OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2010 August 28 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** Code for testing all sorts of SQLite interfaces. This code |
| 13 ** is not included in the SQLite library. |
| 14 */ |
| 15 |
| 16 #include "sqlite3.h" |
| 17 #if defined(INCLUDE_SQLITE_TCL_H) |
| 18 # include "sqlite_tcl.h" |
| 19 #else |
| 20 # include "tcl.h" |
| 21 #endif |
| 22 |
| 23 /* Solely for the UNUSED_PARAMETER() macro. */ |
| 24 #include "sqliteInt.h" |
| 25 |
| 26 #ifdef SQLITE_ENABLE_RTREE |
| 27 /* |
| 28 ** Type used to cache parameter information for the "circle" r-tree geometry |
| 29 ** callback. |
| 30 */ |
| 31 typedef struct Circle Circle; |
| 32 struct Circle { |
| 33 struct Box { |
| 34 double xmin; |
| 35 double xmax; |
| 36 double ymin; |
| 37 double ymax; |
| 38 } aBox[2]; |
| 39 double centerx; |
| 40 double centery; |
| 41 double radius; |
| 42 double mxArea; |
| 43 int eScoreType; |
| 44 }; |
| 45 |
| 46 /* |
| 47 ** Destructor function for Circle objects allocated by circle_geom(). |
| 48 */ |
| 49 static void circle_del(void *p){ |
| 50 sqlite3_free(p); |
| 51 } |
| 52 |
| 53 /* |
| 54 ** Implementation of "circle" r-tree geometry callback. |
| 55 */ |
| 56 static int circle_geom( |
| 57 sqlite3_rtree_geometry *p, |
| 58 int nCoord, |
| 59 sqlite3_rtree_dbl *aCoord, |
| 60 int *pRes |
| 61 ){ |
| 62 int i; /* Iterator variable */ |
| 63 Circle *pCircle; /* Structure defining circular region */ |
| 64 double xmin, xmax; /* X dimensions of box being tested */ |
| 65 double ymin, ymax; /* X dimensions of box being tested */ |
| 66 |
| 67 xmin = aCoord[0]; |
| 68 xmax = aCoord[1]; |
| 69 ymin = aCoord[2]; |
| 70 ymax = aCoord[3]; |
| 71 pCircle = (Circle *)p->pUser; |
| 72 if( pCircle==0 ){ |
| 73 /* If pUser is still 0, then the parameter values have not been tested |
| 74 ** for correctness or stored into a Circle structure yet. Do this now. */ |
| 75 |
| 76 /* This geometry callback is for use with a 2-dimensional r-tree table. |
| 77 ** Return an error if the table does not have exactly 2 dimensions. */ |
| 78 if( nCoord!=4 ) return SQLITE_ERROR; |
| 79 |
| 80 /* Test that the correct number of parameters (3) have been supplied, |
| 81 ** and that the parameters are in range (that the radius of the circle |
| 82 ** radius is greater than zero). */ |
| 83 if( p->nParam!=3 || p->aParam[2]<0.0 ) return SQLITE_ERROR; |
| 84 |
| 85 /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM |
| 86 ** if the allocation fails. */ |
| 87 pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle))); |
| 88 if( !pCircle ) return SQLITE_NOMEM; |
| 89 p->xDelUser = circle_del; |
| 90 |
| 91 /* Record the center and radius of the circular region. One way that |
| 92 ** tested bounding boxes that intersect the circular region are detected |
| 93 ** is by testing if each corner of the bounding box lies within radius |
| 94 ** units of the center of the circle. */ |
| 95 pCircle->centerx = p->aParam[0]; |
| 96 pCircle->centery = p->aParam[1]; |
| 97 pCircle->radius = p->aParam[2]; |
