Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(451)

Side by Side Diff: third_party/sqlite/sqlite-src-3170000/src/parse.y

Issue 2747283002: [sql] Import reference version of SQLite 3.17.. (Closed)
Patch Set: Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains SQLite's grammar for SQL. Process this file
13 ** using the lemon parser generator to generate C code that runs
14 ** the parser. Lemon will also generate a header file containing
15 ** numeric codes for all of the tokens.
16 */
17
18 // All token codes are small integers with #defines that begin with "TK_"
19 %token_prefix TK_
20
21 // The type of the data attached to each token is Token. This is also the
22 // default type for non-terminals.
23 //
24 %token_type {Token}
25 %default_type {Token}
26
27 // The generated parser function takes a 4th argument as follows:
28 %extra_argument {Parse *pParse}
29
30 // This code runs whenever there is a syntax error
31 //
32 %syntax_error {
33 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */
34 assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */
35 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
36 }
37 %stack_overflow {
38 sqlite3ErrorMsg(pParse, "parser stack overflow");
39 }
40
41 // The name of the generated procedure that implements the parser
42 // is as follows:
43 %name sqlite3Parser
44
45 // The following text is included near the beginning of the C source
46 // code file that implements the parser.
47 //
48 %include {
49 #include "sqliteInt.h"
50
51 /*
52 ** Disable all error recovery processing in the parser push-down
53 ** automaton.
54 */
55 #define YYNOERRORRECOVERY 1
56
57 /*
58 ** Make yytestcase() the same as testcase()
59 */
60 #define yytestcase(X) testcase(X)
61
62 /*
63 ** Indicate that sqlite3ParserFree() will never be called with a null
64 ** pointer.
65 */
66 #define YYPARSEFREENEVERNULL 1
67
68 /*
69 ** In the amalgamation, the parse.c file generated by lemon and the
70 ** tokenize.c file are concatenated. In that case, sqlite3RunParser()
71 ** has access to the the size of the yyParser object and so the parser
72 ** engine can be allocated from stack. In that case, only the
73 ** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked
74 ** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be
75 ** omitted.
76 */
77 #ifdef SQLITE_AMALGAMATION
78 # define sqlite3Parser_ENGINEALWAYSONSTACK 1
79 #endif
80
81 /*
82 ** Alternative datatype for the argument to the malloc() routine passed
83 ** into sqlite3ParserAlloc(). The default is size_t.
84 */
85 #define YYMALLOCARGTYPE u64
86
87 /*
88 ** An instance of this structure holds information about the
89 ** LIMIT clause of a SELECT statement.
90 */
91 struct LimitVal {
92 Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */
93 Expr *pOffset; /* The OFFSET expression. NULL if there is none */
94 };
95
96 /*
97 ** An instance of the following structure describes the event of a
98 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT,
99 ** TK_DELETE, or TK_INSTEAD. If the event is of the form
100 **
101 ** UPDATE ON (a,b,c)
102 **
103 ** Then the "b" IdList records the list "a,b,c".
104 */
105 struct TrigEvent { int a; IdList * b; };
106
107 /*
108 ** Disable lookaside memory allocation for objects that might be
109 ** shared across database connections.
110 */
111 static void disableLookaside(Parse *pParse){
112 pParse->disableLookaside++;
113 pParse->db->lookaside.bDisable++;
114 }
115
116 } // end %include
117
118 // Input is a single SQL command
119 input ::= cmdlist.
120 cmdlist ::= cmdlist ecmd.
121 cmdlist ::= ecmd.
122 ecmd ::= SEMI.
123 ecmd ::= explain cmdx SEMI.
124 explain ::= .
125 %ifndef SQLITE_OMIT_EXPLAIN
126 explain ::= EXPLAIN. { pParse->explain = 1; }
127 explain ::= EXPLAIN QUERY PLAN. { pParse->explain = 2; }
128 %endif SQLITE_OMIT_EXPLAIN
129 cmdx ::= cmd. { sqlite3FinishCoding(pParse); }
130
131 ///////////////////// Begin and end transactions. ////////////////////////////
132 //
133
134 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);}
135 trans_opt ::= .
136 trans_opt ::= TRANSACTION.
137 trans_opt ::= TRANSACTION nm.
138 %type transtype {int}
139 transtype(A) ::= . {A = TK_DEFERRED;}
140 transtype(A) ::= DEFERRED(X). {A = @X; /*A-overwrites-X*/}
141 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/}
142 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/}
143 cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);}
144 cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);}
145 cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);}
146
147 savepoint_opt ::= SAVEPOINT.
148 savepoint_opt ::= .
149 cmd ::= SAVEPOINT nm(X). {
150 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X);
151 }
152 cmd ::= RELEASE savepoint_opt nm(X). {
153 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X);
154 }
155 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). {
156 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X);
157 }
158
159 ///////////////////// The CREATE TABLE statement ////////////////////////////
160 //
161 cmd ::= create_table create_table_args.
162 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). {
163 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E);
164 }
165 createkw(A) ::= CREATE(A). {disableLookaside(pParse);}
166
167 %type ifnotexists {int}
168 ifnotexists(A) ::= . {A = 0;}
169 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;}
170 %type temp {int}
171 %ifndef SQLITE_OMIT_TEMPDB
172 temp(A) ::= TEMP. {A = 1;}
173 %endif SQLITE_OMIT_TEMPDB
174 temp(A) ::= . {A = 0;}
175 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). {
176 sqlite3EndTable(pParse,&X,&E,F,0);
177 }
178 create_table_args ::= AS select(S). {
179 sqlite3EndTable(pParse,0,0,0,S);
180 sqlite3SelectDelete(pParse->db, S);
181 }
182 %type table_options {int}
183 table_options(A) ::= . {A = 0;}
184 table_options(A) ::= WITHOUT nm(X). {
185 if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){
186 A = TF_WithoutRowid | TF_NoVisibleRowid;
187 }else{
188 A = 0;
189 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z);
190 }
191 }
192 columnlist ::= columnlist COMMA columnname carglist.
193 columnlist ::= columnname carglist.
194 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);}
195
196 // Define operator precedence early so that this is the first occurrence
197 // of the operator tokens in the grammer. Keeping the operators together
198 // causes them to be assigned integer values that are close together,
199 // which keeps parser tables smaller.
200 //
201 // The token values assigned to these symbols is determined by the order
202 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL,
203 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See
204 // the sqlite3ExprIfFalse() routine for additional information on this
205 // constraint.
206 //
207 %left OR.
208 %left AND.
209 %right NOT.
210 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
211 %left GT LE LT GE.
212 %right ESCAPE.
213 %left BITAND BITOR LSHIFT RSHIFT.
214 %left PLUS MINUS.
215 %left STAR SLASH REM.
216 %left CONCAT.
217 %left COLLATE.
218 %right BITNOT.
219
220 // An IDENTIFIER can be a generic identifier, or one of several
221 // keywords. Any non-standard keyword can also be an identifier.
222 //
223 %token_class id ID|INDEXED.
224
225 // The following directive causes tokens ABORT, AFTER, ASC, etc. to
226 // fallback to ID if they will not parse as their original value.
227 // This obviates the need for the "id" nonterminal.
