is the same as executing Halt.
947 */
948 case OP_Halt: {
949 VdbeFrame *pFrame;
950 int pcx;
951
952 pcx = (int)(pOp - aOp);
953 if( pOp->p1==SQLITE_OK && p->pFrame ){
954 /* Halt the sub-program. Return control to the parent frame. */
955 pFrame = p->pFrame;
956 p->pFrame = pFrame->pParent;
957 p->nFrame--;
958 sqlite3VdbeSetChanges(db, p->nChange);
959 pcx = sqlite3VdbeFrameRestore(pFrame);
960 if( pOp->p2==OE_Ignore ){
961 /* Instruction pcx is the OP_Program that invoked the sub-program
962 ** currently being halted. If the p2 instruction of this OP_Halt
963 ** instruction is set to OE_Ignore, then the sub-program is throwing
964 ** an IGNORE exception. In this case jump to the address specified
965 ** as the p2 of the calling OP_Program. */
966 pcx = p->aOp[pcx].p2-1;
967 }
968 aOp = p->aOp;
969 aMem = p->aMem;
970 pOp = &aOp[pcx];
971 break;
972 }
973 p->rc = pOp->p1;
974 p->errorAction = (u8)pOp->p2;
975 p->pc = pcx;
976 assert( pOp->p5<=4 );
977 if( p->rc ){
978 if( pOp->p5 ){
979 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
980 "FOREIGN KEY" };
981 testcase( pOp->p5==1 );
982 testcase( pOp->p5==2 );
983 testcase( pOp->p5==3 );
984 testcase( pOp->p5==4 );
985 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
986 if( pOp->p4.z ){
987 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
988 }
989 }else{
990 sqlite3VdbeError(p, "%s", pOp->p4.z);
991 }
992 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
993 }
994 rc = sqlite3VdbeHalt(p);
995 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
996 if( rc==SQLITE_BUSY ){
997 p->rc = SQLITE_BUSY;
998 }else{
999 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
1000 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1001 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1002 }
1003 goto vdbe_return;
1004 }
1005
1006 /* Opcode: Integer P1 P2 * * *
1007 ** Synopsis: r[P2]=P1
1008 **
1009 ** The 32-bit integer value P1 is written into register P2.
1010 */
1011 case OP_Integer: { /* out2 */
1012 pOut = out2Prerelease(p, pOp);
1013 pOut->u.i = pOp->p1;
1014 break;
1015 }
1016
1017 /* Opcode: Int64 * P2 * P4 *
1018 ** Synopsis: r[P2]=P4
1019 **
1020 ** P4 is a pointer to a 64-bit integer value.
1021 ** Write that value into register P2.
1022 */
1023 case OP_Int64: { /* out2 */
1024 pOut = out2Prerelease(p, pOp);
1025 assert( pOp->p4.pI64!=0 );
1026 pOut->u.i = *pOp->p4.pI64;
1027 break;
1028 }
1029
1030 #ifndef SQLITE_OMIT_FLOATING_POINT
1031 /* Opcode: Real * P2 * P4 *
1032 ** Synopsis: r[P2]=P4
1033 **
1034 ** P4 is a pointer to a 64-bit floating point value.
1035 ** Write that value into register P2.
1036 */
1037 case OP_Real: { /* same as TK_FLOAT, out2 */
1038 pOut = out2Prerelease(p, pOp);
1039 pOut->flags = MEM_Real;
1040 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1041 pOut->u.r = *pOp->p4.pReal;
1042 break;
1043 }
1044 #endif
1045
1046 /* Opcode: String8 * P2 * P4 *
1047 ** Synopsis: r[P2]='P4'
1048 **
1049 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1050 ** into a String opcode before it is executed for the first time. During
1051 ** this transformation, the length of string P4 is computed and stored
1052 ** as the P1 parameter.
1053 */
1054 case OP_String8: { /* same as TK_STRING, out2 */
1055 assert( pOp->p4.z!=0 );
1056 pOut = out2Prerelease(p, pOp);
1057 pOp->opcode = OP_String;
1058 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1059
1060 #ifndef SQLITE_OMIT_UTF16
1061 if( encoding!=SQLITE_UTF8 ){
1062 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1063 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1064 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1065 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1066 assert( VdbeMemDynamic(pOut)==0 );
1067 pOut->szMalloc = 0;
1068 pOut->flags |= MEM_Static;
1069 if( pOp->p4type==P4_DYNAMIC ){
1070 sqlite3DbFree(db, pOp->p4.z);
1071 }
1072 pOp->p4type = P4_DYNAMIC;
1073 pOp->p4.z = pOut->z;
1074 pOp->p1 = pOut->n;
1075 }
1076 testcase( rc==SQLITE_TOOBIG );
1077 #endif
1078 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1079 goto too_big;
1080 }
1081 assert( rc==SQLITE_OK );
1082 /* Fall through to the next case, OP_String */
1083 }
1084
1085 /* Opcode: String P1 P2 P3 P4 P5
1086 ** Synopsis: r[P2]='P4' (len=P1)
1087 **
1088 ** The string value P4 of length P1 (bytes) is stored in register P2.
1089 **
1090 ** If P3 is not zero and the content of register P3 is equal to P5, then
1091 ** the datatype of the register P2 is converted to BLOB. The content is
1092 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1093 ** of a string, as if it had been CAST. In other words:
1094 **
1095 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1096 */
1097 case OP_String: { /* out2 */
1098 assert( pOp->p4.z!=0 );
1099 pOut = out2Prerelease(p, pOp);
1100 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1101 pOut->z = pOp->p4.z;
1102 pOut->n = pOp->p1;
1103 pOut->enc = encoding;
1104 UPDATE_MAX_BLOBSIZE(pOut);
1105 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1106 if( pOp->p3>0 ){
1107 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1108 pIn3 = &aMem[pOp->p3];
1109 assert( pIn3->flags & MEM_Int );
1110 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1111 }
1112 #endif
1113 break;
1114 }
1115
1116 /* Opcode: Null P1 P2 P3 * *
1117 ** Synopsis: r[P2..P3]=NULL
1118 **
1119 ** Write a NULL into registers P2. If P3 greater than P2, then also write
1120 ** NULL into register P3 and every register in between P2 and P3. If P3
1121 ** is less than P2 (typically P3 is zero) then only register P2 is
1122 ** set to NULL.
1123 **
1124 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1125 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1126 ** OP_Ne or OP_Eq.
1127 */
1128 case OP_Null: { /* out2 */
1129 int cnt;
1130 u16 nullFlag;
1131 pOut = out2Prerelease(p, pOp);
1132 cnt = pOp->p3-pOp->p2;
1133 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1134 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1135 pOut->n = 0;
1136 while( cnt>0 ){
1137 pOut++;
1138 memAboutToChange(p, pOut);
1139 sqlite3VdbeMemSetNull(pOut);
1140 pOut->flags = nullFlag;
1141 pOut->n = 0;
1142 cnt--;
1143 }
1144 break;
1145 }
1146
1147 /* Opcode: SoftNull P1 * * * *
1148 ** Synopsis: r[P1]=NULL
1149 **
1150 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1151 ** instruction, but do not free any string or blob memory associated with
1152 ** the register, so that if the value was a string or blob that was
1153 ** previously copied using OP_SCopy, the copies will continue to be valid.
1154 */
1155 case OP_SoftNull: {
1156 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1157 pOut = &aMem[pOp->p1];
1158 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
1159 break;
1160 }
1161
1162 /* Opcode: Blob P1 P2 * P4 *
1163 ** Synopsis: r[P2]=P4 (len=P1)
1164 **
1165 ** P4 points to a blob of data P1 bytes long. Store this
1166 ** blob in register P2.
1167 */
1168 case OP_Blob: { /* out2 */
1169 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1170 pOut = out2Prerelease(p, pOp);
1171 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1172 pOut->enc = encoding;
1173 UPDATE_MAX_BLOBSIZE(pOut);
1174 break;
1175 }
1176
1177 /* Opcode: Variable P1 P2 * P4 *
1178 ** Synopsis: r[P2]=parameter(P1,P4)
1179 **
1180 ** Transfer the values of bound parameter P1 into register P2
1181 **
1182 ** If the parameter is named, then its name appears in P4.
1183 ** The P4 value is used by sqlite3_bind_parameter_name().
1184 */
1185 case OP_Variable: { /* out2 */
1186 Mem *pVar; /* Value being transferred */
1187
1188 assert( pOp->p1>0 && pOp->p1<=p->nVar );
1189 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
1190 pVar = &p->aVar[pOp->p1 - 1];
1191 if( sqlite3VdbeMemTooBig(pVar) ){
1192 goto too_big;
1193 }
1194 pOut = &aMem[pOp->p2];
1195 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1196 UPDATE_MAX_BLOBSIZE(pOut);
1197 break;
1198 }
1199
1200 /* Opcode: Move P1 P2 P3 * *
1201 ** Synopsis: r[P2@P3]=r[P1@P3]
1202 **
1203 ** Move the P3 values in register P1..P1+P3-1 over into
1204 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
1205 ** left holding a NULL. It is an error for register ranges
1206 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1207 ** for P3 to be less than 1.
1208 */
1209 case OP_Move: {
1210 int n; /* Number of registers left to copy */
1211 int p1; /* Register to copy from */
1212 int p2; /* Register to copy to */
1213
1214 n = pOp->p3;
1215 p1 = pOp->p1;
1216 p2 = pOp->p2;
1217 assert( n>0 && p1>0 && p2>0 );
1218 assert( p1+n<=p2 || p2+n<=p1 );
1219
1220 pIn1 = &aMem[p1];
1221 pOut = &aMem[p2];
1222 do{
1223 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1224 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1225 assert( memIsValid(pIn1) );
1226 memAboutToChange(p, pOut);
1227 sqlite3VdbeMemMove(pOut, pIn1);
1228 #ifdef SQLITE_DEBUG
1229 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
1230 pOut->pScopyFrom += pOp->p2 - p1;
1231 }
1232 #endif
1233 Deephemeralize(pOut);
1234 REGISTER_TRACE(p2++, pOut);
1235 pIn1++;
1236 pOut++;
1237 }while( --n );
1238 break;
1239 }
1240
1241 /* Opcode: Copy P1 P2 P3 * *
1242 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1243 **
1244 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1245 **
1246 ** This instruction makes a deep copy of the value. A duplicate
1247 ** is made of any string or blob constant. See also OP_SCopy.
1248 */
1249 case OP_Copy: {
1250 int n;
1251
1252 n = pOp->p3;
1253 pIn1 = &aMem[pOp->p1];
1254 pOut = &aMem[pOp->p2];
1255 assert( pOut!=pIn1 );
1256 while( 1 ){
1257 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1258 Deephemeralize(pOut);
1259 #ifdef SQLITE_DEBUG
1260 pOut->pScopyFrom = 0;
1261 #endif
1262 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1263 if( (n--)==0 ) break;
1264 pOut++;
1265 pIn1++;
1266 }
1267 break;
1268 }
1269
1270 /* Opcode: SCopy P1 P2 * * *
1271 ** Synopsis: r[P2]=r[P1]
1272 **
1273 ** Make a shallow copy of register P1 into register P2.
1274 **
1275 ** This instruction makes a shallow copy of the value. If the value
1276 ** is a string or blob, then the copy is only a pointer to the
1277 ** original and hence if the original changes so will the copy.
1278 ** Worse, if the original is deallocated, the copy becomes invalid.
1279 ** Thus the program must guarantee that the original will not change
1280 ** during the lifetime of the copy. Use OP_Copy to make a complete
1281 ** copy.
1282 */
1283 case OP_SCopy: { /* out2 */
1284 pIn1 = &aMem[pOp->p1];
1285 pOut = &aMem[pOp->p2];
1286 assert( pOut!=pIn1 );
1287 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1288 #ifdef SQLITE_DEBUG
1289 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1290 #endif
1291 break;
1292 }
1293
1294 /* Opcode: IntCopy P1 P2 * * *
1295 ** Synopsis: r[P2]=r[P1]
1296 **
1297 ** Transfer the integer value held in register P1 into register P2.
1298 **
1299 ** This is an optimized version of SCopy that works only for integer
1300 ** values.
1301 */
1302 case OP_IntCopy: { /* out2 */
1303 pIn1 = &aMem[pOp->p1];
1304 assert( (pIn1->flags & MEM_Int)!=0 );
1305 pOut = &aMem[pOp->p2];
1306 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1307 break;
1308 }
1309
1310 /* Opcode: ResultRow P1 P2 * * *
1311 ** Synopsis: output=r[P1@P2]
1312 **
1313 ** The registers P1 through P1+P2-1 contain a single row of
1314 ** results. This opcode causes the sqlite3_step() call to terminate
1315 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1316 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1317 ** the result row.
1318 */
1319 case OP_ResultRow: {
1320 Mem *pMem;
1321 int i;
1322 assert( p->nResColumn==pOp->p2 );
1323 assert( pOp->p1>0 );
1324 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1325
1326 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1327 /* Run the progress counter just before returning.
1328 */
1329 if( db->xProgress!=0
1330 && nVmStep>=nProgressLimit
1331 && db->xProgress(db->pProgressArg)!=0
1332 ){
1333 rc = SQLITE_INTERRUPT;
1334 goto abort_due_to_error;
1335 }
1336 #endif
1337
1338 /* If this statement has violated immediate foreign key constraints, do
1339 ** not return the number of rows modified. And do not RELEASE the statement
1340 ** transaction. It needs to be rolled back. */
1341 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1342 assert( db->flags&SQLITE_CountRows );
1343 assert( p->usesStmtJournal );
1344 goto abort_due_to_error;
1345 }
1346
1347 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1348 ** DML statements invoke this opcode to return the number of rows
1349 ** modified to the user. This is the only way that a VM that
1350 ** opens a statement transaction may invoke this opcode.
1351 **
1352 ** In case this is such a statement, close any statement transaction
1353 ** opened by this VM before returning control to the user. This is to
1354 ** ensure that statement-transactions are always nested, not overlapping.
1355 ** If the open statement-transaction is not closed here, then the user
1356 ** may step another VM that opens its own statement transaction. This
1357 ** may lead to overlapping statement transactions.
1358 **
1359 ** The statement transaction is never a top-level transaction. Hence
1360 ** the RELEASE call below can never fail.
1361 */
1362 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1363 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1364 assert( rc==SQLITE_OK );
1365
1366 /* Invalidate all ephemeral cursor row caches */
1367 p->cacheCtr = (p->cacheCtr + 2)|1;
1368
1369 /* Make sure the results of the current row are \000 terminated
1370 ** and have an assigned type. The results are de-ephemeralized as
1371 ** a side effect.
1372 */
1373 pMem = p->pResultSet = &aMem[pOp->p1];
1374 for(i=0; i<pOp->p2; i++){
1375 assert( memIsValid(&pMem[i]) );
1376 Deephemeralize(&pMem[i]);
1377 assert( (pMem[i].flags & MEM_Ephem)==0
1378 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1379 sqlite3VdbeMemNulTerminate(&pMem[i]);
1380 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1381 }
1382 if( db->mallocFailed ) goto no_mem;
1383
1384 if( db->mTrace & SQLITE_TRACE_ROW ){
1385 db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1386 }
1387
1388 /* Return SQLITE_ROW
1389 */
1390 p->pc = (int)(pOp - aOp) + 1;
1391 rc = SQLITE_ROW;
1392 goto vdbe_return;
1393 }
1394
1395 /* Opcode: Concat P1 P2 P3 * *
1396 ** Synopsis: r[P3]=r[P2]+r[P1]
1397 **
1398 ** Add the text in register P1 onto the end of the text in
1399 ** register P2 and store the result in register P3.
1400 ** If either the P1 or P2 text are NULL then store NULL in P3.
1401 **
1402 ** P3 = P2 || P1
1403 **
1404 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1405 ** if P3 is the same register as P2, the implementation is able
1406 ** to avoid a memcpy().
1407 */
1408 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
1409 i64 nByte;
1410
1411 pIn1 = &aMem[pOp->p1];
1412 pIn2 = &aMem[pOp->p2];
1413 pOut = &aMem[pOp->p3];
1414 assert( pIn1!=pOut );
1415 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1416 sqlite3VdbeMemSetNull(pOut);
1417 break;
1418 }
1419 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
1420 Stringify(pIn1, encoding);
1421 Stringify(pIn2, encoding);
1422 nByte = pIn1->n + pIn2->n;
1423 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1424 goto too_big;
1425 }
1426 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1427 goto no_mem;
1428 }
1429 MemSetTypeFlag(pOut, MEM_Str);
1430 if( pOut!=pIn2 ){
1431 memcpy(pOut->z, pIn2->z, pIn2->n);
1432 }
1433 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1434 pOut->z[nByte]=0;
1435 pOut->z[nByte+1] = 0;
1436 pOut->flags |= MEM_Term;
1437 pOut->n = (int)nByte;
1438 pOut->enc = encoding;
1439 UPDATE_MAX_BLOBSIZE(pOut);
1440 break;
1441 }
1442
1443 /* Opcode: Add P1 P2 P3 * *
1444 ** Synopsis: r[P3]=r[P1]+r[P2]
1445 **
1446 ** Add the value in register P1 to the value in register P2
1447 ** and store the result in register P3.
1448 ** If either input is NULL, the result is NULL.
1449 */
1450 /* Opcode: Multiply P1 P2 P3 * *
1451 ** Synopsis: r[P3]=r[P1]*r[P2]
1452 **
1453 **
1454 ** Multiply the value in register P1 by the value in register P2
1455 ** and store the result in register P3.
1456 ** If either input is NULL, the result is NULL.
1457 */
1458 /* Opcode: Subtract P1 P2 P3 * *
1459 ** Synopsis: r[P3]=r[P2]-r[P1]
1460 **
1461 ** Subtract the value in register P1 from the value in register P2
1462 ** and store the result in register P3.
1463 ** If either input is NULL, the result is NULL.
1464 */
1465 /* Opcode: Divide P1 P2 P3 * *
1466 ** Synopsis: r[P3]=r[P2]/r[P1]
1467 **
1468 ** Divide the value in register P1 by the value in register P2
1469 ** and store the result in register P3 (P3=P2/P1). If the value in
1470 ** register P1 is zero, then the result is NULL. If either input is
1471 ** NULL, the result is NULL.
1472 */
1473 /* Opcode: Remainder P1 P2 P3 * *
1474 ** Synopsis: r[P3]=r[P2]%r[P1]
1475 **
1476 ** Compute the remainder after integer register P2 is divided by
1477 ** register P1 and store the result in register P3.
1478 ** If the value in register P1 is zero the result is NULL.
1479 ** If either operand is NULL, the result is NULL.
1480 */
1481 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1482 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1483 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1484 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1485 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
1486 char bIntint; /* Started out as two integer operands */
1487 u16 flags; /* Combined MEM_* flags from both inputs */
1488 u16 type1; /* Numeric type of left operand */
1489 u16 type2; /* Numeric type of right operand */
1490 i64 iA; /* Integer value of left operand */
1491 i64 iB; /* Integer value of right operand */
1492 double rA; /* Real value of left operand */
1493 double rB; /* Real value of right operand */
1494
1495 pIn1 = &aMem[pOp->p1];
1496 type1 = numericType(pIn1);
1497 pIn2 = &aMem[pOp->p2];
1498 type2 = numericType(pIn2);
1499 pOut = &aMem[pOp->p3];
1500 flags = pIn1->flags | pIn2->flags;
1501 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1502 if( (type1 & type2 & MEM_Int)!=0 ){
1503 iA = pIn1->u.i;
1504 iB = pIn2->u.i;
1505 bIntint = 1;
1506 switch( pOp->opcode ){
1507 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1508 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1509 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
1510 case OP_Divide: {
1511 if( iA==0 ) goto arithmetic_result_is_null;
1512 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1513 iB /= iA;
1514 break;
1515 }
1516 default: {
1517 if( iA==0 ) goto arithmetic_result_is_null;
1518 if( iA==-1 ) iA = 1;
1519 iB %= iA;
1520 break;
1521 }
1522 }
1523 pOut->u.i = iB;
1524 MemSetTypeFlag(pOut, MEM_Int);
1525 }else{
1526 bIntint = 0;
1527 fp_math:
1528 rA = sqlite3VdbeRealValue(pIn1);
1529 rB = sqlite3VdbeRealValue(pIn2);
1530 switch( pOp->opcode ){
1531 case OP_Add: rB += rA; break;
1532 case OP_Subtract: rB -= rA; break;
1533 case OP_Multiply: rB *= rA; break;
1534 case OP_Divide: {
1535 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1536 if( rA==(double)0 ) goto arithmetic_result_is_null;
1537 rB /= rA;
1538 break;
1539 }
1540 default: {
1541 iA = (i64)rA;
1542 iB = (i64)rB;
1543 if( iA==0 ) goto arithmetic_result_is_null;
1544 if( iA==-1 ) iA = 1;
1545 rB = (double)(iB % iA);
1546 break;
1547 }
1548 }
1549 #ifdef SQLITE_OMIT_FLOATING_POINT
1550 pOut->u.i = rB;
1551 MemSetTypeFlag(pOut, MEM_Int);
1552 #else
1553 if( sqlite3IsNaN(rB) ){
1554 goto arithmetic_result_is_null;
1555 }
1556 pOut->u.r = rB;
1557 MemSetTypeFlag(pOut, MEM_Real);
1558 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
1559 sqlite3VdbeIntegerAffinity(pOut);
1560 }
1561 #endif
1562 }
1563 break;
1564
1565 arithmetic_result_is_null:
1566 sqlite3VdbeMemSetNull(pOut);
1567 break;
1568 }
1569
1570 /* Opcode: CollSeq P1 * * P4
1571 **
1572 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
1573 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1574 ** be returned. This is used by the built-in min(), max() and nullif()
1575 ** functions.
1576 **
1577 ** If P1 is not zero, then it is a register that a subsequent min() or
1578 ** max() aggregate will set to 1 if the current row is not the minimum or
1579 ** maximum. The P1 register is initialized to 0 by this instruction.
1580 **
1581 ** The interface used by the implementation of the aforementioned functions
1582 ** to retrieve the collation sequence set by this opcode is not available
1583 ** publicly. Only built-in functions have access to this feature.
1584 */
1585 case OP_CollSeq: {
1586 assert( pOp->p4type==P4_COLLSEQ );
1587 if( pOp->p1 ){
1588 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1589 }
1590 break;
1591 }
1592
1593 /* Opcode: Function0 P1 P2 P3 P4 P5
1594 ** Synopsis: r[P3]=func(r[P2@P5])
1595 **
1596 ** Invoke a user function (P4 is a pointer to a FuncDef object that
1597 ** defines the function) with P5 arguments taken from register P2 and
1598 ** successors. The result of the function is stored in register P3.
1599 ** Register P3 must not be one of the function inputs.
1600 **
1601 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1602 ** function was determined to be constant at compile time. If the first
1603 ** argument was constant then bit 0 of P1 is set. This is used to determine
1604 ** whether meta data associated with a user function argument using the
1605 ** sqlite3_set_auxdata() API may be safely retained until the next
1606 ** invocation of this opcode.
1607 **
1608 ** See also: Function, AggStep, AggFinal
1609 */
1610 /* Opcode: Function P1 P2 P3 P4 P5
1611 ** Synopsis: r[P3]=func(r[P2@P5])
1612 **
1613 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
1614 ** contains a pointer to the function to be run) with P5 arguments taken
1615 ** from register P2 and successors. The result of the function is stored
1616 ** in register P3. Register P3 must not be one of the function inputs.
1617 **
1618 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1619 ** function was determined to be constant at compile time. If the first
1620 ** argument was constant then bit 0 of P1 is set. This is used to determine
1621 ** whether meta data associated with a user function argument using the
1622 ** sqlite3_set_auxdata() API may be safely retained until the next
1623 ** invocation of this opcode.
1624 **
1625 ** SQL functions are initially coded as OP_Function0 with P4 pointing
1626 ** to a FuncDef object. But on first evaluation, the P4 operand is
1627 ** automatically converted into an sqlite3_context object and the operation
1628 ** changed to this OP_Function opcode. In this way, the initialization of
1629 ** the sqlite3_context object occurs only once, rather than once for each
1630 ** evaluation of the function.
1631 **
1632 ** See also: Function0, AggStep, AggFinal
1633 */
1634 case OP_Function0: {
1635 int n;
1636 sqlite3_context *pCtx;
1637
1638 assert( pOp->p4type==P4_FUNCDEF );
1639 n = pOp->p5;
1640 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
1641 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
1642 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
1643 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
1644 if( pCtx==0 ) goto no_mem;
1645 pCtx->pOut = 0;
1646 pCtx->pFunc = pOp->p4.pFunc;
1647 pCtx->iOp = (int)(pOp - aOp);
1648 pCtx->pVdbe = p;
1649 pCtx->argc = n;
1650 pOp->p4type = P4_FUNCCTX;
1651 pOp->p4.pCtx = pCtx;
1652 pOp->opcode = OP_Function;
1653 /* Fall through into OP_Function */
1654 }
1655 case OP_Function: {
1656 int i;
1657 sqlite3_context *pCtx;
1658
1659 assert( pOp->p4type==P4_FUNCCTX );
1660 pCtx = pOp->p4.pCtx;
1661
1662 /* If this function is inside of a trigger, the register array in aMem[]
1663 ** might change from one evaluation to the next. The next block of code
1664 ** checks to see if the register array has changed, and if so it
1665 ** reinitializes the relavant parts of the sqlite3_context object */
1666 pOut = &aMem[pOp->p3];
1667 if( pCtx->pOut != pOut ){
1668 pCtx->pOut = pOut;
1669 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
1670 }
1671
1672 memAboutToChange(p, pCtx->pOut);
1673 #ifdef SQLITE_DEBUG
1674 for(i=0; i<pCtx->argc; i++){
1675 assert( memIsValid(pCtx->argv[i]) );
1676 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
1677 }
1678 #endif
1679 MemSetTypeFlag(pCtx->pOut, MEM_Null);
1680 pCtx->fErrorOrAux = 0;
1681 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
1682
1683 /* If the function returned an error, throw an exception */
1684 if( pCtx->fErrorOrAux ){
1685 if( pCtx->isError ){
1686 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
1687 rc = pCtx->isError;
1688 }
1689 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
1690 if( rc ) goto abort_due_to_error;
1691 }
1692
1693 /* Copy the result of the function into register P3 */
1694 if( pOut->flags & (MEM_Str|MEM_Blob) ){
1695 sqlite3VdbeChangeEncoding(pCtx->pOut, encoding);
1696 if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big;
1697 }
1698
1699 REGISTER_TRACE(pOp->p3, pCtx->pOut);
1700 UPDATE_MAX_BLOBSIZE(pCtx->pOut);
1701 break;
1702 }
1703
1704 /* Opcode: BitAnd P1 P2 P3 * *
1705 ** Synopsis: r[P3]=r[P1]&r[P2]
1706 **
1707 ** Take the bit-wise AND of the values in register P1 and P2 and
1708 ** store the result in register P3.
1709 ** If either input is NULL, the result is NULL.
1710 */
1711 /* Opcode: BitOr P1 P2 P3 * *
1712 ** Synopsis: r[P3]=r[P1]|r[P2]
1713 **
1714 ** Take the bit-wise OR of the values in register P1 and P2 and
1715 ** store the result in register P3.
1716 ** If either input is NULL, the result is NULL.
1717 */
1718 /* Opcode: ShiftLeft P1 P2 P3 * *
1719 ** Synopsis: r[P3]=r[P2]<<r[P1]
1720 **
1721 ** Shift the integer value in register P2 to the left by the
1722 ** number of bits specified by the integer in register P1.
1723 ** Store the result in register P3.
1724 ** If either input is NULL, the result is NULL.
1725 */
1726 /* Opcode: ShiftRight P1 P2 P3 * *
1727 ** Synopsis: r[P3]=r[P2]>>r[P1]
1728 **
1729 ** Shift the integer value in register P2 to the right by the
1730 ** number of bits specified by the integer in register P1.
1731 ** Store the result in register P3.
1732 ** If either input is NULL, the result is NULL.