| 98 |
| 99 /* Define two bounding box regions. The first, aBox[0], extends to |
| 100 ** infinity in the X dimension. It covers the same range of the Y dimension |
| 101 ** as the circular region. The second, aBox[1], extends to infinity in |
| 102 ** the Y dimension and is constrained to the range of the circle in the |
| 103 ** X dimension. |
| 104 ** |
| 105 ** Then imagine each box is split in half along its short axis by a line |
| 106 ** that intersects the center of the circular region. A bounding box |
| 107 ** being tested can be said to intersect the circular region if it contains |
| 108 ** points from each half of either of the two infinite bounding boxes. |
| 109 */ |
| 110 pCircle->aBox[0].xmin = pCircle->centerx; |
| 111 pCircle->aBox[0].xmax = pCircle->centerx; |
| 112 pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius; |
| 113 pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; |
| 114 pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; |
| 115 pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; |
| 116 pCircle->aBox[1].ymin = pCircle->centery; |
| 117 pCircle->aBox[1].ymax = pCircle->centery; |
| 118 pCircle->mxArea = (xmax - xmin)*(ymax - ymin) + 1.0; |
| 119 } |
| 120 |
| 121 /* Check if any of the 4 corners of the bounding-box being tested lie |
| 122 ** inside the circular region. If they do, then the bounding-box does |
| 123 ** intersect the region of interest. Set the output variable to true and |
| 124 ** return SQLITE_OK in this case. */ |
| 125 for(i=0; i<4; i++){ |
| 126 double x = (i&0x01) ? xmax : xmin; |
| 127 double y = (i&0x02) ? ymax : ymin; |
| 128 double d2; |
| 129 |
| 130 d2 = (x-pCircle->centerx)*(x-pCircle->centerx); |
| 131 d2 += (y-pCircle->centery)*(y-pCircle->centery); |
| 132 if( d2<(pCircle->radius*pCircle->radius) ){ |
| 133 *pRes = 1; |
| 134 return SQLITE_OK; |
| 135 } |
| 136 } |
| 137 |
| 138 /* Check if the bounding box covers any other part of the circular region. |
| 139 ** See comments above for a description of how this test works. If it does |
| 140 ** cover part of the circular region, set the output variable to true |
| 141 ** and return SQLITE_OK. */ |
| 142 for(i=0; i<2; i++){ |
| 143 if( xmin<=pCircle->aBox[i].xmin |
| 144 && xmax>=pCircle->aBox[i].xmax |
| 145 && ymin<=pCircle->aBox[i].ymin |
| 146 && ymax>=pCircle->aBox[i].ymax |
| 147 ){ |
| 148 *pRes = 1; |
| 149 return SQLITE_OK; |
| 150 } |
| 151 } |
| 152 |
| 153 /* The specified bounding box does not intersect the circular region. Set |
| 154 ** the output variable to zero and return SQLITE_OK. */ |
| 155 *pRes = 0; |
| 156 return SQLITE_OK; |
| 157 } |
| 158 |
| 159 /* |
| 160 ** Implementation of "circle" r-tree geometry callback using the |
| 161 ** 2nd-generation interface that allows scoring. |
| 162 ** |
| 163 ** Two calling forms: |
| 164 ** |
| 165 ** Qcircle(X,Y,Radius,eType) -- All values are doubles |
| 166 ** Qcircle('x:X y:Y r:R e:ETYPE') -- Single string parameter |
| 167 */ |
| 168 static int circle_query_func(sqlite3_rtree_query_info *p){ |
