Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(49)

Side by Side Diff: third_party/sqlite/sqlite-src-3170000/src/pcache.c

Issue 2747283002: [sql] Import reference version of SQLite 3.17.. (Closed)
Patch Set: Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2008 August 05
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file implements that page cache.
13 */
14 #include "sqliteInt.h"
15
16 /*
17 ** A complete page cache is an instance of this structure. Every
18 ** entry in the cache holds a single page of the database file. The
19 ** btree layer only operates on the cached copy of the database pages.
20 **
21 ** A page cache entry is "clean" if it exactly matches what is currently
22 ** on disk. A page is "dirty" if it has been modified and needs to be
23 ** persisted to disk.
24 **
25 ** pDirty, pDirtyTail, pSynced:
26 ** All dirty pages are linked into the doubly linked list using
27 ** PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order
28 ** such that p was added to the list more recently than p->pDirtyNext.
29 ** PCache.pDirty points to the first (newest) element in the list and
30 ** pDirtyTail to the last (oldest).
31 **
32 ** The PCache.pSynced variable is used to optimize searching for a dirty
33 ** page to eject from the cache mid-transaction. It is better to eject
34 ** a page that does not require a journal sync than one that does.
35 ** Therefore, pSynced is maintained to that it *almost* always points
36 ** to either the oldest page in the pDirty/pDirtyTail list that has a
37 ** clear PGHDR_NEED_SYNC flag or to a page that is older than this one
38 ** (so that the right page to eject can be found by following pDirtyPrev
39 ** pointers).
40 */
41 struct PCache {
42 PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */
43 PgHdr *pSynced; /* Last synced page in dirty page list */
44 int nRefSum; /* Sum of ref counts over all pages */
45 int szCache; /* Configured cache size */
46 int szSpill; /* Size before spilling occurs */
47 int szPage; /* Size of every page in this cache */
48 int szExtra; /* Size of extra space for each page */
49 u8 bPurgeable; /* True if pages are on backing store */
50 u8 eCreate; /* eCreate value for for xFetch() */
51 int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */
52 void *pStress; /* Argument to xStress */
53 sqlite3_pcache *pCache; /* Pluggable cache module */
54 };
55
56 /********************************** Test and Debug Logic **********************/
57 /*
58 ** Debug tracing macros. Enable by by changing the "0" to "1" and
59 ** recompiling.
60 **
61 ** When sqlite3PcacheTrace is 1, single line trace messages are issued.
62 ** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries
63 ** is displayed for many operations, resulting in a lot of output.
64 */
65 #if defined(SQLITE_DEBUG) && 0
66 int sqlite3PcacheTrace = 2; /* 0: off 1: simple 2: cache dumps */
67 int sqlite3PcacheMxDump = 9999; /* Max cache entries for pcacheDump() */
68 # define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;}
69 void pcacheDump(PCache *pCache){
70 int N;
71 int i, j;
72 sqlite3_pcache_page *pLower;
73 PgHdr *pPg;
74 unsigned char *a;
75
76 if( sqlite3PcacheTrace<2 ) return;
77 if( pCache->pCache==0 ) return;
78 N = sqlite3PcachePagecount(pCache);
79 if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump;
80 for(i=1; i<=N; i++){
81 pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0);
82 if( pLower==0 ) continue;
83 pPg = (PgHdr*)pLower->pExtra;
84 printf("%3d: nRef %2d flgs %02x data ", i, pPg->nRef, pPg->flags);
85 a = (unsigned char *)pLower->pBuf;
86 for(j=0; j<12; j++) printf("%02x", a[j]);
87 printf("\n");
88 if( pPg->pPage==0 ){
89 sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0);
90 }
91 }
92 }
93 #else
94 # define pcacheTrace(X)
95 # define pcacheDump(X)
96 #endif
97
98 /*
99 ** Check invariants on a PgHdr entry. Return true if everything is OK.
100 ** Return false if any invariant is violated.
