OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2001 September 15 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** Utility functions used throughout sqlite. |
| 13 ** |
| 14 ** This file contains functions for allocating memory, comparing |
| 15 ** strings, and stuff like that. |
| 16 ** |
| 17 */ |
| 18 #include "sqliteInt.h" |
| 19 #include <stdarg.h> |
| 20 #if HAVE_ISNAN || SQLITE_HAVE_ISNAN |
| 21 # include <math.h> |
| 22 #endif |
| 23 |
| 24 /* |
| 25 ** Routine needed to support the testcase() macro. |
| 26 */ |
| 27 #ifdef SQLITE_COVERAGE_TEST |
| 28 void sqlite3Coverage(int x){ |
| 29 static unsigned dummy = 0; |
| 30 dummy += (unsigned)x; |
| 31 } |
| 32 #endif |
| 33 |
| 34 /* |
| 35 ** Give a callback to the test harness that can be used to simulate faults |
| 36 ** in places where it is difficult or expensive to do so purely by means |
| 37 ** of inputs. |
| 38 ** |
| 39 ** The intent of the integer argument is to let the fault simulator know |
| 40 ** which of multiple sqlite3FaultSim() calls has been hit. |
| 41 ** |
| 42 ** Return whatever integer value the test callback returns, or return |
| 43 ** SQLITE_OK if no test callback is installed. |
| 44 */ |
| 45 #ifndef SQLITE_UNTESTABLE |
| 46 int sqlite3FaultSim(int iTest){ |
| 47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; |
| 48 return xCallback ? xCallback(iTest) : SQLITE_OK; |
| 49 } |
| 50 #endif |
| 51 |
| 52 #ifndef SQLITE_OMIT_FLOATING_POINT |
| 53 /* |
| 54 ** Return true if the floating point value is Not a Number (NaN). |
| 55 ** |
| 56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. |
| 57 ** Otherwise, we have our own implementation that works on most systems. |
| 58 */ |
| 59 int sqlite3IsNaN(double x){ |
| 60 int rc; /* The value return */ |
| 61 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN |
| 62 /* |
| 63 ** Systems that support the isnan() library function should probably |
| 64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have |
| 65 ** found that many systems do not have a working isnan() function so |
| 66 ** this implementation is provided as an alternative. |
| 67 ** |
| 68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math. |
| 69 ** On the other hand, the use of -ffast-math comes with the following |
| 70 ** warning: |
| 71 ** |
| 72 ** This option [-ffast-math] should never be turned on by any |
| 73 ** -O option since it can result in incorrect output for programs |
| 74 ** which depend on an exact implementation of IEEE or ISO |
| 75 ** rules/specifications for math functions. |
| 76 ** |
| 77 ** Under MSVC, this NaN test may fail if compiled with a floating- |
| 78 ** point precision mode other than /fp:precise. From the MSDN |
| 79 ** documentation: |
| 80 ** |
| 81 ** The compiler [with /fp:precise] will properly handle comparisons |
| 82 ** involving NaN. For example, x != x evaluates to true if x is NaN |
| 83 ** ... |
| 84 */ |
| 85 #ifdef __FAST_MATH__ |
| 86 # error SQLite will not work correctly with the -ffast-math option of GCC. |
| 87 #endif |
| 88 volatile double y = x; |
| 89 volatile double z = y; |
| 90 rc = (y!=z); |
| 91 #else /* if HAVE_ISNAN */ |
| 92 rc = isnan(x); |
| 93 #endif /* HAVE_ISNAN */ |
| 94 testcase( rc ); |
| 95 return rc; |
| 96 } |
| 97 #endif /* SQLITE_OMIT_FLOATING_POINT */ |
| 98 |
| 99 /* |
| 100 ** Compute a string length that is limited to what can be stored in |
| 101 ** lower 30 bits of a 32-bit signed integer. |
| 102 ** |
| 103 ** The value returned will never be negative. Nor will it ever be greater |
| 104 ** than the actual length of the string. For very long strings (greater |
| 105 ** than 1GiB) the value returned might be less than the true string length. |
| 106 */ |
| 107 int sqlite3Strlen30(const char *z){ |
| 108 if( z==0 ) return 0; |
| 109 return 0x3fffffff & (int)strlen(z); |
| 110 } |
| 111 |
| 112 /* |
| 113 ** Return the declared type of a column. Or return zDflt if the column |
| 114 ** has no declared type. |
| 115 ** |
| 116 ** The column type is an extra string stored after the zero-terminator on |
| 117 ** the column name if and only if the COLFLAG_HASTYPE flag is set. |
| 118 */ |
| 119 char *sqlite3ColumnType(Column *pCol, char *zDflt){ |
| 120 if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt; |
| 121 return pCol->zName + strlen(pCol->zName) + 1; |
| 122 } |
| 123 |
| 124 /* |
| 125 ** Helper function for sqlite3Error() - called rarely. Broken out into |
| 126 ** a separate routine to avoid unnecessary register saves on entry to |
| 127 ** sqlite3Error(). |
| 128 */ |
| 129 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){ |
| 130 if( db->pErr ) sqlite3ValueSetNull(db->pErr); |
| 131 sqlite3SystemError(db, err_code); |
| 132 } |
| 133 |
| 134 /* |
| 135 ** Set the current error code to err_code and clear any prior error message. |
| 136 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates |
| 137 ** that would be appropriate. |
| 138 */ |
| 139 void sqlite3Error(sqlite3 *db, int err_code){ |
| 140 assert( db!=0 ); |
| 141 db->errCode = err_code; |
| 142 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code); |
| 143 } |
| 144 |
| 145 /* |
| 146 ** Load the sqlite3.iSysErrno field if that is an appropriate thing |
| 147 ** to do based on the SQLite error code in rc. |
| 148 */ |
| 149 void sqlite3SystemError(sqlite3 *db, int rc){ |
| 150 if( rc==SQLITE_IOERR_NOMEM ) return; |
| 151 rc &= 0xff; |
| 152 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){ |
| 153 db->iSysErrno = sqlite3OsGetLastError(db->pVfs); |
| 154 } |
| 155 } |
| 156 |
| 157 /* |
| 158 ** Set the most recent error code and error string for the sqlite |
| 159 ** handle "db". The error code is set to "err_code". |
| 160 ** |
| 161 ** If it is not NULL, string zFormat specifies the format of the |
| 162 ** error string in the style of the printf functions: The following |
| 163 ** format characters are allowed: |
| 164 ** |
| 165 ** %s Insert a string |
| 166 ** %z A string that should be freed after use |
| 167 ** %d Insert an integer |
| 168 ** %T Insert a token |
| 169 ** %S Insert the first element of a SrcList |
| 170 ** |
| 171 ** zFormat and any string tokens that follow it are assumed to be |
| 172 ** encoded in UTF-8. |
| 173 ** |
| 174 ** To clear the most recent error for sqlite handle "db", sqlite3Error |
| 175 ** should be called with err_code set to SQLITE_OK and zFormat set |