| 169 int i; /* Iterator variable */ |
| 170 Circle *pCircle; /* Structure defining circular region */ |
| 171 double xmin, xmax; /* X dimensions of box being tested */ |
| 172 double ymin, ymax; /* X dimensions of box being tested */ |
| 173 int nWithin = 0; /* Number of corners inside the circle */ |
| 174 |
| 175 xmin = p->aCoord[0]; |
| 176 xmax = p->aCoord[1]; |
| 177 ymin = p->aCoord[2]; |
| 178 ymax = p->aCoord[3]; |
| 179 pCircle = (Circle *)p->pUser; |
| 180 if( pCircle==0 ){ |
| 181 /* If pUser is still 0, then the parameter values have not been tested |
| 182 ** for correctness or stored into a Circle structure yet. Do this now. */ |
| 183 |
| 184 /* This geometry callback is for use with a 2-dimensional r-tree table. |
| 185 ** Return an error if the table does not have exactly 2 dimensions. */ |
| 186 if( p->nCoord!=4 ) return SQLITE_ERROR; |
| 187 |
| 188 /* Test that the correct number of parameters (1 or 4) have been supplied. |
| 189 */ |
| 190 if( p->nParam!=4 && p->nParam!=1 ) return SQLITE_ERROR; |
| 191 |
| 192 /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM |
| 193 ** if the allocation fails. */ |
| 194 pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle))); |
| 195 if( !pCircle ) return SQLITE_NOMEM; |
| 196 p->xDelUser = circle_del; |
| 197 |
| 198 /* Record the center and radius of the circular region. One way that |
| 199 ** tested bounding boxes that intersect the circular region are detected |
| 200 ** is by testing if each corner of the bounding box lies within radius |
| 201 ** units of the center of the circle. */ |
| 202 if( p->nParam==4 ){ |
| 203 pCircle->centerx = p->aParam[0]; |
| 204 pCircle->centery = p->aParam[1]; |
| 205 pCircle->radius = p->aParam[2]; |
| 206 pCircle->eScoreType = (int)p->aParam[3]; |
| 207 }else{ |
| 208 const char *z = (const char*)sqlite3_value_text(p->apSqlParam[0]); |
| 209 pCircle->centerx = 0.0; |
| 210 pCircle->centery = 0.0; |
| 211 pCircle->radius = 0.0; |
| 212 pCircle->eScoreType = 0; |
| 213 while( z && z[0] ){ |
| 214 if( z[0]=='r' && z[1]==':' ){ |
| 215 pCircle->radius = atof(&z[2]); |
| 216 }else if( z[0]=='x' && z[1]==':' ){ |
| 217 pCircle->centerx = atof(&z[2]); |
| 218 }else if( z[0]=='y' && z[1]==':' ){ |
| 219 pCircle->centery = atof(&z[2]); |
| 220 }else if( z[0]=='e' && z[1]==':' ){ |
| 221 pCircle->eScoreType = (int)atof(&z[2]); |
| 222 }else if( z[0]==' ' ){ |
| 223 z++; |
| 224 continue; |
| 225 } |
| 226 while( z[0]!=0 && z[0]!=' ' ) z++; |
| 227 while( z[0]==' ' ) z++; |
| 228 } |
| 229 } |
| 230 if( pCircle->radius<0.0 ){ |
| 231 sqlite3_free(pCircle); |
| 232 return SQLITE_NOMEM; |
| 233 } |
| 234 |
| 235 /* Define two bounding box regions. The first, aBox[0], extends to |
| 236 ** infinity in the X dimension. It covers the same range of the Y dimension |
| 237 ** as the circular region. The second, aBox[1], extends to infinity in |
| 238 ** the Y dimension and is constrained to the range of the circle in the |
| 239 ** X dimension. |
| 240 ** |
| 241 ** Then imagine each box is split in half along its short axis by a line |
