OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2008 November 05 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** |
| 13 ** This file implements the default page cache implementation (the |
| 14 ** sqlite3_pcache interface). It also contains part of the implementation |
| 15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. |
| 16 ** If the default page cache implementation is overridden, then neither of |
| 17 ** these two features are available. |
| 18 ** |
| 19 ** A Page cache line looks like this: |
| 20 ** |
| 21 ** ------------------------------------------------------------- |
| 22 ** | database page content | PgHdr1 | MemPage | PgHdr | |
| 23 ** ------------------------------------------------------------- |
| 24 ** |
| 25 ** The database page content is up front (so that buffer overreads tend to |
| 26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage |
| 27 ** is the extension added by the btree.c module containing information such |
| 28 ** as the database page number and how that database page is used. PgHdr |
| 29 ** is added by the pcache.c layer and contains information used to keep track |
| 30 ** of which pages are "dirty". PgHdr1 is an extension added by this |
| 31 ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page. |
| 32 ** PgHdr1 contains information needed to look up a page by its page number. |
| 33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the |
| 34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr. |
| 35 ** |
| 36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at |
| 37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The |
| 38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this |
| 39 ** size can vary according to architecture, compile-time options, and |
| 40 ** SQLite library version number. |
| 41 ** |
| 42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained |
| 43 ** using a separate memory allocation from the database page content. This |
| 44 ** seeks to overcome the "clownshoe" problem (also called "internal |
| 45 ** fragmentation" in academic literature) of allocating a few bytes more |
| 46 ** than a power of two with the memory allocator rounding up to the next |
| 47 ** power of two, and leaving the rounded-up space unused. |
| 48 ** |
| 49 ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates |
| 50 ** with this module. Information is passed back and forth as PgHdr1 pointers. |
| 51 ** |
| 52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects. |
| 53 ** The btree.c module deals with pointers to MemPage objects. |
| 54 ** |
| 55 ** SOURCE OF PAGE CACHE MEMORY: |
| 56 ** |
| 57 ** Memory for a page might come from any of three sources: |
| 58 ** |
| 59 ** (1) The general-purpose memory allocator - sqlite3Malloc() |
| 60 ** (2) Global page-cache memory provided using sqlite3_config() with |
| 61 ** SQLITE_CONFIG_PAGECACHE. |
| 62 ** (3) PCache-local bulk allocation. |
| 63 ** |
| 64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth) |
| 65 ** that is allocated when the page cache is created. The size of the local |
| 66 ** bulk allocation can be adjusted using |
| 67 ** |
| 68 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N). |
| 69 ** |
| 70 ** If N is positive, then N pages worth of memory are allocated using a single |
| 71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated. |
| 72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used |
| 73 ** for as many pages as can be accomodated. |
| 74 ** |
| 75 ** Only one of (2) or (3) can be used. Once the memory available to (2) or |
| 76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose |
| 77 ** memory allocator (1). |
| 78 ** |
| 79 ** Earlier versions of SQLite used only methods (1) and (2). But experiments |
| 80 ** show that method (3) with N==100 provides about a 5% performance boost for |
| 81 ** common workloads. |
| 82 */ |
| 83 #include "sqliteInt.h" |
| 84 |
| 85 typedef struct PCache1 PCache1; |
| 86 typedef struct PgHdr1 PgHdr1; |
| 87 typedef struct PgFreeslot PgFreeslot; |
| 88 typedef struct PGroup PGroup; |
| 89 |
| 90 /* |
| 91 ** Each cache entry is represented by an instance of the following |
| 92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of |
| 93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure |
| 94 ** in memory. |
| 95 */ |
| 96 struct PgHdr1 { |
| 97 sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */ |
| 98 unsigned int iKey; /* Key value (page number) */ |
| 99 u8 isPinned; /* Page in use, not on the LRU list */ |
| 100 u8 isBulkLocal; /* This page from bulk local storage */ |
| 101 u8 isAnchor; /* This is the PGroup.lru element */ |
| 102 PgHdr1 *pNext; /* Next in hash table chain */ |
| 103 PCache1 *pCache; /* Cache that currently owns this page */ |
| 104 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */ |
| 105 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ |
| 106 }; |
| 107 |
| 108 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set |
| 109 ** of one or more PCaches that are able to recycle each other's unpinned |
| 110 ** pages when they are under memory pressure. A PGroup is an instance of |
| 111 ** the following object. |
| 112 ** |
| 113 ** This page cache implementation works in one of two modes: |
| 114 ** |
| 115 ** (1) Every PCache is the sole member of its own PGroup. There is |
| 116 ** one PGroup per PCache. |
| 117 ** |
| 118 ** (2) There is a single global PGroup that all PCaches are a member |
| 119 ** of. |
| 120 ** |
| 121 ** Mode 1 uses more memory (since PCache instances are not able to rob |
| 122 ** unused pages from other PCaches) but it also operates without a mutex, |
| 123 ** and is therefore often faster. Mode 2 requires a mutex in order to be |
| 124 ** threadsafe, but recycles pages more efficiently. |
| 125 ** |
| 126 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single |
| 127 ** PGroup which is the pcache1.grp global variable and its mutex is |
| 128 ** SQLITE_MUTEX_STATIC_LRU. |
