OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2004 May 22 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ****************************************************************************** |
| 12 ** |
| 13 ** This file contains the VFS implementation for unix-like operating systems |
| 14 ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others. |
| 15 ** |
| 16 ** There are actually several different VFS implementations in this file. |
| 17 ** The differences are in the way that file locking is done. The default |
| 18 ** implementation uses Posix Advisory Locks. Alternative implementations |
| 19 ** use flock(), dot-files, various proprietary locking schemas, or simply |
| 20 ** skip locking all together. |
| 21 ** |
| 22 ** This source file is organized into divisions where the logic for various |
| 23 ** subfunctions is contained within the appropriate division. PLEASE |
| 24 ** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed |
| 25 ** in the correct division and should be clearly labeled. |
| 26 ** |
| 27 ** The layout of divisions is as follows: |
| 28 ** |
| 29 ** * General-purpose declarations and utility functions. |
| 30 ** * Unique file ID logic used by VxWorks. |
| 31 ** * Various locking primitive implementations (all except proxy locking): |
| 32 ** + for Posix Advisory Locks |
| 33 ** + for no-op locks |
| 34 ** + for dot-file locks |
| 35 ** + for flock() locking |
| 36 ** + for named semaphore locks (VxWorks only) |
| 37 ** + for AFP filesystem locks (MacOSX only) |
| 38 ** * sqlite3_file methods not associated with locking. |
| 39 ** * Definitions of sqlite3_io_methods objects for all locking |
| 40 ** methods plus "finder" functions for each locking method. |
| 41 ** * sqlite3_vfs method implementations. |
| 42 ** * Locking primitives for the proxy uber-locking-method. (MacOSX only) |
| 43 ** * Definitions of sqlite3_vfs objects for all locking methods |
| 44 ** plus implementations of sqlite3_os_init() and sqlite3_os_end(). |
| 45 */ |
| 46 #include "sqliteInt.h" |
| 47 #if SQLITE_OS_UNIX /* This file is used on unix only */ |
| 48 |
| 49 /* |
| 50 ** There are various methods for file locking used for concurrency |
| 51 ** control: |
| 52 ** |
| 53 ** 1. POSIX locking (the default), |
| 54 ** 2. No locking, |
| 55 ** 3. Dot-file locking, |
| 56 ** 4. flock() locking, |
| 57 ** 5. AFP locking (OSX only), |
| 58 ** 6. Named POSIX semaphores (VXWorks only), |
| 59 ** 7. proxy locking. (OSX only) |
| 60 ** |
| 61 ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE |
| 62 ** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic |
| 63 ** selection of the appropriate locking style based on the filesystem |
| 64 ** where the database is located. |
| 65 */ |
| 66 #if !defined(SQLITE_ENABLE_LOCKING_STYLE) |
| 67 # if defined(__APPLE__) |
| 68 # define SQLITE_ENABLE_LOCKING_STYLE 1 |
| 69 # else |
| 70 # define SQLITE_ENABLE_LOCKING_STYLE 0 |
| 71 # endif |
| 72 #endif |
| 73 |
| 74 /* Use pread() and pwrite() if they are available */ |
| 75 #if defined(__APPLE__) |
| 76 # define HAVE_PREAD 1 |
| 77 # define HAVE_PWRITE 1 |
| 78 #endif |
| 79 #if defined(HAVE_PREAD64) && defined(HAVE_PWRITE64) |
| 80 # undef USE_PREAD |
| 81 # define USE_PREAD64 1 |
| 82 #elif defined(HAVE_PREAD) && defined(HAVE_PWRITE) |
| 83 # undef USE_PREAD64 |
| 84 # define USE_PREAD 1 |
| 85 #endif |
| 86 |
| 87 /* |
| 88 ** standard include files. |
| 89 */ |
| 90 #include <sys/types.h> |
| 91 #include <sys/stat.h> |
| 92 #include <fcntl.h> |
| 93 #include <unistd.h> |
| 94 #include <time.h> |
| 95 #include <sys/time.h> |
| 96 #include <errno.h> |
| 97 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 |
| 98 # include <sys/mman.h> |
| 99 #endif |
| 100 |
| 101 #if SQLITE_ENABLE_LOCKING_STYLE |
| 102 # include <sys/ioctl.h> |
| 103 # include <sys/file.h> |
| 104 # include <sys/param.h> |
| 105 #endif /* SQLITE_ENABLE_LOCKING_STYLE */ |
| 106 |
| 107 #if defined(__APPLE__) && ((__MAC_OS_X_VERSION_MIN_REQUIRED > 1050) || \ |
| 108 (__IPHONE_OS_VERSION_MIN_REQUIRED > 2000)) |
| 109 # if (!defined(TARGET_OS_EMBEDDED) || (TARGET_OS_EMBEDDED==0)) \ |
| 110 && (!defined(TARGET_IPHONE_SIMULATOR) || (TARGET_IPHONE_SIMULATOR==0)) |
| 111 # define HAVE_GETHOSTUUID 1 |
| 112 # else |
| 113 # warning "gethostuuid() is disabled." |
| 114 # endif |
| 115 #endif |
| 116 |
| 117 |
| 118 #if OS_VXWORKS |
| 119 # include <sys/ioctl.h> |
| 120 # include <semaphore.h> |
| 121 # include <limits.h> |
| 122 #endif /* OS_VXWORKS */ |
| 123 |
| 124 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE |
| 125 # include <sys/mount.h> |
| 126 #endif |
| 127 |
| 128 #ifdef HAVE_UTIME |
| 129 # include <utime.h> |
| 130 #endif |
| 131 |
| 132 /* |
| 133 ** Allowed values of unixFile.fsFlags |
| 134 */ |
| 135 #define SQLITE_FSFLAGS_IS_MSDOS 0x1 |
| 136 |
| 137 /* |
| 138 ** If we are to be thread-safe, include the pthreads header and define |
| 139 ** the SQLITE_UNIX_THREADS macro. |
| 140 */ |
| 141 #if SQLITE_THREADSAFE |
| 142 # include <pthread.h> |
| 143 # define SQLITE_UNIX_THREADS 1 |
| 144 #endif |
| 145 |
| 146 /* |
| 147 ** Default permissions when creating a new file |
| 148 */ |
| 149 #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS |
| 150 # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644 |
| 151 #endif |
| 152 |
| 153 /* |
| 154 ** Default permissions when creating auto proxy dir |
| 155 */ |
| 156 #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS |
| 157 # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755 |
| 158 #endif |
| 159 |
| 160 /* |
| 161 ** Maximum supported path-length. |
| 162 */ |
| 163 #define MAX_PATHNAME 512 |
| 164 |
| 165 /* |
| 166 ** Maximum supported symbolic links |
| 167 */ |
| 168 #define SQLITE_MAX_SYMLINKS 100 |
| 169 |
| 170 /* Always cast the getpid() return type for compatibility with |
| 171 ** kernel modules in VxWorks. */ |
| 172 #define osGetpid(X) (pid_t)getpid() |
| 173 |
| 174 /* |
| 175 ** Only set the lastErrno if the error code is a real error and not |
| 176 ** a normal expected return code of SQLITE_BUSY or SQLITE_OK |
| 177 */ |
| 178 #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY)) |
| 179 |
| 180 /* Forward references */ |
| 181 typedef struct unixShm unixShm; /* Connection shared memory */ |
| 182 typedef struct unixShmNode unixShmNode; /* Shared memory instance */ |
| 183 typedef struct unixInodeInfo unixInodeInfo; /* An i-node */ |
| 184 typedef struct UnixUnusedFd UnixUnusedFd; /* An unused file descriptor */ |
| 185 |
| 186 /* |
| 187 ** Sometimes, after a file handle is closed by SQLite, the file descriptor |
| 188 ** cannot be closed immediately. In these cases, instances of the following |
| 189 ** structure are used to store the file descriptor while waiting for an |
| 190 ** opportunity to either close or reuse it. |
| 191 */ |
| 192 struct UnixUnusedFd { |
| 193 int fd; /* File descriptor to close */ |
| 194 int flags; /* Flags this file descriptor was opened with */ |
| 195 UnixUnusedFd *pNext; /* Next unused file descriptor on same file */ |
| 196 }; |
| 197 |
| 198 /* |
| 199 ** The unixFile structure is subclass of sqlite3_file specific to the unix |
| 200 ** VFS implementations. |
| 201 */ |
| 202 typedef struct unixFile unixFile; |
| 203 struct unixFile { |
| 204 sqlite3_io_methods const *pMethod; /* Always the first entry */ |
| 205 sqlite3_vfs *pVfs; /* The VFS that created this unixFile */ |
| 206 unixInodeInfo *pInode; /* Info about locks on this inode */ |
| 207 int h; /* The file descriptor */ |
| 208 unsigned char eFileLock; /* The type of lock held on this fd */ |
| 209 unsigned short int ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */ |
| 210 int lastErrno; /* The unix errno from last I/O error */ |
| 211 void *lockingContext; /* Locking style specific state */ |
| 212 UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */ |
| 213 const char *zPath; /* Name of the file */ |
| 214 unixShm *pShm; /* Shared memory segment information */ |
| 215 int szChunk; /* Configured by FCNTL_CHUNK_SIZE */ |
| 216 #if SQLITE_MAX_MMAP_SIZE>0 |
| 217 int nFetchOut; /* Number of outstanding xFetch refs */ |
| 218 sqlite3_int64 mmapSize; /* Usable size of mapping at pMapRegion */ |
| 219 sqlite3_int64 mmapSizeActual; /* Actual size of mapping at pMapRegion */ |
| 220 sqlite3_int64 mmapSizeMax; /* Configured FCNTL_MMAP_SIZE value */ |
| 221 void *pMapRegion; /* Memory mapped region */ |
| 222 #endif |
| 223 #ifdef __QNXNTO__ |
| 224 int sectorSize; /* Device sector size */ |
| 225 int deviceCharacteristics; /* Precomputed device characteristics */ |
| 226 #endif |
| 227 #if SQLITE_ENABLE_LOCKING_STYLE |
| 228 int openFlags; /* The flags specified at open() */ |
| 229 #endif |
| 230 #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__) |
| 231 unsigned fsFlags; /* cached details from statfs() */ |
| 232 #endif |
| 233 #if OS_VXWORKS |
| 234 struct vxworksFileId *pId; /* Unique file ID */ |
| 235 #endif |
| 236 #ifdef SQLITE_DEBUG |
| 237 /* The next group of variables are used to track whether or not the |
| 238 ** transaction counter in bytes 24-27 of database files are updated |
| 239 ** whenever any part of the database changes. An assertion fault will |
| 240 ** occur if a file is updated without also updating the transaction |
| 241 ** counter. This test is made to avoid new problems similar to the |
| 242 ** one described by ticket #3584. |
| 243 */ |
| 244 unsigned char transCntrChng; /* True if the transaction counter changed */ |
| 245 unsigned char dbUpdate; /* True if any part of database file changed */ |
| 246 unsigned char inNormalWrite; /* True if in a normal write operation */ |
| 247 |
| 248 #endif |
| 249 |
| 250 #ifdef SQLITE_TEST |
| 251 /* In test mode, increase the size of this structure a bit so that |
| 252 ** it is larger than the struct CrashFile defined in test6.c. |
| 253 */ |
| 254 char aPadding[32]; |
| 255 #endif |
| 256 }; |
| 257 |
| 258 /* This variable holds the process id (pid) from when the xRandomness() |
| 259 ** method was called. If xOpen() is called from a different process id, |
| 260 ** indicating that a fork() has occurred, the PRNG will be reset. |
| 261 */ |
| 262 static pid_t randomnessPid = 0; |
| 263 |
| 264 /* |
| 265 ** Allowed values for the unixFile.ctrlFlags bitmask: |
| 266 */ |
| 267 #define UNIXFILE_EXCL 0x01 /* Connections from one process only */ |
| 268 #define UNIXFILE_RDONLY 0x02 /* Connection is read only */ |
| 269 #define UNIXFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */ |
| 270 #ifndef SQLITE_DISABLE_DIRSYNC |
| 271 # define UNIXFILE_DIRSYNC 0x08 /* Directory sync needed */ |
| 272 #else |
| 273 # define UNIXFILE_DIRSYNC 0x00 |
| 274 #endif |
| 275 #define UNIXFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */ |
| 276 #define UNIXFILE_DELETE 0x20 /* Delete on close */ |
| 277 #define UNIXFILE_URI 0x40 /* Filename might have query parameters */ |
| 278 #define UNIXFILE_NOLOCK 0x80 /* Do no file locking */ |
| 279 |
| 280 /* |
| 281 ** Include code that is common to all os_*.c files |
| 282 */ |
| 283 #include "os_common.h" |
| 284 |
| 285 /* |
| 286 ** Define various macros that are missing from some systems. |
| 287 */ |
| 288 #ifndef O_LARGEFILE |
| 289 # define O_LARGEFILE 0 |
| 290 #endif |
| 291 #ifdef SQLITE_DISABLE_LFS |
| 292 # undef O_LARGEFILE |
| 293 # define O_LARGEFILE 0 |
| 294 #endif |
| 295 #ifndef O_NOFOLLOW |
| 296 # define O_NOFOLLOW 0 |
| 297 #endif |
| 298 #ifndef O_BINARY |
| 299 # define O_BINARY 0 |
| 300 #endif |
| 301 |
| 302 /* |
| 303 ** The threadid macro resolves to the thread-id or to 0. Used for |
| 304 ** testing and debugging only. |
| 305 */ |
| 306 #if SQLITE_THREADSAFE |
| 307 #define threadid pthread_self() |
| 308 #else |
| 309 #define threadid 0 |
| 310 #endif |
| 311 |
| 312 /* |
| 313 ** HAVE_MREMAP defaults to true on Linux and false everywhere else. |
| 314 */ |
| 315 #if !defined(HAVE_MREMAP) |
| 316 # if defined(__linux__) && defined(_GNU_SOURCE) |
| 317 # define HAVE_MREMAP 1 |
| 318 # else |
| 319 # define HAVE_MREMAP 0 |
| 320 # endif |
| 321 #endif |
| 322 |
| 323 /* |
| 324 ** Explicitly call the 64-bit version of lseek() on Android. Otherwise, lseek() |
| 325 ** is the 32-bit version, even if _FILE_OFFSET_BITS=64 is defined. |
| 326 */ |
| 327 #ifdef __ANDROID__ |
| 328 # define lseek lseek64 |
| 329 #endif |
| 330 |
| 331 /* |
| 332 ** Different Unix systems declare open() in different ways. Same use |
| 333 ** open(const char*,int,mode_t). Others use open(const char*,int,...). |
| 334 ** The difference is important when using a pointer to the function. |
| 335 ** |
| 336 ** The safest way to deal with the problem is to always use this wrapper |
| 337 ** which always has the same well-defined interface. |
| 338 */ |
| 339 static int posixOpen(const char *zFile, int flags, int mode){ |
| 340 return open(zFile, flags, mode); |
| 341 } |
| 342 |
| 343 /* Forward reference */ |
| 344 static int openDirectory(const char*, int*); |
| 345 static int unixGetpagesize(void); |
| 346 |
| 347 /* |
| 348 ** Many system calls are accessed through pointer-to-functions so that |
| 349 ** they may be overridden at runtime to facilitate fault injection during |
| 350 ** testing and sandboxing. The following array holds the names and pointers |
| 351 ** to all overrideable system calls. |
| 352 */ |
| 353 static struct unix_syscall { |
| 354 const char *zName; /* Name of the system call */ |
| 355 sqlite3_syscall_ptr pCurrent; /* Current value of the system call */ |
| 356 sqlite3_syscall_ptr pDefault; /* Default value */ |
| 357 } aSyscall[] = { |
| 358 { "open", (sqlite3_syscall_ptr)posixOpen, 0 }, |
| 359 #define osOpen ((int(*)(const char*,int,int))aSyscall[0].pCurrent) |
| 360 |
| 361 { "close", (sqlite3_syscall_ptr)close, 0 }, |
| 362 #define osClose ((int(*)(int))aSyscall[1].pCurrent) |
| 363 |
| 364 { "access", (sqlite3_syscall_ptr)access, 0 }, |
| 365 #define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent) |
| 366 |
| 367 { "getcwd", (sqlite3_syscall_ptr)getcwd, 0 }, |
| 368 #define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent) |
| 369 |
| 370 { "stat", (sqlite3_syscall_ptr)stat, 0 }, |
| 371 #define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent) |
| 372 |
| 373 /* |
| 374 ** The DJGPP compiler environment looks mostly like Unix, but it |
| 375 ** lacks the fcntl() system call. So redefine fcntl() to be something |
| 376 ** that always succeeds. This means that locking does not occur under |
| 377 ** DJGPP. But it is DOS - what did you expect? |
| 378 */ |
| 379 #ifdef __DJGPP__ |
| 380 { "fstat", 0, 0 }, |
| 381 #define osFstat(a,b,c) 0 |
| 382 #else |
| 383 { "fstat", (sqlite3_syscall_ptr)fstat, 0 }, |
| 384 #define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent) |
| 385 #endif |
| 386 |
| 387 { "ftruncate", (sqlite3_syscall_ptr)ftruncate, 0 }, |
| 388 #define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent) |
| 389 |
| 390 { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 }, |
| 391 #define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent) |
| 392 |
| 393 { "read", (sqlite3_syscall_ptr)read, 0 }, |
| 394 #define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent) |
| 395 |
| 396 #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE |
| 397 { "pread", (sqlite3_syscall_ptr)pread, 0 }, |
| 398 #else |
| 399 { "pread", (sqlite3_syscall_ptr)0, 0 }, |
| 400 #endif |
| 401 #define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent) |
| 402 |
| 403 #if defined(USE_PREAD64) |
| 404 { "pread64", (sqlite3_syscall_ptr)pread64, 0 }, |
| 405 #else |
| 406 { "pread64", (sqlite3_syscall_ptr)0, 0 }, |
| 407 #endif |
| 408 #define osPread64 ((ssize_t(*)(int,void*,size_t,off64_t))aSyscall[10].pCurrent) |
| 409 |
| 410 { "write", (sqlite3_syscall_ptr)write, 0 }, |
| 411 #define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent) |
| 412 |
| 413 #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE |
| 414 { "pwrite", (sqlite3_syscall_ptr)pwrite, 0 }, |
| 415 #else |
| 416 { "pwrite", (sqlite3_syscall_ptr)0, 0 }, |
| 417 #endif |
| 418 #define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\ |
| 419 aSyscall[12].pCurrent) |
| 420 |
| 421 #if defined(USE_PREAD64) |
| 422 { "pwrite64", (sqlite3_syscall_ptr)pwrite64, 0 }, |
| 423 #else |
| 424 { "pwrite64", (sqlite3_syscall_ptr)0, 0 }, |
| 425 #endif |
| 426 #define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off64_t))\ |
| 427 aSyscall[13].pCurrent) |
| 428 |
| 429 { "fchmod", (sqlite3_syscall_ptr)fchmod, 0 }, |
| 430 #define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent) |
| 431 |
| 432 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE |
| 433 { "fallocate", (sqlite3_syscall_ptr)posix_fallocate, 0 }, |
| 434 #else |
| 435 { "fallocate", (sqlite3_syscall_ptr)0, 0 }, |
| 436 #endif |
| 437 #define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent) |
| 438 |
| 439 { "unlink", (sqlite3_syscall_ptr)unlink, 0 }, |
| 440 #define osUnlink ((int(*)(const char*))aSyscall[16].pCurrent) |
| 441 |
| 442 { "openDirectory", (sqlite3_syscall_ptr)openDirectory, 0 }, |
| 443 #define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent) |
| 444 |
| 445 { "mkdir", (sqlite3_syscall_ptr)mkdir, 0 }, |
| 446 #define osMkdir ((int(*)(const char*,mode_t))aSyscall[18].pCurrent) |
| 447 |
| 448 { "rmdir", (sqlite3_syscall_ptr)rmdir, 0 }, |
| 449 #define osRmdir ((int(*)(const char*))aSyscall[19].pCurrent) |
| 450 |
| 451 #if defined(HAVE_FCHOWN) |
| 452 { "fchown", (sqlite3_syscall_ptr)fchown, 0 }, |
| 453 #else |
| 454 { "fchown", (sqlite3_syscall_ptr)0, 0 }, |
| 455 #endif |
| 456 #define osFchown ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent) |
| 457 |
| 458 { "geteuid", (sqlite3_syscall_ptr)geteuid, 0 }, |
| 459 #define osGeteuid ((uid_t(*)(void))aSyscall[21].pCurrent) |
| 460 |
| 461 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 |
| 462 { "mmap", (sqlite3_syscall_ptr)mmap, 0 }, |
| 463 #else |
| 464 { "mmap", (sqlite3_syscall_ptr)0, 0 }, |
| 465 #endif |
| 466 #define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[22].pCurrent) |
| 467 |
| 468 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 |
| 469 { "munmap", (sqlite3_syscall_ptr)munmap, 0 }, |
| 470 #else |
| 471 { "munmap", (sqlite3_syscall_ptr)0, 0 }, |
| 472 #endif |
| 473 #define osMunmap ((void*(*)(void*,size_t))aSyscall[23].pCurrent) |
| 474 |
| 475 #if HAVE_MREMAP && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0) |
| 476 { "mremap", (sqlite3_syscall_ptr)mremap, 0 }, |
| 477 #else |
| 478 { "mremap", (sqlite3_syscall_ptr)0, 0 }, |
| 479 #endif |
| 480 #define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[24].pCurrent) |
| 481 |
| 482 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 |
| 483 { "getpagesize", (sqlite3_syscall_ptr)unixGetpagesize, 0 }, |
| 484 #else |
| 485 { "getpagesize", (sqlite3_syscall_ptr)0, 0 }, |
| 486 #endif |
| 487 #define osGetpagesize ((int(*)(void))aSyscall[25].pCurrent) |
| 488 |
| 489 #if defined(HAVE_READLINK) |
| 490 { "readlink", (sqlite3_syscall_ptr)readlink, 0 }, |
| 491 #else |
| 492 { "readlink", (sqlite3_syscall_ptr)0, 0 }, |
| 493 #endif |
| 494 #define osReadlink ((ssize_t(*)(const char*,char*,size_t))aSyscall[26].pCurrent) |
| 495 |
| 496 #if defined(HAVE_LSTAT) |
| 497 { "lstat", (sqlite3_syscall_ptr)lstat, 0 }, |
| 498 #else |
| 499 { "lstat", (sqlite3_syscall_ptr)0, 0 }, |
| 500 #endif |
| 501 #define osLstat ((int(*)(const char*,struct stat*))aSyscall[27].pCurrent) |
| 502 |
| 503 }; /* End of the overrideable system calls */ |
| 504 |
| 505 |
| 506 /* |
| 507 ** On some systems, calls to fchown() will trigger a message in a security |