228 //
229 %fallback ID
230 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW
231 CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR
232 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN
233 QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW
234 ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT
235 %ifdef SQLITE_OMIT_COMPOUND_SELECT
236 EXCEPT INTERSECT UNION
237 %endif SQLITE_OMIT_COMPOUND_SELECT
238 REINDEX RENAME CTIME_KW IF
239 .
240 %wildcard ANY.
241
242
243 // And "ids" is an identifer-or-string.
244 //
245 %token_class ids ID|STRING.
246
247 // The name of a column or table can be any of the following:
248 //
249 %type nm {Token}
250 nm(A) ::= id(A).
251 nm(A) ::= STRING(A).
252 nm(A) ::= JOIN_KW(A).
253
254 // A typetoken is really zero or more tokens that form a type name such
255 // as can be found after the column name in a CREATE TABLE statement.
256 // Multiple tokens are concatenated to form the value of the typetoken.
257 //
258 %type typetoken {Token}
259 typetoken(A) ::= . {A.n = 0; A.z = 0;}
260 typetoken(A) ::= typename(A).
261 typetoken(A) ::= typename(A) LP signed RP(Y). {
262 A.n = (int)(&Y.z[Y.n] - A.z);
263 }
264 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). {
265 A.n = (int)(&Y.z[Y.n] - A.z);
266 }
267 %type typename {Token}
268 typename(A) ::= ids(A).
269 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);}
270 signed ::= plus_num.
271 signed ::= minus_num.
272
273 // "carglist" is a list of additional constraints that come after the
274 // column name and column type in a CREATE TABLE statement.
275 //
276 carglist ::= carglist ccons.
277 carglist ::= .
278 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;}
279 ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);}
280 ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);}
281 ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);}
282 ccons ::= DEFAULT MINUS(A) term(X). {
283 ExprSpan v;
284 v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0);
285 v.zStart = A.z;
286 v.zEnd = X.zEnd;
287 sqlite3AddDefaultValue(pParse,&v);
288 }
289 ccons ::= DEFAULT id(X). {
290 ExprSpan v;
291 spanExpr(&v, pParse, TK_STRING, X);
292 sqlite3AddDefaultValue(pParse,&v);
293 }
294
295 // In addition to the type name, we also care about the primary key and
296 // UNIQUE constraints.
297 //
298 ccons ::= NULL onconf.
299 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);}
300 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I).
301 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);}
302 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0,
303 SQLITE_IDXTYPE_UNIQUE);}
304 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);}
305 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R).
306 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
307 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);}
308 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);}
309
310 // The optional AUTOINCREMENT keyword
311 %type autoinc {int}
312 autoinc(X) ::= . {X = 0;}
313 autoinc(X) ::= AUTOINCR. {X = 1;}
314
315 // The next group of rules parses the arguments to a REFERENCES clause
316 // that determine if the referential integrity checking is deferred or
317 // or immediate and which determine what action to take if a ref-integ
318 // check fails.
319 //
320 %type refargs {int}
321 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */}
322 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; }
323 %type refarg {struct {int value; int mask;}}
324 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; }
325 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; }
326 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; }
327 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; }
328 %type refact {int}
329 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */}
330 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */}
331 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */}
332 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */}
333 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */}
334 %type defer_subclause {int}
335 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;}
336 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;}
337 %type init_deferred_pred_opt {int}
338 init_deferred_pred_opt(A) ::= . {A = 0;}
339 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;}
340 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;}
341
342 conslist_opt(A) ::= . {A.n = 0; A.z = 0;}
343 conslist_opt(A) ::= COMMA(A) conslist.
344 conslist ::= conslist tconscomma tcons.
345 conslist ::= tcons.
346 tconscomma ::= COMMA. {pParse->constraintName.n = 0;}
347 tconscomma ::= .
348 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;}
349 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R).
350 {sqlite3AddPrimaryKey(pParse,X,R,I,0);}
351 tcons ::= UNIQUE LP sortlist(X) RP onconf(R).
352 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0,
353 SQLITE_IDXTYPE_UNIQUE);}
354 tcons ::= CHECK LP expr(E) RP onconf.
355 {sqlite3AddCheckConstraint(pParse,E.pExpr);}
356 tcons ::= FOREIGN KEY LP eidlist(FA) RP
357 REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). {
358 sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
359 sqlite3DeferForeignKey(pParse, D);
360 }
361 %type defer_subclause_opt {int}
362 defer_subclause_opt(A) ::= . {A = 0;}
363 defer_subclause_opt(A) ::= defer_subclause(A).
364
365 // The following is a non-standard extension that allows us to declare the
366 // default behavior when there is a constraint conflict.
367 //
368 %type onconf {int}
369 %type orconf {int}
370 %type resolvetype {int}
371 onconf(A) ::= . {A = OE_Default;}
372 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;}
373 orconf(A) ::= . {A = OE_Default;}
374 orconf(A) ::= OR resolvetype(X). {A = X;}
375 resolvetype(A) ::= raisetype(A).
376 resolvetype(A) ::= IGNORE. {A = OE_Ignore;}
377 resolvetype(A) ::= REPLACE. {A = OE_Replace;}
378
379 ////////////////////////// The DROP TABLE /////////////////////////////////////
380 //
381 cmd ::= DROP TABLE ifexists(E) fullname(X). {
382 sqlite3DropTable(pParse, X, 0, E);
383 }
384 %type ifexists {int}
385 ifexists(A) ::= IF EXISTS. {A = 1;}
386 ifexists(A) ::= . {A = 0;}
387
388 ///////////////////// The CREATE VIEW statement /////////////////////////////
389 //
390 %ifndef SQLITE_OMIT_VIEW
391 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C)
392 AS select(S). {
393 sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E);
394 }
395 cmd ::= DROP VIEW ifexists(E) fullname(X). {
396 sqlite3DropTable(pParse, X, 1, E);
397 }
398 %endif SQLITE_OMIT_VIEW
399
400 //////////////////////// The SELECT statement /////////////////////////////////
401 //
402 cmd ::= select(X). {
403 SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0};
404 sqlite3Select(pParse, X, &dest);
405 sqlite3SelectDelete(pParse->db, X);
406 }
407
408 %type select {Select*}
409 %destructor select {sqlite3SelectDelete(pParse->db, $$);}
410 %type selectnowith {Select*}
411 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);}
412 %type oneselect {Select*}
413 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);}
414
415 %include {
416 /*
417 ** For a compound SELECT statement, make sure p->pPrior->pNext==p for
418 ** all elements in the list. And make sure list length does not exceed
419 ** SQLITE_LIMIT_COMPOUND_SELECT.
420 */
421 static void parserDoubleLinkSelect(Parse *pParse, Select *p){
422 if( p->pPrior ){
423 Select *pNext = 0, *pLoop;
424 int mxSelect, cnt = 0;
425 for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){
426 pLoop->pNext = pNext;
427 pLoop->selFlags |= SF_Compound;
428 }
429 if( (p->selFlags & SF_MultiValue)==0 &&
430 (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 &&
431 cnt>mxSelect
432 ){
433 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
434 }
435 }
436 }
437 }
438
439 select(A) ::= with(W) selectnowith(X). {
440 Select *p = X;
441 if( p ){
442 p->pWith = W;
443 parserDoubleLinkSelect(pParse, p);
444 }else{
445 sqlite3WithDelete(pParse->db, W);
446 }
447 A = p; /*A-overwrites-W*/
448 }
449
450 selectnowith(A) ::= oneselect(A).