| 242 ** that intersects the center of the circular region. A bounding box |
| 243 ** being tested can be said to intersect the circular region if it contains |
| 244 ** points from each half of either of the two infinite bounding boxes. |
| 245 */ |
| 246 pCircle->aBox[0].xmin = pCircle->centerx; |
| 247 pCircle->aBox[0].xmax = pCircle->centerx; |
| 248 pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius; |
| 249 pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; |
| 250 pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; |
| 251 pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; |
| 252 pCircle->aBox[1].ymin = pCircle->centery; |
| 253 pCircle->aBox[1].ymax = pCircle->centery; |
| 254 pCircle->mxArea = 200.0*200.0; |
| 255 } |
| 256 |
| 257 /* Check if any of the 4 corners of the bounding-box being tested lie |
| 258 ** inside the circular region. If they do, then the bounding-box does |
| 259 ** intersect the region of interest. Set the output variable to true and |
| 260 ** return SQLITE_OK in this case. */ |
| 261 for(i=0; i<4; i++){ |
| 262 double x = (i&0x01) ? xmax : xmin; |
| 263 double y = (i&0x02) ? ymax : ymin; |
| 264 double d2; |
| 265 |
| 266 d2 = (x-pCircle->centerx)*(x-pCircle->centerx); |
| 267 d2 += (y-pCircle->centery)*(y-pCircle->centery); |
| 268 if( d2<(pCircle->radius*pCircle->radius) ) nWithin++; |
| 269 } |
| 270 |
| 271 /* Check if the bounding box covers any other part of the circular region. |
| 272 ** See comments above for a description of how this test works. If it does |
| 273 ** cover part of the circular region, set the output variable to true |
| 274 ** and return SQLITE_OK. */ |
| 275 if( nWithin==0 ){ |
| 276 for(i=0; i<2; i++){ |
| 277 if( xmin<=pCircle->aBox[i].xmin |
| 278 && xmax>=pCircle->aBox[i].xmax |
| 279 && ymin<=pCircle->aBox[i].ymin |
| 280 && ymax>=pCircle->aBox[i].ymax |
| 281 ){ |
| 282 nWithin = 1; |
| 283 break; |
| 284 } |
| 285 } |
| 286 } |
| 287 |
| 288 if( pCircle->eScoreType==1 ){ |
| 289 /* Depth first search */ |
| 290 p->rScore = p->iLevel; |
| 291 }else if( pCircle->eScoreType==2 ){ |
| 292 /* Breadth first search */ |
| 293 p->rScore = 100 - p->iLevel; |
| 294 }else if( pCircle->eScoreType==3 ){ |
| 295 /* Depth-first search, except sort the leaf nodes by area with |
| 296 ** the largest area first */ |
| 297 if( p->iLevel==1 ){ |
| 298 p->rScore = 1.0 - (xmax-xmin)*(ymax-ymin)/pCircle->mxArea; |
| 299 if( p->rScore<0.01 ) p->rScore = 0.01; |
| 300 }else{ |
| 301 p->rScore = 0.0; |
| 302 } |
| 303 }else if( pCircle->eScoreType==4 ){ |
| 304 /* Depth-first search, except exclude odd rowids */ |
| 305 p->rScore = p->iLevel; |
| 306 if( p->iRowid&1 ) nWithin = 0; |
| 307 }else{ |
| 308 /* Breadth-first search, except exclude odd rowids */ |
| 309 p->rScore = 100 - p->iLevel; |
| 310 if( p->iRowid&1 ) nWithin = 0; |
| 311 } |
| 312 if( nWithin==0 ){ |
| 313 p->eWithin = NOT_WITHIN; |
| 314 }else if( nWithin>=4 ){ |
| 315 p->eWithin = FULLY_WITHIN; |
| 316 }else{ |
| 317 p->eWithin = PARTLY_WITHIN; |
| 318 } |
| 319 return SQLITE_OK; |
| 320 } |