| 508 ** log if they come from non-root processes. So avoid calling fchown() if |
| 509 ** we are not running as root. |
| 510 */ |
| 511 static int robustFchown(int fd, uid_t uid, gid_t gid){ |
| 512 #if defined(HAVE_FCHOWN) |
| 513 return osGeteuid() ? 0 : osFchown(fd,uid,gid); |
| 514 #else |
| 515 return 0; |
| 516 #endif |
| 517 } |
| 518 |
| 519 /* |
| 520 ** This is the xSetSystemCall() method of sqlite3_vfs for all of the |
| 521 ** "unix" VFSes. Return SQLITE_OK opon successfully updating the |
| 522 ** system call pointer, or SQLITE_NOTFOUND if there is no configurable |
| 523 ** system call named zName. |
| 524 */ |
| 525 static int unixSetSystemCall( |
| 526 sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */ |
| 527 const char *zName, /* Name of system call to override */ |
| 528 sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */ |
| 529 ){ |
| 530 unsigned int i; |
| 531 int rc = SQLITE_NOTFOUND; |
| 532 |
| 533 UNUSED_PARAMETER(pNotUsed); |
| 534 if( zName==0 ){ |
| 535 /* If no zName is given, restore all system calls to their default |
| 536 ** settings and return NULL |
| 537 */ |
| 538 rc = SQLITE_OK; |
| 539 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ |
| 540 if( aSyscall[i].pDefault ){ |
| 541 aSyscall[i].pCurrent = aSyscall[i].pDefault; |
| 542 } |
| 543 } |
| 544 }else{ |
| 545 /* If zName is specified, operate on only the one system call |
| 546 ** specified. |
| 547 */ |
| 548 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ |
| 549 if( strcmp(zName, aSyscall[i].zName)==0 ){ |
| 550 if( aSyscall[i].pDefault==0 ){ |
| 551 aSyscall[i].pDefault = aSyscall[i].pCurrent; |
| 552 } |
| 553 rc = SQLITE_OK; |
| 554 if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault; |
| 555 aSyscall[i].pCurrent = pNewFunc; |
| 556 break; |
| 557 } |
| 558 } |
| 559 } |
| 560 return rc; |
| 561 } |
| 562 |
| 563 /* |
| 564 ** Return the value of a system call. Return NULL if zName is not a |
| 565 ** recognized system call name. NULL is also returned if the system call |
| 566 ** is currently undefined. |
| 567 */ |
| 568 static sqlite3_syscall_ptr unixGetSystemCall( |
| 569 sqlite3_vfs *pNotUsed, |
| 570 const char *zName |
| 571 ){ |
| 572 unsigned int i; |
| 573 |
| 574 UNUSED_PARAMETER(pNotUsed); |
| 575 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ |
| 576 if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent; |
| 577 } |
| 578 return 0; |
| 579 } |
| 580 |
| 581 /* |
| 582 ** Return the name of the first system call after zName. If zName==NULL |
| 583 ** then return the name of the first system call. Return NULL if zName |
| 584 ** is the last system call or if zName is not the name of a valid |
| 585 ** system call. |
| 586 */ |
| 587 static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){ |
| 588 int i = -1; |
| 589 |
| 590 UNUSED_PARAMETER(p); |
| 591 if( zName ){ |
| 592 for(i=0; i<ArraySize(aSyscall)-1; i++){ |
| 593 if( strcmp(zName, aSyscall[i].zName)==0 ) break; |
| 594 } |
| 595 } |
| 596 for(i++; i<ArraySize(aSyscall); i++){ |
| 597 if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName; |
| 598 } |
| 599 return 0; |
| 600 } |
| 601 |
| 602 /* |
| 603 ** Do not accept any file descriptor less than this value, in order to avoid |
| 604 ** opening database file using file descriptors that are commonly used for |
| 605 ** standard input, output, and error. |
| 606 */ |
| 607 #ifndef SQLITE_MINIMUM_FILE_DESCRIPTOR |
| 608 # define SQLITE_MINIMUM_FILE_DESCRIPTOR 3 |
| 609 #endif |
| 610 |
| 611 /* |
| 612 ** Invoke open(). Do so multiple times, until it either succeeds or |
| 613 ** fails for some reason other than EINTR. |
| 614 ** |
| 615 ** If the file creation mode "m" is 0 then set it to the default for |
| 616 ** SQLite. The default is SQLITE_DEFAULT_FILE_PERMISSIONS (normally |
| 617 ** 0644) as modified by the system umask. If m is not 0, then |
| 618 ** make the file creation mode be exactly m ignoring the umask. |
| 619 ** |
| 620 ** The m parameter will be non-zero only when creating -wal, -journal, |
| 621 ** and -shm files. We want those files to have *exactly* the same |
| 622 ** permissions as their original database, unadulterated by the umask. |
| 623 ** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a |
| 624 ** transaction crashes and leaves behind hot journals, then any |
| 625 ** process that is able to write to the database will also be able to |
| 626 ** recover the hot journals. |
| 627 */ |
| 628 static int robust_open(const char *z, int f, mode_t m){ |
| 629 int fd; |
| 630 mode_t m2 = m ? m : SQLITE_DEFAULT_FILE_PERMISSIONS; |
| 631 while(1){ |
| 632 #if defined(O_CLOEXEC) |
| 633 fd = osOpen(z,f|O_CLOEXEC,m2); |
| 634 #else |
| 635 fd = osOpen(z,f,m2); |
| 636 #endif |
| 637 if( fd<0 ){ |
| 638 if( errno==EINTR ) continue; |
| 639 break; |
| 640 } |
| 641 if( fd>=SQLITE_MINIMUM_FILE_DESCRIPTOR ) break; |
| 642 osClose(fd); |
| 643 sqlite3_log(SQLITE_WARNING, |
| 644 "attempt to open \"%s\" as file descriptor %d", z, fd); |
| 645 fd = -1; |
| 646 if( osOpen("/dev/null", f, m)<0 ) break; |
| 647 } |
| 648 if( fd>=0 ){ |
| 649 if( m!=0 ){ |
| 650 struct stat statbuf; |
| 651 if( osFstat(fd, &statbuf)==0 |
| 652 && statbuf.st_size==0 |
| 653 && (statbuf.st_mode&0777)!=m |
| 654 ){ |
| 655 osFchmod(fd, m); |
| 656 } |
| 657 } |
| 658 #if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0) |
| 659 osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC); |
| 660 #endif |
| 661 } |
| 662 return fd; |
| 663 } |
| 664 |
| 665 /* |
| 666 ** Helper functions to obtain and relinquish the global mutex. The |
| 667 ** global mutex is used to protect the unixInodeInfo and |
| 668 ** vxworksFileId objects used by this file, all of which may be |
| 669 ** shared by multiple threads. |
| 670 ** |
| 671 ** Function unixMutexHeld() is used to assert() that the global mutex |
| 672 ** is held when required. This function is only used as part of assert() |
| 673 ** statements. e.g. |
| 674 ** |
| 675 ** unixEnterMutex() |
| 676 ** assert( unixMutexHeld() ); |
| 677 ** unixEnterLeave() |
| 678 */ |
| 679 static void unixEnterMutex(void){ |
| 680 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1)); |
| 681 } |
| 682 static void unixLeaveMutex(void){ |
| 683 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1)); |
| 684 } |
| 685 #ifdef SQLITE_DEBUG |
| 686 static int unixMutexHeld(void) { |
| 687 return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1)); |
| 688 } |
| 689 #endif |
| 690 |
| 691 |
| 692 #ifdef SQLITE_HAVE_OS_TRACE |
| 693 /* |
| 694 ** Helper function for printing out trace information from debugging |
| 695 ** binaries. This returns the string representation of the supplied |
| 696 ** integer lock-type. |
| 697 */ |
| 698 static const char *azFileLock(int eFileLock){ |
| 699 switch( eFileLock ){ |
| 700 case NO_LOCK: return "NONE"; |
| 701 case SHARED_LOCK: return "SHARED"; |
| 702 case RESERVED_LOCK: return "RESERVED"; |
| 703 case PENDING_LOCK: return "PENDING"; |
| 704 case EXCLUSIVE_LOCK: return "EXCLUSIVE"; |
| 705 } |
| 706 return "ERROR"; |
| 707 } |
| 708 #endif |
| 709 |
| 710 #ifdef SQLITE_LOCK_TRACE |
| 711 /* |
| 712 ** Print out information about all locking operations. |
| 713 ** |
| 714 ** This routine is used for troubleshooting locks on multithreaded |
| 715 ** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE |
| 716 ** command-line option on the compiler. This code is normally |
| 717 ** turned off. |
| 718 */ |
| 719 static int lockTrace(int fd, int op, struct flock *p){ |
| 720 char *zOpName, *zType; |
| 721 int s; |
| 722 int savedErrno; |
| 723 if( op==F_GETLK ){ |
| 724 zOpName = "GETLK"; |
| 725 }else if( op==F_SETLK ){ |
| 726 zOpName = "SETLK"; |
| 727 }else{ |
| 728 s = osFcntl(fd, op, p); |
| 729 sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s); |
| 730 return s; |
| 731 } |
| 732 if( p->l_type==F_RDLCK ){ |
| 733 zType = "RDLCK"; |
| 734 }else if( p->l_type==F_WRLCK ){ |
| 735 zType = "WRLCK"; |
| 736 }else if( p->l_type==F_UNLCK ){ |
| 737 zType = "UNLCK"; |
| 738 }else{ |
| 739 assert( 0 ); |
| 740 } |
| 741 assert( p->l_whence==SEEK_SET ); |
| 742 s = osFcntl(fd, op, p); |
| 743 savedErrno = errno; |
| 744 sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n", |
| 745 threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len, |
| 746 (int)p->l_pid, s); |
| 747 if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){ |
| 748 struct flock l2; |
| 749 l2 = *p; |
| 750 osFcntl(fd, F_GETLK, &l2); |
| 751 if( l2.l_type==F_RDLCK ){ |
| 752 zType = "RDLCK"; |
| 753 }else if( l2.l_type==F_WRLCK ){ |
| 754 zType = "WRLCK"; |
| 755 }else if( l2.l_type==F_UNLCK ){ |
| 756 zType = "UNLCK"; |
| 757 }else{ |
| 758 assert( 0 ); |
| 759 } |
| 760 sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n", |
| 761 zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid); |
| 762 } |
| 763 errno = savedErrno; |
| 764 return s; |
| 765 } |
| 766 #undef osFcntl |
| 767 #define osFcntl lockTrace |
| 768 #endif /* SQLITE_LOCK_TRACE */ |
| 769 |
| 770 /* |
| 771 ** Retry ftruncate() calls that fail due to EINTR |
| 772 ** |
| 773 ** All calls to ftruncate() within this file should be made through |
| 774 ** this wrapper. On the Android platform, bypassing the logic below |
| 775 ** could lead to a corrupt database. |
| 776 */ |
| 777 static int robust_ftruncate(int h, sqlite3_int64 sz){ |
| 778 int rc; |
| 779 #ifdef __ANDROID__ |
| 780 /* On Android, ftruncate() always uses 32-bit offsets, even if |
| 781 ** _FILE_OFFSET_BITS=64 is defined. This means it is unsafe to attempt to |
| 782 ** truncate a file to any size larger than 2GiB. Silently ignore any |
| 783 ** such attempts. */ |
| 784 if( sz>(sqlite3_int64)0x7FFFFFFF ){ |
| 785 rc = SQLITE_OK; |
| 786 }else |
| 787 #endif |
| 788 do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR ); |
| 789 return rc; |
| 790 } |
| 791 |
| 792 /* |
| 793 ** This routine translates a standard POSIX errno code into something |
| 794 ** useful to the clients of the sqlite3 functions. Specifically, it is |
| 795 ** intended to translate a variety of "try again" errors into SQLITE_BUSY |
| 796 ** and a variety of "please close the file descriptor NOW" errors into |
| 797 ** SQLITE_IOERR |
| 798 ** |
| 799 ** Errors during initialization of locks, or file system support for locks, |
| 800 ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately. |
| 801 */ |
| 802 static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) { |
| 803 assert( (sqliteIOErr == SQLITE_IOERR_LOCK) || |
| 804 (sqliteIOErr == SQLITE_IOERR_UNLOCK) || |
| 805 (sqliteIOErr == SQLITE_IOERR_RDLOCK) || |
| 806 (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ); |
| 807 switch (posixError) { |
| 808 case EACCES: |
| 809 case EAGAIN: |
| 810 case ETIMEDOUT: |
| 811 case EBUSY: |
| 812 case EINTR: |
| 813 case ENOLCK: |
| 814 /* random NFS retry error, unless during file system support |
| 815 * introspection, in which it actually means what it says */ |
| 816 return SQLITE_BUSY; |
| 817 |
| 818 case EPERM: |
| 819 return SQLITE_PERM; |
| 820 |
| 821 default: |
| 822 return sqliteIOErr; |
| 823 } |
| 824 } |
| 825 |
| 826 |
| 827 /****************************************************************************** |
| 828 ****************** Begin Unique File ID Utility Used By VxWorks *************** |
| 829 ** |
| 830 ** On most versions of unix, we can get a unique ID for a file by concatenating |
| 831 ** the device number and the inode number. But this does not work on VxWorks. |
| 832 ** On VxWorks, a unique file id must be based on the canonical filename. |
| 833 ** |
| 834 ** A pointer to an instance of the following structure can be used as a |
| 835 ** unique file ID in VxWorks. Each instance of this structure contains |
| 836 ** a copy of the canonical filename. There is also a reference count. |
| 837 ** The structure is reclaimed when the number of pointers to it drops to |
| 838 ** zero. |
| 839 ** |
| 840 ** There are never very many files open at one time and lookups are not |
| 841 ** a performance-critical path, so it is sufficient to put these |
| 842 ** structures on a linked list. |
| 843 */ |
| 844 struct vxworksFileId { |
| 845 struct vxworksFileId *pNext; /* Next in a list of them all */ |
| 846 int nRef; /* Number of references to this one */ |
| 847 int nName; /* Length of the zCanonicalName[] string */ |
| 848 char *zCanonicalName; /* Canonical filename */ |
| 849 }; |
| 850 |
| 851 #if OS_VXWORKS |
| 852 /* |
| 853 ** All unique filenames are held on a linked list headed by this |
| 854 ** variable: |
| 855 */ |
| 856 static struct vxworksFileId *vxworksFileList = 0; |
| 857 |
| 858 /* |
| 859 ** Simplify a filename into its canonical form |
| 860 ** by making the following changes: |
| 861 ** |
| 862 ** * removing any trailing and duplicate / |
| 863 ** * convert /./ into just / |
| 864 ** * convert /A/../ where A is any simple name into just / |
| 865 ** |
| 866 ** Changes are made in-place. Return the new name length. |
| 867 ** |
| 868 ** The original filename is in z[0..n-1]. Return the number of |
| 869 ** characters in the simplified name. |
| 870 */ |
| 871 static int vxworksSimplifyName(char *z, int n){ |
| 872 int i, j; |
| 873 while( n>1 && z[n-1]=='/' ){ n--; } |
| 874 for(i=j=0; i<n; i++){ |
| 875 if( z[i]=='/' ){ |
| 876 if( z[i+1]=='/' ) continue; |
| 877 if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){ |
| 878 i += 1; |
| 879 continue; |
| 880 } |
| 881 if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){ |
| 882 while( j>0 && z[j-1]!='/' ){ j--; } |
| 883 if( j>0 ){ j--; } |
| 884 i += 2; |
| 885 continue; |
| 886 } |
| 887 } |
| 888 z[j++] = z[i]; |
| 889 } |
| 890 z[j] = 0; |
| 891 return j; |
| 892 } |
| 893 |
| 894 /* |
| 895 ** Find a unique file ID for the given absolute pathname. Return |
| 896 ** a pointer to the vxworksFileId object. This pointer is the unique |
| 897 ** file ID. |
| 898 ** |
| 899 ** The nRef field of the vxworksFileId object is incremented before |
| 900 ** the object is returned. A new vxworksFileId object is created |
| 901 ** and added to the global list if necessary. |
| 902 ** |
| 903 ** If a memory allocation error occurs, return NULL. |
| 904 */ |
| 905 static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){ |
| 906 struct vxworksFileId *pNew; /* search key and new file ID */ |
| 907 struct vxworksFileId *pCandidate; /* For looping over existing file IDs */ |
| 908 int n; /* Length of zAbsoluteName string */ |
| 909 |
| 910 assert( zAbsoluteName[0]=='/' ); |
| 911 n = (int)strlen(zAbsoluteName); |
| 912 pNew = sqlite3_malloc64( sizeof(*pNew) + (n+1) ); |
| 913 if( pNew==0 ) return 0; |
| 914 pNew->zCanonicalName = (char*)&pNew[1]; |
| 915 memcpy(pNew->zCanonicalName, zAbsoluteName, n+1); |
| 916 n = vxworksSimplifyName(pNew->zCanonicalName, n); |
| 917 |
| 918 /* Search for an existing entry that matching the canonical name. |
| 919 ** If found, increment the reference count and return a pointer to |
| 920 ** the existing file ID. |
| 921 */ |
| 922 unixEnterMutex(); |
| 923 for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){ |
| 924 if( pCandidate->nName==n |
| 925 && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0 |
| 926 ){ |
| 927 sqlite3_free(pNew); |
| 928 pCandidate->nRef++; |
| 929 unixLeaveMutex(); |
| 930 return pCandidate; |
| 931 } |
| 932 } |
| 933 |
| 934 /* No match was found. We will make a new file ID */ |
| 935 pNew->nRef = 1; |
| 936 pNew->nName = n; |
| 937 pNew->pNext = vxworksFileList; |
| 938 vxworksFileList = pNew; |
| 939 unixLeaveMutex(); |
| 940 return pNew; |
| 941 } |
| 942 |
| 943 /* |
| 944 ** Decrement the reference count on a vxworksFileId object. Free |
| 945 ** the object when the reference count reaches zero. |
| 946 */ |
| 947 static void vxworksReleaseFileId(struct vxworksFileId *pId){ |
| 948 unixEnterMutex(); |
| 949 assert( pId->nRef>0 ); |
| 950 pId->nRef--; |
| 951 if( pId->nRef==0 ){ |
| 952 struct vxworksFileId **pp; |
| 953 for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){} |
| 954 assert( *pp==pId ); |
| 955 *pp = pId->pNext; |
| 956 sqlite3_free(pId); |
| 957 } |
| 958 unixLeaveMutex(); |
| 959 } |
| 960 #endif /* OS_VXWORKS */ |
| 961 /*************** End of Unique File ID Utility Used By VxWorks **************** |
| 962 ******************************************************************************/ |
| 963 |
| 964 |
| 965 /****************************************************************************** |
| 966 *************************** Posix Advisory Locking **************************** |
| 967 ** |
| 968 ** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996) |
| 969 ** section 6.5.2.2 lines 483 through 490 specify that when a process |
| 970 ** sets or clears a lock, that operation overrides any prior locks set |
| 971 ** by the same process. It does not explicitly say so, but this implies |
| 972 ** that it overrides locks set by the same process using a different |
| 973 ** file descriptor. Consider this test case: |
| 974 ** |
| 975 ** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644); |
| 976 ** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644); |
| 977 ** |
| 978 ** Suppose ./file1 and ./file2 are really the same file (because |
| 979 ** one is a hard or symbolic link to the other) then if you set |
| 980 ** an exclusive lock on fd1, then try to get an exclusive lock |
| 981 ** on fd2, it works. I would have expected the second lock to |
| 982 ** fail since there was already a lock on the file due to fd1. |
| 983 ** But not so. Since both locks came from the same process, the |
| 984 ** second overrides the first, even though they were on different |
| 985 ** file descriptors opened on different file names. |
| 986 ** |
| 987 ** This means that we cannot use POSIX locks to synchronize file access |
| 988 ** among competing threads of the same process. POSIX locks will work fine |
| 989 ** to synchronize access for threads in separate processes, but not |
| 990 ** threads within the same process. |
| 991 ** |
| 992 ** To work around the problem, SQLite has to manage file locks internally |
| 993 ** on its own. Whenever a new database is opened, we have to find the |
| 994 ** specific inode of the database file (the inode is determined by the |
| 995 ** st_dev and st_ino fields of the stat structure that fstat() fills in) |
| 996 ** and check for locks already existing on that inode. When locks are |
| 997 ** created or removed, we have to look at our own internal record of the |
| 998 ** locks to see if another thread has previously set a lock on that same |
| 999 ** inode. |
| 1000 ** |
| 1001 ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks. |
| 1002 ** For VxWorks, we have to use the alternative unique ID system based on |
| 1003 ** canonical filename and implemented in the previous division.) |
| 1004 ** |
| 1005 ** The sqlite3_file structure for POSIX is no longer just an integer file |
| 1006 ** descriptor. It is now a structure that holds the integer file |
| 1007 ** descriptor and a pointer to a structure that describes the internal |
| 1008 ** locks on the corresponding inode. There is one locking structure |
| 1009 ** per inode, so if the same inode is opened twice, both unixFile structures |
| 1010 ** point to the same locking structure. The locking structure keeps |
| 1011 ** a reference count (so we will know when to delete it) and a "cnt" |
| 1012 ** field that tells us its internal lock status. cnt==0 means the |
| 1013 ** file is unlocked. cnt==-1 means the file has an exclusive lock. |
| 1014 ** cnt>0 means there are cnt shared locks on the file. |