451 %ifndef SQLITE_OMIT_COMPOUND_SELECT
452 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z). {
453 Select *pRhs = Z;
454 Select *pLhs = A;
455 if( pRhs && pRhs->pPrior ){
456 SrcList *pFrom;
457 Token x;
458 x.n = 0;
459 parserDoubleLinkSelect(pParse, pRhs);
460 pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0);
461 pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0);
462 }
463 if( pRhs ){
464 pRhs->op = (u8)Y;
465 pRhs->pPrior = pLhs;
466 if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue;
467 pRhs->selFlags &= ~SF_MultiValue;
468 if( Y!=TK_ALL ) pParse->hasCompound = 1;
469 }else{
470 sqlite3SelectDelete(pParse->db, pLhs);
471 }
472 A = pRhs;
473 }
474 %type multiselect_op {int}
475 multiselect_op(A) ::= UNION(OP). {A = @OP; /*A-overwrites-OP*/}
476 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;}
477 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP; /*A-overwrites-OP*/}
478 %endif SQLITE_OMIT_COMPOUND_SELECT
479 oneselect(A) ::= SELECT(S) distinct(D) selcollist(W) from(X) where_opt(Y)
480 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
481 #if SELECTTRACE_ENABLED
482 Token s = S; /*A-overwrites-S*/
483 #endif
484 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset);
485 #if SELECTTRACE_ENABLED
486 /* Populate the Select.zSelName[] string that is used to help with
487 ** query planner debugging, to differentiate between multiple Select
488 ** objects in a complex query.
489 **
490 ** If the SELECT keyword is immediately followed by a C-style comment
491 ** then extract the first few alphanumeric characters from within that
492 ** comment to be the zSelName value. Otherwise, the label is #N where
493 ** is an integer that is incremented with each SELECT statement seen.
494 */
495 if( A!=0 ){
496 const char *z = s.z+6;
497 int i;
498 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "#%d",
499 ++pParse->nSelect);
500 while( z[0]==' ' ) z++;
501 if( z[0]=='/' && z[1]=='*' ){
502 z += 2;
503 while( z[0]==' ' ) z++;
504 for(i=0; sqlite3Isalnum(z[i]); i++){}
505 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z);
506 }
507 }
508 #endif /* SELECTRACE_ENABLED */
509 }
510 oneselect(A) ::= values(A).
511
512 %type values {Select*}
513 %destructor values {sqlite3SelectDelete(pParse->db, $$);}
514 values(A) ::= VALUES LP nexprlist(X) RP. {
515 A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0,0);
516 }
517 values(A) ::= values(A) COMMA LP exprlist(Y) RP. {
518 Select *pRight, *pLeft = A;
519 pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0,0);
520 if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue;
521 if( pRight ){
522 pRight->op = TK_ALL;
523 pRight->pPrior = pLeft;
524 A = pRight;
525 }else{
526 A = pLeft;
527 }
528 }
529
530 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is
531 // present and false (0) if it is not.
532 //
533 %type distinct {int}
534 distinct(A) ::= DISTINCT. {A = SF_Distinct;}
535 distinct(A) ::= ALL. {A = SF_All;}
536 distinct(A) ::= . {A = 0;}
537
538 // selcollist is a list of expressions that are to become the return
539 // values of the SELECT statement. The "*" in statements like
540 // "SELECT * FROM ..." is encoded as a special expression with an
541 // opcode of TK_ASTERISK.
542 //
543 %type selcollist {ExprList*}
544 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);}
545 %type sclp {ExprList*}
546 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);}
547 sclp(A) ::= selcollist(A) COMMA.
548 sclp(A) ::= . {A = 0;}
549 selcollist(A) ::= sclp(A) expr(X) as(Y). {
550 A = sqlite3ExprListAppend(pParse, A, X.pExpr);
551 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1);
552 sqlite3ExprListSetSpan(pParse,A,&X);
553 }
554 selcollist(A) ::= sclp(A) STAR. {
555 Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0);
556 A = sqlite3ExprListAppend(pParse, A, p);
557 }
558 selcollist(A) ::= sclp(A) nm(X) DOT STAR. {
559 Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0);
560 Expr *pLeft = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
561 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
562 A = sqlite3ExprListAppend(pParse,A, pDot);
563 }
564
565 // An option "AS <id>" phrase that can follow one of the expressions that
566 // define the result set, or one of the tables in the FROM clause.
567 //
568 %type as {Token}
569 as(X) ::= AS nm(Y). {X = Y;}
570 as(X) ::= ids(X).
571 as(X) ::= . {X.n = 0; X.z = 0;}
572
573
574 %type seltablist {SrcList*}
575 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);}
576 %type stl_prefix {SrcList*}
577 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);}
578 %type from {SrcList*}
579 %destructor from {sqlite3SrcListDelete(pParse->db, $$);}
580
581 // A complete FROM clause.
582 //
583 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));}
584 from(A) ::= FROM seltablist(X). {
585 A = X;
586 sqlite3SrcListShiftJoinType(A);
587 }
588
589 // "seltablist" is a "Select Table List" - the content of the FROM clause
590 // in a SELECT statement. "stl_prefix" is a prefix of this list.
591 //
592 stl_prefix(A) ::= seltablist(A) joinop(Y). {
593 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y;
594 }
595 stl_prefix(A) ::= . {A = 0;}
596 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I)
597 on_opt(N) using_opt(U). {
598 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U);
599 sqlite3SrcListIndexedBy(pParse, A, &I);
600 }
601 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z)
602 on_opt(N) using_opt(U). {
603 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U);
604 sqlite3SrcListFuncArgs(pParse, A, E);
605 }
606 %ifndef SQLITE_OMIT_SUBQUERY
607 seltablist(A) ::= stl_prefix(A) LP select(S) RP
608 as(Z) on_opt(N) using_opt(U). {
609 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U);
610 }
611 seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP
612 as(Z) on_opt(N) using_opt(U). {
613 if( A==0 && Z.n==0 && N==0 && U==0 ){
614 A = F;
615 }else if( F->nSrc==1 ){
616 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U);
617 if( A ){
618 struct SrcList_item *pNew = &A->a[A->nSrc-1];
619 struct SrcList_item *pOld = F->a;
620 pNew->zName = pOld->zName;
621 pNew->zDatabase = pOld->zDatabase;
622 pNew->pSelect = pOld->pSelect;
623 pOld->zName = pOld->zDatabase = 0;
624 pOld->pSelect = 0;
625 }
626 sqlite3SrcListDelete(pParse->db, F);
627 }else{
628 Select *pSubquery;
629 sqlite3SrcListShiftJoinType(F);
630 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0,0);
631 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U);
632 }
633 }
634 %endif SQLITE_OMIT_SUBQUERY
635
636 %type dbnm {Token}
637 dbnm(A) ::= . {A.z=0; A.n=0;}
638 dbnm(A) ::= DOT nm(X). {A = X;}
639
640 %type fullname {SrcList*}
641 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);}
642 fullname(A) ::= nm(X) dbnm(Y).
643 {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y); /*A-overwrites-X*/}
644
645 %type joinop {int}
646 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; }
647 joinop(X) ::= JOIN_KW(A) JOIN.