1733 */
1734 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1735 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1736 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1737 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
1738 i64 iA;
1739 u64 uA;
1740 i64 iB;
1741 u8 op;
1742
1743 pIn1 = &aMem[pOp->p1];
1744 pIn2 = &aMem[pOp->p2];
1745 pOut = &aMem[pOp->p3];
1746 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1747 sqlite3VdbeMemSetNull(pOut);
1748 break;
1749 }
1750 iA = sqlite3VdbeIntValue(pIn2);
1751 iB = sqlite3VdbeIntValue(pIn1);
1752 op = pOp->opcode;
1753 if( op==OP_BitAnd ){
1754 iA &= iB;
1755 }else if( op==OP_BitOr ){
1756 iA |= iB;
1757 }else if( iB!=0 ){
1758 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1759
1760 /* If shifting by a negative amount, shift in the other direction */
1761 if( iB<0 ){
1762 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1763 op = 2*OP_ShiftLeft + 1 - op;
1764 iB = iB>(-64) ? -iB : 64;
1765 }
1766
1767 if( iB>=64 ){
1768 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1769 }else{
1770 memcpy(&uA, &iA, sizeof(uA));
1771 if( op==OP_ShiftLeft ){
1772 uA <<= iB;
1773 }else{
1774 uA >>= iB;
1775 /* Sign-extend on a right shift of a negative number */
1776 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1777 }
1778 memcpy(&iA, &uA, sizeof(iA));
1779 }
1780 }
1781 pOut->u.i = iA;
1782 MemSetTypeFlag(pOut, MEM_Int);
1783 break;
1784 }
1785
1786 /* Opcode: AddImm P1 P2 * * *
1787 ** Synopsis: r[P1]=r[P1]+P2
1788 **
1789 ** Add the constant P2 to the value in register P1.
1790 ** The result is always an integer.
1791 **
1792 ** To force any register to be an integer, just add 0.
1793 */
1794 case OP_AddImm: { /* in1 */
1795 pIn1 = &aMem[pOp->p1];
1796 memAboutToChange(p, pIn1);
1797 sqlite3VdbeMemIntegerify(pIn1);
1798 pIn1->u.i += pOp->p2;
1799 break;
1800 }
1801
1802 /* Opcode: MustBeInt P1 P2 * * *
1803 **
1804 ** Force the value in register P1 to be an integer. If the value
1805 ** in P1 is not an integer and cannot be converted into an integer
1806 ** without data loss, then jump immediately to P2, or if P2==0
1807 ** raise an SQLITE_MISMATCH exception.
1808 */
1809 case OP_MustBeInt: { /* jump, in1 */
1810 pIn1 = &aMem[pOp->p1];
1811 if( (pIn1->flags & MEM_Int)==0 ){
1812 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1813 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
1814 if( (pIn1->flags & MEM_Int)==0 ){
1815 if( pOp->p2==0 ){
1816 rc = SQLITE_MISMATCH;
1817 goto abort_due_to_error;
1818 }else{
1819 goto jump_to_p2;
1820 }
1821 }
1822 }
1823 MemSetTypeFlag(pIn1, MEM_Int);
1824 break;
1825 }
1826
1827 #ifndef SQLITE_OMIT_FLOATING_POINT
1828 /* Opcode: RealAffinity P1 * * * *
1829 **
1830 ** If register P1 holds an integer convert it to a real value.
1831 **
1832 ** This opcode is used when extracting information from a column that
1833 ** has REAL affinity. Such column values may still be stored as
1834 ** integers, for space efficiency, but after extraction we want them
1835 ** to have only a real value.
1836 */
1837 case OP_RealAffinity: { /* in1 */
1838 pIn1 = &aMem[pOp->p1];
1839 if( pIn1->flags & MEM_Int ){
1840 sqlite3VdbeMemRealify(pIn1);
1841 }
1842 break;
1843 }
1844 #endif
1845
1846 #ifndef SQLITE_OMIT_CAST
1847 /* Opcode: Cast P1 P2 * * *
1848 ** Synopsis: affinity(r[P1])
1849 **
1850 ** Force the value in register P1 to be the type defined by P2.
1851 **
1852 ** <ul>
1853 ** <li value="97"> TEXT
1854 ** <li value="98"> BLOB
1855 ** <li value="99"> NUMERIC
1856 ** <li value="100"> INTEGER
1857 ** <li value="101"> REAL
1858 ** </ul>
1859 **
1860 ** A NULL value is not changed by this routine. It remains NULL.
1861 */
1862 case OP_Cast: { /* in1 */
1863 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1864 testcase( pOp->p2==SQLITE_AFF_TEXT );
1865 testcase( pOp->p2==SQLITE_AFF_BLOB );
1866 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1867 testcase( pOp->p2==SQLITE_AFF_INTEGER );
1868 testcase( pOp->p2==SQLITE_AFF_REAL );
1869 pIn1 = &aMem[pOp->p1];
1870 memAboutToChange(p, pIn1);
1871 rc = ExpandBlob(pIn1);
1872 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1873 UPDATE_MAX_BLOBSIZE(pIn1);
1874 if( rc ) goto abort_due_to_error;
1875 break;
1876 }
1877 #endif /* SQLITE_OMIT_CAST */
1878
1879 /* Opcode: Eq P1 P2 P3 P4 P5
1880 ** Synopsis: IF r[P3]==r[P1]
1881 **
1882 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
1883 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then
1884 ** store the result of comparison in register P2.
1885 **
1886 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1887 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1888 ** to coerce both inputs according to this affinity before the
1889 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1890 ** affinity is used. Note that the affinity conversions are stored
1891 ** back into the input registers P1 and P3. So this opcode can cause
1892 ** persistent changes to registers P1 and P3.
1893 **
1894 ** Once any conversions have taken place, and neither value is NULL,
1895 ** the values are compared. If both values are blobs then memcmp() is
1896 ** used to determine the results of the comparison. If both values
1897 ** are text, then the appropriate collating function specified in
1898 ** P4 is used to do the comparison. If P4 is not specified then
1899 ** memcmp() is used to compare text string. If both values are
1900 ** numeric, then a numeric comparison is used. If the two values
1901 ** are of different types, then numbers are considered less than
1902 ** strings and strings are considered less than blobs.
1903 **
1904 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1905 ** true or false and is never NULL. If both operands are NULL then the result
1906 ** of comparison is true. If either operand is NULL then the result is false.
1907 ** If neither operand is NULL the result is the same as it would be if
1908 ** the SQLITE_NULLEQ flag were omitted from P5.
1909 **
1910 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1911 ** content of r[P2] is only changed if the new value is NULL or 0 (false).
1912 ** In other words, a prior r[P2] value will not be overwritten by 1 (true).
1913 */
1914 /* Opcode: Ne P1 P2 P3 P4 P5
1915 ** Synopsis: IF r[P3]!=r[P1]
1916 **
1917 ** This works just like the Eq opcode except that the jump is taken if
1918 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for
1919 ** additional information.
1920 **
1921 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1922 ** content of r[P2] is only changed if the new value is NULL or 1 (true).
1923 ** In other words, a prior r[P2] value will not be overwritten by 0 (false).
1924 */
1925 /* Opcode: Lt P1 P2 P3 P4 P5
1926 ** Synopsis: IF r[P3]<r[P1]
1927 **
1928 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1929 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5 store
1930 ** the result of comparison (0 or 1 or NULL) into register P2.
1931 **
1932 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1933 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
1934 ** bit is clear then fall through if either operand is NULL.
1935 **
1936 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1937 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1938 ** to coerce both inputs according to this affinity before the
1939 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1940 ** affinity is used. Note that the affinity conversions are stored
1941 ** back into the input registers P1 and P3. So this opcode can cause
1942 ** persistent changes to registers P1 and P3.
1943 **
1944 ** Once any conversions have taken place, and neither value is NULL,
1945 ** the values are compared. If both values are blobs then memcmp() is
1946 ** used to determine the results of the comparison. If both values
1947 ** are text, then the appropriate collating function specified in
1948 ** P4 is used to do the comparison. If P4 is not specified then
1949 ** memcmp() is used to compare text string. If both values are
1950 ** numeric, then a numeric comparison is used. If the two values
1951 ** are of different types, then numbers are considered less than
1952 ** strings and strings are considered less than blobs.
1953 */
1954 /* Opcode: Le P1 P2 P3 P4 P5
1955 ** Synopsis: IF r[P3]<=r[P1]
1956 **
1957 ** This works just like the Lt opcode except that the jump is taken if
1958 ** the content of register P3 is less than or equal to the content of
1959 ** register P1. See the Lt opcode for additional information.
1960 */
1961 /* Opcode: Gt P1 P2 P3 P4 P5
1962 ** Synopsis: IF r[P3]>r[P1]
1963 **
1964 ** This works just like the Lt opcode except that the jump is taken if
1965 ** the content of register P3 is greater than the content of
1966 ** register P1. See the Lt opcode for additional information.
1967 */
1968 /* Opcode: Ge P1 P2 P3 P4 P5
1969 ** Synopsis: IF r[P3]>=r[P1]
1970 **
1971 ** This works just like the Lt opcode except that the jump is taken if
1972 ** the content of register P3 is greater than or equal to the content of
1973 ** register P1. See the Lt opcode for additional information.
1974 */
1975 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1976 case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1977 case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1978 case OP_Le: /* same as TK_LE, jump, in1, in3 */
1979 case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1980 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
1981 int res, res2; /* Result of the comparison of pIn1 against pIn3 */
1982 char affinity; /* Affinity to use for comparison */
1983 u16 flags1; /* Copy of initial value of pIn1->flags */
1984 u16 flags3; /* Copy of initial value of pIn3->flags */
1985
1986 pIn1 = &aMem[pOp->p1];
1987 pIn3 = &aMem[pOp->p3];
1988 flags1 = pIn1->flags;
1989 flags3 = pIn3->flags;
1990 if( (flags1 | flags3)&MEM_Null ){
1991 /* One or both operands are NULL */
1992 if( pOp->p5 & SQLITE_NULLEQ ){
1993 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1994 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1995 ** or not both operands are null.
1996 */
1997 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1998 assert( (flags1 & MEM_Cleared)==0 );
1999 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
2000 if( (flags1&flags3&MEM_Null)!=0
2001 && (flags3&MEM_Cleared)==0
2002 ){
2003 res = 0; /* Operands are equal */
2004 }else{
2005 res = 1; /* Operands are not equal */
2006 }
2007 }else{
2008 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2009 ** then the result is always NULL.
2010 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2011 */
2012 if( pOp->p5 & SQLITE_STOREP2 ){
2013 pOut = &aMem[pOp->p2];
2014 iCompare = 1; /* Operands are not equal */
2015 memAboutToChange(p, pOut);
2016 MemSetTypeFlag(pOut, MEM_Null);
2017 REGISTER_TRACE(pOp->p2, pOut);
2018 }else{
2019 VdbeBranchTaken(2,3);
2020 if( pOp->p5 & SQLITE_JUMPIFNULL ){
2021 goto jump_to_p2;
2022 }
2023 }
2024 break;
2025 }
2026 }else{
2027 /* Neither operand is NULL. Do a comparison. */
2028 affinity = pOp->p5 & SQLITE_AFF_MASK;
2029 if( affinity>=SQLITE_AFF_NUMERIC ){
2030 if( (flags1 | flags3)&MEM_Str ){
2031 if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
2032 applyNumericAffinity(pIn1,0);
2033 testcase( flags3!=pIn3->flags ); /* Possible if pIn1==pIn3 */
2034 flags3 = pIn3->flags;
2035 }
2036 if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
2037 applyNumericAffinity(pIn3,0);
2038 }
2039 }
2040 /* Handle the common case of integer comparison here, as an
2041 ** optimization, to avoid a call to sqlite3MemCompare() */
2042 if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){
2043 if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; }
2044 if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; }
2045 res = 0;
2046 goto compare_op;
2047 }
2048 }else if( affinity==SQLITE_AFF_TEXT ){
2049 if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){
2050 testcase( pIn1->flags & MEM_Int );
2051 testcase( pIn1->flags & MEM_Real );
2052 sqlite3VdbeMemStringify(pIn1, encoding, 1);
2053 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2054 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2055 assert( pIn1!=pIn3 );
2056 }
2057 if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){
2058 testcase( pIn3->flags & MEM_Int );
2059 testcase( pIn3->flags & MEM_Real );
2060 sqlite3VdbeMemStringify(pIn3, encoding, 1);
2061 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2062 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2063 }
2064 }
2065 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2066 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2067 }
2068 compare_op:
2069 switch( pOp->opcode ){
2070 case OP_Eq: res2 = res==0; break;
2071 case OP_Ne: res2 = res; break;
2072 case OP_Lt: res2 = res<0; break;
2073 case OP_Le: res2 = res<=0; break;
2074 case OP_Gt: res2 = res>0; break;
2075 default: res2 = res>=0; break;
2076 }
2077
2078 /* Undo any changes made by applyAffinity() to the input registers. */
2079 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2080 pIn1->flags = flags1;
2081 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2082 pIn3->flags = flags3;
2083
2084 if( pOp->p5 & SQLITE_STOREP2 ){
2085 pOut = &aMem[pOp->p2];
2086 iCompare = res;
2087 res2 = res2!=0; /* For this path res2 must be exactly 0 or 1 */
2088 if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){
2089 /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1
2090 ** and prevents OP_Ne from overwriting NULL with 0. This flag
2091 ** is only used in contexts where either:
2092 ** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0)
2093 ** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1)
2094 ** Therefore it is not necessary to check the content of r[P2] for
2095 ** NULL. */
2096 assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq );
2097 assert( res2==0 || res2==1 );
2098 testcase( res2==0 && pOp->opcode==OP_Eq );
2099 testcase( res2==1 && pOp->opcode==OP_Eq );
2100 testcase( res2==0 && pOp->opcode==OP_Ne );
2101 testcase( res2==1 && pOp->opcode==OP_Ne );
2102 if( (pOp->opcode==OP_Eq)==res2 ) break;
2103 }
2104 memAboutToChange(p, pOut);
2105 MemSetTypeFlag(pOut, MEM_Int);
2106 pOut->u.i = res2;
2107 REGISTER_TRACE(pOp->p2, pOut);
2108 }else{
2109 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2110 if( res2 ){
2111 goto jump_to_p2;
2112 }
2113 }
2114 break;
2115 }
2116
2117 /* Opcode: ElseNotEq * P2 * * *
2118 **
2119 ** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator.
2120 ** If result of an OP_Eq comparison on the same two operands
2121 ** would have be NULL or false (0), then then jump to P2.
2122 ** If the result of an OP_Eq comparison on the two previous operands
2123 ** would have been true (1), then fall through.
2124 */
2125 case OP_ElseNotEq: { /* same as TK_ESCAPE, jump */
2126 assert( pOp>aOp );
2127 assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt );
2128 assert( pOp[-1].p5 & SQLITE_STOREP2 );
2129 VdbeBranchTaken(iCompare!=0, 2);
2130 if( iCompare!=0 ) goto jump_to_p2;
2131 break;
2132 }
2133
2134
2135 /* Opcode: Permutation * * * P4 *
2136 **
2137 ** Set the permutation used by the OP_Compare operator in the next
2138 ** instruction. The permutation is stored in the P4 operand.
2139 **
2140 ** The permutation is only valid until the next OP_Compare that has
2141 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2142 ** occur immediately prior to the OP_Compare.
2143 **
2144 ** The first integer in the P4 integer array is the length of the array
2145 ** and does not become part of the permutation.
2146 */
2147 case OP_Permutation: {
2148 assert( pOp->p4type==P4_INTARRAY );
2149 assert( pOp->p4.ai );
2150 assert( pOp[1].opcode==OP_Compare );
2151 assert( pOp[1].p5 & OPFLAG_PERMUTE );
2152 break;
2153 }
2154
2155 /* Opcode: Compare P1 P2 P3 P4 P5
2156 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2157 **
2158 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2159 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
2160 ** the comparison for use by the next OP_Jump instruct.
2161 **
2162 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2163 ** determined by the most recent OP_Permutation operator. If the
2164 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2165 ** order.
2166 **
2167 ** P4 is a KeyInfo structure that defines collating sequences and sort
2168 ** orders for the comparison. The permutation applies to registers
2169 ** only. The KeyInfo elements are used sequentially.
2170 **
2171 ** The comparison is a sort comparison, so NULLs compare equal,
2172 ** NULLs are less than numbers, numbers are less than strings,
2173 ** and strings are less than blobs.
2174 */
2175 case OP_Compare: {
2176 int n;
2177 int i;
2178 int p1;
2179 int p2;
2180 const KeyInfo *pKeyInfo;
2181 int idx;
2182 CollSeq *pColl; /* Collating sequence to use on this term */
2183 int bRev; /* True for DESCENDING sort order */
2184 int *aPermute; /* The permutation */
2185
2186 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2187 aPermute = 0;
2188 }else{
2189 assert( pOp>aOp );
2190 assert( pOp[-1].opcode==OP_Permutation );
2191 assert( pOp[-1].p4type==P4_INTARRAY );
2192 aPermute = pOp[-1].p4.ai + 1;
2193 assert( aPermute!=0 );
2194 }
2195 n = pOp->p3;
2196 pKeyInfo = pOp->p4.pKeyInfo;
2197 assert( n>0 );
2198 assert( pKeyInfo!=0 );
2199 p1 = pOp->p1;
2200 p2 = pOp->p2;
2201 #if SQLITE_DEBUG
2202 if( aPermute ){
2203 int k, mx = 0;
2204 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
2205 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2206 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2207 }else{
2208 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2209 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2210 }
2211 #endif /* SQLITE_DEBUG */
2212 for(i=0; i<n; i++){
2213 idx = aPermute ? aPermute[i] : i;
2214 assert( memIsValid(&aMem[p1+idx]) );
2215 assert( memIsValid(&aMem[p2+idx]) );
2216 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2217 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2218 assert( i<pKeyInfo->nField );
2219 pColl = pKeyInfo->aColl[i];
2220 bRev = pKeyInfo->aSortOrder[i];
2221 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2222 if( iCompare ){
2223 if( bRev ) iCompare = -iCompare;
2224 break;
2225 }
2226 }
2227 break;
2228 }
2229
2230 /* Opcode: Jump P1 P2 P3 * *
2231 **
2232 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2233 ** in the most recent OP_Compare instruction the P1 vector was less than
2234 ** equal to, or greater than the P2 vector, respectively.
2235 */
2236 case OP_Jump: { /* jump */
2237 if( iCompare<0 ){
2238 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
2239 }else if( iCompare==0 ){
2240 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
2241 }else{
2242 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
2243 }
2244 break;
2245 }
2246
2247 /* Opcode: And P1 P2 P3 * *
2248 ** Synopsis: r[P3]=(r[P1] && r[P2])
2249 **
2250 ** Take the logical AND of the values in registers P1 and P2 and
2251 ** write the result into register P3.
2252 **
2253 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2254 ** the other input is NULL. A NULL and true or two NULLs give
2255 ** a NULL output.
2256 */
2257 /* Opcode: Or P1 P2 P3 * *
2258 ** Synopsis: r[P3]=(r[P1] || r[P2])
2259 **
2260 ** Take the logical OR of the values in register P1 and P2 and
2261 ** store the answer in register P3.
2262 **
2263 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2264 ** even if the other input is NULL. A NULL and false or two NULLs
2265 ** give a NULL output.
2266 */
2267 case OP_And: /* same as TK_AND, in1, in2, out3 */
2268 case OP_Or: { /* same as TK_OR, in1, in2, out3 */
2269 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2270 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2271
2272 pIn1 = &aMem[pOp->p1];
2273 if( pIn1->flags & MEM_Null ){
2274 v1 = 2;
2275 }else{
2276 v1 = sqlite3VdbeIntValue(pIn1)!=0;
2277 }
2278 pIn2 = &aMem[pOp->p2];
2279 if( pIn2->flags & MEM_Null ){
2280 v2 = 2;
2281 }else{
2282 v2 = sqlite3VdbeIntValue(pIn2)!=0;
2283 }
2284 if( pOp->opcode==OP_And ){
2285 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2286 v1 = and_logic[v1*3+v2];
2287 }else{
2288 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2289 v1 = or_logic[v1*3+v2];
2290 }
2291 pOut = &aMem[pOp->p3];
2292 if( v1==2 ){
2293 MemSetTypeFlag(pOut, MEM_Null);
2294 }else{
2295 pOut->u.i = v1;
2296 MemSetTypeFlag(pOut, MEM_Int);
2297 }
2298 break;
2299 }
2300
2301 /* Opcode: Not P1 P2 * * *
2302 ** Synopsis: r[P2]= !r[P1]
2303 **
2304 ** Interpret the value in register P1 as a boolean value. Store the
2305 ** boolean complement in register P2. If the value in register P1 is
2306 ** NULL, then a NULL is stored in P2.
2307 */
2308 case OP_Not: { /* same as TK_NOT, in1, out2 */
2309 pIn1 = &aMem[pOp->p1];
2310 pOut = &aMem[pOp->p2];
2311 sqlite3VdbeMemSetNull(pOut);
2312 if( (pIn1->flags & MEM_Null)==0 ){
2313 pOut->flags = MEM_Int;
2314 pOut->u.i = !sqlite3VdbeIntValue(pIn1);
2315 }
2316 break;
2317 }
2318
2319 /* Opcode: BitNot P1 P2 * * *
2320 ** Synopsis: r[P1]= ~r[P1]
2321 **
2322 ** Interpret the content of register P1 as an integer. Store the
2323 ** ones-complement of the P1 value into register P2. If P1 holds
2324 ** a NULL then store a NULL in P2.
2325 */
2326 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
2327 pIn1 = &aMem[pOp->p1];
2328 pOut = &aMem[pOp->p2];
2329 sqlite3VdbeMemSetNull(pOut);
2330 if( (pIn1->flags & MEM_Null)==0 ){
2331 pOut->flags = MEM_Int;
2332 pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2333 }
2334 break;
2335 }
2336
2337 /* Opcode: Once P1 P2 * * *
2338 **
2339 ** If the P1 value is equal to the P1 value on the OP_Init opcode at
2340 ** instruction 0, then jump to P2. If the two P1 values differ, then
2341 ** set the P1 value on this opcode to equal the P1 value on the OP_Init
2342 ** and fall through.
2343 */
2344 case OP_Once: { /* jump */
2345 assert( p->aOp[0].opcode==OP_Init );
2346 VdbeBranchTaken(p->aOp[0].p1==pOp->p1, 2);
2347 if( p->aOp[0].p1==pOp->p1 ){
2348 goto jump_to_p2;
2349 }else{
2350 pOp->p1 = p->aOp[0].p1;
2351 }
2352 break;
2353 }
2354
2355 /* Opcode: If P1 P2 P3 * *
2356 **
2357 ** Jump to P2 if the value in register P1 is true. The value
2358 ** is considered true if it is numeric and non-zero. If the value
2359 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2360 */
2361 /* Opcode: IfNot P1 P2 P3 * *
2362 **
2363 ** Jump to P2 if the value in register P1 is False. The value
2364 ** is considered false if it has a numeric value of zero. If the value
2365 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2366 */
2367 case OP_If: /* jump, in1 */
2368 case OP_IfNot: { /* jump, in1 */
2369 int c;
2370 pIn1 = &aMem[pOp->p1];
2371 if( pIn1->flags & MEM_Null ){
2372 c = pOp->p3;
2373 }else{
2374 #ifdef SQLITE_OMIT_FLOATING_POINT
2375 c = sqlite3VdbeIntValue(pIn1)!=0;
2376 #else
2377 c = sqlite3VdbeRealValue(pIn1)!=0.0;
2378 #endif
2379 if( pOp->opcode==OP_IfNot ) c = !c;
2380 }
2381 VdbeBranchTaken(c!=0, 2);
2382 if( c ){
2383 goto jump_to_p2;
2384 }
2385 break;
2386 }
2387
2388 /* Opcode: IsNull P1 P2 * * *
2389 ** Synopsis: if r[P1]==NULL goto P2
2390 **
2391 ** Jump to P2 if the value in register P1 is NULL.
2392 */
2393 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
2394 pIn1 = &aMem[pOp->p1];
2395 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2396 if( (pIn1->flags & MEM_Null)!=0 ){
2397 goto jump_to_p2;
2398 }
2399 break;
2400 }
2401
2402 /* Opcode: NotNull P1 P2 * * *
2403 ** Synopsis: if r[P1]!=NULL goto P2
2404 **
2405 ** Jump to P2 if the value in register P1 is not NULL.
2406 */
2407 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
2408 pIn1 = &aMem[pOp->p1];
2409 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2410 if( (pIn1->flags & MEM_Null)==0 ){
2411 goto jump_to_p2;
2412 }
2413 break;
2414 }
2415
2416 /* Opcode: Column P1 P2 P3 P4 P5
2417 ** Synopsis: r[P3]=PX
2418 **
2419 ** Interpret the data that cursor P1 points to as a structure built using
2420 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2421 ** information about the format of the data.) Extract the P2-th column
2422 ** from this record. If there are less that (P2+1)
2423 ** values in the record, extract a NULL.
2424 **
2425 ** The value extracted is stored in register P3.
2426 **
2427 ** If the column contains fewer than P2 fields, then extract a NULL. Or,
2428 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2429 ** the result.
2430 **
2431 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2432 ** then the cache of the cursor is reset prior to extracting the column.
2433 ** The first OP_Column against a pseudo-table after the value of the content
2434 ** register has changed should have this bit set.
2435 **
2436 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2437 ** the result is guaranteed to only be used as the argument of a length()
2438 ** or typeof() function, respectively. The loading of large blobs can be
2439 ** skipped for length() and all content loading can be skipped for typeof().
2440 */
2441 case OP_Column: {
2442 int p2; /* column number to retrieve */
2443 VdbeCursor *pC; /* The VDBE cursor */
2444 BtCursor *pCrsr; /* The BTree cursor */
2445 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
2446 int len; /* The length of the serialized data for the column */
2447 int i; /* Loop counter */
2448 Mem *pDest; /* Where to write the extracted value */
2449 Mem sMem; /* For storing the record being decoded */
2450 const u8 *zData; /* Part of the record being decoded */
2451 const u8 *zHdr; /* Next unparsed byte of the header */
2452 const u8 *zEndHdr; /* Pointer to first byte after the header */
2453 u32 offset; /* Offset into the data */
2454 u64 offset64; /* 64-bit offset */
2455 u32 avail; /* Number of bytes of available data */
2456 u32 t; /* A type code from the record header */
2457 Mem *pReg; /* PseudoTable input register */
2458
2459 pC = p->apCsr[pOp->p1];
2460 p2 = pOp->p2;
2461
2462 /* If the cursor cache is stale, bring it up-to-date */
2463 rc = sqlite3VdbeCursorMoveto(&pC, &p2);
2464 if( rc ) goto abort_due_to_error;
2465
2466 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2467 pDest = &aMem[pOp->p3];
2468 memAboutToChange(p, pDest);
2469 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2470 assert( pC!=0 );
2471 assert( p2<pC->nField );
2472 aOffset = pC->aOffset;
2473 assert( pC->eCurType!=CURTYPE_VTAB );
2474 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2475 assert( pC->eCurType!=CURTYPE_SORTER );
2476
2477 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/
2478 if( pC->nullRow ){
2479 if( pC->eCurType==CURTYPE_PSEUDO ){
2480 assert( pC->uc.pseudoTableReg>0 );
2481 pReg = &aMem[pC->uc.pseudoTableReg];
2482 assert( pReg->flags & MEM_Blob );
2483 assert( memIsValid(pReg) );
2484 pC->payloadSize = pC->szRow = avail = pReg->n;
2485 pC->aRow = (u8*)pReg->z;
2486 }else{
2487 sqlite3VdbeMemSetNull(pDest);
2488 goto op_column_out;
2489 }
2490 }else{
2491 pCrsr = pC->uc.pCursor;
2492 assert( pC->eCurType==CURTYPE_BTREE );
2493 assert( pCrsr );
2494 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2495 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2496 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &avail);
2497 assert( avail<=65536 ); /* Maximum page size is 64KiB */
2498 if( pC->payloadSize <= (u32)avail ){
2499 pC->szRow = pC->payloadSize;
2500 }else if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2501 goto too_big;
2502 }else{
2503 pC->szRow = avail;
2504 }
2505 }
2506 pC->cacheStatus = p->cacheCtr;
2507 pC->iHdrOffset = getVarint32(pC->aRow, offset);
2508 pC->nHdrParsed = 0;
2509 aOffset[0] = offset;
2510
2511
2512 if( avail<offset ){ /*OPTIMIZATION-IF-FALSE*/
2513 /* pC->aRow does not have to hold the entire row, but it does at least
2514 ** need to cover the header of the record. If pC->aRow does not contain
2515 ** the complete header, then set it to zero, forcing the header to be
2516 ** dynamically allocated. */
2517 pC->aRow = 0;
2518 pC->szRow = 0;
2519
2520 /* Make sure a corrupt database has not given us an oversize header.