| 129 */ |
| 130 struct PGroup { |
| 131 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ |
| 132 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ |
| 133 unsigned int nMinPage; /* Sum of nMin for purgeable caches */ |
| 134 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ |
| 135 unsigned int nCurrentPage; /* Number of purgeable pages allocated */ |
| 136 PgHdr1 lru; /* The beginning and end of the LRU list */ |
| 137 }; |
| 138 |
| 139 /* Each page cache is an instance of the following object. Every |
| 140 ** open database file (including each in-memory database and each |
| 141 ** temporary or transient database) has a single page cache which |
| 142 ** is an instance of this object. |
| 143 ** |
| 144 ** Pointers to structures of this type are cast and returned as |
| 145 ** opaque sqlite3_pcache* handles. |
| 146 */ |
| 147 struct PCache1 { |
| 148 /* Cache configuration parameters. Page size (szPage) and the purgeable |
| 149 ** flag (bPurgeable) are set when the cache is created. nMax may be |
| 150 ** modified at any time by a call to the pcache1Cachesize() method. |
| 151 ** The PGroup mutex must be held when accessing nMax. |
| 152 */ |
| 153 PGroup *pGroup; /* PGroup this cache belongs to */ |
| 154 int szPage; /* Size of database content section */ |
| 155 int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */ |
| 156 int szAlloc; /* Total size of one pcache line */ |
| 157 int bPurgeable; /* True if cache is purgeable */ |
| 158 unsigned int nMin; /* Minimum number of pages reserved */ |
| 159 unsigned int nMax; /* Configured "cache_size" value */ |
| 160 unsigned int n90pct; /* nMax*9/10 */ |
| 161 unsigned int iMaxKey; /* Largest key seen since xTruncate() */ |
| 162 |
| 163 /* Hash table of all pages. The following variables may only be accessed |
| 164 ** when the accessor is holding the PGroup mutex. |
| 165 */ |
| 166 unsigned int nRecyclable; /* Number of pages in the LRU list */ |
| 167 unsigned int nPage; /* Total number of pages in apHash */ |
| 168 unsigned int nHash; /* Number of slots in apHash[] */ |
| 169 PgHdr1 **apHash; /* Hash table for fast lookup by key */ |
| 170 PgHdr1 *pFree; /* List of unused pcache-local pages */ |
| 171 void *pBulk; /* Bulk memory used by pcache-local */ |
| 172 }; |
| 173 |
| 174 /* |
| 175 ** Free slots in the allocator used to divide up the global page cache |
| 176 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism. |
| 177 */ |
| 178 struct PgFreeslot { |
| 179 PgFreeslot *pNext; /* Next free slot */ |
| 180 }; |
| 181 |
| 182 /* |
| 183 ** Global data used by this cache. |
| 184 */ |
| 185 static SQLITE_WSD struct PCacheGlobal { |
| 186 PGroup grp; /* The global PGroup for mode (2) */ |
| 187 |
| 188 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The |
| 189 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all |
| 190 ** fixed at sqlite3_initialize() time and do not require mutex protection. |
| 191 ** The nFreeSlot and pFree values do require mutex protection. |
| 192 */ |
| 193 int isInit; /* True if initialized */ |
| 194 int separateCache; /* Use a new PGroup for each PCache */ |
| 195 int nInitPage; /* Initial bulk allocation size */ |
| 196 int szSlot; /* Size of each free slot */ |
| 197 int nSlot; /* The number of pcache slots */ |
| 198 int nReserve; /* Try to keep nFreeSlot above this */ |
| 199 void *pStart, *pEnd; /* Bounds of global page cache memory */ |
| 200 /* Above requires no mutex. Use mutex below for variable that follow. */ |
| 201 sqlite3_mutex *mutex; /* Mutex for accessing the following: */ |
| 202 PgFreeslot *pFree; /* Free page blocks */ |
| 203 int nFreeSlot; /* Number of unused pcache slots */ |
| 204 /* The following value requires a mutex to change. We skip the mutex on |
| 205 ** reading because (1) most platforms read a 32-bit integer atomically and |
| 206 ** (2) even if an incorrect value is read, no great harm is done since this |
| 207 ** is really just an optimization. */ |
| 208 int bUnderPressure; /* True if low on PAGECACHE memory */ |
| 209 } pcache1_g; |
| 210 |
| 211 /* |
| 212 ** All code in this file should access the global structure above via the |
| 213 ** alias "pcache1". This ensures that the WSD emulation is used when |
| 214 ** compiling for systems that do not support real WSD. |
| 215 */ |
| 216 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) |
| 217 |
| 218 /* |
| 219 ** Macros to enter and leave the PCache LRU mutex. |
| 220 */ |
| 221 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 |
| 222 # define pcache1EnterMutex(X) assert((X)->mutex==0) |
| 223 # define pcache1LeaveMutex(X) assert((X)->mutex==0) |
| 224 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0 |
| 225 #else |
| 226 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) |
| 227 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) |
| 228 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1 |
| 229 #endif |
| 230 |
| 231 /******************************************************************************/ |
| 232 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ |
| 233 |
| 234 |
| 235 /* |
| 236 ** This function is called during initialization if a static buffer is |
| 237 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE |
| 238 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large |
| 239 ** enough to contain 'n' buffers of 'sz' bytes each. |
| 240 ** |
| 241 ** This routine is called from sqlite3_initialize() and so it is guaranteed |
| 242 ** to be serialized already. There is no need for further mutexing. |
| 243 */ |
| 244 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ |
| 245 if( pcache1.isInit ){ |
| 246 PgFreeslot *p; |
| 247 if( pBuf==0 ) sz = n = 0; |
| 248 sz = ROUNDDOWN8(sz); |
| 249 pcache1.szSlot = sz; |
| 250 pcache1.nSlot = pcache1.nFreeSlot = n; |
| 251 pcache1.nReserve = n>90 ? 10 : (n/10 + 1); |
| 252 pcache1.pStart = pBuf; |
| 253 pcache1.pFree = 0; |
| 254 pcache1.bUnderPressure = 0; |
| 255 while( n-- ){ |
