Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(275)

Side by Side Diff: third_party/sqlite/sqlite-src-3170000/src/pragma.c

Issue 2747283002: [sql] Import reference version of SQLite 3.17.. (Closed)
Patch Set: Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2003 April 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used to implement the PRAGMA command.
13 */
14 #include "sqliteInt.h"
15
16 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
17 # if defined(__APPLE__)
18 # define SQLITE_ENABLE_LOCKING_STYLE 1
19 # else
20 # define SQLITE_ENABLE_LOCKING_STYLE 0
21 # endif
22 #endif
23
24 /***************************************************************************
25 ** The "pragma.h" include file is an automatically generated file that
26 ** that includes the PragType_XXXX macro definitions and the aPragmaName[]
27 ** object. This ensures that the aPragmaName[] table is arranged in
28 ** lexicographical order to facility a binary search of the pragma name.
29 ** Do not edit pragma.h directly. Edit and rerun the script in at
30 ** ../tool/mkpragmatab.tcl. */
31 #include "pragma.h"
32
33 /*
34 ** Interpret the given string as a safety level. Return 0 for OFF,
35 ** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA. Return 1 for an empty or
36 ** unrecognized string argument. The FULL and EXTRA option is disallowed
37 ** if the omitFull parameter it 1.
38 **
39 ** Note that the values returned are one less that the values that
40 ** should be passed into sqlite3BtreeSetSafetyLevel(). The is done
41 ** to support legacy SQL code. The safety level used to be boolean
42 ** and older scripts may have used numbers 0 for OFF and 1 for ON.
43 */
44 static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){
45 /* 123456789 123456789 123 */
46 static const char zText[] = "onoffalseyestruextrafull";
47 static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 15, 20};
48 static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 5, 4};
49 static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 3, 2};
50 /* on no off false yes true extra full */
51 int i, n;
52 if( sqlite3Isdigit(*z) ){
53 return (u8)sqlite3Atoi(z);
54 }
55 n = sqlite3Strlen30(z);
56 for(i=0; i<ArraySize(iLength); i++){
57 if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0
58 && (!omitFull || iValue[i]<=1)
59 ){
60 return iValue[i];
61 }
62 }
63 return dflt;
64 }
65
66 /*
67 ** Interpret the given string as a boolean value.
68 */
69 u8 sqlite3GetBoolean(const char *z, u8 dflt){
70 return getSafetyLevel(z,1,dflt)!=0;
71 }
72
73 /* The sqlite3GetBoolean() function is used by other modules but the
74 ** remainder of this file is specific to PRAGMA processing. So omit
75 ** the rest of the file if PRAGMAs are omitted from the build.
76 */
77 #if !defined(SQLITE_OMIT_PRAGMA)
78
79 /*
80 ** Interpret the given string as a locking mode value.
81 */
82 static int getLockingMode(const char *z){
83 if( z ){
84 if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
85 if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL;
86 }
87 return PAGER_LOCKINGMODE_QUERY;
88 }
89
90 #ifndef SQLITE_OMIT_AUTOVACUUM
91 /*
92 ** Interpret the given string as an auto-vacuum mode value.
93 **
94 ** The following strings, "none", "full" and "incremental" are
95 ** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
96 */
97 static int getAutoVacuum(const char *z){
98 int i;
99 if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE;
100 if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL;
101 if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR;
102 i = sqlite3Atoi(z);
103 return (u8)((i>=0&&i<=2)?i:0);
104 }
105 #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
106
107 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
108 /*
109 ** Interpret the given string as a temp db location. Return 1 for file
110 ** backed temporary databases, 2 for the Red-Black tree in memory database
111 ** and 0 to use the compile-time default.
112 */
113 static int getTempStore(const char *z){
114 if( z[0]>='0' && z[0]<='2' ){
115 return z[0] - '0';
116 }else if( sqlite3StrICmp(z, "file")==0 ){
117 return 1;
118 }else if( sqlite3StrICmp(z, "memory")==0 ){
119 return 2;
120 }else{
121 return 0;
122 }
123 }
124 #endif /* SQLITE_PAGER_PRAGMAS */
125
126 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
127 /*
128 ** Invalidate temp storage, either when the temp storage is changed
129 ** from default, or when 'file' and the temp_store_directory has changed
130 */
131 static int invalidateTempStorage(Parse *pParse){
132 sqlite3 *db = pParse->db;
133 if( db->aDb[1].pBt!=0 ){
134 if( !db->autoCommit || sqlite3BtreeIsInReadTrans(db->aDb[1].pBt) ){
135 sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
136 "from within a transaction");
137 return SQLITE_ERROR;
138 }
139 sqlite3BtreeClose(db->aDb[1].pBt);
140 db->aDb[1].pBt = 0;
141 sqlite3ResetAllSchemasOfConnection(db);
142 }
143 return SQLITE_OK;
144 }
145 #endif /* SQLITE_PAGER_PRAGMAS */
146
147 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
148 /*
149 ** If the TEMP database is open, close it and mark the database schema
150 ** as needing reloading. This must be done when using the SQLITE_TEMP_STORE
151 ** or DEFAULT_TEMP_STORE pragmas.
152 */
153 static int changeTempStorage(Parse *pParse, const char *zStorageType){
154 int ts = getTempStore(zStorageType);
155 sqlite3 *db = pParse->db;
156 if( db->temp_store==ts ) return SQLITE_OK;
157 if( invalidateTempStorage( pParse ) != SQLITE_OK ){
158 return SQLITE_ERROR;
159 }
160 db->temp_store = (u8)ts;
161 return SQLITE_OK;
162 }
163 #endif /* SQLITE_PAGER_PRAGMAS */
164
165 /*
166 ** Set result column names for a pragma.
167 */
168 static void setPragmaResultColumnNames(
169 Vdbe *v, /* The query under construction */
170 const PragmaName *pPragma /* The pragma */
171 ){
172 u8 n = pPragma->nPragCName;
173 sqlite3VdbeSetNumCols(v, n==0 ? 1 : n);
174 if( n==0 ){
175 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC);
176 }else{
177 int i, j;
178 for(i=0, j=pPragma->iPragCName; i<n; i++, j++){
179 sqlite3VdbeSetColName(v, i, COLNAME_NAME, pragCName[j], SQLITE_STATIC);
180 }
181 }
182 }
183
184 /*
185 ** Generate code to return a single integer value.
186 */
187 static void returnSingleInt(Vdbe *v, i64 value){
188 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, 1, 0, (const u8*)&value, P4_INT64);
189 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
190 }
191
192 /*
193 ** Generate code to return a single text value.
194 */
195 static void returnSingleText(
196 Vdbe *v, /* Prepared statement under construction */
197 const char *zValue /* Value to be returned */
198 ){
199 if( zValue ){
200 sqlite3VdbeLoadString(v, 1, (const char*)zValue);
201 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
202 }
203 }
204
205
206 /*
207 ** Set the safety_level and pager flags for pager iDb. Or if iDb<0
208 ** set these values for all pagers.
209 */
210 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
211 static void setAllPagerFlags(sqlite3 *db){
212 if( db->autoCommit ){
213 Db *pDb = db->aDb;
214 int n = db->nDb;
215 assert( SQLITE_FullFSync==PAGER_FULLFSYNC );
216 assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC );
217 assert( SQLITE_CacheSpill==PAGER_CACHESPILL );
218 assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL)
219 == PAGER_FLAGS_MASK );
220 assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level );
221 while( (n--) > 0 ){
222 if( pDb->pBt ){
223 sqlite3BtreeSetPagerFlags(pDb->pBt,
224 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) );
225 }
226 pDb++;
227 }
228 }
229 }
230 #else
231 # define setAllPagerFlags(X) /* no-op */
232 #endif
233
234
235 /*
236 ** Return a human-readable name for a constraint resolution action.
237 */
238 #ifndef SQLITE_OMIT_FOREIGN_KEY
239 static const char *actionName(u8 action){
240 const char *zName;
241 switch( action ){
242 case OE_SetNull: zName = "SET NULL"; break;
243 case OE_SetDflt: zName = "SET DEFAULT"; break;
244 case OE_Cascade: zName = "CASCADE"; break;
245 case OE_Restrict: zName = "RESTRICT"; break;
246 default: zName = "NO ACTION";
247 assert( action==OE_None ); break;
248 }
249 return zName;
250 }
251 #endif
252
253
254 /*
255 ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants
256 ** defined in pager.h. This function returns the associated lowercase
257 ** journal-mode name.
258 */
259 const char *sqlite3JournalModename(int eMode){
260 static char * const azModeName[] = {
261 "delete", "persist", "off", "truncate", "memory"
262 #ifndef SQLITE_OMIT_WAL
263 , "wal"
264 #endif
265 };
266 assert( PAGER_JOURNALMODE_DELETE==0 );
267 assert( PAGER_JOURNALMODE_PERSIST==1 );
268 assert( PAGER_JOURNALMODE_OFF==2 );
269 assert( PAGER_JOURNALMODE_TRUNCATE==3 );
270 assert( PAGER_JOURNALMODE_MEMORY==4 );
271 assert( PAGER_JOURNALMODE_WAL==5 );
272 assert( eMode>=0 && eMode<=ArraySize(azModeName) );
273
274 if( eMode==ArraySize(azModeName) ) return 0;
275 return azModeName[eMode];
276 }
277
278 /*
279 ** Locate a pragma in the aPragmaName[] array.
280 */
281 static const PragmaName *pragmaLocate(const char *zName){
282 int upr, lwr, mid = 0, rc;
283 lwr = 0;
284 upr = ArraySize(aPragmaName)-1;
285 while( lwr<=upr ){
286 mid = (lwr+upr)/2;
287 rc = sqlite3_stricmp(zName, aPragmaName[mid].zName);
288 if( rc==0 ) break;
289 if( rc<0 ){
290 upr = mid - 1;
291 }else{
292 lwr = mid + 1;
293 }
294 }
295 return lwr>upr ? 0 : &aPragmaName[mid];
296 }
297
298 /*
299 ** Process a pragma statement.
300 **
301 ** Pragmas are of this form:
302 **
303 ** PRAGMA [schema.]id [= value]
304 **
305 ** The identifier might also be a string. The value is a string, and
306 ** identifier, or a number. If minusFlag is true, then the value is
307 ** a number that was preceded by a minus sign.
