OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2001 September 15 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This file contains SQLite's grammar for SQL. Process this file |
| 13 ** using the lemon parser generator to generate C code that runs |
| 14 ** the parser. Lemon will also generate a header file containing |
| 15 ** numeric codes for all of the tokens. |
| 16 */ |
| 17 |
| 18 // All token codes are small integers with #defines that begin with "TK_" |
| 19 %token_prefix TK_ |
| 20 |
| 21 // The type of the data attached to each token is Token. This is also the |
| 22 // default type for non-terminals. |
| 23 // |
| 24 %token_type {Token} |
| 25 %default_type {Token} |
| 26 |
| 27 // The generated parser function takes a 4th argument as follows: |
| 28 %extra_argument {Parse *pParse} |
| 29 |
| 30 // This code runs whenever there is a syntax error |
| 31 // |
| 32 %syntax_error { |
| 33 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ |
| 34 assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */ |
| 35 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); |
| 36 } |
| 37 %stack_overflow { |
| 38 sqlite3ErrorMsg(pParse, "parser stack overflow"); |
| 39 } |
| 40 |
| 41 // The name of the generated procedure that implements the parser |
| 42 // is as follows: |
| 43 %name sqlite3Parser |
| 44 |
| 45 // The following text is included near the beginning of the C source |
| 46 // code file that implements the parser. |
| 47 // |
| 48 %include { |
| 49 #include "sqliteInt.h" |
| 50 |
| 51 /* |
| 52 ** Disable all error recovery processing in the parser push-down |
| 53 ** automaton. |
| 54 */ |
| 55 #define YYNOERRORRECOVERY 1 |
| 56 |
| 57 /* |
| 58 ** Make yytestcase() the same as testcase() |
| 59 */ |
| 60 #define yytestcase(X) testcase(X) |
| 61 |
| 62 /* |
| 63 ** Indicate that sqlite3ParserFree() will never be called with a null |
| 64 ** pointer. |
| 65 */ |
| 66 #define YYPARSEFREENEVERNULL 1 |
| 67 |
| 68 /* |
| 69 ** In the amalgamation, the parse.c file generated by lemon and the |
| 70 ** tokenize.c file are concatenated. In that case, sqlite3RunParser() |
| 71 ** has access to the the size of the yyParser object and so the parser |
| 72 ** engine can be allocated from stack. In that case, only the |
| 73 ** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked |
| 74 ** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be |
| 75 ** omitted. |
| 76 */ |
| 77 #ifdef SQLITE_AMALGAMATION |
| 78 # define sqlite3Parser_ENGINEALWAYSONSTACK 1 |
| 79 #endif |
| 80 |
| 81 /* |
| 82 ** Alternative datatype for the argument to the malloc() routine passed |
| 83 ** into sqlite3ParserAlloc(). The default is size_t. |
| 84 */ |
| 85 #define YYMALLOCARGTYPE u64 |
| 86 |
| 87 /* |
| 88 ** An instance of this structure holds information about the |
| 89 ** LIMIT clause of a SELECT statement. |
| 90 */ |
| 91 struct LimitVal { |
| 92 Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */ |
| 93 Expr *pOffset; /* The OFFSET expression. NULL if there is none */ |
| 94 }; |
| 95 |
| 96 /* |
| 97 ** An instance of the following structure describes the event of a |
| 98 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, |
| 99 ** TK_DELETE, or TK_INSTEAD. If the event is of the form |
| 100 ** |
| 101 ** UPDATE ON (a,b,c) |
| 102 ** |
| 103 ** Then the "b" IdList records the list "a,b,c". |
| 104 */ |
| 105 struct TrigEvent { int a; IdList * b; }; |
| 106 |
| 107 /* |
| 108 ** Disable lookaside memory allocation for objects that might be |
| 109 ** shared across database connections. |
| 110 */ |
| 111 static void disableLookaside(Parse *pParse){ |
| 112 pParse->disableLookaside++; |
| 113 pParse->db->lookaside.bDisable++; |
| 114 } |
| 115 |
| 116 } // end %include |
| 117 |
| 118 // Input is a single SQL command |
| 119 input ::= cmdlist. |
| 120 cmdlist ::= cmdlist ecmd. |
| 121 cmdlist ::= ecmd. |
| 122 ecmd ::= SEMI. |
| 123 ecmd ::= explain cmdx SEMI. |
| 124 explain ::= . |
| 125 %ifndef SQLITE_OMIT_EXPLAIN |
| 126 explain ::= EXPLAIN. { pParse->explain = 1; } |
| 127 explain ::= EXPLAIN QUERY PLAN. { pParse->explain = 2; } |
| 128 %endif SQLITE_OMIT_EXPLAIN |
| 129 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } |
| 130 |
| 131 ///////////////////// Begin and end transactions. //////////////////////////// |
| 132 // |
| 133 |
| 134 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} |
| 135 trans_opt ::= . |
| 136 trans_opt ::= TRANSACTION. |
| 137 trans_opt ::= TRANSACTION nm. |
| 138 %type transtype {int} |
| 139 transtype(A) ::= . {A = TK_DEFERRED;} |
| 140 transtype(A) ::= DEFERRED(X). {A = @X; /*A-overwrites-X*/} |
| 141 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/} |
| 142 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/} |
| 143 cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);} |
| 144 cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);} |
| 145 cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);} |
| 146 |
| 147 savepoint_opt ::= SAVEPOINT. |
| 148 savepoint_opt ::= . |
| 149 cmd ::= SAVEPOINT nm(X). { |
| 150 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); |
| 151 } |
| 152 cmd ::= RELEASE savepoint_opt nm(X). { |
| 153 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); |
| 154 } |
| 155 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { |
| 156 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); |
| 157 } |
| 158 |
| 159 ///////////////////// The CREATE TABLE statement //////////////////////////// |
| 160 // |
| 161 cmd ::= create_table create_table_args. |
| 162 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { |
| 163 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); |
| 164 } |
| 165 createkw(A) ::= CREATE(A). {disableLookaside(pParse);} |
| 166 |
| 167 %type ifnotexists {int} |
| 168 ifnotexists(A) ::= . {A = 0;} |
| 169 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} |
| 170 %type temp {int} |
| 171 %ifndef SQLITE_OMIT_TEMPDB |
| 172 temp(A) ::= TEMP. {A = 1;} |
| 173 %endif SQLITE_OMIT_TEMPDB |
| 174 temp(A) ::= . {A = 0;} |
| 175 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). { |
| 176 sqlite3EndTable(pParse,&X,&E,F,0); |
| 177 } |
| 178 create_table_args ::= AS select(S). { |
| 179 sqlite3EndTable(pParse,0,0,0,S); |
| 180 sqlite3SelectDelete(pParse->db, S); |
| 181 } |
| 182 %type table_options {int} |
| 183 table_options(A) ::= . {A = 0;} |
| 184 table_options(A) ::= WITHOUT nm(X). { |
| 185 if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){ |
| 186 A = TF_WithoutRowid | TF_NoVisibleRowid; |
| 187 }else{ |
| 188 A = 0; |
| 189 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); |
| 190 } |
| 191 } |
| 192 columnlist ::= columnlist COMMA columnname carglist. |
| 193 columnlist ::= columnname carglist. |
| 194 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);} |
| 195 |
| 196 // Define operator precedence early so that this is the first occurrence |
| 197 // of the operator tokens in the grammer. Keeping the operators together |
| 198 // causes them to be assigned integer values that are close together, |
| 199 // which keeps parser tables smaller. |
| 200 // |
| 201 // The token values assigned to these symbols is determined by the order |
| 202 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, |
| 203 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See |
| 204 // the sqlite3ExprIfFalse() routine for additional information on this |
| 205 // constraint. |
| 206 // |
| 207 %left OR. |
| 208 %left AND. |
| 209 %right NOT. |
| 210 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. |
| 211 %left GT LE LT GE. |
| 212 %right ESCAPE. |
| 213 %left BITAND BITOR LSHIFT RSHIFT. |
| 214 %left PLUS MINUS. |
| 215 %left STAR SLASH REM. |
| 216 %left CONCAT. |
| 217 %left COLLATE. |
| 218 %right BITNOT. |
| 219 |
| 220 // An IDENTIFIER can be a generic identifier, or one of several |
| 221 // keywords. Any non-standard keyword can also be an identifier. |