648 {X = sqlite3JoinType(pParse,&A,0,0); /*X-overwrites-A*/}
649 joinop(X) ::= JOIN_KW(A) nm(B) JOIN.
650 {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/}
651 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
652 {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/}
653
654 %type on_opt {Expr*}
655 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);}
656 on_opt(N) ::= ON expr(E). {N = E.pExpr;}
657 on_opt(N) ::= . {N = 0;}
658
659 // Note that this block abuses the Token type just a little. If there is
660 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If
661 // there is an INDEXED BY clause, then the token is populated as per normal,
662 // with z pointing to the token data and n containing the number of bytes
663 // in the token.
664 //
665 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is
666 // normally illegal. The sqlite3SrcListIndexedBy() function
667 // recognizes and interprets this as a special case.
668 //
669 %type indexed_opt {Token}
670 indexed_opt(A) ::= . {A.z=0; A.n=0;}
671 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;}
672 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;}
673
674 %type using_opt {IdList*}
675 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);}
676 using_opt(U) ::= USING LP idlist(L) RP. {U = L;}
677 using_opt(U) ::= . {U = 0;}
678
679
680 %type orderby_opt {ExprList*}
681 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);}
682
683 // the sortlist non-terminal stores a list of expression where each
684 // expression is optionally followed by ASC or DESC to indicate the
685 // sort order.
686 //
687 %type sortlist {ExprList*}
688 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);}
689
690 orderby_opt(A) ::= . {A = 0;}
691 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;}
692 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z). {
693 A = sqlite3ExprListAppend(pParse,A,Y.pExpr);
694 sqlite3ExprListSetSortOrder(A,Z);
695 }
696 sortlist(A) ::= expr(Y) sortorder(Z). {
697 A = sqlite3ExprListAppend(pParse,0,Y.pExpr); /*A-overwrites-Y*/
698 sqlite3ExprListSetSortOrder(A,Z);
699 }
700
701 %type sortorder {int}
702
703 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;}
704 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;}
705 sortorder(A) ::= . {A = SQLITE_SO_UNDEFINED;}
706
707 %type groupby_opt {ExprList*}
708 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);}
709 groupby_opt(A) ::= . {A = 0;}
710 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;}
711
712 %type having_opt {Expr*}
713 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);}
714 having_opt(A) ::= . {A = 0;}
715 having_opt(A) ::= HAVING expr(X). {A = X.pExpr;}
716
717 %type limit_opt {struct LimitVal}
718
719 // The destructor for limit_opt will never fire in the current grammar.
720 // The limit_opt non-terminal only occurs at the end of a single production
721 // rule for SELECT statements. As soon as the rule that create the
722 // limit_opt non-terminal reduces, the SELECT statement rule will also
723 // reduce. So there is never a limit_opt non-terminal on the stack
724 // except as a transient. So there is never anything to destroy.
725 //
726 //%destructor limit_opt {
727 // sqlite3ExprDelete(pParse->db, $$.pLimit);
728 // sqlite3ExprDelete(pParse->db, $$.pOffset);
729 //}
730 limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;}
731 limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;}
732 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y).
733 {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;}
734 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y).
735 {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;}
736
737 /////////////////////////// The DELETE statement /////////////////////////////
738 //
739 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
740 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W)
741 orderby_opt(O) limit_opt(L). {
742 sqlite3WithPush(pParse, C, 1);
743 sqlite3SrcListIndexedBy(pParse, X, &I);
744 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE");
745 sqlite3DeleteFrom(pParse,X,W);
746 }
747 %endif
748 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
749 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W). {
750 sqlite3WithPush(pParse, C, 1);
751 sqlite3SrcListIndexedBy(pParse, X, &I);
752 sqlite3DeleteFrom(pParse,X,W);
753 }
754 %endif
755
756 %type where_opt {Expr*}
757 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);}
758
759 where_opt(A) ::= . {A = 0;}
760 where_opt(A) ::= WHERE expr(X). {A = X.pExpr;}
761
762 ////////////////////////// The UPDATE command ////////////////////////////////
763 //
764 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
765 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y)
766 where_opt(W) orderby_opt(O) limit_opt(L). {
767 sqlite3WithPush(pParse, C, 1);
768 sqlite3SrcListIndexedBy(pParse, X, &I);
769 sqlite3ExprListCheckLength(pParse,Y,"set list");
770 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE");
771 sqlite3Update(pParse,X,Y,W,R);
772 }
773 %endif
774 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
775 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y)
776 where_opt(W). {
777 sqlite3WithPush(pParse, C, 1);
778 sqlite3SrcListIndexedBy(pParse, X, &I);
779 sqlite3ExprListCheckLength(pParse,Y,"set list");
780 sqlite3Update(pParse,X,Y,W,R);
781 }
782 %endif
783
784 %type setlist {ExprList*}
785 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}
786
787 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). {
788 A = sqlite3ExprListAppend(pParse, A, Y.pExpr);
789 sqlite3ExprListSetName(pParse, A, &X, 1);
790 }
791 setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). {
792 A = sqlite3ExprListAppendVector(pParse, A, X, Y.pExpr);
793 }
794 setlist(A) ::= nm(X) EQ expr(Y). {
795 A = sqlite3ExprListAppend(pParse, 0, Y.pExpr);
796 sqlite3ExprListSetName(pParse, A, &X, 1);
797 }
798 setlist(A) ::= LP idlist(X) RP EQ expr(Y). {
799 A = sqlite3ExprListAppendVector(pParse, 0, X, Y.pExpr);
800 }
801
802 ////////////////////////// The INSERT command /////////////////////////////////
803 //
804 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) select(S). {
805 sqlite3WithPush(pParse, W, 1);
806 sqlite3Insert(pParse, X, S, F, R);
807 }
808 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) DEFAULT VALUES.
809 {
810 sqlite3WithPush(pParse, W, 1);
811 sqlite3Insert(pParse, X, 0, F, R);
812 }
813
814 %type insert_cmd {int}
815 insert_cmd(A) ::= INSERT orconf(R). {A = R;}
816 insert_cmd(A) ::= REPLACE. {A = OE_Replace;}
817
818 %type idlist_opt {IdList*}
819 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);}
820 %type idlist {IdList*}
821 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);}
822
823 idlist_opt(A) ::= . {A = 0;}
824 idlist_opt(A) ::= LP idlist(X) RP. {A = X;}
825 idlist(A) ::= idlist(A) COMMA nm(Y).
826 {A = sqlite3IdListAppend(pParse->db,A,&Y);}
827 idlist(A) ::= nm(Y).
828 {A = sqlite3IdListAppend(pParse->db,0,&Y); /*A-overwrites-Y*/}
829
830 /////////////////////////// Expression Processing /////////////////////////////
831 //
832
833 %type expr {ExprSpan}
834 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);}
835 %type term {ExprSpan}
836 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);}
837
838 %include {
839 /* This is a utility routine used to set the ExprSpan.zStart and
840 ** ExprSpan.zEnd values of pOut so that the span covers the complete
841 ** range of text beginning with pStart and going to the end of pEnd.
842 */
843 static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){
844 pOut->zStart = pStart->z;
845 pOut->zEnd = &pEnd->z[pEnd->n];
846 }
847
848 /* Construct a new Expr object from a single identifier. Use the
849 ** new Expr to populate pOut. Set the span of pOut to be the identifier
850 ** that created the expression.