| 176 ** to NULL. |
| 177 */ |
| 178 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ |
| 179 assert( db!=0 ); |
| 180 db->errCode = err_code; |
| 181 sqlite3SystemError(db, err_code); |
| 182 if( zFormat==0 ){ |
| 183 sqlite3Error(db, err_code); |
| 184 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ |
| 185 char *z; |
| 186 va_list ap; |
| 187 va_start(ap, zFormat); |
| 188 z = sqlite3VMPrintf(db, zFormat, ap); |
| 189 va_end(ap); |
| 190 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); |
| 191 } |
| 192 } |
| 193 |
| 194 /* |
| 195 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. |
| 196 ** The following formatting characters are allowed: |
| 197 ** |
| 198 ** %s Insert a string |
| 199 ** %z A string that should be freed after use |
| 200 ** %d Insert an integer |
| 201 ** %T Insert a token |
| 202 ** %S Insert the first element of a SrcList |
| 203 ** |
| 204 ** This function should be used to report any error that occurs while |
| 205 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The |
| 206 ** last thing the sqlite3_prepare() function does is copy the error |
| 207 ** stored by this function into the database handle using sqlite3Error(). |
| 208 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used |
| 209 ** during statement execution (sqlite3_step() etc.). |
| 210 */ |
| 211 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ |
| 212 char *zMsg; |
| 213 va_list ap; |
| 214 sqlite3 *db = pParse->db; |
| 215 va_start(ap, zFormat); |
| 216 zMsg = sqlite3VMPrintf(db, zFormat, ap); |
| 217 va_end(ap); |
| 218 if( db->suppressErr ){ |
| 219 sqlite3DbFree(db, zMsg); |
| 220 }else{ |
| 221 pParse->nErr++; |
| 222 sqlite3DbFree(db, pParse->zErrMsg); |
| 223 pParse->zErrMsg = zMsg; |
| 224 pParse->rc = SQLITE_ERROR; |
| 225 } |
| 226 } |
| 227 |
| 228 /* |
| 229 ** Convert an SQL-style quoted string into a normal string by removing |
| 230 ** the quote characters. The conversion is done in-place. If the |
| 231 ** input does not begin with a quote character, then this routine |
| 232 ** is a no-op. |
| 233 ** |
| 234 ** The input string must be zero-terminated. A new zero-terminator |
| 235 ** is added to the dequoted string. |
| 236 ** |
| 237 ** The return value is -1 if no dequoting occurs or the length of the |
| 238 ** dequoted string, exclusive of the zero terminator, if dequoting does |
| 239 ** occur. |
| 240 ** |
| 241 ** 2002-Feb-14: This routine is extended to remove MS-Access style |
| 242 ** brackets from around identifiers. For example: "[a-b-c]" becomes |
| 243 ** "a-b-c". |
| 244 */ |
| 245 void sqlite3Dequote(char *z){ |
| 246 char quote; |
| 247 int i, j; |
| 248 if( z==0 ) return; |
| 249 quote = z[0]; |
| 250 if( !sqlite3Isquote(quote) ) return; |
| 251 if( quote=='[' ) quote = ']'; |
| 252 for(i=1, j=0;; i++){ |
| 253 assert( z[i] ); |
| 254 if( z[i]==quote ){ |
| 255 if( z[i+1]==quote ){ |
| 256 z[j++] = quote; |
| 257 i++; |
| 258 }else{ |
| 259 break; |
| 260 } |
| 261 }else{ |
| 262 z[j++] = z[i]; |
| 263 } |
| 264 } |
| 265 z[j] = 0; |
| 266 } |
| 267 |
| 268 /* |
| 269 ** Generate a Token object from a string |
| 270 */ |
| 271 void sqlite3TokenInit(Token *p, char *z){ |
| 272 p->z = z; |
| 273 p->n = sqlite3Strlen30(z); |
| 274 } |
| 275 |
| 276 /* Convenient short-hand */ |
| 277 #define UpperToLower sqlite3UpperToLower |
| 278 |
| 279 /* |
| 280 ** Some systems have stricmp(). Others have strcasecmp(). Because |
| 281 ** there is no consistency, we will define our own. |
| 282 ** |
| 283 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and |
| 284 ** sqlite3_strnicmp() APIs allow applications and extensions to compare |
| 285 ** the contents of two buffers containing UTF-8 strings in a |
| 286 ** case-independent fashion, using the same definition of "case |
| 287 ** independence" that SQLite uses internally when comparing identifiers. |
| 288 */ |
| 289 int sqlite3_stricmp(const char *zLeft, const char *zRight){ |
| 290 if( zLeft==0 ){ |
| 291 return zRight ? -1 : 0; |
| 292 }else if( zRight==0 ){ |
| 293 return 1; |
| 294 } |
| 295 return sqlite3StrICmp(zLeft, zRight); |
| 296 } |
| 297 int sqlite3StrICmp(const char *zLeft, const char *zRight){ |
| 298 unsigned char *a, *b; |
| 299 int c; |
| 300 a = (unsigned char *)zLeft; |
| 301 b = (unsigned char *)zRight; |
| 302 for(;;){ |
| 303 c = (int)UpperToLower[*a] - (int)UpperToLower[*b]; |
| 304 if( c || *a==0 ) break; |
| 305 a++; |
| 306 b++; |
| 307 } |
| 308 return c; |
| 309 } |
| 310 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ |
| 311 register unsigned char *a, *b; |
| 312 if( zLeft==0 ){ |
| 313 return zRight ? -1 : 0; |
| 314 }else if( zRight==0 ){ |
| 315 return 1; |
| 316 } |
| 317 a = (unsigned char *)zLeft; |
| 318 b = (unsigned char *)zRight; |
| 319 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } |
| 320 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; |
| 321 } |
| 322 |
| 323 /* |
| 324 ** The string z[] is an text representation of a real number. |
| 325 ** Convert this string to a double and write it into *pResult. |
| 326 ** |
| 327 ** The string z[] is length bytes in length (bytes, not characters) and |
| 328 ** uses the encoding enc. The string is not necessarily zero-terminated. |
| 329 ** |
| 330 ** Return TRUE if the result is a valid real number (or integer) and FALSE |
| 331 ** if the string is empty or contains extraneous text. Valid numbers |
| 332 ** are in one of these formats: |
| 333 ** |
| 334 ** [+-]digits[E[+-]digits] |
| 335 ** [+-]digits.[digits][E[+-]digits] |
| 336 ** [+-].digits[E[+-]digits] |
| 337 ** |
| 338 ** Leading and trailing whitespace is ignored for the purpose of determining |
| 339 ** validity. |
| 340 ** |
| 341 ** If some prefix of the input string is a valid number, this routine |
| 342 ** returns FALSE but it still converts the prefix and writes the result |
| 343 ** into *pResult. |
| 344 */ |
| 345 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ |
| 346 #ifndef SQLITE_OMIT_FLOATING_POINT |
| 347 int incr; |
| 348 const char *zEnd = z + length; |
| 349 /* sign * significand * (10 ^ (esign * exponent)) */ |
| 350 int sign = 1; /* sign of significand */ |
| 351 i64 s = 0; /* significand */ |
| 352 int d = 0; /* adjust exponent for shifting decimal point */ |
| 353 int esign = 1; /* sign of exponent */ |
| 354 int e = 0; /* exponent */ |