| 222 // |
| 223 %token_class id ID|INDEXED. |
| 224 |
| 225 // The following directive causes tokens ABORT, AFTER, ASC, etc. to |
| 226 // fallback to ID if they will not parse as their original value. |
| 227 // This obviates the need for the "id" nonterminal. |
| 228 // |
| 229 %fallback ID |
| 230 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW |
| 231 CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR |
| 232 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN |
| 233 QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW |
| 234 ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT |
| 235 %ifdef SQLITE_OMIT_COMPOUND_SELECT |
| 236 EXCEPT INTERSECT UNION |
| 237 %endif SQLITE_OMIT_COMPOUND_SELECT |
| 238 REINDEX RENAME CTIME_KW IF |
| 239 . |
| 240 %wildcard ANY. |
| 241 |
| 242 |
| 243 // And "ids" is an identifer-or-string. |
| 244 // |
| 245 %token_class ids ID|STRING. |
| 246 |
| 247 // The name of a column or table can be any of the following: |
| 248 // |
| 249 %type nm {Token} |
| 250 nm(A) ::= id(A). |
| 251 nm(A) ::= STRING(A). |
| 252 nm(A) ::= JOIN_KW(A). |
| 253 |
| 254 // A typetoken is really zero or more tokens that form a type name such |
| 255 // as can be found after the column name in a CREATE TABLE statement. |
| 256 // Multiple tokens are concatenated to form the value of the typetoken. |
| 257 // |
| 258 %type typetoken {Token} |
| 259 typetoken(A) ::= . {A.n = 0; A.z = 0;} |
| 260 typetoken(A) ::= typename(A). |
| 261 typetoken(A) ::= typename(A) LP signed RP(Y). { |
| 262 A.n = (int)(&Y.z[Y.n] - A.z); |
| 263 } |
| 264 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). { |
| 265 A.n = (int)(&Y.z[Y.n] - A.z); |
| 266 } |
| 267 %type typename {Token} |
| 268 typename(A) ::= ids(A). |
| 269 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);} |
| 270 signed ::= plus_num. |
| 271 signed ::= minus_num. |
| 272 |
| 273 // "carglist" is a list of additional constraints that come after the |
| 274 // column name and column type in a CREATE TABLE statement. |
| 275 // |
| 276 carglist ::= carglist ccons. |
| 277 carglist ::= . |
| 278 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} |
| 279 ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);} |
| 280 ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);} |
| 281 ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);} |
| 282 ccons ::= DEFAULT MINUS(A) term(X). { |
| 283 ExprSpan v; |
| 284 v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0); |
| 285 v.zStart = A.z; |
| 286 v.zEnd = X.zEnd; |
| 287 sqlite3AddDefaultValue(pParse,&v); |
| 288 } |
| 289 ccons ::= DEFAULT id(X). { |
| 290 ExprSpan v; |
| 291 spanExpr(&v, pParse, TK_STRING, X); |
| 292 sqlite3AddDefaultValue(pParse,&v); |
| 293 } |
| 294 |
| 295 // In addition to the type name, we also care about the primary key and |
| 296 // UNIQUE constraints. |
| 297 // |
| 298 ccons ::= NULL onconf. |
| 299 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} |
| 300 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). |
| 301 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} |
| 302 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0, |
| 303 SQLITE_IDXTYPE_UNIQUE);} |
| 304 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);} |
| 305 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R). |
| 306 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} |
| 307 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} |
| 308 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} |
| 309 |
| 310 // The optional AUTOINCREMENT keyword |
| 311 %type autoinc {int} |
| 312 autoinc(X) ::= . {X = 0;} |
| 313 autoinc(X) ::= AUTOINCR. {X = 1;} |
| 314 |
| 315 // The next group of rules parses the arguments to a REFERENCES clause |
| 316 // that determine if the referential integrity checking is deferred or |
| 317 // or immediate and which determine what action to take if a ref-integ |
| 318 // check fails. |
| 319 // |
| 320 %type refargs {int} |
| 321 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} |
| 322 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; } |
| 323 %type refarg {struct {int value; int mask;}} |
| 324 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } |
| 325 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } |
| 326 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } |
| 327 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } |
| 328 %type refact {int} |
| 329 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} |
| 330 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} |
| 331 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} |
| 332 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} |
| 333 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} |
| 334 %type defer_subclause {int} |
| 335 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} |
| 336 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} |
| 337 %type init_deferred_pred_opt {int} |
| 338 init_deferred_pred_opt(A) ::= . {A = 0;} |
| 339 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} |
| 340 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} |
| 341 |
| 342 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} |
| 343 conslist_opt(A) ::= COMMA(A) conslist. |
| 344 conslist ::= conslist tconscomma tcons. |
| 345 conslist ::= tcons. |
| 346 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} |
| 347 tconscomma ::= . |
| 348 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} |
| 349 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R). |
| 350 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} |
| 351 tcons ::= UNIQUE LP sortlist(X) RP onconf(R). |
| 352 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0, |
| 353 SQLITE_IDXTYPE_UNIQUE);} |
| 354 tcons ::= CHECK LP expr(E) RP onconf. |
| 355 {sqlite3AddCheckConstraint(pParse,E.pExpr);} |
| 356 tcons ::= FOREIGN KEY LP eidlist(FA) RP |
| 357 REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). { |
| 358 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); |
| 359 sqlite3DeferForeignKey(pParse, D); |
| 360 } |
| 361 %type defer_subclause_opt {int} |
| 362 defer_subclause_opt(A) ::= . {A = 0;} |
| 363 defer_subclause_opt(A) ::= defer_subclause(A). |
| 364 |
| 365 // The following is a non-standard extension that allows us to declare the |
| 366 // default behavior when there is a constraint conflict. |
| 367 // |
| 368 %type onconf {int} |
| 369 %type orconf {int} |
| 370 %type resolvetype {int} |
| 371 onconf(A) ::= . {A = OE_Default;} |
| 372 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} |
| 373 orconf(A) ::= . {A = OE_Default;} |
| 374 orconf(A) ::= OR resolvetype(X). {A = X;} |
| 375 resolvetype(A) ::= raisetype(A). |
| 376 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} |
| 377 resolvetype(A) ::= REPLACE. {A = OE_Replace;} |
| 378 |
| 379 ////////////////////////// The DROP TABLE ///////////////////////////////////// |
| 380 // |
| 381 cmd ::= DROP TABLE ifexists(E) fullname(X). { |
| 382 sqlite3DropTable(pParse, X, 0, E); |
| 383 } |
| 384 %type ifexists {int} |
| 385 ifexists(A) ::= IF EXISTS. {A = 1;} |
| 386 ifexists(A) ::= . {A = 0;} |
| 387 |
| 388 ///////////////////// The CREATE VIEW statement ///////////////////////////// |
| 389 // |
| 390 %ifndef SQLITE_OMIT_VIEW |
| 391 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C) |
| 392 AS select(S). { |
| 393 sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E); |
| 394 } |
| 395 cmd ::= DROP VIEW ifexists(E) fullname(X). { |
| 396 sqlite3DropTable(pParse, X, 1, E); |
| 397 } |
| 398 %endif SQLITE_OMIT_VIEW |
| 399 |
| 400 //////////////////////// The SELECT statement ///////////////////////////////// |
| 401 // |
| 402 cmd ::= select(X). { |
| 403 SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0}; |
| 404 sqlite3Select(pParse, X, &dest); |
| 405 sqlite3SelectDelete(pParse->db, X); |
| 406 } |
| 407 |
| 408 %type select {Select*} |