2521 ** Do this now to avoid an oversize memory allocation.
2522 **
2523 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2524 ** types use so much data space that there can only be 4096 and 32 of
2525 ** them, respectively. So the maximum header length results from a
2526 ** 3-byte type for each of the maximum of 32768 columns plus three
2527 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2528 */
2529 if( offset > 98307 || offset > pC->payloadSize ){
2530 rc = SQLITE_CORRUPT_BKPT;
2531 goto abort_due_to_error;
2532 }
2533 }else if( offset>0 ){ /*OPTIMIZATION-IF-TRUE*/
2534 /* The following goto is an optimization. It can be omitted and
2535 ** everything will still work. But OP_Column is measurably faster
2536 ** by skipping the subsequent conditional, which is always true.
2537 */
2538 zData = pC->aRow;
2539 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
2540 goto op_column_read_header;
2541 }
2542 }
2543
2544 /* Make sure at least the first p2+1 entries of the header have been
2545 ** parsed and valid information is in aOffset[] and pC->aType[].
2546 */
2547 if( pC->nHdrParsed<=p2 ){
2548 /* If there is more header available for parsing in the record, try
2549 ** to extract additional fields up through the p2+1-th field
2550 */
2551 if( pC->iHdrOffset<aOffset[0] ){
2552 /* Make sure zData points to enough of the record to cover the header. */
2553 if( pC->aRow==0 ){
2554 memset(&sMem, 0, sizeof(sMem));
2555 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem);
2556 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2557 zData = (u8*)sMem.z;
2558 }else{
2559 zData = pC->aRow;
2560 }
2561
2562 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2563 op_column_read_header:
2564 i = pC->nHdrParsed;
2565 offset64 = aOffset[i];
2566 zHdr = zData + pC->iHdrOffset;
2567 zEndHdr = zData + aOffset[0];
2568 do{
2569 if( (t = zHdr[0])<0x80 ){
2570 zHdr++;
2571 offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2572 }else{
2573 zHdr += sqlite3GetVarint32(zHdr, &t);
2574 offset64 += sqlite3VdbeSerialTypeLen(t);
2575 }
2576 pC->aType[i++] = t;
2577 aOffset[i] = (u32)(offset64 & 0xffffffff);
2578 }while( i<=p2 && zHdr<zEndHdr );
2579
2580 /* The record is corrupt if any of the following are true:
2581 ** (1) the bytes of the header extend past the declared header size
2582 ** (2) the entire header was used but not all data was used
2583 ** (3) the end of the data extends beyond the end of the record.
2584 */
2585 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2586 || (offset64 > pC->payloadSize)
2587 ){
2588 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2589 rc = SQLITE_CORRUPT_BKPT;
2590 goto abort_due_to_error;
2591 }
2592
2593 pC->nHdrParsed = i;
2594 pC->iHdrOffset = (u32)(zHdr - zData);
2595 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2596 }else{
2597 t = 0;
2598 }
2599
2600 /* If after trying to extract new entries from the header, nHdrParsed is
2601 ** still not up to p2, that means that the record has fewer than p2
2602 ** columns. So the result will be either the default value or a NULL.
2603 */
2604 if( pC->nHdrParsed<=p2 ){
2605 if( pOp->p4type==P4_MEM ){
2606 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2607 }else{
2608 sqlite3VdbeMemSetNull(pDest);
2609 }
2610 goto op_column_out;
2611 }
2612 }else{
2613 t = pC->aType[p2];
2614 }
2615
2616 /* Extract the content for the p2+1-th column. Control can only
2617 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2618 ** all valid.
2619 */
2620 assert( p2<pC->nHdrParsed );
2621 assert( rc==SQLITE_OK );
2622 assert( sqlite3VdbeCheckMemInvariants(pDest) );
2623 if( VdbeMemDynamic(pDest) ){
2624 sqlite3VdbeMemSetNull(pDest);
2625 }
2626 assert( t==pC->aType[p2] );
2627 if( pC->szRow>=aOffset[p2+1] ){
2628 /* This is the common case where the desired content fits on the original
2629 ** page - where the content is not on an overflow page */
2630 zData = pC->aRow + aOffset[p2];
2631 if( t<12 ){
2632 sqlite3VdbeSerialGet(zData, t, pDest);
2633 }else{
2634 /* If the column value is a string, we need a persistent value, not
2635 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
2636 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2637 */
2638 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2639 pDest->n = len = (t-12)/2;
2640 pDest->enc = encoding;
2641 if( pDest->szMalloc < len+2 ){
2642 pDest->flags = MEM_Null;
2643 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2644 }else{
2645 pDest->z = pDest->zMalloc;
2646 }
2647 memcpy(pDest->z, zData, len);
2648 pDest->z[len] = 0;
2649 pDest->z[len+1] = 0;
2650 pDest->flags = aFlag[t&1];
2651 }
2652 }else{
2653 pDest->enc = encoding;
2654 /* This branch happens only when content is on overflow pages */
2655 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2656 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2657 || (len = sqlite3VdbeSerialTypeLen(t))==0
2658 ){
2659 /* Content is irrelevant for
2660 ** 1. the typeof() function,
2661 ** 2. the length(X) function if X is a blob, and
2662 ** 3. if the content length is zero.
2663 ** So we might as well use bogus content rather than reading
2664 ** content from disk. */
2665 static u8 aZero[8]; /* This is the bogus content */
2666 sqlite3VdbeSerialGet(aZero, t, pDest);
2667 }else{
2668 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
2669 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2670 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2671 pDest->flags &= ~MEM_Ephem;
2672 }
2673 }
2674
2675 op_column_out:
2676 UPDATE_MAX_BLOBSIZE(pDest);
2677 REGISTER_TRACE(pOp->p3, pDest);
2678 break;
2679 }
2680
2681 /* Opcode: Affinity P1 P2 * P4 *
2682 ** Synopsis: affinity(r[P1@P2])
2683 **
2684 ** Apply affinities to a range of P2 registers starting with P1.
2685 **
2686 ** P4 is a string that is P2 characters long. The nth character of the
2687 ** string indicates the column affinity that should be used for the nth
2688 ** memory cell in the range.
2689 */
2690 case OP_Affinity: {
2691 const char *zAffinity; /* The affinity to be applied */
2692 char cAff; /* A single character of affinity */
2693
2694 zAffinity = pOp->p4.z;
2695 assert( zAffinity!=0 );
2696 assert( zAffinity[pOp->p2]==0 );
2697 pIn1 = &aMem[pOp->p1];
2698 while( (cAff = *(zAffinity++))!=0 ){
2699 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
2700 assert( memIsValid(pIn1) );
2701 applyAffinity(pIn1, cAff, encoding);
2702 pIn1++;
2703 }
2704 break;
2705 }
2706
2707 /* Opcode: MakeRecord P1 P2 P3 P4 *
2708 ** Synopsis: r[P3]=mkrec(r[P1@P2])
2709 **
2710 ** Convert P2 registers beginning with P1 into the [record format]
2711 ** use as a data record in a database table or as a key
2712 ** in an index. The OP_Column opcode can decode the record later.
2713 **
2714 ** P4 may be a string that is P2 characters long. The nth character of the
2715 ** string indicates the column affinity that should be used for the nth
2716 ** field of the index key.
2717 **
2718 ** The mapping from character to affinity is given by the SQLITE_AFF_
2719 ** macros defined in sqliteInt.h.
2720 **
2721 ** If P4 is NULL then all index fields have the affinity BLOB.
2722 */
2723 case OP_MakeRecord: {
2724 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2725 Mem *pRec; /* The new record */
2726 u64 nData; /* Number of bytes of data space */
2727 int nHdr; /* Number of bytes of header space */
2728 i64 nByte; /* Data space required for this record */
2729 i64 nZero; /* Number of zero bytes at the end of the record */
2730 int nVarint; /* Number of bytes in a varint */
2731 u32 serial_type; /* Type field */
2732 Mem *pData0; /* First field to be combined into the record */
2733 Mem *pLast; /* Last field of the record */
2734 int nField; /* Number of fields in the record */
2735 char *zAffinity; /* The affinity string for the record */
2736 int file_format; /* File format to use for encoding */
2737 int i; /* Space used in zNewRecord[] header */
2738 int j; /* Space used in zNewRecord[] content */
2739 u32 len; /* Length of a field */
2740
2741 /* Assuming the record contains N fields, the record format looks
2742 ** like this:
2743 **
2744 ** ------------------------------------------------------------------------
2745 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2746 ** ------------------------------------------------------------------------
2747 **
2748 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2749 ** and so forth.
2750 **
2751 ** Each type field is a varint representing the serial type of the
2752 ** corresponding data element (see sqlite3VdbeSerialType()). The
2753 ** hdr-size field is also a varint which is the offset from the beginning
2754 ** of the record to data0.
2755 */
2756 nData = 0; /* Number of bytes of data space */
2757 nHdr = 0; /* Number of bytes of header space */
2758 nZero = 0; /* Number of zero bytes at the end of the record */
2759 nField = pOp->p1;
2760 zAffinity = pOp->p4.z;
2761 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
2762 pData0 = &aMem[nField];
2763 nField = pOp->p2;
2764 pLast = &pData0[nField-1];
2765 file_format = p->minWriteFileFormat;
2766
2767 /* Identify the output register */
2768 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2769 pOut = &aMem[pOp->p3];
2770 memAboutToChange(p, pOut);
2771
2772 /* Apply the requested affinity to all inputs
2773 */
2774 assert( pData0<=pLast );
2775 if( zAffinity ){
2776 pRec = pData0;
2777 do{
2778 applyAffinity(pRec++, *(zAffinity++), encoding);
2779 assert( zAffinity[0]==0 || pRec<=pLast );
2780 }while( zAffinity[0] );
2781 }
2782
2783 #ifdef SQLITE_ENABLE_NULL_TRIM
2784 /* NULLs can be safely trimmed from the end of the record, as long as
2785 ** as the schema format is 2 or more and none of the omitted columns
2786 ** have a non-NULL default value. Also, the record must be left with
2787 ** at least one field. If P5>0 then it will be one more than the
2788 ** index of the right-most column with a non-NULL default value */
2789 if( pOp->p5 ){
2790 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
2791 pLast--;
2792 nField--;
2793 }
2794 }
2795 #endif
2796
2797 /* Loop through the elements that will make up the record to figure
2798 ** out how much space is required for the new record.
2799 */
2800 pRec = pLast;
2801 do{
2802 assert( memIsValid(pRec) );
2803 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len);
2804 if( pRec->flags & MEM_Zero ){
2805 if( nData ){
2806 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
2807 }else{
2808 nZero += pRec->u.nZero;
2809 len -= pRec->u.nZero;
2810 }
2811 }
2812 nData += len;
2813 testcase( serial_type==127 );
2814 testcase( serial_type==128 );
2815 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
2816 if( pRec==pData0 ) break;
2817 pRec--;
2818 }while(1);
2819
2820 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2821 ** which determines the total number of bytes in the header. The varint
2822 ** value is the size of the header in bytes including the size varint
2823 ** itself. */
2824 testcase( nHdr==126 );
2825 testcase( nHdr==127 );
2826 if( nHdr<=126 ){
2827 /* The common case */
2828 nHdr += 1;
2829 }else{
2830 /* Rare case of a really large header */
2831 nVarint = sqlite3VarintLen(nHdr);
2832 nHdr += nVarint;
2833 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
2834 }
2835 nByte = nHdr+nData;
2836 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2837 goto too_big;
2838 }
2839
2840 /* Make sure the output register has a buffer large enough to store
2841 ** the new record. The output register (pOp->p3) is not allowed to
2842 ** be one of the input registers (because the following call to
2843 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
2844 */
2845 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
2846 goto no_mem;
2847 }
2848 zNewRecord = (u8 *)pOut->z;
2849
2850 /* Write the record */
2851 i = putVarint32(zNewRecord, nHdr);
2852 j = nHdr;
2853 assert( pData0<=pLast );
2854 pRec = pData0;
2855 do{
2856 serial_type = pRec->uTemp;
2857 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2858 ** additional varints, one per column. */
2859 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
2860 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2861 ** immediately follow the header. */
2862 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
2863 }while( (++pRec)<=pLast );
2864 assert( i==nHdr );
2865 assert( j==nByte );
2866
2867 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2868 pOut->n = (int)nByte;
2869 pOut->flags = MEM_Blob;
2870 if( nZero ){
2871 pOut->u.nZero = nZero;
2872 pOut->flags |= MEM_Zero;
2873 }
2874 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
2875 REGISTER_TRACE(pOp->p3, pOut);
2876 UPDATE_MAX_BLOBSIZE(pOut);
2877 break;
2878 }
2879
2880 /* Opcode: Count P1 P2 * * *
2881 ** Synopsis: r[P2]=count()
2882 **
2883 ** Store the number of entries (an integer value) in the table or index
2884 ** opened by cursor P1 in register P2
2885 */
2886 #ifndef SQLITE_OMIT_BTREECOUNT
2887 case OP_Count: { /* out2 */
2888 i64 nEntry;
2889 BtCursor *pCrsr;
2890
2891 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
2892 pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
2893 assert( pCrsr );
2894 nEntry = 0; /* Not needed. Only used to silence a warning. */
2895 rc = sqlite3BtreeCount(pCrsr, &nEntry);
2896 if( rc ) goto abort_due_to_error;
2897 pOut = out2Prerelease(p, pOp);
2898 pOut->u.i = nEntry;
2899 break;
2900 }
2901 #endif
2902
2903 /* Opcode: Savepoint P1 * * P4 *
2904 **
2905 ** Open, release or rollback the savepoint named by parameter P4, depending
2906 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2907 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2908 */
2909 case OP_Savepoint: {
2910 int p1; /* Value of P1 operand */
2911 char *zName; /* Name of savepoint */
2912 int nName;
2913 Savepoint *pNew;
2914 Savepoint *pSavepoint;
2915 Savepoint *pTmp;
2916 int iSavepoint;
2917 int ii;
2918
2919 p1 = pOp->p1;
2920 zName = pOp->p4.z;
2921
2922 /* Assert that the p1 parameter is valid. Also that if there is no open
2923 ** transaction, then there cannot be any savepoints.
2924 */
2925 assert( db->pSavepoint==0 || db->autoCommit==0 );
2926 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2927 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2928 assert( checkSavepointCount(db) );
2929 assert( p->bIsReader );
2930
2931 if( p1==SAVEPOINT_BEGIN ){
2932 if( db->nVdbeWrite>0 ){
2933 /* A new savepoint cannot be created if there are active write
2934 ** statements (i.e. open read/write incremental blob handles).
2935 */
2936 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
2937 rc = SQLITE_BUSY;
2938 }else{
2939 nName = sqlite3Strlen30(zName);
2940
2941 #ifndef SQLITE_OMIT_VIRTUALTABLE
2942 /* This call is Ok even if this savepoint is actually a transaction
2943 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2944 ** If this is a transaction savepoint being opened, it is guaranteed
2945 ** that the db->aVTrans[] array is empty. */
2946 assert( db->autoCommit==0 || db->nVTrans==0 );
2947 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2948 db->nStatement+db->nSavepoint);
2949 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2950 #endif
2951
2952 /* Create a new savepoint structure. */
2953 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
2954 if( pNew ){
2955 pNew->zName = (char *)&pNew[1];
2956 memcpy(pNew->zName, zName, nName+1);
2957
2958 /* If there is no open transaction, then mark this as a special
2959 ** "transaction savepoint". */
2960 if( db->autoCommit ){
2961 db->autoCommit = 0;
2962 db->isTransactionSavepoint = 1;
2963 }else{
2964 db->nSavepoint++;
2965 }
2966
2967 /* Link the new savepoint into the database handle's list. */
2968 pNew->pNext = db->pSavepoint;
2969 db->pSavepoint = pNew;
2970 pNew->nDeferredCons = db->nDeferredCons;
2971 pNew->nDeferredImmCons = db->nDeferredImmCons;
2972 }
2973 }
2974 }else{
2975 iSavepoint = 0;
2976
2977 /* Find the named savepoint. If there is no such savepoint, then an
2978 ** an error is returned to the user. */
2979 for(
2980 pSavepoint = db->pSavepoint;
2981 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
2982 pSavepoint = pSavepoint->pNext
2983 ){
2984 iSavepoint++;
2985 }
2986 if( !pSavepoint ){
2987 sqlite3VdbeError(p, "no such savepoint: %s", zName);
2988 rc = SQLITE_ERROR;
2989 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
2990 /* It is not possible to release (commit) a savepoint if there are
2991 ** active write statements.
2992 */
2993 sqlite3VdbeError(p, "cannot release savepoint - "
2994 "SQL statements in progress");
2995 rc = SQLITE_BUSY;
2996 }else{
2997
2998 /* Determine whether or not this is a transaction savepoint. If so,
2999 ** and this is a RELEASE command, then the current transaction
3000 ** is committed.
3001 */
3002 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3003 if( isTransaction && p1==SAVEPOINT_RELEASE ){
3004 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3005 goto vdbe_return;
3006 }
3007 db->autoCommit = 1;
3008 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3009 p->pc = (int)(pOp - aOp);
3010 db->autoCommit = 0;
3011 p->rc = rc = SQLITE_BUSY;
3012 goto vdbe_return;
3013 }
3014 db->isTransactionSavepoint = 0;
3015 rc = p->rc;
3016 }else{
3017 int isSchemaChange;
3018 iSavepoint = db->nSavepoint - iSavepoint - 1;
3019 if( p1==SAVEPOINT_ROLLBACK ){
3020 isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
3021 for(ii=0; ii<db->nDb; ii++){
3022 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3023 SQLITE_ABORT_ROLLBACK,
3024 isSchemaChange==0);
3025 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3026 }
3027 }else{
3028 isSchemaChange = 0;
3029 }
3030 for(ii=0; ii<db->nDb; ii++){
3031 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3032 if( rc!=SQLITE_OK ){
3033 goto abort_due_to_error;
3034 }
3035 }
3036 if( isSchemaChange ){
3037 sqlite3ExpirePreparedStatements(db);
3038 sqlite3ResetAllSchemasOfConnection(db);
3039 db->flags = (db->flags | SQLITE_InternChanges);
3040 }
3041 }
3042
3043 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3044 ** savepoints nested inside of the savepoint being operated on. */
3045 while( db->pSavepoint!=pSavepoint ){
3046 pTmp = db->pSavepoint;
3047 db->pSavepoint = pTmp->pNext;
3048 sqlite3DbFree(db, pTmp);
3049 db->nSavepoint--;
3050 }
3051
3052 /* If it is a RELEASE, then destroy the savepoint being operated on
3053 ** too. If it is a ROLLBACK TO, then set the number of deferred
3054 ** constraint violations present in the database to the value stored
3055 ** when the savepoint was created. */
3056 if( p1==SAVEPOINT_RELEASE ){
3057 assert( pSavepoint==db->pSavepoint );
3058 db->pSavepoint = pSavepoint->pNext;
3059 sqlite3DbFree(db, pSavepoint);
3060 if( !isTransaction ){
3061 db->nSavepoint--;
3062 }
3063 }else{
3064 db->nDeferredCons = pSavepoint->nDeferredCons;
3065 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3066 }
3067
3068 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3069 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3070 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3071 }
3072 }
3073 }
3074 if( rc ) goto abort_due_to_error;
3075
3076 break;
3077 }
3078
3079 /* Opcode: AutoCommit P1 P2 * * *
3080 **
3081 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3082 ** back any currently active btree transactions. If there are any active
3083 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
3084 ** there are active writing VMs or active VMs that use shared cache.
3085 **
3086 ** This instruction causes the VM to halt.
3087 */
3088 case OP_AutoCommit: {
3089 int desiredAutoCommit;
3090 int iRollback;
3091
3092 desiredAutoCommit = pOp->p1;
3093 iRollback = pOp->p2;
3094 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3095 assert( desiredAutoCommit==1 || iRollback==0 );
3096 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
3097 assert( p->bIsReader );
3098
3099 if( desiredAutoCommit!=db->autoCommit ){
3100 if( iRollback ){
3101 assert( desiredAutoCommit==1 );
3102 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3103 db->autoCommit = 1;
3104 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3105 /* If this instruction implements a COMMIT and other VMs are writing
3106 ** return an error indicating that the other VMs must complete first.
3107 */
3108 sqlite3VdbeError(p, "cannot commit transaction - "
3109 "SQL statements in progress");
3110 rc = SQLITE_BUSY;
3111 goto abort_due_to_error;
3112 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3113 goto vdbe_return;
3114 }else{
3115 db->autoCommit = (u8)desiredAutoCommit;
3116 }
3117 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3118 p->pc = (int)(pOp - aOp);
3119 db->autoCommit = (u8)(1-desiredAutoCommit);
3120 p->rc = rc = SQLITE_BUSY;
3121 goto vdbe_return;
3122 }
3123 assert( db->nStatement==0 );
3124 sqlite3CloseSavepoints(db);
3125 if( p->rc==SQLITE_OK ){
3126 rc = SQLITE_DONE;
3127 }else{
3128 rc = SQLITE_ERROR;
3129 }
3130 goto vdbe_return;
3131 }else{
3132 sqlite3VdbeError(p,
3133 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3134 (iRollback)?"cannot rollback - no transaction is active":
3135 "cannot commit - no transaction is active"));
3136
3137 rc = SQLITE_ERROR;
3138 goto abort_due_to_error;
3139 }
3140 break;
3141 }
3142
3143 /* Opcode: Transaction P1 P2 P3 P4 P5
3144 **
3145 ** Begin a transaction on database P1 if a transaction is not already
3146 ** active.
3147 ** If P2 is non-zero, then a write-transaction is started, or if a
3148 ** read-transaction is already active, it is upgraded to a write-transaction.
3149 ** If P2 is zero, then a read-transaction is started.
3150 **
3151 ** P1 is the index of the database file on which the transaction is
3152 ** started. Index 0 is the main database file and index 1 is the
3153 ** file used for temporary tables. Indices of 2 or more are used for
3154 ** attached databases.
3155 **
3156 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3157 ** true (this flag is set if the Vdbe may modify more than one row and may
3158 ** throw an ABORT exception), a statement transaction may also be opened.
3159 ** More specifically, a statement transaction is opened iff the database
3160 ** connection is currently not in autocommit mode, or if there are other
3161 ** active statements. A statement transaction allows the changes made by this
3162 ** VDBE to be rolled back after an error without having to roll back the
3163 ** entire transaction. If no error is encountered, the statement transaction
3164 ** will automatically commit when the VDBE halts.
3165 **
3166 ** If P5!=0 then this opcode also checks the schema cookie against P3
3167 ** and the schema generation counter against P4.
3168 ** The cookie changes its value whenever the database schema changes.
3169 ** This operation is used to detect when that the cookie has changed
3170 ** and that the current process needs to reread the schema. If the schema
3171 ** cookie in P3 differs from the schema cookie in the database header or
3172 ** if the schema generation counter in P4 differs from the current
3173 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3174 ** halts. The sqlite3_step() wrapper function might then reprepare the
3175 ** statement and rerun it from the beginning.
3176 */
3177 case OP_Transaction: {
3178 Btree *pBt;
3179 int iMeta;
3180 int iGen;
3181
3182 assert( p->bIsReader );
3183 assert( p->readOnly==0 || pOp->p2==0 );
3184 assert( pOp->p1>=0 && pOp->p1<db->nDb );
3185 assert( DbMaskTest(p->btreeMask, pOp->p1) );
3186 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3187 rc = SQLITE_READONLY;
3188 goto abort_due_to_error;
3189 }
3190 pBt = db->aDb[pOp->p1].pBt;
3191
3192 if( pBt ){
3193 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
3194 testcase( rc==SQLITE_BUSY_SNAPSHOT );
3195 testcase( rc==SQLITE_BUSY_RECOVERY );
3196 if( rc!=SQLITE_OK ){
3197 if( (rc&0xff)==SQLITE_BUSY ){
3198 p->pc = (int)(pOp - aOp);
3199 p->rc = rc;
3200 goto vdbe_return;
3201 }
3202 goto abort_due_to_error;
3203 }
3204
3205 if( pOp->p2 && p->usesStmtJournal
3206 && (db->autoCommit==0 || db->nVdbeRead>1)
3207 ){
3208 assert( sqlite3BtreeIsInTrans(pBt) );
3209 if( p->iStatement==0 ){
3210 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3211 db->nStatement++;
3212 p->iStatement = db->nSavepoint + db->nStatement;
3213 }
3214
3215 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3216 if( rc==SQLITE_OK ){
3217 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3218 }
3219
3220 /* Store the current value of the database handles deferred constraint
3221 ** counter. If the statement transaction needs to be rolled back,
3222 ** the value of this counter needs to be restored too. */
3223 p->nStmtDefCons = db->nDeferredCons;
3224 p->nStmtDefImmCons = db->nDeferredImmCons;
3225 }
3226
3227 /* Gather the schema version number for checking:
3228 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3229 ** version is checked to ensure that the schema has not changed since the
3230 ** SQL statement was prepared.
3231 */
3232 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3233 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3234 }else{
3235 iGen = iMeta = 0;
3236 }
3237 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3238 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3239 sqlite3DbFree(db, p->zErrMsg);
3240 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3241 /* If the schema-cookie from the database file matches the cookie
3242 ** stored with the in-memory representation of the schema, do
3243 ** not reload the schema from the database file.
3244 **
3245 ** If virtual-tables are in use, this is not just an optimization.
3246 ** Often, v-tables store their data in other SQLite tables, which
3247 ** are queried from within xNext() and other v-table methods using
3248 ** prepared queries. If such a query is out-of-date, we do not want to
3249 ** discard the database schema, as the user code implementing the
3250 ** v-table would have to be ready for the sqlite3_vtab structure itself
3251 ** to be invalidated whenever sqlite3_step() is called from within
3252 ** a v-table method.
3253 */
3254 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3255 sqlite3ResetOneSchema(db, pOp->p1);
3256 }
3257 p->expired = 1;
3258 rc = SQLITE_SCHEMA;
3259 }
3260 if( rc ) goto abort_due_to_error;
3261 break;
3262 }
3263
3264 /* Opcode: ReadCookie P1 P2 P3 * *
3265 **
3266 ** Read cookie number P3 from database P1 and write it into register P2.
3267 ** P3==1 is the schema version. P3==2 is the database format.
3268 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
3269 ** the main database file and P1==1 is the database file used to store
3270 ** temporary tables.
3271 **
3272 ** There must be a read-lock on the database (either a transaction
3273 ** must be started or there must be an open cursor) before
3274 ** executing this instruction.
3275 */
3276 case OP_ReadCookie: { /* out2 */
3277 int iMeta;
3278 int iDb;
3279 int iCookie;
3280
3281 assert( p->bIsReader );
3282 iDb = pOp->p1;
3283 iCookie = pOp->p3;
3284 assert( pOp->p3<SQLITE_N_BTREE_META );
3285 assert( iDb>=0 && iDb<db->nDb );
3286 assert( db->aDb[iDb].pBt!=0 );
3287 assert( DbMaskTest(p->btreeMask, iDb) );
3288
3289 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3290 pOut = out2Prerelease(p, pOp);
3291 pOut->u.i = iMeta;
3292 break;
3293 }
3294
3295 /* Opcode: SetCookie P1 P2 P3 * *
3296 **
3297 ** Write the integer value P3 into cookie number P2 of database P1.