| 355 int eValid = 1; /* True exponent is either not used or is well-formed */ |
| 356 double result; |
| 357 int nDigits = 0; |
| 358 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ |
| 359 |
| 360 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); |
| 361 *pResult = 0.0; /* Default return value, in case of an error */ |
| 362 |
| 363 if( enc==SQLITE_UTF8 ){ |
| 364 incr = 1; |
| 365 }else{ |
| 366 int i; |
| 367 incr = 2; |
| 368 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); |
| 369 for(i=3-enc; i<length && z[i]==0; i+=2){} |
| 370 nonNum = i<length; |
| 371 zEnd = &z[i^1]; |
| 372 z += (enc&1); |
| 373 } |
| 374 |
| 375 /* skip leading spaces */ |
| 376 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; |
| 377 if( z>=zEnd ) return 0; |
| 378 |
| 379 /* get sign of significand */ |
| 380 if( *z=='-' ){ |
| 381 sign = -1; |
| 382 z+=incr; |
| 383 }else if( *z=='+' ){ |
| 384 z+=incr; |
| 385 } |
| 386 |
| 387 /* copy max significant digits to significand */ |
| 388 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ |
| 389 s = s*10 + (*z - '0'); |
| 390 z+=incr, nDigits++; |
| 391 } |
| 392 |
| 393 /* skip non-significant significand digits |
| 394 ** (increase exponent by d to shift decimal left) */ |
| 395 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++; |
| 396 if( z>=zEnd ) goto do_atof_calc; |
| 397 |
| 398 /* if decimal point is present */ |
| 399 if( *z=='.' ){ |
| 400 z+=incr; |
| 401 /* copy digits from after decimal to significand |
| 402 ** (decrease exponent by d to shift decimal right) */ |
| 403 while( z<zEnd && sqlite3Isdigit(*z) ){ |
| 404 if( s<((LARGEST_INT64-9)/10) ){ |
| 405 s = s*10 + (*z - '0'); |
| 406 d--; |
| 407 } |
| 408 z+=incr, nDigits++; |
| 409 } |
| 410 } |
| 411 if( z>=zEnd ) goto do_atof_calc; |
| 412 |
| 413 /* if exponent is present */ |
| 414 if( *z=='e' || *z=='E' ){ |
| 415 z+=incr; |
| 416 eValid = 0; |
| 417 |
| 418 /* This branch is needed to avoid a (harmless) buffer overread. The |
| 419 ** special comment alerts the mutation tester that the correct answer |
| 420 ** is obtained even if the branch is omitted */ |
| 421 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/ |
| 422 |
| 423 /* get sign of exponent */ |
| 424 if( *z=='-' ){ |
| 425 esign = -1; |
| 426 z+=incr; |
| 427 }else if( *z=='+' ){ |
| 428 z+=incr; |
| 429 } |
| 430 /* copy digits to exponent */ |
| 431 while( z<zEnd && sqlite3Isdigit(*z) ){ |
| 432 e = e<10000 ? (e*10 + (*z - '0')) : 10000; |
| 433 z+=incr; |
| 434 eValid = 1; |
| 435 } |
| 436 } |
| 437 |
| 438 /* skip trailing spaces */ |
| 439 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; |
| 440 |
| 441 do_atof_calc: |
| 442 /* adjust exponent by d, and update sign */ |
| 443 e = (e*esign) + d; |
| 444 if( e<0 ) { |
| 445 esign = -1; |
| 446 e *= -1; |
| 447 } else { |
| 448 esign = 1; |
| 449 } |
| 450 |
| 451 if( s==0 ) { |
| 452 /* In the IEEE 754 standard, zero is signed. */ |
| 453 result = sign<0 ? -(double)0 : (double)0; |
| 454 } else { |
| 455 /* Attempt to reduce exponent. |
| 456 ** |
| 457 ** Branches that are not required for the correct answer but which only |
| 458 ** help to obtain the correct answer faster are marked with special |
| 459 ** comments, as a hint to the mutation tester. |
| 460 */ |
| 461 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/ |
| 462 if( esign>0 ){ |
| 463 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/ |
| 464 s *= 10; |
| 465 }else{ |
| 466 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/ |
| 467 s /= 10; |
| 468 } |
| 469 e--; |
| 470 } |
| 471 |
| 472 /* adjust the sign of significand */ |
| 473 s = sign<0 ? -s : s; |
| 474 |
| 475 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/ |
| 476 result = (double)s; |
| 477 }else{ |
| 478 LONGDOUBLE_TYPE scale = 1.0; |
| 479 /* attempt to handle extremely small/large numbers better */ |
| 480 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/ |
| 481 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/ |
| 482 while( e%308 ) { scale *= 1.0e+1; e -= 1; } |
| 483 if( esign<0 ){ |
| 484 result = s / scale; |
| 485 result /= 1.0e+308; |
| 486 }else{ |
| 487 result = s * scale; |
| 488 result *= 1.0e+308; |
| 489 } |
| 490 }else{ assert( e>=342 ); |
| 491 if( esign<0 ){ |
| 492 result = 0.0*s; |
| 493 }else{ |
| 494 result = 1e308*1e308*s; /* Infinity */ |
| 495 } |
| 496 } |
| 497 }else{ |
| 498 /* 1.0e+22 is the largest power of 10 than can be |
| 499 ** represented exactly. */ |
| 500 while( e%22 ) { scale *= 1.0e+1; e -= 1; } |
| 501 while( e>0 ) { scale *= 1.0e+22; e -= 22; } |
| 502 if( esign<0 ){ |
| 503 result = s / scale; |
| 504 }else{ |
| 505 result = s * scale; |
| 506 } |
| 507 } |
| 508 } |
| 509 } |
| 510 |
| 511 /* store the result */ |
| 512 *pResult = result; |
| 513 |
| 514 /* return true if number and no extra non-whitespace chracters after */ |
| 515 return z==zEnd && nDigits>0 && eValid && nonNum==0; |
| 516 #else |
| 517 return !sqlite3Atoi64(z, pResult, length, enc); |
| 518 #endif /* SQLITE_OMIT_FLOATING_POINT */ |
| 519 } |
| 520 |
| 521 /* |
| 522 ** Compare the 19-character string zNum against the text representation |
| 523 ** value 2^63: 9223372036854775808. Return negative, zero, or positive |
| 524 ** if zNum is less than, equal to, or greater than the string. |
| 525 ** Note that zNum must contain exactly 19 characters. |
| 526 ** |
| 527 ** Unlike memcmp() this routine is guaranteed to return the difference |
| 528 ** in the values of the last digit if the only difference is in the |
| 529 ** last digit. So, for example, |
| 530 ** |
| 531 ** compare2pow63("9223372036854775800", 1) |
| 532 ** |
| 533 ** will return -8. |
| 534 */ |
| 535 static int compare2pow63(const char *zNum, int incr){ |
| 536 int c = 0; |
| 537 int i; |
| 538 /* 012345678901234567 */ |
| 539 const char *pow63 = "922337203685477580"; |
| 540 for(i=0; c==0 && i<18; i++){ |
| 541 c = (zNum[i*incr]-pow63[i])*10; |
| 542 } |
| 543 if( c==0 ){ |
| 544 c = zNum[18*incr] - '8'; |
| 545 testcase( c==(-1) ); |
| 546 testcase( c==0 ); |
| 547 testcase( c==(+1) ); |
| 548 } |
| 549 return c; |
| 550 } |
| 551 |
| 552 /* |
| 553 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This |
| 554 ** routine does *not* accept hexadecimal notation. |
| 555 ** |
| 556 ** If the zNum value is representable as a 64-bit twos-complement |
| 557 ** integer, then write that value into *pNum and return 0. |