| 409 %destructor select {sqlite3SelectDelete(pParse->db, $$);} |
| 410 %type selectnowith {Select*} |
| 411 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} |
| 412 %type oneselect {Select*} |
| 413 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} |
| 414 |
| 415 %include { |
| 416 /* |
| 417 ** For a compound SELECT statement, make sure p->pPrior->pNext==p for |
| 418 ** all elements in the list. And make sure list length does not exceed |
| 419 ** SQLITE_LIMIT_COMPOUND_SELECT. |
| 420 */ |
| 421 static void parserDoubleLinkSelect(Parse *pParse, Select *p){ |
| 422 if( p->pPrior ){ |
| 423 Select *pNext = 0, *pLoop; |
| 424 int mxSelect, cnt = 0; |
| 425 for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){ |
| 426 pLoop->pNext = pNext; |
| 427 pLoop->selFlags |= SF_Compound; |
| 428 } |
| 429 if( (p->selFlags & SF_MultiValue)==0 && |
| 430 (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 && |
| 431 cnt>mxSelect |
| 432 ){ |
| 433 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); |
| 434 } |
| 435 } |
| 436 } |
| 437 } |
| 438 |
| 439 select(A) ::= with(W) selectnowith(X). { |
| 440 Select *p = X; |
| 441 if( p ){ |
| 442 p->pWith = W; |
| 443 parserDoubleLinkSelect(pParse, p); |
| 444 }else{ |
| 445 sqlite3WithDelete(pParse->db, W); |
| 446 } |
| 447 A = p; /*A-overwrites-W*/ |
| 448 } |
| 449 |
| 450 selectnowith(A) ::= oneselect(A). |
| 451 %ifndef SQLITE_OMIT_COMPOUND_SELECT |
| 452 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z). { |
| 453 Select *pRhs = Z; |
| 454 Select *pLhs = A; |
| 455 if( pRhs && pRhs->pPrior ){ |
| 456 SrcList *pFrom; |
| 457 Token x; |
| 458 x.n = 0; |
| 459 parserDoubleLinkSelect(pParse, pRhs); |
| 460 pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); |
| 461 pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0); |
| 462 } |
| 463 if( pRhs ){ |
| 464 pRhs->op = (u8)Y; |
| 465 pRhs->pPrior = pLhs; |
| 466 if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue; |
| 467 pRhs->selFlags &= ~SF_MultiValue; |
| 468 if( Y!=TK_ALL ) pParse->hasCompound = 1; |
| 469 }else{ |
| 470 sqlite3SelectDelete(pParse->db, pLhs); |
| 471 } |
| 472 A = pRhs; |
| 473 } |
| 474 %type multiselect_op {int} |
| 475 multiselect_op(A) ::= UNION(OP). {A = @OP; /*A-overwrites-OP*/} |
| 476 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} |
| 477 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP; /*A-overwrites-OP*/} |
| 478 %endif SQLITE_OMIT_COMPOUND_SELECT |
| 479 oneselect(A) ::= SELECT(S) distinct(D) selcollist(W) from(X) where_opt(Y) |
| 480 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { |
| 481 #if SELECTTRACE_ENABLED |
| 482 Token s = S; /*A-overwrites-S*/ |
| 483 #endif |
| 484 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset); |
| 485 #if SELECTTRACE_ENABLED |
| 486 /* Populate the Select.zSelName[] string that is used to help with |
| 487 ** query planner debugging, to differentiate between multiple Select |
| 488 ** objects in a complex query. |
| 489 ** |
| 490 ** If the SELECT keyword is immediately followed by a C-style comment |
| 491 ** then extract the first few alphanumeric characters from within that |
| 492 ** comment to be the zSelName value. Otherwise, the label is #N where |
| 493 ** is an integer that is incremented with each SELECT statement seen. |
| 494 */ |
| 495 if( A!=0 ){ |
| 496 const char *z = s.z+6; |
| 497 int i; |
| 498 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "#%d", |
| 499 ++pParse->nSelect); |
| 500 while( z[0]==' ' ) z++; |
| 501 if( z[0]=='/' && z[1]=='*' ){ |
| 502 z += 2; |
| 503 while( z[0]==' ' ) z++; |
| 504 for(i=0; sqlite3Isalnum(z[i]); i++){} |
| 505 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z); |
| 506 } |
| 507 } |
| 508 #endif /* SELECTRACE_ENABLED */ |
| 509 } |
| 510 oneselect(A) ::= values(A). |
| 511 |
| 512 %type values {Select*} |
| 513 %destructor values {sqlite3SelectDelete(pParse->db, $$);} |
| 514 values(A) ::= VALUES LP nexprlist(X) RP. { |
| 515 A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0,0); |
| 516 } |
| 517 values(A) ::= values(A) COMMA LP exprlist(Y) RP. { |
| 518 Select *pRight, *pLeft = A; |
| 519 pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0,0); |
| 520 if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue; |
| 521 if( pRight ){ |
| 522 pRight->op = TK_ALL; |
| 523 pRight->pPrior = pLeft; |
| 524 A = pRight; |
| 525 }else{ |
| 526 A = pLeft; |
| 527 } |
| 528 } |
| 529 |
| 530 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is |
| 531 // present and false (0) if it is not. |
| 532 // |
| 533 %type distinct {int} |
| 534 distinct(A) ::= DISTINCT. {A = SF_Distinct;} |
| 535 distinct(A) ::= ALL. {A = SF_All;} |
| 536 distinct(A) ::= . {A = 0;} |
| 537 |
| 538 // selcollist is a list of expressions that are to become the return |
| 539 // values of the SELECT statement. The "*" in statements like |
| 540 // "SELECT * FROM ..." is encoded as a special expression with an |
| 541 // opcode of TK_ASTERISK. |
| 542 // |
| 543 %type selcollist {ExprList*} |
| 544 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} |
| 545 %type sclp {ExprList*} |
| 546 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} |
| 547 sclp(A) ::= selcollist(A) COMMA. |
| 548 sclp(A) ::= . {A = 0;} |
| 549 selcollist(A) ::= sclp(A) expr(X) as(Y). { |
| 550 A = sqlite3ExprListAppend(pParse, A, X.pExpr); |
| 551 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); |
| 552 sqlite3ExprListSetSpan(pParse,A,&X); |
| 553 } |
| 554 selcollist(A) ::= sclp(A) STAR. { |
| 555 Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); |
| 556 A = sqlite3ExprListAppend(pParse, A, p); |
| 557 } |
| 558 selcollist(A) ::= sclp(A) nm(X) DOT STAR. { |
| 559 Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0); |
| 560 Expr *pLeft = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); |
| 561 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); |
| 562 A = sqlite3ExprListAppend(pParse,A, pDot); |
| 563 } |
| 564 |
| 565 // An option "AS <id>" phrase that can follow one of the expressions that |
| 566 // define the result set, or one of the tables in the FROM clause. |
| 567 // |
| 568 %type as {Token} |
| 569 as(X) ::= AS nm(Y). {X = Y;} |
| 570 as(X) ::= ids(X). |
| 571 as(X) ::= . {X.n = 0; X.z = 0;} |
| 572 |
| 573 |
| 574 %type seltablist {SrcList*} |
| 575 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} |
| 576 %type stl_prefix {SrcList*} |
| 577 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} |
| 578 %type from {SrcList*} |
| 579 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} |
| 580 |
| 581 // A complete FROM clause. |
| 582 // |
| 583 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} |
| 584 from(A) ::= FROM seltablist(X). { |
| 585 A = X; |
| 586 sqlite3SrcListShiftJoinType(A); |
| 587 } |
| 588 |
| 589 // "seltablist" is a "Select Table List" - the content of the FROM clause |
| 590 // in a SELECT statement. "stl_prefix" is a prefix of this list. |
| 591 // |
| 592 stl_prefix(A) ::= seltablist(A) joinop(Y). { |
| 593 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y; |
| 594 } |
| 595 stl_prefix(A) ::= . {A = 0;} |
| 596 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I) |
| 597 on_opt(N) using_opt(U). { |
| 598 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); |
| 599 sqlite3SrcListIndexedBy(pParse, A, &I); |
| 600 } |
| 601 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z) |
| 602 on_opt(N) using_opt(U). { |
| 603 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); |
| 604 sqlite3SrcListFuncArgs(pParse, A, E); |
| 605 } |
| 606 %ifndef SQLITE_OMIT_SUBQUERY |
| 607 seltablist(A) ::= stl_prefix(A) LP select(S) RP |
| 608 as(Z) on_opt(N) using_opt(U). { |
| 609 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U); |
| 610 } |
| 611 seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP |
| 612 as(Z) on_opt(N) using_opt(U). { |
| 613 if( A==0 && Z.n==0 && N==0 && U==0 ){ |
| 614 A = F; |