| 1015 ** |
| 1016 ** Any attempt to lock or unlock a file first checks the locking |
| 1017 ** structure. The fcntl() system call is only invoked to set a |
| 1018 ** POSIX lock if the internal lock structure transitions between |
| 1019 ** a locked and an unlocked state. |
| 1020 ** |
| 1021 ** But wait: there are yet more problems with POSIX advisory locks. |
| 1022 ** |
| 1023 ** If you close a file descriptor that points to a file that has locks, |
| 1024 ** all locks on that file that are owned by the current process are |
| 1025 ** released. To work around this problem, each unixInodeInfo object |
| 1026 ** maintains a count of the number of pending locks on tha inode. |
| 1027 ** When an attempt is made to close an unixFile, if there are |
| 1028 ** other unixFile open on the same inode that are holding locks, the call |
| 1029 ** to close() the file descriptor is deferred until all of the locks clear. |
| 1030 ** The unixInodeInfo structure keeps a list of file descriptors that need to |
| 1031 ** be closed and that list is walked (and cleared) when the last lock |
| 1032 ** clears. |
| 1033 ** |
| 1034 ** Yet another problem: LinuxThreads do not play well with posix locks. |
| 1035 ** |
| 1036 ** Many older versions of linux use the LinuxThreads library which is |
| 1037 ** not posix compliant. Under LinuxThreads, a lock created by thread |
| 1038 ** A cannot be modified or overridden by a different thread B. |
| 1039 ** Only thread A can modify the lock. Locking behavior is correct |
| 1040 ** if the appliation uses the newer Native Posix Thread Library (NPTL) |
| 1041 ** on linux - with NPTL a lock created by thread A can override locks |
| 1042 ** in thread B. But there is no way to know at compile-time which |
| 1043 ** threading library is being used. So there is no way to know at |
| 1044 ** compile-time whether or not thread A can override locks on thread B. |
| 1045 ** One has to do a run-time check to discover the behavior of the |
| 1046 ** current process. |
| 1047 ** |
| 1048 ** SQLite used to support LinuxThreads. But support for LinuxThreads |
| 1049 ** was dropped beginning with version 3.7.0. SQLite will still work with |
| 1050 ** LinuxThreads provided that (1) there is no more than one connection |
| 1051 ** per database file in the same process and (2) database connections |
| 1052 ** do not move across threads. |
| 1053 */ |
| 1054 |
| 1055 /* |
| 1056 ** An instance of the following structure serves as the key used |
| 1057 ** to locate a particular unixInodeInfo object. |
| 1058 */ |
| 1059 struct unixFileId { |
| 1060 dev_t dev; /* Device number */ |
| 1061 #if OS_VXWORKS |
| 1062 struct vxworksFileId *pId; /* Unique file ID for vxworks. */ |
| 1063 #else |
| 1064 /* We are told that some versions of Android contain a bug that |
| 1065 ** sizes ino_t at only 32-bits instead of 64-bits. (See |
| 1066 ** https://android-review.googlesource.com/#/c/115351/3/dist/sqlite3.c) |
| 1067 ** To work around this, always allocate 64-bits for the inode number. |
| 1068 ** On small machines that only have 32-bit inodes, this wastes 4 bytes, |
| 1069 ** but that should not be a big deal. */ |
| 1070 /* WAS: ino_t ino; */ |
| 1071 u64 ino; /* Inode number */ |
| 1072 #endif |
| 1073 }; |
| 1074 |
| 1075 /* |
| 1076 ** An instance of the following structure is allocated for each open |
| 1077 ** inode. Or, on LinuxThreads, there is one of these structures for |
| 1078 ** each inode opened by each thread. |
| 1079 ** |
| 1080 ** A single inode can have multiple file descriptors, so each unixFile |
| 1081 ** structure contains a pointer to an instance of this object and this |
| 1082 ** object keeps a count of the number of unixFile pointing to it. |
| 1083 */ |
| 1084 struct unixInodeInfo { |
| 1085 struct unixFileId fileId; /* The lookup key */ |
| 1086 int nShared; /* Number of SHARED locks held */ |
| 1087 unsigned char eFileLock; /* One of SHARED_LOCK, RESERVED_LOCK etc. */ |
| 1088 unsigned char bProcessLock; /* An exclusive process lock is held */ |
| 1089 int nRef; /* Number of pointers to this structure */ |
| 1090 unixShmNode *pShmNode; /* Shared memory associated with this inode */ |
| 1091 int nLock; /* Number of outstanding file locks */ |
| 1092 UnixUnusedFd *pUnused; /* Unused file descriptors to close */ |
| 1093 unixInodeInfo *pNext; /* List of all unixInodeInfo objects */ |
| 1094 unixInodeInfo *pPrev; /* .... doubly linked */ |
| 1095 #if SQLITE_ENABLE_LOCKING_STYLE |
| 1096 unsigned long long sharedByte; /* for AFP simulated shared lock */ |
| 1097 #endif |
| 1098 #if OS_VXWORKS |
| 1099 sem_t *pSem; /* Named POSIX semaphore */ |
| 1100 char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */ |
| 1101 #endif |
| 1102 }; |
| 1103 |
| 1104 /* |
| 1105 ** A lists of all unixInodeInfo objects. |
| 1106 */ |
| 1107 static unixInodeInfo *inodeList = 0; |
| 1108 |
| 1109 /* |
| 1110 ** |
| 1111 ** This function - unixLogErrorAtLine(), is only ever called via the macro |
| 1112 ** unixLogError(). |
| 1113 ** |
| 1114 ** It is invoked after an error occurs in an OS function and errno has been |
| 1115 ** set. It logs a message using sqlite3_log() containing the current value of |
| 1116 ** errno and, if possible, the human-readable equivalent from strerror() or |
| 1117 ** strerror_r(). |
| 1118 ** |
| 1119 ** The first argument passed to the macro should be the error code that |
| 1120 ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). |
| 1121 ** The two subsequent arguments should be the name of the OS function that |
| 1122 ** failed (e.g. "unlink", "open") and the associated file-system path, |
| 1123 ** if any. |
| 1124 */ |
| 1125 #define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__) |
| 1126 static int unixLogErrorAtLine( |
| 1127 int errcode, /* SQLite error code */ |
| 1128 const char *zFunc, /* Name of OS function that failed */ |
| 1129 const char *zPath, /* File path associated with error */ |
| 1130 int iLine /* Source line number where error occurred */ |
| 1131 ){ |
| 1132 char *zErr; /* Message from strerror() or equivalent */ |
| 1133 int iErrno = errno; /* Saved syscall error number */ |
| 1134 |
| 1135 /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use |
| 1136 ** the strerror() function to obtain the human-readable error message |
| 1137 ** equivalent to errno. Otherwise, use strerror_r(). |
| 1138 */ |
| 1139 #if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R) |
| 1140 char aErr[80]; |
| 1141 memset(aErr, 0, sizeof(aErr)); |
| 1142 zErr = aErr; |
| 1143 |
| 1144 /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined, |
| 1145 ** assume that the system provides the GNU version of strerror_r() that |
| 1146 ** returns a pointer to a buffer containing the error message. That pointer |
| 1147 ** may point to aErr[], or it may point to some static storage somewhere. |
| 1148 ** Otherwise, assume that the system provides the POSIX version of |
| 1149 ** strerror_r(), which always writes an error message into aErr[]. |
| 1150 ** |
| 1151 ** If the code incorrectly assumes that it is the POSIX version that is |
| 1152 ** available, the error message will often be an empty string. Not a |
| 1153 ** huge problem. Incorrectly concluding that the GNU version is available |
| 1154 ** could lead to a segfault though. |
| 1155 */ |
| 1156 #if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU) |
| 1157 zErr = |
| 1158 # endif |
| 1159 strerror_r(iErrno, aErr, sizeof(aErr)-1); |
| 1160 |
| 1161 #elif SQLITE_THREADSAFE |
| 1162 /* This is a threadsafe build, but strerror_r() is not available. */ |
| 1163 zErr = ""; |
| 1164 #else |
| 1165 /* Non-threadsafe build, use strerror(). */ |
| 1166 zErr = strerror(iErrno); |
| 1167 #endif |
| 1168 |
| 1169 if( zPath==0 ) zPath = ""; |
| 1170 sqlite3_log(errcode, |
| 1171 "os_unix.c:%d: (%d) %s(%s) - %s", |
| 1172 iLine, iErrno, zFunc, zPath, zErr |
| 1173 ); |
| 1174 |
| 1175 return errcode; |
| 1176 } |
| 1177 |
| 1178 /* |
| 1179 ** Close a file descriptor. |
| 1180 ** |
| 1181 ** We assume that close() almost always works, since it is only in a |
| 1182 ** very sick application or on a very sick platform that it might fail. |
| 1183 ** If it does fail, simply leak the file descriptor, but do log the |
| 1184 ** error. |
| 1185 ** |
| 1186 ** Note that it is not safe to retry close() after EINTR since the |
| 1187 ** file descriptor might have already been reused by another thread. |
| 1188 ** So we don't even try to recover from an EINTR. Just log the error |
| 1189 ** and move on. |
| 1190 */ |
| 1191 static void robust_close(unixFile *pFile, int h, int lineno){ |
| 1192 if( osClose(h) ){ |
| 1193 unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close", |
| 1194 pFile ? pFile->zPath : 0, lineno); |
| 1195 } |
| 1196 } |
| 1197 |
| 1198 /* |
| 1199 ** Set the pFile->lastErrno. Do this in a subroutine as that provides |
| 1200 ** a convenient place to set a breakpoint. |
| 1201 */ |
| 1202 static void storeLastErrno(unixFile *pFile, int error){ |
| 1203 pFile->lastErrno = error; |
| 1204 } |
| 1205 |
| 1206 /* |
| 1207 ** Close all file descriptors accumuated in the unixInodeInfo->pUnused list. |
| 1208 */ |
| 1209 static void closePendingFds(unixFile *pFile){ |
| 1210 unixInodeInfo *pInode = pFile->pInode; |
| 1211 UnixUnusedFd *p; |
| 1212 UnixUnusedFd *pNext; |
| 1213 for(p=pInode->pUnused; p; p=pNext){ |
| 1214 pNext = p->pNext; |
| 1215 robust_close(pFile, p->fd, __LINE__); |
| 1216 sqlite3_free(p); |
| 1217 } |
| 1218 pInode->pUnused = 0; |
| 1219 } |
| 1220 |
| 1221 /* |
| 1222 ** Release a unixInodeInfo structure previously allocated by findInodeInfo(). |
| 1223 ** |
| 1224 ** The mutex entered using the unixEnterMutex() function must be held |
| 1225 ** when this function is called. |
| 1226 */ |
| 1227 static void releaseInodeInfo(unixFile *pFile){ |
| 1228 unixInodeInfo *pInode = pFile->pInode; |
| 1229 assert( unixMutexHeld() ); |
| 1230 if( ALWAYS(pInode) ){ |
| 1231 pInode->nRef--; |
| 1232 if( pInode->nRef==0 ){ |
| 1233 assert( pInode->pShmNode==0 ); |
| 1234 closePendingFds(pFile); |
| 1235 if( pInode->pPrev ){ |
| 1236 assert( pInode->pPrev->pNext==pInode ); |
| 1237 pInode->pPrev->pNext = pInode->pNext; |
| 1238 }else{ |
| 1239 assert( inodeList==pInode ); |
| 1240 inodeList = pInode->pNext; |
| 1241 } |
| 1242 if( pInode->pNext ){ |
| 1243 assert( pInode->pNext->pPrev==pInode ); |
| 1244 pInode->pNext->pPrev = pInode->pPrev; |
| 1245 } |
| 1246 sqlite3_free(pInode); |
| 1247 } |
| 1248 } |
| 1249 } |
| 1250 |
| 1251 /* |
| 1252 ** Given a file descriptor, locate the unixInodeInfo object that |
| 1253 ** describes that file descriptor. Create a new one if necessary. The |
| 1254 ** return value might be uninitialized if an error occurs. |
| 1255 ** |
| 1256 ** The mutex entered using the unixEnterMutex() function must be held |
| 1257 ** when this function is called. |
| 1258 ** |
| 1259 ** Return an appropriate error code. |
| 1260 */ |
| 1261 static int findInodeInfo( |
| 1262 unixFile *pFile, /* Unix file with file desc used in the key */ |
| 1263 unixInodeInfo **ppInode /* Return the unixInodeInfo object here */ |
| 1264 ){ |
| 1265 int rc; /* System call return code */ |
| 1266 int fd; /* The file descriptor for pFile */ |
| 1267 struct unixFileId fileId; /* Lookup key for the unixInodeInfo */ |
| 1268 struct stat statbuf; /* Low-level file information */ |
| 1269 unixInodeInfo *pInode = 0; /* Candidate unixInodeInfo object */ |
| 1270 |
| 1271 assert( unixMutexHeld() ); |
| 1272 |
| 1273 /* Get low-level information about the file that we can used to |
| 1274 ** create a unique name for the file. |
| 1275 */ |
| 1276 fd = pFile->h; |
| 1277 rc = osFstat(fd, &statbuf); |
| 1278 if( rc!=0 ){ |
| 1279 storeLastErrno(pFile, errno); |
| 1280 #if defined(EOVERFLOW) && defined(SQLITE_DISABLE_LFS) |
| 1281 if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS; |
| 1282 #endif |
| 1283 return SQLITE_IOERR; |
| 1284 } |
| 1285 |
| 1286 #ifdef __APPLE__ |
| 1287 /* On OS X on an msdos filesystem, the inode number is reported |
| 1288 ** incorrectly for zero-size files. See ticket #3260. To work |
| 1289 ** around this problem (we consider it a bug in OS X, not SQLite) |
| 1290 ** we always increase the file size to 1 by writing a single byte |
| 1291 ** prior to accessing the inode number. The one byte written is |
| 1292 ** an ASCII 'S' character which also happens to be the first byte |
| 1293 ** in the header of every SQLite database. In this way, if there |
| 1294 ** is a race condition such that another thread has already populated |
| 1295 ** the first page of the database, no damage is done. |
| 1296 */ |
| 1297 if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){ |
| 1298 do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR ); |
| 1299 if( rc!=1 ){ |
| 1300 storeLastErrno(pFile, errno); |
| 1301 return SQLITE_IOERR; |
| 1302 } |
| 1303 rc = osFstat(fd, &statbuf); |
| 1304 if( rc!=0 ){ |
| 1305 storeLastErrno(pFile, errno); |
| 1306 return SQLITE_IOERR; |
| 1307 } |
| 1308 } |
| 1309 #endif |
| 1310 |
| 1311 memset(&fileId, 0, sizeof(fileId)); |
| 1312 fileId.dev = statbuf.st_dev; |
| 1313 #if OS_VXWORKS |
| 1314 fileId.pId = pFile->pId; |
| 1315 #else |
| 1316 fileId.ino = (u64)statbuf.st_ino; |
| 1317 #endif |
| 1318 pInode = inodeList; |
| 1319 while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){ |
| 1320 pInode = pInode->pNext; |
| 1321 } |
| 1322 if( pInode==0 ){ |
| 1323 pInode = sqlite3_malloc64( sizeof(*pInode) ); |
| 1324 if( pInode==0 ){ |
| 1325 return SQLITE_NOMEM_BKPT; |
| 1326 } |
| 1327 memset(pInode, 0, sizeof(*pInode)); |
| 1328 memcpy(&pInode->fileId, &fileId, sizeof(fileId)); |
| 1329 pInode->nRef = 1; |
| 1330 pInode->pNext = inodeList; |
| 1331 pInode->pPrev = 0; |
| 1332 if( inodeList ) inodeList->pPrev = pInode; |
| 1333 inodeList = pInode; |
| 1334 }else{ |
| 1335 pInode->nRef++; |
| 1336 } |
| 1337 *ppInode = pInode; |
| 1338 return SQLITE_OK; |
| 1339 } |
| 1340 |
| 1341 /* |
| 1342 ** Return TRUE if pFile has been renamed or unlinked since it was first opened. |
| 1343 */ |
| 1344 static int fileHasMoved(unixFile *pFile){ |
| 1345 #if OS_VXWORKS |
| 1346 return pFile->pInode!=0 && pFile->pId!=pFile->pInode->fileId.pId; |
| 1347 #else |
| 1348 struct stat buf; |
| 1349 return pFile->pInode!=0 && |
| 1350 (osStat(pFile->zPath, &buf)!=0 |
| 1351 || (u64)buf.st_ino!=pFile->pInode->fileId.ino); |
| 1352 #endif |
| 1353 } |
| 1354 |
| 1355 |
| 1356 /* |
| 1357 ** Check a unixFile that is a database. Verify the following: |
| 1358 ** |
| 1359 ** (1) There is exactly one hard link on the file |
| 1360 ** (2) The file is not a symbolic link |
| 1361 ** (3) The file has not been renamed or unlinked |
| 1362 ** |
| 1363 ** Issue sqlite3_log(SQLITE_WARNING,...) messages if anything is not right. |
| 1364 */ |
| 1365 static void verifyDbFile(unixFile *pFile){ |
| 1366 struct stat buf; |
| 1367 int rc; |
| 1368 |
| 1369 /* These verifications occurs for the main database only */ |
| 1370 if( pFile->ctrlFlags & UNIXFILE_NOLOCK ) return; |
| 1371 |
| 1372 rc = osFstat(pFile->h, &buf); |
| 1373 if( rc!=0 ){ |
| 1374 sqlite3_log(SQLITE_WARNING, "cannot fstat db file %s", pFile->zPath); |
| 1375 return; |
| 1376 } |
| 1377 if( buf.st_nlink==0 ){ |
| 1378 sqlite3_log(SQLITE_WARNING, "file unlinked while open: %s", pFile->zPath); |
| 1379 return; |
| 1380 } |
| 1381 if( buf.st_nlink>1 ){ |
| 1382 sqlite3_log(SQLITE_WARNING, "multiple links to file: %s", pFile->zPath); |
| 1383 return; |
| 1384 } |
| 1385 if( fileHasMoved(pFile) ){ |
| 1386 sqlite3_log(SQLITE_WARNING, "file renamed while open: %s", pFile->zPath); |
| 1387 return; |
| 1388 } |
| 1389 } |
| 1390 |
| 1391 |
| 1392 /* |
| 1393 ** This routine checks if there is a RESERVED lock held on the specified |
| 1394 ** file by this or any other process. If such a lock is held, set *pResOut |
| 1395 ** to a non-zero value otherwise *pResOut is set to zero. The return value |
| 1396 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
| 1397 */ |
| 1398 static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){ |
| 1399 int rc = SQLITE_OK; |
| 1400 int reserved = 0; |
| 1401 unixFile *pFile = (unixFile*)id; |
| 1402 |
| 1403 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
| 1404 |
| 1405 assert( pFile ); |
| 1406 assert( pFile->eFileLock<=SHARED_LOCK ); |
| 1407 unixEnterMutex(); /* Because pFile->pInode is shared across threads */ |
| 1408 |
| 1409 /* Check if a thread in this process holds such a lock */ |
| 1410 if( pFile->pInode->eFileLock>SHARED_LOCK ){ |
| 1411 reserved = 1; |
| 1412 } |
| 1413 |
| 1414 /* Otherwise see if some other process holds it. |
| 1415 */ |
| 1416 #ifndef __DJGPP__ |
| 1417 if( !reserved && !pFile->pInode->bProcessLock ){ |
| 1418 struct flock lock; |
| 1419 lock.l_whence = SEEK_SET; |
| 1420 lock.l_start = RESERVED_BYTE; |
| 1421 lock.l_len = 1; |
| 1422 lock.l_type = F_WRLCK; |
| 1423 if( osFcntl(pFile->h, F_GETLK, &lock) ){ |
| 1424 rc = SQLITE_IOERR_CHECKRESERVEDLOCK; |
| 1425 storeLastErrno(pFile, errno); |
| 1426 } else if( lock.l_type!=F_UNLCK ){ |
| 1427 reserved = 1; |
| 1428 } |
| 1429 } |
| 1430 #endif |
| 1431 |
| 1432 unixLeaveMutex(); |
| 1433 OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved)); |
| 1434 |
| 1435 *pResOut = reserved; |
| 1436 return rc; |
| 1437 } |
| 1438 |
| 1439 /* |
| 1440 ** Attempt to set a system-lock on the file pFile. The lock is |
| 1441 ** described by pLock. |
| 1442 ** |
| 1443 ** If the pFile was opened read/write from unix-excl, then the only lock |
| 1444 ** ever obtained is an exclusive lock, and it is obtained exactly once |
| 1445 ** the first time any lock is attempted. All subsequent system locking |
| 1446 ** operations become no-ops. Locking operations still happen internally, |
| 1447 ** in order to coordinate access between separate database connections |
| 1448 ** within this process, but all of that is handled in memory and the |
| 1449 ** operating system does not participate. |
| 1450 ** |
| 1451 ** This function is a pass-through to fcntl(F_SETLK) if pFile is using |
| 1452 ** any VFS other than "unix-excl" or if pFile is opened on "unix-excl" |
| 1453 ** and is read-only. |
| 1454 ** |
| 1455 ** Zero is returned if the call completes successfully, or -1 if a call |
| 1456 ** to fcntl() fails. In this case, errno is set appropriately (by fcntl()). |
| 1457 */ |
| 1458 static int unixFileLock(unixFile *pFile, struct flock *pLock){ |
| 1459 int rc; |
| 1460 unixInodeInfo *pInode = pFile->pInode; |
| 1461 assert( unixMutexHeld() ); |
| 1462 assert( pInode!=0 ); |
| 1463 if( (pFile->ctrlFlags & (UNIXFILE_EXCL|UNIXFILE_RDONLY))==UNIXFILE_EXCL ){ |
| 1464 if( pInode->bProcessLock==0 ){ |
| 1465 struct flock lock; |
| 1466 assert( pInode->nLock==0 ); |
| 1467 lock.l_whence = SEEK_SET; |
| 1468 lock.l_start = SHARED_FIRST; |
| 1469 lock.l_len = SHARED_SIZE; |
| 1470 lock.l_type = F_WRLCK; |
| 1471 rc = osFcntl(pFile->h, F_SETLK, &lock); |
| 1472 if( rc<0 ) return rc; |
| 1473 pInode->bProcessLock = 1; |
| 1474 pInode->nLock++; |
| 1475 }else{ |
| 1476 rc = 0; |
| 1477 } |
| 1478 }else{ |
| 1479 rc = osFcntl(pFile->h, F_SETLK, pLock); |
| 1480 } |
| 1481 return rc; |
| 1482 } |
| 1483 |
| 1484 /* |
| 1485 ** Lock the file with the lock specified by parameter eFileLock - one |
| 1486 ** of the following: |
| 1487 ** |
| 1488 ** (1) SHARED_LOCK |
| 1489 ** (2) RESERVED_LOCK |
| 1490 ** (3) PENDING_LOCK |
| 1491 ** (4) EXCLUSIVE_LOCK |
| 1492 ** |
| 1493 ** Sometimes when requesting one lock state, additional lock states |
| 1494 ** are inserted in between. The locking might fail on one of the later |