308 **
309 ** If the left side is "database.id" then pId1 is the database name
310 ** and pId2 is the id. If the left side is just "id" then pId1 is the
311 ** id and pId2 is any empty string.
312 */
313 void sqlite3Pragma(
314 Parse *pParse,
315 Token *pId1, /* First part of [schema.]id field */
316 Token *pId2, /* Second part of [schema.]id field, or NULL */
317 Token *pValue, /* Token for <value>, or NULL */
318 int minusFlag /* True if a '-' sign preceded <value> */
319 ){
320 char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */
321 char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */
322 const char *zDb = 0; /* The database name */
323 Token *pId; /* Pointer to <id> token */
324 char *aFcntl[4]; /* Argument to SQLITE_FCNTL_PRAGMA */
325 int iDb; /* Database index for <database> */
326 int rc; /* return value form SQLITE_FCNTL_PRAGMA */
327 sqlite3 *db = pParse->db; /* The database connection */
328 Db *pDb; /* The specific database being pragmaed */
329 Vdbe *v = sqlite3GetVdbe(pParse); /* Prepared statement */
330 const PragmaName *pPragma; /* The pragma */
331
332 if( v==0 ) return;
333 sqlite3VdbeRunOnlyOnce(v);
334 pParse->nMem = 2;
335
336 /* Interpret the [schema.] part of the pragma statement. iDb is the
337 ** index of the database this pragma is being applied to in db.aDb[]. */
338 iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
339 if( iDb<0 ) return;
340 pDb = &db->aDb[iDb];
341
342 /* If the temp database has been explicitly named as part of the
343 ** pragma, make sure it is open.
344 */
345 if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
346 return;
347 }
348
349 zLeft = sqlite3NameFromToken(db, pId);
350 if( !zLeft ) return;
351 if( minusFlag ){
352 zRight = sqlite3MPrintf(db, "-%T", pValue);
353 }else{
354 zRight = sqlite3NameFromToken(db, pValue);
355 }
356
357 assert( pId2 );
358 zDb = pId2->n>0 ? pDb->zDbSName : 0;
359 if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
360 goto pragma_out;
361 }
362
363 /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS
364 ** connection. If it returns SQLITE_OK, then assume that the VFS
365 ** handled the pragma and generate a no-op prepared statement.
366 **
367 ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed,
368 ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file
369 ** object corresponding to the database file to which the pragma
370 ** statement refers.
371 **
372 ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA
373 ** file control is an array of pointers to strings (char**) in which the
374 ** second element of the array is the name of the pragma and the third
375 ** element is the argument to the pragma or NULL if the pragma has no
376 ** argument.
377 */
378 aFcntl[0] = 0;
379 aFcntl[1] = zLeft;
380 aFcntl[2] = zRight;
381 aFcntl[3] = 0;
382 db->busyHandler.nBusy = 0;
383 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl);
384 if( rc==SQLITE_OK ){
385 sqlite3VdbeSetNumCols(v, 1);
386 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT);
387 returnSingleText(v, aFcntl[0]);
388 sqlite3_free(aFcntl[0]);
389 goto pragma_out;
390 }
391 if( rc!=SQLITE_NOTFOUND ){
392 if( aFcntl[0] ){
393 sqlite3ErrorMsg(pParse, "%s", aFcntl[0]);
394 sqlite3_free(aFcntl[0]);
395 }
396 pParse->nErr++;
397 pParse->rc = rc;
398 goto pragma_out;
399 }
400
401 /* Locate the pragma in the lookup table */
402 pPragma = pragmaLocate(zLeft);
403 if( pPragma==0 ) goto pragma_out;
404
405 /* Make sure the database schema is loaded if the pragma requires that */
406 if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){
407 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
408 }
409
410 /* Register the result column names for pragmas that return results */
411 if( (pPragma->mPragFlg & PragFlg_NoColumns)==0
412 && ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0)
413 ){
414 setPragmaResultColumnNames(v, pPragma);
415 }
416
417 /* Jump to the appropriate pragma handler */
418 switch( pPragma->ePragTyp ){
419
420 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
421 /*
422 ** PRAGMA [schema.]default_cache_size
423 ** PRAGMA [schema.]default_cache_size=N
424 **
425 ** The first form reports the current persistent setting for the
426 ** page cache size. The value returned is the maximum number of
427 ** pages in the page cache. The second form sets both the current
428 ** page cache size value and the persistent page cache size value
429 ** stored in the database file.
430 **
431 ** Older versions of SQLite would set the default cache size to a
432 ** negative number to indicate synchronous=OFF. These days, synchronous
433 ** is always on by default regardless of the sign of the default cache
434 ** size. But continue to take the absolute value of the default cache
435 ** size of historical compatibility.
436 */
437 case PragTyp_DEFAULT_CACHE_SIZE: {
438 static const int iLn = VDBE_OFFSET_LINENO(2);
439 static const VdbeOpList getCacheSize[] = {
440 { OP_Transaction, 0, 0, 0}, /* 0 */
441 { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */
442 { OP_IfPos, 1, 8, 0},
443 { OP_Integer, 0, 2, 0},
444 { OP_Subtract, 1, 2, 1},
445 { OP_IfPos, 1, 8, 0},
446 { OP_Integer, 0, 1, 0}, /* 6 */
447 { OP_Noop, 0, 0, 0},
448 { OP_ResultRow, 1, 1, 0},
449 };
450 VdbeOp *aOp;
451 sqlite3VdbeUsesBtree(v, iDb);
452 if( !zRight ){
453 pParse->nMem += 2;
454 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize));
455 aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn);
456 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
457 aOp[0].p1 = iDb;
458 aOp[1].p1 = iDb;
459 aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE;
460 }else{
461 int size = sqlite3AbsInt32(sqlite3Atoi(zRight));
462 sqlite3BeginWriteOperation(pParse, 0, iDb);
463 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size);
464 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
465 pDb->pSchema->cache_size = size;
466 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
467 }
468 break;
469 }
470 #endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */
471
472 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
473 /*
474 ** PRAGMA [schema.]page_size
475 ** PRAGMA [schema.]page_size=N
476 **
477 ** The first form reports the current setting for the
478 ** database page size in bytes. The second form sets the
479 ** database page size value. The value can only be set if
480 ** the database has not yet been created.
481 */
482 case PragTyp_PAGE_SIZE: {
483 Btree *pBt = pDb->pBt;
484 assert( pBt!=0 );
485 if( !zRight ){
486 int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0;
487 returnSingleInt(v, size);
488 }else{
489 /* Malloc may fail when setting the page-size, as there is an internal
490 ** buffer that the pager module resizes using sqlite3_realloc().
491 */
492 db->nextPagesize = sqlite3Atoi(zRight);
493 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,-1,0) ){
494 sqlite3OomFault(db);
495 }
496 }
497 break;
498 }
499
500 /*
501 ** PRAGMA [schema.]secure_delete
502 ** PRAGMA [schema.]secure_delete=ON/OFF
503 **
504 ** The first form reports the current setting for the
505 ** secure_delete flag. The second form changes the secure_delete
506 ** flag setting and reports thenew value.
507 */
508 case PragTyp_SECURE_DELETE: {
509 Btree *pBt = pDb->pBt;
510 int b = -1;
511 assert( pBt!=0 );
512 if( zRight ){
513 b = sqlite3GetBoolean(zRight, 0);
514 }
515 if( pId2->n==0 && b>=0 ){
516 int ii;
517 for(ii=0; ii<db->nDb; ii++){
518 sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b);
519 }
520 }
521 b = sqlite3BtreeSecureDelete(pBt, b);
522 returnSingleInt(v, b);
523 break;
524 }
525
526 /*
527 ** PRAGMA [schema.]max_page_count
528 ** PRAGMA [schema.]max_page_count=N
529 **
530 ** The first form reports the current setting for the
531 ** maximum number of pages in the database file. The
532 ** second form attempts to change this setting. Both
533 ** forms return the current setting.
534 **
535 ** The absolute value of N is used. This is undocumented and might
536 ** change. The only purpose is to provide an easy way to test
537 ** the sqlite3AbsInt32() function.
538 **
539 ** PRAGMA [schema.]page_count
540 **
541 ** Return the number of pages in the specified database.
542 */
543 case PragTyp_PAGE_COUNT: {
544 int iReg;
545 sqlite3CodeVerifySchema(pParse, iDb);
546 iReg = ++pParse->nMem;
547 if( sqlite3Tolower(zLeft[0])=='p' ){
548 sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
549 }else{
550 sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg,
551 sqlite3AbsInt32(sqlite3Atoi(zRight)));
552 }
553 sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
554 break;
555 }
556
557 /*
558 ** PRAGMA [schema.]locking_mode
559 ** PRAGMA [schema.]locking_mode = (normal|exclusive)
560 */
561 case PragTyp_LOCKING_MODE: {
562 const char *zRet = "normal";
563 int eMode = getLockingMode(zRight);
564
565 if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
566 /* Simple "PRAGMA locking_mode;" statement. This is a query for
567 ** the current default locking mode (which may be different to
568 ** the locking-mode of the main database).
569 */
570 eMode = db->dfltLockMode;
571 }else{
572 Pager *pPager;
573 if( pId2->n==0 ){
574 /* This indicates that no database name was specified as part
575 ** of the PRAGMA command. In this case the locking-mode must be
576 ** set on all attached databases, as well as the main db file.
577 **
578 ** Also, the sqlite3.dfltLockMode variable is set so that
579 ** any subsequently attached databases also use the specified
580 ** locking mode.