| 615 }else if( F->nSrc==1 ){ |
| 616 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U); |
| 617 if( A ){ |
| 618 struct SrcList_item *pNew = &A->a[A->nSrc-1]; |
| 619 struct SrcList_item *pOld = F->a; |
| 620 pNew->zName = pOld->zName; |
| 621 pNew->zDatabase = pOld->zDatabase; |
| 622 pNew->pSelect = pOld->pSelect; |
| 623 pOld->zName = pOld->zDatabase = 0; |
| 624 pOld->pSelect = 0; |
| 625 } |
| 626 sqlite3SrcListDelete(pParse->db, F); |
| 627 }else{ |
| 628 Select *pSubquery; |
| 629 sqlite3SrcListShiftJoinType(F); |
| 630 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0,0); |
| 631 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U); |
| 632 } |
| 633 } |
| 634 %endif SQLITE_OMIT_SUBQUERY |
| 635 |
| 636 %type dbnm {Token} |
| 637 dbnm(A) ::= . {A.z=0; A.n=0;} |
| 638 dbnm(A) ::= DOT nm(X). {A = X;} |
| 639 |
| 640 %type fullname {SrcList*} |
| 641 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} |
| 642 fullname(A) ::= nm(X) dbnm(Y). |
| 643 {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/} |
| 644 |
| 645 %type joinop {int} |
| 646 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } |
| 647 joinop(X) ::= JOIN_KW(A) JOIN. |
| 648 {X = sqlite3JoinType(pParse,&A,0,0); /*X-overwrites-A*/} |
| 649 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. |
| 650 {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/} |
| 651 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. |
| 652 {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/} |
| 653 |
| 654 %type on_opt {Expr*} |
| 655 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} |
| 656 on_opt(N) ::= ON expr(E). {N = E.pExpr;} |
| 657 on_opt(N) ::= . {N = 0;} |
| 658 |
| 659 // Note that this block abuses the Token type just a little. If there is |
| 660 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If |
| 661 // there is an INDEXED BY clause, then the token is populated as per normal, |
| 662 // with z pointing to the token data and n containing the number of bytes |
| 663 // in the token. |
| 664 // |
| 665 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is |
| 666 // normally illegal. The sqlite3SrcListIndexedBy() function |
| 667 // recognizes and interprets this as a special case. |
| 668 // |
| 669 %type indexed_opt {Token} |
| 670 indexed_opt(A) ::= . {A.z=0; A.n=0;} |
| 671 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} |
| 672 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} |
| 673 |
| 674 %type using_opt {IdList*} |
| 675 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} |
| 676 using_opt(U) ::= USING LP idlist(L) RP. {U = L;} |
| 677 using_opt(U) ::= . {U = 0;} |
| 678 |
| 679 |
| 680 %type orderby_opt {ExprList*} |
| 681 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} |
| 682 |
| 683 // the sortlist non-terminal stores a list of expression where each |
| 684 // expression is optionally followed by ASC or DESC to indicate the |
| 685 // sort order. |
| 686 // |
| 687 %type sortlist {ExprList*} |
| 688 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} |
| 689 |
| 690 orderby_opt(A) ::= . {A = 0;} |
| 691 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} |
| 692 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z). { |
| 693 A = sqlite3ExprListAppend(pParse,A,Y.pExpr); |
| 694 sqlite3ExprListSetSortOrder(A,Z); |
| 695 } |
| 696 sortlist(A) ::= expr(Y) sortorder(Z). { |
| 697 A = sqlite3ExprListAppend(pParse,0,Y.pExpr); /*A-overwrites-Y*/ |
| 698 sqlite3ExprListSetSortOrder(A,Z); |
| 699 } |
| 700 |
| 701 %type sortorder {int} |
| 702 |
| 703 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} |
| 704 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} |
| 705 sortorder(A) ::= . {A = SQLITE_SO_UNDEFINED;} |
| 706 |
| 707 %type groupby_opt {ExprList*} |
| 708 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} |
| 709 groupby_opt(A) ::= . {A = 0;} |
| 710 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} |
| 711 |
| 712 %type having_opt {Expr*} |
| 713 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} |
| 714 having_opt(A) ::= . {A = 0;} |
| 715 having_opt(A) ::= HAVING expr(X). {A = X.pExpr;} |
| 716 |
| 717 %type limit_opt {struct LimitVal} |
| 718 |
| 719 // The destructor for limit_opt will never fire in the current grammar. |
| 720 // The limit_opt non-terminal only occurs at the end of a single production |
| 721 // rule for SELECT statements. As soon as the rule that create the |
| 722 // limit_opt non-terminal reduces, the SELECT statement rule will also |
| 723 // reduce. So there is never a limit_opt non-terminal on the stack |
| 724 // except as a transient. So there is never anything to destroy. |
| 725 // |
| 726 //%destructor limit_opt { |
| 727 // sqlite3ExprDelete(pParse->db, $$.pLimit); |
| 728 // sqlite3ExprDelete(pParse->db, $$.pOffset); |
| 729 //} |
| 730 limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;} |
| 731 limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;} |
| 732 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). |
| 733 {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;} |
| 734 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). |
| 735 {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;} |
| 736 |
| 737 /////////////////////////// The DELETE statement ///////////////////////////// |
| 738 // |
| 739 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT |
| 740 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W) |
| 741 orderby_opt(O) limit_opt(L). { |
| 742 sqlite3WithPush(pParse, C, 1); |
| 743 sqlite3SrcListIndexedBy(pParse, X, &I); |
| 744 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE"); |
| 745 sqlite3DeleteFrom(pParse,X,W); |
| 746 } |
| 747 %endif |
| 748 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT |
| 749 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W). { |
| 750 sqlite3WithPush(pParse, C, 1); |
| 751 sqlite3SrcListIndexedBy(pParse, X, &I); |
| 752 sqlite3DeleteFrom(pParse,X,W); |
| 753 } |
| 754 %endif |
| 755 |
| 756 %type where_opt {Expr*} |
| 757 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} |
| 758 |
| 759 where_opt(A) ::= . {A = 0;} |
| 760 where_opt(A) ::= WHERE expr(X). {A = X.pExpr;} |
| 761 |
| 762 ////////////////////////// The UPDATE command //////////////////////////////// |
| 763 // |
| 764 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT |
| 765 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) |
| 766 where_opt(W) orderby_opt(O) limit_opt(L). { |
| 767 sqlite3WithPush(pParse, C, 1); |
| 768 sqlite3SrcListIndexedBy(pParse, X, &I); |
| 769 sqlite3ExprListCheckLength(pParse,Y,"set list"); |
| 770 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE"); |
| 771 sqlite3Update(pParse,X,Y,W,R); |
| 772 } |
| 773 %endif |
| 774 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT |
| 775 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) |
| 776 where_opt(W). { |
| 777 sqlite3WithPush(pParse, C, 1); |
| 778 sqlite3SrcListIndexedBy(pParse, X, &I); |
| 779 sqlite3ExprListCheckLength(pParse,Y,"set list"); |
| 780 sqlite3Update(pParse,X,Y,W,R); |
| 781 } |
| 782 %endif |
| 783 |
| 784 %type setlist {ExprList*} |
| 785 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} |
| 786 |
| 787 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). { |
| 788 A = sqlite3ExprListAppend(pParse, A, Y.pExpr); |
| 789 sqlite3ExprListSetName(pParse, A, &X, 1); |
| 790 } |
| 791 setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). { |
| 792 A = sqlite3ExprListAppendVector(pParse, A, X, Y.pExpr); |
| 793 } |
| 794 setlist(A) ::= nm(X) EQ expr(Y). { |
| 795 A = sqlite3ExprListAppend(pParse, 0, Y.pExpr); |
| 796 sqlite3ExprListSetName(pParse, A, &X, 1); |
| 797 } |
| 798 setlist(A) ::= LP idlist(X) RP EQ expr(Y). { |
| 799 A = sqlite3ExprListAppendVector(pParse, 0, X, Y.pExpr); |
| 800 } |
| 801 |
| 802 ////////////////////////// The INSERT command ///////////////////////////////// |
| 803 // |