| 1495 ** transitions leaving the lock state different from what it started but |
| 1496 ** still short of its goal. The following chart shows the allowed |
| 1497 ** transitions and the inserted intermediate states: |
| 1498 ** |
| 1499 ** UNLOCKED -> SHARED |
| 1500 ** SHARED -> RESERVED |
| 1501 ** SHARED -> (PENDING) -> EXCLUSIVE |
| 1502 ** RESERVED -> (PENDING) -> EXCLUSIVE |
| 1503 ** PENDING -> EXCLUSIVE |
| 1504 ** |
| 1505 ** This routine will only increase a lock. Use the sqlite3OsUnlock() |
| 1506 ** routine to lower a locking level. |
| 1507 */ |
| 1508 static int unixLock(sqlite3_file *id, int eFileLock){ |
| 1509 /* The following describes the implementation of the various locks and |
| 1510 ** lock transitions in terms of the POSIX advisory shared and exclusive |
| 1511 ** lock primitives (called read-locks and write-locks below, to avoid |
| 1512 ** confusion with SQLite lock names). The algorithms are complicated |
| 1513 ** slightly in order to be compatible with Windows95 systems simultaneously |
| 1514 ** accessing the same database file, in case that is ever required. |
| 1515 ** |
| 1516 ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved |
| 1517 ** byte', each single bytes at well known offsets, and the 'shared byte |
| 1518 ** range', a range of 510 bytes at a well known offset. |
| 1519 ** |
| 1520 ** To obtain a SHARED lock, a read-lock is obtained on the 'pending |
| 1521 ** byte'. If this is successful, 'shared byte range' is read-locked |
| 1522 ** and the lock on the 'pending byte' released. (Legacy note: When |
| 1523 ** SQLite was first developed, Windows95 systems were still very common, |
| 1524 ** and Widnows95 lacks a shared-lock capability. So on Windows95, a |
| 1525 ** single randomly selected by from the 'shared byte range' is locked. |
| 1526 ** Windows95 is now pretty much extinct, but this work-around for the |
| 1527 ** lack of shared-locks on Windows95 lives on, for backwards |
| 1528 ** compatibility.) |
| 1529 ** |
| 1530 ** A process may only obtain a RESERVED lock after it has a SHARED lock. |
| 1531 ** A RESERVED lock is implemented by grabbing a write-lock on the |
| 1532 ** 'reserved byte'. |
| 1533 ** |
| 1534 ** A process may only obtain a PENDING lock after it has obtained a |
| 1535 ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock |
| 1536 ** on the 'pending byte'. This ensures that no new SHARED locks can be |
| 1537 ** obtained, but existing SHARED locks are allowed to persist. A process |
| 1538 ** does not have to obtain a RESERVED lock on the way to a PENDING lock. |
| 1539 ** This property is used by the algorithm for rolling back a journal file |
| 1540 ** after a crash. |
| 1541 ** |
| 1542 ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is |
| 1543 ** implemented by obtaining a write-lock on the entire 'shared byte |
| 1544 ** range'. Since all other locks require a read-lock on one of the bytes |
| 1545 ** within this range, this ensures that no other locks are held on the |
| 1546 ** database. |
| 1547 */ |
| 1548 int rc = SQLITE_OK; |
| 1549 unixFile *pFile = (unixFile*)id; |
| 1550 unixInodeInfo *pInode; |
| 1551 struct flock lock; |
| 1552 int tErrno = 0; |
| 1553 |
| 1554 assert( pFile ); |
| 1555 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h, |
| 1556 azFileLock(eFileLock), azFileLock(pFile->eFileLock), |
| 1557 azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared, |
| 1558 osGetpid(0))); |
| 1559 |
| 1560 /* If there is already a lock of this type or more restrictive on the |
| 1561 ** unixFile, do nothing. Don't use the end_lock: exit path, as |
| 1562 ** unixEnterMutex() hasn't been called yet. |
| 1563 */ |
| 1564 if( pFile->eFileLock>=eFileLock ){ |
| 1565 OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h, |
| 1566 azFileLock(eFileLock))); |
| 1567 return SQLITE_OK; |
| 1568 } |
| 1569 |
| 1570 /* Make sure the locking sequence is correct. |
| 1571 ** (1) We never move from unlocked to anything higher than shared lock. |
| 1572 ** (2) SQLite never explicitly requests a pendig lock. |
| 1573 ** (3) A shared lock is always held when a reserve lock is requested. |
| 1574 */ |
| 1575 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); |
| 1576 assert( eFileLock!=PENDING_LOCK ); |
| 1577 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); |
| 1578 |
| 1579 /* This mutex is needed because pFile->pInode is shared across threads |
| 1580 */ |
| 1581 unixEnterMutex(); |
| 1582 pInode = pFile->pInode; |
| 1583 |
| 1584 /* If some thread using this PID has a lock via a different unixFile* |
| 1585 ** handle that precludes the requested lock, return BUSY. |
| 1586 */ |
| 1587 if( (pFile->eFileLock!=pInode->eFileLock && |
| 1588 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) |
| 1589 ){ |
| 1590 rc = SQLITE_BUSY; |
| 1591 goto end_lock; |
| 1592 } |
| 1593 |
| 1594 /* If a SHARED lock is requested, and some thread using this PID already |
| 1595 ** has a SHARED or RESERVED lock, then increment reference counts and |
| 1596 ** return SQLITE_OK. |
| 1597 */ |
| 1598 if( eFileLock==SHARED_LOCK && |
| 1599 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ |
| 1600 assert( eFileLock==SHARED_LOCK ); |
| 1601 assert( pFile->eFileLock==0 ); |
| 1602 assert( pInode->nShared>0 ); |
| 1603 pFile->eFileLock = SHARED_LOCK; |
| 1604 pInode->nShared++; |
| 1605 pInode->nLock++; |
| 1606 goto end_lock; |
| 1607 } |
| 1608 |
| 1609 |
| 1610 /* A PENDING lock is needed before acquiring a SHARED lock and before |
| 1611 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will |
| 1612 ** be released. |
| 1613 */ |
| 1614 lock.l_len = 1L; |
| 1615 lock.l_whence = SEEK_SET; |
| 1616 if( eFileLock==SHARED_LOCK |
| 1617 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK) |
| 1618 ){ |
| 1619 lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK); |
| 1620 lock.l_start = PENDING_BYTE; |
| 1621 if( unixFileLock(pFile, &lock) ){ |
| 1622 tErrno = errno; |
| 1623 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
| 1624 if( rc!=SQLITE_BUSY ){ |
| 1625 storeLastErrno(pFile, tErrno); |
| 1626 } |
| 1627 goto end_lock; |
| 1628 } |
| 1629 } |
| 1630 |
| 1631 |
| 1632 /* If control gets to this point, then actually go ahead and make |
| 1633 ** operating system calls for the specified lock. |
| 1634 */ |
| 1635 if( eFileLock==SHARED_LOCK ){ |
| 1636 assert( pInode->nShared==0 ); |
| 1637 assert( pInode->eFileLock==0 ); |
| 1638 assert( rc==SQLITE_OK ); |
| 1639 |
| 1640 /* Now get the read-lock */ |
| 1641 lock.l_start = SHARED_FIRST; |
| 1642 lock.l_len = SHARED_SIZE; |
| 1643 if( unixFileLock(pFile, &lock) ){ |
| 1644 tErrno = errno; |
| 1645 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
| 1646 } |
| 1647 |
| 1648 /* Drop the temporary PENDING lock */ |
| 1649 lock.l_start = PENDING_BYTE; |
| 1650 lock.l_len = 1L; |
| 1651 lock.l_type = F_UNLCK; |
| 1652 if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){ |
| 1653 /* This could happen with a network mount */ |
| 1654 tErrno = errno; |
| 1655 rc = SQLITE_IOERR_UNLOCK; |
| 1656 } |
| 1657 |
| 1658 if( rc ){ |
| 1659 if( rc!=SQLITE_BUSY ){ |
| 1660 storeLastErrno(pFile, tErrno); |
| 1661 } |
| 1662 goto end_lock; |
| 1663 }else{ |
| 1664 pFile->eFileLock = SHARED_LOCK; |
| 1665 pInode->nLock++; |
| 1666 pInode->nShared = 1; |
| 1667 } |
| 1668 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ |
| 1669 /* We are trying for an exclusive lock but another thread in this |
| 1670 ** same process is still holding a shared lock. */ |
| 1671 rc = SQLITE_BUSY; |
| 1672 }else{ |
| 1673 /* The request was for a RESERVED or EXCLUSIVE lock. It is |
| 1674 ** assumed that there is a SHARED or greater lock on the file |
| 1675 ** already. |
| 1676 */ |
| 1677 assert( 0!=pFile->eFileLock ); |
| 1678 lock.l_type = F_WRLCK; |
| 1679 |
| 1680 assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK ); |
| 1681 if( eFileLock==RESERVED_LOCK ){ |
| 1682 lock.l_start = RESERVED_BYTE; |
| 1683 lock.l_len = 1L; |
| 1684 }else{ |
| 1685 lock.l_start = SHARED_FIRST; |
| 1686 lock.l_len = SHARED_SIZE; |
| 1687 } |
| 1688 |
| 1689 if( unixFileLock(pFile, &lock) ){ |
| 1690 tErrno = errno; |
| 1691 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
| 1692 if( rc!=SQLITE_BUSY ){ |
| 1693 storeLastErrno(pFile, tErrno); |
| 1694 } |
| 1695 } |
| 1696 } |
| 1697 |
| 1698 |
| 1699 #ifdef SQLITE_DEBUG |
| 1700 /* Set up the transaction-counter change checking flags when |
| 1701 ** transitioning from a SHARED to a RESERVED lock. The change |
| 1702 ** from SHARED to RESERVED marks the beginning of a normal |
| 1703 ** write operation (not a hot journal rollback). |
| 1704 */ |
| 1705 if( rc==SQLITE_OK |
| 1706 && pFile->eFileLock<=SHARED_LOCK |
| 1707 && eFileLock==RESERVED_LOCK |
| 1708 ){ |
| 1709 pFile->transCntrChng = 0; |
| 1710 pFile->dbUpdate = 0; |
| 1711 pFile->inNormalWrite = 1; |
| 1712 } |
| 1713 #endif |
| 1714 |
| 1715 |
| 1716 if( rc==SQLITE_OK ){ |
| 1717 pFile->eFileLock = eFileLock; |
| 1718 pInode->eFileLock = eFileLock; |
| 1719 }else if( eFileLock==EXCLUSIVE_LOCK ){ |
| 1720 pFile->eFileLock = PENDING_LOCK; |
| 1721 pInode->eFileLock = PENDING_LOCK; |
| 1722 } |
| 1723 |
| 1724 end_lock: |
| 1725 unixLeaveMutex(); |
| 1726 OSTRACE(("LOCK %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock), |
| 1727 rc==SQLITE_OK ? "ok" : "failed")); |
| 1728 return rc; |
| 1729 } |
| 1730 |
| 1731 /* |
| 1732 ** Add the file descriptor used by file handle pFile to the corresponding |
| 1733 ** pUnused list. |
| 1734 */ |
| 1735 static void setPendingFd(unixFile *pFile){ |
| 1736 unixInodeInfo *pInode = pFile->pInode; |
| 1737 UnixUnusedFd *p = pFile->pUnused; |
| 1738 p->pNext = pInode->pUnused; |
| 1739 pInode->pUnused = p; |
| 1740 pFile->h = -1; |
| 1741 pFile->pUnused = 0; |
| 1742 } |
| 1743 |
| 1744 /* |
| 1745 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| 1746 ** must be either NO_LOCK or SHARED_LOCK. |
| 1747 ** |
| 1748 ** If the locking level of the file descriptor is already at or below |
| 1749 ** the requested locking level, this routine is a no-op. |
| 1750 ** |
| 1751 ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED |
| 1752 ** the byte range is divided into 2 parts and the first part is unlocked then |
| 1753 ** set to a read lock, then the other part is simply unlocked. This works |
| 1754 ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to |
| 1755 ** remove the write lock on a region when a read lock is set. |
| 1756 */ |
| 1757 static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){ |
| 1758 unixFile *pFile = (unixFile*)id; |
| 1759 unixInodeInfo *pInode; |
| 1760 struct flock lock; |
| 1761 int rc = SQLITE_OK; |
| 1762 |
| 1763 assert( pFile ); |
| 1764 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock, |
| 1765 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, |
| 1766 osGetpid(0))); |
| 1767 |
| 1768 assert( eFileLock<=SHARED_LOCK ); |
| 1769 if( pFile->eFileLock<=eFileLock ){ |
| 1770 return SQLITE_OK; |
| 1771 } |
| 1772 unixEnterMutex(); |
| 1773 pInode = pFile->pInode; |
| 1774 assert( pInode->nShared!=0 ); |
| 1775 if( pFile->eFileLock>SHARED_LOCK ){ |
| 1776 assert( pInode->eFileLock==pFile->eFileLock ); |
| 1777 |
| 1778 #ifdef SQLITE_DEBUG |
| 1779 /* When reducing a lock such that other processes can start |
| 1780 ** reading the database file again, make sure that the |
| 1781 ** transaction counter was updated if any part of the database |
| 1782 ** file changed. If the transaction counter is not updated, |
| 1783 ** other connections to the same file might not realize that |
| 1784 ** the file has changed and hence might not know to flush their |
| 1785 ** cache. The use of a stale cache can lead to database corruption. |
| 1786 */ |
| 1787 pFile->inNormalWrite = 0; |
| 1788 #endif |
| 1789 |
| 1790 /* downgrading to a shared lock on NFS involves clearing the write lock |
| 1791 ** before establishing the readlock - to avoid a race condition we downgrade |
| 1792 ** the lock in 2 blocks, so that part of the range will be covered by a |
| 1793 ** write lock until the rest is covered by a read lock: |
| 1794 ** 1: [WWWWW] |
| 1795 ** 2: [....W] |
| 1796 ** 3: [RRRRW] |
| 1797 ** 4: [RRRR.] |
| 1798 */ |
| 1799 if( eFileLock==SHARED_LOCK ){ |
| 1800 #if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE |
| 1801 (void)handleNFSUnlock; |
| 1802 assert( handleNFSUnlock==0 ); |
| 1803 #endif |
| 1804 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| 1805 if( handleNFSUnlock ){ |
| 1806 int tErrno; /* Error code from system call errors */ |
| 1807 off_t divSize = SHARED_SIZE - 1; |
| 1808 |
| 1809 lock.l_type = F_UNLCK; |
| 1810 lock.l_whence = SEEK_SET; |
| 1811 lock.l_start = SHARED_FIRST; |
| 1812 lock.l_len = divSize; |
| 1813 if( unixFileLock(pFile, &lock)==(-1) ){ |
| 1814 tErrno = errno; |
| 1815 rc = SQLITE_IOERR_UNLOCK; |
| 1816 storeLastErrno(pFile, tErrno); |
| 1817 goto end_unlock; |
| 1818 } |
| 1819 lock.l_type = F_RDLCK; |
| 1820 lock.l_whence = SEEK_SET; |
| 1821 lock.l_start = SHARED_FIRST; |
| 1822 lock.l_len = divSize; |
| 1823 if( unixFileLock(pFile, &lock)==(-1) ){ |
| 1824 tErrno = errno; |
| 1825 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK); |
| 1826 if( IS_LOCK_ERROR(rc) ){ |
| 1827 storeLastErrno(pFile, tErrno); |
| 1828 } |
| 1829 goto end_unlock; |
| 1830 } |
| 1831 lock.l_type = F_UNLCK; |
| 1832 lock.l_whence = SEEK_SET; |
| 1833 lock.l_start = SHARED_FIRST+divSize; |
| 1834 lock.l_len = SHARED_SIZE-divSize; |
| 1835 if( unixFileLock(pFile, &lock)==(-1) ){ |
| 1836 tErrno = errno; |
| 1837 rc = SQLITE_IOERR_UNLOCK; |
| 1838 storeLastErrno(pFile, tErrno); |
| 1839 goto end_unlock; |
| 1840 } |
| 1841 }else |
| 1842 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ |
| 1843 { |
| 1844 lock.l_type = F_RDLCK; |
| 1845 lock.l_whence = SEEK_SET; |
| 1846 lock.l_start = SHARED_FIRST; |
| 1847 lock.l_len = SHARED_SIZE; |
| 1848 if( unixFileLock(pFile, &lock) ){ |
| 1849 /* In theory, the call to unixFileLock() cannot fail because another |
| 1850 ** process is holding an incompatible lock. If it does, this |
| 1851 ** indicates that the other process is not following the locking |
| 1852 ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning |
| 1853 ** SQLITE_BUSY would confuse the upper layer (in practice it causes |
| 1854 ** an assert to fail). */ |
| 1855 rc = SQLITE_IOERR_RDLOCK; |
| 1856 storeLastErrno(pFile, errno); |
| 1857 goto end_unlock; |
| 1858 } |
| 1859 } |
| 1860 } |
| 1861 lock.l_type = F_UNLCK; |
| 1862 lock.l_whence = SEEK_SET; |
| 1863 lock.l_start = PENDING_BYTE; |
| 1864 lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE ); |
| 1865 if( unixFileLock(pFile, &lock)==0 ){ |
| 1866 pInode->eFileLock = SHARED_LOCK; |
| 1867 }else{ |
| 1868 rc = SQLITE_IOERR_UNLOCK; |
| 1869 storeLastErrno(pFile, errno); |
| 1870 goto end_unlock; |
| 1871 } |
| 1872 } |
| 1873 if( eFileLock==NO_LOCK ){ |
| 1874 /* Decrement the shared lock counter. Release the lock using an |
| 1875 ** OS call only when all threads in this same process have released |
| 1876 ** the lock. |
| 1877 */ |
| 1878 pInode->nShared--; |
| 1879 if( pInode->nShared==0 ){ |
| 1880 lock.l_type = F_UNLCK; |
| 1881 lock.l_whence = SEEK_SET; |
| 1882 lock.l_start = lock.l_len = 0L; |
| 1883 if( unixFileLock(pFile, &lock)==0 ){ |
| 1884 pInode->eFileLock = NO_LOCK; |
| 1885 }else{ |
| 1886 rc = SQLITE_IOERR_UNLOCK; |
| 1887 storeLastErrno(pFile, errno); |
| 1888 pInode->eFileLock = NO_LOCK; |
| 1889 pFile->eFileLock = NO_LOCK; |
| 1890 } |
| 1891 } |
| 1892 |
| 1893 /* Decrement the count of locks against this same file. When the |
| 1894 ** count reaches zero, close any other file descriptors whose close |
| 1895 ** was deferred because of outstanding locks. |
| 1896 */ |
| 1897 pInode->nLock--; |
| 1898 assert( pInode->nLock>=0 ); |
| 1899 if( pInode->nLock==0 ){ |
| 1900 closePendingFds(pFile); |
| 1901 } |
| 1902 } |
| 1903 |
| 1904 end_unlock: |
| 1905 unixLeaveMutex(); |
| 1906 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock; |
| 1907 return rc; |
| 1908 } |
| 1909 |
| 1910 /* |
| 1911 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| 1912 ** must be either NO_LOCK or SHARED_LOCK. |
| 1913 ** |
| 1914 ** If the locking level of the file descriptor is already at or below |
| 1915 ** the requested locking level, this routine is a no-op. |
| 1916 */ |
| 1917 static int unixUnlock(sqlite3_file *id, int eFileLock){ |
| 1918 #if SQLITE_MAX_MMAP_SIZE>0 |
| 1919 assert( eFileLock==SHARED_LOCK || ((unixFile *)id)->nFetchOut==0 ); |
| 1920 #endif |
| 1921 return posixUnlock(id, eFileLock, 0); |
| 1922 } |
| 1923 |
| 1924 #if SQLITE_MAX_MMAP_SIZE>0 |
| 1925 static int unixMapfile(unixFile *pFd, i64 nByte); |
| 1926 static void unixUnmapfile(unixFile *pFd); |
| 1927 #endif |
| 1928 |
| 1929 /* |
| 1930 ** This function performs the parts of the "close file" operation |
| 1931 ** common to all locking schemes. It closes the directory and file |
| 1932 ** handles, if they are valid, and sets all fields of the unixFile |
| 1933 ** structure to 0. |
| 1934 ** |
| 1935 ** It is *not* necessary to hold the mutex when this routine is called, |
| 1936 ** even on VxWorks. A mutex will be acquired on VxWorks by the |
| 1937 ** vxworksReleaseFileId() routine. |
| 1938 */ |
| 1939 static int closeUnixFile(sqlite3_file *id){ |
| 1940 unixFile *pFile = (unixFile*)id; |
| 1941 #if SQLITE_MAX_MMAP_SIZE>0 |
| 1942 unixUnmapfile(pFile); |
| 1943 #endif |
| 1944 if( pFile->h>=0 ){ |
| 1945 robust_close(pFile, pFile->h, __LINE__); |
| 1946 pFile->h = -1; |
| 1947 } |
| 1948 #if OS_VXWORKS |
| 1949 if( pFile->pId ){ |
| 1950 if( pFile->ctrlFlags & UNIXFILE_DELETE ){ |
| 1951 osUnlink(pFile->pId->zCanonicalName); |
| 1952 } |
| 1953 vxworksReleaseFileId(pFile->pId); |
| 1954 pFile->pId = 0; |
| 1955 } |
| 1956 #endif |
| 1957 #ifdef SQLITE_UNLINK_AFTER_CLOSE |
| 1958 if( pFile->ctrlFlags & UNIXFILE_DELETE ){ |
| 1959 osUnlink(pFile->zPath); |
| 1960 sqlite3_free(*(char**)&pFile->zPath); |
| 1961 pFile->zPath = 0; |
| 1962 } |
| 1963 #endif |
| 1964 OSTRACE(("CLOSE %-3d\n", pFile->h)); |
| 1965 OpenCounter(-1); |
| 1966 sqlite3_free(pFile->pUnused); |
| 1967 memset(pFile, 0, sizeof(unixFile)); |
| 1968 return SQLITE_OK; |
| 1969 } |
| 1970 |
| 1971 /* |
| 1972 ** Close a file. |
| 1973 */ |
| 1974 static int unixClose(sqlite3_file *id){ |
| 1975 int rc = SQLITE_OK; |
| 1976 unixFile *pFile = (unixFile *)id; |
| 1977 verifyDbFile(pFile); |
| 1978 unixUnlock(id, NO_LOCK); |
| 1979 unixEnterMutex(); |
| 1980 |
| 1981 /* unixFile.pInode is always valid here. Otherwise, a different close |
| 1982 ** routine (e.g. nolockClose()) would be called instead. |
| 1983 */ |
| 1984 assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 ); |
| 1985 if( ALWAYS(pFile->pInode) && pFile->pInode->nLock ){ |
| 1986 /* If there are outstanding locks, do not actually close the file just |
| 1987 ** yet because that would clear those locks. Instead, add the file |
| 1988 ** descriptor to pInode->pUnused list. It will be automatically closed |
| 1989 ** when the last lock is cleared. |
| 1990 */ |
| 1991 setPendingFd(pFile); |
| 1992 } |
| 1993 releaseInodeInfo(pFile); |
| 1994 rc = closeUnixFile(id); |
| 1995 unixLeaveMutex(); |
| 1996 return rc; |
| 1997 } |
| 1998 |
| 1999 /************** End of the posix advisory lock implementation ***************** |
| 2000 ******************************************************************************/ |
| 2001 |
| 2002 /****************************************************************************** |
| 2003 ****************************** No-op Locking ********************************** |