| 256 p = (PgFreeslot*)pBuf; |
| 257 p->pNext = pcache1.pFree; |
| 258 pcache1.pFree = p; |
| 259 pBuf = (void*)&((char*)pBuf)[sz]; |
| 260 } |
| 261 pcache1.pEnd = pBuf; |
| 262 } |
| 263 } |
| 264 |
| 265 /* |
| 266 ** Try to initialize the pCache->pFree and pCache->pBulk fields. Return |
| 267 ** true if pCache->pFree ends up containing one or more free pages. |
| 268 */ |
| 269 static int pcache1InitBulk(PCache1 *pCache){ |
| 270 i64 szBulk; |
| 271 char *zBulk; |
| 272 if( pcache1.nInitPage==0 ) return 0; |
| 273 /* Do not bother with a bulk allocation if the cache size very small */ |
| 274 if( pCache->nMax<3 ) return 0; |
| 275 sqlite3BeginBenignMalloc(); |
| 276 if( pcache1.nInitPage>0 ){ |
| 277 szBulk = pCache->szAlloc * (i64)pcache1.nInitPage; |
| 278 }else{ |
| 279 szBulk = -1024 * (i64)pcache1.nInitPage; |
| 280 } |
| 281 if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){ |
| 282 szBulk = pCache->szAlloc*(i64)pCache->nMax; |
| 283 } |
| 284 zBulk = pCache->pBulk = sqlite3Malloc( szBulk ); |
| 285 sqlite3EndBenignMalloc(); |
| 286 if( zBulk ){ |
| 287 int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc; |
| 288 int i; |
| 289 for(i=0; i<nBulk; i++){ |
| 290 PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage]; |
| 291 pX->page.pBuf = zBulk; |
| 292 pX->page.pExtra = &pX[1]; |
| 293 pX->isBulkLocal = 1; |
| 294 pX->isAnchor = 0; |
| 295 pX->pNext = pCache->pFree; |
| 296 pCache->pFree = pX; |
| 297 zBulk += pCache->szAlloc; |
| 298 } |
| 299 } |
| 300 return pCache->pFree!=0; |
| 301 } |
| 302 |
| 303 /* |
| 304 ** Malloc function used within this file to allocate space from the buffer |
| 305 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no |
| 306 ** such buffer exists or there is no space left in it, this function falls |
| 307 ** back to sqlite3Malloc(). |
| 308 ** |
| 309 ** Multiple threads can run this routine at the same time. Global variables |
| 310 ** in pcache1 need to be protected via mutex. |
| 311 */ |
| 312 static void *pcache1Alloc(int nByte){ |
| 313 void *p = 0; |
| 314 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); |
| 315 if( nByte<=pcache1.szSlot ){ |
| 316 sqlite3_mutex_enter(pcache1.mutex); |
| 317 p = (PgHdr1 *)pcache1.pFree; |
| 318 if( p ){ |
| 319 pcache1.pFree = pcache1.pFree->pNext; |
| 320 pcache1.nFreeSlot--; |
| 321 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; |
| 322 assert( pcache1.nFreeSlot>=0 ); |
| 323 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); |
| 324 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1); |
| 325 } |
| 326 sqlite3_mutex_leave(pcache1.mutex); |
| 327 } |
| 328 if( p==0 ){ |
| 329 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get |
| 330 ** it from sqlite3Malloc instead. |
| 331 */ |
| 332 p = sqlite3Malloc(nByte); |
| 333 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS |
| 334 if( p ){ |
| 335 int sz = sqlite3MallocSize(p); |
| 336 sqlite3_mutex_enter(pcache1.mutex); |
| 337 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); |
| 338 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); |
| 339 sqlite3_mutex_leave(pcache1.mutex); |
| 340 } |
| 341 #endif |
| 342 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); |
| 343 } |
| 344 return p; |
| 345 } |
| 346 |
| 347 /* |
| 348 ** Free an allocated buffer obtained from pcache1Alloc(). |
| 349 */ |
| 350 static void pcache1Free(void *p){ |
| 351 if( p==0 ) return; |
| 352 if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){ |
| 353 PgFreeslot *pSlot; |
| 354 sqlite3_mutex_enter(pcache1.mutex); |
| 355 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1); |
| 356 pSlot = (PgFreeslot*)p; |
| 357 pSlot->pNext = pcache1.pFree; |
| 358 pcache1.pFree = pSlot; |
| 359 pcache1.nFreeSlot++; |
| 360 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; |
| 361 assert( pcache1.nFreeSlot<=pcache1.nSlot ); |
| 362 sqlite3_mutex_leave(pcache1.mutex); |
| 363 }else{ |
| 364 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); |
| 365 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
| 366 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS |
| 367 { |
| 368 int nFreed = 0; |
| 369 nFreed = sqlite3MallocSize(p); |
| 370 sqlite3_mutex_enter(pcache1.mutex); |
| 371 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed); |
| 372 sqlite3_mutex_leave(pcache1.mutex); |
| 373 } |
| 374 #endif |
| 375 sqlite3_free(p); |
| 376 } |
| 377 } |
| 378 |
| 379 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
| 380 /* |
| 381 ** Return the size of a pcache allocation |
| 382 */ |
| 383 static int pcache1MemSize(void *p){ |
| 384 if( p>=pcache1.pStart && p<pcache1.pEnd ){ |
| 385 return pcache1.szSlot; |
| 386 }else{ |
| 387 int iSize; |
| 388 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); |
| 389 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
| 390 iSize = sqlite3MallocSize(p); |
| 391 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); |
| 392 return iSize; |
| 393 } |
| 394 } |
| 395 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ |
| 396 |
| 397 /* |
| 398 ** Allocate a new page object initially associated with cache pCache. |
| 399 */ |
| 400 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){ |
| 401 PgHdr1 *p = 0; |
| 402 void *pPg; |
| 403 |
| 404 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); |
| 405 if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){ |
| 406 p = pCache->pFree; |
| 407 pCache->pFree = p->pNext; |
| 408 p->pNext = 0; |
| 409 }else{ |
| 410 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
| 411 /* The group mutex must be released before pcache1Alloc() is called. This |
| 412 ** is because it might call sqlite3_release_memory(), which assumes that |
| 413 ** this mutex is not held. */ |
| 414 assert( pcache1.separateCache==0 ); |
| 415 assert( pCache->pGroup==&pcache1.grp ); |
| 416 pcache1LeaveMutex(pCache->pGroup); |
| 417 #endif |
| 418 if( benignMalloc ){ sqlite3BeginBenignMalloc(); } |