3298 ** P2==1 is the schema version. P2==2 is the database format.
3299 ** P2==3 is the recommended pager cache
3300 ** size, and so forth. P1==0 is the main database file and P1==1 is the
3301 ** database file used to store temporary tables.
3302 **
3303 ** A transaction must be started before executing this opcode.
3304 */
3305 case OP_SetCookie: {
3306 Db *pDb;
3307 assert( pOp->p2<SQLITE_N_BTREE_META );
3308 assert( pOp->p1>=0 && pOp->p1<db->nDb );
3309 assert( DbMaskTest(p->btreeMask, pOp->p1) );
3310 assert( p->readOnly==0 );
3311 pDb = &db->aDb[pOp->p1];
3312 assert( pDb->pBt!=0 );
3313 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3314 /* See note about index shifting on OP_ReadCookie */
3315 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
3316 if( pOp->p2==BTREE_SCHEMA_VERSION ){
3317 /* When the schema cookie changes, record the new cookie internally */
3318 pDb->pSchema->schema_cookie = pOp->p3;
3319 db->flags |= SQLITE_InternChanges;
3320 }else if( pOp->p2==BTREE_FILE_FORMAT ){
3321 /* Record changes in the file format */
3322 pDb->pSchema->file_format = pOp->p3;
3323 }
3324 if( pOp->p1==1 ){
3325 /* Invalidate all prepared statements whenever the TEMP database
3326 ** schema is changed. Ticket #1644 */
3327 sqlite3ExpirePreparedStatements(db);
3328 p->expired = 0;
3329 }
3330 if( rc ) goto abort_due_to_error;
3331 break;
3332 }
3333
3334 /* Opcode: OpenRead P1 P2 P3 P4 P5
3335 ** Synopsis: root=P2 iDb=P3
3336 **
3337 ** Open a read-only cursor for the database table whose root page is
3338 ** P2 in a database file. The database file is determined by P3.
3339 ** P3==0 means the main database, P3==1 means the database used for
3340 ** temporary tables, and P3>1 means used the corresponding attached
3341 ** database. Give the new cursor an identifier of P1. The P1
3342 ** values need not be contiguous but all P1 values should be small integers.
3343 ** It is an error for P1 to be negative.
3344 **
3345 ** If P5!=0 then use the content of register P2 as the root page, not
3346 ** the value of P2 itself.
3347 **
3348 ** There will be a read lock on the database whenever there is an
3349 ** open cursor. If the database was unlocked prior to this instruction
3350 ** then a read lock is acquired as part of this instruction. A read
3351 ** lock allows other processes to read the database but prohibits
3352 ** any other process from modifying the database. The read lock is
3353 ** released when all cursors are closed. If this instruction attempts
3354 ** to get a read lock but fails, the script terminates with an
3355 ** SQLITE_BUSY error code.
3356 **
3357 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3358 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3359 ** structure, then said structure defines the content and collating
3360 ** sequence of the index being opened. Otherwise, if P4 is an integer
3361 ** value, it is set to the number of columns in the table.
3362 **
3363 ** See also: OpenWrite, ReopenIdx
3364 */
3365 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3366 ** Synopsis: root=P2 iDb=P3
3367 **
3368 ** The ReopenIdx opcode works exactly like ReadOpen except that it first
3369 ** checks to see if the cursor on P1 is already open with a root page
3370 ** number of P2 and if it is this opcode becomes a no-op. In other words,
3371 ** if the cursor is already open, do not reopen it.
3372 **
3373 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3374 ** a P4_KEYINFO object. Furthermore, the P3 value must be the same as
3375 ** every other ReopenIdx or OpenRead for the same cursor number.
3376 **
3377 ** See the OpenRead opcode documentation for additional information.
3378 */
3379 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3380 ** Synopsis: root=P2 iDb=P3
3381 **
3382 ** Open a read/write cursor named P1 on the table or index whose root
3383 ** page is P2. Or if P5!=0 use the content of register P2 to find the
3384 ** root page.
3385 **
3386 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3387 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3388 ** structure, then said structure defines the content and collating
3389 ** sequence of the index being opened. Otherwise, if P4 is an integer
3390 ** value, it is set to the number of columns in the table, or to the
3391 ** largest index of any column of the table that is actually used.
3392 **
3393 ** This instruction works just like OpenRead except that it opens the cursor
3394 ** in read/write mode. For a given table, there can be one or more read-only
3395 ** cursors or a single read/write cursor but not both.
3396 **
3397 ** See also OpenRead.
3398 */
3399 case OP_ReopenIdx: {
3400 int nField;
3401 KeyInfo *pKeyInfo;
3402 int p2;
3403 int iDb;
3404 int wrFlag;
3405 Btree *pX;
3406 VdbeCursor *pCur;
3407 Db *pDb;
3408
3409 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3410 assert( pOp->p4type==P4_KEYINFO );
3411 pCur = p->apCsr[pOp->p1];
3412 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3413 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
3414 goto open_cursor_set_hints;
3415 }
3416 /* If the cursor is not currently open or is open on a different
3417 ** index, then fall through into OP_OpenRead to force a reopen */
3418 case OP_OpenRead:
3419 case OP_OpenWrite:
3420
3421 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3422 assert( p->bIsReader );
3423 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3424 || p->readOnly==0 );
3425
3426 if( p->expired ){
3427 rc = SQLITE_ABORT_ROLLBACK;
3428 goto abort_due_to_error;
3429 }
3430
3431 nField = 0;
3432 pKeyInfo = 0;
3433 p2 = pOp->p2;
3434 iDb = pOp->p3;
3435 assert( iDb>=0 && iDb<db->nDb );
3436 assert( DbMaskTest(p->btreeMask, iDb) );
3437 pDb = &db->aDb[iDb];
3438 pX = pDb->pBt;
3439 assert( pX!=0 );
3440 if( pOp->opcode==OP_OpenWrite ){
3441 assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3442 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
3443 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3444 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3445 p->minWriteFileFormat = pDb->pSchema->file_format;
3446 }
3447 }else{
3448 wrFlag = 0;
3449 }
3450 if( pOp->p5 & OPFLAG_P2ISREG ){
3451 assert( p2>0 );
3452 assert( p2<=(p->nMem+1 - p->nCursor) );
3453 pIn2 = &aMem[p2];
3454 assert( memIsValid(pIn2) );
3455 assert( (pIn2->flags & MEM_Int)!=0 );
3456 sqlite3VdbeMemIntegerify(pIn2);
3457 p2 = (int)pIn2->u.i;
3458 /* The p2 value always comes from a prior OP_CreateTable opcode and
3459 ** that opcode will always set the p2 value to 2 or more or else fail.
3460 ** If there were a failure, the prepared statement would have halted
3461 ** before reaching this instruction. */
3462 assert( p2>=2 );
3463 }
3464 if( pOp->p4type==P4_KEYINFO ){
3465 pKeyInfo = pOp->p4.pKeyInfo;
3466 assert( pKeyInfo->enc==ENC(db) );
3467 assert( pKeyInfo->db==db );
3468 nField = pKeyInfo->nField+pKeyInfo->nXField;
3469 }else if( pOp->p4type==P4_INT32 ){
3470 nField = pOp->p4.i;
3471 }
3472 assert( pOp->p1>=0 );
3473 assert( nField>=0 );
3474 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
3475 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
3476 if( pCur==0 ) goto no_mem;
3477 pCur->nullRow = 1;
3478 pCur->isOrdered = 1;
3479 pCur->pgnoRoot = p2;
3480 #ifdef SQLITE_DEBUG
3481 pCur->wrFlag = wrFlag;
3482 #endif
3483 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
3484 pCur->pKeyInfo = pKeyInfo;
3485 /* Set the VdbeCursor.isTable variable. Previous versions of
3486 ** SQLite used to check if the root-page flags were sane at this point
3487 ** and report database corruption if they were not, but this check has
3488 ** since moved into the btree layer. */
3489 pCur->isTable = pOp->p4type!=P4_KEYINFO;
3490
3491 open_cursor_set_hints:
3492 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3493 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3494 testcase( pOp->p5 & OPFLAG_BULKCSR );
3495 #ifdef SQLITE_ENABLE_CURSOR_HINTS
3496 testcase( pOp->p2 & OPFLAG_SEEKEQ );
3497 #endif
3498 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
3499 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
3500 if( rc ) goto abort_due_to_error;
3501 break;
3502 }
3503
3504 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3505 ** Synopsis: nColumn=P2
3506 **
3507 ** Open a new cursor P1 to a transient table.
3508 ** The cursor is always opened read/write even if
3509 ** the main database is read-only. The ephemeral
3510 ** table is deleted automatically when the cursor is closed.
3511 **
3512 ** P2 is the number of columns in the ephemeral table.
3513 ** The cursor points to a BTree table if P4==0 and to a BTree index
3514 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
3515 ** that defines the format of keys in the index.
3516 **
3517 ** The P5 parameter can be a mask of the BTREE_* flags defined
3518 ** in btree.h. These flags control aspects of the operation of
3519 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3520 ** added automatically.
3521 */
3522 /* Opcode: OpenAutoindex P1 P2 * P4 *
3523 ** Synopsis: nColumn=P2
3524 **
3525 ** This opcode works the same as OP_OpenEphemeral. It has a
3526 ** different name to distinguish its use. Tables created using
3527 ** by this opcode will be used for automatically created transient
3528 ** indices in joins.
3529 */
3530 case OP_OpenAutoindex:
3531 case OP_OpenEphemeral: {
3532 VdbeCursor *pCx;
3533 KeyInfo *pKeyInfo;
3534
3535 static const int vfsFlags =
3536 SQLITE_OPEN_READWRITE |
3537 SQLITE_OPEN_CREATE |
3538 SQLITE_OPEN_EXCLUSIVE |
3539 SQLITE_OPEN_DELETEONCLOSE |
3540 SQLITE_OPEN_TRANSIENT_DB;
3541 assert( pOp->p1>=0 );
3542 assert( pOp->p2>=0 );
3543 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
3544 if( pCx==0 ) goto no_mem;
3545 pCx->nullRow = 1;
3546 pCx->isEphemeral = 1;
3547 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx,
3548 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
3549 if( rc==SQLITE_OK ){
3550 rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1);
3551 }
3552 if( rc==SQLITE_OK ){
3553 /* If a transient index is required, create it by calling
3554 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3555 ** opening it. If a transient table is required, just use the
3556 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3557 */
3558 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
3559 int pgno;
3560 assert( pOp->p4type==P4_KEYINFO );
3561 rc = sqlite3BtreeCreateTable(pCx->pBtx, &pgno, BTREE_BLOBKEY | pOp->p5);
3562 if( rc==SQLITE_OK ){
3563 assert( pgno==MASTER_ROOT+1 );
3564 assert( pKeyInfo->db==db );
3565 assert( pKeyInfo->enc==ENC(db) );
3566 rc = sqlite3BtreeCursor(pCx->pBtx, pgno, BTREE_WRCSR,
3567 pKeyInfo, pCx->uc.pCursor);
3568 }
3569 pCx->isTable = 0;
3570 }else{
3571 rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR,
3572 0, pCx->uc.pCursor);
3573 pCx->isTable = 1;
3574 }
3575 }
3576 if( rc ) goto abort_due_to_error;
3577 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3578 break;
3579 }
3580
3581 /* Opcode: SorterOpen P1 P2 P3 P4 *
3582 **
3583 ** This opcode works like OP_OpenEphemeral except that it opens
3584 ** a transient index that is specifically designed to sort large
3585 ** tables using an external merge-sort algorithm.
3586 **
3587 ** If argument P3 is non-zero, then it indicates that the sorter may
3588 ** assume that a stable sort considering the first P3 fields of each
3589 ** key is sufficient to produce the required results.
3590 */
3591 case OP_SorterOpen: {
3592 VdbeCursor *pCx;
3593
3594 assert( pOp->p1>=0 );
3595 assert( pOp->p2>=0 );
3596 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
3597 if( pCx==0 ) goto no_mem;
3598 pCx->pKeyInfo = pOp->p4.pKeyInfo;
3599 assert( pCx->pKeyInfo->db==db );
3600 assert( pCx->pKeyInfo->enc==ENC(db) );
3601 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
3602 if( rc ) goto abort_due_to_error;
3603 break;
3604 }
3605
3606 /* Opcode: SequenceTest P1 P2 * * *
3607 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3608 **
3609 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3610 ** to P2. Regardless of whether or not the jump is taken, increment the
3611 ** the sequence value.
3612 */
3613 case OP_SequenceTest: {
3614 VdbeCursor *pC;
3615 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3616 pC = p->apCsr[pOp->p1];
3617 assert( isSorter(pC) );
3618 if( (pC->seqCount++)==0 ){
3619 goto jump_to_p2;
3620 }
3621 break;
3622 }
3623
3624 /* Opcode: OpenPseudo P1 P2 P3 * *
3625 ** Synopsis: P3 columns in r[P2]
3626 **
3627 ** Open a new cursor that points to a fake table that contains a single
3628 ** row of data. The content of that one row is the content of memory
3629 ** register P2. In other words, cursor P1 becomes an alias for the
3630 ** MEM_Blob content contained in register P2.
3631 **
3632 ** A pseudo-table created by this opcode is used to hold a single
3633 ** row output from the sorter so that the row can be decomposed into
3634 ** individual columns using the OP_Column opcode. The OP_Column opcode
3635 ** is the only cursor opcode that works with a pseudo-table.
3636 **
3637 ** P3 is the number of fields in the records that will be stored by
3638 ** the pseudo-table.
3639 */
3640 case OP_OpenPseudo: {
3641 VdbeCursor *pCx;
3642
3643 assert( pOp->p1>=0 );
3644 assert( pOp->p3>=0 );
3645 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
3646 if( pCx==0 ) goto no_mem;
3647 pCx->nullRow = 1;
3648 pCx->uc.pseudoTableReg = pOp->p2;
3649 pCx->isTable = 1;
3650 assert( pOp->p5==0 );
3651 break;
3652 }
3653
3654 /* Opcode: Close P1 * * * *
3655 **
3656 ** Close a cursor previously opened as P1. If P1 is not
3657 ** currently open, this instruction is a no-op.
3658 */
3659 case OP_Close: {
3660 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3661 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3662 p->apCsr[pOp->p1] = 0;
3663 break;
3664 }
3665
3666 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3667 /* Opcode: ColumnsUsed P1 * * P4 *
3668 **
3669 ** This opcode (which only exists if SQLite was compiled with
3670 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3671 ** table or index for cursor P1 are used. P4 is a 64-bit integer
3672 ** (P4_INT64) in which the first 63 bits are one for each of the
3673 ** first 63 columns of the table or index that are actually used
3674 ** by the cursor. The high-order bit is set if any column after
3675 ** the 64th is used.
3676 */
3677 case OP_ColumnsUsed: {
3678 VdbeCursor *pC;
3679 pC = p->apCsr[pOp->p1];
3680 assert( pC->eCurType==CURTYPE_BTREE );
3681 pC->maskUsed = *(u64*)pOp->p4.pI64;
3682 break;
3683 }
3684 #endif
3685
3686 /* Opcode: SeekGE P1 P2 P3 P4 *
3687 ** Synopsis: key=r[P3@P4]
3688 **
3689 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3690 ** use the value in register P3 as the key. If cursor P1 refers
3691 ** to an SQL index, then P3 is the first in an array of P4 registers
3692 ** that are used as an unpacked index key.
3693 **
3694 ** Reposition cursor P1 so that it points to the smallest entry that
3695 ** is greater than or equal to the key value. If there are no records
3696 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3697 **
3698 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3699 ** opcode will always land on a record that equally equals the key, or
3700 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3701 ** opcode must be followed by an IdxLE opcode with the same arguments.
3702 ** The IdxLE opcode will be skipped if this opcode succeeds, but the
3703 ** IdxLE opcode will be used on subsequent loop iterations.
3704 **
3705 ** This opcode leaves the cursor configured to move in forward order,
3706 ** from the beginning toward the end. In other words, the cursor is
3707 ** configured to use Next, not Prev.
3708 **
3709 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
3710 */
3711 /* Opcode: SeekGT P1 P2 P3 P4 *
3712 ** Synopsis: key=r[P3@P4]
3713 **
3714 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3715 ** use the value in register P3 as a key. If cursor P1 refers
3716 ** to an SQL index, then P3 is the first in an array of P4 registers
3717 ** that are used as an unpacked index key.
3718 **
3719 ** Reposition cursor P1 so that it points to the smallest entry that
3720 ** is greater than the key value. If there are no records greater than
3721 ** the key and P2 is not zero, then jump to P2.
3722 **
3723 ** This opcode leaves the cursor configured to move in forward order,
3724 ** from the beginning toward the end. In other words, the cursor is
3725 ** configured to use Next, not Prev.
3726 **
3727 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
3728 */
3729 /* Opcode: SeekLT P1 P2 P3 P4 *
3730 ** Synopsis: key=r[P3@P4]
3731 **
3732 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3733 ** use the value in register P3 as a key. If cursor P1 refers
3734 ** to an SQL index, then P3 is the first in an array of P4 registers
3735 ** that are used as an unpacked index key.
3736 **
3737 ** Reposition cursor P1 so that it points to the largest entry that
3738 ** is less than the key value. If there are no records less than
3739 ** the key and P2 is not zero, then jump to P2.
3740 **
3741 ** This opcode leaves the cursor configured to move in reverse order,
3742 ** from the end toward the beginning. In other words, the cursor is
3743 ** configured to use Prev, not Next.
3744 **
3745 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
3746 */
3747 /* Opcode: SeekLE P1 P2 P3 P4 *
3748 ** Synopsis: key=r[P3@P4]
3749 **
3750 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3751 ** use the value in register P3 as a key. If cursor P1 refers
3752 ** to an SQL index, then P3 is the first in an array of P4 registers
3753 ** that are used as an unpacked index key.
3754 **
3755 ** Reposition cursor P1 so that it points to the largest entry that
3756 ** is less than or equal to the key value. If there are no records
3757 ** less than or equal to the key and P2 is not zero, then jump to P2.
3758 **
3759 ** This opcode leaves the cursor configured to move in reverse order,
3760 ** from the end toward the beginning. In other words, the cursor is
3761 ** configured to use Prev, not Next.
3762 **
3763 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3764 ** opcode will always land on a record that equally equals the key, or
3765 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3766 ** opcode must be followed by an IdxGE opcode with the same arguments.
3767 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
3768 ** IdxGE opcode will be used on subsequent loop iterations.
3769 **
3770 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
3771 */
3772 case OP_SeekLT: /* jump, in3 */
3773 case OP_SeekLE: /* jump, in3 */
3774 case OP_SeekGE: /* jump, in3 */
3775 case OP_SeekGT: { /* jump, in3 */
3776 int res; /* Comparison result */
3777 int oc; /* Opcode */
3778 VdbeCursor *pC; /* The cursor to seek */
3779 UnpackedRecord r; /* The key to seek for */
3780 int nField; /* Number of columns or fields in the key */
3781 i64 iKey; /* The rowid we are to seek to */
3782 int eqOnly; /* Only interested in == results */
3783
3784 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3785 assert( pOp->p2!=0 );
3786 pC = p->apCsr[pOp->p1];
3787 assert( pC!=0 );
3788 assert( pC->eCurType==CURTYPE_BTREE );
3789 assert( OP_SeekLE == OP_SeekLT+1 );
3790 assert( OP_SeekGE == OP_SeekLT+2 );
3791 assert( OP_SeekGT == OP_SeekLT+3 );
3792 assert( pC->isOrdered );
3793 assert( pC->uc.pCursor!=0 );
3794 oc = pOp->opcode;
3795 eqOnly = 0;
3796 pC->nullRow = 0;
3797 #ifdef SQLITE_DEBUG
3798 pC->seekOp = pOp->opcode;
3799 #endif
3800
3801 if( pC->isTable ){
3802 /* The BTREE_SEEK_EQ flag is only set on index cursors */
3803 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
3804 || CORRUPT_DB );
3805
3806 /* The input value in P3 might be of any type: integer, real, string,
3807 ** blob, or NULL. But it needs to be an integer before we can do
3808 ** the seek, so convert it. */
3809 pIn3 = &aMem[pOp->p3];
3810 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
3811 applyNumericAffinity(pIn3, 0);
3812 }
3813 iKey = sqlite3VdbeIntValue(pIn3);
3814
3815 /* If the P3 value could not be converted into an integer without
3816 ** loss of information, then special processing is required... */
3817 if( (pIn3->flags & MEM_Int)==0 ){
3818 if( (pIn3->flags & MEM_Real)==0 ){
3819 /* If the P3 value cannot be converted into any kind of a number,
3820 ** then the seek is not possible, so jump to P2 */
3821 VdbeBranchTaken(1,2); goto jump_to_p2;
3822 break;
3823 }
3824
3825 /* If the approximation iKey is larger than the actual real search
3826 ** term, substitute >= for > and < for <=. e.g. if the search term
3827 ** is 4.9 and the integer approximation 5:
3828 **
3829 ** (x > 4.9) -> (x >= 5)
3830 ** (x <= 4.9) -> (x < 5)
3831 */
3832 if( pIn3->u.r<(double)iKey ){
3833 assert( OP_SeekGE==(OP_SeekGT-1) );
3834 assert( OP_SeekLT==(OP_SeekLE-1) );
3835 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3836 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
3837 }
3838
3839 /* If the approximation iKey is smaller than the actual real search
3840 ** term, substitute <= for < and > for >=. */
3841 else if( pIn3->u.r>(double)iKey ){
3842 assert( OP_SeekLE==(OP_SeekLT+1) );
3843 assert( OP_SeekGT==(OP_SeekGE+1) );
3844 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3845 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
3846 }
3847 }
3848 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
3849 pC->movetoTarget = iKey; /* Used by OP_Delete */
3850 if( rc!=SQLITE_OK ){
3851 goto abort_due_to_error;
3852 }
3853 }else{
3854 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3855 ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3856 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3857 */
3858 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
3859 eqOnly = 1;
3860 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3861 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3862 assert( pOp[1].p1==pOp[0].p1 );
3863 assert( pOp[1].p2==pOp[0].p2 );
3864 assert( pOp[1].p3==pOp[0].p3 );
3865 assert( pOp[1].p4.i==pOp[0].p4.i );
3866 }
3867
3868 nField = pOp->p4.i;
3869 assert( pOp->p4type==P4_INT32 );
3870 assert( nField>0 );
3871 r.pKeyInfo = pC->pKeyInfo;
3872 r.nField = (u16)nField;
3873
3874 /* The next line of code computes as follows, only faster:
3875 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
3876 ** r.default_rc = -1;
3877 ** }else{
3878 ** r.default_rc = +1;
3879 ** }
3880 */
3881 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3882 assert( oc!=OP_SeekGT || r.default_rc==-1 );
3883 assert( oc!=OP_SeekLE || r.default_rc==-1 );
3884 assert( oc!=OP_SeekGE || r.default_rc==+1 );
3885 assert( oc!=OP_SeekLT || r.default_rc==+1 );
3886
3887 r.aMem = &aMem[pOp->p3];
3888 #ifdef SQLITE_DEBUG
3889 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3890 #endif
3891 r.eqSeen = 0;
3892 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
3893 if( rc!=SQLITE_OK ){
3894 goto abort_due_to_error;
3895 }
3896 if( eqOnly && r.eqSeen==0 ){
3897 assert( res!=0 );
3898 goto seek_not_found;
3899 }
3900 }
3901 pC->deferredMoveto = 0;
3902 pC->cacheStatus = CACHE_STALE;
3903 #ifdef SQLITE_TEST
3904 sqlite3_search_count++;
3905 #endif
3906 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
3907 if( res<0 || (res==0 && oc==OP_SeekGT) ){
3908 res = 0;
3909 rc = sqlite3BtreeNext(pC->uc.pCursor, &res);
3910 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3911 }else{
3912 res = 0;
3913 }
3914 }else{
3915 assert( oc==OP_SeekLT || oc==OP_SeekLE );
3916 if( res>0 || (res==0 && oc==OP_SeekLT) ){
3917 res = 0;
3918 rc = sqlite3BtreePrevious(pC->uc.pCursor, &res);
3919 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3920 }else{
3921 /* res might be negative because the table is empty. Check to
3922 ** see if this is the case.
3923 */
3924 res = sqlite3BtreeEof(pC->uc.pCursor);
3925 }
3926 }
3927 seek_not_found:
3928 assert( pOp->p2>0 );
3929 VdbeBranchTaken(res!=0,2);
3930 if( res ){
3931 goto jump_to_p2;
3932 }else if( eqOnly ){
3933 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3934 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
3935 }
3936 break;
3937 }
3938
3939 /* Opcode: Found P1 P2 P3 P4 *
3940 ** Synopsis: key=r[P3@P4]
3941 **
3942 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3943 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3944 ** record.
3945 **
3946 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3947 ** is a prefix of any entry in P1 then a jump is made to P2 and
3948 ** P1 is left pointing at the matching entry.
3949 **
3950 ** This operation leaves the cursor in a state where it can be
3951 ** advanced in the forward direction. The Next instruction will work,
3952 ** but not the Prev instruction.
3953 **
3954 ** See also: NotFound, NoConflict, NotExists. SeekGe
3955 */
3956 /* Opcode: NotFound P1 P2 P3 P4 *
3957 ** Synopsis: key=r[P3@P4]
3958 **
3959 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3960 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3961 ** record.
3962 **
3963 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3964 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3965 ** does contain an entry whose prefix matches the P3/P4 record then control
3966 ** falls through to the next instruction and P1 is left pointing at the
3967 ** matching entry.
3968 **
3969 ** This operation leaves the cursor in a state where it cannot be
3970 ** advanced in either direction. In other words, the Next and Prev
3971 ** opcodes do not work after this operation.
3972 **
3973 ** See also: Found, NotExists, NoConflict
3974 */
3975 /* Opcode: NoConflict P1 P2 P3 P4 *
3976 ** Synopsis: key=r[P3@P4]
3977 **
3978 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3979 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3980 ** record.
3981 **
3982 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3983 ** contains any NULL value, jump immediately to P2. If all terms of the
3984 ** record are not-NULL then a check is done to determine if any row in the
3985 ** P1 index btree has a matching key prefix. If there are no matches, jump
3986 ** immediately to P2. If there is a match, fall through and leave the P1
3987 ** cursor pointing to the matching row.
3988 **
3989 ** This opcode is similar to OP_NotFound with the exceptions that the
3990 ** branch is always taken if any part of the search key input is NULL.
3991 **
3992 ** This operation leaves the cursor in a state where it cannot be
3993 ** advanced in either direction. In other words, the Next and Prev
3994 ** opcodes do not work after this operation.