| 558 ** |
| 559 ** If zNum is exactly 9223372036854775808, return 2. This special |
| 560 ** case is broken out because while 9223372036854775808 cannot be a |
| 561 ** signed 64-bit integer, its negative -9223372036854775808 can be. |
| 562 ** |
| 563 ** If zNum is too big for a 64-bit integer and is not |
| 564 ** 9223372036854775808 or if zNum contains any non-numeric text, |
| 565 ** then return 1. |
| 566 ** |
| 567 ** length is the number of bytes in the string (bytes, not characters). |
| 568 ** The string is not necessarily zero-terminated. The encoding is |
| 569 ** given by enc. |
| 570 */ |
| 571 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ |
| 572 int incr; |
| 573 u64 u = 0; |
| 574 int neg = 0; /* assume positive */ |
| 575 int i; |
| 576 int c = 0; |
| 577 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ |
| 578 const char *zStart; |
| 579 const char *zEnd = zNum + length; |
| 580 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); |
| 581 if( enc==SQLITE_UTF8 ){ |
| 582 incr = 1; |
| 583 }else{ |
| 584 incr = 2; |
| 585 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); |
| 586 for(i=3-enc; i<length && zNum[i]==0; i+=2){} |
| 587 nonNum = i<length; |
| 588 zEnd = &zNum[i^1]; |
| 589 zNum += (enc&1); |
| 590 } |
| 591 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; |
| 592 if( zNum<zEnd ){ |
| 593 if( *zNum=='-' ){ |
| 594 neg = 1; |
| 595 zNum+=incr; |
| 596 }else if( *zNum=='+' ){ |
| 597 zNum+=incr; |
| 598 } |
| 599 } |
| 600 zStart = zNum; |
| 601 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ |
| 602 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ |
| 603 u = u*10 + c - '0'; |
| 604 } |
| 605 if( u>LARGEST_INT64 ){ |
| 606 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; |
| 607 }else if( neg ){ |
| 608 *pNum = -(i64)u; |
| 609 }else{ |
| 610 *pNum = (i64)u; |
| 611 } |
| 612 testcase( i==18 ); |
| 613 testcase( i==19 ); |
| 614 testcase( i==20 ); |
| 615 if( &zNum[i]<zEnd /* Extra bytes at the end */ |
| 616 || (i==0 && zStart==zNum) /* No digits */ |
| 617 || i>19*incr /* Too many digits */ |
| 618 || nonNum /* UTF16 with high-order bytes non-zero */ |
| 619 ){ |
| 620 /* zNum is empty or contains non-numeric text or is longer |
| 621 ** than 19 digits (thus guaranteeing that it is too large) */ |
| 622 return 1; |
| 623 }else if( i<19*incr ){ |
| 624 /* Less than 19 digits, so we know that it fits in 64 bits */ |
| 625 assert( u<=LARGEST_INT64 ); |
| 626 return 0; |
| 627 }else{ |
| 628 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ |
| 629 c = compare2pow63(zNum, incr); |
| 630 if( c<0 ){ |
| 631 /* zNum is less than 9223372036854775808 so it fits */ |
| 632 assert( u<=LARGEST_INT64 ); |
| 633 return 0; |
| 634 }else if( c>0 ){ |
| 635 /* zNum is greater than 9223372036854775808 so it overflows */ |
| 636 return 1; |
| 637 }else{ |
| 638 /* zNum is exactly 9223372036854775808. Fits if negative. The |
| 639 ** special case 2 overflow if positive */ |
| 640 assert( u-1==LARGEST_INT64 ); |
| 641 return neg ? 0 : 2; |
| 642 } |
| 643 } |
| 644 } |
| 645 |
| 646 /* |
| 647 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, |
| 648 ** into a 64-bit signed integer. This routine accepts hexadecimal literals, |
| 649 ** whereas sqlite3Atoi64() does not. |
| 650 ** |
| 651 ** Returns: |
| 652 ** |
| 653 ** 0 Successful transformation. Fits in a 64-bit signed integer. |
| 654 ** 1 Integer too large for a 64-bit signed integer or is malformed |
| 655 ** 2 Special case of 9223372036854775808 |
| 656 */ |
| 657 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ |
| 658 #ifndef SQLITE_OMIT_HEX_INTEGER |
| 659 if( z[0]=='0' |
| 660 && (z[1]=='x' || z[1]=='X') |
| 661 ){ |
| 662 u64 u = 0; |
| 663 int i, k; |
| 664 for(i=2; z[i]=='0'; i++){} |
| 665 for(k=i; sqlite3Isxdigit(z[k]); k++){ |
| 666 u = u*16 + sqlite3HexToInt(z[k]); |
| 667 } |
| 668 memcpy(pOut, &u, 8); |
| 669 return (z[k]==0 && k-i<=16) ? 0 : 1; |
| 670 }else |
| 671 #endif /* SQLITE_OMIT_HEX_INTEGER */ |
| 672 { |
| 673 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); |
| 674 } |
| 675 } |
| 676 |
| 677 /* |
| 678 ** If zNum represents an integer that will fit in 32-bits, then set |
| 679 ** *pValue to that integer and return true. Otherwise return false. |
| 680 ** |
| 681 ** This routine accepts both decimal and hexadecimal notation for integers. |
| 682 ** |
| 683 ** Any non-numeric characters that following zNum are ignored. |
| 684 ** This is different from sqlite3Atoi64() which requires the |
| 685 ** input number to be zero-terminated. |
| 686 */ |
| 687 int sqlite3GetInt32(const char *zNum, int *pValue){ |
| 688 sqlite_int64 v = 0; |
| 689 int i, c; |
| 690 int neg = 0; |
| 691 if( zNum[0]=='-' ){ |
| 692 neg = 1; |
| 693 zNum++; |
| 694 }else if( zNum[0]=='+' ){ |
| 695 zNum++; |
| 696 } |
| 697 #ifndef SQLITE_OMIT_HEX_INTEGER |
| 698 else if( zNum[0]=='0' |
| 699 && (zNum[1]=='x' || zNum[1]=='X') |
| 700 && sqlite3Isxdigit(zNum[2]) |
| 701 ){ |
| 702 u32 u = 0; |
| 703 zNum += 2; |
| 704 while( zNum[0]=='0' ) zNum++; |
| 705 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ |
| 706 u = u*16 + sqlite3HexToInt(zNum[i]); |
| 707 } |
| 708 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ |
| 709 memcpy(pValue, &u, 4); |
| 710 return 1; |
| 711 }else{ |
| 712 return 0; |
| 713 } |
| 714 } |
| 715 #endif |
| 716 while( zNum[0]=='0' ) zNum++; |
| 717 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ |
| 718 v = v*10 + c; |
| 719 } |
| 720 |
| 721 /* The longest decimal representation of a 32 bit integer is 10 digits: |
| 722 ** |
| 723 ** 1234567890 |
| 724 ** 2^31 -> 2147483648 |
| 725 */ |
| 726 testcase( i==10 ); |
| 727 if( i>10 ){ |
| 728 return 0; |
| 729 } |
| 730 testcase( v-neg==2147483647 ); |
| 731 if( v-neg>2147483647 ){ |
| 732 return 0; |
| 733 } |
| 734 if( neg ){ |
| 735 v = -v; |
| 736 } |
| 737 *pValue = (int)v; |
| 738 return 1; |
| 739 } |
| 740 |
| 741 /* |
| 742 ** Return a 32-bit integer value extracted from a string. If the |
| 743 ** string is not an integer, just return 0. |
| 744 */ |
| 745 int sqlite3Atoi(const char *z){ |
| 746 int x = 0; |
| 747 if( z ) sqlite3GetInt32(z, &x); |
| 748 return x; |
| 749 } |
| 750 |
| 751 /* |
| 752 ** The variable-length integer encoding is as follows: |
| 753 ** |
| 754 ** KEY: |
| 755 ** A = 0xxxxxxx 7 bits of data and one flag bit |