| 804 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) select(S). { |
| 805 sqlite3WithPush(pParse, W, 1); |
| 806 sqlite3Insert(pParse, X, S, F, R); |
| 807 } |
| 808 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) DEFAULT VALUES. |
| 809 { |
| 810 sqlite3WithPush(pParse, W, 1); |
| 811 sqlite3Insert(pParse, X, 0, F, R); |
| 812 } |
| 813 |
| 814 %type insert_cmd {int} |
| 815 insert_cmd(A) ::= INSERT orconf(R). {A = R;} |
| 816 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} |
| 817 |
| 818 %type idlist_opt {IdList*} |
| 819 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);} |
| 820 %type idlist {IdList*} |
| 821 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);} |
| 822 |
| 823 idlist_opt(A) ::= . {A = 0;} |
| 824 idlist_opt(A) ::= LP idlist(X) RP. {A = X;} |
| 825 idlist(A) ::= idlist(A) COMMA nm(Y). |
| 826 {A = sqlite3IdListAppend(pParse->db,A,&Y);} |
| 827 idlist(A) ::= nm(Y). |
| 828 {A = sqlite3IdListAppend(pParse->db,0,&Y); /*A-overwrites-Y*/} |
| 829 |
| 830 /////////////////////////// Expression Processing ///////////////////////////// |
| 831 // |
| 832 |
| 833 %type expr {ExprSpan} |
| 834 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);} |
| 835 %type term {ExprSpan} |
| 836 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);} |
| 837 |
| 838 %include { |
| 839 /* This is a utility routine used to set the ExprSpan.zStart and |
| 840 ** ExprSpan.zEnd values of pOut so that the span covers the complete |
| 841 ** range of text beginning with pStart and going to the end of pEnd. |
| 842 */ |
| 843 static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){ |
| 844 pOut->zStart = pStart->z; |
| 845 pOut->zEnd = &pEnd->z[pEnd->n]; |
| 846 } |
| 847 |
| 848 /* Construct a new Expr object from a single identifier. Use the |
| 849 ** new Expr to populate pOut. Set the span of pOut to be the identifier |
| 850 ** that created the expression. |
| 851 */ |
| 852 static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token t){ |
| 853 Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1); |
| 854 if( p ){ |
| 855 memset(p, 0, sizeof(Expr)); |
| 856 p->op = (u8)op; |
| 857 p->flags = EP_Leaf; |
| 858 p->iAgg = -1; |
| 859 p->u.zToken = (char*)&p[1]; |
| 860 memcpy(p->u.zToken, t.z, t.n); |
| 861 p->u.zToken[t.n] = 0; |
| 862 if( sqlite3Isquote(p->u.zToken[0]) ){ |
| 863 if( p->u.zToken[0]=='"' ) p->flags |= EP_DblQuoted; |
| 864 sqlite3Dequote(p->u.zToken); |
| 865 } |
| 866 #if SQLITE_MAX_EXPR_DEPTH>0 |
| 867 p->nHeight = 1; |
| 868 #endif |
| 869 } |
| 870 pOut->pExpr = p; |
| 871 pOut->zStart = t.z; |
| 872 pOut->zEnd = &t.z[t.n]; |
| 873 } |
| 874 } |
| 875 |
| 876 expr(A) ::= term(A). |
| 877 expr(A) ::= LP(B) expr(X) RP(E). |
| 878 {spanSet(&A,&B,&E); /*A-overwrites-B*/ A.pExpr = X.pExpr;} |
| 879 term(A) ::= NULL(X). {spanExpr(&A,pParse,@X,X);/*A-overwrites-X*/} |
| 880 expr(A) ::= id(X). {spanExpr(&A,pParse,TK_ID,X); /*A-overwrites-X*/} |
| 881 expr(A) ::= JOIN_KW(X). {spanExpr(&A,pParse,TK_ID,X); /*A-overwrites-X*/} |
| 882 expr(A) ::= nm(X) DOT nm(Y). { |
| 883 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); |
| 884 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); |
| 885 spanSet(&A,&X,&Y); /*A-overwrites-X*/ |
| 886 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2); |
| 887 } |
| 888 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { |
| 889 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); |
| 890 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); |
| 891 Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &Z, 1); |
| 892 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3); |
| 893 spanSet(&A,&X,&Z); /*A-overwrites-X*/ |
| 894 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4); |
| 895 } |
| 896 term(A) ::= FLOAT|BLOB(X). {spanExpr(&A,pParse,@X,X);/*A-overwrites-X*/} |
| 897 term(A) ::= STRING(X). {spanExpr(&A,pParse,@X,X);/*A-overwrites-X*/} |
| 898 term(A) ::= INTEGER(X). { |
| 899 A.pExpr = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1); |
| 900 A.zStart = X.z; |
| 901 A.zEnd = X.z + X.n; |
| 902 if( A.pExpr ) A.pExpr->flags |= EP_Leaf; |
| 903 } |
| 904 expr(A) ::= VARIABLE(X). { |
| 905 if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){ |
| 906 u32 n = X.n; |
| 907 spanExpr(&A, pParse, TK_VARIABLE, X); |
| 908 sqlite3ExprAssignVarNumber(pParse, A.pExpr, n); |
| 909 }else{ |
| 910 /* When doing a nested parse, one can include terms in an expression |
| 911 ** that look like this: #1 #2 ... These terms refer to registers |
| 912 ** in the virtual machine. #N is the N-th register. */ |
| 913 Token t = X; /*A-overwrites-X*/ |
| 914 assert( t.n>=2 ); |
| 915 spanSet(&A, &t, &t); |
| 916 if( pParse->nested==0 ){ |
| 917 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t); |
| 918 A.pExpr = 0; |
| 919 }else{ |
| 920 A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0); |
| 921 if( A.pExpr ) sqlite3GetInt32(&t.z[1], &A.pExpr->iTable); |
| 922 } |
| 923 } |
| 924 } |
| 925 expr(A) ::= expr(A) COLLATE ids(C). { |
| 926 A.pExpr = sqlite3ExprAddCollateToken(pParse, A.pExpr, &C, 1); |
| 927 A.zEnd = &C.z[C.n]; |
| 928 } |
| 929 %ifndef SQLITE_OMIT_CAST |
| 930 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). { |
| 931 spanSet(&A,&X,&Y); /*A-overwrites-X*/ |
| 932 A.pExpr = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1); |
| 933 sqlite3ExprAttachSubtrees(pParse->db, A.pExpr, E.pExpr, 0); |
| 934 } |
| 935 %endif SQLITE_OMIT_CAST |
| 936 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP(E). { |
| 937 if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ |
| 938 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); |
| 939 } |
| 940 A.pExpr = sqlite3ExprFunction(pParse, Y, &X); |
| 941 spanSet(&A,&X,&E); |
| 942 if( D==SF_Distinct && A.pExpr ){ |
| 943 A.pExpr->flags |= EP_Distinct; |
| 944 } |
| 945 } |
| 946 expr(A) ::= id(X) LP STAR RP(E). { |
| 947 A.pExpr = sqlite3ExprFunction(pParse, 0, &X); |
| 948 spanSet(&A,&X,&E); |
| 949 } |
| 950 term(A) ::= CTIME_KW(OP). { |
| 951 A.pExpr = sqlite3ExprFunction(pParse, 0, &OP); |
| 952 spanSet(&A, &OP, &OP); |
| 953 } |
| 954 |
| 955 %include { |
| 956 /* This routine constructs a binary expression node out of two ExprSpan |
| 957 ** objects and uses the result to populate a new ExprSpan object. |
| 958 */ |
| 959 static void spanBinaryExpr( |
| 960 Parse *pParse, /* The parsing context. Errors accumulate here */ |
| 961 int op, /* The binary operation */ |
| 962 ExprSpan *pLeft, /* The left operand, and output */ |
| 963 ExprSpan *pRight /* The right operand */ |
| 964 ){ |
| 965 pLeft->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr); |
| 966 pLeft->zEnd = pRight->zEnd; |
| 967 } |
| 968 |
| 969 /* If doNot is true, then add a TK_NOT Expr-node wrapper around the |
| 970 ** outside of *ppExpr. |
| 971 */ |
| 972 static void exprNot(Parse *pParse, int doNot, ExprSpan *pSpan){ |
| 973 if( doNot ){ |
| 974 pSpan->pExpr = sqlite3PExpr(pParse, TK_NOT, pSpan->pExpr, 0); |
| 975 } |
| 976 } |
| 977 } |
| 978 |
| 979 expr(A) ::= LP(L) nexprlist(X) COMMA expr(Y) RP(R). { |
| 980 ExprList *pList = sqlite3ExprListAppend(pParse, X, Y.pExpr); |
| 981 A.pExpr = sqlite3PExpr(pParse, TK_VECTOR, 0, 0); |
| 982 if( A.pExpr ){ |
| 983 A.pExpr->x.pList = pList; |
| 984 spanSet(&A, &L, &R); |
| 985 }else{ |
| 986 sqlite3ExprListDelete(pParse->db, pList); |
| 987 } |
| 988 } |
| 989 |
| 990 expr(A) ::= expr(A) AND(OP) expr(Y). {spanBinaryExpr(pParse,@OP,&A,&Y);} |
| 991 expr(A) ::= expr(A) OR(OP) expr(Y). {spanBinaryExpr(pParse,@OP,&A,&Y);} |
| 992 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y). |
| 993 {spanBinaryExpr(pParse,@OP,&A,&Y);} |
| 994 expr(A) ::= expr(A) EQ|NE(OP) expr(Y). {spanBinaryExpr(pParse,@OP,&A,&Y);} |
| 995 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). |
| 996 {spanBinaryExpr(pParse,@OP,&A,&Y);} |
| 997 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y). |
| 998 {spanBinaryExpr(pParse,@OP,&A,&Y);} |