851 */
852 static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token t){
853 Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1);
854 if( p ){
855 memset(p, 0, sizeof(Expr));
856 p->op = (u8)op;
857 p->flags = EP_Leaf;
858 p->iAgg = -1;
859 p->u.zToken = (char*)&p[1];
860 memcpy(p->u.zToken, t.z, t.n);
861 p->u.zToken[t.n] = 0;
862 if( sqlite3Isquote(p->u.zToken[0]) ){
863 if( p->u.zToken[0]=='"' ) p->flags |= EP_DblQuoted;
864 sqlite3Dequote(p->u.zToken);
865 }
866 #if SQLITE_MAX_EXPR_DEPTH>0
867 p->nHeight = 1;
868 #endif
869 }
870 pOut->pExpr = p;
871 pOut->zStart = t.z;
872 pOut->zEnd = &t.z[t.n];
873 }
874 }
875
876 expr(A) ::= term(A).
877 expr(A) ::= LP(B) expr(X) RP(E).
878 {spanSet(&A,&B,&E); /*A-overwrites-B*/ A.pExpr = X.pExpr;}
879 term(A) ::= NULL(X). {spanExpr(&A,pParse,@X,X);/*A-overwrites-X*/}
880 expr(A) ::= id(X). {spanExpr(&A,pParse,TK_ID,X); /*A-overwrites-X*/}
881 expr(A) ::= JOIN_KW(X). {spanExpr(&A,pParse,TK_ID,X); /*A-overwrites-X*/}
882 expr(A) ::= nm(X) DOT nm(Y). {
883 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
884 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1);
885 spanSet(&A,&X,&Y); /*A-overwrites-X*/
886 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2);
887 }
888 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
889 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
890 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1);
891 Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &Z, 1);
892 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3);
893 spanSet(&A,&X,&Z); /*A-overwrites-X*/
894 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4);
895 }
896 term(A) ::= FLOAT|BLOB(X). {spanExpr(&A,pParse,@X,X);/*A-overwrites-X*/}
897 term(A) ::= STRING(X). {spanExpr(&A,pParse,@X,X);/*A-overwrites-X*/}
898 term(A) ::= INTEGER(X). {
899 A.pExpr = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1);
900 A.zStart = X.z;
901 A.zEnd = X.z + X.n;
902 if( A.pExpr ) A.pExpr->flags |= EP_Leaf;
903 }
904 expr(A) ::= VARIABLE(X). {
905 if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){
906 u32 n = X.n;
907 spanExpr(&A, pParse, TK_VARIABLE, X);
908 sqlite3ExprAssignVarNumber(pParse, A.pExpr, n);
909 }else{
910 /* When doing a nested parse, one can include terms in an expression
911 ** that look like this: #1 #2 ... These terms refer to registers
912 ** in the virtual machine. #N is the N-th register. */
913 Token t = X; /*A-overwrites-X*/
914 assert( t.n>=2 );
915 spanSet(&A, &t, &t);
916 if( pParse->nested==0 ){
917 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t);
918 A.pExpr = 0;
919 }else{
920 A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0);
921 if( A.pExpr ) sqlite3GetInt32(&t.z[1], &A.pExpr->iTable);
922 }
923 }
924 }
925 expr(A) ::= expr(A) COLLATE ids(C). {
926 A.pExpr = sqlite3ExprAddCollateToken(pParse, A.pExpr, &C, 1);
927 A.zEnd = &C.z[C.n];
928 }
929 %ifndef SQLITE_OMIT_CAST
930 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). {
931 spanSet(&A,&X,&Y); /*A-overwrites-X*/
932 A.pExpr = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1);
933 sqlite3ExprAttachSubtrees(pParse->db, A.pExpr, E.pExpr, 0);
934 }
935 %endif SQLITE_OMIT_CAST
936 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP(E). {
937 if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
938 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X);
939 }
940 A.pExpr = sqlite3ExprFunction(pParse, Y, &X);
941 spanSet(&A,&X,&E);
942 if( D==SF_Distinct && A.pExpr ){
943 A.pExpr->flags |= EP_Distinct;
944 }
945 }
946 expr(A) ::= id(X) LP STAR RP(E). {
947 A.pExpr = sqlite3ExprFunction(pParse, 0, &X);
948 spanSet(&A,&X,&E);
949 }
950 term(A) ::= CTIME_KW(OP). {
951 A.pExpr = sqlite3ExprFunction(pParse, 0, &OP);
952 spanSet(&A, &OP, &OP);
953 }
954
955 %include {
956 /* This routine constructs a binary expression node out of two ExprSpan
957 ** objects and uses the result to populate a new ExprSpan object.
958 */
959 static void spanBinaryExpr(
960 Parse *pParse, /* The parsing context. Errors accumulate here */
961 int op, /* The binary operation */
962 ExprSpan *pLeft, /* The left operand, and output */
963 ExprSpan *pRight /* The right operand */
964 ){
965 pLeft->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr);
966 pLeft->zEnd = pRight->zEnd;
967 }
968
969 /* If doNot is true, then add a TK_NOT Expr-node wrapper around the
970 ** outside of *ppExpr.
971 */
972 static void exprNot(Parse *pParse, int doNot, ExprSpan *pSpan){
973 if( doNot ){
974 pSpan->pExpr = sqlite3PExpr(pParse, TK_NOT, pSpan->pExpr, 0);
975 }
976 }
977 }
978
979 expr(A) ::= LP(L) nexprlist(X) COMMA expr(Y) RP(R). {
980 ExprList *pList = sqlite3ExprListAppend(pParse, X, Y.pExpr);
981 A.pExpr = sqlite3PExpr(pParse, TK_VECTOR, 0, 0);
982 if( A.pExpr ){
983 A.pExpr->x.pList = pList;
984 spanSet(&A, &L, &R);
985 }else{
986 sqlite3ExprListDelete(pParse->db, pList);
987 }
988 }
989
990 expr(A) ::= expr(A) AND(OP) expr(Y). {spanBinaryExpr(pParse,@OP,&A,&Y);}
991 expr(A) ::= expr(A) OR(OP) expr(Y). {spanBinaryExpr(pParse,@OP,&A,&Y);}
992 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y).
993 {spanBinaryExpr(pParse,@OP,&A,&Y);}
994 expr(A) ::= expr(A) EQ|NE(OP) expr(Y). {spanBinaryExpr(pParse,@OP,&A,&Y);}
995 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).
996 {spanBinaryExpr(pParse,@OP,&A,&Y);}
997 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y).
998 {spanBinaryExpr(pParse,@OP,&A,&Y);}
999 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y).