581 */
582 int ii;
583 assert(pDb==&db->aDb[0]);
584 for(ii=2; ii<db->nDb; ii++){
585 pPager = sqlite3BtreePager(db->aDb[ii].pBt);
586 sqlite3PagerLockingMode(pPager, eMode);
587 }
588 db->dfltLockMode = (u8)eMode;
589 }
590 pPager = sqlite3BtreePager(pDb->pBt);
591 eMode = sqlite3PagerLockingMode(pPager, eMode);
592 }
593
594 assert( eMode==PAGER_LOCKINGMODE_NORMAL
595 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
596 if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
597 zRet = "exclusive";
598 }
599 returnSingleText(v, zRet);
600 break;
601 }
602
603 /*
604 ** PRAGMA [schema.]journal_mode
605 ** PRAGMA [schema.]journal_mode =
606 ** (delete|persist|off|truncate|memory|wal|off)
607 */
608 case PragTyp_JOURNAL_MODE: {
609 int eMode; /* One of the PAGER_JOURNALMODE_XXX symbols */
610 int ii; /* Loop counter */
611
612 if( zRight==0 ){
613 /* If there is no "=MODE" part of the pragma, do a query for the
614 ** current mode */
615 eMode = PAGER_JOURNALMODE_QUERY;
616 }else{
617 const char *zMode;
618 int n = sqlite3Strlen30(zRight);
619 for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){
620 if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break;
621 }
622 if( !zMode ){
623 /* If the "=MODE" part does not match any known journal mode,
624 ** then do a query */
625 eMode = PAGER_JOURNALMODE_QUERY;
626 }
627 }
628 if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){
629 /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */
630 iDb = 0;
631 pId2->n = 1;
632 }
633 for(ii=db->nDb-1; ii>=0; ii--){
634 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
635 sqlite3VdbeUsesBtree(v, ii);
636 sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode);
637 }
638 }
639 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
640 break;
641 }
642
643 /*
644 ** PRAGMA [schema.]journal_size_limit
645 ** PRAGMA [schema.]journal_size_limit=N
646 **
647 ** Get or set the size limit on rollback journal files.
648 */
649 case PragTyp_JOURNAL_SIZE_LIMIT: {
650 Pager *pPager = sqlite3BtreePager(pDb->pBt);
651 i64 iLimit = -2;
652 if( zRight ){
653 sqlite3DecOrHexToI64(zRight, &iLimit);
654 if( iLimit<-1 ) iLimit = -1;
655 }
656 iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
657 returnSingleInt(v, iLimit);
658 break;
659 }
660
661 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
662
663 /*
664 ** PRAGMA [schema.]auto_vacuum
665 ** PRAGMA [schema.]auto_vacuum=N
666 **
667 ** Get or set the value of the database 'auto-vacuum' parameter.
668 ** The value is one of: 0 NONE 1 FULL 2 INCREMENTAL
669 */
670 #ifndef SQLITE_OMIT_AUTOVACUUM
671 case PragTyp_AUTO_VACUUM: {
672 Btree *pBt = pDb->pBt;
673 assert( pBt!=0 );
674 if( !zRight ){
675 returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt));
676 }else{
677 int eAuto = getAutoVacuum(zRight);
678 assert( eAuto>=0 && eAuto<=2 );
679 db->nextAutovac = (u8)eAuto;
680 /* Call SetAutoVacuum() to set initialize the internal auto and
681 ** incr-vacuum flags. This is required in case this connection
682 ** creates the database file. It is important that it is created
683 ** as an auto-vacuum capable db.
684 */
685 rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
686 if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
687 /* When setting the auto_vacuum mode to either "full" or
688 ** "incremental", write the value of meta[6] in the database
689 ** file. Before writing to meta[6], check that meta[3] indicates
690 ** that this really is an auto-vacuum capable database.
691 */
692 static const int iLn = VDBE_OFFSET_LINENO(2);
693 static const VdbeOpList setMeta6[] = {
694 { OP_Transaction, 0, 1, 0}, /* 0 */
695 { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE},
696 { OP_If, 1, 0, 0}, /* 2 */
697 { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */
698 { OP_SetCookie, 0, BTREE_INCR_VACUUM, 0}, /* 4 */
699 };
700 VdbeOp *aOp;
701 int iAddr = sqlite3VdbeCurrentAddr(v);
702 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6));
703 aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn);
704 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
705 aOp[0].p1 = iDb;
706 aOp[1].p1 = iDb;
707 aOp[2].p2 = iAddr+4;
708 aOp[4].p1 = iDb;
709 aOp[4].p3 = eAuto - 1;
710 sqlite3VdbeUsesBtree(v, iDb);
711 }
712 }
713 break;
714 }
715 #endif
716
717 /*
718 ** PRAGMA [schema.]incremental_vacuum(N)
719 **
720 ** Do N steps of incremental vacuuming on a database.
721 */
722 #ifndef SQLITE_OMIT_AUTOVACUUM
723 case PragTyp_INCREMENTAL_VACUUM: {
724 int iLimit, addr;
725 if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
726 iLimit = 0x7fffffff;
727 }
728 sqlite3BeginWriteOperation(pParse, 0, iDb);
729 sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
730 addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v);
731 sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
732 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
733 sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v);
734 sqlite3VdbeJumpHere(v, addr);
735 break;
736 }
737 #endif
738
739 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
740 /*
741 ** PRAGMA [schema.]cache_size
742 ** PRAGMA [schema.]cache_size=N
743 **
744 ** The first form reports the current local setting for the
745 ** page cache size. The second form sets the local
746 ** page cache size value. If N is positive then that is the
747 ** number of pages in the cache. If N is negative, then the
748 ** number of pages is adjusted so that the cache uses -N kibibytes
749 ** of memory.
750 */
751 case PragTyp_CACHE_SIZE: {
752 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
753 if( !zRight ){
754 returnSingleInt(v, pDb->pSchema->cache_size);
755 }else{
756 int size = sqlite3Atoi(zRight);
757 pDb->pSchema->cache_size = size;
758 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
759 }
760 break;
761 }
762
763 /*
764 ** PRAGMA [schema.]cache_spill
765 ** PRAGMA cache_spill=BOOLEAN
766 ** PRAGMA [schema.]cache_spill=N
767 **
768 ** The first form reports the current local setting for the
769 ** page cache spill size. The second form turns cache spill on
770 ** or off. When turnning cache spill on, the size is set to the
771 ** current cache_size. The third form sets a spill size that
772 ** may be different form the cache size.
773 ** If N is positive then that is the
774 ** number of pages in the cache. If N is negative, then the
775 ** number of pages is adjusted so that the cache uses -N kibibytes
776 ** of memory.
777 **
778 ** If the number of cache_spill pages is less then the number of
779 ** cache_size pages, no spilling occurs until the page count exceeds
780 ** the number of cache_size pages.
781 **
782 ** The cache_spill=BOOLEAN setting applies to all attached schemas,
783 ** not just the schema specified.
784 */
785 case PragTyp_CACHE_SPILL: {
786 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
787 if( !zRight ){
788 returnSingleInt(v,
789 (db->flags & SQLITE_CacheSpill)==0 ? 0 :
790 sqlite3BtreeSetSpillSize(pDb->pBt,0));
791 }else{
792 int size = 1;
793 if( sqlite3GetInt32(zRight, &size) ){
794 sqlite3BtreeSetSpillSize(pDb->pBt, size);
795 }
796 if( sqlite3GetBoolean(zRight, size!=0) ){
797 db->flags |= SQLITE_CacheSpill;
798 }else{
799 db->flags &= ~SQLITE_CacheSpill;
800 }
801 setAllPagerFlags(db);
802 }
803 break;
804 }
805
806 /*
807 ** PRAGMA [schema.]mmap_size(N)
808 **
809 ** Used to set mapping size limit. The mapping size limit is
810 ** used to limit the aggregate size of all memory mapped regions of the
811 ** database file. If this parameter is set to zero, then memory mapping
812 ** is not used at all. If N is negative, then the default memory map
813 ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set.
814 ** The parameter N is measured in bytes.
815 **
816 ** This value is advisory. The underlying VFS is free to memory map
817 ** as little or as much as it wants. Except, if N is set to 0 then the
818 ** upper layers will never invoke the xFetch interfaces to the VFS.
819 */
820 case PragTyp_MMAP_SIZE: {
821 sqlite3_int64 sz;
822 #if SQLITE_MAX_MMAP_SIZE>0
823 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
824 if( zRight ){
825 int ii;
826 sqlite3DecOrHexToI64(zRight, &sz);
827 if( sz<0 ) sz = sqlite3GlobalConfig.szMmap;
828 if( pId2->n==0 ) db->szMmap = sz;
829 for(ii=db->nDb-1; ii>=0; ii--){
830 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
831 sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz);
832 }
833 }
834 }
835 sz = -1;
836 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz);
837 #else
838 sz = 0;
839 rc = SQLITE_OK;
840 #endif
841 if( rc==SQLITE_OK ){
842 returnSingleInt(v, sz);
843 }else if( rc!=SQLITE_NOTFOUND ){
844 pParse->nErr++;
845 pParse->rc = rc;
846 }
847 break;
848 }
849
850 /*
851 ** PRAGMA temp_store
852 ** PRAGMA temp_store = "default"|"memory"|"file"
853 **
854 ** Return or set the local value of the temp_store flag. Changing
855 ** the local value does not make changes to the disk file and the default
856 ** value will be restored the next time the database is opened.
857 **
858 ** Note that it is possible for the library compile-time options to
859 ** override this setting
860 */
861 case PragTyp_TEMP_STORE: {
862 if( !zRight ){
863 returnSingleInt(v, db->temp_store);
864 }else{
865 changeTempStorage(pParse, zRight);
866 }
867 break;
868 }
869
870 /*
871 ** PRAGMA temp_store_directory
872 ** PRAGMA temp_store_directory = ""|"directory_name"
873 **
874 ** Return or set the local value of the temp_store_directory flag. Changing
875 ** the value sets a specific directory to be used for temporary files.
876 ** Setting to a null string reverts to the default temporary directory search.
877 ** If temporary directory is changed, then invalidateTempStorage.