| 999 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y). |
| 1000 {spanBinaryExpr(pParse,@OP,&A,&Y);} |
| 1001 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {spanBinaryExpr(pParse,@OP,&A,&Y);} |
| 1002 %type likeop {Token} |
| 1003 likeop(A) ::= LIKE_KW|MATCH(X). {A=X;/*A-overwrites-X*/} |
| 1004 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/} |
| 1005 expr(A) ::= expr(A) likeop(OP) expr(Y). [LIKE_KW] { |
| 1006 ExprList *pList; |
| 1007 int bNot = OP.n & 0x80000000; |
| 1008 OP.n &= 0x7fffffff; |
| 1009 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); |
| 1010 pList = sqlite3ExprListAppend(pParse,pList, A.pExpr); |
| 1011 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP); |
| 1012 exprNot(pParse, bNot, &A); |
| 1013 A.zEnd = Y.zEnd; |
| 1014 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; |
| 1015 } |
| 1016 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { |
| 1017 ExprList *pList; |
| 1018 int bNot = OP.n & 0x80000000; |
| 1019 OP.n &= 0x7fffffff; |
| 1020 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); |
| 1021 pList = sqlite3ExprListAppend(pParse,pList, A.pExpr); |
| 1022 pList = sqlite3ExprListAppend(pParse,pList, E.pExpr); |
| 1023 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP); |
| 1024 exprNot(pParse, bNot, &A); |
| 1025 A.zEnd = E.zEnd; |
| 1026 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; |
| 1027 } |
| 1028 |
| 1029 %include { |
| 1030 /* Construct an expression node for a unary postfix operator |
| 1031 */ |
| 1032 static void spanUnaryPostfix( |
| 1033 Parse *pParse, /* Parsing context to record errors */ |
| 1034 int op, /* The operator */ |
| 1035 ExprSpan *pOperand, /* The operand, and output */ |
| 1036 Token *pPostOp /* The operand token for setting the span */ |
| 1037 ){ |
| 1038 pOperand->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0); |
| 1039 pOperand->zEnd = &pPostOp->z[pPostOp->n]; |
| 1040 } |
| 1041 } |
| 1042 |
| 1043 expr(A) ::= expr(A) ISNULL|NOTNULL(E). {spanUnaryPostfix(pParse,@E,&A,&E);} |
| 1044 expr(A) ::= expr(A) NOT NULL(E). {spanUnaryPostfix(pParse,TK_NOTNULL,&A,&E);} |
| 1045 |
| 1046 %include { |
| 1047 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a |
| 1048 ** unary TK_ISNULL or TK_NOTNULL expression. */ |
| 1049 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ |
| 1050 sqlite3 *db = pParse->db; |
| 1051 if( pA && pY && pY->op==TK_NULL ){ |
| 1052 pA->op = (u8)op; |
| 1053 sqlite3ExprDelete(db, pA->pRight); |
| 1054 pA->pRight = 0; |
| 1055 } |
| 1056 } |
| 1057 } |
| 1058 |
| 1059 // expr1 IS expr2 |
| 1060 // expr1 IS NOT expr2 |
| 1061 // |
| 1062 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 |
| 1063 // is any other expression, code as TK_IS or TK_ISNOT. |
| 1064 // |
| 1065 expr(A) ::= expr(A) IS expr(Y). { |
| 1066 spanBinaryExpr(pParse,TK_IS,&A,&Y); |
| 1067 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL); |
| 1068 } |
| 1069 expr(A) ::= expr(A) IS NOT expr(Y). { |
| 1070 spanBinaryExpr(pParse,TK_ISNOT,&A,&Y); |
| 1071 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL); |
| 1072 } |
| 1073 |
| 1074 %include { |
| 1075 /* Construct an expression node for a unary prefix operator |
| 1076 */ |
| 1077 static void spanUnaryPrefix( |
| 1078 ExprSpan *pOut, /* Write the new expression node here */ |
| 1079 Parse *pParse, /* Parsing context to record errors */ |
| 1080 int op, /* The operator */ |
| 1081 ExprSpan *pOperand, /* The operand */ |
| 1082 Token *pPreOp /* The operand token for setting the span */ |
| 1083 ){ |
| 1084 pOut->zStart = pPreOp->z; |
| 1085 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0); |
| 1086 pOut->zEnd = pOperand->zEnd; |
| 1087 } |
| 1088 } |
| 1089 |
| 1090 |
| 1091 |
| 1092 expr(A) ::= NOT(B) expr(X). |
| 1093 {spanUnaryPrefix(&A,pParse,@B,&X,&B);/*A-overwrites-B*/} |
| 1094 expr(A) ::= BITNOT(B) expr(X). |
| 1095 {spanUnaryPrefix(&A,pParse,@B,&X,&B);/*A-overwrites-B*/} |
| 1096 expr(A) ::= MINUS(B) expr(X). [BITNOT] |
| 1097 {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);/*A-overwrites-B*/} |
| 1098 expr(A) ::= PLUS(B) expr(X). [BITNOT] |
| 1099 {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);/*A-overwrites-B*/} |
| 1100 |
| 1101 %type between_op {int} |
| 1102 between_op(A) ::= BETWEEN. {A = 0;} |
| 1103 between_op(A) ::= NOT BETWEEN. {A = 1;} |
| 1104 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] { |
| 1105 ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr); |
| 1106 pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr); |
| 1107 A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, A.pExpr, 0); |
| 1108 if( A.pExpr ){ |
| 1109 A.pExpr->x.pList = pList; |
| 1110 }else{ |
| 1111 sqlite3ExprListDelete(pParse->db, pList); |
| 1112 } |
| 1113 exprNot(pParse, N, &A); |
| 1114 A.zEnd = Y.zEnd; |
| 1115 } |
| 1116 %ifndef SQLITE_OMIT_SUBQUERY |
| 1117 %type in_op {int} |
| 1118 in_op(A) ::= IN. {A = 0;} |
| 1119 in_op(A) ::= NOT IN. {A = 1;} |
| 1120 expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP(E). [IN] { |
| 1121 if( Y==0 ){ |
| 1122 /* Expressions of the form |
| 1123 ** |
| 1124 ** expr1 IN () |
| 1125 ** expr1 NOT IN () |
| 1126 ** |
| 1127 ** simplify to constants 0 (false) and 1 (true), respectively, |
| 1128 ** regardless of the value of expr1. |
| 1129 */ |
| 1130 sqlite3ExprDelete(pParse->db, A.pExpr); |
| 1131 A.pExpr = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[N],1); |
| 1132 }else if( Y->nExpr==1 ){ |
| 1133 /* Expressions of the form: |
| 1134 ** |
| 1135 ** expr1 IN (?1) |
| 1136 ** expr1 NOT IN (?2) |
| 1137 ** |
| 1138 ** with exactly one value on the RHS can be simplified to something |
| 1139 ** like this: |
| 1140 ** |
| 1141 ** expr1 == ?1 |
| 1142 ** expr1 <> ?2 |
| 1143 ** |
| 1144 ** But, the RHS of the == or <> is marked with the EP_Generic flag |
| 1145 ** so that it may not contribute to the computation of comparison |
| 1146 ** affinity or the collating sequence to use for comparison. Otherwise, |
| 1147 ** the semantics would be subtly different from IN or NOT IN. |
| 1148 */ |
| 1149 Expr *pRHS = Y->a[0].pExpr; |
| 1150 Y->a[0].pExpr = 0; |
| 1151 sqlite3ExprListDelete(pParse->db, Y); |
| 1152 /* pRHS cannot be NULL because a malloc error would have been detected |
| 1153 ** before now and control would have never reached this point */ |
| 1154 if( ALWAYS(pRHS) ){ |
| 1155 pRHS->flags &= ~EP_Collate; |
| 1156 pRHS->flags |= EP_Generic; |
| 1157 } |
| 1158 A.pExpr = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, A.pExpr, pRHS); |
| 1159 }else{ |
| 1160 A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0); |
| 1161 if( A.pExpr ){ |
| 1162 A.pExpr->x.pList = Y; |
| 1163 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); |
| 1164 }else{ |
| 1165 sqlite3ExprListDelete(pParse->db, Y); |
| 1166 } |
| 1167 exprNot(pParse, N, &A); |
| 1168 } |
| 1169 A.zEnd = &E.z[E.n]; |
| 1170 } |
| 1171 expr(A) ::= LP(B) select(X) RP(E). { |
| 1172 spanSet(&A,&B,&E); /*A-overwrites-B*/ |
| 1173 A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0); |
| 1174 sqlite3PExprAddSelect(pParse, A.pExpr, X); |
| 1175 } |
| 1176 expr(A) ::= expr(A) in_op(N) LP select(Y) RP(E). [IN] { |
| 1177 A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0); |
| 1178 sqlite3PExprAddSelect(pParse, A.pExpr, Y); |
| 1179 exprNot(pParse, N, &A); |
| 1180 A.zEnd = &E.z[E.n]; |
| 1181 } |
| 1182 expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] { |
| 1183 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); |
| 1184 Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); |
| 1185 if( E ) sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E); |
| 1186 A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0); |
| 1187 sqlite3PExprAddSelect(pParse, A.pExpr, pSelect); |
| 1188 exprNot(pParse, N, &A); |
| 1189 A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n]; |
| 1190 } |
| 1191 expr(A) ::= EXISTS(B) LP select(Y) RP(E). { |
| 1192 Expr *p; |