101 **
102 ** This routine is for use inside of assert() statements only. For
103 ** example:
104 **
105 ** assert( sqlite3PcachePageSanity(pPg) );
106 */
107 #if SQLITE_DEBUG
108 int sqlite3PcachePageSanity(PgHdr *pPg){
109 PCache *pCache;
110 assert( pPg!=0 );
111 assert( pPg->pgno>0 || pPg->pPager==0 ); /* Page number is 1 or more */
112 pCache = pPg->pCache;
113 assert( pCache!=0 ); /* Every page has an associated PCache */
114 if( pPg->flags & PGHDR_CLEAN ){
115 assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */
116 assert( pCache->pDirty!=pPg ); /* CLEAN pages not on dirty list */
117 assert( pCache->pDirtyTail!=pPg );
118 }
119 /* WRITEABLE pages must also be DIRTY */
120 if( pPg->flags & PGHDR_WRITEABLE ){
121 assert( pPg->flags & PGHDR_DIRTY ); /* WRITEABLE implies DIRTY */
122 }
123 /* NEED_SYNC can be set independently of WRITEABLE. This can happen,
124 ** for example, when using the sqlite3PagerDontWrite() optimization:
125 ** (1) Page X is journalled, and gets WRITEABLE and NEED_SEEK.
126 ** (2) Page X moved to freelist, WRITEABLE is cleared
127 ** (3) Page X reused, WRITEABLE is set again
128 ** If NEED_SYNC had been cleared in step 2, then it would not be reset
129 ** in step 3, and page might be written into the database without first
130 ** syncing the rollback journal, which might cause corruption on a power
131 ** loss.
132 **
133 ** Another example is when the database page size is smaller than the
134 ** disk sector size. When any page of a sector is journalled, all pages
135 ** in that sector are marked NEED_SYNC even if they are still CLEAN, just
136 ** in case they are later modified, since all pages in the same sector
137 ** must be journalled and synced before any of those pages can be safely
138 ** written.
139 */
140 return 1;
141 }
142 #endif /* SQLITE_DEBUG */
143
144
145 /********************************** Linked List Management ********************/
146
147 /* Allowed values for second argument to pcacheManageDirtyList() */
148 #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */
149 #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */
150 #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */
151
152 /*
153 ** Manage pPage's participation on the dirty list. Bits of the addRemove
154 ** argument determines what operation to do. The 0x01 bit means first
155 ** remove pPage from the dirty list. The 0x02 means add pPage back to
156 ** the dirty list. Doing both moves pPage to the front of the dirty list.
157 */
158 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){
159 PCache *p = pPage->pCache;
160
161 pcacheTrace(("%p.DIRTYLIST.%s %d\n", p,
162 addRemove==1 ? "REMOVE" : addRemove==2 ? "ADD" : "FRONT",
163 pPage->pgno));
164 if( addRemove & PCACHE_DIRTYLIST_REMOVE ){
165 assert( pPage->pDirtyNext || pPage==p->pDirtyTail );
166 assert( pPage->pDirtyPrev || pPage==p->pDirty );
167
168 /* Update the PCache1.pSynced variable if necessary. */
169 if( p->pSynced==pPage ){
170 p->pSynced = pPage->pDirtyPrev;
171 }
172
173 if( pPage->pDirtyNext ){
174 pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev;
175 }else{
176 assert( pPage==p->pDirtyTail );
177 p->pDirtyTail = pPage->pDirtyPrev;
178 }
179 if( pPage->pDirtyPrev ){
180 pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext;
181 }else{
182 /* If there are now no dirty pages in the cache, set eCreate to 2.