1000 {spanBinaryExpr(pParse,@OP,&A,&Y);}
1001 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {spanBinaryExpr(pParse,@OP,&A,&Y);}
1002 %type likeop {Token}
1003 likeop(A) ::= LIKE_KW|MATCH(X). {A=X;/*A-overwrites-X*/}
1004 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/}
1005 expr(A) ::= expr(A) likeop(OP) expr(Y). [LIKE_KW] {
1006 ExprList *pList;
1007 int bNot = OP.n & 0x80000000;
1008 OP.n &= 0x7fffffff;
1009 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
1010 pList = sqlite3ExprListAppend(pParse,pList, A.pExpr);
1011 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP);
1012 exprNot(pParse, bNot, &A);
1013 A.zEnd = Y.zEnd;
1014 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
1015 }
1016 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] {
1017 ExprList *pList;
1018 int bNot = OP.n & 0x80000000;
1019 OP.n &= 0x7fffffff;
1020 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
1021 pList = sqlite3ExprListAppend(pParse,pList, A.pExpr);
1022 pList = sqlite3ExprListAppend(pParse,pList, E.pExpr);
1023 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP);
1024 exprNot(pParse, bNot, &A);
1025 A.zEnd = E.zEnd;
1026 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
1027 }
1028
1029 %include {
1030 /* Construct an expression node for a unary postfix operator
1031 */
1032 static void spanUnaryPostfix(
1033 Parse *pParse, /* Parsing context to record errors */
1034 int op, /* The operator */
1035 ExprSpan *pOperand, /* The operand, and output */
1036 Token *pPostOp /* The operand token for setting the span */
1037 ){
1038 pOperand->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0);
1039 pOperand->zEnd = &pPostOp->z[pPostOp->n];
1040 }
1041 }
1042
1043 expr(A) ::= expr(A) ISNULL|NOTNULL(E). {spanUnaryPostfix(pParse,@E,&A,&E);}
1044 expr(A) ::= expr(A) NOT NULL(E). {spanUnaryPostfix(pParse,TK_NOTNULL,&A,&E);}
1045
1046 %include {
1047 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
1048 ** unary TK_ISNULL or TK_NOTNULL expression. */
1049 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
1050 sqlite3 *db = pParse->db;
1051 if( pA && pY && pY->op==TK_NULL ){
1052 pA->op = (u8)op;
1053 sqlite3ExprDelete(db, pA->pRight);
1054 pA->pRight = 0;
1055 }
1056 }
1057 }
1058
1059 // expr1 IS expr2
1060 // expr1 IS NOT expr2
1061 //
1062 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2
1063 // is any other expression, code as TK_IS or TK_ISNOT.
1064 //
1065 expr(A) ::= expr(A) IS expr(Y). {
1066 spanBinaryExpr(pParse,TK_IS,&A,&Y);
1067 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL);
1068 }
1069 expr(A) ::= expr(A) IS NOT expr(Y). {
1070 spanBinaryExpr(pParse,TK_ISNOT,&A,&Y);
1071 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL);
1072 }
1073
1074 %include {
1075 /* Construct an expression node for a unary prefix operator
1076 */
1077 static void spanUnaryPrefix(
1078 ExprSpan *pOut, /* Write the new expression node here */
1079 Parse *pParse, /* Parsing context to record errors */
1080 int op, /* The operator */
1081 ExprSpan *pOperand, /* The operand */
1082 Token *pPreOp /* The operand token for setting the span */
1083 ){
1084 pOut->zStart = pPreOp->z;
1085 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0);
1086 pOut->zEnd = pOperand->zEnd;
1087 }
1088 }
1089
1090
1091
1092 expr(A) ::= NOT(B) expr(X).
1093 {spanUnaryPrefix(&A,pParse,@B,&X,&B);/*A-overwrites-B*/}
1094 expr(A) ::= BITNOT(B) expr(X).
1095 {spanUnaryPrefix(&A,pParse,@B,&X,&B);/*A-overwrites-B*/}
1096 expr(A) ::= MINUS(B) expr(X). [BITNOT]
1097 {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);/*A-overwrites-B*/}
1098 expr(A) ::= PLUS(B) expr(X). [BITNOT]
1099 {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);/*A-overwrites-B*/}
1100
1101 %type between_op {int}
1102 between_op(A) ::= BETWEEN. {A = 0;}
1103 between_op(A) ::= NOT BETWEEN. {A = 1;}
1104 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] {
1105 ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr);
1106 pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr);
1107 A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, A.pExpr, 0);
1108 if( A.pExpr ){
1109 A.pExpr->x.pList = pList;
1110 }else{
1111 sqlite3ExprListDelete(pParse->db, pList);
1112 }
1113 exprNot(pParse, N, &A);
1114 A.zEnd = Y.zEnd;
1115 }
1116 %ifndef SQLITE_OMIT_SUBQUERY
1117 %type in_op {int}
1118 in_op(A) ::= IN. {A = 0;}
1119 in_op(A) ::= NOT IN. {A = 1;}
1120 expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP(E). [IN] {
1121 if( Y==0 ){
1122 /* Expressions of the form
1123 **
1124 ** expr1 IN ()
1125 ** expr1 NOT IN ()
1126 **
1127 ** simplify to constants 0 (false) and 1 (true), respectively,
1128 ** regardless of the value of expr1.
1129 */
1130 sqlite3ExprDelete(pParse->db, A.pExpr);
1131 A.pExpr = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[N],1);
1132 }else if( Y->nExpr==1 ){
1133 /* Expressions of the form:
1134 **
1135 ** expr1 IN (?1)
1136 ** expr1 NOT IN (?2)
1137 **
1138 ** with exactly one value on the RHS can be simplified to something
1139 ** like this:
1140 **
1141 ** expr1 == ?1
1142 ** expr1 <> ?2
1143 **
1144 ** But, the RHS of the == or <> is marked with the EP_Generic flag
1145 ** so that it may not contribute to the computation of comparison
1146 ** affinity or the collating sequence to use for comparison. Otherwise,
1147 ** the semantics would be subtly different from IN or NOT IN.
1148 */
1149 Expr *pRHS = Y->a[0].pExpr;
1150 Y->a[0].pExpr = 0;
1151 sqlite3ExprListDelete(pParse->db, Y);
1152 /* pRHS cannot be NULL because a malloc error would have been detected
1153 ** before now and control would have never reached this point */
1154 if( ALWAYS(pRHS) ){
1155 pRHS->flags &= ~EP_Collate;
1156 pRHS->flags |= EP_Generic;
1157 }
1158 A.pExpr = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, A.pExpr, pRHS);
1159 }else{
1160 A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0);
1161 if( A.pExpr ){
1162 A.pExpr->x.pList = Y;
1163 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
1164 }else{
1165 sqlite3ExprListDelete(pParse->db, Y);
1166 }
1167 exprNot(pParse, N, &A);
1168 }
1169 A.zEnd = &E.z[E.n];
1170 }
1171 expr(A) ::= LP(B) select(X) RP(E). {
1172 spanSet(&A,&B,&E); /*A-overwrites-B*/
1173 A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
1174 sqlite3PExprAddSelect(pParse, A.pExpr, X);
1175 }
1176 expr(A) ::= expr(A) in_op(N) LP select(Y) RP(E). [IN] {
1177 A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0);
1178 sqlite3PExprAddSelect(pParse, A.pExpr, Y);
1179 exprNot(pParse, N, &A);
1180 A.zEnd = &E.z[E.n];
1181 }
1182 expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] {
1183 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z);
1184 Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
1185 if( E ) sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E);
1186 A.pExpr = sqlite3PExpr(pParse, TK_IN, A.pExpr, 0);
1187 sqlite3PExprAddSelect(pParse, A.pExpr, pSelect);
1188 exprNot(pParse, N, &A);
1189 A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n];
1190 }
1191 expr(A) ::= EXISTS(B) LP select(Y) RP(E). {
1192 Expr *p;
1193 spanSet(&A,&B,&E); /*A-overwrites-B*/
1194 p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0);
1195 sqlite3PExprAddSelect(pParse, p, Y);
1196 }
1197 %endif SQLITE_OMIT_SUBQUERY
1198
1199 /* CASE expressions */
1200 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). {
1201 spanSet(&A,&C,&E); /*A-overwrites-C*/
1202 A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, 0);
1203 if( A.pExpr ){
1204 A.pExpr->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y;
1205 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr);
1206 }else{
1207 sqlite3ExprListDelete(pParse->db, Y);
1208 sqlite3ExprDelete(pParse->db, Z);
1209 }
1210 }
1211 %type case_exprlist {ExprList*}
1212 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1213 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). {
1214 A = sqlite3ExprListAppend(pParse,A, Y.pExpr);
1215 A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
1216 }
1217 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
1218 A = sqlite3ExprListAppend(pParse,0, Y.pExpr);
1219 A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
1220 }
1221 %type case_else {Expr*}
1222 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);}
1223 case_else(A) ::= ELSE expr(X). {A = X.pExpr;}
1224 case_else(A) ::= . {A = 0;}
1225 %type case_operand {Expr*}
1226 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);}
1227 case_operand(A) ::= expr(X). {A = X.pExpr; /*A-overwrites-X*/}
1228 case_operand(A) ::= . {A = 0;}
1229
1230 %type exprlist {ExprList*}
1231 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1232 %type nexprlist {ExprList*}
1233 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);}
1234
1235 exprlist(A) ::= nexprlist(A).