878 **
879 */
880 case PragTyp_TEMP_STORE_DIRECTORY: {
881 if( !zRight ){
882 returnSingleText(v, sqlite3_temp_directory);
883 }else{
884 #ifndef SQLITE_OMIT_WSD
885 if( zRight[0] ){
886 int res;
887 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
888 if( rc!=SQLITE_OK || res==0 ){
889 sqlite3ErrorMsg(pParse, "not a writable directory");
890 goto pragma_out;
891 }
892 }
893 if( SQLITE_TEMP_STORE==0
894 || (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
895 || (SQLITE_TEMP_STORE==2 && db->temp_store==1)
896 ){
897 invalidateTempStorage(pParse);
898 }
899 sqlite3_free(sqlite3_temp_directory);
900 if( zRight[0] ){
901 sqlite3_temp_directory = sqlite3_mprintf("%s", zRight);
902 }else{
903 sqlite3_temp_directory = 0;
904 }
905 #endif /* SQLITE_OMIT_WSD */
906 }
907 break;
908 }
909
910 #if SQLITE_OS_WIN
911 /*
912 ** PRAGMA data_store_directory
913 ** PRAGMA data_store_directory = ""|"directory_name"
914 **
915 ** Return or set the local value of the data_store_directory flag. Changing
916 ** the value sets a specific directory to be used for database files that
917 ** were specified with a relative pathname. Setting to a null string reverts
918 ** to the default database directory, which for database files specified with
919 ** a relative path will probably be based on the current directory for the
920 ** process. Database file specified with an absolute path are not impacted
921 ** by this setting, regardless of its value.
922 **
923 */
924 case PragTyp_DATA_STORE_DIRECTORY: {
925 if( !zRight ){
926 returnSingleText(v, sqlite3_data_directory);
927 }else{
928 #ifndef SQLITE_OMIT_WSD
929 if( zRight[0] ){
930 int res;
931 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
932 if( rc!=SQLITE_OK || res==0 ){
933 sqlite3ErrorMsg(pParse, "not a writable directory");
934 goto pragma_out;
935 }
936 }
937 sqlite3_free(sqlite3_data_directory);
938 if( zRight[0] ){
939 sqlite3_data_directory = sqlite3_mprintf("%s", zRight);
940 }else{
941 sqlite3_data_directory = 0;
942 }
943 #endif /* SQLITE_OMIT_WSD */
944 }
945 break;
946 }
947 #endif
948
949 #if SQLITE_ENABLE_LOCKING_STYLE
950 /*
951 ** PRAGMA [schema.]lock_proxy_file
952 ** PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path"
953 **
954 ** Return or set the value of the lock_proxy_file flag. Changing
955 ** the value sets a specific file to be used for database access locks.
956 **
957 */
958 case PragTyp_LOCK_PROXY_FILE: {
959 if( !zRight ){
960 Pager *pPager = sqlite3BtreePager(pDb->pBt);
961 char *proxy_file_path = NULL;
962 sqlite3_file *pFile = sqlite3PagerFile(pPager);
963 sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE,
964 &proxy_file_path);
965 returnSingleText(v, proxy_file_path);
966 }else{
967 Pager *pPager = sqlite3BtreePager(pDb->pBt);
968 sqlite3_file *pFile = sqlite3PagerFile(pPager);
969 int res;
970 if( zRight[0] ){
971 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
972 zRight);
973 } else {
974 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
975 NULL);
976 }
977 if( res!=SQLITE_OK ){
978 sqlite3ErrorMsg(pParse, "failed to set lock proxy file");
979 goto pragma_out;
980 }
981 }
982 break;
983 }
984 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
985
986 /*
987 ** PRAGMA [schema.]synchronous
988 ** PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA
989 **
990 ** Return or set the local value of the synchronous flag. Changing
991 ** the local value does not make changes to the disk file and the
992 ** default value will be restored the next time the database is
993 ** opened.
994 */
995 case PragTyp_SYNCHRONOUS: {
996 if( !zRight ){
997 returnSingleInt(v, pDb->safety_level-1);
998 }else{
999 if( !db->autoCommit ){
1000 sqlite3ErrorMsg(pParse,
1001 "Safety level may not be changed inside a transaction");
1002 }else{
1003 int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK;
1004 if( iLevel==0 ) iLevel = 1;
1005 pDb->safety_level = iLevel;
1006 pDb->bSyncSet = 1;
1007 setAllPagerFlags(db);
1008 }
1009 }
1010 break;
1011 }
1012 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
1013
1014 #ifndef SQLITE_OMIT_FLAG_PRAGMAS
1015 case PragTyp_FLAG: {
1016 if( zRight==0 ){
1017 setPragmaResultColumnNames(v, pPragma);
1018 returnSingleInt(v, (db->flags & pPragma->iArg)!=0 );
1019 }else{
1020 int mask = pPragma->iArg; /* Mask of bits to set or clear. */
1021 if( db->autoCommit==0 ){
1022 /* Foreign key support may not be enabled or disabled while not
1023 ** in auto-commit mode. */
1024 mask &= ~(SQLITE_ForeignKeys);
1025 }
1026 #if SQLITE_USER_AUTHENTICATION
1027 if( db->auth.authLevel==UAUTH_User ){
1028 /* Do not allow non-admin users to modify the schema arbitrarily */
1029 mask &= ~(SQLITE_WriteSchema);
1030 }
1031 #endif
1032
1033 if( sqlite3GetBoolean(zRight, 0) ){
1034 db->flags |= mask;
1035 }else{
1036 db->flags &= ~mask;
1037 if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0;
1038 }
1039
1040 /* Many of the flag-pragmas modify the code generated by the SQL
1041 ** compiler (eg. count_changes). So add an opcode to expire all
1042 ** compiled SQL statements after modifying a pragma value.
1043 */
1044 sqlite3VdbeAddOp0(v, OP_Expire);
1045 setAllPagerFlags(db);
1046 }
1047 break;
1048 }
1049 #endif /* SQLITE_OMIT_FLAG_PRAGMAS */
1050
1051 #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
1052 /*
1053 ** PRAGMA table_info(<table>)
1054 **
1055 ** Return a single row for each column of the named table. The columns of
1056 ** the returned data set are:
1057 **
1058 ** cid: Column id (numbered from left to right, starting at 0)
1059 ** name: Column name
1060 ** type: Column declaration type.
1061 ** notnull: True if 'NOT NULL' is part of column declaration
1062 ** dflt_value: The default value for the column, if any.
1063 */
1064 case PragTyp_TABLE_INFO: if( zRight ){
1065 Table *pTab;
1066 pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
1067 if( pTab ){
1068 int i, k;
1069 int nHidden = 0;
1070 Column *pCol;
1071 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1072 pParse->nMem = 6;
1073 sqlite3CodeVerifySchema(pParse, iDb);
1074 sqlite3ViewGetColumnNames(pParse, pTab);
1075 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1076 if( IsHiddenColumn(pCol) ){
1077 nHidden++;
1078 continue;
1079 }
1080 if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){
1081 k = 0;
1082 }else if( pPk==0 ){
1083 k = 1;
1084 }else{
1085 for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){}
1086 }
1087 assert( pCol->pDflt==0 || pCol->pDflt->op==TK_SPAN );
1088 sqlite3VdbeMultiLoad(v, 1, "issisi",
1089 i-nHidden,
1090 pCol->zName,
1091 sqlite3ColumnType(pCol,""),
1092 pCol->notNull ? 1 : 0,
1093 pCol->pDflt ? pCol->pDflt->u.zToken : 0,
1094 k);
1095 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6);
1096 }
1097 }
1098 }
1099 break;
1100
1101 case PragTyp_STATS: {
1102 Index *pIdx;
1103 HashElem *i;
1104 pParse->nMem = 4;
1105 sqlite3CodeVerifySchema(pParse, iDb);
1106 for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){
1107 Table *pTab = sqliteHashData(i);
1108 sqlite3VdbeMultiLoad(v, 1, "ssii",
1109 pTab->zName,
1110 0,
1111 pTab->szTabRow,
1112 pTab->nRowLogEst);
1113 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 4);
1114 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1115 sqlite3VdbeMultiLoad(v, 2, "sii",
1116 pIdx->zName,
1117 pIdx->szIdxRow,
1118 pIdx->aiRowLogEst[0]);
1119 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 4);
1120 }
1121 }
1122 }
1123 break;
1124
1125 case PragTyp_INDEX_INFO: if( zRight ){
1126 Index *pIdx;
1127 Table *pTab;
1128 pIdx = sqlite3FindIndex(db, zRight, zDb);
1129 if( pIdx ){
1130 int i;
1131 int mx;
1132 if( pPragma->iArg ){
1133 /* PRAGMA index_xinfo (newer version with more rows and columns) */
1134 mx = pIdx->nColumn;
1135 pParse->nMem = 6;
1136 }else{
1137 /* PRAGMA index_info (legacy version) */
1138 mx = pIdx->nKeyCol;
1139 pParse->nMem = 3;
1140 }
1141 pTab = pIdx->pTable;
1142 sqlite3CodeVerifySchema(pParse, iDb);
1143 assert( pParse->nMem<=pPragma->nPragCName );
1144 for(i=0; i<mx; i++){
1145 i16 cnum = pIdx->aiColumn[i];
1146 sqlite3VdbeMultiLoad(v, 1, "iis", i, cnum,
1147 cnum<0 ? 0 : pTab->aCol[cnum].zName);
1148 if( pPragma->iArg ){
1149 sqlite3VdbeMultiLoad(v, 4, "isi",
1150 pIdx->aSortOrder[i],
1151 pIdx->azColl[i],
1152 i<pIdx->nKeyCol);
1153 }
1154 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem);
1155 }
1156 }
1157 }
1158 break;
1159
1160 case PragTyp_INDEX_LIST: if( zRight ){
1161 Index *pIdx;
1162 Table *pTab;
1163 int i;
1164 pTab = sqlite3FindTable(db, zRight, zDb);
1165 if( pTab ){
1166 pParse->nMem = 5;
1167 sqlite3CodeVerifySchema(pParse, iDb);
1168 for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){
1169 const char *azOrigin[] = { "c", "u", "pk" };
1170 sqlite3VdbeMultiLoad(v, 1, "isisi",
1171 i,
1172 pIdx->zName,
1173 IsUniqueIndex(pIdx),
1174 azOrigin[pIdx->idxType],
1175 pIdx->pPartIdxWhere!=0);
1176 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5);
1177 }
1178 }
1179 }
1180 break;
1181
1182 case PragTyp_DATABASE_LIST: {
1183 int i;
1184 pParse->nMem = 3;
1185 for(i=0; i<db->nDb; i++){
1186 if( db->aDb[i].pBt==0 ) continue;
1187 assert( db->aDb[i].zDbSName!=0 );
1188 sqlite3VdbeMultiLoad(v, 1, "iss",
1189 i,
1190 db->aDb[i].zDbSName,
1191 sqlite3BtreeGetFilename(db->aDb[i].pBt));
1192 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
1193 }
1194 }
1195 break;
1196
1197 case PragTyp_COLLATION_LIST: {
1198 int i = 0;
1199 HashElem *p;
1200 pParse->nMem = 2;