| 419 #ifdef SQLITE_PCACHE_SEPARATE_HEADER |
| 420 pPg = pcache1Alloc(pCache->szPage); |
| 421 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra); |
| 422 if( !pPg || !p ){ |
| 423 pcache1Free(pPg); |
| 424 sqlite3_free(p); |
| 425 pPg = 0; |
| 426 } |
| 427 #else |
| 428 pPg = pcache1Alloc(pCache->szAlloc); |
| 429 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; |
| 430 #endif |
| 431 if( benignMalloc ){ sqlite3EndBenignMalloc(); } |
| 432 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
| 433 pcache1EnterMutex(pCache->pGroup); |
| 434 #endif |
| 435 if( pPg==0 ) return 0; |
| 436 p->page.pBuf = pPg; |
| 437 p->page.pExtra = &p[1]; |
| 438 p->isBulkLocal = 0; |
| 439 p->isAnchor = 0; |
| 440 } |
| 441 if( pCache->bPurgeable ){ |
| 442 pCache->pGroup->nCurrentPage++; |
| 443 } |
| 444 return p; |
| 445 } |
| 446 |
| 447 /* |
| 448 ** Free a page object allocated by pcache1AllocPage(). |
| 449 */ |
| 450 static void pcache1FreePage(PgHdr1 *p){ |
| 451 PCache1 *pCache; |
| 452 assert( p!=0 ); |
| 453 pCache = p->pCache; |
| 454 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); |
| 455 if( p->isBulkLocal ){ |
| 456 p->pNext = pCache->pFree; |
| 457 pCache->pFree = p; |
| 458 }else{ |
| 459 pcache1Free(p->page.pBuf); |
| 460 #ifdef SQLITE_PCACHE_SEPARATE_HEADER |
| 461 sqlite3_free(p); |
| 462 #endif |
| 463 } |
| 464 if( pCache->bPurgeable ){ |
| 465 pCache->pGroup->nCurrentPage--; |
| 466 } |
| 467 } |
| 468 |
| 469 /* |
| 470 ** Malloc function used by SQLite to obtain space from the buffer configured |
| 471 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer |
| 472 ** exists, this function falls back to sqlite3Malloc(). |
| 473 */ |
| 474 void *sqlite3PageMalloc(int sz){ |
| 475 return pcache1Alloc(sz); |
| 476 } |
| 477 |
| 478 /* |
| 479 ** Free an allocated buffer obtained from sqlite3PageMalloc(). |
| 480 */ |
| 481 void sqlite3PageFree(void *p){ |
| 482 pcache1Free(p); |
| 483 } |
| 484 |
| 485 |
| 486 /* |
| 487 ** Return true if it desirable to avoid allocating a new page cache |
| 488 ** entry. |
| 489 ** |
| 490 ** If memory was allocated specifically to the page cache using |
| 491 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then |
| 492 ** it is desirable to avoid allocating a new page cache entry because |
| 493 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient |
| 494 ** for all page cache needs and we should not need to spill the |
| 495 ** allocation onto the heap. |
| 496 ** |
| 497 ** Or, the heap is used for all page cache memory but the heap is |
| 498 ** under memory pressure, then again it is desirable to avoid |
| 499 ** allocating a new page cache entry in order to avoid stressing |
| 500 ** the heap even further. |
| 501 */ |
| 502 static int pcache1UnderMemoryPressure(PCache1 *pCache){ |
| 503 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){ |
| 504 return pcache1.bUnderPressure; |
| 505 }else{ |
| 506 return sqlite3HeapNearlyFull(); |
| 507 } |
| 508 } |
| 509 |
| 510 /******************************************************************************/ |
| 511 /******** General Implementation Functions ************************************/ |
| 512 |
| 513 /* |
| 514 ** This function is used to resize the hash table used by the cache passed |
| 515 ** as the first argument. |
| 516 ** |
| 517 ** The PCache mutex must be held when this function is called. |
| 518 */ |
| 519 static void pcache1ResizeHash(PCache1 *p){ |
| 520 PgHdr1 **apNew; |
| 521 unsigned int nNew; |
| 522 unsigned int i; |
| 523 |
| 524 assert( sqlite3_mutex_held(p->pGroup->mutex) ); |
| 525 |
| 526 nNew = p->nHash*2; |
| 527 if( nNew<256 ){ |
| 528 nNew = 256; |
| 529 } |
| 530 |
| 531 pcache1LeaveMutex(p->pGroup); |
| 532 if( p->nHash ){ sqlite3BeginBenignMalloc(); } |
| 533 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew); |
| 534 if( p->nHash ){ sqlite3EndBenignMalloc(); } |
| 535 pcache1EnterMutex(p->pGroup); |
| 536 if( apNew ){ |
| 537 for(i=0; i<p->nHash; i++){ |
| 538 PgHdr1 *pPage; |
| 539 PgHdr1 *pNext = p->apHash[i]; |
| 540 while( (pPage = pNext)!=0 ){ |
| 541 unsigned int h = pPage->iKey % nNew; |
| 542 pNext = pPage->pNext; |
| 543 pPage->pNext = apNew[h]; |
| 544 apNew[h] = pPage; |
| 545 } |
| 546 } |
| 547 sqlite3_free(p->apHash); |
| 548 p->apHash = apNew; |
| 549 p->nHash = nNew; |
| 550 } |
| 551 } |
| 552 |
| 553 /* |
| 554 ** This function is used internally to remove the page pPage from the |
| 555 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup |
| 556 ** LRU list, then this function is a no-op. |
| 557 ** |
| 558 ** The PGroup mutex must be held when this function is called. |
| 559 */ |
| 560 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){ |
| 561 PCache1 *pCache; |
| 562 |
| 563 assert( pPage!=0 ); |
| 564 assert( pPage->isPinned==0 ); |
| 565 pCache = pPage->pCache; |
| 566 assert( pPage->pLruNext ); |
| 567 assert( pPage->pLruPrev ); |
| 568 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); |
| 569 pPage->pLruPrev->pLruNext = pPage->pLruNext; |
| 570 pPage->pLruNext->pLruPrev = pPage->pLruPrev; |
| 571 pPage->pLruNext = 0; |
| 572 pPage->pLruPrev = 0; |
| 573 pPage->isPinned = 1; |
| 574 assert( pPage->isAnchor==0 ); |
| 575 assert( pCache->pGroup->lru.isAnchor==1 ); |
| 576 pCache->nRecyclable--; |
| 577 return pPage; |
| 578 } |
| 579 |
| 580 |
| 581 /* |
| 582 ** Remove the page supplied as an argument from the hash table |
| 583 ** (PCache1.apHash structure) that it is currently stored in. |
| 584 ** Also free the page if freePage is true. |
| 585 ** |
| 586 ** The PGroup mutex must be held when this function is called. |
| 587 */ |
| 588 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){ |
| 589 unsigned int h; |
| 590 PCache1 *pCache = pPage->pCache; |
| 591 PgHdr1 **pp; |
| 592 |
| 593 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); |
| 594 h = pPage->iKey % pCache->nHash; |
| 595 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); |
| 596 *pp = (*pp)->pNext; |
| 597 |