| 2004 ** |
| 2005 ** Of the various locking implementations available, this is by far the |
| 2006 ** simplest: locking is ignored. No attempt is made to lock the database |
| 2007 ** file for reading or writing. |
| 2008 ** |
| 2009 ** This locking mode is appropriate for use on read-only databases |
| 2010 ** (ex: databases that are burned into CD-ROM, for example.) It can |
| 2011 ** also be used if the application employs some external mechanism to |
| 2012 ** prevent simultaneous access of the same database by two or more |
| 2013 ** database connections. But there is a serious risk of database |
| 2014 ** corruption if this locking mode is used in situations where multiple |
| 2015 ** database connections are accessing the same database file at the same |
| 2016 ** time and one or more of those connections are writing. |
| 2017 */ |
| 2018 |
| 2019 static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){ |
| 2020 UNUSED_PARAMETER(NotUsed); |
| 2021 *pResOut = 0; |
| 2022 return SQLITE_OK; |
| 2023 } |
| 2024 static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){ |
| 2025 UNUSED_PARAMETER2(NotUsed, NotUsed2); |
| 2026 return SQLITE_OK; |
| 2027 } |
| 2028 static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){ |
| 2029 UNUSED_PARAMETER2(NotUsed, NotUsed2); |
| 2030 return SQLITE_OK; |
| 2031 } |
| 2032 |
| 2033 /* |
| 2034 ** Close the file. |
| 2035 */ |
| 2036 static int nolockClose(sqlite3_file *id) { |
| 2037 return closeUnixFile(id); |
| 2038 } |
| 2039 |
| 2040 /******************* End of the no-op lock implementation ********************* |
| 2041 ******************************************************************************/ |
| 2042 |
| 2043 /****************************************************************************** |
| 2044 ************************* Begin dot-file Locking ****************************** |
| 2045 ** |
| 2046 ** The dotfile locking implementation uses the existence of separate lock |
| 2047 ** files (really a directory) to control access to the database. This works |
| 2048 ** on just about every filesystem imaginable. But there are serious downsides: |
| 2049 ** |
| 2050 ** (1) There is zero concurrency. A single reader blocks all other |
| 2051 ** connections from reading or writing the database. |
| 2052 ** |
| 2053 ** (2) An application crash or power loss can leave stale lock files |
| 2054 ** sitting around that need to be cleared manually. |
| 2055 ** |
| 2056 ** Nevertheless, a dotlock is an appropriate locking mode for use if no |
| 2057 ** other locking strategy is available. |
| 2058 ** |
| 2059 ** Dotfile locking works by creating a subdirectory in the same directory as |
| 2060 ** the database and with the same name but with a ".lock" extension added. |
| 2061 ** The existence of a lock directory implies an EXCLUSIVE lock. All other |
| 2062 ** lock types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE. |
| 2063 */ |
| 2064 |
| 2065 /* |
| 2066 ** The file suffix added to the data base filename in order to create the |
| 2067 ** lock directory. |
| 2068 */ |
| 2069 #define DOTLOCK_SUFFIX ".lock" |
| 2070 |
| 2071 /* |
| 2072 ** This routine checks if there is a RESERVED lock held on the specified |
| 2073 ** file by this or any other process. If such a lock is held, set *pResOut |
| 2074 ** to a non-zero value otherwise *pResOut is set to zero. The return value |
| 2075 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
| 2076 ** |
| 2077 ** In dotfile locking, either a lock exists or it does not. So in this |
| 2078 ** variation of CheckReservedLock(), *pResOut is set to true if any lock |
| 2079 ** is held on the file and false if the file is unlocked. |
| 2080 */ |
| 2081 static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) { |
| 2082 int rc = SQLITE_OK; |
| 2083 int reserved = 0; |
| 2084 unixFile *pFile = (unixFile*)id; |
| 2085 |
| 2086 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
| 2087 |
| 2088 assert( pFile ); |
| 2089 reserved = osAccess((const char*)pFile->lockingContext, 0)==0; |
| 2090 OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved)); |
| 2091 *pResOut = reserved; |
| 2092 return rc; |
| 2093 } |
| 2094 |
| 2095 /* |
| 2096 ** Lock the file with the lock specified by parameter eFileLock - one |
| 2097 ** of the following: |
| 2098 ** |
| 2099 ** (1) SHARED_LOCK |
| 2100 ** (2) RESERVED_LOCK |
| 2101 ** (3) PENDING_LOCK |
| 2102 ** (4) EXCLUSIVE_LOCK |
| 2103 ** |
| 2104 ** Sometimes when requesting one lock state, additional lock states |
| 2105 ** are inserted in between. The locking might fail on one of the later |
| 2106 ** transitions leaving the lock state different from what it started but |
| 2107 ** still short of its goal. The following chart shows the allowed |
| 2108 ** transitions and the inserted intermediate states: |
| 2109 ** |
| 2110 ** UNLOCKED -> SHARED |
| 2111 ** SHARED -> RESERVED |
| 2112 ** SHARED -> (PENDING) -> EXCLUSIVE |
| 2113 ** RESERVED -> (PENDING) -> EXCLUSIVE |
| 2114 ** PENDING -> EXCLUSIVE |
| 2115 ** |
| 2116 ** This routine will only increase a lock. Use the sqlite3OsUnlock() |
| 2117 ** routine to lower a locking level. |
| 2118 ** |
| 2119 ** With dotfile locking, we really only support state (4): EXCLUSIVE. |
| 2120 ** But we track the other locking levels internally. |
| 2121 */ |
| 2122 static int dotlockLock(sqlite3_file *id, int eFileLock) { |
| 2123 unixFile *pFile = (unixFile*)id; |
| 2124 char *zLockFile = (char *)pFile->lockingContext; |
| 2125 int rc = SQLITE_OK; |
| 2126 |
| 2127 |
| 2128 /* If we have any lock, then the lock file already exists. All we have |
| 2129 ** to do is adjust our internal record of the lock level. |
| 2130 */ |
| 2131 if( pFile->eFileLock > NO_LOCK ){ |
| 2132 pFile->eFileLock = eFileLock; |
| 2133 /* Always update the timestamp on the old file */ |
| 2134 #ifdef HAVE_UTIME |
| 2135 utime(zLockFile, NULL); |
| 2136 #else |
| 2137 utimes(zLockFile, NULL); |
| 2138 #endif |
| 2139 return SQLITE_OK; |
| 2140 } |
| 2141 |
| 2142 /* grab an exclusive lock */ |
| 2143 rc = osMkdir(zLockFile, 0777); |
| 2144 if( rc<0 ){ |
| 2145 /* failed to open/create the lock directory */ |
| 2146 int tErrno = errno; |
| 2147 if( EEXIST == tErrno ){ |
| 2148 rc = SQLITE_BUSY; |
| 2149 } else { |
| 2150 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
| 2151 if( rc!=SQLITE_BUSY ){ |
| 2152 storeLastErrno(pFile, tErrno); |
| 2153 } |
| 2154 } |
| 2155 return rc; |
| 2156 } |
| 2157 |
| 2158 /* got it, set the type and return ok */ |
| 2159 pFile->eFileLock = eFileLock; |
| 2160 return rc; |
| 2161 } |
| 2162 |
| 2163 /* |
| 2164 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| 2165 ** must be either NO_LOCK or SHARED_LOCK. |
| 2166 ** |
| 2167 ** If the locking level of the file descriptor is already at or below |
| 2168 ** the requested locking level, this routine is a no-op. |
| 2169 ** |
| 2170 ** When the locking level reaches NO_LOCK, delete the lock file. |
| 2171 */ |
| 2172 static int dotlockUnlock(sqlite3_file *id, int eFileLock) { |
| 2173 unixFile *pFile = (unixFile*)id; |
| 2174 char *zLockFile = (char *)pFile->lockingContext; |
| 2175 int rc; |
| 2176 |
| 2177 assert( pFile ); |
| 2178 OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock, |
| 2179 pFile->eFileLock, osGetpid(0))); |
| 2180 assert( eFileLock<=SHARED_LOCK ); |
| 2181 |
| 2182 /* no-op if possible */ |
| 2183 if( pFile->eFileLock==eFileLock ){ |
| 2184 return SQLITE_OK; |
| 2185 } |
| 2186 |
| 2187 /* To downgrade to shared, simply update our internal notion of the |
| 2188 ** lock state. No need to mess with the file on disk. |
| 2189 */ |
| 2190 if( eFileLock==SHARED_LOCK ){ |
| 2191 pFile->eFileLock = SHARED_LOCK; |
| 2192 return SQLITE_OK; |
| 2193 } |
| 2194 |
| 2195 /* To fully unlock the database, delete the lock file */ |
| 2196 assert( eFileLock==NO_LOCK ); |
| 2197 rc = osRmdir(zLockFile); |
| 2198 if( rc<0 ){ |
| 2199 int tErrno = errno; |
| 2200 if( tErrno==ENOENT ){ |
| 2201 rc = SQLITE_OK; |
| 2202 }else{ |
| 2203 rc = SQLITE_IOERR_UNLOCK; |
| 2204 storeLastErrno(pFile, tErrno); |
| 2205 } |
| 2206 return rc; |
| 2207 } |
| 2208 pFile->eFileLock = NO_LOCK; |
| 2209 return SQLITE_OK; |
| 2210 } |
| 2211 |
| 2212 /* |
| 2213 ** Close a file. Make sure the lock has been released before closing. |
| 2214 */ |
| 2215 static int dotlockClose(sqlite3_file *id) { |
| 2216 unixFile *pFile = (unixFile*)id; |
| 2217 assert( id!=0 ); |
| 2218 dotlockUnlock(id, NO_LOCK); |
| 2219 sqlite3_free(pFile->lockingContext); |
| 2220 return closeUnixFile(id); |
| 2221 } |
| 2222 /****************** End of the dot-file lock implementation ******************* |
| 2223 ******************************************************************************/ |
| 2224 |
| 2225 /****************************************************************************** |
| 2226 ************************** Begin flock Locking ******************************** |
| 2227 ** |
| 2228 ** Use the flock() system call to do file locking. |
| 2229 ** |
| 2230 ** flock() locking is like dot-file locking in that the various |
| 2231 ** fine-grain locking levels supported by SQLite are collapsed into |
| 2232 ** a single exclusive lock. In other words, SHARED, RESERVED, and |
| 2233 ** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite |
| 2234 ** still works when you do this, but concurrency is reduced since |
| 2235 ** only a single process can be reading the database at a time. |
| 2236 ** |
| 2237 ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off |
| 2238 */ |
| 2239 #if SQLITE_ENABLE_LOCKING_STYLE |
| 2240 |
| 2241 /* |
| 2242 ** Retry flock() calls that fail with EINTR |
| 2243 */ |
| 2244 #ifdef EINTR |
| 2245 static int robust_flock(int fd, int op){ |
| 2246 int rc; |
| 2247 do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR ); |
| 2248 return rc; |
| 2249 } |
| 2250 #else |
| 2251 # define robust_flock(a,b) flock(a,b) |
| 2252 #endif |
| 2253 |
| 2254 |
| 2255 /* |
| 2256 ** This routine checks if there is a RESERVED lock held on the specified |
| 2257 ** file by this or any other process. If such a lock is held, set *pResOut |
| 2258 ** to a non-zero value otherwise *pResOut is set to zero. The return value |
| 2259 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
| 2260 */ |
| 2261 static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){ |
| 2262 int rc = SQLITE_OK; |
| 2263 int reserved = 0; |
| 2264 unixFile *pFile = (unixFile*)id; |
| 2265 |
| 2266 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
| 2267 |
| 2268 assert( pFile ); |
| 2269 |
| 2270 /* Check if a thread in this process holds such a lock */ |
| 2271 if( pFile->eFileLock>SHARED_LOCK ){ |
| 2272 reserved = 1; |
| 2273 } |
| 2274 |
| 2275 /* Otherwise see if some other process holds it. */ |
| 2276 if( !reserved ){ |
| 2277 /* attempt to get the lock */ |
| 2278 int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB); |
| 2279 if( !lrc ){ |
| 2280 /* got the lock, unlock it */ |
| 2281 lrc = robust_flock(pFile->h, LOCK_UN); |
| 2282 if ( lrc ) { |
| 2283 int tErrno = errno; |
| 2284 /* unlock failed with an error */ |
| 2285 lrc = SQLITE_IOERR_UNLOCK; |
| 2286 storeLastErrno(pFile, tErrno); |
| 2287 rc = lrc; |
| 2288 } |
| 2289 } else { |
| 2290 int tErrno = errno; |
| 2291 reserved = 1; |
| 2292 /* someone else might have it reserved */ |
| 2293 lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
| 2294 if( IS_LOCK_ERROR(lrc) ){ |
| 2295 storeLastErrno(pFile, tErrno); |
| 2296 rc = lrc; |
| 2297 } |
| 2298 } |
| 2299 } |
| 2300 OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved)); |
| 2301 |
| 2302 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS |
| 2303 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){ |
| 2304 rc = SQLITE_OK; |
| 2305 reserved=1; |
| 2306 } |
| 2307 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ |
| 2308 *pResOut = reserved; |
| 2309 return rc; |
| 2310 } |
| 2311 |
| 2312 /* |
| 2313 ** Lock the file with the lock specified by parameter eFileLock - one |
| 2314 ** of the following: |
| 2315 ** |
| 2316 ** (1) SHARED_LOCK |
| 2317 ** (2) RESERVED_LOCK |
| 2318 ** (3) PENDING_LOCK |
| 2319 ** (4) EXCLUSIVE_LOCK |
| 2320 ** |
| 2321 ** Sometimes when requesting one lock state, additional lock states |
| 2322 ** are inserted in between. The locking might fail on one of the later |
| 2323 ** transitions leaving the lock state different from what it started but |
| 2324 ** still short of its goal. The following chart shows the allowed |
| 2325 ** transitions and the inserted intermediate states: |
| 2326 ** |
| 2327 ** UNLOCKED -> SHARED |
| 2328 ** SHARED -> RESERVED |
| 2329 ** SHARED -> (PENDING) -> EXCLUSIVE |
| 2330 ** RESERVED -> (PENDING) -> EXCLUSIVE |
| 2331 ** PENDING -> EXCLUSIVE |
| 2332 ** |
| 2333 ** flock() only really support EXCLUSIVE locks. We track intermediate |
| 2334 ** lock states in the sqlite3_file structure, but all locks SHARED or |
| 2335 ** above are really EXCLUSIVE locks and exclude all other processes from |
| 2336 ** access the file. |
| 2337 ** |
| 2338 ** This routine will only increase a lock. Use the sqlite3OsUnlock() |
| 2339 ** routine to lower a locking level. |
| 2340 */ |
| 2341 static int flockLock(sqlite3_file *id, int eFileLock) { |
| 2342 int rc = SQLITE_OK; |
| 2343 unixFile *pFile = (unixFile*)id; |
| 2344 |
| 2345 assert( pFile ); |
| 2346 |
| 2347 /* if we already have a lock, it is exclusive. |
| 2348 ** Just adjust level and punt on outta here. */ |
| 2349 if (pFile->eFileLock > NO_LOCK) { |
| 2350 pFile->eFileLock = eFileLock; |
| 2351 return SQLITE_OK; |
| 2352 } |
| 2353 |
| 2354 /* grab an exclusive lock */ |
| 2355 |
| 2356 if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) { |
| 2357 int tErrno = errno; |
| 2358 /* didn't get, must be busy */ |
| 2359 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
| 2360 if( IS_LOCK_ERROR(rc) ){ |
| 2361 storeLastErrno(pFile, tErrno); |
| 2362 } |
| 2363 } else { |
| 2364 /* got it, set the type and return ok */ |
| 2365 pFile->eFileLock = eFileLock; |
| 2366 } |
| 2367 OSTRACE(("LOCK %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock), |
| 2368 rc==SQLITE_OK ? "ok" : "failed")); |
| 2369 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS |
| 2370 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){ |
| 2371 rc = SQLITE_BUSY; |
| 2372 } |
| 2373 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ |
| 2374 return rc; |
| 2375 } |
| 2376 |
| 2377 |
| 2378 /* |
| 2379 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| 2380 ** must be either NO_LOCK or SHARED_LOCK. |
| 2381 ** |
| 2382 ** If the locking level of the file descriptor is already at or below |
| 2383 ** the requested locking level, this routine is a no-op. |
| 2384 */ |
| 2385 static int flockUnlock(sqlite3_file *id, int eFileLock) { |
| 2386 unixFile *pFile = (unixFile*)id; |
| 2387 |
| 2388 assert( pFile ); |
| 2389 OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock, |
| 2390 pFile->eFileLock, osGetpid(0))); |
| 2391 assert( eFileLock<=SHARED_LOCK ); |
| 2392 |
| 2393 /* no-op if possible */ |
| 2394 if( pFile->eFileLock==eFileLock ){ |
| 2395 return SQLITE_OK; |
| 2396 } |
| 2397 |
| 2398 /* shared can just be set because we always have an exclusive */ |
| 2399 if (eFileLock==SHARED_LOCK) { |
| 2400 pFile->eFileLock = eFileLock; |
| 2401 return SQLITE_OK; |
| 2402 } |
| 2403 |
| 2404 /* no, really, unlock. */ |
| 2405 if( robust_flock(pFile->h, LOCK_UN) ){ |
| 2406 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS |
| 2407 return SQLITE_OK; |
| 2408 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ |
| 2409 return SQLITE_IOERR_UNLOCK; |
| 2410 }else{ |
| 2411 pFile->eFileLock = NO_LOCK; |
| 2412 return SQLITE_OK; |
| 2413 } |
| 2414 } |
| 2415 |
| 2416 /* |
| 2417 ** Close a file. |
| 2418 */ |
| 2419 static int flockClose(sqlite3_file *id) { |
| 2420 assert( id!=0 ); |
| 2421 flockUnlock(id, NO_LOCK); |
| 2422 return closeUnixFile(id); |
| 2423 } |
| 2424 |
| 2425 #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */ |
| 2426 |
| 2427 /******************* End of the flock lock implementation ********************* |
| 2428 ******************************************************************************/ |
| 2429 |
| 2430 /****************************************************************************** |
| 2431 ************************ Begin Named Semaphore Locking ************************ |
| 2432 ** |
| 2433 ** Named semaphore locking is only supported on VxWorks. |
| 2434 ** |
| 2435 ** Semaphore locking is like dot-lock and flock in that it really only |
| 2436 ** supports EXCLUSIVE locking. Only a single process can read or write |
| 2437 ** the database file at a time. This reduces potential concurrency, but |
| 2438 ** makes the lock implementation much easier. |
| 2439 */ |
| 2440 #if OS_VXWORKS |
| 2441 |
| 2442 /* |
| 2443 ** This routine checks if there is a RESERVED lock held on the specified |
| 2444 ** file by this or any other process. If such a lock is held, set *pResOut |
| 2445 ** to a non-zero value otherwise *pResOut is set to zero. The return value |
| 2446 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
| 2447 */ |
| 2448 static int semXCheckReservedLock(sqlite3_file *id, int *pResOut) { |
| 2449 int rc = SQLITE_OK; |
| 2450 int reserved = 0; |
| 2451 unixFile *pFile = (unixFile*)id; |
| 2452 |
| 2453 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
| 2454 |
| 2455 assert( pFile ); |
| 2456 |
| 2457 /* Check if a thread in this process holds such a lock */ |
| 2458 if( pFile->eFileLock>SHARED_LOCK ){ |
| 2459 reserved = 1; |
| 2460 } |
| 2461 |
| 2462 /* Otherwise see if some other process holds it. */ |
| 2463 if( !reserved ){ |
| 2464 sem_t *pSem = pFile->pInode->pSem; |
| 2465 |
| 2466 if( sem_trywait(pSem)==-1 ){ |
| 2467 int tErrno = errno; |
| 2468 if( EAGAIN != tErrno ){ |
| 2469 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK); |
| 2470 storeLastErrno(pFile, tErrno); |
| 2471 } else { |
| 2472 /* someone else has the lock when we are in NO_LOCK */ |
| 2473 reserved = (pFile->eFileLock < SHARED_LOCK); |
| 2474 } |
| 2475 }else{ |
| 2476 /* we could have it if we want it */ |
| 2477 sem_post(pSem); |
| 2478 } |
| 2479 } |
| 2480 OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved)); |
| 2481 |
| 2482 *pResOut = reserved; |
| 2483 return rc; |
| 2484 } |
| 2485 |
| 2486 /* |
| 2487 ** Lock the file with the lock specified by parameter eFileLock - one |
| 2488 ** of the following: |
| 2489 ** |
| 2490 ** (1) SHARED_LOCK |
| 2491 ** (2) RESERVED_LOCK |
| 2492 ** (3) PENDING_LOCK |
| 2493 ** (4) EXCLUSIVE_LOCK |
| 2494 ** |
| 2495 ** Sometimes when requesting one lock state, additional lock states |
| 2496 ** are inserted in between. The locking might fail on one of the later |
| 2497 ** transitions leaving the lock state different from what it started but |
| 2498 ** still short of its goal. The following chart shows the allowed |
| 2499 ** transitions and the inserted intermediate states: |
| 2500 ** |
| 2501 ** UNLOCKED -> SHARED |
| 2502 ** SHARED -> RESERVED |
| 2503 ** SHARED -> (PENDING) -> EXCLUSIVE |
| 2504 ** RESERVED -> (PENDING) -> EXCLUSIVE |
| 2505 ** PENDING -> EXCLUSIVE |
| 2506 ** |
| 2507 ** Semaphore locks only really support EXCLUSIVE locks. We track intermediate |
| 2508 ** lock states in the sqlite3_file structure, but all locks SHARED or |
| 2509 ** above are really EXCLUSIVE locks and exclude all other processes from |
| 2510 ** access the file. |
| 2511 ** |
| 2512 ** This routine will only increase a lock. Use the sqlite3OsUnlock() |
| 2513 ** routine to lower a locking level. |