1201 for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
1202 CollSeq *pColl = (CollSeq *)sqliteHashData(p);
1203 sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName);
1204 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
1205 }
1206 }
1207 break;
1208 #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
1209
1210 #ifndef SQLITE_OMIT_FOREIGN_KEY
1211 case PragTyp_FOREIGN_KEY_LIST: if( zRight ){
1212 FKey *pFK;
1213 Table *pTab;
1214 pTab = sqlite3FindTable(db, zRight, zDb);
1215 if( pTab ){
1216 pFK = pTab->pFKey;
1217 if( pFK ){
1218 int i = 0;
1219 pParse->nMem = 8;
1220 sqlite3CodeVerifySchema(pParse, iDb);
1221 while(pFK){
1222 int j;
1223 for(j=0; j<pFK->nCol; j++){
1224 sqlite3VdbeMultiLoad(v, 1, "iissssss",
1225 i,
1226 j,
1227 pFK->zTo,
1228 pTab->aCol[pFK->aCol[j].iFrom].zName,
1229 pFK->aCol[j].zCol,
1230 actionName(pFK->aAction[1]), /* ON UPDATE */
1231 actionName(pFK->aAction[0]), /* ON DELETE */
1232 "NONE");
1233 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 8);
1234 }
1235 ++i;
1236 pFK = pFK->pNextFrom;
1237 }
1238 }
1239 }
1240 }
1241 break;
1242 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1243
1244 #ifndef SQLITE_OMIT_FOREIGN_KEY
1245 #ifndef SQLITE_OMIT_TRIGGER
1246 case PragTyp_FOREIGN_KEY_CHECK: {
1247 FKey *pFK; /* A foreign key constraint */
1248 Table *pTab; /* Child table contain "REFERENCES" keyword */
1249 Table *pParent; /* Parent table that child points to */
1250 Index *pIdx; /* Index in the parent table */
1251 int i; /* Loop counter: Foreign key number for pTab */
1252 int j; /* Loop counter: Field of the foreign key */
1253 HashElem *k; /* Loop counter: Next table in schema */
1254 int x; /* result variable */
1255 int regResult; /* 3 registers to hold a result row */
1256 int regKey; /* Register to hold key for checking the FK */
1257 int regRow; /* Registers to hold a row from pTab */
1258 int addrTop; /* Top of a loop checking foreign keys */
1259 int addrOk; /* Jump here if the key is OK */
1260 int *aiCols; /* child to parent column mapping */
1261
1262 regResult = pParse->nMem+1;
1263 pParse->nMem += 4;
1264 regKey = ++pParse->nMem;
1265 regRow = ++pParse->nMem;
1266 sqlite3CodeVerifySchema(pParse, iDb);
1267 k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash);
1268 while( k ){
1269 if( zRight ){
1270 pTab = sqlite3LocateTable(pParse, 0, zRight, zDb);
1271 k = 0;
1272 }else{
1273 pTab = (Table*)sqliteHashData(k);
1274 k = sqliteHashNext(k);
1275 }
1276 if( pTab==0 || pTab->pFKey==0 ) continue;
1277 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1278 if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow;
1279 sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead);
1280 sqlite3VdbeLoadString(v, regResult, pTab->zName);
1281 for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
1282 pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1283 if( pParent==0 ) continue;
1284 pIdx = 0;
1285 sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName);
1286 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0);
1287 if( x==0 ){
1288 if( pIdx==0 ){
1289 sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead);
1290 }else{
1291 sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb);
1292 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1293 }
1294 }else{
1295 k = 0;
1296 break;
1297 }
1298 }
1299 assert( pParse->nErr>0 || pFK==0 );
1300 if( pFK ) break;
1301 if( pParse->nTab<i ) pParse->nTab = i;
1302 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v);
1303 for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
1304 pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1305 pIdx = 0;
1306 aiCols = 0;
1307 if( pParent ){
1308 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
1309 assert( x==0 );
1310 }
1311 addrOk = sqlite3VdbeMakeLabel(v);
1312 if( pParent && pIdx==0 ){
1313 int iKey = pFK->aCol[0].iFrom;
1314 assert( iKey>=0 && iKey<pTab->nCol );
1315 if( iKey!=pTab->iPKey ){
1316 sqlite3VdbeAddOp3(v, OP_Column, 0, iKey, regRow);
1317 sqlite3ColumnDefault(v, pTab, iKey, regRow);
1318 sqlite3VdbeAddOp2(v, OP_IsNull, regRow, addrOk); VdbeCoverage(v);
1319 }else{
1320 sqlite3VdbeAddOp2(v, OP_Rowid, 0, regRow);
1321 }
1322 sqlite3VdbeAddOp3(v, OP_SeekRowid, i, 0, regRow); VdbeCoverage(v);
1323 sqlite3VdbeGoto(v, addrOk);
1324 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1325 }else{
1326 for(j=0; j<pFK->nCol; j++){
1327 sqlite3ExprCodeGetColumnOfTable(v, pTab, 0,
1328 aiCols ? aiCols[j] : pFK->aCol[j].iFrom, regRow+j);
1329 sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v);
1330 }
1331 if( pParent ){
1332 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey,
1333 sqlite3IndexAffinityStr(db,pIdx), pFK->nCol);
1334 sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0);
1335 VdbeCoverage(v);
1336 }
1337 }
1338 sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);
1339 sqlite3VdbeMultiLoad(v, regResult+2, "si", pFK->zTo, i-1);
1340 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
1341 sqlite3VdbeResolveLabel(v, addrOk);
1342 sqlite3DbFree(db, aiCols);
1343 }
1344 sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v);
1345 sqlite3VdbeJumpHere(v, addrTop);
1346 }
1347 }
1348 break;
1349 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
1350 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1351
1352 #ifndef NDEBUG
1353 case PragTyp_PARSER_TRACE: {
1354 if( zRight ){
1355 if( sqlite3GetBoolean(zRight, 0) ){
1356 sqlite3ParserTrace(stdout, "parser: ");
1357 }else{
1358 sqlite3ParserTrace(0, 0);
1359 }
1360 }
1361 }
1362 break;
1363 #endif
1364
1365 /* Reinstall the LIKE and GLOB functions. The variant of LIKE
1366 ** used will be case sensitive or not depending on the RHS.
1367 */
1368 case PragTyp_CASE_SENSITIVE_LIKE: {
1369 if( zRight ){
1370 sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0));
1371 }
1372 }
1373 break;
1374
1375 #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
1376 # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
1377 #endif
1378
1379 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
1380 /* Pragma "quick_check" is reduced version of
1381 ** integrity_check designed to detect most database corruption
1382 ** without most of the overhead of a full integrity-check.
1383 */
1384 case PragTyp_INTEGRITY_CHECK: {
1385 int i, j, addr, mxErr;
1386
1387 int isQuick = (sqlite3Tolower(zLeft[0])=='q');
1388
1389 /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check",
1390 ** then iDb is set to the index of the database identified by <db>.
1391 ** In this case, the integrity of database iDb only is verified by
1392 ** the VDBE created below.
1393 **
1394 ** Otherwise, if the command was simply "PRAGMA integrity_check" (or
1395 ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb
1396 ** to -1 here, to indicate that the VDBE should verify the integrity
1397 ** of all attached databases. */
1398 assert( iDb>=0 );
1399 assert( iDb==0 || pId2->z );
1400 if( pId2->z==0 ) iDb = -1;
1401
1402 /* Initialize the VDBE program */
1403 pParse->nMem = 6;
1404
1405 /* Set the maximum error count */
1406 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1407 if( zRight ){
1408 sqlite3GetInt32(zRight, &mxErr);
1409 if( mxErr<=0 ){
1410 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1411 }
1412 }
1413 sqlite3VdbeAddOp2(v, OP_Integer, mxErr, 1); /* reg[1] holds errors left */
1414
1415 /* Do an integrity check on each database file */
1416 for(i=0; i<db->nDb; i++){
1417 HashElem *x;
1418 Hash *pTbls;
1419 int *aRoot;
1420 int cnt = 0;
1421 int mxIdx = 0;
1422 int nIdx;
1423
1424 if( OMIT_TEMPDB && i==1 ) continue;
1425 if( iDb>=0 && i!=iDb ) continue;
1426
1427 sqlite3CodeVerifySchema(pParse, i);
1428 addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */
1429 VdbeCoverage(v);
1430 sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
1431 sqlite3VdbeJumpHere(v, addr);
1432
1433 /* Do an integrity check of the B-Tree
1434 **
1435 ** Begin by finding the root pages numbers
1436 ** for all tables and indices in the database.
1437 */
1438 assert( sqlite3SchemaMutexHeld(db, i, 0) );
1439 pTbls = &db->aDb[i].pSchema->tblHash;
1440 for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1441 Table *pTab = sqliteHashData(x);
1442 Index *pIdx;
1443 if( HasRowid(pTab) ) cnt++;
1444 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; }
1445 if( nIdx>mxIdx ) mxIdx = nIdx;
1446 }
1447 aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1));
1448 if( aRoot==0 ) break;
1449 for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1450 Table *pTab = sqliteHashData(x);
1451 Index *pIdx;
1452 if( HasRowid(pTab) ) aRoot[cnt++] = pTab->tnum;
1453 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1454 aRoot[cnt++] = pIdx->tnum;
1455 }
1456 }
1457 aRoot[cnt] = 0;
1458
1459 /* Make sure sufficient number of registers have been allocated */
1460 pParse->nMem = MAX( pParse->nMem, 8+mxIdx );
1461
1462 /* Do the b-tree integrity checks */
1463 sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY);
1464 sqlite3VdbeChangeP5(v, (u8)i);
1465 addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v);
1466 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
1467 sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName),
1468 P4_DYNAMIC);
1469 sqlite3VdbeAddOp3(v, OP_Move, 2, 4, 1);
1470 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2);
1471 sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1);
1472 sqlite3VdbeJumpHere(v, addr);
1473
1474 /* Make sure all the indices are constructed correctly.