| 598 pCache->nPage--; |
| 599 if( freeFlag ) pcache1FreePage(pPage); |
| 600 } |
| 601 |
| 602 /* |
| 603 ** If there are currently more than nMaxPage pages allocated, try |
| 604 ** to recycle pages to reduce the number allocated to nMaxPage. |
| 605 */ |
| 606 static void pcache1EnforceMaxPage(PCache1 *pCache){ |
| 607 PGroup *pGroup = pCache->pGroup; |
| 608 PgHdr1 *p; |
| 609 assert( sqlite3_mutex_held(pGroup->mutex) ); |
| 610 while( pGroup->nCurrentPage>pGroup->nMaxPage |
| 611 && (p=pGroup->lru.pLruPrev)->isAnchor==0 |
| 612 ){ |
| 613 assert( p->pCache->pGroup==pGroup ); |
| 614 assert( p->isPinned==0 ); |
| 615 pcache1PinPage(p); |
| 616 pcache1RemoveFromHash(p, 1); |
| 617 } |
| 618 if( pCache->nPage==0 && pCache->pBulk ){ |
| 619 sqlite3_free(pCache->pBulk); |
| 620 pCache->pBulk = pCache->pFree = 0; |
| 621 } |
| 622 } |
| 623 |
| 624 /* |
| 625 ** Discard all pages from cache pCache with a page number (key value) |
| 626 ** greater than or equal to iLimit. Any pinned pages that meet this |
| 627 ** criteria are unpinned before they are discarded. |
| 628 ** |
| 629 ** The PCache mutex must be held when this function is called. |
| 630 */ |
| 631 static void pcache1TruncateUnsafe( |
| 632 PCache1 *pCache, /* The cache to truncate */ |
| 633 unsigned int iLimit /* Drop pages with this pgno or larger */ |
| 634 ){ |
| 635 TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */ |
| 636 unsigned int h, iStop; |
| 637 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); |
| 638 assert( pCache->iMaxKey >= iLimit ); |
| 639 assert( pCache->nHash > 0 ); |
| 640 if( pCache->iMaxKey - iLimit < pCache->nHash ){ |
| 641 /* If we are just shaving the last few pages off the end of the |
| 642 ** cache, then there is no point in scanning the entire hash table. |
| 643 ** Only scan those hash slots that might contain pages that need to |
| 644 ** be removed. */ |
| 645 h = iLimit % pCache->nHash; |
| 646 iStop = pCache->iMaxKey % pCache->nHash; |
| 647 TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */ |
| 648 }else{ |
| 649 /* This is the general case where many pages are being removed. |
| 650 ** It is necessary to scan the entire hash table */ |
| 651 h = pCache->nHash/2; |
| 652 iStop = h - 1; |
| 653 } |
| 654 for(;;){ |
| 655 PgHdr1 **pp; |
| 656 PgHdr1 *pPage; |
| 657 assert( h<pCache->nHash ); |
| 658 pp = &pCache->apHash[h]; |
| 659 while( (pPage = *pp)!=0 ){ |
| 660 if( pPage->iKey>=iLimit ){ |
| 661 pCache->nPage--; |
| 662 *pp = pPage->pNext; |
| 663 if( !pPage->isPinned ) pcache1PinPage(pPage); |
| 664 pcache1FreePage(pPage); |
| 665 }else{ |
| 666 pp = &pPage->pNext; |
| 667 TESTONLY( if( nPage>=0 ) nPage++; ) |
| 668 } |
| 669 } |
| 670 if( h==iStop ) break; |
| 671 h = (h+1) % pCache->nHash; |
| 672 } |
| 673 assert( nPage<0 || pCache->nPage==(unsigned)nPage ); |
| 674 } |
| 675 |
| 676 /******************************************************************************/ |
| 677 /******** sqlite3_pcache Methods **********************************************/ |
| 678 |
| 679 /* |
| 680 ** Implementation of the sqlite3_pcache.xInit method. |
| 681 */ |
| 682 static int pcache1Init(void *NotUsed){ |
| 683 UNUSED_PARAMETER(NotUsed); |
| 684 assert( pcache1.isInit==0 ); |
| 685 memset(&pcache1, 0, sizeof(pcache1)); |
| 686 |
| 687 |
| 688 /* |
| 689 ** The pcache1.separateCache variable is true if each PCache has its own |
| 690 ** private PGroup (mode-1). pcache1.separateCache is false if the single |
| 691 ** PGroup in pcache1.grp is used for all page caches (mode-2). |
| 692 ** |
| 693 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT |
| 694 ** |
| 695 ** * Use a unified cache in single-threaded applications that have |
| 696 ** configured a start-time buffer for use as page-cache memory using |
| 697 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL |
| 698 ** pBuf argument. |
| 699 ** |
| 700 ** * Otherwise use separate caches (mode-1) |
| 701 */ |
| 702 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) |
| 703 pcache1.separateCache = 0; |
| 704 #elif SQLITE_THREADSAFE |
| 705 pcache1.separateCache = sqlite3GlobalConfig.pPage==0 |
| 706 || sqlite3GlobalConfig.bCoreMutex>0; |
| 707 #else |
| 708 pcache1.separateCache = sqlite3GlobalConfig.pPage==0; |
| 709 #endif |
| 710 |
| 711 #if SQLITE_THREADSAFE |
| 712 if( sqlite3GlobalConfig.bCoreMutex ){ |
| 713 pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU); |
| 714 pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM); |
| 715 } |
| 716 #endif |
| 717 if( pcache1.separateCache |
| 718 && sqlite3GlobalConfig.nPage!=0 |
| 719 && sqlite3GlobalConfig.pPage==0 |
| 720 ){ |
| 721 pcache1.nInitPage = sqlite3GlobalConfig.nPage; |
| 722 }else{ |
| 723 pcache1.nInitPage = 0; |
| 724 } |
| 725 pcache1.grp.mxPinned = 10; |
| 726 pcache1.isInit = 1; |
| 727 return SQLITE_OK; |
| 728 } |
| 729 |
| 730 /* |
| 731 ** Implementation of the sqlite3_pcache.xShutdown method. |
| 732 ** Note that the static mutex allocated in xInit does |
| 733 ** not need to be freed. |
| 734 */ |
| 735 static void pcache1Shutdown(void *NotUsed){ |
| 736 UNUSED_PARAMETER(NotUsed); |
| 737 assert( pcache1.isInit!=0 ); |
| 738 memset(&pcache1, 0, sizeof(pcache1)); |
| 739 } |
| 740 |
| 741 /* forward declaration */ |
| 742 static void pcache1Destroy(sqlite3_pcache *p); |
| 743 |
| 744 /* |
| 745 ** Implementation of the sqlite3_pcache.xCreate method. |
| 746 ** |
| 747 ** Allocate a new cache. |
| 748 */ |
| 749 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ |
| 750 PCache1 *pCache; /* The newly created page cache */ |
| 751 PGroup *pGroup; /* The group the new page cache will belong to */ |
| 752 int sz; /* Bytes of memory required to allocate the new cache */ |
| 753 |
| 754 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); |
| 755 assert( szExtra < 300 ); |
| 756 |
| 757 sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache; |
| 758 pCache = (PCache1 *)sqlite3MallocZero(sz); |
| 759 if( pCache ){ |