| 2514 */ |
| 2515 static int semXLock(sqlite3_file *id, int eFileLock) { |
| 2516 unixFile *pFile = (unixFile*)id; |
| 2517 sem_t *pSem = pFile->pInode->pSem; |
| 2518 int rc = SQLITE_OK; |
| 2519 |
| 2520 /* if we already have a lock, it is exclusive. |
| 2521 ** Just adjust level and punt on outta here. */ |
| 2522 if (pFile->eFileLock > NO_LOCK) { |
| 2523 pFile->eFileLock = eFileLock; |
| 2524 rc = SQLITE_OK; |
| 2525 goto sem_end_lock; |
| 2526 } |
| 2527 |
| 2528 /* lock semaphore now but bail out when already locked. */ |
| 2529 if( sem_trywait(pSem)==-1 ){ |
| 2530 rc = SQLITE_BUSY; |
| 2531 goto sem_end_lock; |
| 2532 } |
| 2533 |
| 2534 /* got it, set the type and return ok */ |
| 2535 pFile->eFileLock = eFileLock; |
| 2536 |
| 2537 sem_end_lock: |
| 2538 return rc; |
| 2539 } |
| 2540 |
| 2541 /* |
| 2542 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| 2543 ** must be either NO_LOCK or SHARED_LOCK. |
| 2544 ** |
| 2545 ** If the locking level of the file descriptor is already at or below |
| 2546 ** the requested locking level, this routine is a no-op. |
| 2547 */ |
| 2548 static int semXUnlock(sqlite3_file *id, int eFileLock) { |
| 2549 unixFile *pFile = (unixFile*)id; |
| 2550 sem_t *pSem = pFile->pInode->pSem; |
| 2551 |
| 2552 assert( pFile ); |
| 2553 assert( pSem ); |
| 2554 OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock, |
| 2555 pFile->eFileLock, osGetpid(0))); |
| 2556 assert( eFileLock<=SHARED_LOCK ); |
| 2557 |
| 2558 /* no-op if possible */ |
| 2559 if( pFile->eFileLock==eFileLock ){ |
| 2560 return SQLITE_OK; |
| 2561 } |
| 2562 |
| 2563 /* shared can just be set because we always have an exclusive */ |
| 2564 if (eFileLock==SHARED_LOCK) { |
| 2565 pFile->eFileLock = eFileLock; |
| 2566 return SQLITE_OK; |
| 2567 } |
| 2568 |
| 2569 /* no, really unlock. */ |
| 2570 if ( sem_post(pSem)==-1 ) { |
| 2571 int rc, tErrno = errno; |
| 2572 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); |
| 2573 if( IS_LOCK_ERROR(rc) ){ |
| 2574 storeLastErrno(pFile, tErrno); |
| 2575 } |
| 2576 return rc; |
| 2577 } |
| 2578 pFile->eFileLock = NO_LOCK; |
| 2579 return SQLITE_OK; |
| 2580 } |
| 2581 |
| 2582 /* |
| 2583 ** Close a file. |
| 2584 */ |
| 2585 static int semXClose(sqlite3_file *id) { |
| 2586 if( id ){ |
| 2587 unixFile *pFile = (unixFile*)id; |
| 2588 semXUnlock(id, NO_LOCK); |
| 2589 assert( pFile ); |
| 2590 unixEnterMutex(); |
| 2591 releaseInodeInfo(pFile); |
| 2592 unixLeaveMutex(); |
| 2593 closeUnixFile(id); |
| 2594 } |
| 2595 return SQLITE_OK; |
| 2596 } |
| 2597 |
| 2598 #endif /* OS_VXWORKS */ |
| 2599 /* |
| 2600 ** Named semaphore locking is only available on VxWorks. |
| 2601 ** |
| 2602 *************** End of the named semaphore lock implementation **************** |
| 2603 ******************************************************************************/ |
| 2604 |
| 2605 |
| 2606 /****************************************************************************** |
| 2607 *************************** Begin AFP Locking ********************************* |
| 2608 ** |
| 2609 ** AFP is the Apple Filing Protocol. AFP is a network filesystem found |
| 2610 ** on Apple Macintosh computers - both OS9 and OSX. |
| 2611 ** |
| 2612 ** Third-party implementations of AFP are available. But this code here |
| 2613 ** only works on OSX. |
| 2614 */ |
| 2615 |
| 2616 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| 2617 /* |
| 2618 ** The afpLockingContext structure contains all afp lock specific state |
| 2619 */ |
| 2620 typedef struct afpLockingContext afpLockingContext; |
| 2621 struct afpLockingContext { |
| 2622 int reserved; |
| 2623 const char *dbPath; /* Name of the open file */ |
| 2624 }; |
| 2625 |
| 2626 struct ByteRangeLockPB2 |
| 2627 { |
| 2628 unsigned long long offset; /* offset to first byte to lock */ |
| 2629 unsigned long long length; /* nbr of bytes to lock */ |
| 2630 unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */ |
| 2631 unsigned char unLockFlag; /* 1 = unlock, 0 = lock */ |
| 2632 unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */ |
| 2633 int fd; /* file desc to assoc this lock with */ |
| 2634 }; |
| 2635 |
| 2636 #define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2) |
| 2637 |
| 2638 /* |
| 2639 ** This is a utility for setting or clearing a bit-range lock on an |
| 2640 ** AFP filesystem. |
| 2641 ** |
| 2642 ** Return SQLITE_OK on success, SQLITE_BUSY on failure. |
| 2643 */ |
| 2644 static int afpSetLock( |
| 2645 const char *path, /* Name of the file to be locked or unlocked */ |
| 2646 unixFile *pFile, /* Open file descriptor on path */ |
| 2647 unsigned long long offset, /* First byte to be locked */ |
| 2648 unsigned long long length, /* Number of bytes to lock */ |
| 2649 int setLockFlag /* True to set lock. False to clear lock */ |
| 2650 ){ |
| 2651 struct ByteRangeLockPB2 pb; |
| 2652 int err; |
| 2653 |
| 2654 pb.unLockFlag = setLockFlag ? 0 : 1; |
| 2655 pb.startEndFlag = 0; |
| 2656 pb.offset = offset; |
| 2657 pb.length = length; |
| 2658 pb.fd = pFile->h; |
| 2659 |
| 2660 OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n", |
| 2661 (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""), |
| 2662 offset, length)); |
| 2663 err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0); |
| 2664 if ( err==-1 ) { |
| 2665 int rc; |
| 2666 int tErrno = errno; |
| 2667 OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n", |
| 2668 path, tErrno, strerror(tErrno))); |
| 2669 #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS |
| 2670 rc = SQLITE_BUSY; |
| 2671 #else |
| 2672 rc = sqliteErrorFromPosixError(tErrno, |
| 2673 setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK); |
| 2674 #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */ |
| 2675 if( IS_LOCK_ERROR(rc) ){ |
| 2676 storeLastErrno(pFile, tErrno); |
| 2677 } |
| 2678 return rc; |
| 2679 } else { |
| 2680 return SQLITE_OK; |
| 2681 } |
| 2682 } |
| 2683 |
| 2684 /* |
| 2685 ** This routine checks if there is a RESERVED lock held on the specified |
| 2686 ** file by this or any other process. If such a lock is held, set *pResOut |
| 2687 ** to a non-zero value otherwise *pResOut is set to zero. The return value |
| 2688 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
| 2689 */ |
| 2690 static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){ |
| 2691 int rc = SQLITE_OK; |
| 2692 int reserved = 0; |
| 2693 unixFile *pFile = (unixFile*)id; |
| 2694 afpLockingContext *context; |
| 2695 |
| 2696 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
| 2697 |
| 2698 assert( pFile ); |
| 2699 context = (afpLockingContext *) pFile->lockingContext; |
| 2700 if( context->reserved ){ |
| 2701 *pResOut = 1; |
| 2702 return SQLITE_OK; |
| 2703 } |
| 2704 unixEnterMutex(); /* Because pFile->pInode is shared across threads */ |
| 2705 |
| 2706 /* Check if a thread in this process holds such a lock */ |
| 2707 if( pFile->pInode->eFileLock>SHARED_LOCK ){ |
| 2708 reserved = 1; |
| 2709 } |
| 2710 |
| 2711 /* Otherwise see if some other process holds it. |
| 2712 */ |
| 2713 if( !reserved ){ |
| 2714 /* lock the RESERVED byte */ |
| 2715 int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); |
| 2716 if( SQLITE_OK==lrc ){ |
| 2717 /* if we succeeded in taking the reserved lock, unlock it to restore |
| 2718 ** the original state */ |
| 2719 lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); |
| 2720 } else { |
| 2721 /* if we failed to get the lock then someone else must have it */ |
| 2722 reserved = 1; |
| 2723 } |
| 2724 if( IS_LOCK_ERROR(lrc) ){ |
| 2725 rc=lrc; |
| 2726 } |
| 2727 } |
| 2728 |
| 2729 unixLeaveMutex(); |
| 2730 OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved)); |
| 2731 |
| 2732 *pResOut = reserved; |
| 2733 return rc; |
| 2734 } |
| 2735 |
| 2736 /* |
| 2737 ** Lock the file with the lock specified by parameter eFileLock - one |
| 2738 ** of the following: |
| 2739 ** |
| 2740 ** (1) SHARED_LOCK |
| 2741 ** (2) RESERVED_LOCK |
| 2742 ** (3) PENDING_LOCK |
| 2743 ** (4) EXCLUSIVE_LOCK |
| 2744 ** |
| 2745 ** Sometimes when requesting one lock state, additional lock states |
| 2746 ** are inserted in between. The locking might fail on one of the later |
| 2747 ** transitions leaving the lock state different from what it started but |
| 2748 ** still short of its goal. The following chart shows the allowed |
| 2749 ** transitions and the inserted intermediate states: |
| 2750 ** |
| 2751 ** UNLOCKED -> SHARED |
| 2752 ** SHARED -> RESERVED |
| 2753 ** SHARED -> (PENDING) -> EXCLUSIVE |
| 2754 ** RESERVED -> (PENDING) -> EXCLUSIVE |
| 2755 ** PENDING -> EXCLUSIVE |
| 2756 ** |
| 2757 ** This routine will only increase a lock. Use the sqlite3OsUnlock() |
| 2758 ** routine to lower a locking level. |
| 2759 */ |
| 2760 static int afpLock(sqlite3_file *id, int eFileLock){ |
| 2761 int rc = SQLITE_OK; |
| 2762 unixFile *pFile = (unixFile*)id; |
| 2763 unixInodeInfo *pInode = pFile->pInode; |
| 2764 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; |
| 2765 |
| 2766 assert( pFile ); |
| 2767 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h, |
| 2768 azFileLock(eFileLock), azFileLock(pFile->eFileLock), |
| 2769 azFileLock(pInode->eFileLock), pInode->nShared , osGetpid(0))); |
| 2770 |
| 2771 /* If there is already a lock of this type or more restrictive on the |
| 2772 ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as |
| 2773 ** unixEnterMutex() hasn't been called yet. |
| 2774 */ |
| 2775 if( pFile->eFileLock>=eFileLock ){ |
| 2776 OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h, |
| 2777 azFileLock(eFileLock))); |
| 2778 return SQLITE_OK; |
| 2779 } |
| 2780 |
| 2781 /* Make sure the locking sequence is correct |
| 2782 ** (1) We never move from unlocked to anything higher than shared lock. |
| 2783 ** (2) SQLite never explicitly requests a pendig lock. |
| 2784 ** (3) A shared lock is always held when a reserve lock is requested. |
| 2785 */ |
| 2786 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); |
| 2787 assert( eFileLock!=PENDING_LOCK ); |
| 2788 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); |
| 2789 |
| 2790 /* This mutex is needed because pFile->pInode is shared across threads |
| 2791 */ |
| 2792 unixEnterMutex(); |
| 2793 pInode = pFile->pInode; |
| 2794 |
| 2795 /* If some thread using this PID has a lock via a different unixFile* |
| 2796 ** handle that precludes the requested lock, return BUSY. |
| 2797 */ |
| 2798 if( (pFile->eFileLock!=pInode->eFileLock && |
| 2799 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) |
| 2800 ){ |
| 2801 rc = SQLITE_BUSY; |
| 2802 goto afp_end_lock; |
| 2803 } |
| 2804 |
| 2805 /* If a SHARED lock is requested, and some thread using this PID already |
| 2806 ** has a SHARED or RESERVED lock, then increment reference counts and |
| 2807 ** return SQLITE_OK. |
| 2808 */ |
| 2809 if( eFileLock==SHARED_LOCK && |
| 2810 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ |
| 2811 assert( eFileLock==SHARED_LOCK ); |
| 2812 assert( pFile->eFileLock==0 ); |
| 2813 assert( pInode->nShared>0 ); |
| 2814 pFile->eFileLock = SHARED_LOCK; |
| 2815 pInode->nShared++; |
| 2816 pInode->nLock++; |
| 2817 goto afp_end_lock; |
| 2818 } |
| 2819 |
| 2820 /* A PENDING lock is needed before acquiring a SHARED lock and before |
| 2821 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will |
| 2822 ** be released. |
| 2823 */ |
| 2824 if( eFileLock==SHARED_LOCK |
| 2825 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK) |
| 2826 ){ |
| 2827 int failed; |
| 2828 failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1); |
| 2829 if (failed) { |
| 2830 rc = failed; |
| 2831 goto afp_end_lock; |
| 2832 } |
| 2833 } |
| 2834 |
| 2835 /* If control gets to this point, then actually go ahead and make |
| 2836 ** operating system calls for the specified lock. |
| 2837 */ |
| 2838 if( eFileLock==SHARED_LOCK ){ |
| 2839 int lrc1, lrc2, lrc1Errno = 0; |
| 2840 long lk, mask; |
| 2841 |
| 2842 assert( pInode->nShared==0 ); |
| 2843 assert( pInode->eFileLock==0 ); |
| 2844 |
| 2845 mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff; |
| 2846 /* Now get the read-lock SHARED_LOCK */ |
| 2847 /* note that the quality of the randomness doesn't matter that much */ |
| 2848 lk = random(); |
| 2849 pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1); |
| 2850 lrc1 = afpSetLock(context->dbPath, pFile, |
| 2851 SHARED_FIRST+pInode->sharedByte, 1, 1); |
| 2852 if( IS_LOCK_ERROR(lrc1) ){ |
| 2853 lrc1Errno = pFile->lastErrno; |
| 2854 } |
| 2855 /* Drop the temporary PENDING lock */ |
| 2856 lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); |
| 2857 |
| 2858 if( IS_LOCK_ERROR(lrc1) ) { |
| 2859 storeLastErrno(pFile, lrc1Errno); |
| 2860 rc = lrc1; |
| 2861 goto afp_end_lock; |
| 2862 } else if( IS_LOCK_ERROR(lrc2) ){ |
| 2863 rc = lrc2; |
| 2864 goto afp_end_lock; |
| 2865 } else if( lrc1 != SQLITE_OK ) { |
| 2866 rc = lrc1; |
| 2867 } else { |
| 2868 pFile->eFileLock = SHARED_LOCK; |
| 2869 pInode->nLock++; |
| 2870 pInode->nShared = 1; |
| 2871 } |
| 2872 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ |
| 2873 /* We are trying for an exclusive lock but another thread in this |
| 2874 ** same process is still holding a shared lock. */ |
| 2875 rc = SQLITE_BUSY; |
| 2876 }else{ |
| 2877 /* The request was for a RESERVED or EXCLUSIVE lock. It is |
| 2878 ** assumed that there is a SHARED or greater lock on the file |
| 2879 ** already. |
| 2880 */ |
| 2881 int failed = 0; |
| 2882 assert( 0!=pFile->eFileLock ); |
| 2883 if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) { |
| 2884 /* Acquire a RESERVED lock */ |
| 2885 failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); |
| 2886 if( !failed ){ |
| 2887 context->reserved = 1; |
| 2888 } |
| 2889 } |
| 2890 if (!failed && eFileLock == EXCLUSIVE_LOCK) { |
| 2891 /* Acquire an EXCLUSIVE lock */ |
| 2892 |
| 2893 /* Remove the shared lock before trying the range. we'll need to |
| 2894 ** reestablish the shared lock if we can't get the afpUnlock |
| 2895 */ |
| 2896 if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST + |
| 2897 pInode->sharedByte, 1, 0)) ){ |
| 2898 int failed2 = SQLITE_OK; |
| 2899 /* now attemmpt to get the exclusive lock range */ |
| 2900 failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST, |
| 2901 SHARED_SIZE, 1); |
| 2902 if( failed && (failed2 = afpSetLock(context->dbPath, pFile, |
| 2903 SHARED_FIRST + pInode->sharedByte, 1, 1)) ){ |
| 2904 /* Can't reestablish the shared lock. Sqlite can't deal, this is |
| 2905 ** a critical I/O error |
| 2906 */ |
| 2907 rc = ((failed & SQLITE_IOERR) == SQLITE_IOERR) ? failed2 : |
| 2908 SQLITE_IOERR_LOCK; |
| 2909 goto afp_end_lock; |
| 2910 } |
| 2911 }else{ |
| 2912 rc = failed; |
| 2913 } |
| 2914 } |
| 2915 if( failed ){ |
| 2916 rc = failed; |
| 2917 } |
| 2918 } |
| 2919 |
| 2920 if( rc==SQLITE_OK ){ |
| 2921 pFile->eFileLock = eFileLock; |
| 2922 pInode->eFileLock = eFileLock; |
| 2923 }else if( eFileLock==EXCLUSIVE_LOCK ){ |
| 2924 pFile->eFileLock = PENDING_LOCK; |
| 2925 pInode->eFileLock = PENDING_LOCK; |
| 2926 } |
| 2927 |
| 2928 afp_end_lock: |
| 2929 unixLeaveMutex(); |
| 2930 OSTRACE(("LOCK %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock), |
| 2931 rc==SQLITE_OK ? "ok" : "failed")); |
| 2932 return rc; |
| 2933 } |
| 2934 |
| 2935 /* |
| 2936 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| 2937 ** must be either NO_LOCK or SHARED_LOCK. |
| 2938 ** |
| 2939 ** If the locking level of the file descriptor is already at or below |
| 2940 ** the requested locking level, this routine is a no-op. |
| 2941 */ |
| 2942 static int afpUnlock(sqlite3_file *id, int eFileLock) { |
| 2943 int rc = SQLITE_OK; |
| 2944 unixFile *pFile = (unixFile*)id; |
| 2945 unixInodeInfo *pInode; |
| 2946 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; |
| 2947 int skipShared = 0; |
| 2948 #ifdef SQLITE_TEST |
| 2949 int h = pFile->h; |
| 2950 #endif |
| 2951 |
| 2952 assert( pFile ); |
| 2953 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock, |
| 2954 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, |
| 2955 osGetpid(0))); |
| 2956 |
| 2957 assert( eFileLock<=SHARED_LOCK ); |
| 2958 if( pFile->eFileLock<=eFileLock ){ |
| 2959 return SQLITE_OK; |
| 2960 } |
| 2961 unixEnterMutex(); |
| 2962 pInode = pFile->pInode; |
| 2963 assert( pInode->nShared!=0 ); |
| 2964 if( pFile->eFileLock>SHARED_LOCK ){ |
| 2965 assert( pInode->eFileLock==pFile->eFileLock ); |
| 2966 SimulateIOErrorBenign(1); |
| 2967 SimulateIOError( h=(-1) ) |
| 2968 SimulateIOErrorBenign(0); |
| 2969 |
| 2970 #ifdef SQLITE_DEBUG |
| 2971 /* When reducing a lock such that other processes can start |
| 2972 ** reading the database file again, make sure that the |
| 2973 ** transaction counter was updated if any part of the database |
| 2974 ** file changed. If the transaction counter is not updated, |
| 2975 ** other connections to the same file might not realize that |
| 2976 ** the file has changed and hence might not know to flush their |
| 2977 ** cache. The use of a stale cache can lead to database corruption. |
| 2978 */ |
| 2979 assert( pFile->inNormalWrite==0 |
| 2980 || pFile->dbUpdate==0 |
| 2981 || pFile->transCntrChng==1 ); |
| 2982 pFile->inNormalWrite = 0; |
| 2983 #endif |
| 2984 |
| 2985 if( pFile->eFileLock==EXCLUSIVE_LOCK ){ |
| 2986 rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0); |
| 2987 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){ |
| 2988 /* only re-establish the shared lock if necessary */ |
| 2989 int sharedLockByte = SHARED_FIRST+pInode->sharedByte; |
| 2990 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1); |
| 2991 } else { |
| 2992 skipShared = 1; |
| 2993 } |
| 2994 } |
| 2995 if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){ |
| 2996 rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); |
| 2997 } |
| 2998 if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){ |
| 2999 rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); |
| 3000 if( !rc ){ |
| 3001 context->reserved = 0; |
| 3002 } |
| 3003 } |
| 3004 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){ |
| 3005 pInode->eFileLock = SHARED_LOCK; |
| 3006 } |
| 3007 } |
| 3008 if( rc==SQLITE_OK && eFileLock==NO_LOCK ){ |
| 3009 |
| 3010 /* Decrement the shared lock counter. Release the lock using an |
| 3011 ** OS call only when all threads in this same process have released |
| 3012 ** the lock. |
| 3013 */ |
| 3014 unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte; |
| 3015 pInode->nShared--; |
| 3016 if( pInode->nShared==0 ){ |
| 3017 SimulateIOErrorBenign(1); |
| 3018 SimulateIOError( h=(-1) ) |
| 3019 SimulateIOErrorBenign(0); |
| 3020 if( !skipShared ){ |
| 3021 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0); |
| 3022 } |
| 3023 if( !rc ){ |
| 3024 pInode->eFileLock = NO_LOCK; |
| 3025 pFile->eFileLock = NO_LOCK; |
| 3026 } |
| 3027 } |
| 3028 if( rc==SQLITE_OK ){ |
| 3029 pInode->nLock--; |
| 3030 assert( pInode->nLock>=0 ); |
| 3031 if( pInode->nLock==0 ){ |
| 3032 closePendingFds(pFile); |
| 3033 } |
| 3034 } |
| 3035 } |
| 3036 |
| 3037 unixLeaveMutex(); |
| 3038 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock; |
| 3039 return rc; |
| 3040 } |
| 3041 |
| 3042 /* |
| 3043 ** Close a file & cleanup AFP specific locking context |
| 3044 */ |
| 3045 static int afpClose(sqlite3_file *id) { |
| 3046 int rc = SQLITE_OK; |
| 3047 unixFile *pFile = (unixFile*)id; |
| 3048 assert( id!=0 ); |
| 3049 afpUnlock(id, NO_LOCK); |
| 3050 unixEnterMutex(); |
| 3051 if( pFile->pInode && pFile->pInode->nLock ){ |