1475 */
1476 for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){
1477 Table *pTab = sqliteHashData(x);
1478 Index *pIdx, *pPk;
1479 Index *pPrior = 0;
1480 int loopTop;
1481 int iDataCur, iIdxCur;
1482 int r1 = -1;
1483
1484 if( pTab->pIndex==0 ) continue;
1485 pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
1486 addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */
1487 VdbeCoverage(v);
1488 sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
1489 sqlite3VdbeJumpHere(v, addr);
1490 sqlite3ExprCacheClear(pParse);
1491 sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0,
1492 1, 0, &iDataCur, &iIdxCur);
1493 sqlite3VdbeAddOp2(v, OP_Integer, 0, 7);
1494 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1495 sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */
1496 }
1497 assert( pParse->nMem>=8+j );
1498 assert( sqlite3NoTempsInRange(pParse,1,7+j) );
1499 sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v);
1500 loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1);
1501 /* Verify that all NOT NULL columns really are NOT NULL */
1502 for(j=0; j<pTab->nCol; j++){
1503 char *zErr;
1504 int jmp2, jmp3;
1505 if( j==pTab->iPKey ) continue;
1506 if( pTab->aCol[j].notNull==0 ) continue;
1507 sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3);
1508 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1509 jmp2 = sqlite3VdbeAddOp1(v, OP_NotNull, 3); VdbeCoverage(v);
1510 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */
1511 zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName,
1512 pTab->aCol[j].zName);
1513 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1514 sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1);
1515 jmp3 = sqlite3VdbeAddOp1(v, OP_IfPos, 1); VdbeCoverage(v);
1516 sqlite3VdbeAddOp0(v, OP_Halt);
1517 sqlite3VdbeJumpHere(v, jmp2);
1518 sqlite3VdbeJumpHere(v, jmp3);
1519 }
1520 /* Validate index entries for the current row */
1521 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1522 int jmp2, jmp3, jmp4, jmp5;
1523 int ckUniq = sqlite3VdbeMakeLabel(v);
1524 if( pPk==pIdx ) continue;
1525 r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3,
1526 pPrior, r1);
1527 pPrior = pIdx;
1528 sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1); /* increment entry count */
1529 /* Verify that an index entry exists for the current table row */
1530 jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1,
1531 pIdx->nColumn); VdbeCoverage(v);
1532 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */
1533 sqlite3VdbeLoadString(v, 3, "row ");
1534 sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
1535 sqlite3VdbeLoadString(v, 4, " missing from index ");
1536 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
1537 jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName);
1538 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
1539 sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1);
1540 jmp4 = sqlite3VdbeAddOp1(v, OP_IfPos, 1); VdbeCoverage(v);
1541 sqlite3VdbeAddOp0(v, OP_Halt);
1542 sqlite3VdbeJumpHere(v, jmp2);
1543 /* For UNIQUE indexes, verify that only one entry exists with the
1544 ** current key. The entry is unique if (1) any column is NULL
1545 ** or (2) the next entry has a different key */
1546 if( IsUniqueIndex(pIdx) ){
1547 int uniqOk = sqlite3VdbeMakeLabel(v);
1548 int jmp6;
1549 int kk;
1550 for(kk=0; kk<pIdx->nKeyCol; kk++){
1551 int iCol = pIdx->aiColumn[kk];
1552 assert( iCol!=XN_ROWID && iCol<pTab->nCol );
1553 if( iCol>=0 && pTab->aCol[iCol].notNull ) continue;
1554 sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk);
1555 VdbeCoverage(v);
1556 }
1557 jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v);
1558 sqlite3VdbeGoto(v, uniqOk);
1559 sqlite3VdbeJumpHere(v, jmp6);
1560 sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1,
1561 pIdx->nKeyCol); VdbeCoverage(v);
1562 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); /* Decrement error limit */
1563 sqlite3VdbeLoadString(v, 3, "non-unique entry in index ");
1564 sqlite3VdbeGoto(v, jmp5);
1565 sqlite3VdbeResolveLabel(v, uniqOk);
1566 }
1567 sqlite3VdbeJumpHere(v, jmp4);
1568 sqlite3ResolvePartIdxLabel(pParse, jmp3);
1569 }
1570 sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v);
1571 sqlite3VdbeJumpHere(v, loopTop-1);
1572 #ifndef SQLITE_OMIT_BTREECOUNT
1573 sqlite3VdbeLoadString(v, 2, "wrong # of entries in index ");
1574 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1575 if( pPk==pIdx ) continue;
1576 addr = sqlite3VdbeCurrentAddr(v);
1577 sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr+2); VdbeCoverage(v);
1578 sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
1579 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3);
1580 sqlite3VdbeAddOp3(v, OP_Eq, 8+j, addr+8, 3); VdbeCoverage(v);
1581 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1582 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
1583 sqlite3VdbeLoadString(v, 3, pIdx->zName);
1584 sqlite3VdbeAddOp3(v, OP_Concat, 3, 2, 7);
1585 sqlite3VdbeAddOp2(v, OP_ResultRow, 7, 1);
1586 }
1587 #endif /* SQLITE_OMIT_BTREECOUNT */
1588 }
1589 }
1590 {
1591 static const int iLn = VDBE_OFFSET_LINENO(2);
1592 static const VdbeOpList endCode[] = {
1593 { OP_AddImm, 1, 0, 0}, /* 0 */
1594 { OP_If, 1, 4, 0}, /* 1 */
1595 { OP_String8, 0, 3, 0}, /* 2 */
1596 { OP_ResultRow, 3, 1, 0}, /* 3 */
1597 };
1598 VdbeOp *aOp;
1599
1600 aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn);
1601 if( aOp ){
1602 aOp[0].p2 = -mxErr;
1603 aOp[2].p4type = P4_STATIC;
1604 aOp[2].p4.z = "ok";
1605 }
1606 }
1607 }
1608 break;
1609 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
1610
1611 #ifndef SQLITE_OMIT_UTF16
1612 /*
1613 ** PRAGMA encoding
1614 ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
1615 **
1616 ** In its first form, this pragma returns the encoding of the main
1617 ** database. If the database is not initialized, it is initialized now.
1618 **
1619 ** The second form of this pragma is a no-op if the main database file
1620 ** has not already been initialized. In this case it sets the default
1621 ** encoding that will be used for the main database file if a new file
1622 ** is created. If an existing main database file is opened, then the
1623 ** default text encoding for the existing database is used.
1624 **
1625 ** In all cases new databases created using the ATTACH command are
1626 ** created to use the same default text encoding as the main database. If
1627 ** the main database has not been initialized and/or created when ATTACH
1628 ** is executed, this is done before the ATTACH operation.
1629 **
1630 ** In the second form this pragma sets the text encoding to be used in
1631 ** new database files created using this database handle. It is only
1632 ** useful if invoked immediately after the main database i
1633 */
1634 case PragTyp_ENCODING: {
1635 static const struct EncName {
1636 char *zName;
1637 u8 enc;
1638 } encnames[] = {
1639 { "UTF8", SQLITE_UTF8 },
1640 { "UTF-8", SQLITE_UTF8 }, /* Must be element [1] */
1641 { "UTF-16le", SQLITE_UTF16LE }, /* Must be element [2] */
1642 { "UTF-16be", SQLITE_UTF16BE }, /* Must be element [3] */
1643 { "UTF16le", SQLITE_UTF16LE },
1644 { "UTF16be", SQLITE_UTF16BE },
1645 { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */
1646 { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */
1647 { 0, 0 }
1648 };
1649 const struct EncName *pEnc;
1650 if( !zRight ){ /* "PRAGMA encoding" */
1651 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
1652 assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 );
1653 assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE );
1654 assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE );
1655 returnSingleText(v, encnames[ENC(pParse->db)].zName);
1656 }else{ /* "PRAGMA encoding = XXX" */
1657 /* Only change the value of sqlite.enc if the database handle is not
1658 ** initialized. If the main database exists, the new sqlite.enc value
1659 ** will be overwritten when the schema is next loaded. If it does not
1660 ** already exists, it will be created to use the new encoding value.
1661 */
1662 if(
1663 !(DbHasProperty(db, 0, DB_SchemaLoaded)) ||
1664 DbHasProperty(db, 0, DB_Empty)
1665 ){
1666 for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
1667 if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
1668 SCHEMA_ENC(db) = ENC(db) =
1669 pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
1670 break;
1671 }
1672 }
1673 if( !pEnc->zName ){
1674 sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
1675 }
1676 }
1677 }
1678 }
1679 break;
1680 #endif /* SQLITE_OMIT_UTF16 */
1681
1682 #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
1683 /*
1684 ** PRAGMA [schema.]schema_version
1685 ** PRAGMA [schema.]schema_version = <integer>
1686 **
1687 ** PRAGMA [schema.]user_version
1688 ** PRAGMA [schema.]user_version = <integer>
1689 **
1690 ** PRAGMA [schema.]freelist_count
1691 **
1692 ** PRAGMA [schema.]data_version
1693 **
1694 ** PRAGMA [schema.]application_id
1695 ** PRAGMA [schema.]application_id = <integer>
1696 **
1697 ** The pragma's schema_version and user_version are used to set or get
1698 ** the value of the schema-version and user-version, respectively. Both
1699 ** the schema-version and the user-version are 32-bit signed integers
1700 ** stored in the database header.
1701 **
1702 ** The schema-cookie is usually only manipulated internally by SQLite. It
1703 ** is incremented by SQLite whenever the database schema is modified (by
1704 ** creating or dropping a table or index). The schema version is used by
1705 ** SQLite each time a query is executed to ensure that the internal cache
1706 ** of the schema used when compiling the SQL query matches the schema of
1707 ** the database against which the compiled query is actually executed.
1708 ** Subverting this mechanism by using "PRAGMA schema_version" to modify
1709 ** the schema-version is potentially dangerous and may lead to program
1710 ** crashes or database corruption. Use with caution!
1711 **
1712 ** The user-version is not used internally by SQLite. It may be used by
1713 ** applications for any purpose.