3995 **
3996 ** See also: NotFound, Found, NotExists
3997 */
3998 case OP_NoConflict: /* jump, in3 */
3999 case OP_NotFound: /* jump, in3 */
4000 case OP_Found: { /* jump, in3 */
4001 int alreadyExists;
4002 int takeJump;
4003 int ii;
4004 VdbeCursor *pC;
4005 int res;
4006 UnpackedRecord *pFree;
4007 UnpackedRecord *pIdxKey;
4008 UnpackedRecord r;
4009
4010 #ifdef SQLITE_TEST
4011 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
4012 #endif
4013
4014 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4015 assert( pOp->p4type==P4_INT32 );
4016 pC = p->apCsr[pOp->p1];
4017 assert( pC!=0 );
4018 #ifdef SQLITE_DEBUG
4019 pC->seekOp = pOp->opcode;
4020 #endif
4021 pIn3 = &aMem[pOp->p3];
4022 assert( pC->eCurType==CURTYPE_BTREE );
4023 assert( pC->uc.pCursor!=0 );
4024 assert( pC->isTable==0 );
4025 if( pOp->p4.i>0 ){
4026 r.pKeyInfo = pC->pKeyInfo;
4027 r.nField = (u16)pOp->p4.i;
4028 r.aMem = pIn3;
4029 #ifdef SQLITE_DEBUG
4030 for(ii=0; ii<r.nField; ii++){
4031 assert( memIsValid(&r.aMem[ii]) );
4032 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
4033 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
4034 }
4035 #endif
4036 pIdxKey = &r;
4037 pFree = 0;
4038 }else{
4039 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
4040 if( pIdxKey==0 ) goto no_mem;
4041 assert( pIn3->flags & MEM_Blob );
4042 (void)ExpandBlob(pIn3);
4043 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
4044 }
4045 pIdxKey->default_rc = 0;
4046 takeJump = 0;
4047 if( pOp->opcode==OP_NoConflict ){
4048 /* For the OP_NoConflict opcode, take the jump if any of the
4049 ** input fields are NULL, since any key with a NULL will not
4050 ** conflict */
4051 for(ii=0; ii<pIdxKey->nField; ii++){
4052 if( pIdxKey->aMem[ii].flags & MEM_Null ){
4053 takeJump = 1;
4054 break;
4055 }
4056 }
4057 }
4058 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
4059 if( pFree ) sqlite3DbFree(db, pFree);
4060 if( rc!=SQLITE_OK ){
4061 goto abort_due_to_error;
4062 }
4063 pC->seekResult = res;
4064 alreadyExists = (res==0);
4065 pC->nullRow = 1-alreadyExists;
4066 pC->deferredMoveto = 0;
4067 pC->cacheStatus = CACHE_STALE;
4068 if( pOp->opcode==OP_Found ){
4069 VdbeBranchTaken(alreadyExists!=0,2);
4070 if( alreadyExists ) goto jump_to_p2;
4071 }else{
4072 VdbeBranchTaken(takeJump||alreadyExists==0,2);
4073 if( takeJump || !alreadyExists ) goto jump_to_p2;
4074 }
4075 break;
4076 }
4077
4078 /* Opcode: SeekRowid P1 P2 P3 * *
4079 ** Synopsis: intkey=r[P3]
4080 **
4081 ** P1 is the index of a cursor open on an SQL table btree (with integer
4082 ** keys). If register P3 does not contain an integer or if P1 does not
4083 ** contain a record with rowid P3 then jump immediately to P2.
4084 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
4085 ** a record with rowid P3 then
4086 ** leave the cursor pointing at that record and fall through to the next
4087 ** instruction.
4088 **
4089 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
4090 ** the P3 register must be guaranteed to contain an integer value. With this
4091 ** opcode, register P3 might not contain an integer.
4092 **
4093 ** The OP_NotFound opcode performs the same operation on index btrees
4094 ** (with arbitrary multi-value keys).
4095 **
4096 ** This opcode leaves the cursor in a state where it cannot be advanced
4097 ** in either direction. In other words, the Next and Prev opcodes will
4098 ** not work following this opcode.
4099 **
4100 ** See also: Found, NotFound, NoConflict, SeekRowid
4101 */
4102 /* Opcode: NotExists P1 P2 P3 * *
4103 ** Synopsis: intkey=r[P3]
4104 **
4105 ** P1 is the index of a cursor open on an SQL table btree (with integer
4106 ** keys). P3 is an integer rowid. If P1 does not contain a record with
4107 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
4108 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4109 ** leave the cursor pointing at that record and fall through to the next
4110 ** instruction.
4111 **
4112 ** The OP_SeekRowid opcode performs the same operation but also allows the
4113 ** P3 register to contain a non-integer value, in which case the jump is
4114 ** always taken. This opcode requires that P3 always contain an integer.
4115 **
4116 ** The OP_NotFound opcode performs the same operation on index btrees
4117 ** (with arbitrary multi-value keys).
4118 **
4119 ** This opcode leaves the cursor in a state where it cannot be advanced
4120 ** in either direction. In other words, the Next and Prev opcodes will
4121 ** not work following this opcode.
4122 **
4123 ** See also: Found, NotFound, NoConflict, SeekRowid
4124 */
4125 case OP_SeekRowid: { /* jump, in3 */
4126 VdbeCursor *pC;
4127 BtCursor *pCrsr;
4128 int res;
4129 u64 iKey;
4130
4131 pIn3 = &aMem[pOp->p3];
4132 if( (pIn3->flags & MEM_Int)==0 ){
4133 applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding);
4134 if( (pIn3->flags & MEM_Int)==0 ) goto jump_to_p2;
4135 }
4136 /* Fall through into OP_NotExists */
4137 case OP_NotExists: /* jump, in3 */
4138 pIn3 = &aMem[pOp->p3];
4139 assert( pIn3->flags & MEM_Int );
4140 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4141 pC = p->apCsr[pOp->p1];
4142 assert( pC!=0 );
4143 #ifdef SQLITE_DEBUG
4144 pC->seekOp = 0;
4145 #endif
4146 assert( pC->isTable );
4147 assert( pC->eCurType==CURTYPE_BTREE );
4148 pCrsr = pC->uc.pCursor;
4149 assert( pCrsr!=0 );
4150 res = 0;
4151 iKey = pIn3->u.i;
4152 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
4153 assert( rc==SQLITE_OK || res==0 );
4154 pC->movetoTarget = iKey; /* Used by OP_Delete */
4155 pC->nullRow = 0;
4156 pC->cacheStatus = CACHE_STALE;
4157 pC->deferredMoveto = 0;
4158 VdbeBranchTaken(res!=0,2);
4159 pC->seekResult = res;
4160 if( res!=0 ){
4161 assert( rc==SQLITE_OK );
4162 if( pOp->p2==0 ){
4163 rc = SQLITE_CORRUPT_BKPT;
4164 }else{
4165 goto jump_to_p2;
4166 }
4167 }
4168 if( rc ) goto abort_due_to_error;
4169 break;
4170 }
4171
4172 /* Opcode: Sequence P1 P2 * * *
4173 ** Synopsis: r[P2]=cursor[P1].ctr++
4174 **
4175 ** Find the next available sequence number for cursor P1.
4176 ** Write the sequence number into register P2.
4177 ** The sequence number on the cursor is incremented after this
4178 ** instruction.
4179 */
4180 case OP_Sequence: { /* out2 */
4181 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4182 assert( p->apCsr[pOp->p1]!=0 );
4183 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
4184 pOut = out2Prerelease(p, pOp);
4185 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
4186 break;
4187 }
4188
4189
4190 /* Opcode: NewRowid P1 P2 P3 * *
4191 ** Synopsis: r[P2]=rowid
4192 **
4193 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
4194 ** The record number is not previously used as a key in the database
4195 ** table that cursor P1 points to. The new record number is written
4196 ** written to register P2.
4197 **
4198 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4199 ** the largest previously generated record number. No new record numbers are
4200 ** allowed to be less than this value. When this value reaches its maximum,
4201 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
4202 ** generated record number. This P3 mechanism is used to help implement the
4203 ** AUTOINCREMENT feature.
4204 */
4205 case OP_NewRowid: { /* out2 */
4206 i64 v; /* The new rowid */
4207 VdbeCursor *pC; /* Cursor of table to get the new rowid */
4208 int res; /* Result of an sqlite3BtreeLast() */
4209 int cnt; /* Counter to limit the number of searches */
4210 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
4211 VdbeFrame *pFrame; /* Root frame of VDBE */
4212
4213 v = 0;
4214 res = 0;
4215 pOut = out2Prerelease(p, pOp);
4216 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4217 pC = p->apCsr[pOp->p1];
4218 assert( pC!=0 );
4219 assert( pC->eCurType==CURTYPE_BTREE );
4220 assert( pC->uc.pCursor!=0 );
4221 {
4222 /* The next rowid or record number (different terms for the same
4223 ** thing) is obtained in a two-step algorithm.
4224 **
4225 ** First we attempt to find the largest existing rowid and add one
4226 ** to that. But if the largest existing rowid is already the maximum
4227 ** positive integer, we have to fall through to the second
4228 ** probabilistic algorithm
4229 **
4230 ** The second algorithm is to select a rowid at random and see if
4231 ** it already exists in the table. If it does not exist, we have
4232 ** succeeded. If the random rowid does exist, we select a new one
4233 ** and try again, up to 100 times.
4234 */
4235 assert( pC->isTable );
4236
4237 #ifdef SQLITE_32BIT_ROWID
4238 # define MAX_ROWID 0x7fffffff
4239 #else
4240 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4241 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
4242 ** to provide the constant while making all compilers happy.
4243 */
4244 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
4245 #endif
4246
4247 if( !pC->useRandomRowid ){
4248 rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4249 if( rc!=SQLITE_OK ){
4250 goto abort_due_to_error;
4251 }
4252 if( res ){
4253 v = 1; /* IMP: R-61914-48074 */
4254 }else{
4255 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
4256 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4257 if( v>=MAX_ROWID ){
4258 pC->useRandomRowid = 1;
4259 }else{
4260 v++; /* IMP: R-29538-34987 */
4261 }
4262 }
4263 }
4264
4265 #ifndef SQLITE_OMIT_AUTOINCREMENT
4266 if( pOp->p3 ){
4267 /* Assert that P3 is a valid memory cell. */
4268 assert( pOp->p3>0 );
4269 if( p->pFrame ){
4270 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
4271 /* Assert that P3 is a valid memory cell. */
4272 assert( pOp->p3<=pFrame->nMem );
4273 pMem = &pFrame->aMem[pOp->p3];
4274 }else{
4275 /* Assert that P3 is a valid memory cell. */
4276 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
4277 pMem = &aMem[pOp->p3];
4278 memAboutToChange(p, pMem);
4279 }
4280 assert( memIsValid(pMem) );
4281
4282 REGISTER_TRACE(pOp->p3, pMem);
4283 sqlite3VdbeMemIntegerify(pMem);
4284 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
4285 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4286 rc = SQLITE_FULL; /* IMP: R-17817-00630 */
4287 goto abort_due_to_error;
4288 }
4289 if( v<pMem->u.i+1 ){
4290 v = pMem->u.i + 1;
4291 }
4292 pMem->u.i = v;
4293 }
4294 #endif
4295 if( pC->useRandomRowid ){
4296 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4297 ** largest possible integer (9223372036854775807) then the database
4298 ** engine starts picking positive candidate ROWIDs at random until
4299 ** it finds one that is not previously used. */
4300 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
4301 ** an AUTOINCREMENT table. */
4302 cnt = 0;
4303 do{
4304 sqlite3_randomness(sizeof(v), &v);
4305 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
4306 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
4307 0, &res))==SQLITE_OK)
4308 && (res==0)
4309 && (++cnt<100));
4310 if( rc ) goto abort_due_to_error;
4311 if( res==0 ){
4312 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
4313 goto abort_due_to_error;
4314 }
4315 assert( v>0 ); /* EV: R-40812-03570 */
4316 }
4317 pC->deferredMoveto = 0;
4318 pC->cacheStatus = CACHE_STALE;
4319 }
4320 pOut->u.i = v;
4321 break;
4322 }
4323
4324 /* Opcode: Insert P1 P2 P3 P4 P5
4325 ** Synopsis: intkey=r[P3] data=r[P2]
4326 **
4327 ** Write an entry into the table of cursor P1. A new entry is
4328 ** created if it doesn't already exist or the data for an existing
4329 ** entry is overwritten. The data is the value MEM_Blob stored in register
4330 ** number P2. The key is stored in register P3. The key must
4331 ** be a MEM_Int.
4332 **
4333 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4334 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
4335 ** then rowid is stored for subsequent return by the
4336 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4337 **
4338 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
4339 ** run faster by avoiding an unnecessary seek on cursor P1. However,
4340 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
4341 ** seeks on the cursor or if the most recent seek used a key equal to P3.
4342 **
4343 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4344 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4345 ** is part of an INSERT operation. The difference is only important to
4346 ** the update hook.
4347 **
4348 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
4349 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
4350 ** following a successful insert.
4351 **
4352 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4353 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4354 ** and register P2 becomes ephemeral. If the cursor is changed, the
4355 ** value of register P2 will then change. Make sure this does not
4356 ** cause any problems.)
4357 **
4358 ** This instruction only works on tables. The equivalent instruction
4359 ** for indices is OP_IdxInsert.
4360 */
4361 /* Opcode: InsertInt P1 P2 P3 P4 P5
4362 ** Synopsis: intkey=P3 data=r[P2]
4363 **
4364 ** This works exactly like OP_Insert except that the key is the
4365 ** integer value P3, not the value of the integer stored in register P3.
4366 */
4367 case OP_Insert:
4368 case OP_InsertInt: {
4369 Mem *pData; /* MEM cell holding data for the record to be inserted */
4370 Mem *pKey; /* MEM cell holding key for the record */
4371 VdbeCursor *pC; /* Cursor to table into which insert is written */
4372 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4373 const char *zDb; /* database name - used by the update hook */
4374 Table *pTab; /* Table structure - used by update and pre-update hooks */
4375 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
4376 BtreePayload x; /* Payload to be inserted */
4377
4378 op = 0;
4379 pData = &aMem[pOp->p2];
4380 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4381 assert( memIsValid(pData) );
4382 pC = p->apCsr[pOp->p1];
4383 assert( pC!=0 );
4384 assert( pC->eCurType==CURTYPE_BTREE );
4385 assert( pC->uc.pCursor!=0 );
4386 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
4387 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
4388 REGISTER_TRACE(pOp->p2, pData);
4389
4390 if( pOp->opcode==OP_Insert ){
4391 pKey = &aMem[pOp->p3];
4392 assert( pKey->flags & MEM_Int );
4393 assert( memIsValid(pKey) );
4394 REGISTER_TRACE(pOp->p3, pKey);
4395 x.nKey = pKey->u.i;
4396 }else{
4397 assert( pOp->opcode==OP_InsertInt );
4398 x.nKey = pOp->p3;
4399 }
4400
4401 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
4402 assert( pC->iDb>=0 );
4403 zDb = db->aDb[pC->iDb].zDbSName;
4404 pTab = pOp->p4.pTab;
4405 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
4406 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
4407 }else{
4408 pTab = 0; /* Not needed. Silence a compiler warning. */
4409 zDb = 0; /* Not needed. Silence a compiler warning. */
4410 }
4411
4412 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4413 /* Invoke the pre-update hook, if any */
4414 if( db->xPreUpdateCallback
4415 && pOp->p4type==P4_TABLE
4416 && !(pOp->p5 & OPFLAG_ISUPDATE)
4417 ){
4418 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey, pOp->p2);
4419 }
4420 if( pOp->p5 & OPFLAG_ISNOOP ) break;
4421 #endif
4422
4423 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4424 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
4425 if( pData->flags & MEM_Null ){
4426 x.pData = 0;
4427 x.nData = 0;
4428 }else{
4429 assert( pData->flags & (MEM_Blob|MEM_Str) );
4430 x.pData = pData->z;
4431 x.nData = pData->n;
4432 }
4433 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4434 if( pData->flags & MEM_Zero ){
4435 x.nZero = pData->u.nZero;
4436 }else{
4437 x.nZero = 0;
4438 }
4439 x.pKey = 0;
4440 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
4441 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult
4442 );
4443 pC->deferredMoveto = 0;
4444 pC->cacheStatus = CACHE_STALE;
4445
4446 /* Invoke the update-hook if required. */
4447 if( rc ) goto abort_due_to_error;
4448 if( db->xUpdateCallback && op ){
4449 db->xUpdateCallback(db->pUpdateArg, op, zDb, pTab->zName, x.nKey);
4450 }
4451 break;
4452 }
4453
4454 /* Opcode: Delete P1 P2 P3 P4 P5
4455 **
4456 ** Delete the record at which the P1 cursor is currently pointing.
4457 **
4458 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4459 ** the cursor will be left pointing at either the next or the previous
4460 ** record in the table. If it is left pointing at the next record, then
4461 ** the next Next instruction will be a no-op. As a result, in this case
4462 ** it is ok to delete a record from within a Next loop. If
4463 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
4464 ** left in an undefined state.
4465 **
4466 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
4467 ** delete one of several associated with deleting a table row and all its
4468 ** associated index entries. Exactly one of those deletes is the "primary"
4469 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are
4470 ** marked with the AUXDELETE flag.
4471 **
4472 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
4473 ** change count is incremented (otherwise not).
4474 **
4475 ** P1 must not be pseudo-table. It has to be a real table with
4476 ** multiple rows.
4477 **
4478 ** If P4 is not NULL then it points to a Table object. In this case either
4479 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
4480 ** have been positioned using OP_NotFound prior to invoking this opcode in
4481 ** this case. Specifically, if one is configured, the pre-update hook is
4482 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
4483 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
4484 **
4485 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
4486 ** of the memory cell that contains the value that the rowid of the row will
4487 ** be set to by the update.
4488 */
4489 case OP_Delete: {
4490 VdbeCursor *pC;
4491 const char *zDb;
4492 Table *pTab;
4493 int opflags;
4494
4495 opflags = pOp->p2;
4496 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4497 pC = p->apCsr[pOp->p1];
4498 assert( pC!=0 );
4499 assert( pC->eCurType==CURTYPE_BTREE );
4500 assert( pC->uc.pCursor!=0 );
4501 assert( pC->deferredMoveto==0 );
4502
4503 #ifdef SQLITE_DEBUG
4504 if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){
4505 /* If p5 is zero, the seek operation that positioned the cursor prior to
4506 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
4507 ** the row that is being deleted */
4508 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4509 assert( pC->movetoTarget==iKey );
4510 }
4511 #endif
4512
4513 /* If the update-hook or pre-update-hook will be invoked, set zDb to
4514 ** the name of the db to pass as to it. Also set local pTab to a copy
4515 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
4516 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
4517 ** VdbeCursor.movetoTarget to the current rowid. */
4518 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
4519 assert( pC->iDb>=0 );
4520 assert( pOp->p4.pTab!=0 );
4521 zDb = db->aDb[pC->iDb].zDbSName;
4522 pTab = pOp->p4.pTab;
4523 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
4524 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4525 }
4526 }else{
4527 zDb = 0; /* Not needed. Silence a compiler warning. */
4528 pTab = 0; /* Not needed. Silence a compiler warning. */
4529 }
4530
4531 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4532 /* Invoke the pre-update-hook if required. */
4533 if( db->xPreUpdateCallback && pOp->p4.pTab ){
4534 assert( !(opflags & OPFLAG_ISUPDATE)
4535 || HasRowid(pTab)==0
4536 || (aMem[pOp->p3].flags & MEM_Int)
4537 );
4538 sqlite3VdbePreUpdateHook(p, pC,
4539 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
4540 zDb, pTab, pC->movetoTarget,
4541 pOp->p3
4542 );
4543 }
4544 if( opflags & OPFLAG_ISNOOP ) break;
4545 #endif
4546
4547 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
4548 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
4549 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
4550 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
4551
4552 #ifdef SQLITE_DEBUG
4553 if( p->pFrame==0 ){
4554 if( pC->isEphemeral==0
4555 && (pOp->p5 & OPFLAG_AUXDELETE)==0
4556 && (pC->wrFlag & OPFLAG_FORDELETE)==0
4557 ){
4558 nExtraDelete++;
4559 }
4560 if( pOp->p2 & OPFLAG_NCHANGE ){
4561 nExtraDelete--;
4562 }
4563 }
4564 #endif
4565
4566 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
4567 pC->cacheStatus = CACHE_STALE;
4568 pC->seekResult = 0;
4569 if( rc ) goto abort_due_to_error;
4570
4571 /* Invoke the update-hook if required. */
4572 if( opflags & OPFLAG_NCHANGE ){
4573 p->nChange++;
4574 if( db->xUpdateCallback && HasRowid(pTab) ){
4575 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
4576 pC->movetoTarget);
4577 assert( pC->iDb>=0 );
4578 }
4579 }
4580
4581 break;
4582 }
4583 /* Opcode: ResetCount * * * * *
4584 **
4585 ** The value of the change counter is copied to the database handle
4586 ** change counter (returned by subsequent calls to sqlite3_changes()).
4587 ** Then the VMs internal change counter resets to 0.
4588 ** This is used by trigger programs.
4589 */
4590 case OP_ResetCount: {
4591 sqlite3VdbeSetChanges(db, p->nChange);
4592 p->nChange = 0;
4593 break;
4594 }
4595
4596 /* Opcode: SorterCompare P1 P2 P3 P4
4597 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
4598 **
4599 ** P1 is a sorter cursor. This instruction compares a prefix of the
4600 ** record blob in register P3 against a prefix of the entry that
4601 ** the sorter cursor currently points to. Only the first P4 fields
4602 ** of r[P3] and the sorter record are compared.
4603 **
4604 ** If either P3 or the sorter contains a NULL in one of their significant
4605 ** fields (not counting the P4 fields at the end which are ignored) then
4606 ** the comparison is assumed to be equal.
4607 **
4608 ** Fall through to next instruction if the two records compare equal to
4609 ** each other. Jump to P2 if they are different.
4610 */
4611 case OP_SorterCompare: {
4612 VdbeCursor *pC;
4613 int res;
4614 int nKeyCol;
4615
4616 pC = p->apCsr[pOp->p1];
4617 assert( isSorter(pC) );
4618 assert( pOp->p4type==P4_INT32 );
4619 pIn3 = &aMem[pOp->p3];
4620 nKeyCol = pOp->p4.i;
4621 res = 0;
4622 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
4623 VdbeBranchTaken(res!=0,2);
4624 if( rc ) goto abort_due_to_error;
4625 if( res ) goto jump_to_p2;
4626 break;
4627 };
4628
4629 /* Opcode: SorterData P1 P2 P3 * *
4630 ** Synopsis: r[P2]=data
4631 **
4632 ** Write into register P2 the current sorter data for sorter cursor P1.
4633 ** Then clear the column header cache on cursor P3.
4634 **
4635 ** This opcode is normally use to move a record out of the sorter and into
4636 ** a register that is the source for a pseudo-table cursor created using
4637 ** OpenPseudo. That pseudo-table cursor is the one that is identified by
4638 ** parameter P3. Clearing the P3 column cache as part of this opcode saves
4639 ** us from having to issue a separate NullRow instruction to clear that cache.
4640 */
4641 case OP_SorterData: {
4642 VdbeCursor *pC;
4643
4644 pOut = &aMem[pOp->p2];
4645 pC = p->apCsr[pOp->p1];
4646 assert( isSorter(pC) );
4647 rc = sqlite3VdbeSorterRowkey(pC, pOut);
4648 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
4649 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4650 if( rc ) goto abort_due_to_error;
4651 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
4652 break;
4653 }
4654
4655 /* Opcode: RowData P1 P2 P3 * *
4656 ** Synopsis: r[P2]=data
4657 **
4658 ** Write into register P2 the complete row content for the row at
4659 ** which cursor P1 is currently pointing.
4660 ** There is no interpretation of the data.
4661 ** It is just copied onto the P2 register exactly as
4662 ** it is found in the database file.
4663 **
4664 ** If cursor P1 is an index, then the content is the key of the row.
4665 ** If cursor P2 is a table, then the content extracted is the data.
4666 **
4667 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4668 ** of a real table, not a pseudo-table.
4669 **
4670 ** If P3!=0 then this opcode is allowed to make an ephermeral pointer
4671 ** into the database page. That means that the content of the output
4672 ** register will be invalidated as soon as the cursor moves - including
4673 ** moves caused by other cursors that "save" the the current cursors
4674 ** position in order that they can write to the same table. If P3==0
4675 ** then a copy of the data is made into memory. P3!=0 is faster, but
4676 ** P3==0 is safer.
4677 **
4678 ** If P3!=0 then the content of the P2 register is unsuitable for use
4679 ** in OP_Result and any OP_Result will invalidate the P2 register content.
4680 ** The P2 register content is invalidated by opcodes like OP_Function or
4681 ** by any use of another cursor pointing to the same table.
4682 */
4683 case OP_RowData: {
4684 VdbeCursor *pC;
4685 BtCursor *pCrsr;
4686 u32 n;
4687
4688 pOut = out2Prerelease(p, pOp);
4689
4690 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4691 pC = p->apCsr[pOp->p1];
4692 assert( pC!=0 );
4693 assert( pC->eCurType==CURTYPE_BTREE );
4694 assert( isSorter(pC)==0 );
4695 assert( pC->nullRow==0 );
4696 assert( pC->uc.pCursor!=0 );
4697 pCrsr = pC->uc.pCursor;
4698
4699 /* The OP_RowData opcodes always follow OP_NotExists or
4700 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
4701 ** that might invalidate the cursor.
4702 ** If this where not the case, on of the following assert()s
4703 ** would fail. Should this ever change (because of changes in the code
4704 ** generator) then the fix would be to insert a call to
4705 ** sqlite3VdbeCursorMoveto().
4706 */
4707 assert( pC->deferredMoveto==0 );
4708 assert( sqlite3BtreeCursorIsValid(pCrsr) );
4709 #if 0 /* Not required due to the previous to assert() statements */
4710 rc = sqlite3VdbeCursorMoveto(pC);
4711 if( rc!=SQLITE_OK ) goto abort_due_to_error;
4712 #endif
4713
4714 n = sqlite3BtreePayloadSize(pCrsr);
4715 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
4716 goto too_big;
4717 }
4718 testcase( n==0 );
4719 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut);
4720 if( rc ) goto abort_due_to_error;
4721 if( !pOp->p3 ) Deephemeralize(pOut);
4722 UPDATE_MAX_BLOBSIZE(pOut);
4723 REGISTER_TRACE(pOp->p2, pOut);
4724 break;
4725 }
4726
4727 /* Opcode: Rowid P1 P2 * * *
4728 ** Synopsis: r[P2]=rowid
4729 **
4730 ** Store in register P2 an integer which is the key of the table entry that
4731 ** P1 is currently point to.
4732 **
4733 ** P1 can be either an ordinary table or a virtual table. There used to
4734 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4735 ** one opcode now works for both table types.
4736 */
4737 case OP_Rowid: { /* out2 */
4738 VdbeCursor *pC;
4739 i64 v;
4740 sqlite3_vtab *pVtab;
4741 const sqlite3_module *pModule;
4742
4743 pOut = out2Prerelease(p, pOp);
4744 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4745 pC = p->apCsr[pOp->p1];
4746 assert( pC!=0 );
4747 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
4748 if( pC->nullRow ){
4749 pOut->flags = MEM_Null;
4750 break;
4751 }else if( pC->deferredMoveto ){
4752 v = pC->movetoTarget;
4753 #ifndef SQLITE_OMIT_VIRTUALTABLE
4754 }else if( pC->eCurType==CURTYPE_VTAB ){
4755 assert( pC->uc.pVCur!=0 );
4756 pVtab = pC->uc.pVCur->pVtab;
4757 pModule = pVtab->pModule;
4758 assert( pModule->xRowid );
4759 rc = pModule->xRowid(pC->uc.pVCur, &v);
4760 sqlite3VtabImportErrmsg(p, pVtab);
4761 if( rc ) goto abort_due_to_error;
4762 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4763 }else{
4764 assert( pC->eCurType==CURTYPE_BTREE );
4765 assert( pC->uc.pCursor!=0 );
4766 rc = sqlite3VdbeCursorRestore(pC);
4767 if( rc ) goto abort_due_to_error;
4768 if( pC->nullRow ){
4769 pOut->flags = MEM_Null;
4770 break;
4771 }
4772 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4773 }
4774 pOut->u.i = v;
4775 break;
4776 }
4777
4778 /* Opcode: NullRow P1 * * * *
4779 **
4780 ** Move the cursor P1 to a null row. Any OP_Column operations
4781 ** that occur while the cursor is on the null row will always
4782 ** write a NULL.
4783 */
4784 case OP_NullRow: {
4785 VdbeCursor *pC;
4786
4787 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4788 pC = p->apCsr[pOp->p1];
4789 assert( pC!=0 );
4790 pC->nullRow = 1;
4791 pC->cacheStatus = CACHE_STALE;
4792 if( pC->eCurType==CURTYPE_BTREE ){
4793 assert( pC->uc.pCursor!=0 );
4794 sqlite3BtreeClearCursor(pC->uc.pCursor);
4795 }
4796 break;
4797 }
4798
4799 /* Opcode: Last P1 P2 P3 * *
4800 **
4801 ** The next use of the Rowid or Column or Prev instruction for P1
4802 ** will refer to the last entry in the database table or index.
4803 ** If the table or index is empty and P2>0, then jump immediately to P2.