| 321 /* |
| 322 ** Implementation of "breadthfirstsearch" r-tree geometry callback using the |
| 323 ** 2nd-generation interface that allows scoring. |
| 324 ** |
| 325 ** ... WHERE id MATCH breadthfirstsearch($x0,$x1,$y0,$y1) ... |
| 326 ** |
| 327 ** It returns all entries whose bounding boxes overlap with $x0,$x1,$y0,$y1. |
| 328 */ |
| 329 static int bfs_query_func(sqlite3_rtree_query_info *p){ |
| 330 double x0,x1,y0,y1; /* Dimensions of box being tested */ |
| 331 double bx0,bx1,by0,by1; /* Boundary of the query function */ |
| 332 |
| 333 if( p->nParam!=4 ) return SQLITE_ERROR; |
| 334 x0 = p->aCoord[0]; |
| 335 x1 = p->aCoord[1]; |
| 336 y0 = p->aCoord[2]; |
| 337 y1 = p->aCoord[3]; |
| 338 bx0 = p->aParam[0]; |
| 339 bx1 = p->aParam[1]; |
| 340 by0 = p->aParam[2]; |
| 341 by1 = p->aParam[3]; |
| 342 p->rScore = 100 - p->iLevel; |
| 343 if( p->eParentWithin==FULLY_WITHIN ){ |
| 344 p->eWithin = FULLY_WITHIN; |
| 345 }else if( x0>=bx0 && x1<=bx1 && y0>=by0 && y1<=by1 ){ |
| 346 p->eWithin = FULLY_WITHIN; |
| 347 }else if( x1>=bx0 && x0<=bx1 && y1>=by0 && y0<=by1 ){ |
| 348 p->eWithin = PARTLY_WITHIN; |
| 349 }else{ |
| 350 p->eWithin = NOT_WITHIN; |
| 351 } |
| 352 return SQLITE_OK; |
| 353 } |
| 354 |
| 355 /* END of implementation of "circle" geometry callback. |
| 356 ************************************************************************** |
| 357 *************************************************************************/ |
| 358 |
| 359 #include <assert.h> |
| 360 #if defined(INCLUDE_SQLITE_TCL_H) |
| 361 # include "sqlite_tcl.h" |
| 362 #else |
| 363 # include "tcl.h" |
| 364 #endif |
| 365 |
| 366 typedef struct Cube Cube; |
| 367 struct Cube { |
| 368 double x; |
| 369 double y; |
| 370 double z; |
| 371 double width; |
| 372 double height; |
| 373 double depth; |
| 374 }; |
| 375 |
| 376 static void cube_context_free(void *p){ |
| 377 sqlite3_free(p); |
| 378 } |
| 379 |
| 380 /* |
| 381 ** The context pointer registered along with the 'cube' callback is |
| 382 ** always ((void *)&gHere). This is just to facilitate testing, it is not |
| 383 ** actually used for anything. |
| 384 */ |
| 385 static int gHere = 42; |
| 386 |
| 387 /* |
| 388 ** Implementation of a simple r-tree geom callback to test for intersection |
| 389 ** of r-tree rows with a "cube" shape. Cubes are defined by six scalar |
| 390 ** coordinates as follows: |
| 391 ** |
| 392 ** cube(x, y, z, width, height, depth) |
| 393 ** |
| 394 ** The width, height and depth parameters must all be greater than zero. |
| 395 */ |
| 396 static int cube_geom( |
| 397 sqlite3_rtree_geometry *p, |
| 398 int nCoord, |
| 399 sqlite3_rtree_dbl *aCoord, |
| 400 int *piRes |
| 401 ){ |
| 402 Cube *pCube = (Cube *)p->pUser; |
| 403 |
| 404 assert( p->pContext==(void *)&gHere ); |
| 405 |
| 406 if( pCube==0 ){ |
| 407 if( p->nParam!=6 || nCoord!=6 |
| 408 || p->aParam[3]<=0.0 || p->aParam[4]<=0.0 || p->aParam[5]<=0.0 |
| 409 ){ |
| 410 return SQLITE_ERROR; |
| 411 } |
| 412 pCube = (Cube *)sqlite3_malloc(sizeof(Cube)); |
| 413 if( !pCube ){ |