1236 exprlist(A) ::= . {A = 0;}
1237 nexprlist(A) ::= nexprlist(A) COMMA expr(Y).
1238 {A = sqlite3ExprListAppend(pParse,A,Y.pExpr);}
1239 nexprlist(A) ::= expr(Y).
1240 {A = sqlite3ExprListAppend(pParse,0,Y.pExpr); /*A-overwrites-Y*/}
1241
1242 %ifndef SQLITE_OMIT_SUBQUERY
1243 /* A paren_exprlist is an optional expression list contained inside
1244 ** of parenthesis */
1245 %type paren_exprlist {ExprList*}
1246 %destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1247 paren_exprlist(A) ::= . {A = 0;}
1248 paren_exprlist(A) ::= LP exprlist(X) RP. {A = X;}
1249 %endif SQLITE_OMIT_SUBQUERY
1250
1251
1252 ///////////////////////////// The CREATE INDEX command ///////////////////////
1253 //
1254 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D)
1255 ON nm(Y) LP sortlist(Z) RP where_opt(W). {
1256 sqlite3CreateIndex(pParse, &X, &D,
1257 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U,
1258 &S, W, SQLITE_SO_ASC, NE, SQLITE_IDXTYPE_APPDEF);
1259 }
1260
1261 %type uniqueflag {int}
1262 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;}
1263 uniqueflag(A) ::= . {A = OE_None;}
1264
1265
1266 // The eidlist non-terminal (Expression Id List) generates an ExprList
1267 // from a list of identifiers. The identifier names are in ExprList.a[].zName.
1268 // This list is stored in an ExprList rather than an IdList so that it
1269 // can be easily sent to sqlite3ColumnsExprList().
1270 //
1271 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal
1272 // used for the arguments to an index. That is just an historical accident.
1273 //
1274 // IMPORTANT COMPATIBILITY NOTE: Some prior versions of SQLite accepted
1275 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate
1276 // places - places that might have been stored in the sqlite_master schema.
1277 // Those extra features were ignored. But because they might be in some
1278 // (busted) old databases, we need to continue parsing them when loading
1279 // historical schemas.
1280 //
1281 %type eidlist {ExprList*}
1282 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);}
1283 %type eidlist_opt {ExprList*}
1284 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);}
1285
1286 %include {
1287 /* Add a single new term to an ExprList that is used to store a
1288 ** list of identifiers. Report an error if the ID list contains
1289 ** a COLLATE clause or an ASC or DESC keyword, except ignore the
1290 ** error while parsing a legacy schema.
1291 */
1292 static ExprList *parserAddExprIdListTerm(
1293 Parse *pParse,
1294 ExprList *pPrior,
1295 Token *pIdToken,
1296 int hasCollate,
1297 int sortOrder
1298 ){
1299 ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0);
1300 if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED)
1301 && pParse->db->init.busy==0
1302 ){
1303 sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"",
1304 pIdToken->n, pIdToken->z);
1305 }
1306 sqlite3ExprListSetName(pParse, p, pIdToken, 1);
1307 return p;
1308 }
1309 } // end %include
1310
1311 eidlist_opt(A) ::= . {A = 0;}
1312 eidlist_opt(A) ::= LP eidlist(X) RP. {A = X;}
1313 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z). {
1314 A = parserAddExprIdListTerm(pParse, A, &Y, C, Z);
1315 }
1316 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). {
1317 A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/
1318 }
1319
1320 %type collate {int}
1321 collate(C) ::= . {C = 0;}
1322 collate(C) ::= COLLATE ids. {C = 1;}
1323
1324
1325 ///////////////////////////// The DROP INDEX command /////////////////////////
1326 //
1327 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);}
1328
1329 ///////////////////////////// The VACUUM command /////////////////////////////
1330 //
1331 %ifndef SQLITE_OMIT_VACUUM
1332 %ifndef SQLITE_OMIT_ATTACH
1333 cmd ::= VACUUM. {sqlite3Vacuum(pParse,0);}
1334 cmd ::= VACUUM nm(X). {sqlite3Vacuum(pParse,&X);}
1335 %endif SQLITE_OMIT_ATTACH
1336 %endif SQLITE_OMIT_VACUUM
1337
1338 ///////////////////////////// The PRAGMA command /////////////////////////////
1339 //
1340 %ifndef SQLITE_OMIT_PRAGMA
1341 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);}
1342 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1343 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1344 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y).
1345 {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1346 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP.
1347 {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1348
1349 nmnum(A) ::= plus_num(A).
1350 nmnum(A) ::= nm(A).
1351 nmnum(A) ::= ON(A).
1352 nmnum(A) ::= DELETE(A).
1353 nmnum(A) ::= DEFAULT(A).
1354 %endif SQLITE_OMIT_PRAGMA
1355 %token_class number INTEGER|FLOAT.
1356 plus_num(A) ::= PLUS number(X). {A = X;}
1357 plus_num(A) ::= number(A).
1358 minus_num(A) ::= MINUS number(X). {A = X;}
1359 //////////////////////////// The CREATE TRIGGER command /////////////////////
1360
1361 %ifndef SQLITE_OMIT_TRIGGER
1362
1363 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). {
1364 Token all;
1365 all.z = A.z;
1366 all.n = (int)(Z.z - A.z) + Z.n;
1367 sqlite3FinishTrigger(pParse, S, &all);
1368 }
1369
1370 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z)
1371 trigger_time(C) trigger_event(D)
1372 ON fullname(E) foreach_clause when_clause(G). {
1373 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR);
1374 A = (Z.n==0?B:Z); /*A-overwrites-T*/
1375 }
1376
1377 %type trigger_time {int}
1378 trigger_time(A) ::= BEFORE. { A = TK_BEFORE; }
1379 trigger_time(A) ::= AFTER. { A = TK_AFTER; }
1380 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;}
1381 trigger_time(A) ::= . { A = TK_BEFORE; }
1382
1383 %type trigger_event {struct TrigEvent}
1384 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);}
1385 trigger_event(A) ::= DELETE|INSERT(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;}
1386 trigger_event(A) ::= UPDATE(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;}
1387 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;}
1388
1389 foreach_clause ::= .