183 ** This is an optimization that allows sqlite3PcacheFetch() to skip
184 ** searching for a dirty page to eject from the cache when it might
185 ** otherwise have to. */
186 assert( pPage==p->pDirty );
187 p->pDirty = pPage->pDirtyNext;
188 assert( p->bPurgeable || p->eCreate==2 );
189 if( p->pDirty==0 ){ /*OPTIMIZATION-IF-TRUE*/
190 assert( p->bPurgeable==0 || p->eCreate==1 );
191 p->eCreate = 2;
192 }
193 }
194 pPage->pDirtyNext = 0;
195 pPage->pDirtyPrev = 0;
196 }
197 if( addRemove & PCACHE_DIRTYLIST_ADD ){
198 assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage );
199
200 pPage->pDirtyNext = p->pDirty;
201 if( pPage->pDirtyNext ){
202 assert( pPage->pDirtyNext->pDirtyPrev==0 );
203 pPage->pDirtyNext->pDirtyPrev = pPage;
204 }else{
205 p->pDirtyTail = pPage;
206 if( p->bPurgeable ){
207 assert( p->eCreate==2 );
208 p->eCreate = 1;
209 }
210 }
211 p->pDirty = pPage;
212
213 /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set
214 ** pSynced to point to it. Checking the NEED_SYNC flag is an
215 ** optimization, as if pSynced points to a page with the NEED_SYNC
216 ** flag set sqlite3PcacheFetchStress() searches through all newer
217 ** entries of the dirty-list for a page with NEED_SYNC clear anyway. */
218 if( !p->pSynced
219 && 0==(pPage->flags&PGHDR_NEED_SYNC) /*OPTIMIZATION-IF-FALSE*/
220 ){
221 p->pSynced = pPage;
222 }
223 }
224 pcacheDump(p);
225 }
226
227 /*
228 ** Wrapper around the pluggable caches xUnpin method. If the cache is
229 ** being used for an in-memory database, this function is a no-op.
230 */
231 static void pcacheUnpin(PgHdr *p){
232 if( p->pCache->bPurgeable ){
233 pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno));
234 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0);
235 pcacheDump(p->pCache);
236 }
237 }
238
239 /*
240 ** Compute the number of pages of cache requested. p->szCache is the
241 ** cache size requested by the "PRAGMA cache_size" statement.
242 */
243 static int numberOfCachePages(PCache *p){
244 if( p->szCache>=0 ){
245 /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the
246 ** suggested cache size is set to N. */
247 return p->szCache;
248 }else{
249 /* IMPLEMENTATION-OF: R-61436-13639 If the argument N is negative, then
250 ** the number of cache pages is adjusted to use approximately abs(N*1024)
251 ** bytes of memory. */
252 return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra));
253 }
254 }
255
256 /*************************************************** General Interfaces ******
257 **
258 ** Initialize and shutdown the page cache subsystem. Neither of these
259 ** functions are threadsafe.
260 */
261 int sqlite3PcacheInitialize(void){
262 if( sqlite3GlobalConfig.pcache2.xInit==0 ){
263 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the
264 ** built-in default page cache is used instead of the application defined
265 ** page cache. */
266 sqlite3PCacheSetDefault();
267 }
268 return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg);
269 }
270 void sqlite3PcacheShutdown(void){
271 if( sqlite3GlobalConfig.pcache2.xShutdown ){
272 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */
273 sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg);
274 }
275 }
276
277 /*
278 ** Return the size in bytes of a PCache object.
279 */
280 int sqlite3PcacheSize(void){ return sizeof(PCache); }
281
282 /*
283 ** Create a new PCache object. Storage space to hold the object
284 ** has already been allocated and is passed in as the p pointer.
285 ** The caller discovers how much space needs to be allocated by
286 ** calling sqlite3PcacheSize().
287 **
288 ** szExtra is some extra space allocated for each page. The first
289 ** 8 bytes of the extra space will be zeroed as the page is allocated,
290 ** but remaining content will be uninitialized. Though it is opaque
291 ** to this module, the extra space really ends up being the MemPage
292 ** structure in the pager.