| 760 if( pcache1.separateCache ){ |
| 761 pGroup = (PGroup*)&pCache[1]; |
| 762 pGroup->mxPinned = 10; |
| 763 }else{ |
| 764 pGroup = &pcache1.grp; |
| 765 } |
| 766 if( pGroup->lru.isAnchor==0 ){ |
| 767 pGroup->lru.isAnchor = 1; |
| 768 pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru; |
| 769 } |
| 770 pCache->pGroup = pGroup; |
| 771 pCache->szPage = szPage; |
| 772 pCache->szExtra = szExtra; |
| 773 pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1)); |
| 774 pCache->bPurgeable = (bPurgeable ? 1 : 0); |
| 775 pcache1EnterMutex(pGroup); |
| 776 pcache1ResizeHash(pCache); |
| 777 if( bPurgeable ){ |
| 778 pCache->nMin = 10; |
| 779 pGroup->nMinPage += pCache->nMin; |
| 780 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; |
| 781 } |
| 782 pcache1LeaveMutex(pGroup); |
| 783 if( pCache->nHash==0 ){ |
| 784 pcache1Destroy((sqlite3_pcache*)pCache); |
| 785 pCache = 0; |
| 786 } |
| 787 } |
| 788 return (sqlite3_pcache *)pCache; |
| 789 } |
| 790 |
| 791 /* |
| 792 ** Implementation of the sqlite3_pcache.xCachesize method. |
| 793 ** |
| 794 ** Configure the cache_size limit for a cache. |
| 795 */ |
| 796 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ |
| 797 PCache1 *pCache = (PCache1 *)p; |
| 798 if( pCache->bPurgeable ){ |
| 799 PGroup *pGroup = pCache->pGroup; |
| 800 pcache1EnterMutex(pGroup); |
| 801 pGroup->nMaxPage += (nMax - pCache->nMax); |
| 802 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; |
| 803 pCache->nMax = nMax; |
| 804 pCache->n90pct = pCache->nMax*9/10; |
| 805 pcache1EnforceMaxPage(pCache); |
| 806 pcache1LeaveMutex(pGroup); |
| 807 } |
| 808 } |
| 809 |
| 810 /* |
| 811 ** Implementation of the sqlite3_pcache.xShrink method. |
| 812 ** |
| 813 ** Free up as much memory as possible. |
| 814 */ |
| 815 static void pcache1Shrink(sqlite3_pcache *p){ |
| 816 PCache1 *pCache = (PCache1*)p; |
| 817 if( pCache->bPurgeable ){ |
| 818 PGroup *pGroup = pCache->pGroup; |
| 819 int savedMaxPage; |
| 820 pcache1EnterMutex(pGroup); |
| 821 savedMaxPage = pGroup->nMaxPage; |
| 822 pGroup->nMaxPage = 0; |
| 823 pcache1EnforceMaxPage(pCache); |
| 824 pGroup->nMaxPage = savedMaxPage; |
| 825 pcache1LeaveMutex(pGroup); |
| 826 } |
| 827 } |
| 828 |
| 829 /* |
| 830 ** Implementation of the sqlite3_pcache.xPagecount method. |
| 831 */ |
| 832 static int pcache1Pagecount(sqlite3_pcache *p){ |
| 833 int n; |
| 834 PCache1 *pCache = (PCache1*)p; |
| 835 pcache1EnterMutex(pCache->pGroup); |
| 836 n = pCache->nPage; |
| 837 pcache1LeaveMutex(pCache->pGroup); |
| 838 return n; |
| 839 } |
| 840 |
| 841 |
| 842 /* |
| 843 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described |
| 844 ** in the header of the pcache1Fetch() procedure. |
| 845 ** |
| 846 ** This steps are broken out into a separate procedure because they are |
| 847 ** usually not needed, and by avoiding the stack initialization required |
| 848 ** for these steps, the main pcache1Fetch() procedure can run faster. |
| 849 */ |
| 850 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2( |
| 851 PCache1 *pCache, |
| 852 unsigned int iKey, |
| 853 int createFlag |
| 854 ){ |
| 855 unsigned int nPinned; |
| 856 PGroup *pGroup = pCache->pGroup; |
| 857 PgHdr1 *pPage = 0; |
| 858 |
| 859 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ |
| 860 assert( pCache->nPage >= pCache->nRecyclable ); |
| 861 nPinned = pCache->nPage - pCache->nRecyclable; |
| 862 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); |
| 863 assert( pCache->n90pct == pCache->nMax*9/10 ); |
| 864 if( createFlag==1 && ( |
| 865 nPinned>=pGroup->mxPinned |
| 866 || nPinned>=pCache->n90pct |
| 867 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned) |
| 868 )){ |
| 869 return 0; |
| 870 } |
| 871 |
| 872 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache); |
| 873 assert( pCache->nHash>0 && pCache->apHash ); |
| 874 |
| 875 /* Step 4. Try to recycle a page. */ |
| 876 if( pCache->bPurgeable |
| 877 && !pGroup->lru.pLruPrev->isAnchor |
| 878 && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache)) |
| 879 ){ |
| 880 PCache1 *pOther; |
| 881 pPage = pGroup->lru.pLruPrev; |
| 882 assert( pPage->isPinned==0 ); |
| 883 pcache1RemoveFromHash(pPage, 0); |
| 884 pcache1PinPage(pPage); |
| 885 pOther = pPage->pCache; |
| 886 if( pOther->szAlloc != pCache->szAlloc ){ |
| 887 pcache1FreePage(pPage); |
| 888 pPage = 0; |
| 889 }else{ |
| 890 pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable); |
| 891 } |
| 892 } |
| 893 |
| 894 /* Step 5. If a usable page buffer has still not been found, |
| 895 ** attempt to allocate a new one. |
| 896 */ |
| 897 if( !pPage ){ |
| 898 pPage = pcache1AllocPage(pCache, createFlag==1); |
| 899 } |
| 900 |
| 901 if( pPage ){ |
| 902 unsigned int h = iKey % pCache->nHash; |
| 903 pCache->nPage++; |
| 904 pPage->iKey = iKey; |
| 905 pPage->pNext = pCache->apHash[h]; |
| 906 pPage->pCache = pCache; |
| 907 pPage->pLruPrev = 0; |
| 908 pPage->pLruNext = 0; |
| 909 pPage->isPinned = 1; |
| 910 *(void **)pPage->page.pExtra = 0; |
| 911 pCache->apHash[h] = pPage; |
| 912 if( iKey>pCache->iMaxKey ){ |
| 913 pCache->iMaxKey = iKey; |
| 914 } |
| 915 } |
| 916 return pPage; |
| 917 } |
| 918 |
| 919 /* |
| 920 ** Implementation of the sqlite3_pcache.xFetch method. |
| 921 ** |
| 922 ** Fetch a page by key value. |
| 923 ** |
| 924 ** Whether or not a new page may be allocated by this function depends on |
| 925 ** the value of the createFlag argument. 0 means do not allocate a new |
| 926 ** page. 1 means allocate a new page if space is easily available. 2 |
| 927 ** means to try really hard to allocate a new page. |
| 928 ** |
| 929 ** For a non-purgeable cache (a cache used as the storage for an in-memory |
| 930 ** database) there is really no difference between createFlag 1 and 2. So |
| 931 ** the calling function (pcache.c) will never have a createFlag of 1 on |
| 932 ** a non-purgeable cache. |
| 933 ** |
| 934 ** There are three different approaches to obtaining space for a page, |