1390 foreach_clause ::= FOR EACH ROW.
1391
1392 %type when_clause {Expr*}
1393 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);}
1394 when_clause(A) ::= . { A = 0; }
1395 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; }
1396
1397 %type trigger_cmd_list {TriggerStep*}
1398 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);}
1399 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. {
1400 assert( A!=0 );
1401 A->pLast->pNext = X;
1402 A->pLast = X;
1403 }
1404 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. {
1405 assert( A!=0 );
1406 A->pLast = A;
1407 }
1408
1409 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements
1410 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in
1411 // the same database as the table that the trigger fires on.
1412 //
1413 %type trnm {Token}
1414 trnm(A) ::= nm(A).
1415 trnm(A) ::= nm DOT nm(X). {
1416 A = X;
1417 sqlite3ErrorMsg(pParse,
1418 "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
1419 "statements within triggers");
1420 }
1421
1422 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE
1423 // statements within triggers. We make a specific error message for this
1424 // since it is an exception to the default grammar rules.
1425 //
1426 tridxby ::= .
1427 tridxby ::= INDEXED BY nm. {
1428 sqlite3ErrorMsg(pParse,
1429 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements "
1430 "within triggers");
1431 }
1432 tridxby ::= NOT INDEXED. {
1433 sqlite3ErrorMsg(pParse,
1434 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
1435 "within triggers");
1436 }
1437
1438
1439
1440 %type trigger_cmd {TriggerStep*}
1441 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);}
1442 // UPDATE
1443 trigger_cmd(A) ::=
1444 UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z).
1445 {A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R);}
1446
1447 // INSERT
1448 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) idlist_opt(F) select(S).
1449 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, S, R);/*A-overwrites-R*/}
1450
1451 // DELETE
1452 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y).
1453 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);}
1454
1455 // SELECT
1456 trigger_cmd(A) ::= select(X).
1457 {A = sqlite3TriggerSelectStep(pParse->db, X); /*A-overwrites-X*/}
1458
1459 // The special RAISE expression that may occur in trigger programs
1460 expr(A) ::= RAISE(X) LP IGNORE RP(Y). {
1461 spanSet(&A,&X,&Y); /*A-overwrites-X*/
1462 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0);
1463 if( A.pExpr ){
1464 A.pExpr->affinity = OE_Ignore;
1465 }
1466 }
1467 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). {
1468 spanSet(&A,&X,&Y); /*A-overwrites-X*/
1469 A.pExpr = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1);
1470 if( A.pExpr ) {
1471 A.pExpr->affinity = (char)T;
1472 }
1473 }
1474 %endif !SQLITE_OMIT_TRIGGER
1475
1476 %type raisetype {int}
1477 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;}
1478 raisetype(A) ::= ABORT. {A = OE_Abort;}
1479 raisetype(A) ::= FAIL. {A = OE_Fail;}
1480
1481
1482 //////////////////////// DROP TRIGGER statement //////////////////////////////
1483 %ifndef SQLITE_OMIT_TRIGGER
1484 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). {
1485 sqlite3DropTrigger(pParse,X,NOERR);
1486 }
1487 %endif !SQLITE_OMIT_TRIGGER
1488
1489 //////////////////////// ATTACH DATABASE file AS name /////////////////////////
1490 %ifndef SQLITE_OMIT_ATTACH
1491 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). {
1492 sqlite3Attach(pParse, F.pExpr, D.pExpr, K);
1493 }
1494 cmd ::= DETACH database_kw_opt expr(D). {
1495 sqlite3Detach(pParse, D.pExpr);
1496 }
1497
1498 %type key_opt {Expr*}
1499 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);}
1500 key_opt(A) ::= . { A = 0; }
1501 key_opt(A) ::= KEY expr(X). { A = X.pExpr; }
1502
1503 database_kw_opt ::= DATABASE.
1504 database_kw_opt ::= .
1505 %endif SQLITE_OMIT_ATTACH
1506
1507 ////////////////////////// REINDEX collation //////////////////////////////////
1508 %ifndef SQLITE_OMIT_REINDEX
1509 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);}
1510 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);}
1511 %endif SQLITE_OMIT_REINDEX
1512
1513 /////////////////////////////////// ANALYZE ///////////////////////////////////
1514 %ifndef SQLITE_OMIT_ANALYZE
1515 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);}
1516 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);}
1517 %endif
1518
1519 //////////////////////// ALTER TABLE table ... ////////////////////////////////
1520 %ifndef SQLITE_OMIT_ALTERTABLE
1521 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). {
1522 sqlite3AlterRenameTable(pParse,X,&Z);
1523 }
1524 cmd ::= ALTER TABLE add_column_fullname
1525 ADD kwcolumn_opt columnname(Y) carglist. {
1526 Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n;
1527 sqlite3AlterFinishAddColumn(pParse, &Y);
1528 }
1529 add_column_fullname ::= fullname(X). {
1530 disableLookaside(pParse);
1531 sqlite3AlterBeginAddColumn(pParse, X);
1532 }
1533 kwcolumn_opt ::= .
1534 kwcolumn_opt ::= COLUMNKW.
1535 %endif SQLITE_OMIT_ALTERTABLE
1536
1537 //////////////////////// CREATE VIRTUAL TABLE ... /////////////////////////////
1538 %ifndef SQLITE_OMIT_VIRTUALTABLE
1539 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);}
1540 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);}
1541 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E)
1542 nm(X) dbnm(Y) USING nm(Z). {
1543 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E);
1544 }
1545 vtabarglist ::= vtabarg.
1546 vtabarglist ::= vtabarglist COMMA vtabarg.
1547 vtabarg ::= . {sqlite3VtabArgInit(pParse);}
1548 vtabarg ::= vtabarg vtabargtoken.
1549 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);}
1550 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);}
1551 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);}
1552 anylist ::= .
1553 anylist ::= anylist LP anylist RP.
1554 anylist ::= anylist ANY.
1555 %endif SQLITE_OMIT_VIRTUALTABLE
1556
1557
1558 //////////////////////// COMMON TABLE EXPRESSIONS ////////////////////////////
1559 %type with {With*}
1560 %type wqlist {With*}
1561 %destructor with {sqlite3WithDelete(pParse->db, $$);}
1562 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);}
1563
1564 with(A) ::= . {A = 0;}
1565 %ifndef SQLITE_OMIT_CTE
1566 with(A) ::= WITH wqlist(W). { A = W; }
1567 with(A) ::= WITH RECURSIVE wqlist(W). { A = W; }
1568
1569 wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. {
1570 A = sqlite3WithAdd(pParse, 0, &X, Y, Z); /*A-overwrites-X*/
1571 }
1572 wqlist(A) ::= wqlist(A) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. {
1573 A = sqlite3WithAdd(pParse, A, &X, Y, Z);
1574 }
1575 %endif SQLITE_OMIT_CTE
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3170000/src/pager.c ('k') | third_party/sqlite/sqlite-src-3170000/src/pcache.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698