293 */
294 int sqlite3PcacheOpen(
295 int szPage, /* Size of every page */
296 int szExtra, /* Extra space associated with each page */
297 int bPurgeable, /* True if pages are on backing store */
298 int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
299 void *pStress, /* Argument to xStress */
300 PCache *p /* Preallocated space for the PCache */
301 ){
302 memset(p, 0, sizeof(PCache));
303 p->szPage = 1;
304 p->szExtra = szExtra;
305 assert( szExtra>=8 ); /* First 8 bytes will be zeroed */
306 p->bPurgeable = bPurgeable;
307 p->eCreate = 2;
308 p->xStress = xStress;
309 p->pStress = pStress;
310 p->szCache = 100;
311 p->szSpill = 1;
312 pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p,szPage,bPurgeable));
313 return sqlite3PcacheSetPageSize(p, szPage);
314 }
315
316 /*
317 ** Change the page size for PCache object. The caller must ensure that there
318 ** are no outstanding page references when this function is called.
319 */
320 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
321 assert( pCache->nRefSum==0 && pCache->pDirty==0 );
322 if( pCache->szPage ){
323 sqlite3_pcache *pNew;
324 pNew = sqlite3GlobalConfig.pcache2.xCreate(
325 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)),
326 pCache->bPurgeable
327 );
328 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
329 sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache));
330 if( pCache->pCache ){
331 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
332 }
333 pCache->pCache = pNew;
334 pCache->szPage = szPage;
335 pcacheTrace(("%p.PAGESIZE %d\n",pCache,szPage));
336 }
337 return SQLITE_OK;
338 }
339
340 /*
341 ** Try to obtain a page from the cache.
342 **
343 ** This routine returns a pointer to an sqlite3_pcache_page object if
344 ** such an object is already in cache, or if a new one is created.
345 ** This routine returns a NULL pointer if the object was not in cache
346 ** and could not be created.
347 **
348 ** The createFlags should be 0 to check for existing pages and should
349 ** be 3 (not 1, but 3) to try to create a new page.
350 **
351 ** If the createFlag is 0, then NULL is always returned if the page
352 ** is not already in the cache. If createFlag is 1, then a new page
353 ** is created only if that can be done without spilling dirty pages
354 ** and without exceeding the cache size limit.
355 **
356 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly
357 ** initialize the sqlite3_pcache_page object and convert it into a
358 ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish()
359 ** routines are split this way for performance reasons. When separated
360 ** they can both (usually) operate without having to push values to
361 ** the stack on entry and pop them back off on exit, which saves a
362 ** lot of pushing and popping.
363 */
364 sqlite3_pcache_page *sqlite3PcacheFetch(
365 PCache *pCache, /* Obtain the page from this cache */
366 Pgno pgno, /* Page number to obtain */
367 int createFlag /* If true, create page if it does not exist already */
368 ){
369 int eCreate;
370 sqlite3_pcache_page *pRes;
371
372 assert( pCache!=0 );
373 assert( pCache->pCache!=0 );
374 assert( createFlag==3 || createFlag==0 );
375 assert( pCache->eCreate==((pCache->bPurgeable && pCache->pDirty) ? 1 : 2) );
376
377 /* eCreate defines what to do if the page does not exist.
378 ** 0 Do not allocate a new page. (createFlag==0)
379 ** 1 Allocate a new page if doing so is inexpensive.
380 ** (createFlag==1 AND bPurgeable AND pDirty)
381 ** 2 Allocate a new page even it doing so is difficult.
382 ** (createFlag==1 AND !(bPurgeable AND pDirty)
383 */
384 eCreate = createFlag & pCache->eCreate;
385 assert( eCreate==0 || eCreate==1 || eCreate==2 );
386 assert( createFlag==0 || pCache->eCreate==eCreate );
387 assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) );
388 pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate);
389 pcacheTrace(("%p.FETCH %d%s (result: %p)\n",pCache,pgno,
390 createFlag?" create":"",pRes));
391 return pRes;
392 }
393
394 /*
395 ** If the sqlite3PcacheFetch() routine is unable to allocate a new
396 ** page because no clean pages are available for reuse and the cache
397 ** size limit has been reached, then this routine can be invoked to
398 ** try harder to allocate a page. This routine might invoke the stress
399 ** callback to spill dirty pages to the journal. It will then try to
400 ** allocate the new page and will only fail to allocate a new page on
401 ** an OOM error.