| 3052 /* If there are outstanding locks, do not actually close the file just |
| 3053 ** yet because that would clear those locks. Instead, add the file |
| 3054 ** descriptor to pInode->aPending. It will be automatically closed when |
| 3055 ** the last lock is cleared. |
| 3056 */ |
| 3057 setPendingFd(pFile); |
| 3058 } |
| 3059 releaseInodeInfo(pFile); |
| 3060 sqlite3_free(pFile->lockingContext); |
| 3061 rc = closeUnixFile(id); |
| 3062 unixLeaveMutex(); |
| 3063 return rc; |
| 3064 } |
| 3065 |
| 3066 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ |
| 3067 /* |
| 3068 ** The code above is the AFP lock implementation. The code is specific |
| 3069 ** to MacOSX and does not work on other unix platforms. No alternative |
| 3070 ** is available. If you don't compile for a mac, then the "unix-afp" |
| 3071 ** VFS is not available. |
| 3072 ** |
| 3073 ********************* End of the AFP lock implementation ********************** |
| 3074 ******************************************************************************/ |
| 3075 |
| 3076 /****************************************************************************** |
| 3077 *************************** Begin NFS Locking ********************************/ |
| 3078 |
| 3079 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| 3080 /* |
| 3081 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| 3082 ** must be either NO_LOCK or SHARED_LOCK. |
| 3083 ** |
| 3084 ** If the locking level of the file descriptor is already at or below |
| 3085 ** the requested locking level, this routine is a no-op. |
| 3086 */ |
| 3087 static int nfsUnlock(sqlite3_file *id, int eFileLock){ |
| 3088 return posixUnlock(id, eFileLock, 1); |
| 3089 } |
| 3090 |
| 3091 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ |
| 3092 /* |
| 3093 ** The code above is the NFS lock implementation. The code is specific |
| 3094 ** to MacOSX and does not work on other unix platforms. No alternative |
| 3095 ** is available. |
| 3096 ** |
| 3097 ********************* End of the NFS lock implementation ********************** |
| 3098 ******************************************************************************/ |
| 3099 |
| 3100 /****************************************************************************** |
| 3101 **************** Non-locking sqlite3_file methods ***************************** |
| 3102 ** |
| 3103 ** The next division contains implementations for all methods of the |
| 3104 ** sqlite3_file object other than the locking methods. The locking |
| 3105 ** methods were defined in divisions above (one locking method per |
| 3106 ** division). Those methods that are common to all locking modes |
| 3107 ** are gather together into this division. |
| 3108 */ |
| 3109 |
| 3110 /* |
| 3111 ** Seek to the offset passed as the second argument, then read cnt |
| 3112 ** bytes into pBuf. Return the number of bytes actually read. |
| 3113 ** |
| 3114 ** NB: If you define USE_PREAD or USE_PREAD64, then it might also |
| 3115 ** be necessary to define _XOPEN_SOURCE to be 500. This varies from |
| 3116 ** one system to another. Since SQLite does not define USE_PREAD |
| 3117 ** in any form by default, we will not attempt to define _XOPEN_SOURCE. |
| 3118 ** See tickets #2741 and #2681. |
| 3119 ** |
| 3120 ** To avoid stomping the errno value on a failed read the lastErrno value |
| 3121 ** is set before returning. |
| 3122 */ |
| 3123 static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){ |
| 3124 int got; |
| 3125 int prior = 0; |
| 3126 #if (!defined(USE_PREAD) && !defined(USE_PREAD64)) |
| 3127 i64 newOffset; |
| 3128 #endif |
| 3129 TIMER_START; |
| 3130 assert( cnt==(cnt&0x1ffff) ); |
| 3131 assert( id->h>2 ); |
| 3132 do{ |
| 3133 #if defined(USE_PREAD) |
| 3134 got = osPread(id->h, pBuf, cnt, offset); |
| 3135 SimulateIOError( got = -1 ); |
| 3136 #elif defined(USE_PREAD64) |
| 3137 got = osPread64(id->h, pBuf, cnt, offset); |
| 3138 SimulateIOError( got = -1 ); |
| 3139 #else |
| 3140 newOffset = lseek(id->h, offset, SEEK_SET); |
| 3141 SimulateIOError( newOffset = -1 ); |
| 3142 if( newOffset<0 ){ |
| 3143 storeLastErrno((unixFile*)id, errno); |
| 3144 return -1; |
| 3145 } |
| 3146 got = osRead(id->h, pBuf, cnt); |
| 3147 #endif |
| 3148 if( got==cnt ) break; |
| 3149 if( got<0 ){ |
| 3150 if( errno==EINTR ){ got = 1; continue; } |
| 3151 prior = 0; |
| 3152 storeLastErrno((unixFile*)id, errno); |
| 3153 break; |
| 3154 }else if( got>0 ){ |
| 3155 cnt -= got; |
| 3156 offset += got; |
| 3157 prior += got; |
| 3158 pBuf = (void*)(got + (char*)pBuf); |
| 3159 } |
| 3160 }while( got>0 ); |
| 3161 TIMER_END; |
| 3162 OSTRACE(("READ %-3d %5d %7lld %llu\n", |
| 3163 id->h, got+prior, offset-prior, TIMER_ELAPSED)); |
| 3164 return got+prior; |
| 3165 } |
| 3166 |
| 3167 /* |
| 3168 ** Read data from a file into a buffer. Return SQLITE_OK if all |
| 3169 ** bytes were read successfully and SQLITE_IOERR if anything goes |
| 3170 ** wrong. |
| 3171 */ |
| 3172 static int unixRead( |
| 3173 sqlite3_file *id, |
| 3174 void *pBuf, |
| 3175 int amt, |
| 3176 sqlite3_int64 offset |
| 3177 ){ |
| 3178 unixFile *pFile = (unixFile *)id; |
| 3179 int got; |
| 3180 assert( id ); |
| 3181 assert( offset>=0 ); |
| 3182 assert( amt>0 ); |
| 3183 |
| 3184 /* If this is a database file (not a journal, master-journal or temp |
| 3185 ** file), the bytes in the locking range should never be read or written. */ |
| 3186 #if 0 |
| 3187 assert( pFile->pUnused==0 |
| 3188 || offset>=PENDING_BYTE+512 |
| 3189 || offset+amt<=PENDING_BYTE |
| 3190 ); |
| 3191 #endif |
| 3192 |
| 3193 #if SQLITE_MAX_MMAP_SIZE>0 |
| 3194 /* Deal with as much of this read request as possible by transfering |
| 3195 ** data from the memory mapping using memcpy(). */ |
| 3196 if( offset<pFile->mmapSize ){ |
| 3197 if( offset+amt <= pFile->mmapSize ){ |
| 3198 memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt); |
| 3199 return SQLITE_OK; |
| 3200 }else{ |
| 3201 int nCopy = pFile->mmapSize - offset; |
| 3202 memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy); |
| 3203 pBuf = &((u8 *)pBuf)[nCopy]; |
| 3204 amt -= nCopy; |
| 3205 offset += nCopy; |
| 3206 } |
| 3207 } |
| 3208 #endif |
| 3209 |
| 3210 got = seekAndRead(pFile, offset, pBuf, amt); |
| 3211 if( got==amt ){ |
| 3212 return SQLITE_OK; |
| 3213 }else if( got<0 ){ |
| 3214 /* lastErrno set by seekAndRead */ |
| 3215 return SQLITE_IOERR_READ; |
| 3216 }else{ |
| 3217 storeLastErrno(pFile, 0); /* not a system error */ |
| 3218 /* Unread parts of the buffer must be zero-filled */ |
| 3219 memset(&((char*)pBuf)[got], 0, amt-got); |
| 3220 return SQLITE_IOERR_SHORT_READ; |
| 3221 } |
| 3222 } |
| 3223 |
| 3224 /* |
| 3225 ** Attempt to seek the file-descriptor passed as the first argument to |
| 3226 ** absolute offset iOff, then attempt to write nBuf bytes of data from |
| 3227 ** pBuf to it. If an error occurs, return -1 and set *piErrno. Otherwise, |
| 3228 ** return the actual number of bytes written (which may be less than |
| 3229 ** nBuf). |
| 3230 */ |
| 3231 static int seekAndWriteFd( |
| 3232 int fd, /* File descriptor to write to */ |
| 3233 i64 iOff, /* File offset to begin writing at */ |
| 3234 const void *pBuf, /* Copy data from this buffer to the file */ |
| 3235 int nBuf, /* Size of buffer pBuf in bytes */ |
| 3236 int *piErrno /* OUT: Error number if error occurs */ |
| 3237 ){ |
| 3238 int rc = 0; /* Value returned by system call */ |
| 3239 |
| 3240 assert( nBuf==(nBuf&0x1ffff) ); |
| 3241 assert( fd>2 ); |
| 3242 assert( piErrno!=0 ); |
| 3243 nBuf &= 0x1ffff; |
| 3244 TIMER_START; |
| 3245 |
| 3246 #if defined(USE_PREAD) |
| 3247 do{ rc = (int)osPwrite(fd, pBuf, nBuf, iOff); }while( rc<0 && errno==EINTR ); |
| 3248 #elif defined(USE_PREAD64) |
| 3249 do{ rc = (int)osPwrite64(fd, pBuf, nBuf, iOff);}while( rc<0 && errno==EINTR); |
| 3250 #else |
| 3251 do{ |
| 3252 i64 iSeek = lseek(fd, iOff, SEEK_SET); |
| 3253 SimulateIOError( iSeek = -1 ); |
| 3254 if( iSeek<0 ){ |
| 3255 rc = -1; |
| 3256 break; |
| 3257 } |
| 3258 rc = osWrite(fd, pBuf, nBuf); |
| 3259 }while( rc<0 && errno==EINTR ); |
| 3260 #endif |
| 3261 |
| 3262 TIMER_END; |
| 3263 OSTRACE(("WRITE %-3d %5d %7lld %llu\n", fd, rc, iOff, TIMER_ELAPSED)); |
| 3264 |
| 3265 if( rc<0 ) *piErrno = errno; |
| 3266 return rc; |
| 3267 } |
| 3268 |
| 3269 |
| 3270 /* |
| 3271 ** Seek to the offset in id->offset then read cnt bytes into pBuf. |
| 3272 ** Return the number of bytes actually read. Update the offset. |
| 3273 ** |
| 3274 ** To avoid stomping the errno value on a failed write the lastErrno value |
| 3275 ** is set before returning. |
| 3276 */ |
| 3277 static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){ |
| 3278 return seekAndWriteFd(id->h, offset, pBuf, cnt, &id->lastErrno); |
| 3279 } |
| 3280 |
| 3281 |
| 3282 /* |
| 3283 ** Write data from a buffer into a file. Return SQLITE_OK on success |
| 3284 ** or some other error code on failure. |
| 3285 */ |
| 3286 static int unixWrite( |
| 3287 sqlite3_file *id, |
| 3288 const void *pBuf, |
| 3289 int amt, |
| 3290 sqlite3_int64 offset |
| 3291 ){ |
| 3292 unixFile *pFile = (unixFile*)id; |
| 3293 int wrote = 0; |
| 3294 assert( id ); |
| 3295 assert( amt>0 ); |
| 3296 |
| 3297 /* If this is a database file (not a journal, master-journal or temp |
| 3298 ** file), the bytes in the locking range should never be read or written. */ |
| 3299 #if 0 |
| 3300 assert( pFile->pUnused==0 |
| 3301 || offset>=PENDING_BYTE+512 |
| 3302 || offset+amt<=PENDING_BYTE |
| 3303 ); |
| 3304 #endif |
| 3305 |
| 3306 #ifdef SQLITE_DEBUG |
| 3307 /* If we are doing a normal write to a database file (as opposed to |
| 3308 ** doing a hot-journal rollback or a write to some file other than a |
| 3309 ** normal database file) then record the fact that the database |
| 3310 ** has changed. If the transaction counter is modified, record that |
| 3311 ** fact too. |
| 3312 */ |
| 3313 if( pFile->inNormalWrite ){ |
| 3314 pFile->dbUpdate = 1; /* The database has been modified */ |
| 3315 if( offset<=24 && offset+amt>=27 ){ |
| 3316 int rc; |
| 3317 char oldCntr[4]; |
| 3318 SimulateIOErrorBenign(1); |
| 3319 rc = seekAndRead(pFile, 24, oldCntr, 4); |
| 3320 SimulateIOErrorBenign(0); |
| 3321 if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){ |
| 3322 pFile->transCntrChng = 1; /* The transaction counter has changed */ |
| 3323 } |
| 3324 } |
| 3325 } |
| 3326 #endif |
| 3327 |
| 3328 #if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0 |
| 3329 /* Deal with as much of this write request as possible by transfering |
| 3330 ** data from the memory mapping using memcpy(). */ |
| 3331 if( offset<pFile->mmapSize ){ |
| 3332 if( offset+amt <= pFile->mmapSize ){ |
| 3333 memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt); |
| 3334 return SQLITE_OK; |
| 3335 }else{ |
| 3336 int nCopy = pFile->mmapSize - offset; |
| 3337 memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy); |
| 3338 pBuf = &((u8 *)pBuf)[nCopy]; |
| 3339 amt -= nCopy; |
| 3340 offset += nCopy; |
| 3341 } |
| 3342 } |
| 3343 #endif |
| 3344 |
| 3345 while( (wrote = seekAndWrite(pFile, offset, pBuf, amt))<amt && wrote>0 ){ |
| 3346 amt -= wrote; |
| 3347 offset += wrote; |
| 3348 pBuf = &((char*)pBuf)[wrote]; |
| 3349 } |
| 3350 SimulateIOError(( wrote=(-1), amt=1 )); |
| 3351 SimulateDiskfullError(( wrote=0, amt=1 )); |
| 3352 |
| 3353 if( amt>wrote ){ |
| 3354 if( wrote<0 && pFile->lastErrno!=ENOSPC ){ |
| 3355 /* lastErrno set by seekAndWrite */ |
| 3356 return SQLITE_IOERR_WRITE; |
| 3357 }else{ |
| 3358 storeLastErrno(pFile, 0); /* not a system error */ |
| 3359 return SQLITE_FULL; |
| 3360 } |
| 3361 } |
| 3362 |
| 3363 return SQLITE_OK; |
| 3364 } |
| 3365 |
| 3366 #ifdef SQLITE_TEST |
| 3367 /* |
| 3368 ** Count the number of fullsyncs and normal syncs. This is used to test |
| 3369 ** that syncs and fullsyncs are occurring at the right times. |
| 3370 */ |
| 3371 int sqlite3_sync_count = 0; |
| 3372 int sqlite3_fullsync_count = 0; |
| 3373 #endif |
| 3374 |
| 3375 /* |
| 3376 ** We do not trust systems to provide a working fdatasync(). Some do. |
| 3377 ** Others do no. To be safe, we will stick with the (slightly slower) |
| 3378 ** fsync(). If you know that your system does support fdatasync() correctly, |
| 3379 ** then simply compile with -Dfdatasync=fdatasync or -DHAVE_FDATASYNC |
| 3380 */ |
| 3381 #if !defined(fdatasync) && !HAVE_FDATASYNC |
| 3382 # define fdatasync fsync |
| 3383 #endif |
| 3384 |
| 3385 /* |
| 3386 ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not |
| 3387 ** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently |
| 3388 ** only available on Mac OS X. But that could change. |
| 3389 */ |
| 3390 #ifdef F_FULLFSYNC |
| 3391 # define HAVE_FULLFSYNC 1 |
| 3392 #else |
| 3393 # define HAVE_FULLFSYNC 0 |
| 3394 #endif |
| 3395 |
| 3396 |
| 3397 /* |
| 3398 ** The fsync() system call does not work as advertised on many |
| 3399 ** unix systems. The following procedure is an attempt to make |
| 3400 ** it work better. |
| 3401 ** |
| 3402 ** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful |
| 3403 ** for testing when we want to run through the test suite quickly. |
| 3404 ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC |
| 3405 ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash |
| 3406 ** or power failure will likely corrupt the database file. |
| 3407 ** |
| 3408 ** SQLite sets the dataOnly flag if the size of the file is unchanged. |
| 3409 ** The idea behind dataOnly is that it should only write the file content |
| 3410 ** to disk, not the inode. We only set dataOnly if the file size is |
| 3411 ** unchanged since the file size is part of the inode. However, |
| 3412 ** Ted Ts'o tells us that fdatasync() will also write the inode if the |
| 3413 ** file size has changed. The only real difference between fdatasync() |
| 3414 ** and fsync(), Ted tells us, is that fdatasync() will not flush the |
| 3415 ** inode if the mtime or owner or other inode attributes have changed. |
| 3416 ** We only care about the file size, not the other file attributes, so |
| 3417 ** as far as SQLite is concerned, an fdatasync() is always adequate. |
| 3418 ** So, we always use fdatasync() if it is available, regardless of |
| 3419 ** the value of the dataOnly flag. |
| 3420 */ |
| 3421 static int full_fsync(int fd, int fullSync, int dataOnly){ |
| 3422 int rc; |
| 3423 |
| 3424 /* The following "ifdef/elif/else/" block has the same structure as |
| 3425 ** the one below. It is replicated here solely to avoid cluttering |
| 3426 ** up the real code with the UNUSED_PARAMETER() macros. |
| 3427 */ |
| 3428 #ifdef SQLITE_NO_SYNC |
| 3429 UNUSED_PARAMETER(fd); |
| 3430 UNUSED_PARAMETER(fullSync); |
| 3431 UNUSED_PARAMETER(dataOnly); |
| 3432 #elif HAVE_FULLFSYNC |
| 3433 UNUSED_PARAMETER(dataOnly); |
| 3434 #else |
| 3435 UNUSED_PARAMETER(fullSync); |
| 3436 UNUSED_PARAMETER(dataOnly); |
| 3437 #endif |
| 3438 |
| 3439 /* Record the number of times that we do a normal fsync() and |
| 3440 ** FULLSYNC. This is used during testing to verify that this procedure |
| 3441 ** gets called with the correct arguments. |
| 3442 */ |
| 3443 #ifdef SQLITE_TEST |
| 3444 if( fullSync ) sqlite3_fullsync_count++; |
| 3445 sqlite3_sync_count++; |
| 3446 #endif |
| 3447 |
| 3448 /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a |
| 3449 ** no-op. But go ahead and call fstat() to validate the file |
| 3450 ** descriptor as we need a method to provoke a failure during |
| 3451 ** coverate testing. |
| 3452 */ |
| 3453 #ifdef SQLITE_NO_SYNC |
| 3454 { |
| 3455 struct stat buf; |
| 3456 rc = osFstat(fd, &buf); |
| 3457 } |
| 3458 #elif HAVE_FULLFSYNC |
| 3459 if( fullSync ){ |
| 3460 rc = osFcntl(fd, F_FULLFSYNC, 0); |
| 3461 }else{ |
| 3462 rc = 1; |
| 3463 } |
| 3464 /* If the FULLFSYNC failed, fall back to attempting an fsync(). |
| 3465 ** It shouldn't be possible for fullfsync to fail on the local |
| 3466 ** file system (on OSX), so failure indicates that FULLFSYNC |
| 3467 ** isn't supported for this file system. So, attempt an fsync |
| 3468 ** and (for now) ignore the overhead of a superfluous fcntl call. |
| 3469 ** It'd be better to detect fullfsync support once and avoid |
| 3470 ** the fcntl call every time sync is called. |
| 3471 */ |
| 3472 if( rc ) rc = fsync(fd); |
| 3473 |
| 3474 #elif defined(__APPLE__) |
| 3475 /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly |
| 3476 ** so currently we default to the macro that redefines fdatasync to fsync |
| 3477 */ |
| 3478 rc = fsync(fd); |
| 3479 #else |
| 3480 rc = fdatasync(fd); |
| 3481 #if OS_VXWORKS |
| 3482 if( rc==-1 && errno==ENOTSUP ){ |
| 3483 rc = fsync(fd); |
| 3484 } |
| 3485 #endif /* OS_VXWORKS */ |
| 3486 #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */ |
| 3487 |
| 3488 if( OS_VXWORKS && rc!= -1 ){ |
| 3489 rc = 0; |
| 3490 } |
| 3491 return rc; |
| 3492 } |
| 3493 |
| 3494 /* |
| 3495 ** Open a file descriptor to the directory containing file zFilename. |
| 3496 ** If successful, *pFd is set to the opened file descriptor and |
| 3497 ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM |
| 3498 ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined |
| 3499 ** value. |
| 3500 ** |
| 3501 ** The directory file descriptor is used for only one thing - to |
| 3502 ** fsync() a directory to make sure file creation and deletion events |
| 3503 ** are flushed to disk. Such fsyncs are not needed on newer |
| 3504 ** journaling filesystems, but are required on older filesystems. |
| 3505 ** |
| 3506 ** This routine can be overridden using the xSetSysCall interface. |
| 3507 ** The ability to override this routine was added in support of the |
| 3508 ** chromium sandbox. Opening a directory is a security risk (we are |
| 3509 ** told) so making it overrideable allows the chromium sandbox to |
| 3510 ** replace this routine with a harmless no-op. To make this routine |
| 3511 ** a no-op, replace it with a stub that returns SQLITE_OK but leaves |
| 3512 ** *pFd set to a negative number. |
| 3513 ** |
| 3514 ** If SQLITE_OK is returned, the caller is responsible for closing |
| 3515 ** the file descriptor *pFd using close(). |
| 3516 */ |
| 3517 static int openDirectory(const char *zFilename, int *pFd){ |
| 3518 int ii; |
| 3519 int fd = -1; |
| 3520 char zDirname[MAX_PATHNAME+1]; |
| 3521 |
| 3522 sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename); |
| 3523 for(ii=(int)strlen(zDirname); ii>0 && zDirname[ii]!='/'; ii--); |
| 3524 if( ii>0 ){ |
| 3525 zDirname[ii] = '\0'; |
| 3526 }else{ |
| 3527 if( zDirname[0]!='/' ) zDirname[0] = '.'; |
| 3528 zDirname[1] = 0; |
| 3529 } |
| 3530 fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0); |
| 3531 if( fd>=0 ){ |
| 3532 OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname)); |
| 3533 } |
| 3534 *pFd = fd; |
| 3535 if( fd>=0 ) return SQLITE_OK; |
| 3536 return unixLogError(SQLITE_CANTOPEN_BKPT, "openDirectory", zDirname); |
| 3537 } |
| 3538 |
| 3539 /* |
| 3540 ** Make sure all writes to a particular file are committed to disk. |
| 3541 ** |
| 3542 ** If dataOnly==0 then both the file itself and its metadata (file |
| 3543 ** size, access time, etc) are synced. If dataOnly!=0 then only the |
| 3544 ** file data is synced. |
| 3545 ** |
| 3546 ** Under Unix, also make sure that the directory entry for the file |
| 3547 ** has been created by fsync-ing the directory that contains the file. |
| 3548 ** If we do not do this and we encounter a power failure, the directory |
| 3549 ** entry for the journal might not exist after we reboot. The next |
| 3550 ** SQLite to access the file will not know that the journal exists (because |