4804 ** If P2 is 0 or if the table or index is not empty, fall through
4805 ** to the following instruction.
4806 **
4807 ** This opcode leaves the cursor configured to move in reverse order,
4808 ** from the end toward the beginning. In other words, the cursor is
4809 ** configured to use Prev, not Next.
4810 **
4811 ** If P3 is -1, then the cursor is positioned at the end of the btree
4812 ** for the purpose of appending a new entry onto the btree. In that
4813 ** case P2 must be 0. It is assumed that the cursor is used only for
4814 ** appending and so if the cursor is valid, then the cursor must already
4815 ** be pointing at the end of the btree and so no changes are made to
4816 ** the cursor.
4817 */
4818 case OP_Last: { /* jump */
4819 VdbeCursor *pC;
4820 BtCursor *pCrsr;
4821 int res;
4822
4823 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4824 pC = p->apCsr[pOp->p1];
4825 assert( pC!=0 );
4826 assert( pC->eCurType==CURTYPE_BTREE );
4827 pCrsr = pC->uc.pCursor;
4828 res = 0;
4829 assert( pCrsr!=0 );
4830 pC->seekResult = pOp->p3;
4831 #ifdef SQLITE_DEBUG
4832 pC->seekOp = OP_Last;
4833 #endif
4834 if( pOp->p3==0 || !sqlite3BtreeCursorIsValidNN(pCrsr) ){
4835 rc = sqlite3BtreeLast(pCrsr, &res);
4836 pC->nullRow = (u8)res;
4837 pC->deferredMoveto = 0;
4838 pC->cacheStatus = CACHE_STALE;
4839 if( rc ) goto abort_due_to_error;
4840 if( pOp->p2>0 ){
4841 VdbeBranchTaken(res!=0,2);
4842 if( res ) goto jump_to_p2;
4843 }
4844 }else{
4845 assert( pOp->p2==0 );
4846 }
4847 break;
4848 }
4849
4850
4851 /* Opcode: SorterSort P1 P2 * * *
4852 **
4853 ** After all records have been inserted into the Sorter object
4854 ** identified by P1, invoke this opcode to actually do the sorting.
4855 ** Jump to P2 if there are no records to be sorted.
4856 **
4857 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
4858 ** for Sorter objects.
4859 */
4860 /* Opcode: Sort P1 P2 * * *
4861 **
4862 ** This opcode does exactly the same thing as OP_Rewind except that
4863 ** it increments an undocumented global variable used for testing.
4864 **
4865 ** Sorting is accomplished by writing records into a sorting index,
4866 ** then rewinding that index and playing it back from beginning to
4867 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4868 ** rewinding so that the global variable will be incremented and
4869 ** regression tests can determine whether or not the optimizer is
4870 ** correctly optimizing out sorts.
4871 */
4872 case OP_SorterSort: /* jump */
4873 case OP_Sort: { /* jump */
4874 #ifdef SQLITE_TEST
4875 sqlite3_sort_count++;
4876 sqlite3_search_count--;
4877 #endif
4878 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
4879 /* Fall through into OP_Rewind */
4880 }
4881 /* Opcode: Rewind P1 P2 * * *
4882 **
4883 ** The next use of the Rowid or Column or Next instruction for P1
4884 ** will refer to the first entry in the database table or index.
4885 ** If the table or index is empty, jump immediately to P2.
4886 ** If the table or index is not empty, fall through to the following
4887 ** instruction.
4888 **
4889 ** This opcode leaves the cursor configured to move in forward order,
4890 ** from the beginning toward the end. In other words, the cursor is
4891 ** configured to use Next, not Prev.
4892 */
4893 case OP_Rewind: { /* jump */
4894 VdbeCursor *pC;
4895 BtCursor *pCrsr;
4896 int res;
4897
4898 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4899 pC = p->apCsr[pOp->p1];
4900 assert( pC!=0 );
4901 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
4902 res = 1;
4903 #ifdef SQLITE_DEBUG
4904 pC->seekOp = OP_Rewind;
4905 #endif
4906 if( isSorter(pC) ){
4907 rc = sqlite3VdbeSorterRewind(pC, &res);
4908 }else{
4909 assert( pC->eCurType==CURTYPE_BTREE );
4910 pCrsr = pC->uc.pCursor;
4911 assert( pCrsr );
4912 rc = sqlite3BtreeFirst(pCrsr, &res);
4913 pC->deferredMoveto = 0;
4914 pC->cacheStatus = CACHE_STALE;
4915 }
4916 if( rc ) goto abort_due_to_error;
4917 pC->nullRow = (u8)res;
4918 assert( pOp->p2>0 && pOp->p2<p->nOp );
4919 VdbeBranchTaken(res!=0,2);
4920 if( res ) goto jump_to_p2;
4921 break;
4922 }
4923
4924 /* Opcode: Next P1 P2 P3 P4 P5
4925 **
4926 ** Advance cursor P1 so that it points to the next key/data pair in its
4927 ** table or index. If there are no more key/value pairs then fall through
4928 ** to the following instruction. But if the cursor advance was successful,
4929 ** jump immediately to P2.
4930 **
4931 ** The Next opcode is only valid following an SeekGT, SeekGE, or
4932 ** OP_Rewind opcode used to position the cursor. Next is not allowed
4933 ** to follow SeekLT, SeekLE, or OP_Last.
4934 **
4935 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
4936 ** been opened prior to this opcode or the program will segfault.
4937 **
4938 ** The P3 value is a hint to the btree implementation. If P3==1, that
4939 ** means P1 is an SQL index and that this instruction could have been
4940 ** omitted if that index had been unique. P3 is usually 0. P3 is
4941 ** always either 0 or 1.
4942 **
4943 ** P4 is always of type P4_ADVANCE. The function pointer points to
4944 ** sqlite3BtreeNext().
4945 **
4946 ** If P5 is positive and the jump is taken, then event counter
4947 ** number P5-1 in the prepared statement is incremented.
4948 **
4949 ** See also: Prev, NextIfOpen
4950 */
4951 /* Opcode: NextIfOpen P1 P2 P3 P4 P5
4952 **
4953 ** This opcode works just like Next except that if cursor P1 is not
4954 ** open it behaves a no-op.
4955 */
4956 /* Opcode: Prev P1 P2 P3 P4 P5
4957 **
4958 ** Back up cursor P1 so that it points to the previous key/data pair in its
4959 ** table or index. If there is no previous key/value pairs then fall through
4960 ** to the following instruction. But if the cursor backup was successful,
4961 ** jump immediately to P2.
4962 **
4963 **
4964 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
4965 ** OP_Last opcode used to position the cursor. Prev is not allowed
4966 ** to follow SeekGT, SeekGE, or OP_Rewind.
4967 **
4968 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
4969 ** not open then the behavior is undefined.
4970 **
4971 ** The P3 value is a hint to the btree implementation. If P3==1, that
4972 ** means P1 is an SQL index and that this instruction could have been
4973 ** omitted if that index had been unique. P3 is usually 0. P3 is
4974 ** always either 0 or 1.
4975 **
4976 ** P4 is always of type P4_ADVANCE. The function pointer points to
4977 ** sqlite3BtreePrevious().
4978 **
4979 ** If P5 is positive and the jump is taken, then event counter
4980 ** number P5-1 in the prepared statement is incremented.
4981 */
4982 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5
4983 **
4984 ** This opcode works just like Prev except that if cursor P1 is not
4985 ** open it behaves a no-op.
4986 */
4987 /* Opcode: SorterNext P1 P2 * * P5
4988 **
4989 ** This opcode works just like OP_Next except that P1 must be a
4990 ** sorter object for which the OP_SorterSort opcode has been
4991 ** invoked. This opcode advances the cursor to the next sorted
4992 ** record, or jumps to P2 if there are no more sorted records.
4993 */
4994 case OP_SorterNext: { /* jump */
4995 VdbeCursor *pC;
4996 int res;
4997
4998 pC = p->apCsr[pOp->p1];
4999 assert( isSorter(pC) );
5000 res = 0;
5001 rc = sqlite3VdbeSorterNext(db, pC, &res);
5002 goto next_tail;
5003 case OP_PrevIfOpen: /* jump */
5004 case OP_NextIfOpen: /* jump */
5005 if( p->apCsr[pOp->p1]==0 ) break;
5006 /* Fall through */
5007 case OP_Prev: /* jump */
5008 case OP_Next: /* jump */
5009 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5010 assert( pOp->p5<ArraySize(p->aCounter) );
5011 pC = p->apCsr[pOp->p1];
5012 res = pOp->p3;
5013 assert( pC!=0 );
5014 assert( pC->deferredMoveto==0 );
5015 assert( pC->eCurType==CURTYPE_BTREE );
5016 assert( res==0 || (res==1 && pC->isTable==0) );
5017 testcase( res==1 );
5018 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
5019 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
5020 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
5021 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
5022
5023 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
5024 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
5025 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
5026 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
5027 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
5028 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
5029 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
5030 || pC->seekOp==OP_Last );
5031
5032 rc = pOp->p4.xAdvance(pC->uc.pCursor, &res);
5033 next_tail:
5034 pC->cacheStatus = CACHE_STALE;
5035 VdbeBranchTaken(res==0,2);
5036 if( rc ) goto abort_due_to_error;
5037 if( res==0 ){
5038 pC->nullRow = 0;
5039 p->aCounter[pOp->p5]++;
5040 #ifdef SQLITE_TEST
5041 sqlite3_search_count++;
5042 #endif
5043 goto jump_to_p2_and_check_for_interrupt;
5044 }else{
5045 pC->nullRow = 1;
5046 }
5047 goto check_for_interrupt;
5048 }
5049
5050 /* Opcode: IdxInsert P1 P2 P3 P4 P5
5051 ** Synopsis: key=r[P2]
5052 **
5053 ** Register P2 holds an SQL index key made using the
5054 ** MakeRecord instructions. This opcode writes that key
5055 ** into the index P1. Data for the entry is nil.
5056 **
5057 ** If P4 is not zero, then it is the number of values in the unpacked
5058 ** key of reg(P2). In that case, P3 is the index of the first register
5059 ** for the unpacked key. The availability of the unpacked key can sometimes
5060 ** be an optimization.
5061 **
5062 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
5063 ** that this insert is likely to be an append.
5064 **
5065 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
5066 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
5067 ** then the change counter is unchanged.
5068 **
5069 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5070 ** run faster by avoiding an unnecessary seek on cursor P1. However,
5071 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5072 ** seeks on the cursor or if the most recent seek used a key equivalent
5073 ** to P2.
5074 **
5075 ** This instruction only works for indices. The equivalent instruction
5076 ** for tables is OP_Insert.
5077 */
5078 /* Opcode: SorterInsert P1 P2 * * *
5079 ** Synopsis: key=r[P2]
5080 **
5081 ** Register P2 holds an SQL index key made using the
5082 ** MakeRecord instructions. This opcode writes that key
5083 ** into the sorter P1. Data for the entry is nil.
5084 */
5085 case OP_SorterInsert: /* in2 */
5086 case OP_IdxInsert: { /* in2 */
5087 VdbeCursor *pC;
5088 BtreePayload x;
5089
5090 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5091 pC = p->apCsr[pOp->p1];
5092 assert( pC!=0 );
5093 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
5094 pIn2 = &aMem[pOp->p2];
5095 assert( pIn2->flags & MEM_Blob );
5096 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
5097 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
5098 assert( pC->isTable==0 );
5099 rc = ExpandBlob(pIn2);
5100 if( rc ) goto abort_due_to_error;
5101 if( pOp->opcode==OP_SorterInsert ){
5102 rc = sqlite3VdbeSorterWrite(pC, pIn2);
5103 }else{
5104 x.nKey = pIn2->n;
5105 x.pKey = pIn2->z;
5106 x.aMem = aMem + pOp->p3;
5107 x.nMem = (u16)pOp->p4.i;
5108 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5109 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)),
5110 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
5111 );
5112 assert( pC->deferredMoveto==0 );
5113 pC->cacheStatus = CACHE_STALE;
5114 }
5115 if( rc) goto abort_due_to_error;
5116 break;
5117 }
5118
5119 /* Opcode: IdxDelete P1 P2 P3 * *
5120 ** Synopsis: key=r[P2@P3]
5121 **
5122 ** The content of P3 registers starting at register P2 form
5123 ** an unpacked index key. This opcode removes that entry from the
5124 ** index opened by cursor P1.
5125 */
5126 case OP_IdxDelete: {
5127 VdbeCursor *pC;
5128 BtCursor *pCrsr;
5129 int res;
5130 UnpackedRecord r;
5131
5132 assert( pOp->p3>0 );
5133 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
5134 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5135 pC = p->apCsr[pOp->p1];
5136 assert( pC!=0 );
5137 assert( pC->eCurType==CURTYPE_BTREE );
5138 pCrsr = pC->uc.pCursor;
5139 assert( pCrsr!=0 );
5140 assert( pOp->p5==0 );
5141 r.pKeyInfo = pC->pKeyInfo;
5142 r.nField = (u16)pOp->p3;
5143 r.default_rc = 0;
5144 r.aMem = &aMem[pOp->p2];
5145 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
5146 if( rc ) goto abort_due_to_error;
5147 if( res==0 ){
5148 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
5149 if( rc ) goto abort_due_to_error;
5150 }
5151 assert( pC->deferredMoveto==0 );
5152 pC->cacheStatus = CACHE_STALE;
5153 pC->seekResult = 0;
5154 break;
5155 }
5156
5157 /* Opcode: Seek P1 * P3 P4 *
5158 ** Synopsis: Move P3 to P1.rowid
5159 **
5160 ** P1 is an open index cursor and P3 is a cursor on the corresponding
5161 ** table. This opcode does a deferred seek of the P3 table cursor
5162 ** to the row that corresponds to the current row of P1.
5163 **
5164 ** This is a deferred seek. Nothing actually happens until
5165 ** the cursor is used to read a record. That way, if no reads
5166 ** occur, no unnecessary I/O happens.
5167 **
5168 ** P4 may be an array of integers (type P4_INTARRAY) containing
5169 ** one entry for each column in the P3 table. If array entry a(i)
5170 ** is non-zero, then reading column a(i)-1 from cursor P3 is
5171 ** equivalent to performing the deferred seek and then reading column i
5172 ** from P1. This information is stored in P3 and used to redirect
5173 ** reads against P3 over to P1, thus possibly avoiding the need to
5174 ** seek and read cursor P3.
5175 */
5176 /* Opcode: IdxRowid P1 P2 * * *
5177 ** Synopsis: r[P2]=rowid
5178 **
5179 ** Write into register P2 an integer which is the last entry in the record at
5180 ** the end of the index key pointed to by cursor P1. This integer should be
5181 ** the rowid of the table entry to which this index entry points.
5182 **
5183 ** See also: Rowid, MakeRecord.
5184 */
5185 case OP_Seek:
5186 case OP_IdxRowid: { /* out2 */
5187 VdbeCursor *pC; /* The P1 index cursor */
5188 VdbeCursor *pTabCur; /* The P2 table cursor (OP_Seek only) */
5189 i64 rowid; /* Rowid that P1 current points to */
5190
5191 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5192 pC = p->apCsr[pOp->p1];
5193 assert( pC!=0 );
5194 assert( pC->eCurType==CURTYPE_BTREE );
5195 assert( pC->uc.pCursor!=0 );
5196 assert( pC->isTable==0 );
5197 assert( pC->deferredMoveto==0 );
5198 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
5199
5200 /* The IdxRowid and Seek opcodes are combined because of the commonality
5201 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
5202 rc = sqlite3VdbeCursorRestore(pC);
5203
5204 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
5205 ** out from under the cursor. That will never happens for an IdxRowid
5206 ** or Seek opcode */
5207 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
5208
5209 if( !pC->nullRow ){
5210 rowid = 0; /* Not needed. Only used to silence a warning. */
5211 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
5212 if( rc!=SQLITE_OK ){
5213 goto abort_due_to_error;
5214 }
5215 if( pOp->opcode==OP_Seek ){
5216 assert( pOp->p3>=0 && pOp->p3<p->nCursor );
5217 pTabCur = p->apCsr[pOp->p3];
5218 assert( pTabCur!=0 );
5219 assert( pTabCur->eCurType==CURTYPE_BTREE );
5220 assert( pTabCur->uc.pCursor!=0 );
5221 assert( pTabCur->isTable );
5222 pTabCur->nullRow = 0;
5223 pTabCur->movetoTarget = rowid;
5224 pTabCur->deferredMoveto = 1;
5225 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
5226 pTabCur->aAltMap = pOp->p4.ai;
5227 pTabCur->pAltCursor = pC;
5228 }else{
5229 pOut = out2Prerelease(p, pOp);
5230 pOut->u.i = rowid;
5231 }
5232 }else{
5233 assert( pOp->opcode==OP_IdxRowid );
5234 sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
5235 }
5236 break;
5237 }
5238
5239 /* Opcode: IdxGE P1 P2 P3 P4 P5
5240 ** Synopsis: key=r[P3@P4]
5241 **
5242 ** The P4 register values beginning with P3 form an unpacked index
5243 ** key that omits the PRIMARY KEY. Compare this key value against the index
5244 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5245 ** fields at the end.
5246 **
5247 ** If the P1 index entry is greater than or equal to the key value
5248 ** then jump to P2. Otherwise fall through to the next instruction.
5249 */
5250 /* Opcode: IdxGT P1 P2 P3 P4 P5
5251 ** Synopsis: key=r[P3@P4]
5252 **
5253 ** The P4 register values beginning with P3 form an unpacked index
5254 ** key that omits the PRIMARY KEY. Compare this key value against the index
5255 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5256 ** fields at the end.
5257 **
5258 ** If the P1 index entry is greater than the key value
5259 ** then jump to P2. Otherwise fall through to the next instruction.
5260 */
5261 /* Opcode: IdxLT P1 P2 P3 P4 P5
5262 ** Synopsis: key=r[P3@P4]
5263 **
5264 ** The P4 register values beginning with P3 form an unpacked index
5265 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5266 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5267 ** ROWID on the P1 index.
5268 **
5269 ** If the P1 index entry is less than the key value then jump to P2.
5270 ** Otherwise fall through to the next instruction.
5271 */
5272 /* Opcode: IdxLE P1 P2 P3 P4 P5
5273 ** Synopsis: key=r[P3@P4]
5274 **
5275 ** The P4 register values beginning with P3 form an unpacked index
5276 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5277 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5278 ** ROWID on the P1 index.
5279 **
5280 ** If the P1 index entry is less than or equal to the key value then jump
5281 ** to P2. Otherwise fall through to the next instruction.
5282 */
5283 case OP_IdxLE: /* jump */
5284 case OP_IdxGT: /* jump */
5285 case OP_IdxLT: /* jump */
5286 case OP_IdxGE: { /* jump */
5287 VdbeCursor *pC;
5288 int res;
5289 UnpackedRecord r;
5290
5291 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5292 pC = p->apCsr[pOp->p1];
5293 assert( pC!=0 );
5294 assert( pC->isOrdered );
5295 assert( pC->eCurType==CURTYPE_BTREE );
5296 assert( pC->uc.pCursor!=0);
5297 assert( pC->deferredMoveto==0 );
5298 assert( pOp->p5==0 || pOp->p5==1 );
5299 assert( pOp->p4type==P4_INT32 );
5300 r.pKeyInfo = pC->pKeyInfo;
5301 r.nField = (u16)pOp->p4.i;
5302 if( pOp->opcode<OP_IdxLT ){
5303 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
5304 r.default_rc = -1;
5305 }else{
5306 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
5307 r.default_rc = 0;
5308 }
5309 r.aMem = &aMem[pOp->p3];
5310 #ifdef SQLITE_DEBUG
5311 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
5312 #endif
5313 res = 0; /* Not needed. Only used to silence a warning. */
5314 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
5315 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5316 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5317 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
5318 res = -res;
5319 }else{
5320 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
5321 res++;
5322 }
5323 VdbeBranchTaken(res>0,2);
5324 if( rc ) goto abort_due_to_error;
5325 if( res>0 ) goto jump_to_p2;
5326 break;
5327 }
5328
5329 /* Opcode: Destroy P1 P2 P3 * *
5330 **
5331 ** Delete an entire database table or index whose root page in the database
5332 ** file is given by P1.
5333 **
5334 ** The table being destroyed is in the main database file if P3==0. If
5335 ** P3==1 then the table to be clear is in the auxiliary database file
5336 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5337 **
5338 ** If AUTOVACUUM is enabled then it is possible that another root page
5339 ** might be moved into the newly deleted root page in order to keep all
5340 ** root pages contiguous at the beginning of the database. The former
5341 ** value of the root page that moved - its value before the move occurred -
5342 ** is stored in register P2. If no page
5343 ** movement was required (because the table being dropped was already
5344 ** the last one in the database) then a zero is stored in register P2.
5345 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
5346 **
5347 ** See also: Clear
5348 */
5349 case OP_Destroy: { /* out2 */
5350 int iMoved;
5351 int iDb;
5352
5353 assert( p->readOnly==0 );
5354 assert( pOp->p1>1 );
5355 pOut = out2Prerelease(p, pOp);
5356 pOut->flags = MEM_Null;
5357 if( db->nVdbeRead > db->nVDestroy+1 ){
5358 rc = SQLITE_LOCKED;
5359 p->errorAction = OE_Abort;
5360 goto abort_due_to_error;
5361 }else{
5362 iDb = pOp->p3;
5363 assert( DbMaskTest(p->btreeMask, iDb) );
5364 iMoved = 0; /* Not needed. Only to silence a warning. */
5365 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
5366 pOut->flags = MEM_Int;
5367 pOut->u.i = iMoved;
5368 if( rc ) goto abort_due_to_error;
5369 #ifndef SQLITE_OMIT_AUTOVACUUM
5370 if( iMoved!=0 ){
5371 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5372 /* All OP_Destroy operations occur on the same btree */
5373 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5374 resetSchemaOnFault = iDb+1;
5375 }
5376 #endif
5377 }
5378 break;
5379 }
5380
5381 /* Opcode: Clear P1 P2 P3
5382 **
5383 ** Delete all contents of the database table or index whose root page
5384 ** in the database file is given by P1. But, unlike Destroy, do not
5385 ** remove the table or index from the database file.
5386 **
5387 ** The table being clear is in the main database file if P2==0. If
5388 ** P2==1 then the table to be clear is in the auxiliary database file
5389 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5390 **
5391 ** If the P3 value is non-zero, then the table referred to must be an
5392 ** intkey table (an SQL table, not an index). In this case the row change
5393 ** count is incremented by the number of rows in the table being cleared.
5394 ** If P3 is greater than zero, then the value stored in register P3 is
5395 ** also incremented by the number of rows in the table being cleared.
5396 **
5397 ** See also: Destroy
5398 */
5399 case OP_Clear: {
5400 int nChange;
5401
5402 nChange = 0;
5403 assert( p->readOnly==0 );
5404 assert( DbMaskTest(p->btreeMask, pOp->p2) );
5405 rc = sqlite3BtreeClearTable(
5406 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5407 );
5408 if( pOp->p3 ){
5409 p->nChange += nChange;
5410 if( pOp->p3>0 ){
5411 assert( memIsValid(&aMem[pOp->p3]) );
5412 memAboutToChange(p, &aMem[pOp->p3]);
5413 aMem[pOp->p3].u.i += nChange;
5414 }
5415 }
5416 if( rc ) goto abort_due_to_error;
5417 break;
5418 }
5419
5420 /* Opcode: ResetSorter P1 * * * *
5421 **
5422 ** Delete all contents from the ephemeral table or sorter
5423 ** that is open on cursor P1.
5424 **
5425 ** This opcode only works for cursors used for sorting and
5426 ** opened with OP_OpenEphemeral or OP_SorterOpen.
5427 */
5428 case OP_ResetSorter: {
5429 VdbeCursor *pC;
5430
5431 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5432 pC = p->apCsr[pOp->p1];
5433 assert( pC!=0 );
5434 if( isSorter(pC) ){
5435 sqlite3VdbeSorterReset(db, pC->uc.pSorter);
5436 }else{
5437 assert( pC->eCurType==CURTYPE_BTREE );
5438 assert( pC->isEphemeral );
5439 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
5440 if( rc ) goto abort_due_to_error;
5441 }
5442 break;
5443 }
5444
5445 /* Opcode: CreateTable P1 P2 * * *
5446 ** Synopsis: r[P2]=root iDb=P1
5447 **
5448 ** Allocate a new table in the main database file if P1==0 or in the
5449 ** auxiliary database file if P1==1 or in an attached database if
5450 ** P1>1. Write the root page number of the new table into
5451 ** register P2
5452 **
5453 ** The difference between a table and an index is this: A table must
5454 ** have a 4-byte integer key and can have arbitrary data. An index
5455 ** has an arbitrary key but no data.
5456 **
5457 ** See also: CreateIndex
5458 */
5459 /* Opcode: CreateIndex P1 P2 * * *
5460 ** Synopsis: r[P2]=root iDb=P1
5461 **
5462 ** Allocate a new index in the main database file if P1==0 or in the
5463 ** auxiliary database file if P1==1 or in an attached database if
5464 ** P1>1. Write the root page number of the new table into
5465 ** register P2.
5466 **
5467 ** See documentation on OP_CreateTable for additional information.
5468 */
5469 case OP_CreateIndex: /* out2 */
5470 case OP_CreateTable: { /* out2 */
5471 int pgno;
5472 int flags;
5473 Db *pDb;
5474
5475 pOut = out2Prerelease(p, pOp);
5476 pgno = 0;
5477 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5478 assert( DbMaskTest(p->btreeMask, pOp->p1) );
5479 assert( p->readOnly==0 );
5480 pDb = &db->aDb[pOp->p1];
5481 assert( pDb->pBt!=0 );
5482 if( pOp->opcode==OP_CreateTable ){
5483 /* flags = BTREE_INTKEY; */
5484 flags = BTREE_INTKEY;
5485 }else{
5486 flags = BTREE_BLOBKEY;
5487 }
5488 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
5489 if( rc ) goto abort_due_to_error;
5490 pOut->u.i = pgno;
5491 break;
5492 }
5493
5494 /* Opcode: ParseSchema P1 * * P4 *
5495 **
5496 ** Read and parse all entries from the SQLITE_MASTER table of database P1
5497 ** that match the WHERE clause P4.
5498 **
5499 ** This opcode invokes the parser to create a new virtual machine,
5500 ** then runs the new virtual machine. It is thus a re-entrant opcode.
5501 */
5502 case OP_ParseSchema: {
5503 int iDb;
5504 const char *zMaster;
5505 char *zSql;
5506 InitData initData;
5507
5508 /* Any prepared statement that invokes this opcode will hold mutexes
5509 ** on every btree. This is a prerequisite for invoking
5510 ** sqlite3InitCallback().
5511 */
5512 #ifdef SQLITE_DEBUG
5513 for(iDb=0; iDb<db->nDb; iDb++){
5514 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5515 }
5516 #endif
5517
5518 iDb = pOp->p1;
5519 assert( iDb>=0 && iDb<db->nDb );
5520 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
5521 /* Used to be a conditional */ {
5522 zMaster = MASTER_NAME;
5523 initData.db = db;
5524 initData.iDb = pOp->p1;
5525 initData.pzErrMsg = &p->zErrMsg;
5526 zSql = sqlite3MPrintf(db,
5527 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
5528 db->aDb[iDb].zDbSName, zMaster, pOp->p4.z);
5529 if( zSql==0 ){
5530 rc = SQLITE_NOMEM_BKPT;
5531 }else{
5532 assert( db->init.busy==0 );
5533 db->init.busy = 1;
5534 initData.rc = SQLITE_OK;
5535 assert( !db->mallocFailed );
5536 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5537 if( rc==SQLITE_OK ) rc = initData.rc;
5538 sqlite3DbFree(db, zSql);
5539 db->init.busy = 0;
5540 }
5541 }
5542 if( rc ){
5543 sqlite3ResetAllSchemasOfConnection(db);
5544 if( rc==SQLITE_NOMEM ){
5545 goto no_mem;
5546 }
5547 goto abort_due_to_error;
5548 }
5549 break;
5550 }
5551
5552 #if !defined(SQLITE_OMIT_ANALYZE)
5553 /* Opcode: LoadAnalysis P1 * * * *
5554 **
5555 ** Read the sqlite_stat1 table for database P1 and load the content
5556 ** of that table into the internal index hash table. This will cause
5557 ** the analysis to be used when preparing all subsequent queries.