402 **
403 ** This routine should be invoked only after sqlite3PcacheFetch() fails.
404 */
405 int sqlite3PcacheFetchStress(
406 PCache *pCache, /* Obtain the page from this cache */
407 Pgno pgno, /* Page number to obtain */
408 sqlite3_pcache_page **ppPage /* Write result here */
409 ){
410 PgHdr *pPg;
411 if( pCache->eCreate==2 ) return 0;
412
413 if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){
414 /* Find a dirty page to write-out and recycle. First try to find a
415 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
416 ** cleared), but if that is not possible settle for any other
417 ** unreferenced dirty page.
418 **
419 ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC
420 ** flag is currently referenced, then the following may leave pSynced
421 ** set incorrectly (pointing to other than the LRU page with NEED_SYNC
422 ** cleared). This is Ok, as pSynced is just an optimization. */
423 for(pPg=pCache->pSynced;
424 pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC));
425 pPg=pPg->pDirtyPrev
426 );
427 pCache->pSynced = pPg;
428 if( !pPg ){
429 for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
430 }
431 if( pPg ){
432 int rc;
433 #ifdef SQLITE_LOG_CACHE_SPILL
434 sqlite3_log(SQLITE_FULL,
435 "spill page %d making room for %d - cache used: %d/%d",
436 pPg->pgno, pgno,
437 sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache),
438 numberOfCachePages(pCache));
439 #endif
440 pcacheTrace(("%p.SPILL %d\n",pCache,pPg->pgno));
441 rc = pCache->xStress(pCache->pStress, pPg);
442 pcacheDump(pCache);
443 if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
444 return rc;
445 }
446 }
447 }
448 *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2);
449 return *ppPage==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK;
450 }
451
452 /*
453 ** This is a helper routine for sqlite3PcacheFetchFinish()
454 **
455 ** In the uncommon case where the page being fetched has not been
456 ** initialized, this routine is invoked to do the initialization.
457 ** This routine is broken out into a separate function since it
458 ** requires extra stack manipulation that can be avoided in the common
459 ** case.
460 */
461 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit(
462 PCache *pCache, /* Obtain the page from this cache */
463 Pgno pgno, /* Page number obtained */
464 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */
465 ){
466 PgHdr *pPgHdr;
467 assert( pPage!=0 );
468 pPgHdr = (PgHdr*)pPage->pExtra;
469 assert( pPgHdr->pPage==0 );
470 memset(&pPgHdr->pDirty, 0, sizeof(PgHdr) - offsetof(PgHdr,pDirty));
471 pPgHdr->pPage = pPage;
472 pPgHdr->pData = pPage->pBuf;
473 pPgHdr->pExtra = (void *)&pPgHdr[1];
474 memset(pPgHdr->pExtra, 0, 8);
475 pPgHdr->pCache = pCache;
476 pPgHdr->pgno = pgno;
477 pPgHdr->flags = PGHDR_CLEAN;
478 return sqlite3PcacheFetchFinish(pCache,pgno,pPage);
479 }
480
481 /*
482 ** This routine converts the sqlite3_pcache_page object returned by
483 ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine
484 ** must be called after sqlite3PcacheFetch() in order to get a usable
485 ** result.
486 */
487 PgHdr *sqlite3PcacheFetchFinish(
488 PCache *pCache, /* Obtain the page from this cache */
489 Pgno pgno, /* Page number obtained */
490 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */
491 ){
492 PgHdr *pPgHdr;
493
494 assert( pPage!=0 );
495 pPgHdr = (PgHdr *)pPage->pExtra;
496
497 if( !pPgHdr->pPage ){
498 return pcacheFetchFinishWithInit(pCache, pgno, pPage);
499 }
500 pCache->nRefSum++;
501 pPgHdr->nRef++;
502 assert( sqlite3PcachePageSanity(pPgHdr) );
503 return pPgHdr;
504 }
505
506 /*
507 ** Decrement the reference count on a page. If the page is clean and the
508 ** reference count drops to 0, then it is made eligible for recycling.