| 935 ** depending on the value of parameter createFlag (which may be 0, 1 or 2). |
| 936 ** |
| 937 ** 1. Regardless of the value of createFlag, the cache is searched for a |
| 938 ** copy of the requested page. If one is found, it is returned. |
| 939 ** |
| 940 ** 2. If createFlag==0 and the page is not already in the cache, NULL is |
| 941 ** returned. |
| 942 ** |
| 943 ** 3. If createFlag is 1, and the page is not already in the cache, then |
| 944 ** return NULL (do not allocate a new page) if any of the following |
| 945 ** conditions are true: |
| 946 ** |
| 947 ** (a) the number of pages pinned by the cache is greater than |
| 948 ** PCache1.nMax, or |
| 949 ** |
| 950 ** (b) the number of pages pinned by the cache is greater than |
| 951 ** the sum of nMax for all purgeable caches, less the sum of |
| 952 ** nMin for all other purgeable caches, or |
| 953 ** |
| 954 ** 4. If none of the first three conditions apply and the cache is marked |
| 955 ** as purgeable, and if one of the following is true: |
| 956 ** |
| 957 ** (a) The number of pages allocated for the cache is already |
| 958 ** PCache1.nMax, or |
| 959 ** |
| 960 ** (b) The number of pages allocated for all purgeable caches is |
| 961 ** already equal to or greater than the sum of nMax for all |
| 962 ** purgeable caches, |
| 963 ** |
| 964 ** (c) The system is under memory pressure and wants to avoid |
| 965 ** unnecessary pages cache entry allocations |
| 966 ** |
| 967 ** then attempt to recycle a page from the LRU list. If it is the right |
| 968 ** size, return the recycled buffer. Otherwise, free the buffer and |
| 969 ** proceed to step 5. |
| 970 ** |
| 971 ** 5. Otherwise, allocate and return a new page buffer. |
| 972 ** |
| 973 ** There are two versions of this routine. pcache1FetchWithMutex() is |
| 974 ** the general case. pcache1FetchNoMutex() is a faster implementation for |
| 975 ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper |
| 976 ** invokes the appropriate routine. |
| 977 */ |
| 978 static PgHdr1 *pcache1FetchNoMutex( |
| 979 sqlite3_pcache *p, |
| 980 unsigned int iKey, |
| 981 int createFlag |
| 982 ){ |
| 983 PCache1 *pCache = (PCache1 *)p; |
| 984 PgHdr1 *pPage = 0; |
| 985 |
| 986 /* Step 1: Search the hash table for an existing entry. */ |
| 987 pPage = pCache->apHash[iKey % pCache->nHash]; |
| 988 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; } |
| 989 |
| 990 /* Step 2: If the page was found in the hash table, then return it. |
| 991 ** If the page was not in the hash table and createFlag is 0, abort. |
| 992 ** Otherwise (page not in hash and createFlag!=0) continue with |
| 993 ** subsequent steps to try to create the page. */ |
| 994 if( pPage ){ |
| 995 if( !pPage->isPinned ){ |
| 996 return pcache1PinPage(pPage); |
| 997 }else{ |
| 998 return pPage; |
| 999 } |
| 1000 }else if( createFlag ){ |
| 1001 /* Steps 3, 4, and 5 implemented by this subroutine */ |
| 1002 return pcache1FetchStage2(pCache, iKey, createFlag); |
| 1003 }else{ |
| 1004 return 0; |
| 1005 } |
| 1006 } |
| 1007 #if PCACHE1_MIGHT_USE_GROUP_MUTEX |
| 1008 static PgHdr1 *pcache1FetchWithMutex( |
| 1009 sqlite3_pcache *p, |
| 1010 unsigned int iKey, |
| 1011 int createFlag |
| 1012 ){ |
| 1013 PCache1 *pCache = (PCache1 *)p; |
| 1014 PgHdr1 *pPage; |
| 1015 |
| 1016 pcache1EnterMutex(pCache->pGroup); |
| 1017 pPage = pcache1FetchNoMutex(p, iKey, createFlag); |
| 1018 assert( pPage==0 || pCache->iMaxKey>=iKey ); |
| 1019 pcache1LeaveMutex(pCache->pGroup); |
| 1020 return pPage; |
| 1021 } |
| 1022 #endif |
| 1023 static sqlite3_pcache_page *pcache1Fetch( |
| 1024 sqlite3_pcache *p, |
| 1025 unsigned int iKey, |
| 1026 int createFlag |
| 1027 ){ |
| 1028 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG) |
| 1029 PCache1 *pCache = (PCache1 *)p; |
| 1030 #endif |
| 1031 |
| 1032 assert( offsetof(PgHdr1,page)==0 ); |
| 1033 assert( pCache->bPurgeable || createFlag!=1 ); |
| 1034 assert( pCache->bPurgeable || pCache->nMin==0 ); |
| 1035 assert( pCache->bPurgeable==0 || pCache->nMin==10 ); |
| 1036 assert( pCache->nMin==0 || pCache->bPurgeable ); |
| 1037 assert( pCache->nHash>0 ); |
| 1038 #if PCACHE1_MIGHT_USE_GROUP_MUTEX |
| 1039 if( pCache->pGroup->mutex ){ |
| 1040 return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag); |
| 1041 }else |
| 1042 #endif |
| 1043 { |
| 1044 return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag); |
| 1045 } |
| 1046 } |
| 1047 |
| 1048 |
| 1049 /* |
| 1050 ** Implementation of the sqlite3_pcache.xUnpin method. |
| 1051 ** |
| 1052 ** Mark a page as unpinned (eligible for asynchronous recycling). |
| 1053 */ |
| 1054 static void pcache1Unpin( |
| 1055 sqlite3_pcache *p, |
| 1056 sqlite3_pcache_page *pPg, |
| 1057 int reuseUnlikely |
| 1058 ){ |
| 1059 PCache1 *pCache = (PCache1 *)p; |
| 1060 PgHdr1 *pPage = (PgHdr1 *)pPg; |
| 1061 PGroup *pGroup = pCache->pGroup; |
| 1062 |
| 1063 assert( pPage->pCache==pCache ); |
| 1064 pcache1EnterMutex(pGroup); |
| 1065 |
| 1066 /* It is an error to call this function if the page is already |
| 1067 ** part of the PGroup LRU list. |
| 1068 */ |
| 1069 assert( pPage->pLruPrev==0 && pPage->pLruNext==0 ); |
| 1070 assert( pPage->isPinned==1 ); |
| 1071 |
| 1072 if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){ |
| 1073 pcache1RemoveFromHash(pPage, 1); |
| 1074 }else{ |
| 1075 /* Add the page to the PGroup LRU list. */ |
| 1076 PgHdr1 **ppFirst = &pGroup->lru.pLruNext; |
| 1077 pPage->pLruPrev = &pGroup->lru; |
| 1078 (pPage->pLruNext = *ppFirst)->pLruPrev = pPage; |
| 1079 *ppFirst = pPage; |
| 1080 pCache->nRecyclable++; |
| 1081 pPage->isPinned = 0; |
| 1082 } |
| 1083 |
| 1084 pcache1LeaveMutex(pCache->pGroup); |
| 1085 } |
| 1086 |
| 1087 /* |
| 1088 ** Implementation of the sqlite3_pcache.xRekey method. |
| 1089 */ |
| 1090 static void pcache1Rekey( |
| 1091 sqlite3_pcache *p, |
| 1092 sqlite3_pcache_page *pPg, |
| 1093 unsigned int iOld, |
| 1094 unsigned int iNew |
| 1095 ){ |