5558 */
5559 case OP_LoadAnalysis: {
5560 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5561 rc = sqlite3AnalysisLoad(db, pOp->p1);
5562 if( rc ) goto abort_due_to_error;
5563 break;
5564 }
5565 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
5566
5567 /* Opcode: DropTable P1 * * P4 *
5568 **
5569 ** Remove the internal (in-memory) data structures that describe
5570 ** the table named P4 in database P1. This is called after a table
5571 ** is dropped from disk (using the Destroy opcode) in order to keep
5572 ** the internal representation of the
5573 ** schema consistent with what is on disk.
5574 */
5575 case OP_DropTable: {
5576 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
5577 break;
5578 }
5579
5580 /* Opcode: DropIndex P1 * * P4 *
5581 **
5582 ** Remove the internal (in-memory) data structures that describe
5583 ** the index named P4 in database P1. This is called after an index
5584 ** is dropped from disk (using the Destroy opcode)
5585 ** in order to keep the internal representation of the
5586 ** schema consistent with what is on disk.
5587 */
5588 case OP_DropIndex: {
5589 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
5590 break;
5591 }
5592
5593 /* Opcode: DropTrigger P1 * * P4 *
5594 **
5595 ** Remove the internal (in-memory) data structures that describe
5596 ** the trigger named P4 in database P1. This is called after a trigger
5597 ** is dropped from disk (using the Destroy opcode) in order to keep
5598 ** the internal representation of the
5599 ** schema consistent with what is on disk.
5600 */
5601 case OP_DropTrigger: {
5602 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
5603 break;
5604 }
5605
5606
5607 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
5608 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
5609 **
5610 ** Do an analysis of the currently open database. Store in
5611 ** register P1 the text of an error message describing any problems.
5612 ** If no problems are found, store a NULL in register P1.
5613 **
5614 ** The register P3 contains the maximum number of allowed errors.
5615 ** At most reg(P3) errors will be reported.
5616 ** In other words, the analysis stops as soon as reg(P1) errors are
5617 ** seen. Reg(P1) is updated with the number of errors remaining.
5618 **
5619 ** The root page numbers of all tables in the database are integers
5620 ** stored in P4_INTARRAY argument.
5621 **
5622 ** If P5 is not zero, the check is done on the auxiliary database
5623 ** file, not the main database file.
5624 **
5625 ** This opcode is used to implement the integrity_check pragma.
5626 */
5627 case OP_IntegrityCk: {
5628 int nRoot; /* Number of tables to check. (Number of root pages.) */
5629 int *aRoot; /* Array of rootpage numbers for tables to be checked */
5630 int nErr; /* Number of errors reported */
5631 char *z; /* Text of the error report */
5632 Mem *pnErr; /* Register keeping track of errors remaining */
5633
5634 assert( p->bIsReader );
5635 nRoot = pOp->p2;
5636 aRoot = pOp->p4.ai;
5637 assert( nRoot>0 );
5638 assert( aRoot[nRoot]==0 );
5639 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
5640 pnErr = &aMem[pOp->p3];
5641 assert( (pnErr->flags & MEM_Int)!=0 );
5642 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
5643 pIn1 = &aMem[pOp->p1];
5644 assert( pOp->p5<db->nDb );
5645 assert( DbMaskTest(p->btreeMask, pOp->p5) );
5646 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
5647 (int)pnErr->u.i, &nErr);
5648 pnErr->u.i -= nErr;
5649 sqlite3VdbeMemSetNull(pIn1);
5650 if( nErr==0 ){
5651 assert( z==0 );
5652 }else if( z==0 ){
5653 goto no_mem;
5654 }else{
5655 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
5656 }
5657 UPDATE_MAX_BLOBSIZE(pIn1);
5658 sqlite3VdbeChangeEncoding(pIn1, encoding);
5659 break;
5660 }
5661 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
5662
5663 /* Opcode: RowSetAdd P1 P2 * * *
5664 ** Synopsis: rowset(P1)=r[P2]
5665 **
5666 ** Insert the integer value held by register P2 into a boolean index
5667 ** held in register P1.
5668 **
5669 ** An assertion fails if P2 is not an integer.
5670 */
5671 case OP_RowSetAdd: { /* in1, in2 */
5672 pIn1 = &aMem[pOp->p1];
5673 pIn2 = &aMem[pOp->p2];
5674 assert( (pIn2->flags & MEM_Int)!=0 );
5675 if( (pIn1->flags & MEM_RowSet)==0 ){
5676 sqlite3VdbeMemSetRowSet(pIn1);
5677 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5678 }
5679 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
5680 break;
5681 }
5682
5683 /* Opcode: RowSetRead P1 P2 P3 * *
5684 ** Synopsis: r[P3]=rowset(P1)
5685 **
5686 ** Extract the smallest value from boolean index P1 and put that value into
5687 ** register P3. Or, if boolean index P1 is initially empty, leave P3
5688 ** unchanged and jump to instruction P2.
5689 */
5690 case OP_RowSetRead: { /* jump, in1, out3 */
5691 i64 val;
5692
5693 pIn1 = &aMem[pOp->p1];
5694 if( (pIn1->flags & MEM_RowSet)==0
5695 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
5696 ){
5697 /* The boolean index is empty */
5698 sqlite3VdbeMemSetNull(pIn1);
5699 VdbeBranchTaken(1,2);
5700 goto jump_to_p2_and_check_for_interrupt;
5701 }else{
5702 /* A value was pulled from the index */
5703 VdbeBranchTaken(0,2);
5704 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
5705 }
5706 goto check_for_interrupt;
5707 }
5708
5709 /* Opcode: RowSetTest P1 P2 P3 P4
5710 ** Synopsis: if r[P3] in rowset(P1) goto P2
5711 **
5712 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5713 ** contains a RowSet object and that RowSet object contains
5714 ** the value held in P3, jump to register P2. Otherwise, insert the
5715 ** integer in P3 into the RowSet and continue on to the
5716 ** next opcode.
5717 **
5718 ** The RowSet object is optimized for the case where successive sets
5719 ** of integers, where each set contains no duplicates. Each set
5720 ** of values is identified by a unique P4 value. The first set
5721 ** must have P4==0, the final set P4=-1. P4 must be either -1 or
5722 ** non-negative. For non-negative values of P4 only the lower 4
5723 ** bits are significant.
5724 **
5725 ** This allows optimizations: (a) when P4==0 there is no need to test
5726 ** the rowset object for P3, as it is guaranteed not to contain it,
5727 ** (b) when P4==-1 there is no need to insert the value, as it will
5728 ** never be tested for, and (c) when a value that is part of set X is
5729 ** inserted, there is no need to search to see if the same value was
5730 ** previously inserted as part of set X (only if it was previously
5731 ** inserted as part of some other set).
5732 */
5733 case OP_RowSetTest: { /* jump, in1, in3 */
5734 int iSet;
5735 int exists;
5736
5737 pIn1 = &aMem[pOp->p1];
5738 pIn3 = &aMem[pOp->p3];
5739 iSet = pOp->p4.i;
5740 assert( pIn3->flags&MEM_Int );
5741
5742 /* If there is anything other than a rowset object in memory cell P1,
5743 ** delete it now and initialize P1 with an empty rowset
5744 */
5745 if( (pIn1->flags & MEM_RowSet)==0 ){
5746 sqlite3VdbeMemSetRowSet(pIn1);
5747 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5748 }
5749
5750 assert( pOp->p4type==P4_INT32 );
5751 assert( iSet==-1 || iSet>=0 );
5752 if( iSet ){
5753 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
5754 VdbeBranchTaken(exists!=0,2);
5755 if( exists ) goto jump_to_p2;
5756 }
5757 if( iSet>=0 ){
5758 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
5759 }
5760 break;
5761 }
5762
5763
5764 #ifndef SQLITE_OMIT_TRIGGER
5765
5766 /* Opcode: Program P1 P2 P3 P4 P5
5767 **
5768 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
5769 **
5770 ** P1 contains the address of the memory cell that contains the first memory
5771 ** cell in an array of values used as arguments to the sub-program. P2
5772 ** contains the address to jump to if the sub-program throws an IGNORE
5773 ** exception using the RAISE() function. Register P3 contains the address
5774 ** of a memory cell in this (the parent) VM that is used to allocate the
5775 ** memory required by the sub-vdbe at runtime.
5776 **
5777 ** P4 is a pointer to the VM containing the trigger program.
5778 **
5779 ** If P5 is non-zero, then recursive program invocation is enabled.
5780 */
5781 case OP_Program: { /* jump */
5782 int nMem; /* Number of memory registers for sub-program */
5783 int nByte; /* Bytes of runtime space required for sub-program */
5784 Mem *pRt; /* Register to allocate runtime space */
5785 Mem *pMem; /* Used to iterate through memory cells */
5786 Mem *pEnd; /* Last memory cell in new array */
5787 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5788 SubProgram *pProgram; /* Sub-program to execute */
5789 void *t; /* Token identifying trigger */
5790
5791 pProgram = pOp->p4.pProgram;
5792 pRt = &aMem[pOp->p3];
5793 assert( pProgram->nOp>0 );
5794
5795 /* If the p5 flag is clear, then recursive invocation of triggers is
5796 ** disabled for backwards compatibility (p5 is set if this sub-program
5797 ** is really a trigger, not a foreign key action, and the flag set
5798 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
5799 **
5800 ** It is recursive invocation of triggers, at the SQL level, that is
5801 ** disabled. In some cases a single trigger may generate more than one
5802 ** SubProgram (if the trigger may be executed with more than one different
5803 ** ON CONFLICT algorithm). SubProgram structures associated with a
5804 ** single trigger all have the same value for the SubProgram.token
5805 ** variable. */
5806 if( pOp->p5 ){
5807 t = pProgram->token;
5808 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5809 if( pFrame ) break;
5810 }
5811
5812 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
5813 rc = SQLITE_ERROR;
5814 sqlite3VdbeError(p, "too many levels of trigger recursion");
5815 goto abort_due_to_error;
5816 }
5817
5818 /* Register pRt is used to store the memory required to save the state
5819 ** of the current program, and the memory required at runtime to execute
5820 ** the trigger program. If this trigger has been fired before, then pRt
5821 ** is already allocated. Otherwise, it must be initialized. */
5822 if( (pRt->flags&MEM_Frame)==0 ){
5823 /* SubProgram.nMem is set to the number of memory cells used by the
5824 ** program stored in SubProgram.aOp. As well as these, one memory
5825 ** cell is required for each cursor used by the program. Set local
5826 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5827 */
5828 nMem = pProgram->nMem + pProgram->nCsr;
5829 assert( nMem>0 );
5830 if( pProgram->nCsr==0 ) nMem++;
5831 nByte = ROUND8(sizeof(VdbeFrame))
5832 + nMem * sizeof(Mem)
5833 + pProgram->nCsr * sizeof(VdbeCursor *);
5834 pFrame = sqlite3DbMallocZero(db, nByte);
5835 if( !pFrame ){
5836 goto no_mem;
5837 }
5838 sqlite3VdbeMemRelease(pRt);
5839 pRt->flags = MEM_Frame;
5840 pRt->u.pFrame = pFrame;
5841
5842 pFrame->v = p;
5843 pFrame->nChildMem = nMem;
5844 pFrame->nChildCsr = pProgram->nCsr;
5845 pFrame->pc = (int)(pOp - aOp);
5846 pFrame->aMem = p->aMem;
5847 pFrame->nMem = p->nMem;
5848 pFrame->apCsr = p->apCsr;
5849 pFrame->nCursor = p->nCursor;
5850 pFrame->aOp = p->aOp;
5851 pFrame->nOp = p->nOp;
5852 pFrame->token = pProgram->token;
5853 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5854 pFrame->anExec = p->anExec;
5855 #endif
5856
5857 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5858 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
5859 pMem->flags = MEM_Undefined;
5860 pMem->db = db;
5861 }
5862 }else{
5863 pFrame = pRt->u.pFrame;
5864 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
5865 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
5866 assert( pProgram->nCsr==pFrame->nChildCsr );
5867 assert( (int)(pOp - aOp)==pFrame->pc );
5868 }
5869
5870 p->nFrame++;
5871 pFrame->pParent = p->pFrame;
5872 pFrame->lastRowid = db->lastRowid;
5873 pFrame->nChange = p->nChange;
5874 pFrame->nDbChange = p->db->nChange;
5875 assert( pFrame->pAuxData==0 );
5876 pFrame->pAuxData = p->pAuxData;
5877 p->pAuxData = 0;
5878 p->nChange = 0;
5879 p->pFrame = pFrame;
5880 p->aMem = aMem = VdbeFrameMem(pFrame);
5881 p->nMem = pFrame->nChildMem;
5882 p->nCursor = (u16)pFrame->nChildCsr;
5883 p->apCsr = (VdbeCursor **)&aMem[p->nMem];
5884 p->aOp = aOp = pProgram->aOp;
5885 p->nOp = pProgram->nOp;
5886 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5887 p->anExec = 0;
5888 #endif
5889 pOp = &aOp[-1];
5890
5891 break;
5892 }
5893
5894 /* Opcode: Param P1 P2 * * *
5895 **
5896 ** This opcode is only ever present in sub-programs called via the
5897 ** OP_Program instruction. Copy a value currently stored in a memory
5898 ** cell of the calling (parent) frame to cell P2 in the current frames
5899 ** address space. This is used by trigger programs to access the new.*
5900 ** and old.* values.
5901 **
5902 ** The address of the cell in the parent frame is determined by adding
5903 ** the value of the P1 argument to the value of the P1 argument to the
5904 ** calling OP_Program instruction.
5905 */
5906 case OP_Param: { /* out2 */
5907 VdbeFrame *pFrame;
5908 Mem *pIn;
5909 pOut = out2Prerelease(p, pOp);
5910 pFrame = p->pFrame;
5911 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
5912 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5913 break;
5914 }
5915
5916 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
5917
5918 #ifndef SQLITE_OMIT_FOREIGN_KEY
5919 /* Opcode: FkCounter P1 P2 * * *
5920 ** Synopsis: fkctr[P1]+=P2
5921 **
5922 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5923 ** If P1 is non-zero, the database constraint counter is incremented
5924 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
5925 ** statement counter is incremented (immediate foreign key constraints).
5926 */
5927 case OP_FkCounter: {
5928 if( db->flags & SQLITE_DeferFKs ){
5929 db->nDeferredImmCons += pOp->p2;
5930 }else if( pOp->p1 ){
5931 db->nDeferredCons += pOp->p2;
5932 }else{
5933 p->nFkConstraint += pOp->p2;
5934 }
5935 break;
5936 }
5937
5938 /* Opcode: FkIfZero P1 P2 * * *
5939 ** Synopsis: if fkctr[P1]==0 goto P2
5940 **
5941 ** This opcode tests if a foreign key constraint-counter is currently zero.
5942 ** If so, jump to instruction P2. Otherwise, fall through to the next
5943 ** instruction.
5944 **
5945 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
5946 ** is zero (the one that counts deferred constraint violations). If P1 is
5947 ** zero, the jump is taken if the statement constraint-counter is zero
5948 ** (immediate foreign key constraint violations).
5949 */
5950 case OP_FkIfZero: { /* jump */
5951 if( pOp->p1 ){
5952 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
5953 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5954 }else{
5955 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
5956 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5957 }
5958 break;
5959 }
5960 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5961
5962 #ifndef SQLITE_OMIT_AUTOINCREMENT
5963 /* Opcode: MemMax P1 P2 * * *
5964 ** Synopsis: r[P1]=max(r[P1],r[P2])
5965 **
5966 ** P1 is a register in the root frame of this VM (the root frame is
5967 ** different from the current frame if this instruction is being executed
5968 ** within a sub-program). Set the value of register P1 to the maximum of
5969 ** its current value and the value in register P2.
5970 **
5971 ** This instruction throws an error if the memory cell is not initially
5972 ** an integer.
5973 */
5974 case OP_MemMax: { /* in2 */
5975 VdbeFrame *pFrame;
5976 if( p->pFrame ){
5977 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5978 pIn1 = &pFrame->aMem[pOp->p1];
5979 }else{
5980 pIn1 = &aMem[pOp->p1];
5981 }
5982 assert( memIsValid(pIn1) );
5983 sqlite3VdbeMemIntegerify(pIn1);
5984 pIn2 = &aMem[pOp->p2];
5985 sqlite3VdbeMemIntegerify(pIn2);
5986 if( pIn1->u.i<pIn2->u.i){
5987 pIn1->u.i = pIn2->u.i;
5988 }
5989 break;
5990 }
5991 #endif /* SQLITE_OMIT_AUTOINCREMENT */
5992
5993 /* Opcode: IfPos P1 P2 P3 * *
5994 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
5995 **
5996 ** Register P1 must contain an integer.
5997 ** If the value of register P1 is 1 or greater, subtract P3 from the
5998 ** value in P1 and jump to P2.
5999 **
6000 ** If the initial value of register P1 is less than 1, then the
6001 ** value is unchanged and control passes through to the next instruction.
6002 */
6003 case OP_IfPos: { /* jump, in1 */
6004 pIn1 = &aMem[pOp->p1];
6005 assert( pIn1->flags&MEM_Int );
6006 VdbeBranchTaken( pIn1->u.i>0, 2);
6007 if( pIn1->u.i>0 ){
6008 pIn1->u.i -= pOp->p3;
6009 goto jump_to_p2;
6010 }
6011 break;
6012 }
6013
6014 /* Opcode: OffsetLimit P1 P2 P3 * *
6015 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
6016 **
6017 ** This opcode performs a commonly used computation associated with
6018 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3]
6019 ** holds the offset counter. The opcode computes the combined value
6020 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
6021 ** value computed is the total number of rows that will need to be
6022 ** visited in order to complete the query.
6023 **
6024 ** If r[P3] is zero or negative, that means there is no OFFSET
6025 ** and r[P2] is set to be the value of the LIMIT, r[P1].
6026 **
6027 ** if r[P1] is zero or negative, that means there is no LIMIT
6028 ** and r[P2] is set to -1.
6029 **
6030 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
6031 */
6032 case OP_OffsetLimit: { /* in1, out2, in3 */
6033 i64 x;
6034 pIn1 = &aMem[pOp->p1];
6035 pIn3 = &aMem[pOp->p3];
6036 pOut = out2Prerelease(p, pOp);
6037 assert( pIn1->flags & MEM_Int );
6038 assert( pIn3->flags & MEM_Int );
6039 x = pIn1->u.i;
6040 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
6041 /* If the LIMIT is less than or equal to zero, loop forever. This
6042 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then
6043 ** also loop forever. This is undocumented. In fact, one could argue
6044 ** that the loop should terminate. But assuming 1 billion iterations
6045 ** per second (far exceeding the capabilities of any current hardware)
6046 ** it would take nearly 300 years to actually reach the limit. So
6047 ** looping forever is a reasonable approximation. */
6048 pOut->u.i = -1;
6049 }else{
6050 pOut->u.i = x;
6051 }
6052 break;
6053 }
6054
6055 /* Opcode: IfNotZero P1 P2 * * *
6056 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
6057 **
6058 ** Register P1 must contain an integer. If the content of register P1 is
6059 ** initially greater than zero, then decrement the value in register P1.
6060 ** If it is non-zero (negative or positive) and then also jump to P2.
6061 ** If register P1 is initially zero, leave it unchanged and fall through.
6062 */
6063 case OP_IfNotZero: { /* jump, in1 */
6064 pIn1 = &aMem[pOp->p1];
6065 assert( pIn1->flags&MEM_Int );
6066 VdbeBranchTaken(pIn1->u.i<0, 2);
6067 if( pIn1->u.i ){
6068 if( pIn1->u.i>0 ) pIn1->u.i--;
6069 goto jump_to_p2;
6070 }
6071 break;
6072 }
6073
6074 /* Opcode: DecrJumpZero P1 P2 * * *
6075 ** Synopsis: if (--r[P1])==0 goto P2
6076 **
6077 ** Register P1 must hold an integer. Decrement the value in P1
6078 ** and jump to P2 if the new value is exactly zero.
6079 */
6080 case OP_DecrJumpZero: { /* jump, in1 */
6081 pIn1 = &aMem[pOp->p1];
6082 assert( pIn1->flags&MEM_Int );
6083 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
6084 VdbeBranchTaken(pIn1->u.i==0, 2);
6085 if( pIn1->u.i==0 ) goto jump_to_p2;
6086 break;
6087 }
6088
6089
6090 /* Opcode: AggStep0 * P2 P3 P4 P5
6091 ** Synopsis: accum=r[P3] step(r[P2@P5])
6092 **
6093 ** Execute the step function for an aggregate. The
6094 ** function has P5 arguments. P4 is a pointer to the FuncDef
6095 ** structure that specifies the function. Register P3 is the
6096 ** accumulator.
6097 **
6098 ** The P5 arguments are taken from register P2 and its
6099 ** successors.
6100 */
6101 /* Opcode: AggStep * P2 P3 P4 P5
6102 ** Synopsis: accum=r[P3] step(r[P2@P5])
6103 **
6104 ** Execute the step function for an aggregate. The
6105 ** function has P5 arguments. P4 is a pointer to an sqlite3_context
6106 ** object that is used to run the function. Register P3 is
6107 ** as the accumulator.
6108 **
6109 ** The P5 arguments are taken from register P2 and its
6110 ** successors.
6111 **
6112 ** This opcode is initially coded as OP_AggStep0. On first evaluation,
6113 ** the FuncDef stored in P4 is converted into an sqlite3_context and
6114 ** the opcode is changed. In this way, the initialization of the
6115 ** sqlite3_context only happens once, instead of on each call to the
6116 ** step function.
6117 */
6118 case OP_AggStep0: {
6119 int n;
6120 sqlite3_context *pCtx;
6121
6122 assert( pOp->p4type==P4_FUNCDEF );
6123 n = pOp->p5;
6124 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6125 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
6126 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
6127 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
6128 if( pCtx==0 ) goto no_mem;
6129 pCtx->pMem = 0;
6130 pCtx->pFunc = pOp->p4.pFunc;
6131 pCtx->iOp = (int)(pOp - aOp);
6132 pCtx->pVdbe = p;
6133 pCtx->argc = n;
6134 pOp->p4type = P4_FUNCCTX;
6135 pOp->p4.pCtx = pCtx;
6136 pOp->opcode = OP_AggStep;
6137 /* Fall through into OP_AggStep */
6138 }
6139 case OP_AggStep: {
6140 int i;
6141 sqlite3_context *pCtx;
6142 Mem *pMem;
6143 Mem t;
6144
6145 assert( pOp->p4type==P4_FUNCCTX );
6146 pCtx = pOp->p4.pCtx;
6147 pMem = &aMem[pOp->p3];
6148
6149 /* If this function is inside of a trigger, the register array in aMem[]
6150 ** might change from one evaluation to the next. The next block of code
6151 ** checks to see if the register array has changed, and if so it
6152 ** reinitializes the relavant parts of the sqlite3_context object */
6153 if( pCtx->pMem != pMem ){
6154 pCtx->pMem = pMem;
6155 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6156 }
6157
6158 #ifdef SQLITE_DEBUG
6159 for(i=0; i<pCtx->argc; i++){
6160 assert( memIsValid(pCtx->argv[i]) );
6161 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6162 }
6163 #endif
6164
6165 pMem->n++;
6166 sqlite3VdbeMemInit(&t, db, MEM_Null);
6167 pCtx->pOut = &t;
6168 pCtx->fErrorOrAux = 0;
6169 pCtx->skipFlag = 0;
6170 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
6171 if( pCtx->fErrorOrAux ){
6172 if( pCtx->isError ){
6173 sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
6174 rc = pCtx->isError;
6175 }
6176 sqlite3VdbeMemRelease(&t);
6177 if( rc ) goto abort_due_to_error;
6178 }else{
6179 assert( t.flags==MEM_Null );
6180 }
6181 if( pCtx->skipFlag ){
6182 assert( pOp[-1].opcode==OP_CollSeq );
6183 i = pOp[-1].p1;
6184 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
6185 }
6186 break;
6187 }
6188
6189 /* Opcode: AggFinal P1 P2 * P4 *
6190 ** Synopsis: accum=r[P1] N=P2
6191 **
6192 ** Execute the finalizer function for an aggregate. P1 is
6193 ** the memory location that is the accumulator for the aggregate.
6194 **
6195 ** P2 is the number of arguments that the step function takes and
6196 ** P4 is a pointer to the FuncDef for this function. The P2
6197 ** argument is not used by this opcode. It is only there to disambiguate
6198 ** functions that can take varying numbers of arguments. The
6199 ** P4 argument is only needed for the degenerate case where
6200 ** the step function was not previously called.
6201 */
6202 case OP_AggFinal: {
6203 Mem *pMem;
6204 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
6205 pMem = &aMem[pOp->p1];
6206 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
6207 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
6208 if( rc ){
6209 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
6210 goto abort_due_to_error;
6211 }
6212 sqlite3VdbeChangeEncoding(pMem, encoding);
6213 UPDATE_MAX_BLOBSIZE(pMem);
6214 if( sqlite3VdbeMemTooBig(pMem) ){
6215 goto too_big;
6216 }
6217 break;
6218 }
6219
6220 #ifndef SQLITE_OMIT_WAL
6221 /* Opcode: Checkpoint P1 P2 P3 * *
6222 **
6223 ** Checkpoint database P1. This is a no-op if P1 is not currently in
6224 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6225 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
6226 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
6227 ** WAL after the checkpoint into mem[P3+1] and the number of pages
6228 ** in the WAL that have been checkpointed after the checkpoint
6229 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
6230 ** mem[P3+2] are initialized to -1.
6231 */
6232 case OP_Checkpoint: {
6233 int i; /* Loop counter */
6234 int aRes[3]; /* Results */
6235 Mem *pMem; /* Write results here */
6236
6237 assert( p->readOnly==0 );
6238 aRes[0] = 0;
6239 aRes[1] = aRes[2] = -1;
6240 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
6241 || pOp->p2==SQLITE_CHECKPOINT_FULL
6242 || pOp->p2==SQLITE_CHECKPOINT_RESTART
6243 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
6244 );
6245 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
6246 if( rc ){
6247 if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
6248 rc = SQLITE_OK;
6249 aRes[0] = 1;
6250 }
6251 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
6252 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
6253 }
6254 break;
6255 };
6256 #endif
6257
6258 #ifndef SQLITE_OMIT_PRAGMA
6259 /* Opcode: JournalMode P1 P2 P3 * *
6260 **
6261 ** Change the journal mode of database P1 to P3. P3 must be one of the
6262 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6263 ** modes (delete, truncate, persist, off and memory), this is a simple
6264 ** operation. No IO is required.
6265 **
6266 ** If changing into or out of WAL mode the procedure is more complicated.
6267 **
6268 ** Write a string containing the final journal-mode to register P2.