1714 */
1715 case PragTyp_HEADER_VALUE: {
1716 int iCookie = pPragma->iArg; /* Which cookie to read or write */
1717 sqlite3VdbeUsesBtree(v, iDb);
1718 if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){
1719 /* Write the specified cookie value */
1720 static const VdbeOpList setCookie[] = {
1721 { OP_Transaction, 0, 1, 0}, /* 0 */
1722 { OP_SetCookie, 0, 0, 0}, /* 1 */
1723 };
1724 VdbeOp *aOp;
1725 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie));
1726 aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);
1727 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
1728 aOp[0].p1 = iDb;
1729 aOp[1].p1 = iDb;
1730 aOp[1].p2 = iCookie;
1731 aOp[1].p3 = sqlite3Atoi(zRight);
1732 }else{
1733 /* Read the specified cookie value */
1734 static const VdbeOpList readCookie[] = {
1735 { OP_Transaction, 0, 0, 0}, /* 0 */
1736 { OP_ReadCookie, 0, 1, 0}, /* 1 */
1737 { OP_ResultRow, 1, 1, 0}
1738 };
1739 VdbeOp *aOp;
1740 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie));
1741 aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0);
1742 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
1743 aOp[0].p1 = iDb;
1744 aOp[1].p1 = iDb;
1745 aOp[1].p3 = iCookie;
1746 sqlite3VdbeReusable(v);
1747 }
1748 }
1749 break;
1750 #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
1751
1752 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1753 /*
1754 ** PRAGMA compile_options
1755 **
1756 ** Return the names of all compile-time options used in this build,
1757 ** one option per row.
1758 */
1759 case PragTyp_COMPILE_OPTIONS: {
1760 int i = 0;
1761 const char *zOpt;
1762 pParse->nMem = 1;
1763 while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){
1764 sqlite3VdbeLoadString(v, 1, zOpt);
1765 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
1766 }
1767 sqlite3VdbeReusable(v);
1768 }
1769 break;
1770 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1771
1772 #ifndef SQLITE_OMIT_WAL
1773 /*
1774 ** PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate
1775 **
1776 ** Checkpoint the database.
1777 */
1778 case PragTyp_WAL_CHECKPOINT: {
1779 int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED);
1780 int eMode = SQLITE_CHECKPOINT_PASSIVE;
1781 if( zRight ){
1782 if( sqlite3StrICmp(zRight, "full")==0 ){
1783 eMode = SQLITE_CHECKPOINT_FULL;
1784 }else if( sqlite3StrICmp(zRight, "restart")==0 ){
1785 eMode = SQLITE_CHECKPOINT_RESTART;
1786 }else if( sqlite3StrICmp(zRight, "truncate")==0 ){
1787 eMode = SQLITE_CHECKPOINT_TRUNCATE;
1788 }
1789 }
1790 pParse->nMem = 3;
1791 sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1);
1792 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
1793 }
1794 break;
1795
1796 /*
1797 ** PRAGMA wal_autocheckpoint
1798 ** PRAGMA wal_autocheckpoint = N
1799 **
1800 ** Configure a database connection to automatically checkpoint a database
1801 ** after accumulating N frames in the log. Or query for the current value
1802 ** of N.
1803 */
1804 case PragTyp_WAL_AUTOCHECKPOINT: {
1805 if( zRight ){
1806 sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight));
1807 }
1808 returnSingleInt(v,
1809 db->xWalCallback==sqlite3WalDefaultHook ?
1810 SQLITE_PTR_TO_INT(db->pWalArg) : 0);
1811 }
1812 break;
1813 #endif
1814
1815 /*
1816 ** PRAGMA shrink_memory
1817 **
1818 ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database
1819 ** connection on which it is invoked to free up as much memory as it
1820 ** can, by calling sqlite3_db_release_memory().
1821 */
1822 case PragTyp_SHRINK_MEMORY: {
1823 sqlite3_db_release_memory(db);
1824 break;
1825 }
1826
1827 /*
1828 ** PRAGMA busy_timeout
1829 ** PRAGMA busy_timeout = N
1830 **
1831 ** Call sqlite3_busy_timeout(db, N). Return the current timeout value
1832 ** if one is set. If no busy handler or a different busy handler is set
1833 ** then 0 is returned. Setting the busy_timeout to 0 or negative
1834 ** disables the timeout.
1835 */
1836 /*case PragTyp_BUSY_TIMEOUT*/ default: {
1837 assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT );
1838 if( zRight ){
1839 sqlite3_busy_timeout(db, sqlite3Atoi(zRight));
1840 }
1841 returnSingleInt(v, db->busyTimeout);
1842 break;
1843 }
1844
1845 /*
1846 ** PRAGMA soft_heap_limit
1847 ** PRAGMA soft_heap_limit = N
1848 **
1849 ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the
1850 ** sqlite3_soft_heap_limit64() interface with the argument N, if N is
1851 ** specified and is a non-negative integer.
1852 ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always
1853 ** returns the same integer that would be returned by the
1854 ** sqlite3_soft_heap_limit64(-1) C-language function.
1855 */
1856 case PragTyp_SOFT_HEAP_LIMIT: {
1857 sqlite3_int64 N;
1858 if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
1859 sqlite3_soft_heap_limit64(N);
1860 }
1861 returnSingleInt(v, sqlite3_soft_heap_limit64(-1));
1862 break;
1863 }
1864
1865 /*
1866 ** PRAGMA threads
1867 ** PRAGMA threads = N
1868 **
1869 ** Configure the maximum number of worker threads. Return the new
1870 ** maximum, which might be less than requested.
1871 */
1872 case PragTyp_THREADS: {
1873 sqlite3_int64 N;
1874 if( zRight
1875 && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK
1876 && N>=0
1877 ){
1878 sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff));
1879 }
1880 returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1));
1881 break;
1882 }
1883
1884 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
1885 /*
1886 ** Report the current state of file logs for all databases
1887 */
1888 case PragTyp_LOCK_STATUS: {
1889 static const char *const azLockName[] = {
1890 "unlocked", "shared", "reserved", "pending", "exclusive"
1891 };
1892 int i;
1893 pParse->nMem = 2;
1894 for(i=0; i<db->nDb; i++){
1895 Btree *pBt;
1896 const char *zState = "unknown";
1897 int j;
1898 if( db->aDb[i].zDbSName==0 ) continue;
1899 pBt = db->aDb[i].pBt;
1900 if( pBt==0 || sqlite3BtreePager(pBt)==0 ){
1901 zState = "closed";
1902 }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0,
1903 SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
1904 zState = azLockName[j];
1905 }
1906 sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState);
1907 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2);
1908 }
1909 break;
1910 }
1911 #endif
1912
1913 #ifdef SQLITE_HAS_CODEC
1914 case PragTyp_KEY: {
1915 if( zRight ) sqlite3_key_v2(db, zDb, zRight, sqlite3Strlen30(zRight));
1916 break;
1917 }
1918 case PragTyp_REKEY: {
1919 if( zRight ) sqlite3_rekey_v2(db, zDb, zRight, sqlite3Strlen30(zRight));
1920 break;
1921 }
1922 case PragTyp_HEXKEY: {
1923 if( zRight ){
1924 u8 iByte;
1925 int i;
1926 char zKey[40];
1927 for(i=0, iByte=0; i<sizeof(zKey)*2 && sqlite3Isxdigit(zRight[i]); i++){
1928 iByte = (iByte<<4) + sqlite3HexToInt(zRight[i]);
1929 if( (i&1)!=0 ) zKey[i/2] = iByte;
1930 }
1931 if( (zLeft[3] & 0xf)==0xb ){
1932 sqlite3_key_v2(db, zDb, zKey, i/2);
1933 }else{
1934 sqlite3_rekey_v2(db, zDb, zKey, i/2);
1935 }
1936 }
1937 break;
1938 }
1939 #endif
1940 #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD)
1941 case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){
1942 #ifdef SQLITE_HAS_CODEC
1943 if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){
1944 sqlite3_activate_see(&zRight[4]);
1945 }
1946 #endif
1947 #ifdef SQLITE_ENABLE_CEROD
1948 if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
1949 sqlite3_activate_cerod(&zRight[6]);
1950 }
1951 #endif
1952 }
1953 break;
1954 #endif
1955
1956 } /* End of the PRAGMA switch */
1957
1958 /* The following block is a no-op unless SQLITE_DEBUG is defined. Its only
1959 ** purpose is to execute assert() statements to verify that if the
1960 ** PragFlg_NoColumns1 flag is set and the caller specified an argument
1961 ** to the PRAGMA, the implementation has not added any OP_ResultRow
1962 ** instructions to the VM. */
1963 if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){
1964 sqlite3VdbeVerifyNoResultRow(v);
1965 }
1966
1967 pragma_out:
1968 sqlite3DbFree(db, zLeft);
1969 sqlite3DbFree(db, zRight);
1970 }
1971 #ifndef SQLITE_OMIT_VIRTUALTABLE
1972 /*****************************************************************************
1973 ** Implementation of an eponymous virtual table that runs a pragma.
1974 **
1975 */
1976 typedef struct PragmaVtab PragmaVtab;
1977 typedef struct PragmaVtabCursor PragmaVtabCursor;
1978 struct PragmaVtab {
1979 sqlite3_vtab base; /* Base class. Must be first */
1980 sqlite3 *db; /* The database connection to which it belongs */
1981 const PragmaName *pName; /* Name of the pragma */
1982 u8 nHidden; /* Number of hidden columns */
1983 u8 iHidden; /* Index of the first hidden column */
1984 };
1985 struct PragmaVtabCursor {
1986 sqlite3_vtab_cursor base; /* Base class. Must be first */
1987 sqlite3_stmt *pPragma; /* The pragma statement to run */
1988 sqlite_int64 iRowid; /* Current rowid */
1989 char *azArg[2]; /* Value of the argument and schema */
1990 };
1991
1992 /*
1993 ** Pragma virtual table module xConnect method.