| 1096 PCache1 *pCache = (PCache1 *)p; |
| 1097 PgHdr1 *pPage = (PgHdr1 *)pPg; |
| 1098 PgHdr1 **pp; |
| 1099 unsigned int h; |
| 1100 assert( pPage->iKey==iOld ); |
| 1101 assert( pPage->pCache==pCache ); |
| 1102 |
| 1103 pcache1EnterMutex(pCache->pGroup); |
| 1104 |
| 1105 h = iOld%pCache->nHash; |
| 1106 pp = &pCache->apHash[h]; |
| 1107 while( (*pp)!=pPage ){ |
| 1108 pp = &(*pp)->pNext; |
| 1109 } |
| 1110 *pp = pPage->pNext; |
| 1111 |
| 1112 h = iNew%pCache->nHash; |
| 1113 pPage->iKey = iNew; |
| 1114 pPage->pNext = pCache->apHash[h]; |
| 1115 pCache->apHash[h] = pPage; |
| 1116 if( iNew>pCache->iMaxKey ){ |
| 1117 pCache->iMaxKey = iNew; |
| 1118 } |
| 1119 |
| 1120 pcache1LeaveMutex(pCache->pGroup); |
| 1121 } |
| 1122 |
| 1123 /* |
| 1124 ** Implementation of the sqlite3_pcache.xTruncate method. |
| 1125 ** |
| 1126 ** Discard all unpinned pages in the cache with a page number equal to |
| 1127 ** or greater than parameter iLimit. Any pinned pages with a page number |
| 1128 ** equal to or greater than iLimit are implicitly unpinned. |
| 1129 */ |
| 1130 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ |
| 1131 PCache1 *pCache = (PCache1 *)p; |
| 1132 pcache1EnterMutex(pCache->pGroup); |
| 1133 if( iLimit<=pCache->iMaxKey ){ |
| 1134 pcache1TruncateUnsafe(pCache, iLimit); |
| 1135 pCache->iMaxKey = iLimit-1; |
| 1136 } |
| 1137 pcache1LeaveMutex(pCache->pGroup); |
| 1138 } |
| 1139 |
| 1140 /* |
| 1141 ** Implementation of the sqlite3_pcache.xDestroy method. |
| 1142 ** |
| 1143 ** Destroy a cache allocated using pcache1Create(). |
| 1144 */ |
| 1145 static void pcache1Destroy(sqlite3_pcache *p){ |
| 1146 PCache1 *pCache = (PCache1 *)p; |
| 1147 PGroup *pGroup = pCache->pGroup; |
| 1148 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); |
| 1149 pcache1EnterMutex(pGroup); |
| 1150 if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0); |
| 1151 assert( pGroup->nMaxPage >= pCache->nMax ); |
| 1152 pGroup->nMaxPage -= pCache->nMax; |
| 1153 assert( pGroup->nMinPage >= pCache->nMin ); |
| 1154 pGroup->nMinPage -= pCache->nMin; |
| 1155 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; |
| 1156 pcache1EnforceMaxPage(pCache); |
| 1157 pcache1LeaveMutex(pGroup); |
| 1158 sqlite3_free(pCache->pBulk); |
| 1159 sqlite3_free(pCache->apHash); |
| 1160 sqlite3_free(pCache); |
| 1161 } |
| 1162 |
| 1163 /* |
| 1164 ** This function is called during initialization (sqlite3_initialize()) to |
| 1165 ** install the default pluggable cache module, assuming the user has not |
| 1166 ** already provided an alternative. |
| 1167 */ |
| 1168 void sqlite3PCacheSetDefault(void){ |
| 1169 static const sqlite3_pcache_methods2 defaultMethods = { |
| 1170 1, /* iVersion */ |
| 1171 0, /* pArg */ |
| 1172 pcache1Init, /* xInit */ |
| 1173 pcache1Shutdown, /* xShutdown */ |
| 1174 pcache1Create, /* xCreate */ |
| 1175 pcache1Cachesize, /* xCachesize */ |
| 1176 pcache1Pagecount, /* xPagecount */ |
| 1177 pcache1Fetch, /* xFetch */ |
| 1178 pcache1Unpin, /* xUnpin */ |
| 1179 pcache1Rekey, /* xRekey */ |
| 1180 pcache1Truncate, /* xTruncate */ |
| 1181 pcache1Destroy, /* xDestroy */ |
| 1182 pcache1Shrink /* xShrink */ |
| 1183 }; |
| 1184 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); |
| 1185 } |
| 1186 |
| 1187 /* |
| 1188 ** Return the size of the header on each page of this PCACHE implementation. |
| 1189 */ |
| 1190 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); } |
| 1191 |
| 1192 /* |
| 1193 ** Return the global mutex used by this PCACHE implementation. The |
| 1194 ** sqlite3_status() routine needs access to this mutex. |
| 1195 */ |
| 1196 sqlite3_mutex *sqlite3Pcache1Mutex(void){ |
| 1197 return pcache1.mutex; |
| 1198 } |
| 1199 |
| 1200 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
| 1201 /* |
| 1202 ** This function is called to free superfluous dynamically allocated memory |
| 1203 ** held by the pager system. Memory in use by any SQLite pager allocated |
| 1204 ** by the current thread may be sqlite3_free()ed. |
| 1205 ** |
| 1206 ** nReq is the number of bytes of memory required. Once this much has |
| 1207 ** been released, the function returns. The return value is the total number |
| 1208 ** of bytes of memory released. |
| 1209 */ |
| 1210 int sqlite3PcacheReleaseMemory(int nReq){ |
| 1211 int nFree = 0; |
| 1212 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); |
| 1213 assert( sqlite3_mutex_notheld(pcache1.mutex) ); |
| 1214 if( sqlite3GlobalConfig.nPage==0 ){ |
| 1215 PgHdr1 *p; |
| 1216 pcache1EnterMutex(&pcache1.grp); |
| 1217 while( (nReq<0 || nFree<nReq) |
| 1218 && (p=pcache1.grp.lru.pLruPrev)!=0 |
| 1219 && p->isAnchor==0 |
| 1220 ){ |
| 1221 nFree += pcache1MemSize(p->page.pBuf); |
| 1222 #ifdef SQLITE_PCACHE_SEPARATE_HEADER |
| 1223 nFree += sqlite3MemSize(p); |
| 1224 #endif |
| 1225 assert( p->isPinned==0 ); |
| 1226 pcache1PinPage(p); |
| 1227 pcache1RemoveFromHash(p, 1); |
| 1228 } |
| 1229 pcache1LeaveMutex(&pcache1.grp); |
| 1230 } |
| 1231 return nFree; |
| 1232 } |
| 1233 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ |
| 1234 |
| 1235 #ifdef SQLITE_TEST |
| 1236 /* |
| 1237 ** This function is used by test procedures to inspect the internal state |
| 1238 ** of the global cache. |
| 1239 */ |
| 1240 void sqlite3PcacheStats( |
| 1241 int *pnCurrent, /* OUT: Total number of pages cached */ |
| 1242 int *pnMax, /* OUT: Global maximum cache size */ |
| 1243 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */ |
| 1244 int *pnRecyclable /* OUT: Total number of pages available for recycling */ |
| 1245 ){ |
| 1246 PgHdr1 *p; |
| 1247 int nRecyclable = 0; |
| 1248 for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){ |
| 1249 assert( p->isPinned==0 ); |
| 1250 nRecyclable++; |
| 1251 } |
| 1252 *pnCurrent = pcache1.grp.nCurrentPage; |
| 1253 *pnMax = (int)pcache1.grp.nMaxPage; |
| 1254 *pnMin = (int)pcache1.grp.nMinPage; |
| 1255 *pnRecyclable = nRecyclable; |
| 1256 } |
| 1257 #endif |
OLD | NEW |