509 */
510 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){
511 assert( p->nRef>0 );
512 p->pCache->nRefSum--;
513 if( (--p->nRef)==0 ){
514 if( p->flags&PGHDR_CLEAN ){
515 pcacheUnpin(p);
516 }else if( p->pDirtyPrev!=0 ){ /*OPTIMIZATION-IF-FALSE*/
517 /* Move the page to the head of the dirty list. If p->pDirtyPrev==0,
518 ** then page p is already at the head of the dirty list and the
519 ** following call would be a no-op. Hence the OPTIMIZATION-IF-FALSE
520 ** tag above. */
521 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
522 }
523 }
524 }
525
526 /*
527 ** Increase the reference count of a supplied page by 1.
528 */
529 void sqlite3PcacheRef(PgHdr *p){
530 assert(p->nRef>0);
531 assert( sqlite3PcachePageSanity(p) );
532 p->nRef++;
533 p->pCache->nRefSum++;
534 }
535
536 /*
537 ** Drop a page from the cache. There must be exactly one reference to the
538 ** page. This function deletes that reference, so after it returns the
539 ** page pointed to by p is invalid.
540 */
541 void sqlite3PcacheDrop(PgHdr *p){
542 assert( p->nRef==1 );
543 assert( sqlite3PcachePageSanity(p) );
544 if( p->flags&PGHDR_DIRTY ){
545 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
546 }
547 p->pCache->nRefSum--;
548 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1);
549 }
550
551 /*
552 ** Make sure the page is marked as dirty. If it isn't dirty already,
553 ** make it so.
554 */
555 void sqlite3PcacheMakeDirty(PgHdr *p){
556 assert( p->nRef>0 );
557 assert( sqlite3PcachePageSanity(p) );
558 if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ /*OPTIMIZATION-IF-FALSE*/
559 p->flags &= ~PGHDR_DONT_WRITE;
560 if( p->flags & PGHDR_CLEAN ){
561 p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN);
562 pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno));
563 assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY );
564 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD);
565 }
566 assert( sqlite3PcachePageSanity(p) );
567 }
568 }
569
570 /*
571 ** Make sure the page is marked as clean. If it isn't clean already,
572 ** make it so.
573 */
574 void sqlite3PcacheMakeClean(PgHdr *p){
575 assert( sqlite3PcachePageSanity(p) );
576 if( ALWAYS((p->flags & PGHDR_DIRTY)!=0) ){
577 assert( (p->flags & PGHDR_CLEAN)==0 );
578 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
579 p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
580 p->flags |= PGHDR_CLEAN;
581 pcacheTrace(("%p.CLEAN %d\n",p->pCache,p->pgno));
582 assert( sqlite3PcachePageSanity(p) );
583 if( p->nRef==0 ){
584 pcacheUnpin(p);
585 }
586 }
587 }
588
589 /*
590 ** Make every page in the cache clean.
591 */
592 void sqlite3PcacheCleanAll(PCache *pCache){
593 PgHdr *p;
594 pcacheTrace(("%p.CLEAN-ALL\n",pCache));
595 while( (p = pCache->pDirty)!=0 ){
596 sqlite3PcacheMakeClean(p);
597 }
598 }
599
600 /*
601 ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages.
602 */
603 void sqlite3PcacheClearWritable(PCache *pCache){
604 PgHdr *p;
605 pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache));
606 for(p=pCache->pDirty; p; p=p->pDirtyNext){
607 p->flags &= ~(PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
608 }
609 pCache->pSynced = pCache->pDirtyTail;
610 }
611
612 /*
613 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
614 */
615 void sqlite3PcacheClearSyncFlags(PCache *pCache){
616 PgHdr *p;
617 for(p=pCache->pDirty; p; p=p->pDirtyNext){
618 p->flags &= ~PGHDR_NEED_SYNC;
619 }
620 pCache->pSynced = pCache->pDirtyTail;
621 }
622
623 /*
624 ** Change the page number of page p to newPgno.