1994 */
1995 static int pragmaVtabConnect(
1996 sqlite3 *db,
1997 void *pAux,
1998 int argc, const char *const*argv,
1999 sqlite3_vtab **ppVtab,
2000 char **pzErr
2001 ){
2002 const PragmaName *pPragma = (const PragmaName*)pAux;
2003 PragmaVtab *pTab = 0;
2004 int rc;
2005 int i, j;
2006 char cSep = '(';
2007 StrAccum acc;
2008 char zBuf[200];
2009
2010 UNUSED_PARAMETER(argc);
2011 UNUSED_PARAMETER(argv);
2012 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
2013 sqlite3StrAccumAppendAll(&acc, "CREATE TABLE x");
2014 for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){
2015 sqlite3XPrintf(&acc, "%c\"%s\"", cSep, pragCName[j]);
2016 cSep = ',';
2017 }
2018 if( i==0 ){
2019 sqlite3XPrintf(&acc, "(\"%s\"", pPragma->zName);
2020 cSep = ',';
2021 i++;
2022 }
2023 j = 0;
2024 if( pPragma->mPragFlg & PragFlg_Result1 ){
2025 sqlite3StrAccumAppendAll(&acc, ",arg HIDDEN");
2026 j++;
2027 }
2028 if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){
2029 sqlite3StrAccumAppendAll(&acc, ",schema HIDDEN");
2030 j++;
2031 }
2032 sqlite3StrAccumAppend(&acc, ")", 1);
2033 sqlite3StrAccumFinish(&acc);
2034 assert( strlen(zBuf) < sizeof(zBuf)-1 );
2035 rc = sqlite3_declare_vtab(db, zBuf);
2036 if( rc==SQLITE_OK ){
2037 pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab));
2038 if( pTab==0 ){
2039 rc = SQLITE_NOMEM;
2040 }else{
2041 memset(pTab, 0, sizeof(PragmaVtab));
2042 pTab->pName = pPragma;
2043 pTab->db = db;
2044 pTab->iHidden = i;
2045 pTab->nHidden = j;
2046 }
2047 }else{
2048 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
2049 }
2050
2051 *ppVtab = (sqlite3_vtab*)pTab;
2052 return rc;
2053 }
2054
2055 /*
2056 ** Pragma virtual table module xDisconnect method.
2057 */
2058 static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){
2059 PragmaVtab *pTab = (PragmaVtab*)pVtab;
2060 sqlite3_free(pTab);
2061 return SQLITE_OK;
2062 }
2063
2064 /* Figure out the best index to use to search a pragma virtual table.
2065 **
2066 ** There are not really any index choices. But we want to encourage the
2067 ** query planner to give == constraints on as many hidden parameters as
2068 ** possible, and especially on the first hidden parameter. So return a
2069 ** high cost if hidden parameters are unconstrained.
2070 */
2071 static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
2072 PragmaVtab *pTab = (PragmaVtab*)tab;
2073 const struct sqlite3_index_constraint *pConstraint;
2074 int i, j;
2075 int seen[2];
2076
2077 pIdxInfo->estimatedCost = (double)1;
2078 if( pTab->nHidden==0 ){ return SQLITE_OK; }
2079 pConstraint = pIdxInfo->aConstraint;
2080 seen[0] = 0;
2081 seen[1] = 0;
2082 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
2083 if( pConstraint->usable==0 ) continue;
2084 if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
2085 if( pConstraint->iColumn < pTab->iHidden ) continue;
2086 j = pConstraint->iColumn - pTab->iHidden;
2087 assert( j < 2 );
2088 seen[j] = i+1;
2089 }
2090 if( seen[0]==0 ){
2091 pIdxInfo->estimatedCost = (double)2147483647;
2092 pIdxInfo->estimatedRows = 2147483647;
2093 return SQLITE_OK;
2094 }
2095 j = seen[0]-1;
2096 pIdxInfo->aConstraintUsage[j].argvIndex = 1;
2097 pIdxInfo->aConstraintUsage[j].omit = 1;
2098 if( seen[1]==0 ) return SQLITE_OK;
2099 pIdxInfo->estimatedCost = (double)20;
2100 pIdxInfo->estimatedRows = 20;
2101 j = seen[1]-1;
2102 pIdxInfo->aConstraintUsage[j].argvIndex = 2;
2103 pIdxInfo->aConstraintUsage[j].omit = 1;
2104 return SQLITE_OK;
2105 }
2106
2107 /* Create a new cursor for the pragma virtual table */
2108 static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){
2109 PragmaVtabCursor *pCsr;
2110 pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr));
2111 if( pCsr==0 ) return SQLITE_NOMEM;
2112 memset(pCsr, 0, sizeof(PragmaVtabCursor));
2113 pCsr->base.pVtab = pVtab;
2114 *ppCursor = &pCsr->base;
2115 return SQLITE_OK;
2116 }
2117
2118 /* Clear all content from pragma virtual table cursor. */
2119 static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){
2120 int i;
2121 sqlite3_finalize(pCsr->pPragma);
2122 pCsr->pPragma = 0;
2123 for(i=0; i<ArraySize(pCsr->azArg); i++){
2124 sqlite3_free(pCsr->azArg[i]);
2125 pCsr->azArg[i] = 0;
2126 }
2127 }
2128
2129 /* Close a pragma virtual table cursor */
2130 static int pragmaVtabClose(sqlite3_vtab_cursor *cur){
2131 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur;
2132 pragmaVtabCursorClear(pCsr);
2133 sqlite3_free(pCsr);
2134 return SQLITE_OK;
2135 }
2136
2137 /* Advance the pragma virtual table cursor to the next row */
2138 static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){
2139 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2140 int rc = SQLITE_OK;
2141
2142 /* Increment the xRowid value */
2143 pCsr->iRowid++;
2144 assert( pCsr->pPragma );
2145 if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){
2146 rc = sqlite3_finalize(pCsr->pPragma);
2147 pCsr->pPragma = 0;
2148 pragmaVtabCursorClear(pCsr);
2149 }
2150 return rc;
2151 }
2152
2153 /*
2154 ** Pragma virtual table module xFilter method.
2155 */
2156 static int pragmaVtabFilter(
2157 sqlite3_vtab_cursor *pVtabCursor,
2158 int idxNum, const char *idxStr,
2159 int argc, sqlite3_value **argv
2160 ){
2161 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2162 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
2163 int rc;
2164 int i, j;
2165 StrAccum acc;
2166 char *zSql;
2167
2168 UNUSED_PARAMETER(idxNum);
2169 UNUSED_PARAMETER(idxStr);
2170 pragmaVtabCursorClear(pCsr);
2171 j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1;
2172 for(i=0; i<argc; i++, j++){
2173 assert( j<ArraySize(pCsr->azArg) );
2174 pCsr->azArg[j] = sqlite3_mprintf("%s", sqlite3_value_text(argv[i]));
2175 if( pCsr->azArg[j]==0 ){
2176 return SQLITE_NOMEM;
2177 }
2178 }
2179 sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]);
2180 sqlite3StrAccumAppendAll(&acc, "PRAGMA ");
2181 if( pCsr->azArg[1] ){
2182 sqlite3XPrintf(&acc, "%Q.", pCsr->azArg[1]);
2183 }
2184 sqlite3StrAccumAppendAll(&acc, pTab->pName->zName);
2185 if( pCsr->azArg[0] ){
2186 sqlite3XPrintf(&acc, "=%Q", pCsr->azArg[0]);
2187 }
2188 zSql = sqlite3StrAccumFinish(&acc);
2189 if( zSql==0 ) return SQLITE_NOMEM;
2190 rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0);
2191 sqlite3_free(zSql);
2192 if( rc!=SQLITE_OK ){
2193 pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db));
2194 return rc;
2195 }
2196 return pragmaVtabNext(pVtabCursor);
2197 }
2198
2199 /*
2200 ** Pragma virtual table module xEof method.
2201 */
2202 static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){
2203 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2204 return (pCsr->pPragma==0);
2205 }
2206
2207 /* The xColumn method simply returns the corresponding column from
2208 ** the PRAGMA.
2209 */
2210 static int pragmaVtabColumn(
2211 sqlite3_vtab_cursor *pVtabCursor,
2212 sqlite3_context *ctx,
2213 int i
2214 ){
2215 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2216 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
2217 if( i<pTab->iHidden ){
2218 sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i));
2219 }else{
2220 sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT);
2221 }
2222 return SQLITE_OK;
2223 }
2224
2225 /*
2226 ** Pragma virtual table module xRowid method.
2227 */
2228 static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){
2229 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2230 *p = pCsr->iRowid;
2231 return SQLITE_OK;
2232 }
2233
2234 /* The pragma virtual table object */
2235 static const sqlite3_module pragmaVtabModule = {
2236 0, /* iVersion */
2237 0, /* xCreate - create a table */
2238 pragmaVtabConnect, /* xConnect - connect to an existing table */
2239 pragmaVtabBestIndex, /* xBestIndex - Determine search strategy */
2240 pragmaVtabDisconnect, /* xDisconnect - Disconnect from a table */
2241 0, /* xDestroy - Drop a table */
2242 pragmaVtabOpen, /* xOpen - open a cursor */
2243 pragmaVtabClose, /* xClose - close a cursor */
2244 pragmaVtabFilter, /* xFilter - configure scan constraints */
2245 pragmaVtabNext, /* xNext - advance a cursor */
2246 pragmaVtabEof, /* xEof */
2247 pragmaVtabColumn, /* xColumn - read data */
2248 pragmaVtabRowid, /* xRowid - read data */
2249 0, /* xUpdate - write data */
2250 0, /* xBegin - begin transaction */
2251 0, /* xSync - sync transaction */
2252 0, /* xCommit - commit transaction */
2253 0, /* xRollback - rollback transaction */
2254 0, /* xFindFunction - function overloading */
2255 0, /* xRename - rename the table */
2256 0, /* xSavepoint */
2257 0, /* xRelease */
2258 0 /* xRollbackTo */
2259 };
2260
2261 /*
2262 ** Check to see if zTabName is really the name of a pragma. If it is,
2263 ** then register an eponymous virtual table for that pragma and return
2264 ** a pointer to the Module object for the new virtual table.
2265 */
2266 Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){
2267 const PragmaName *pName;
2268 assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 );
2269 pName = pragmaLocate(zName+7);
2270 if( pName==0 ) return 0;
2271 if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0;
2272 assert( sqlite3HashFind(&db->aModule, zName)==0 );
2273 return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0);
2274 }
2275
2276 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2277
2278 #endif /* SQLITE_OMIT_PRAGMA */
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3170000/src/pragma.h ('k') | third_party/sqlite/sqlite-src-3170000/src/prepare.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698