6269 */
6270 case OP_JournalMode: { /* out2 */
6271 Btree *pBt; /* Btree to change journal mode of */
6272 Pager *pPager; /* Pager associated with pBt */
6273 int eNew; /* New journal mode */
6274 int eOld; /* The old journal mode */
6275 #ifndef SQLITE_OMIT_WAL
6276 const char *zFilename; /* Name of database file for pPager */
6277 #endif
6278
6279 pOut = out2Prerelease(p, pOp);
6280 eNew = pOp->p3;
6281 assert( eNew==PAGER_JOURNALMODE_DELETE
6282 || eNew==PAGER_JOURNALMODE_TRUNCATE
6283 || eNew==PAGER_JOURNALMODE_PERSIST
6284 || eNew==PAGER_JOURNALMODE_OFF
6285 || eNew==PAGER_JOURNALMODE_MEMORY
6286 || eNew==PAGER_JOURNALMODE_WAL
6287 || eNew==PAGER_JOURNALMODE_QUERY
6288 );
6289 assert( pOp->p1>=0 && pOp->p1<db->nDb );
6290 assert( p->readOnly==0 );
6291
6292 pBt = db->aDb[pOp->p1].pBt;
6293 pPager = sqlite3BtreePager(pBt);
6294 eOld = sqlite3PagerGetJournalMode(pPager);
6295 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6296 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
6297
6298 #ifndef SQLITE_OMIT_WAL
6299 zFilename = sqlite3PagerFilename(pPager, 1);
6300
6301 /* Do not allow a transition to journal_mode=WAL for a database
6302 ** in temporary storage or if the VFS does not support shared memory
6303 */
6304 if( eNew==PAGER_JOURNALMODE_WAL
6305 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
6306 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
6307 ){
6308 eNew = eOld;
6309 }
6310
6311 if( (eNew!=eOld)
6312 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6313 ){
6314 if( !db->autoCommit || db->nVdbeRead>1 ){
6315 rc = SQLITE_ERROR;
6316 sqlite3VdbeError(p,
6317 "cannot change %s wal mode from within a transaction",
6318 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6319 );
6320 goto abort_due_to_error;
6321 }else{
6322
6323 if( eOld==PAGER_JOURNALMODE_WAL ){
6324 /* If leaving WAL mode, close the log file. If successful, the call
6325 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6326 ** file. An EXCLUSIVE lock may still be held on the database file
6327 ** after a successful return.
6328 */
6329 rc = sqlite3PagerCloseWal(pPager, db);
6330 if( rc==SQLITE_OK ){
6331 sqlite3PagerSetJournalMode(pPager, eNew);
6332 }
6333 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
6334 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
6335 ** as an intermediate */
6336 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
6337 }
6338
6339 /* Open a transaction on the database file. Regardless of the journal
6340 ** mode, this transaction always uses a rollback journal.
6341 */
6342 assert( sqlite3BtreeIsInTrans(pBt)==0 );
6343 if( rc==SQLITE_OK ){
6344 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
6345 }
6346 }
6347 }
6348 #endif /* ifndef SQLITE_OMIT_WAL */
6349
6350 if( rc ) eNew = eOld;
6351 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
6352
6353 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
6354 pOut->z = (char *)sqlite3JournalModename(eNew);
6355 pOut->n = sqlite3Strlen30(pOut->z);
6356 pOut->enc = SQLITE_UTF8;
6357 sqlite3VdbeChangeEncoding(pOut, encoding);
6358 if( rc ) goto abort_due_to_error;
6359 break;
6360 };
6361 #endif /* SQLITE_OMIT_PRAGMA */
6362
6363 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
6364 /* Opcode: Vacuum P1 * * * *
6365 **
6366 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
6367 ** for an attached database. The "temp" database may not be vacuumed.
6368 */
6369 case OP_Vacuum: {
6370 assert( p->readOnly==0 );
6371 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1);
6372 if( rc ) goto abort_due_to_error;
6373 break;
6374 }
6375 #endif
6376
6377 #if !defined(SQLITE_OMIT_AUTOVACUUM)
6378 /* Opcode: IncrVacuum P1 P2 * * *
6379 **
6380 ** Perform a single step of the incremental vacuum procedure on
6381 ** the P1 database. If the vacuum has finished, jump to instruction
6382 ** P2. Otherwise, fall through to the next instruction.
6383 */
6384 case OP_IncrVacuum: { /* jump */
6385 Btree *pBt;
6386
6387 assert( pOp->p1>=0 && pOp->p1<db->nDb );
6388 assert( DbMaskTest(p->btreeMask, pOp->p1) );
6389 assert( p->readOnly==0 );
6390 pBt = db->aDb[pOp->p1].pBt;
6391 rc = sqlite3BtreeIncrVacuum(pBt);
6392 VdbeBranchTaken(rc==SQLITE_DONE,2);
6393 if( rc ){
6394 if( rc!=SQLITE_DONE ) goto abort_due_to_error;
6395 rc = SQLITE_OK;
6396 goto jump_to_p2;
6397 }
6398 break;
6399 }
6400 #endif
6401
6402 /* Opcode: Expire P1 * * * *
6403 **
6404 ** Cause precompiled statements to expire. When an expired statement
6405 ** is executed using sqlite3_step() it will either automatically
6406 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
6407 ** or it will fail with SQLITE_SCHEMA.
6408 **
6409 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
6410 ** then only the currently executing statement is expired.
6411 */
6412 case OP_Expire: {
6413 if( !pOp->p1 ){
6414 sqlite3ExpirePreparedStatements(db);
6415 }else{
6416 p->expired = 1;
6417 }
6418 break;
6419 }
6420
6421 #ifndef SQLITE_OMIT_SHARED_CACHE
6422 /* Opcode: TableLock P1 P2 P3 P4 *
6423 ** Synopsis: iDb=P1 root=P2 write=P3
6424 **
6425 ** Obtain a lock on a particular table. This instruction is only used when
6426 ** the shared-cache feature is enabled.
6427 **
6428 ** P1 is the index of the database in sqlite3.aDb[] of the database
6429 ** on which the lock is acquired. A readlock is obtained if P3==0 or
6430 ** a write lock if P3==1.
6431 **
6432 ** P2 contains the root-page of the table to lock.
6433 **
6434 ** P4 contains a pointer to the name of the table being locked. This is only
6435 ** used to generate an error message if the lock cannot be obtained.
6436 */
6437 case OP_TableLock: {
6438 u8 isWriteLock = (u8)pOp->p3;
6439 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
6440 int p1 = pOp->p1;
6441 assert( p1>=0 && p1<db->nDb );
6442 assert( DbMaskTest(p->btreeMask, p1) );
6443 assert( isWriteLock==0 || isWriteLock==1 );
6444 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
6445 if( rc ){
6446 if( (rc&0xFF)==SQLITE_LOCKED ){
6447 const char *z = pOp->p4.z;
6448 sqlite3VdbeError(p, "database table is locked: %s", z);
6449 }
6450 goto abort_due_to_error;
6451 }
6452 }
6453 break;
6454 }
6455 #endif /* SQLITE_OMIT_SHARED_CACHE */
6456
6457 #ifndef SQLITE_OMIT_VIRTUALTABLE
6458 /* Opcode: VBegin * * * P4 *
6459 **
6460 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6461 ** xBegin method for that table.
6462 **
6463 ** Also, whether or not P4 is set, check that this is not being called from
6464 ** within a callback to a virtual table xSync() method. If it is, the error
6465 ** code will be set to SQLITE_LOCKED.
6466 */
6467 case OP_VBegin: {
6468 VTable *pVTab;
6469 pVTab = pOp->p4.pVtab;
6470 rc = sqlite3VtabBegin(db, pVTab);
6471 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
6472 if( rc ) goto abort_due_to_error;
6473 break;
6474 }
6475 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6476
6477 #ifndef SQLITE_OMIT_VIRTUALTABLE
6478 /* Opcode: VCreate P1 P2 * * *
6479 **
6480 ** P2 is a register that holds the name of a virtual table in database
6481 ** P1. Call the xCreate method for that table.
6482 */
6483 case OP_VCreate: {
6484 Mem sMem; /* For storing the record being decoded */
6485 const char *zTab; /* Name of the virtual table */
6486
6487 memset(&sMem, 0, sizeof(sMem));
6488 sMem.db = db;
6489 /* Because P2 is always a static string, it is impossible for the
6490 ** sqlite3VdbeMemCopy() to fail */
6491 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6492 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
6493 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
6494 assert( rc==SQLITE_OK );
6495 zTab = (const char*)sqlite3_value_text(&sMem);
6496 assert( zTab || db->mallocFailed );
6497 if( zTab ){
6498 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
6499 }
6500 sqlite3VdbeMemRelease(&sMem);
6501 if( rc ) goto abort_due_to_error;
6502 break;
6503 }
6504 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6505
6506 #ifndef SQLITE_OMIT_VIRTUALTABLE
6507 /* Opcode: VDestroy P1 * * P4 *
6508 **
6509 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
6510 ** of that table.
6511 */
6512 case OP_VDestroy: {
6513 db->nVDestroy++;
6514 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
6515 db->nVDestroy--;
6516 if( rc ) goto abort_due_to_error;
6517 break;
6518 }
6519 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6520
6521 #ifndef SQLITE_OMIT_VIRTUALTABLE
6522 /* Opcode: VOpen P1 * * P4 *
6523 **
6524 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6525 ** P1 is a cursor number. This opcode opens a cursor to the virtual
6526 ** table and stores that cursor in P1.
6527 */
6528 case OP_VOpen: {
6529 VdbeCursor *pCur;
6530 sqlite3_vtab_cursor *pVCur;
6531 sqlite3_vtab *pVtab;
6532 const sqlite3_module *pModule;
6533
6534 assert( p->bIsReader );
6535 pCur = 0;
6536 pVCur = 0;
6537 pVtab = pOp->p4.pVtab->pVtab;
6538 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6539 rc = SQLITE_LOCKED;
6540 goto abort_due_to_error;
6541 }
6542 pModule = pVtab->pModule;
6543 rc = pModule->xOpen(pVtab, &pVCur);
6544 sqlite3VtabImportErrmsg(p, pVtab);
6545 if( rc ) goto abort_due_to_error;
6546
6547 /* Initialize sqlite3_vtab_cursor base class */
6548 pVCur->pVtab = pVtab;
6549
6550 /* Initialize vdbe cursor object */
6551 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
6552 if( pCur ){
6553 pCur->uc.pVCur = pVCur;
6554 pVtab->nRef++;
6555 }else{
6556 assert( db->mallocFailed );
6557 pModule->xClose(pVCur);
6558 goto no_mem;
6559 }
6560 break;
6561 }
6562 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6563
6564 #ifndef SQLITE_OMIT_VIRTUALTABLE
6565 /* Opcode: VFilter P1 P2 P3 P4 *
6566 ** Synopsis: iplan=r[P3] zplan='P4'
6567 **
6568 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
6569 ** the filtered result set is empty.
6570 **
6571 ** P4 is either NULL or a string that was generated by the xBestIndex
6572 ** method of the module. The interpretation of the P4 string is left
6573 ** to the module implementation.
6574 **
6575 ** This opcode invokes the xFilter method on the virtual table specified
6576 ** by P1. The integer query plan parameter to xFilter is stored in register
6577 ** P3. Register P3+1 stores the argc parameter to be passed to the
6578 ** xFilter method. Registers P3+2..P3+1+argc are the argc
6579 ** additional parameters which are passed to
6580 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
6581 **
6582 ** A jump is made to P2 if the result set after filtering would be empty.
6583 */
6584 case OP_VFilter: { /* jump */
6585 int nArg;
6586 int iQuery;
6587 const sqlite3_module *pModule;
6588 Mem *pQuery;
6589 Mem *pArgc;
6590 sqlite3_vtab_cursor *pVCur;
6591 sqlite3_vtab *pVtab;
6592 VdbeCursor *pCur;
6593 int res;
6594 int i;
6595 Mem **apArg;
6596
6597 pQuery = &aMem[pOp->p3];
6598 pArgc = &pQuery[1];
6599 pCur = p->apCsr[pOp->p1];
6600 assert( memIsValid(pQuery) );
6601 REGISTER_TRACE(pOp->p3, pQuery);
6602 assert( pCur->eCurType==CURTYPE_VTAB );
6603 pVCur = pCur->uc.pVCur;
6604 pVtab = pVCur->pVtab;
6605 pModule = pVtab->pModule;
6606
6607 /* Grab the index number and argc parameters */
6608 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
6609 nArg = (int)pArgc->u.i;
6610 iQuery = (int)pQuery->u.i;
6611
6612 /* Invoke the xFilter method */
6613 res = 0;
6614 apArg = p->apArg;
6615 for(i = 0; i<nArg; i++){
6616 apArg[i] = &pArgc[i+1];
6617 }
6618 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
6619 sqlite3VtabImportErrmsg(p, pVtab);
6620 if( rc ) goto abort_due_to_error;
6621 res = pModule->xEof(pVCur);
6622 pCur->nullRow = 0;
6623 VdbeBranchTaken(res!=0,2);
6624 if( res ) goto jump_to_p2;
6625 break;
6626 }
6627 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6628
6629 #ifndef SQLITE_OMIT_VIRTUALTABLE
6630 /* Opcode: VColumn P1 P2 P3 * *
6631 ** Synopsis: r[P3]=vcolumn(P2)
6632 **
6633 ** Store the value of the P2-th column of
6634 ** the row of the virtual-table that the
6635 ** P1 cursor is pointing to into register P3.
6636 */
6637 case OP_VColumn: {
6638 sqlite3_vtab *pVtab;
6639 const sqlite3_module *pModule;
6640 Mem *pDest;
6641 sqlite3_context sContext;
6642
6643 VdbeCursor *pCur = p->apCsr[pOp->p1];
6644 assert( pCur->eCurType==CURTYPE_VTAB );
6645 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6646 pDest = &aMem[pOp->p3];
6647 memAboutToChange(p, pDest);
6648 if( pCur->nullRow ){
6649 sqlite3VdbeMemSetNull(pDest);
6650 break;
6651 }
6652 pVtab = pCur->uc.pVCur->pVtab;
6653 pModule = pVtab->pModule;
6654 assert( pModule->xColumn );
6655 memset(&sContext, 0, sizeof(sContext));
6656 sContext.pOut = pDest;
6657 MemSetTypeFlag(pDest, MEM_Null);
6658 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
6659 sqlite3VtabImportErrmsg(p, pVtab);
6660 if( sContext.isError ){
6661 rc = sContext.isError;
6662 }
6663 sqlite3VdbeChangeEncoding(pDest, encoding);
6664 REGISTER_TRACE(pOp->p3, pDest);
6665 UPDATE_MAX_BLOBSIZE(pDest);
6666
6667 if( sqlite3VdbeMemTooBig(pDest) ){
6668 goto too_big;
6669 }
6670 if( rc ) goto abort_due_to_error;
6671 break;
6672 }
6673 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6674
6675 #ifndef SQLITE_OMIT_VIRTUALTABLE
6676 /* Opcode: VNext P1 P2 * * *
6677 **
6678 ** Advance virtual table P1 to the next row in its result set and
6679 ** jump to instruction P2. Or, if the virtual table has reached
6680 ** the end of its result set, then fall through to the next instruction.
6681 */
6682 case OP_VNext: { /* jump */
6683 sqlite3_vtab *pVtab;
6684 const sqlite3_module *pModule;
6685 int res;
6686 VdbeCursor *pCur;
6687
6688 res = 0;
6689 pCur = p->apCsr[pOp->p1];
6690 assert( pCur->eCurType==CURTYPE_VTAB );
6691 if( pCur->nullRow ){
6692 break;
6693 }
6694 pVtab = pCur->uc.pVCur->pVtab;
6695 pModule = pVtab->pModule;
6696 assert( pModule->xNext );
6697
6698 /* Invoke the xNext() method of the module. There is no way for the
6699 ** underlying implementation to return an error if one occurs during
6700 ** xNext(). Instead, if an error occurs, true is returned (indicating that
6701 ** data is available) and the error code returned when xColumn or
6702 ** some other method is next invoked on the save virtual table cursor.
6703 */
6704 rc = pModule->xNext(pCur->uc.pVCur);
6705 sqlite3VtabImportErrmsg(p, pVtab);
6706 if( rc ) goto abort_due_to_error;
6707 res = pModule->xEof(pCur->uc.pVCur);
6708 VdbeBranchTaken(!res,2);
6709 if( !res ){
6710 /* If there is data, jump to P2 */
6711 goto jump_to_p2_and_check_for_interrupt;
6712 }
6713 goto check_for_interrupt;
6714 }
6715 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6716
6717 #ifndef SQLITE_OMIT_VIRTUALTABLE
6718 /* Opcode: VRename P1 * * P4 *
6719 **
6720 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6721 ** This opcode invokes the corresponding xRename method. The value
6722 ** in register P1 is passed as the zName argument to the xRename method.
6723 */
6724 case OP_VRename: {
6725 sqlite3_vtab *pVtab;
6726 Mem *pName;
6727
6728 pVtab = pOp->p4.pVtab->pVtab;
6729 pName = &aMem[pOp->p1];
6730 assert( pVtab->pModule->xRename );
6731 assert( memIsValid(pName) );
6732 assert( p->readOnly==0 );
6733 REGISTER_TRACE(pOp->p1, pName);
6734 assert( pName->flags & MEM_Str );
6735 testcase( pName->enc==SQLITE_UTF8 );
6736 testcase( pName->enc==SQLITE_UTF16BE );
6737 testcase( pName->enc==SQLITE_UTF16LE );
6738 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
6739 if( rc ) goto abort_due_to_error;
6740 rc = pVtab->pModule->xRename(pVtab, pName->z);
6741 sqlite3VtabImportErrmsg(p, pVtab);
6742 p->expired = 0;
6743 if( rc ) goto abort_due_to_error;
6744 break;
6745 }
6746 #endif
6747
6748 #ifndef SQLITE_OMIT_VIRTUALTABLE
6749 /* Opcode: VUpdate P1 P2 P3 P4 P5
6750 ** Synopsis: data=r[P3@P2]
6751 **
6752 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6753 ** This opcode invokes the corresponding xUpdate method. P2 values
6754 ** are contiguous memory cells starting at P3 to pass to the xUpdate
6755 ** invocation. The value in register (P3+P2-1) corresponds to the
6756 ** p2th element of the argv array passed to xUpdate.
6757 **
6758 ** The xUpdate method will do a DELETE or an INSERT or both.
6759 ** The argv[0] element (which corresponds to memory cell P3)
6760 ** is the rowid of a row to delete. If argv[0] is NULL then no
6761 ** deletion occurs. The argv[1] element is the rowid of the new
6762 ** row. This can be NULL to have the virtual table select the new
6763 ** rowid for itself. The subsequent elements in the array are
6764 ** the values of columns in the new row.
6765 **
6766 ** If P2==1 then no insert is performed. argv[0] is the rowid of
6767 ** a row to delete.
6768 **
6769 ** P1 is a boolean flag. If it is set to true and the xUpdate call
6770 ** is successful, then the value returned by sqlite3_last_insert_rowid()
6771 ** is set to the value of the rowid for the row just inserted.
6772 **
6773 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6774 ** apply in the case of a constraint failure on an insert or update.
6775 */
6776 case OP_VUpdate: {
6777 sqlite3_vtab *pVtab;
6778 const sqlite3_module *pModule;
6779 int nArg;
6780 int i;
6781 sqlite_int64 rowid;
6782 Mem **apArg;
6783 Mem *pX;
6784
6785 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6786 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6787 );
6788 assert( p->readOnly==0 );
6789 pVtab = pOp->p4.pVtab->pVtab;
6790 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6791 rc = SQLITE_LOCKED;
6792 goto abort_due_to_error;
6793 }
6794 pModule = pVtab->pModule;
6795 nArg = pOp->p2;
6796 assert( pOp->p4type==P4_VTAB );
6797 if( ALWAYS(pModule->xUpdate) ){
6798 u8 vtabOnConflict = db->vtabOnConflict;
6799 apArg = p->apArg;
6800 pX = &aMem[pOp->p3];
6801 for(i=0; i<nArg; i++){
6802 assert( memIsValid(pX) );
6803 memAboutToChange(p, pX);
6804 apArg[i] = pX;
6805 pX++;
6806 }
6807 db->vtabOnConflict = pOp->p5;
6808 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
6809 db->vtabOnConflict = vtabOnConflict;
6810 sqlite3VtabImportErrmsg(p, pVtab);
6811 if( rc==SQLITE_OK && pOp->p1 ){
6812 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
6813 db->lastRowid = rowid;
6814 }
6815 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
6816 if( pOp->p5==OE_Ignore ){
6817 rc = SQLITE_OK;
6818 }else{
6819 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6820 }
6821 }else{
6822 p->nChange++;
6823 }
6824 if( rc ) goto abort_due_to_error;
6825 }
6826 break;
6827 }
6828 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6829
6830 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6831 /* Opcode: Pagecount P1 P2 * * *
6832 **
6833 ** Write the current number of pages in database P1 to memory cell P2.
6834 */
6835 case OP_Pagecount: { /* out2 */
6836 pOut = out2Prerelease(p, pOp);
6837 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
6838 break;
6839 }
6840 #endif
6841
6842
6843 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6844 /* Opcode: MaxPgcnt P1 P2 P3 * *
6845 **
6846 ** Try to set the maximum page count for database P1 to the value in P3.
6847 ** Do not let the maximum page count fall below the current page count and
6848 ** do not change the maximum page count value if P3==0.
6849 **
6850 ** Store the maximum page count after the change in register P2.
6851 */
6852 case OP_MaxPgcnt: { /* out2 */
6853 unsigned int newMax;
6854 Btree *pBt;
6855
6856 pOut = out2Prerelease(p, pOp);
6857 pBt = db->aDb[pOp->p1].pBt;
6858 newMax = 0;
6859 if( pOp->p3 ){
6860 newMax = sqlite3BtreeLastPage(pBt);
6861 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
6862 }
6863 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
6864 break;
6865 }
6866 #endif
6867
6868
6869 /* Opcode: Init P1 P2 * P4 *
6870 ** Synopsis: Start at P2
6871 **
6872 ** Programs contain a single instance of this opcode as the very first
6873 ** opcode.
6874 **
6875 ** If tracing is enabled (by the sqlite3_trace()) interface, then
6876 ** the UTF-8 string contained in P4 is emitted on the trace callback.
6877 ** Or if P4 is blank, use the string returned by sqlite3_sql().
6878 **
6879 ** If P2 is not zero, jump to instruction P2.
6880 **
6881 ** Increment the value of P1 so that OP_Once opcodes will jump the
6882 ** first time they are evaluated for this run.
6883 */
6884 case OP_Init: { /* jump */
6885 char *zTrace;
6886 int i;
6887
6888 /* If the P4 argument is not NULL, then it must be an SQL comment string.
6889 ** The "--" string is broken up to prevent false-positives with srcck1.c.
6890 **
6891 ** This assert() provides evidence for:
6892 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
6893 ** would have been returned by the legacy sqlite3_trace() interface by
6894 ** using the X argument when X begins with "--" and invoking
6895 ** sqlite3_expanded_sql(P) otherwise.
6896 */
6897 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
6898 assert( pOp==p->aOp ); /* Always instruction 0 */
6899
6900 #ifndef SQLITE_OMIT_TRACE
6901 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
6902 && !p->doingRerun
6903 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6904 ){
6905 #ifndef SQLITE_OMIT_DEPRECATED
6906 if( db->mTrace & SQLITE_TRACE_LEGACY ){
6907 void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace;
6908 char *z = sqlite3VdbeExpandSql(p, zTrace);
6909 x(db->pTraceArg, z);
6910 sqlite3_free(z);
6911 }else
6912 #endif
6913 {
6914 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
6915 }
6916 }
6917 #ifdef SQLITE_USE_FCNTL_TRACE
6918 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
6919 if( zTrace ){
6920 int j;
6921 for(j=0; j<db->nDb; j++){
6922 if( DbMaskTest(p->btreeMask, j)==0 ) continue;
6923 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
6924 }
6925 }
6926 #endif /* SQLITE_USE_FCNTL_TRACE */
6927 #ifdef SQLITE_DEBUG
6928 if( (db->flags & SQLITE_SqlTrace)!=0
6929 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6930 ){
6931 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6932 }
6933 #endif /* SQLITE_DEBUG */
6934 #endif /* SQLITE_OMIT_TRACE */
6935 assert( pOp->p2>0 );
6936 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
6937 for(i=1; i<p->nOp; i++){
6938 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
6939 }
6940 pOp->p1 = 0;
6941 }
6942 pOp->p1++;
6943 goto jump_to_p2;
6944 }
6945
6946 #ifdef SQLITE_ENABLE_CURSOR_HINTS
6947 /* Opcode: CursorHint P1 * * P4 *
6948 **
6949 ** Provide a hint to cursor P1 that it only needs to return rows that
6950 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
6951 ** to values currently held in registers. TK_COLUMN terms in the P4
6952 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
6953 */
6954 case OP_CursorHint: {
6955 VdbeCursor *pC;
6956
6957 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6958 assert( pOp->p4type==P4_EXPR );
6959 pC = p->apCsr[pOp->p1];
6960 if( pC ){
6961 assert( pC->eCurType==CURTYPE_BTREE );
6962 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
6963 pOp->p4.pExpr, aMem);
6964 }
6965 break;
6966 }
6967 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
6968
6969 /* Opcode: Noop * * * * *
6970 **
6971 ** Do nothing. This instruction is often useful as a jump
6972 ** destination.
6973 */
6974 /*
6975 ** The magic Explain opcode are only inserted when explain==2 (which
6976 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6977 ** This opcode records information from the optimizer. It is the
6978 ** the same as a no-op. This opcodesnever appears in a real VM program.
6979 */
6980 default: { /* This is really OP_Noop and OP_Explain */
6981 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
6982 break;
6983 }
6984
6985 /*****************************************************************************
6986 ** The cases of the switch statement above this line should all be indented
6987 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6988 ** readability. From this point on down, the normal indentation rules are
6989 ** restored.
6990 *****************************************************************************/
6991 }
6992
6993 #ifdef VDBE_PROFILE
6994 {
6995 u64 endTime = sqlite3Hwtime();
6996 if( endTime>start ) pOrigOp->cycles += endTime - start;
6997 pOrigOp->cnt++;
6998 }
6999 #endif
7000
7001 /* The following code adds nothing to the actual functionality
7002 ** of the program. It is only here for testing and debugging.
7003 ** On the other hand, it does burn CPU cycles every time through
7004 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
7005 */
7006 #ifndef NDEBUG
7007 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
7008
7009 #ifdef SQLITE_DEBUG
7010 if( db->flags & SQLITE_VdbeTrace ){
7011 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
7012 if( rc!=0 ) printf("rc=%d\n",rc);
7013 if( opProperty & (OPFLG_OUT2) ){
7014 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
7015 }
7016 if( opProperty & OPFLG_OUT3 ){
7017 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
7018 }
7019 }
7020 #endif /* SQLITE_DEBUG */
7021 #endif /* NDEBUG */
7022 } /* The end of the for(;;) loop the loops through opcodes */
7023
7024 /* If we reach this point, it means that execution is finished with
7025 ** an error of some kind.
7026 */
7027 abort_due_to_error:
7028 if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
7029 assert( rc );
7030 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
7031 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7032 }
7033 p->rc = rc;
7034 sqlite3SystemError(db, rc);
7035 testcase( sqlite3GlobalConfig.xLog!=0 );
7036 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
7037 (int)(pOp - aOp), p->zSql, p->zErrMsg);
7038 sqlite3VdbeHalt(p);
7039 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
7040 rc = SQLITE_ERROR;
7041 if( resetSchemaOnFault>0 ){
7042 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
7043 }
7044
7045 /* This is the only way out of this procedure. We have to
7046 ** release the mutexes on btrees that were acquired at the
7047 ** top. */
7048 vdbe_return:
7049 testcase( nVmStep>0 );
7050 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
7051 sqlite3VdbeLeave(p);
7052 assert( rc!=SQLITE_OK || nExtraDelete==0
7053 || sqlite3_strlike("DELETE%",p->zSql,0)!=0
7054 );
7055 return rc;
7056
7057 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
7058 ** is encountered.
7059 */
7060 too_big:
7061 sqlite3VdbeError(p, "string or blob too big");
7062 rc = SQLITE_TOOBIG;
7063 goto abort_due_to_error;
7064
7065 /* Jump to here if a malloc() fails.
7066 */
7067 no_mem:
7068 sqlite3OomFault(db);
7069 sqlite3VdbeError(p, "out of memory");
7070 rc = SQLITE_NOMEM_BKPT;
7071 goto abort_due_to_error;
7072
7073 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
7074 ** flag.
7075 */
7076 abort_due_to_interrupt:
7077 assert( db->u1.isInterrupted );
7078 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
7079 p->rc = rc;
7080 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7081 goto abort_due_to_error;
7082 }
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3170000/src/vdbe.h ('k') | third_party/sqlite/sqlite-src-3170000/src/vdbeInt.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698