625 */
626 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
627 PCache *pCache = p->pCache;
628 assert( p->nRef>0 );
629 assert( newPgno>0 );
630 assert( sqlite3PcachePageSanity(p) );
631 pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno));
632 sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno);
633 p->pgno = newPgno;
634 if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
635 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
636 }
637 }
638
639 /*
640 ** Drop every cache entry whose page number is greater than "pgno". The
641 ** caller must ensure that there are no outstanding references to any pages
642 ** other than page 1 with a page number greater than pgno.
643 **
644 ** If there is a reference to page 1 and the pgno parameter passed to this
645 ** function is 0, then the data area associated with page 1 is zeroed, but
646 ** the page object is not dropped.
647 */
648 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){
649 if( pCache->pCache ){
650 PgHdr *p;
651 PgHdr *pNext;
652 pcacheTrace(("%p.TRUNCATE %d\n",pCache,pgno));
653 for(p=pCache->pDirty; p; p=pNext){
654 pNext = p->pDirtyNext;
655 /* This routine never gets call with a positive pgno except right
656 ** after sqlite3PcacheCleanAll(). So if there are dirty pages,
657 ** it must be that pgno==0.
658 */
659 assert( p->pgno>0 );
660 if( p->pgno>pgno ){
661 assert( p->flags&PGHDR_DIRTY );
662 sqlite3PcacheMakeClean(p);
663 }
664 }
665 if( pgno==0 && pCache->nRefSum ){
666 sqlite3_pcache_page *pPage1;
667 pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0);
668 if( ALWAYS(pPage1) ){ /* Page 1 is always available in cache, because
669 ** pCache->nRefSum>0 */
670 memset(pPage1->pBuf, 0, pCache->szPage);
671 pgno = 1;
672 }
673 }
674 sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1);
675 }
676 }
677
678 /*
679 ** Close a cache.
680 */
681 void sqlite3PcacheClose(PCache *pCache){
682 assert( pCache->pCache!=0 );
683 pcacheTrace(("%p.CLOSE\n",pCache));
684 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
685 }
686
687 /*
688 ** Discard the contents of the cache.
689 */
690 void sqlite3PcacheClear(PCache *pCache){
691 sqlite3PcacheTruncate(pCache, 0);
692 }
693
694 /*
695 ** Merge two lists of pages connected by pDirty and in pgno order.
696 ** Do not bother fixing the pDirtyPrev pointers.
697 */
698 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
699 PgHdr result, *pTail;
700 pTail = &result;
701 assert( pA!=0 && pB!=0 );
702 for(;;){
703 if( pA->pgno<pB->pgno ){
704 pTail->pDirty = pA;
705 pTail = pA;
706 pA = pA->pDirty;
707 if( pA==0 ){
708 pTail->pDirty = pB;
709 break;
710 }
711 }else{
712 pTail->pDirty = pB;
713 pTail = pB;
714 pB = pB->pDirty;
715 if( pB==0 ){
716 pTail->pDirty = pA;
717 break;
718 }
719 }
720 }
721 return result.pDirty;
722 }
723
724 /*
725 ** Sort the list of pages in accending order by pgno. Pages are
726 ** connected by pDirty pointers. The pDirtyPrev pointers are
727 ** corrupted by this sort.
728 **
729 ** Since there cannot be more than 2^31 distinct pages in a database,
730 ** there cannot be more than 31 buckets required by the merge sorter.
731 ** One extra bucket is added to catch overflow in case something
732 ** ever changes to make the previous sentence incorrect.