| 1193 spanSet(&A,&B,&E); /*A-overwrites-B*/ |
| 1194 p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0); |
| 1195 sqlite3PExprAddSelect(pParse, p, Y); |
| 1196 } |
| 1197 %endif SQLITE_OMIT_SUBQUERY |
| 1198 |
| 1199 /* CASE expressions */ |
| 1200 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). { |
| 1201 spanSet(&A,&C,&E); /*A-overwrites-C*/ |
| 1202 A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, 0); |
| 1203 if( A.pExpr ){ |
| 1204 A.pExpr->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y; |
| 1205 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); |
| 1206 }else{ |
| 1207 sqlite3ExprListDelete(pParse->db, Y); |
| 1208 sqlite3ExprDelete(pParse->db, Z); |
| 1209 } |
| 1210 } |
| 1211 %type case_exprlist {ExprList*} |
| 1212 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} |
| 1213 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). { |
| 1214 A = sqlite3ExprListAppend(pParse,A, Y.pExpr); |
| 1215 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); |
| 1216 } |
| 1217 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { |
| 1218 A = sqlite3ExprListAppend(pParse,0, Y.pExpr); |
| 1219 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); |
| 1220 } |
| 1221 %type case_else {Expr*} |
| 1222 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} |
| 1223 case_else(A) ::= ELSE expr(X). {A = X.pExpr;} |
| 1224 case_else(A) ::= . {A = 0;} |
| 1225 %type case_operand {Expr*} |
| 1226 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} |
| 1227 case_operand(A) ::= expr(X). {A = X.pExpr; /*A-overwrites-X*/} |
| 1228 case_operand(A) ::= . {A = 0;} |
| 1229 |
| 1230 %type exprlist {ExprList*} |
| 1231 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} |
| 1232 %type nexprlist {ExprList*} |
| 1233 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} |
| 1234 |
| 1235 exprlist(A) ::= nexprlist(A). |
| 1236 exprlist(A) ::= . {A = 0;} |
| 1237 nexprlist(A) ::= nexprlist(A) COMMA expr(Y). |
| 1238 {A = sqlite3ExprListAppend(pParse,A,Y.pExpr);} |
| 1239 nexprlist(A) ::= expr(Y). |
| 1240 {A = sqlite3ExprListAppend(pParse,0,Y.pExpr); /*A-overwrites-Y*/} |
| 1241 |
| 1242 %ifndef SQLITE_OMIT_SUBQUERY |
| 1243 /* A paren_exprlist is an optional expression list contained inside |
| 1244 ** of parenthesis */ |
| 1245 %type paren_exprlist {ExprList*} |
| 1246 %destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);} |
| 1247 paren_exprlist(A) ::= . {A = 0;} |
| 1248 paren_exprlist(A) ::= LP exprlist(X) RP. {A = X;} |
| 1249 %endif SQLITE_OMIT_SUBQUERY |
| 1250 |
| 1251 |
| 1252 ///////////////////////////// The CREATE INDEX command /////////////////////// |
| 1253 // |
| 1254 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) |
| 1255 ON nm(Y) LP sortlist(Z) RP where_opt(W). { |
| 1256 sqlite3CreateIndex(pParse, &X, &D, |
| 1257 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, |
| 1258 &S, W, SQLITE_SO_ASC, NE, SQLITE_IDXTYPE_APPDEF); |
| 1259 } |
| 1260 |
| 1261 %type uniqueflag {int} |
| 1262 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} |
| 1263 uniqueflag(A) ::= . {A = OE_None;} |
| 1264 |
| 1265 |
| 1266 // The eidlist non-terminal (Expression Id List) generates an ExprList |
| 1267 // from a list of identifiers. The identifier names are in ExprList.a[].zName. |
| 1268 // This list is stored in an ExprList rather than an IdList so that it |
| 1269 // can be easily sent to sqlite3ColumnsExprList(). |
| 1270 // |
| 1271 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal |
| 1272 // used for the arguments to an index. That is just an historical accident. |
| 1273 // |
| 1274 // IMPORTANT COMPATIBILITY NOTE: Some prior versions of SQLite accepted |
| 1275 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate |
| 1276 // places - places that might have been stored in the sqlite_master schema. |
| 1277 // Those extra features were ignored. But because they might be in some |
| 1278 // (busted) old databases, we need to continue parsing them when loading |
| 1279 // historical schemas. |
| 1280 // |
| 1281 %type eidlist {ExprList*} |
| 1282 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);} |
| 1283 %type eidlist_opt {ExprList*} |
| 1284 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);} |
| 1285 |
| 1286 %include { |
| 1287 /* Add a single new term to an ExprList that is used to store a |
| 1288 ** list of identifiers. Report an error if the ID list contains |
| 1289 ** a COLLATE clause or an ASC or DESC keyword, except ignore the |
| 1290 ** error while parsing a legacy schema. |
| 1291 */ |
| 1292 static ExprList *parserAddExprIdListTerm( |
| 1293 Parse *pParse, |
| 1294 ExprList *pPrior, |
| 1295 Token *pIdToken, |
| 1296 int hasCollate, |
| 1297 int sortOrder |
| 1298 ){ |
| 1299 ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0); |
| 1300 if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED) |
| 1301 && pParse->db->init.busy==0 |
| 1302 ){ |
| 1303 sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"", |
| 1304 pIdToken->n, pIdToken->z); |
| 1305 } |
| 1306 sqlite3ExprListSetName(pParse, p, pIdToken, 1); |
| 1307 return p; |
| 1308 } |
| 1309 } // end %include |
| 1310 |
| 1311 eidlist_opt(A) ::= . {A = 0;} |
| 1312 eidlist_opt(A) ::= LP eidlist(X) RP. {A = X;} |
| 1313 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z). { |
| 1314 A = parserAddExprIdListTerm(pParse, A, &Y, C, Z); |
| 1315 } |
| 1316 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). { |
| 1317 A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/ |
| 1318 } |
| 1319 |
| 1320 %type collate {int} |
| 1321 collate(C) ::= . {C = 0;} |
| 1322 collate(C) ::= COLLATE ids. {C = 1;} |
| 1323 |
| 1324 |
| 1325 ///////////////////////////// The DROP INDEX command ///////////////////////// |
| 1326 // |
| 1327 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} |
| 1328 |
| 1329 ///////////////////////////// The VACUUM command ///////////////////////////// |
| 1330 // |
| 1331 %ifndef SQLITE_OMIT_VACUUM |
| 1332 %ifndef SQLITE_OMIT_ATTACH |
| 1333 cmd ::= VACUUM. {sqlite3Vacuum(pParse,0);} |
| 1334 cmd ::= VACUUM nm(X). {sqlite3Vacuum(pParse,&X);} |
| 1335 %endif SQLITE_OMIT_ATTACH |
| 1336 %endif SQLITE_OMIT_VACUUM |
| 1337 |
| 1338 ///////////////////////////// The PRAGMA command ///////////////////////////// |
| 1339 // |
| 1340 %ifndef SQLITE_OMIT_PRAGMA |
| 1341 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} |
| 1342 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} |
| 1343 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} |
| 1344 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). |
| 1345 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} |
| 1346 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. |
| 1347 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} |
| 1348 |
| 1349 nmnum(A) ::= plus_num(A). |
| 1350 nmnum(A) ::= nm(A). |
| 1351 nmnum(A) ::= ON(A). |
| 1352 nmnum(A) ::= DELETE(A). |
| 1353 nmnum(A) ::= DEFAULT(A). |
| 1354 %endif SQLITE_OMIT_PRAGMA |
| 1355 %token_class number INTEGER|FLOAT. |
| 1356 plus_num(A) ::= PLUS number(X). {A = X;} |
| 1357 plus_num(A) ::= number(A). |
| 1358 minus_num(A) ::= MINUS number(X). {A = X;} |
| 1359 //////////////////////////// The CREATE TRIGGER command ///////////////////// |
| 1360 |
| 1361 %ifndef SQLITE_OMIT_TRIGGER |
| 1362 |
| 1363 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { |
| 1364 Token all; |
| 1365 all.z = A.z; |
| 1366 all.n = (int)(Z.z - A.z) + Z.n; |
| 1367 sqlite3FinishTrigger(pParse, S, &all); |
| 1368 } |
| 1369 |
| 1370 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) |
| 1371 trigger_time(C) trigger_event(D) |
| 1372 ON fullname(E) foreach_clause when_clause(G). { |
| 1373 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); |
| 1374 A = (Z.n==0?B:Z); /*A-overwrites-T*/ |
| 1375 } |
| 1376 |
| 1377 %type trigger_time {int} |
| 1378 trigger_time(A) ::= BEFORE. { A = TK_BEFORE; } |
| 1379 trigger_time(A) ::= AFTER. { A = TK_AFTER; } |