| 756 ** B = 1xxxxxxx 7 bits of data and one flag bit |
| 757 ** C = xxxxxxxx 8 bits of data |
| 758 ** |
| 759 ** 7 bits - A |
| 760 ** 14 bits - BA |
| 761 ** 21 bits - BBA |
| 762 ** 28 bits - BBBA |
| 763 ** 35 bits - BBBBA |
| 764 ** 42 bits - BBBBBA |
| 765 ** 49 bits - BBBBBBA |
| 766 ** 56 bits - BBBBBBBA |
| 767 ** 64 bits - BBBBBBBBC |
| 768 */ |
| 769 |
| 770 /* |
| 771 ** Write a 64-bit variable-length integer to memory starting at p[0]. |
| 772 ** The length of data write will be between 1 and 9 bytes. The number |
| 773 ** of bytes written is returned. |
| 774 ** |
| 775 ** A variable-length integer consists of the lower 7 bits of each byte |
| 776 ** for all bytes that have the 8th bit set and one byte with the 8th |
| 777 ** bit clear. Except, if we get to the 9th byte, it stores the full |
| 778 ** 8 bits and is the last byte. |
| 779 */ |
| 780 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ |
| 781 int i, j, n; |
| 782 u8 buf[10]; |
| 783 if( v & (((u64)0xff000000)<<32) ){ |
| 784 p[8] = (u8)v; |
| 785 v >>= 8; |
| 786 for(i=7; i>=0; i--){ |
| 787 p[i] = (u8)((v & 0x7f) | 0x80); |
| 788 v >>= 7; |
| 789 } |
| 790 return 9; |
| 791 } |
| 792 n = 0; |
| 793 do{ |
| 794 buf[n++] = (u8)((v & 0x7f) | 0x80); |
| 795 v >>= 7; |
| 796 }while( v!=0 ); |
| 797 buf[0] &= 0x7f; |
| 798 assert( n<=9 ); |
| 799 for(i=0, j=n-1; j>=0; j--, i++){ |
| 800 p[i] = buf[j]; |
| 801 } |
| 802 return n; |
| 803 } |
| 804 int sqlite3PutVarint(unsigned char *p, u64 v){ |
| 805 if( v<=0x7f ){ |
| 806 p[0] = v&0x7f; |
| 807 return 1; |
| 808 } |
| 809 if( v<=0x3fff ){ |
| 810 p[0] = ((v>>7)&0x7f)|0x80; |
| 811 p[1] = v&0x7f; |
| 812 return 2; |
| 813 } |
| 814 return putVarint64(p,v); |
| 815 } |
| 816 |
| 817 /* |
| 818 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants |
| 819 ** are defined here rather than simply putting the constant expressions |
| 820 ** inline in order to work around bugs in the RVT compiler. |
| 821 ** |
| 822 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f |
| 823 ** |
| 824 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 |
| 825 */ |
| 826 #define SLOT_2_0 0x001fc07f |
| 827 #define SLOT_4_2_0 0xf01fc07f |
| 828 |
| 829 |
| 830 /* |
| 831 ** Read a 64-bit variable-length integer from memory starting at p[0]. |
| 832 ** Return the number of bytes read. The value is stored in *v. |
| 833 */ |
| 834 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ |
| 835 u32 a,b,s; |
| 836 |
| 837 a = *p; |
| 838 /* a: p0 (unmasked) */ |
| 839 if (!(a&0x80)) |
| 840 { |
| 841 *v = a; |
| 842 return 1; |
| 843 } |
| 844 |
| 845 p++; |
| 846 b = *p; |
| 847 /* b: p1 (unmasked) */ |
| 848 if (!(b&0x80)) |
| 849 { |
| 850 a &= 0x7f; |
| 851 a = a<<7; |
| 852 a |= b; |
| 853 *v = a; |
| 854 return 2; |
| 855 } |
| 856 |
| 857 /* Verify that constants are precomputed correctly */ |
| 858 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); |
| 859 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); |
| 860 |
| 861 p++; |
| 862 a = a<<14; |
| 863 a |= *p; |
| 864 /* a: p0<<14 | p2 (unmasked) */ |
| 865 if (!(a&0x80)) |
| 866 { |
| 867 a &= SLOT_2_0; |
| 868 b &= 0x7f; |
| 869 b = b<<7; |
| 870 a |= b; |
| 871 *v = a; |
| 872 return 3; |
| 873 } |
| 874 |
| 875 /* CSE1 from below */ |
| 876 a &= SLOT_2_0; |
| 877 p++; |
| 878 b = b<<14; |
| 879 b |= *p; |
| 880 /* b: p1<<14 | p3 (unmasked) */ |
| 881 if (!(b&0x80)) |
| 882 { |
| 883 b &= SLOT_2_0; |
| 884 /* moved CSE1 up */ |
| 885 /* a &= (0x7f<<14)|(0x7f); */ |
| 886 a = a<<7; |
| 887 a |= b; |
| 888 *v = a; |
| 889 return 4; |
| 890 } |
| 891 |
| 892 /* a: p0<<14 | p2 (masked) */ |
| 893 /* b: p1<<14 | p3 (unmasked) */ |
| 894 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
| 895 /* moved CSE1 up */ |
| 896 /* a &= (0x7f<<14)|(0x7f); */ |
| 897 b &= SLOT_2_0; |
| 898 s = a; |
| 899 /* s: p0<<14 | p2 (masked) */ |
| 900 |
| 901 p++; |
| 902 a = a<<14; |
| 903 a |= *p; |
| 904 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ |
| 905 if (!(a&0x80)) |
| 906 { |
| 907 /* we can skip these cause they were (effectively) done above |
| 908 ** while calculating s */ |
| 909 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ |
| 910 /* b &= (0x7f<<14)|(0x7f); */ |
| 911 b = b<<7; |
| 912 a |= b; |
| 913 s = s>>18; |
| 914 *v = ((u64)s)<<32 | a; |
| 915 return 5; |
| 916 } |
| 917 |
| 918 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
| 919 s = s<<7; |
| 920 s |= b; |
| 921 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
| 922 |
| 923 p++; |
| 924 b = b<<14; |
| 925 b |= *p; |
| 926 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ |
| 927 if (!(b&0x80)) |
| 928 { |
| 929 /* we can skip this cause it was (effectively) done above in calc'ing s */ |
| 930 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ |
| 931 a &= SLOT_2_0; |
| 932 a = a<<7; |
| 933 a |= b; |
| 934 s = s>>18; |
| 935 *v = ((u64)s)<<32 | a; |
| 936 return 6; |
| 937 } |
| 938 |
| 939 p++; |
| 940 a = a<<14; |
| 941 a |= *p; |
| 942 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ |
| 943 if (!(a&0x80)) |
| 944 { |
| 945 a &= SLOT_4_2_0; |
| 946 b &= SLOT_2_0; |
| 947 b = b<<7; |
| 948 a |= b; |
| 949 s = s>>11; |
| 950 *v = ((u64)s)<<32 | a; |
| 951 return 7; |
| 952 } |
| 953 |
| 954 /* CSE2 from below */ |
| 955 a &= SLOT_2_0; |
| 956 p++; |
| 957 b = b<<14; |
| 958 b |= *p; |
| 959 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ |
| 960 if (!(b&0x80)) |
| 961 { |
| 962 b &= SLOT_4_2_0; |
| 963 /* moved CSE2 up */ |
| 964 /* a &= (0x7f<<14)|(0x7f); */ |
| 965 a = a<<7; |
| 966 a |= b; |
| 967 s = s>>4; |
| 968 *v = ((u64)s)<<32 | a; |
| 969 return 8; |
| 970 } |
| 971 |
| 972 p++; |
| 973 a = a<<15; |
| 974 a |= *p; |
| 975 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ |
| 976 |
| 977 /* moved CSE2 up */ |
| 978 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ |
| 979 b &= SLOT_2_0; |
| 980 b = b<<8; |
| 981 a |= b; |
| 982 |
| 983 s = s<<4; |
| 984 b = p[-4]; |
| 985 b &= 0x7f; |
| 986 b = b>>3; |
| 987 s |= b; |
| 988 |
| 989 *v = ((u64)s)<<32 | a; |
| 990 |
| 991 return 9; |
| 992 } |
| 993 |
| 994 /* |
| 995 ** Read a 32-bit variable-length integer from memory starting at p[0]. |
| 996 ** Return the number of bytes read. The value is stored in *v. |
| 997 ** |
| 998 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned |
| 999 ** integer, then set *v to 0xffffffff. |
| 1000 ** |