733 */
734 #define N_SORT_BUCKET 32
735 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
736 PgHdr *a[N_SORT_BUCKET], *p;
737 int i;
738 memset(a, 0, sizeof(a));
739 while( pIn ){
740 p = pIn;
741 pIn = p->pDirty;
742 p->pDirty = 0;
743 for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){
744 if( a[i]==0 ){
745 a[i] = p;
746 break;
747 }else{
748 p = pcacheMergeDirtyList(a[i], p);
749 a[i] = 0;
750 }
751 }
752 if( NEVER(i==N_SORT_BUCKET-1) ){
753 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in
754 ** the input list. But that is impossible.
755 */
756 a[i] = pcacheMergeDirtyList(a[i], p);
757 }
758 }
759 p = a[0];
760 for(i=1; i<N_SORT_BUCKET; i++){
761 if( a[i]==0 ) continue;
762 p = p ? pcacheMergeDirtyList(p, a[i]) : a[i];
763 }
764 return p;
765 }
766
767 /*
768 ** Return a list of all dirty pages in the cache, sorted by page number.
769 */
770 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){
771 PgHdr *p;
772 for(p=pCache->pDirty; p; p=p->pDirtyNext){
773 p->pDirty = p->pDirtyNext;
774 }
775 return pcacheSortDirtyList(pCache->pDirty);
776 }
777
778 /*
779 ** Return the total number of references to all pages held by the cache.
780 **
781 ** This is not the total number of pages referenced, but the sum of the
782 ** reference count for all pages.
783 */
784 int sqlite3PcacheRefCount(PCache *pCache){
785 return pCache->nRefSum;
786 }
787
788 /*
789 ** Return the number of references to the page supplied as an argument.
790 */
791 int sqlite3PcachePageRefcount(PgHdr *p){
792 return p->nRef;
793 }
794
795 /*
796 ** Return the total number of pages in the cache.
797 */
798 int sqlite3PcachePagecount(PCache *pCache){
799 assert( pCache->pCache!=0 );
800 return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache);
801 }
802
803 #ifdef SQLITE_TEST
804 /*
805 ** Get the suggested cache-size value.
806 */
807 int sqlite3PcacheGetCachesize(PCache *pCache){
808 return numberOfCachePages(pCache);
809 }
810 #endif
811
812 /*
813 ** Set the suggested cache-size value.
814 */
815 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
816 assert( pCache->pCache!=0 );
817 pCache->szCache = mxPage;
818 sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache,
819 numberOfCachePages(pCache));
820 }
821
822 /*
823 ** Set the suggested cache-spill value. Make no changes if if the
824 ** argument is zero. Return the effective cache-spill size, which will
825 ** be the larger of the szSpill and szCache.
826 */
827 int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){
828 int res;
829 assert( p->pCache!=0 );
830 if( mxPage ){
831 if( mxPage<0 ){
832 mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra));
833 }
834 p->szSpill = mxPage;
835 }
836 res = numberOfCachePages(p);
837 if( res<p->szSpill ) res = p->szSpill;
838 return res;
839 }
840
841 /*
842 ** Free up as much memory as possible from the page cache.
843 */
844 void sqlite3PcacheShrink(PCache *pCache){
845 assert( pCache->pCache!=0 );
846 sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache);
847 }
848
849 /*
850 ** Return the size of the header added by this middleware layer
851 ** in the page-cache hierarchy.
852 */
853 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); }
854
855 /*
856 ** Return the number of dirty pages currently in the cache, as a percentage
857 ** of the configured cache size.
858 */
859 int sqlite3PCachePercentDirty(PCache *pCache){
860 PgHdr *pDirty;
861 int nDirty = 0;
862 int nCache = numberOfCachePages(pCache);
863 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++;
864 return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0;
865 }
866
867 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
868 /*
869 ** For all dirty pages currently in the cache, invoke the specified
870 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is
871 ** defined.
872 */
873 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){
874 PgHdr *pDirty;
875 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){
876 xIter(pDirty);
877 }
878 }
879 #endif
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3170000/src/pcache.h ('k') | third_party/sqlite/sqlite-src-3170000/src/pcache1.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698