| 1380 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} |
| 1381 trigger_time(A) ::= . { A = TK_BEFORE; } |
| 1382 |
| 1383 %type trigger_event {struct TrigEvent} |
| 1384 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} |
| 1385 trigger_event(A) ::= DELETE|INSERT(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} |
| 1386 trigger_event(A) ::= UPDATE(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} |
| 1387 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;} |
| 1388 |
| 1389 foreach_clause ::= . |
| 1390 foreach_clause ::= FOR EACH ROW. |
| 1391 |
| 1392 %type when_clause {Expr*} |
| 1393 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} |
| 1394 when_clause(A) ::= . { A = 0; } |
| 1395 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; } |
| 1396 |
| 1397 %type trigger_cmd_list {TriggerStep*} |
| 1398 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} |
| 1399 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. { |
| 1400 assert( A!=0 ); |
| 1401 A->pLast->pNext = X; |
| 1402 A->pLast = X; |
| 1403 } |
| 1404 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. { |
| 1405 assert( A!=0 ); |
| 1406 A->pLast = A; |
| 1407 } |
| 1408 |
| 1409 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements |
| 1410 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in |
| 1411 // the same database as the table that the trigger fires on. |
| 1412 // |
| 1413 %type trnm {Token} |
| 1414 trnm(A) ::= nm(A). |
| 1415 trnm(A) ::= nm DOT nm(X). { |
| 1416 A = X; |
| 1417 sqlite3ErrorMsg(pParse, |
| 1418 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " |
| 1419 "statements within triggers"); |
| 1420 } |
| 1421 |
| 1422 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE |
| 1423 // statements within triggers. We make a specific error message for this |
| 1424 // since it is an exception to the default grammar rules. |
| 1425 // |
| 1426 tridxby ::= . |
| 1427 tridxby ::= INDEXED BY nm. { |
| 1428 sqlite3ErrorMsg(pParse, |
| 1429 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " |
| 1430 "within triggers"); |
| 1431 } |
| 1432 tridxby ::= NOT INDEXED. { |
| 1433 sqlite3ErrorMsg(pParse, |
| 1434 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " |
| 1435 "within triggers"); |
| 1436 } |
| 1437 |
| 1438 |
| 1439 |
| 1440 %type trigger_cmd {TriggerStep*} |
| 1441 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} |
| 1442 // UPDATE |
| 1443 trigger_cmd(A) ::= |
| 1444 UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z). |
| 1445 {A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R);} |
| 1446 |
| 1447 // INSERT |
| 1448 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) idlist_opt(F) select(S). |
| 1449 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, S, R);/*A-overwrites-R*/} |
| 1450 |
| 1451 // DELETE |
| 1452 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y). |
| 1453 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);} |
| 1454 |
| 1455 // SELECT |
| 1456 trigger_cmd(A) ::= select(X). |
| 1457 {A = sqlite3TriggerSelectStep(pParse->db, X); /*A-overwrites-X*/} |
| 1458 |
| 1459 // The special RAISE expression that may occur in trigger programs |
| 1460 expr(A) ::= RAISE(X) LP IGNORE RP(Y). { |
| 1461 spanSet(&A,&X,&Y); /*A-overwrites-X*/ |
| 1462 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0); |
| 1463 if( A.pExpr ){ |
| 1464 A.pExpr->affinity = OE_Ignore; |
| 1465 } |
| 1466 } |
| 1467 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). { |
| 1468 spanSet(&A,&X,&Y); /*A-overwrites-X*/ |
| 1469 A.pExpr = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1); |
| 1470 if( A.pExpr ) { |
| 1471 A.pExpr->affinity = (char)T; |
| 1472 } |
| 1473 } |
| 1474 %endif !SQLITE_OMIT_TRIGGER |
| 1475 |
| 1476 %type raisetype {int} |
| 1477 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} |
| 1478 raisetype(A) ::= ABORT. {A = OE_Abort;} |
| 1479 raisetype(A) ::= FAIL. {A = OE_Fail;} |
| 1480 |
| 1481 |
| 1482 //////////////////////// DROP TRIGGER statement ////////////////////////////// |
| 1483 %ifndef SQLITE_OMIT_TRIGGER |
| 1484 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { |
| 1485 sqlite3DropTrigger(pParse,X,NOERR); |
| 1486 } |
| 1487 %endif !SQLITE_OMIT_TRIGGER |
| 1488 |
| 1489 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// |
| 1490 %ifndef SQLITE_OMIT_ATTACH |
| 1491 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { |
| 1492 sqlite3Attach(pParse, F.pExpr, D.pExpr, K); |
| 1493 } |
| 1494 cmd ::= DETACH database_kw_opt expr(D). { |
| 1495 sqlite3Detach(pParse, D.pExpr); |
| 1496 } |
| 1497 |
| 1498 %type key_opt {Expr*} |
| 1499 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} |
| 1500 key_opt(A) ::= . { A = 0; } |
| 1501 key_opt(A) ::= KEY expr(X). { A = X.pExpr; } |
| 1502 |
| 1503 database_kw_opt ::= DATABASE. |
| 1504 database_kw_opt ::= . |
| 1505 %endif SQLITE_OMIT_ATTACH |
| 1506 |
| 1507 ////////////////////////// REINDEX collation ////////////////////////////////// |
| 1508 %ifndef SQLITE_OMIT_REINDEX |
| 1509 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} |
| 1510 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} |
| 1511 %endif SQLITE_OMIT_REINDEX |
| 1512 |
| 1513 /////////////////////////////////// ANALYZE /////////////////////////////////// |
| 1514 %ifndef SQLITE_OMIT_ANALYZE |
| 1515 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} |
| 1516 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} |
| 1517 %endif |
| 1518 |
| 1519 //////////////////////// ALTER TABLE table ... //////////////////////////////// |
| 1520 %ifndef SQLITE_OMIT_ALTERTABLE |
| 1521 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { |
| 1522 sqlite3AlterRenameTable(pParse,X,&Z); |
| 1523 } |
| 1524 cmd ::= ALTER TABLE add_column_fullname |
| 1525 ADD kwcolumn_opt columnname(Y) carglist. { |
| 1526 Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n; |
| 1527 sqlite3AlterFinishAddColumn(pParse, &Y); |
| 1528 } |
| 1529 add_column_fullname ::= fullname(X). { |
| 1530 disableLookaside(pParse); |
| 1531 sqlite3AlterBeginAddColumn(pParse, X); |
| 1532 } |
| 1533 kwcolumn_opt ::= . |
| 1534 kwcolumn_opt ::= COLUMNKW. |
| 1535 %endif SQLITE_OMIT_ALTERTABLE |
| 1536 |
| 1537 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// |
| 1538 %ifndef SQLITE_OMIT_VIRTUALTABLE |
| 1539 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} |
| 1540 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} |
| 1541 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) |
| 1542 nm(X) dbnm(Y) USING nm(Z). { |
| 1543 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); |
| 1544 } |
| 1545 vtabarglist ::= vtabarg. |
| 1546 vtabarglist ::= vtabarglist COMMA vtabarg. |
| 1547 vtabarg ::= . {sqlite3VtabArgInit(pParse);} |
| 1548 vtabarg ::= vtabarg vtabargtoken. |
| 1549 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} |
| 1550 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} |
| 1551 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} |
| 1552 anylist ::= . |
| 1553 anylist ::= anylist LP anylist RP. |
| 1554 anylist ::= anylist ANY. |
| 1555 %endif SQLITE_OMIT_VIRTUALTABLE |
| 1556 |
| 1557 |
| 1558 //////////////////////// COMMON TABLE EXPRESSIONS //////////////////////////// |
| 1559 %type with {With*} |
| 1560 %type wqlist {With*} |
| 1561 %destructor with {sqlite3WithDelete(pParse->db, $$);} |
| 1562 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);} |
| 1563 |
| 1564 with(A) ::= . {A = 0;} |
| 1565 %ifndef SQLITE_OMIT_CTE |
| 1566 with(A) ::= WITH wqlist(W). { A = W; } |
| 1567 with(A) ::= WITH RECURSIVE wqlist(W). { A = W; } |
| 1568 |
| 1569 wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. { |
| 1570 A = sqlite3WithAdd(pParse, 0, &X, Y, Z); /*A-overwrites-X*/ |
| 1571 } |
| 1572 wqlist(A) ::= wqlist(A) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. { |
| 1573 A = sqlite3WithAdd(pParse, A, &X, Y, Z); |
| 1574 } |
| 1575 %endif SQLITE_OMIT_CTE |
OLD | NEW |