| 414 return SQLITE_NOMEM; |
| 415 } |
| 416 pCube->x = p->aParam[0]; |
| 417 pCube->y = p->aParam[1]; |
| 418 pCube->z = p->aParam[2]; |
| 419 pCube->width = p->aParam[3]; |
| 420 pCube->height = p->aParam[4]; |
| 421 pCube->depth = p->aParam[5]; |
| 422 |
| 423 p->pUser = (void *)pCube; |
| 424 p->xDelUser = cube_context_free; |
| 425 } |
| 426 |
| 427 assert( nCoord==6 ); |
| 428 *piRes = 0; |
| 429 if( aCoord[0]<=(pCube->x+pCube->width) |
| 430 && aCoord[1]>=pCube->x |
| 431 && aCoord[2]<=(pCube->y+pCube->height) |
| 432 && aCoord[3]>=pCube->y |
| 433 && aCoord[4]<=(pCube->z+pCube->depth) |
| 434 && aCoord[5]>=pCube->z |
| 435 ){ |
| 436 *piRes = 1; |
| 437 } |
| 438 |
| 439 return SQLITE_OK; |
| 440 } |
| 441 #endif /* SQLITE_ENABLE_RTREE */ |
| 442 |
| 443 static int SQLITE_TCLAPI register_cube_geom( |
| 444 void * clientData, |
| 445 Tcl_Interp *interp, |
| 446 int objc, |
| 447 Tcl_Obj *CONST objv[] |
| 448 ){ |
| 449 #ifndef SQLITE_ENABLE_RTREE |
| 450 UNUSED_PARAMETER(clientData); |
| 451 UNUSED_PARAMETER(interp); |
| 452 UNUSED_PARAMETER(objc); |
| 453 UNUSED_PARAMETER(objv); |
| 454 #else |
| 455 extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); |
| 456 extern const char *sqlite3ErrName(int); |
| 457 sqlite3 *db; |
| 458 int rc; |
| 459 |
| 460 if( objc!=2 ){ |
| 461 Tcl_WrongNumArgs(interp, 1, objv, "DB"); |
| 462 return TCL_ERROR; |
| 463 } |
| 464 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; |
| 465 rc = sqlite3_rtree_geometry_callback(db, "cube", cube_geom, (void *)&gHere); |
| 466 Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); |
| 467 #endif |
| 468 return TCL_OK; |
| 469 } |
| 470 |
| 471 static int SQLITE_TCLAPI register_circle_geom( |
| 472 void * clientData, |
| 473 Tcl_Interp *interp, |
| 474 int objc, |
| 475 Tcl_Obj *CONST objv[] |
| 476 ){ |
| 477 #ifndef SQLITE_ENABLE_RTREE |
| 478 UNUSED_PARAMETER(clientData); |
| 479 UNUSED_PARAMETER(interp); |
| 480 UNUSED_PARAMETER(objc); |
| 481 UNUSED_PARAMETER(objv); |
| 482 #else |
| 483 extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); |
| 484 extern const char *sqlite3ErrName(int); |
| 485 sqlite3 *db; |
| 486 int rc; |
| 487 |
| 488 if( objc!=2 ){ |
| 489 Tcl_WrongNumArgs(interp, 1, objv, "DB"); |
| 490 return TCL_ERROR; |
| 491 } |
| 492 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; |
| 493 rc = sqlite3_rtree_geometry_callback(db, "circle", circle_geom, 0); |
| 494 if( rc==SQLITE_OK ){ |
| 495 rc = sqlite3_rtree_query_callback(db, "Qcircle", |
| 496 circle_query_func, 0, 0); |
| 497 } |
| 498 if( rc==SQLITE_OK ){ |
| 499 rc = sqlite3_rtree_query_callback(db, "breadthfirstsearch", |
| 500 bfs_query_func, 0, 0); |
| 501 } |
| 502 Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); |
| 503 #endif |
| 504 return TCL_OK; |
| 505 } |
| 506 |
| 507 int Sqlitetestrtree_Init(Tcl_Interp *interp){ |
| 508 Tcl_CreateObjCommand(interp, "register_cube_geom", register_cube_geom, 0, 0); |
| 509 Tcl_CreateObjCommand(interp, "register_circle_geom",register_circle_geom,0,0); |
| 510 return TCL_OK; |
| 511 } |
OLD | NEW |