| 1001 ** A MACRO version, getVarint32, is provided which inlines the |
| 1002 ** single-byte case. All code should use the MACRO version as |
| 1003 ** this function assumes the single-byte case has already been handled. |
| 1004 */ |
| 1005 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ |
| 1006 u32 a,b; |
| 1007 |
| 1008 /* The 1-byte case. Overwhelmingly the most common. Handled inline |
| 1009 ** by the getVarin32() macro */ |
| 1010 a = *p; |
| 1011 /* a: p0 (unmasked) */ |
| 1012 #ifndef getVarint32 |
| 1013 if (!(a&0x80)) |
| 1014 { |
| 1015 /* Values between 0 and 127 */ |
| 1016 *v = a; |
| 1017 return 1; |
| 1018 } |
| 1019 #endif |
| 1020 |
| 1021 /* The 2-byte case */ |
| 1022 p++; |
| 1023 b = *p; |
| 1024 /* b: p1 (unmasked) */ |
| 1025 if (!(b&0x80)) |
| 1026 { |
| 1027 /* Values between 128 and 16383 */ |
| 1028 a &= 0x7f; |
| 1029 a = a<<7; |
| 1030 *v = a | b; |
| 1031 return 2; |
| 1032 } |
| 1033 |
| 1034 /* The 3-byte case */ |
| 1035 p++; |
| 1036 a = a<<14; |
| 1037 a |= *p; |
| 1038 /* a: p0<<14 | p2 (unmasked) */ |
| 1039 if (!(a&0x80)) |
| 1040 { |
| 1041 /* Values between 16384 and 2097151 */ |
| 1042 a &= (0x7f<<14)|(0x7f); |
| 1043 b &= 0x7f; |
| 1044 b = b<<7; |
| 1045 *v = a | b; |
| 1046 return 3; |
| 1047 } |
| 1048 |
| 1049 /* A 32-bit varint is used to store size information in btrees. |
| 1050 ** Objects are rarely larger than 2MiB limit of a 3-byte varint. |
| 1051 ** A 3-byte varint is sufficient, for example, to record the size |
| 1052 ** of a 1048569-byte BLOB or string. |
| 1053 ** |
| 1054 ** We only unroll the first 1-, 2-, and 3- byte cases. The very |
| 1055 ** rare larger cases can be handled by the slower 64-bit varint |
| 1056 ** routine. |
| 1057 */ |
| 1058 #if 1 |
| 1059 { |
| 1060 u64 v64; |
| 1061 u8 n; |
| 1062 |
| 1063 p -= 2; |
| 1064 n = sqlite3GetVarint(p, &v64); |
| 1065 assert( n>3 && n<=9 ); |
| 1066 if( (v64 & SQLITE_MAX_U32)!=v64 ){ |
| 1067 *v = 0xffffffff; |
| 1068 }else{ |
| 1069 *v = (u32)v64; |
| 1070 } |
| 1071 return n; |
| 1072 } |
| 1073 |
| 1074 #else |
| 1075 /* For following code (kept for historical record only) shows an |
| 1076 ** unrolling for the 3- and 4-byte varint cases. This code is |
| 1077 ** slightly faster, but it is also larger and much harder to test. |
| 1078 */ |
| 1079 p++; |
| 1080 b = b<<14; |
| 1081 b |= *p; |
| 1082 /* b: p1<<14 | p3 (unmasked) */ |
| 1083 if (!(b&0x80)) |
| 1084 { |
| 1085 /* Values between 2097152 and 268435455 */ |
| 1086 b &= (0x7f<<14)|(0x7f); |
| 1087 a &= (0x7f<<14)|(0x7f); |
| 1088 a = a<<7; |
| 1089 *v = a | b; |
| 1090 return 4; |
| 1091 } |
| 1092 |
| 1093 p++; |
| 1094 a = a<<14; |
| 1095 a |= *p; |
| 1096 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ |
| 1097 if (!(a&0x80)) |
| 1098 { |
| 1099 /* Values between 268435456 and 34359738367 */ |
| 1100 a &= SLOT_4_2_0; |
| 1101 b &= SLOT_4_2_0; |
| 1102 b = b<<7; |
| 1103 *v = a | b; |
| 1104 return 5; |
| 1105 } |
| 1106 |
| 1107 /* We can only reach this point when reading a corrupt database |
| 1108 ** file. In that case we are not in any hurry. Use the (relatively |
| 1109 ** slow) general-purpose sqlite3GetVarint() routine to extract the |
| 1110 ** value. */ |
| 1111 { |
| 1112 u64 v64; |
| 1113 u8 n; |
| 1114 |
| 1115 p -= 4; |
| 1116 n = sqlite3GetVarint(p, &v64); |
| 1117 assert( n>5 && n<=9 ); |
| 1118 *v = (u32)v64; |
| 1119 return n; |
| 1120 } |
| 1121 #endif |
| 1122 } |
| 1123 |
| 1124 /* |
| 1125 ** Return the number of bytes that will be needed to store the given |
| 1126 ** 64-bit integer. |
| 1127 */ |
| 1128 int sqlite3VarintLen(u64 v){ |
| 1129 int i; |
| 1130 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); } |
| 1131 return i; |
| 1132 } |
| 1133 |
| 1134 |
| 1135 /* |
| 1136 ** Read or write a four-byte big-endian integer value. |
| 1137 */ |
| 1138 u32 sqlite3Get4byte(const u8 *p){ |
| 1139 #if SQLITE_BYTEORDER==4321 |
| 1140 u32 x; |
| 1141 memcpy(&x,p,4); |
| 1142 return x; |
| 1143 #elif SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000) |
| 1144 u32 x; |
| 1145 memcpy(&x,p,4); |
| 1146 return __builtin_bswap32(x); |
| 1147 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 |
| 1148 u32 x; |
| 1149 memcpy(&x,p,4); |
| 1150 return _byteswap_ulong(x); |
| 1151 #else |
| 1152 testcase( p[0]&0x80 ); |
| 1153 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; |
| 1154 #endif |
| 1155 } |
| 1156 void sqlite3Put4byte(unsigned char *p, u32 v){ |
| 1157 #if SQLITE_BYTEORDER==4321 |
| 1158 memcpy(p,&v,4); |
| 1159 #elif SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000) |
| 1160 u32 x = __builtin_bswap32(v); |
| 1161 memcpy(p,&x,4); |
| 1162 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 |
| 1163 u32 x = _byteswap_ulong(v); |
| 1164 memcpy(p,&x,4); |
| 1165 #else |
| 1166 p[0] = (u8)(v>>24); |
| 1167 p[1] = (u8)(v>>16); |
| 1168 p[2] = (u8)(v>>8); |
| 1169 p[3] = (u8)v; |
| 1170 #endif |
| 1171 } |
| 1172 |
| 1173 |
| 1174 |
| 1175 /* |
| 1176 ** Translate a single byte of Hex into an integer. |
| 1177 ** This routine only works if h really is a valid hexadecimal |
| 1178 ** character: 0..9a..fA..F |
| 1179 */ |
| 1180 u8 sqlite3HexToInt(int h){ |
| 1181 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); |
| 1182 #ifdef SQLITE_ASCII |
| 1183 h += 9*(1&(h>>6)); |
| 1184 #endif |
| 1185 #ifdef SQLITE_EBCDIC |
| 1186 h += 9*(1&~(h>>4)); |
| 1187 #endif |
| 1188 return (u8)(h & 0xf); |
| 1189 } |
| 1190 |
| 1191 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) |
| 1192 /* |
| 1193 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary |
| 1194 ** value. Return a pointer to its binary value. Space to hold the |
| 1195 ** binary value has been obtained from malloc and must be freed by |
| 1196 ** the calling routine. |
| 1197 */ |
| 1198 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ |
| 1199 char *zBlob; |
| 1200 int i; |
| 1201 |
| 1202 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); |
| 1203 n--; |
| 1204 if( zBlob ){ |
| 1205 for(i=0; i<n; i+=2){ |
| 1206 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); |
| 1207 } |
| 1208 zBlob[i/2] = 0; |
| 1209 } |
| 1210 return zBlob; |
| 1211 } |
| 1212 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ |
| 1213 |
| 1214 /* |
| 1215 ** Log an error that is an API call on a connection pointer that should |
| 1216 ** not have been used. The "type" of connection pointer is given as the |
| 1217 ** argument. The zType is a word like "NULL" or "closed" or "invalid". |
| 1218 */ |
| 1219 static void logBadConnection(const char *zType){ |
| 1220 sqlite3_log(SQLITE_MISUSE, |
| 1221 "API call with %s database connection pointer", |
| 1222 zType |
| 1223 ); |
| 1224 } |
| 1225 |
| 1226 /* |
| 1227 ** Check to make sure we have a valid db pointer. This test is not |
| 1228 ** foolproof but it does provide some measure of protection against |
| 1229 ** misuse of the interface such as passing in db pointers that are |
| 1230 ** NULL or which have been previously closed. If this routine returns |
| 1231 ** 1 it means that the db pointer is valid and 0 if it should not be |
| 1232 ** dereferenced for any reason. The calling function should invoke |
| 1233 ** SQLITE_MISUSE immediately. |
| 1234 ** |
| 1235 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for |
| 1236 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to |
| 1237 ** open properly and is not fit for general use but which can be |
| 1238 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). |
| 1239 */ |
| 1240 int sqlite3SafetyCheckOk(sqlite3 *db){ |
| 1241 u32 magic; |
| 1242 if( db==0 ){ |
| 1243 logBadConnection("NULL"); |
| 1244 return 0; |
| 1245 } |
| 1246 magic = db->magic; |
| 1247 if( magic!=SQLITE_MAGIC_OPEN ){ |
| 1248 if( sqlite3SafetyCheckSickOrOk(db) ){ |
| 1249 testcase( sqlite3GlobalConfig.xLog!=0 ); |
| 1250 logBadConnection("unopened"); |
| 1251 } |
| 1252 return 0; |
| 1253 }else{ |
| 1254 return 1; |
| 1255 } |
| 1256 } |
| 1257 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ |
| 1258 u32 magic; |
| 1259 magic = db->magic; |
| 1260 if( magic!=SQLITE_MAGIC_SICK && |
| 1261 magic!=SQLITE_MAGIC_OPEN && |
| 1262 magic!=SQLITE_MAGIC_BUSY ){ |
| 1263 testcase( sqlite3GlobalConfig.xLog!=0 ); |
| 1264 logBadConnection("invalid"); |
| 1265 return 0; |
| 1266 }else{ |
| 1267 return 1; |
| 1268 } |
| 1269 } |
| 1270 |
| 1271 /* |
| 1272 ** Attempt to add, substract, or multiply the 64-bit signed value iB against |
| 1273 ** the other 64-bit signed integer at *pA and store the result in *pA. |
| 1274 ** Return 0 on success. Or if the operation would have resulted in an |
| 1275 ** overflow, leave *pA unchanged and return 1. |
| 1276 */ |
| 1277 int sqlite3AddInt64(i64 *pA, i64 iB){ |
| 1278 #if GCC_VERSION>=5004000 || CLANG_VERSION>=4000000 |
| 1279 return __builtin_add_overflow(*pA, iB, pA); |
| 1280 #else |
| 1281 i64 iA = *pA; |
| 1282 testcase( iA==0 ); testcase( iA==1 ); |
| 1283 testcase( iB==-1 ); testcase( iB==0 ); |
| 1284 if( iB>=0 ){ |
| 1285 testcase( iA>0 && LARGEST_INT64 - iA == iB ); |
| 1286 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); |
| 1287 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; |
| 1288 }else{ |
| 1289 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); |
| 1290 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); |
| 1291 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; |
| 1292 } |
| 1293 *pA += iB; |
| 1294 return 0; |
| 1295 #endif |
| 1296 } |
| 1297 int sqlite3SubInt64(i64 *pA, i64 iB){ |
| 1298 #if GCC_VERSION>=5004000 || CLANG_VERSION>=4000000 |
| 1299 return __builtin_sub_overflow(*pA, iB, pA); |
| 1300 #else |
| 1301 testcase( iB==SMALLEST_INT64+1 ); |
| 1302 if( iB==SMALLEST_INT64 ){ |
| 1303 testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); |
| 1304 if( (*pA)>=0 ) return 1; |
| 1305 *pA -= iB; |
| 1306 return 0; |
| 1307 }else{ |
| 1308 return sqlite3AddInt64(pA, -iB); |
| 1309 } |
| 1310 #endif |
| 1311 } |
| 1312 int sqlite3MulInt64(i64 *pA, i64 iB){ |
| 1313 #if GCC_VERSION>=5004000 || CLANG_VERSION>=4000000 |
| 1314 return __builtin_mul_overflow(*pA, iB, pA); |
| 1315 #else |
| 1316 i64 iA = *pA; |
| 1317 if( iB>0 ){ |
| 1318 if( iA>LARGEST_INT64/iB ) return 1; |
| 1319 if( iA<SMALLEST_INT64/iB ) return 1; |
| 1320 }else if( iB<0 ){ |
| 1321 if( iA>0 ){ |
| 1322 if( iB<SMALLEST_INT64/iA ) return 1; |
| 1323 }else if( iA<0 ){ |
| 1324 if( iB==SMALLEST_INT64 ) return 1; |
| 1325 if( iA==SMALLEST_INT64 ) return 1; |
| 1326 if( -iA>LARGEST_INT64/-iB ) return 1; |
| 1327 } |
| 1328 } |
| 1329 *pA = iA*iB; |
| 1330 return 0; |
| 1331 #endif |
| 1332 } |
| 1333 |
| 1334 /* |
| 1335 ** Compute the absolute value of a 32-bit signed integer, of possible. Or |
| 1336 ** if the integer has a value of -2147483648, return +2147483647 |
| 1337 */ |
| 1338 int sqlite3AbsInt32(int x){ |
| 1339 if( x>=0 ) return x; |
| 1340 if( x==(int)0x80000000 ) return 0x7fffffff; |
| 1341 return -x; |
| 1342 } |
| 1343 |
| 1344 #ifdef SQLITE_ENABLE_8_3_NAMES |
| 1345 /* |
| 1346 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database |
| 1347 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and |
| 1348 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than |
| 1349 ** three characters, then shorten the suffix on z[] to be the last three |
| 1350 ** characters of the original suffix. |
| 1351 ** |
| 1352 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always |
| 1353 ** do the suffix shortening regardless of URI parameter. |
| 1354 ** |
| 1355 ** Examples: |
| 1356 ** |
| 1357 ** test.db-journal => test.nal |
| 1358 ** test.db-wal => test.wal |
| 1359 ** test.db-shm => test.shm |
| 1360 ** test.db-mj7f3319fa => test.9fa |
| 1361 */ |
| 1362 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ |
| 1363 #if SQLITE_ENABLE_8_3_NAMES<2 |
| 1364 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) |
| 1365 #endif |
| 1366 { |
| 1367 int i, sz; |
| 1368 sz = sqlite3Strlen30(z); |
| 1369 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} |
| 1370 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); |
| 1371 } |
| 1372 } |
| 1373 #endif |
| 1374 |
| 1375 /* |
| 1376 ** Find (an approximate) sum of two LogEst values. This computation is |
| 1377 ** not a simple "+" operator because LogEst is stored as a logarithmic |
| 1378 ** value. |
| 1379 ** |
| 1380 */ |
| 1381 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ |
| 1382 static const unsigned char x[] = { |
| 1383 10, 10, /* 0,1 */ |
| 1384 9, 9, /* 2,3 */ |
| 1385 8, 8, /* 4,5 */ |
| 1386 7, 7, 7, /* 6,7,8 */ |
| 1387 6, 6, 6, /* 9,10,11 */ |
| 1388 5, 5, 5, /* 12-14 */ |
| 1389 4, 4, 4, 4, /* 15-18 */ |
| 1390 3, 3, 3, 3, 3, 3, /* 19-24 */ |
| 1391 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ |
| 1392 }; |
| 1393 if( a>=b ){ |
| 1394 if( a>b+49 ) return a; |
| 1395 if( a>b+31 ) return a+1; |
| 1396 return a+x[a-b]; |
| 1397 }else{ |
| 1398 if( b>a+49 ) return b; |
| 1399 if( b>a+31 ) return b+1; |
| 1400 return b+x[b-a]; |
| 1401 } |
| 1402 } |
| 1403 |
| 1404 /* |
| 1405 ** Convert an integer into a LogEst. In other words, compute an |
| 1406 ** approximation for 10*log2(x). |
| 1407 */ |
| 1408 LogEst sqlite3LogEst(u64 x){ |
| 1409 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; |
| 1410 LogEst y = 40; |
| 1411 if( x<8 ){ |
| 1412 if( x<2 ) return 0; |
| 1413 while( x<8 ){ y -= 10; x <<= 1; } |
| 1414 }else{ |
| 1415 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/ |
| 1416 while( x>15 ){ y += 10; x >>= 1; } |
| 1417 } |
| 1418 return a[x&7] + y - 10; |
| 1419 } |
| 1420 |
| 1421 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 1422 /* |
| 1423 ** Convert a double into a LogEst |
| 1424 ** In other words, compute an approximation for 10*log2(x). |
| 1425 */ |
| 1426 LogEst sqlite3LogEstFromDouble(double x){ |
| 1427 u64 a; |
| 1428 LogEst e; |
| 1429 assert( sizeof(x)==8 && sizeof(a)==8 ); |
| 1430 if( x<=1 ) return 0; |
| 1431 if( x<=2000000000 ) return sqlite3LogEst((u64)x); |
| 1432 memcpy(&a, &x, 8); |
| 1433 e = (a>>52) - 1022; |
| 1434 return e*10; |
| 1435 } |
| 1436 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 1437 |
| 1438 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ |
| 1439 defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \ |
| 1440 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) |
| 1441 /* |
| 1442 ** Convert a LogEst into an integer. |
| 1443 ** |
| 1444 ** Note that this routine is only used when one or more of various |
| 1445 ** non-standard compile-time options is enabled. |
| 1446 */ |
| 1447 u64 sqlite3LogEstToInt(LogEst x){ |
| 1448 u64 n; |
| 1449 n = x%10; |
| 1450 x /= 10; |
| 1451 if( n>=5 ) n -= 2; |
| 1452 else if( n>=1 ) n -= 1; |
| 1453 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \ |
| 1454 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS) |
| 1455 if( x>60 ) return (u64)LARGEST_INT64; |
| 1456 #else |
| 1457 /* If only SQLITE_ENABLE_STAT3_OR_STAT4 is on, then the largest input |
| 1458 ** possible to this routine is 310, resulting in a maximum x of 31 */ |
| 1459 assert( x<=60 ); |
| 1460 #endif |
| 1461 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x); |
| 1462 } |
| 1463 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */ |
| 1464 |
| 1465 /* |
| 1466 ** Add a new name/number pair to a VList. This might require that the |
| 1467 ** VList object be reallocated, so return the new VList. If an OOM |
| 1468 ** error occurs, the original VList returned and the |
| 1469 ** db->mallocFailed flag is set. |
| 1470 ** |
| 1471 ** A VList is really just an array of integers. To destroy a VList, |
| 1472 ** simply pass it to sqlite3DbFree(). |
| 1473 ** |
| 1474 ** The first integer is the number of integers allocated for the whole |
| 1475 ** VList. The second integer is the number of integers actually used. |
| 1476 ** Each name/number pair is encoded by subsequent groups of 3 or more |
| 1477 ** integers. |
| 1478 ** |
| 1479 ** Each name/number pair starts with two integers which are the numeric |
| 1480 ** value for the pair and the size of the name/number pair, respectively. |
| 1481 ** The text name overlays one or more following integers. The text name |
| 1482 ** is always zero-terminated. |
| 1483 ** |
| 1484 ** Conceptually: |
| 1485 ** |
| 1486 ** struct VList { |
| 1487 ** int nAlloc; // Number of allocated slots |
| 1488 ** int nUsed; // Number of used slots |
| 1489 ** struct VListEntry { |
| 1490 ** int iValue; // Value for this entry |
| 1491 ** int nSlot; // Slots used by this entry |
| 1492 ** // ... variable name goes here |
| 1493 ** } a[0]; |
| 1494 ** } |
| 1495 ** |
| 1496 ** During code generation, pointers to the variable names within the |
| 1497 ** VList are taken. When that happens, nAlloc is set to zero as an |
| 1498 ** indication that the VList may never again be enlarged, since the |
| 1499 ** accompanying realloc() would invalidate the pointers. |
| 1500 */ |
| 1501 VList *sqlite3VListAdd( |
| 1502 sqlite3 *db, /* The database connection used for malloc() */ |
| 1503 VList *pIn, /* The input VList. Might be NULL */ |
| 1504 const char *zName, /* Name of symbol to add */ |
| 1505 int nName, /* Bytes of text in zName */ |
| 1506 int iVal /* Value to associate with zName */ |
| 1507 ){ |
| 1508 int nInt; /* number of sizeof(int) objects needed for zName */ |
| 1509 char *z; /* Pointer to where zName will be stored */ |
| 1510 int i; /* Index in pIn[] where zName is stored */ |
| 1511 |
| 1512 nInt = nName/4 + 3; |
| 1513 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */ |
| 1514 if( pIn==0 || pIn[1]+nInt > pIn[0] ){ |
| 1515 /* Enlarge the allocation */ |
| 1516 int nAlloc = (pIn ? pIn[0]*2 : 10) + nInt; |
| 1517 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int)); |
| 1518 if( pOut==0 ) return pIn; |
| 1519 if( pIn==0 ) pOut[1] = 2; |
| 1520 pIn = pOut; |
| 1521 pIn[0] = nAlloc; |
| 1522 } |
| 1523 i = pIn[1]; |
| 1524 pIn[i] = iVal; |
| 1525 pIn[i+1] = nInt; |
| 1526 z = (char*)&pIn[i+2]; |
| 1527 pIn[1] = i+nInt; |
| 1528 assert( pIn[1]<=pIn[0] ); |
| 1529 memcpy(z, zName, nName); |
| 1530 z[nName] = 0; |
| 1531 return pIn; |
| 1532 } |
| 1533 |
| 1534 /* |
| 1535 ** Return a pointer to the name of a variable in the given VList that |
| 1536 ** has the value iVal. Or return a NULL if there is no such variable in |
| 1537 ** the list |
| 1538 */ |
| 1539 const char *sqlite3VListNumToName(VList *pIn, int iVal){ |
| 1540 int i, mx; |
| 1541 if( pIn==0 ) return 0; |
| 1542 mx = pIn[1]; |
| 1543 i = 2; |
| 1544 do{ |
| 1545 if( pIn[i]==iVal ) return (char*)&pIn[i+2]; |
| 1546 i += pIn[i+1]; |
| 1547 }while( i<mx ); |
| 1548 return 0; |
| 1549 } |
| 1550 |
| 1551 /* |
| 1552 ** Return the number of the variable named zName, if it is in VList. |
| 1553 ** or return 0 if there is no such variable. |
| 1554 */ |
| 1555 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){ |
| 1556 int i, mx; |
| 1557 if( pIn==0 ) return 0; |
| 1558 mx = pIn[1]; |
| 1559 i = 2; |
| 1560 do{ |
| 1561 const char *z = (const char*)&pIn[i+2]; |
| 1562 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i]; |
| 1563 i += pIn[i+1]; |
| 1564 }while( i<mx ); |
| 1565 return 0; |
| 1566 } |
OLD | NEW |