| 3551 ** the directory entry for the journal was never created) and the transaction |
| 3552 ** will not roll back - possibly leading to database corruption. |
| 3553 */ |
| 3554 static int unixSync(sqlite3_file *id, int flags){ |
| 3555 int rc; |
| 3556 unixFile *pFile = (unixFile*)id; |
| 3557 |
| 3558 int isDataOnly = (flags&SQLITE_SYNC_DATAONLY); |
| 3559 int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL; |
| 3560 |
| 3561 /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */ |
| 3562 assert((flags&0x0F)==SQLITE_SYNC_NORMAL |
| 3563 || (flags&0x0F)==SQLITE_SYNC_FULL |
| 3564 ); |
| 3565 |
| 3566 /* Unix cannot, but some systems may return SQLITE_FULL from here. This |
| 3567 ** line is to test that doing so does not cause any problems. |
| 3568 */ |
| 3569 SimulateDiskfullError( return SQLITE_FULL ); |
| 3570 |
| 3571 assert( pFile ); |
| 3572 OSTRACE(("SYNC %-3d\n", pFile->h)); |
| 3573 rc = full_fsync(pFile->h, isFullsync, isDataOnly); |
| 3574 SimulateIOError( rc=1 ); |
| 3575 if( rc ){ |
| 3576 storeLastErrno(pFile, errno); |
| 3577 return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath); |
| 3578 } |
| 3579 |
| 3580 /* Also fsync the directory containing the file if the DIRSYNC flag |
| 3581 ** is set. This is a one-time occurrence. Many systems (examples: AIX) |
| 3582 ** are unable to fsync a directory, so ignore errors on the fsync. |
| 3583 */ |
| 3584 if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){ |
| 3585 int dirfd; |
| 3586 OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath, |
| 3587 HAVE_FULLFSYNC, isFullsync)); |
| 3588 rc = osOpenDirectory(pFile->zPath, &dirfd); |
| 3589 if( rc==SQLITE_OK ){ |
| 3590 full_fsync(dirfd, 0, 0); |
| 3591 robust_close(pFile, dirfd, __LINE__); |
| 3592 }else{ |
| 3593 assert( rc==SQLITE_CANTOPEN ); |
| 3594 rc = SQLITE_OK; |
| 3595 } |
| 3596 pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC; |
| 3597 } |
| 3598 return rc; |
| 3599 } |
| 3600 |
| 3601 /* |
| 3602 ** Truncate an open file to a specified size |
| 3603 */ |
| 3604 static int unixTruncate(sqlite3_file *id, i64 nByte){ |
| 3605 unixFile *pFile = (unixFile *)id; |
| 3606 int rc; |
| 3607 assert( pFile ); |
| 3608 SimulateIOError( return SQLITE_IOERR_TRUNCATE ); |
| 3609 |
| 3610 /* If the user has configured a chunk-size for this file, truncate the |
| 3611 ** file so that it consists of an integer number of chunks (i.e. the |
| 3612 ** actual file size after the operation may be larger than the requested |
| 3613 ** size). |
| 3614 */ |
| 3615 if( pFile->szChunk>0 ){ |
| 3616 nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; |
| 3617 } |
| 3618 |
| 3619 rc = robust_ftruncate(pFile->h, nByte); |
| 3620 if( rc ){ |
| 3621 storeLastErrno(pFile, errno); |
| 3622 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); |
| 3623 }else{ |
| 3624 #ifdef SQLITE_DEBUG |
| 3625 /* If we are doing a normal write to a database file (as opposed to |
| 3626 ** doing a hot-journal rollback or a write to some file other than a |
| 3627 ** normal database file) and we truncate the file to zero length, |
| 3628 ** that effectively updates the change counter. This might happen |
| 3629 ** when restoring a database using the backup API from a zero-length |
| 3630 ** source. |
| 3631 */ |
| 3632 if( pFile->inNormalWrite && nByte==0 ){ |
| 3633 pFile->transCntrChng = 1; |
| 3634 } |
| 3635 #endif |
| 3636 |
| 3637 #if SQLITE_MAX_MMAP_SIZE>0 |
| 3638 /* If the file was just truncated to a size smaller than the currently |
| 3639 ** mapped region, reduce the effective mapping size as well. SQLite will |
| 3640 ** use read() and write() to access data beyond this point from now on. |
| 3641 */ |
| 3642 if( nByte<pFile->mmapSize ){ |
| 3643 pFile->mmapSize = nByte; |
| 3644 } |
| 3645 #endif |
| 3646 |
| 3647 return SQLITE_OK; |
| 3648 } |
| 3649 } |
| 3650 |
| 3651 /* |
| 3652 ** Determine the current size of a file in bytes |
| 3653 */ |
| 3654 static int unixFileSize(sqlite3_file *id, i64 *pSize){ |
| 3655 int rc; |
| 3656 struct stat buf; |
| 3657 assert( id ); |
| 3658 rc = osFstat(((unixFile*)id)->h, &buf); |
| 3659 SimulateIOError( rc=1 ); |
| 3660 if( rc!=0 ){ |
| 3661 storeLastErrno((unixFile*)id, errno); |
| 3662 return SQLITE_IOERR_FSTAT; |
| 3663 } |
| 3664 *pSize = buf.st_size; |
| 3665 |
| 3666 /* When opening a zero-size database, the findInodeInfo() procedure |
| 3667 ** writes a single byte into that file in order to work around a bug |
| 3668 ** in the OS-X msdos filesystem. In order to avoid problems with upper |
| 3669 ** layers, we need to report this file size as zero even though it is |
| 3670 ** really 1. Ticket #3260. |
| 3671 */ |
| 3672 if( *pSize==1 ) *pSize = 0; |
| 3673 |
| 3674 |
| 3675 return SQLITE_OK; |
| 3676 } |
| 3677 |
| 3678 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
| 3679 /* |
| 3680 ** Handler for proxy-locking file-control verbs. Defined below in the |
| 3681 ** proxying locking division. |
| 3682 */ |
| 3683 static int proxyFileControl(sqlite3_file*,int,void*); |
| 3684 #endif |
| 3685 |
| 3686 /* |
| 3687 ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT |
| 3688 ** file-control operation. Enlarge the database to nBytes in size |
| 3689 ** (rounded up to the next chunk-size). If the database is already |
| 3690 ** nBytes or larger, this routine is a no-op. |
| 3691 */ |
| 3692 static int fcntlSizeHint(unixFile *pFile, i64 nByte){ |
| 3693 if( pFile->szChunk>0 ){ |
| 3694 i64 nSize; /* Required file size */ |
| 3695 struct stat buf; /* Used to hold return values of fstat() */ |
| 3696 |
| 3697 if( osFstat(pFile->h, &buf) ){ |
| 3698 return SQLITE_IOERR_FSTAT; |
| 3699 } |
| 3700 |
| 3701 nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk; |
| 3702 if( nSize>(i64)buf.st_size ){ |
| 3703 |
| 3704 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE |
| 3705 /* The code below is handling the return value of osFallocate() |
| 3706 ** correctly. posix_fallocate() is defined to "returns zero on success, |
| 3707 ** or an error number on failure". See the manpage for details. */ |
| 3708 int err; |
| 3709 do{ |
| 3710 err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size); |
| 3711 }while( err==EINTR ); |
| 3712 if( err ) return SQLITE_IOERR_WRITE; |
| 3713 #else |
| 3714 /* If the OS does not have posix_fallocate(), fake it. Write a |
| 3715 ** single byte to the last byte in each block that falls entirely |
| 3716 ** within the extended region. Then, if required, a single byte |
| 3717 ** at offset (nSize-1), to set the size of the file correctly. |
| 3718 ** This is a similar technique to that used by glibc on systems |
| 3719 ** that do not have a real fallocate() call. |
| 3720 */ |
| 3721 int nBlk = buf.st_blksize; /* File-system block size */ |
| 3722 int nWrite = 0; /* Number of bytes written by seekAndWrite */ |
| 3723 i64 iWrite; /* Next offset to write to */ |
| 3724 |
| 3725 iWrite = (buf.st_size/nBlk)*nBlk + nBlk - 1; |
| 3726 assert( iWrite>=buf.st_size ); |
| 3727 assert( ((iWrite+1)%nBlk)==0 ); |
| 3728 for(/*no-op*/; iWrite<nSize+nBlk-1; iWrite+=nBlk ){ |
| 3729 if( iWrite>=nSize ) iWrite = nSize - 1; |
| 3730 nWrite = seekAndWrite(pFile, iWrite, "", 1); |
| 3731 if( nWrite!=1 ) return SQLITE_IOERR_WRITE; |
| 3732 } |
| 3733 #endif |
| 3734 } |
| 3735 } |
| 3736 |
| 3737 #if SQLITE_MAX_MMAP_SIZE>0 |
| 3738 if( pFile->mmapSizeMax>0 && nByte>pFile->mmapSize ){ |
| 3739 int rc; |
| 3740 if( pFile->szChunk<=0 ){ |
| 3741 if( robust_ftruncate(pFile->h, nByte) ){ |
| 3742 storeLastErrno(pFile, errno); |
| 3743 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); |
| 3744 } |
| 3745 } |
| 3746 |
| 3747 rc = unixMapfile(pFile, nByte); |
| 3748 return rc; |
| 3749 } |
| 3750 #endif |
| 3751 |
| 3752 return SQLITE_OK; |
| 3753 } |
| 3754 |
| 3755 /* |
| 3756 ** If *pArg is initially negative then this is a query. Set *pArg to |
| 3757 ** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set. |
| 3758 ** |
| 3759 ** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags. |
| 3760 */ |
| 3761 static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){ |
| 3762 if( *pArg<0 ){ |
| 3763 *pArg = (pFile->ctrlFlags & mask)!=0; |
| 3764 }else if( (*pArg)==0 ){ |
| 3765 pFile->ctrlFlags &= ~mask; |
| 3766 }else{ |
| 3767 pFile->ctrlFlags |= mask; |
| 3768 } |
| 3769 } |
| 3770 |
| 3771 /* Forward declaration */ |
| 3772 static int unixGetTempname(int nBuf, char *zBuf); |
| 3773 |
| 3774 /* |
| 3775 ** Information and control of an open file handle. |
| 3776 */ |
| 3777 static int unixFileControl(sqlite3_file *id, int op, void *pArg){ |
| 3778 unixFile *pFile = (unixFile*)id; |
| 3779 switch( op ){ |
| 3780 case SQLITE_FCNTL_LOCKSTATE: { |
| 3781 *(int*)pArg = pFile->eFileLock; |
| 3782 return SQLITE_OK; |
| 3783 } |
| 3784 case SQLITE_FCNTL_LAST_ERRNO: { |
| 3785 *(int*)pArg = pFile->lastErrno; |
| 3786 return SQLITE_OK; |
| 3787 } |
| 3788 case SQLITE_FCNTL_CHUNK_SIZE: { |
| 3789 pFile->szChunk = *(int *)pArg; |
| 3790 return SQLITE_OK; |
| 3791 } |
| 3792 case SQLITE_FCNTL_SIZE_HINT: { |
| 3793 int rc; |
| 3794 SimulateIOErrorBenign(1); |
| 3795 rc = fcntlSizeHint(pFile, *(i64 *)pArg); |
| 3796 SimulateIOErrorBenign(0); |
| 3797 return rc; |
| 3798 } |
| 3799 case SQLITE_FCNTL_PERSIST_WAL: { |
| 3800 unixModeBit(pFile, UNIXFILE_PERSIST_WAL, (int*)pArg); |
| 3801 return SQLITE_OK; |
| 3802 } |
| 3803 case SQLITE_FCNTL_POWERSAFE_OVERWRITE: { |
| 3804 unixModeBit(pFile, UNIXFILE_PSOW, (int*)pArg); |
| 3805 return SQLITE_OK; |
| 3806 } |
| 3807 case SQLITE_FCNTL_VFSNAME: { |
| 3808 *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName); |
| 3809 return SQLITE_OK; |
| 3810 } |
| 3811 case SQLITE_FCNTL_TEMPFILENAME: { |
| 3812 char *zTFile = sqlite3_malloc64( pFile->pVfs->mxPathname ); |
| 3813 if( zTFile ){ |
| 3814 unixGetTempname(pFile->pVfs->mxPathname, zTFile); |
| 3815 *(char**)pArg = zTFile; |
| 3816 } |
| 3817 return SQLITE_OK; |
| 3818 } |
| 3819 case SQLITE_FCNTL_HAS_MOVED: { |
| 3820 *(int*)pArg = fileHasMoved(pFile); |
| 3821 return SQLITE_OK; |
| 3822 } |
| 3823 #if SQLITE_MAX_MMAP_SIZE>0 |
| 3824 case SQLITE_FCNTL_MMAP_SIZE: { |
| 3825 i64 newLimit = *(i64*)pArg; |
| 3826 int rc = SQLITE_OK; |
| 3827 if( newLimit>sqlite3GlobalConfig.mxMmap ){ |
| 3828 newLimit = sqlite3GlobalConfig.mxMmap; |
| 3829 } |
| 3830 *(i64*)pArg = pFile->mmapSizeMax; |
| 3831 if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){ |
| 3832 pFile->mmapSizeMax = newLimit; |
| 3833 if( pFile->mmapSize>0 ){ |
| 3834 unixUnmapfile(pFile); |
| 3835 rc = unixMapfile(pFile, -1); |
| 3836 } |
| 3837 } |
| 3838 return rc; |
| 3839 } |
| 3840 #endif |
| 3841 #ifdef SQLITE_DEBUG |
| 3842 /* The pager calls this method to signal that it has done |
| 3843 ** a rollback and that the database is therefore unchanged and |
| 3844 ** it hence it is OK for the transaction change counter to be |
| 3845 ** unchanged. |
| 3846 */ |
| 3847 case SQLITE_FCNTL_DB_UNCHANGED: { |
| 3848 ((unixFile*)id)->dbUpdate = 0; |
| 3849 return SQLITE_OK; |
| 3850 } |
| 3851 #endif |
| 3852 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
| 3853 case SQLITE_FCNTL_SET_LOCKPROXYFILE: |
| 3854 case SQLITE_FCNTL_GET_LOCKPROXYFILE: { |
| 3855 return proxyFileControl(id,op,pArg); |
| 3856 } |
| 3857 #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */ |
| 3858 } |
| 3859 return SQLITE_NOTFOUND; |
| 3860 } |
| 3861 |
| 3862 /* |
| 3863 ** Return the sector size in bytes of the underlying block device for |
| 3864 ** the specified file. This is almost always 512 bytes, but may be |
| 3865 ** larger for some devices. |
| 3866 ** |
| 3867 ** SQLite code assumes this function cannot fail. It also assumes that |
| 3868 ** if two files are created in the same file-system directory (i.e. |
| 3869 ** a database and its journal file) that the sector size will be the |
| 3870 ** same for both. |
| 3871 */ |
| 3872 #ifndef __QNXNTO__ |
| 3873 static int unixSectorSize(sqlite3_file *NotUsed){ |
| 3874 UNUSED_PARAMETER(NotUsed); |
| 3875 return SQLITE_DEFAULT_SECTOR_SIZE; |
| 3876 } |
| 3877 #endif |
| 3878 |
| 3879 /* |
| 3880 ** The following version of unixSectorSize() is optimized for QNX. |
| 3881 */ |
| 3882 #ifdef __QNXNTO__ |
| 3883 #include <sys/dcmd_blk.h> |
| 3884 #include <sys/statvfs.h> |
| 3885 static int unixSectorSize(sqlite3_file *id){ |
| 3886 unixFile *pFile = (unixFile*)id; |
| 3887 if( pFile->sectorSize == 0 ){ |
| 3888 struct statvfs fsInfo; |
| 3889 |
| 3890 /* Set defaults for non-supported filesystems */ |
| 3891 pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE; |
| 3892 pFile->deviceCharacteristics = 0; |
| 3893 if( fstatvfs(pFile->h, &fsInfo) == -1 ) { |
| 3894 return pFile->sectorSize; |
| 3895 } |
| 3896 |
| 3897 if( !strcmp(fsInfo.f_basetype, "tmp") ) { |
| 3898 pFile->sectorSize = fsInfo.f_bsize; |
| 3899 pFile->deviceCharacteristics = |
| 3900 SQLITE_IOCAP_ATOMIC4K | /* All ram filesystem writes are atomic */ |
| 3901 SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until |
| 3902 ** the write succeeds */ |
| 3903 SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind |
| 3904 ** so it is ordered */ |
| 3905 0; |
| 3906 }else if( strstr(fsInfo.f_basetype, "etfs") ){ |
| 3907 pFile->sectorSize = fsInfo.f_bsize; |
| 3908 pFile->deviceCharacteristics = |
| 3909 /* etfs cluster size writes are atomic */ |
| 3910 (pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) | |
| 3911 SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until |
| 3912 ** the write succeeds */ |
| 3913 SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind |
| 3914 ** so it is ordered */ |
| 3915 0; |
| 3916 }else if( !strcmp(fsInfo.f_basetype, "qnx6") ){ |
| 3917 pFile->sectorSize = fsInfo.f_bsize; |
| 3918 pFile->deviceCharacteristics = |
| 3919 SQLITE_IOCAP_ATOMIC | /* All filesystem writes are atomic */ |
| 3920 SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until |
| 3921 ** the write succeeds */ |
| 3922 SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind |
| 3923 ** so it is ordered */ |
| 3924 0; |
| 3925 }else if( !strcmp(fsInfo.f_basetype, "qnx4") ){ |
| 3926 pFile->sectorSize = fsInfo.f_bsize; |
| 3927 pFile->deviceCharacteristics = |
| 3928 /* full bitset of atomics from max sector size and smaller */ |
| 3929 ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 | |
| 3930 SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind |
| 3931 ** so it is ordered */ |
| 3932 0; |
| 3933 }else if( strstr(fsInfo.f_basetype, "dos") ){ |
| 3934 pFile->sectorSize = fsInfo.f_bsize; |
| 3935 pFile->deviceCharacteristics = |
| 3936 /* full bitset of atomics from max sector size and smaller */ |
| 3937 ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 | |
| 3938 SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind |
| 3939 ** so it is ordered */ |
| 3940 0; |
| 3941 }else{ |
| 3942 pFile->deviceCharacteristics = |
| 3943 SQLITE_IOCAP_ATOMIC512 | /* blocks are atomic */ |
| 3944 SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until |
| 3945 ** the write succeeds */ |
| 3946 0; |
| 3947 } |
| 3948 } |
| 3949 /* Last chance verification. If the sector size isn't a multiple of 512 |
| 3950 ** then it isn't valid.*/ |
| 3951 if( pFile->sectorSize % 512 != 0 ){ |
| 3952 pFile->deviceCharacteristics = 0; |
| 3953 pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE; |
| 3954 } |
| 3955 return pFile->sectorSize; |
| 3956 } |
| 3957 #endif /* __QNXNTO__ */ |
| 3958 |
| 3959 /* |
| 3960 ** Return the device characteristics for the file. |
| 3961 ** |
| 3962 ** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default. |
| 3963 ** However, that choice is controversial since technically the underlying |
| 3964 ** file system does not always provide powersafe overwrites. (In other |
| 3965 ** words, after a power-loss event, parts of the file that were never |
| 3966 ** written might end up being altered.) However, non-PSOW behavior is very, |
| 3967 ** very rare. And asserting PSOW makes a large reduction in the amount |
| 3968 ** of required I/O for journaling, since a lot of padding is eliminated. |
| 3969 ** Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control |
| 3970 ** available to turn it off and URI query parameter available to turn it off. |
| 3971 */ |
| 3972 static int unixDeviceCharacteristics(sqlite3_file *id){ |
| 3973 unixFile *p = (unixFile*)id; |
| 3974 int rc = 0; |
| 3975 #ifdef __QNXNTO__ |
| 3976 if( p->sectorSize==0 ) unixSectorSize(id); |
| 3977 rc = p->deviceCharacteristics; |
| 3978 #endif |
| 3979 if( p->ctrlFlags & UNIXFILE_PSOW ){ |
| 3980 rc |= SQLITE_IOCAP_POWERSAFE_OVERWRITE; |
| 3981 } |
| 3982 return rc; |
| 3983 } |
| 3984 |
| 3985 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 |
| 3986 |
| 3987 /* |
| 3988 ** Return the system page size. |
| 3989 ** |
| 3990 ** This function should not be called directly by other code in this file. |
| 3991 ** Instead, it should be called via macro osGetpagesize(). |
| 3992 */ |
| 3993 static int unixGetpagesize(void){ |
| 3994 #if OS_VXWORKS |
| 3995 return 1024; |
| 3996 #elif defined(_BSD_SOURCE) |
| 3997 return getpagesize(); |
| 3998 #else |
| 3999 return (int)sysconf(_SC_PAGESIZE); |
| 4000 #endif |
| 4001 } |
| 4002 |
| 4003 #endif /* !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 */ |
| 4004 |
| 4005 #ifndef SQLITE_OMIT_WAL |
| 4006 |
| 4007 /* |
| 4008 ** Object used to represent an shared memory buffer. |
| 4009 ** |
| 4010 ** When multiple threads all reference the same wal-index, each thread |
| 4011 ** has its own unixShm object, but they all point to a single instance |
| 4012 ** of this unixShmNode object. In other words, each wal-index is opened |
| 4013 ** only once per process. |
| 4014 ** |
| 4015 ** Each unixShmNode object is connected to a single unixInodeInfo object. |
| 4016 ** We could coalesce this object into unixInodeInfo, but that would mean |
| 4017 ** every open file that does not use shared memory (in other words, most |
| 4018 ** open files) would have to carry around this extra information. So |
| 4019 ** the unixInodeInfo object contains a pointer to this unixShmNode object |
| 4020 ** and the unixShmNode object is created only when needed. |
| 4021 ** |
| 4022 ** unixMutexHeld() must be true when creating or destroying |
| 4023 ** this object or while reading or writing the following fields: |
| 4024 ** |
| 4025 ** nRef |
| 4026 ** |
| 4027 ** The following fields are read-only after the object is created: |
| 4028 ** |
| 4029 ** fid |
| 4030 ** zFilename |
| 4031 ** |
| 4032 ** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and |
| 4033 ** unixMutexHeld() is true when reading or writing any other field |
| 4034 ** in this structure. |
| 4035 */ |
| 4036 struct unixShmNode { |
| 4037 unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */ |
| 4038 sqlite3_mutex *mutex; /* Mutex to access this object */ |
| 4039 char *zFilename; /* Name of the mmapped file */ |
| 4040 int h; /* Open file descriptor */ |
| 4041 int szRegion; /* Size of shared-memory regions */ |
| 4042 u16 nRegion; /* Size of array apRegion */ |
| 4043 u8 isReadonly; /* True if read-only */ |
| 4044 char **apRegion; /* Array of mapped shared-memory regions */ |
| 4045 int nRef; /* Number of unixShm objects pointing to this */ |
| 4046 unixShm *pFirst; /* All unixShm objects pointing to this */ |
| 4047 #ifdef SQLITE_DEBUG |
| 4048 u8 exclMask; /* Mask of exclusive locks held */ |
| 4049 u8 sharedMask; /* Mask of shared locks held */ |
| 4050 u8 nextShmId; /* Next available unixShm.id value */ |
| 4051 #endif |
| 4052 }; |
| 4053 |
| 4054 /* |
| 4055 ** Structure used internally by this VFS to record the state of an |
| 4056 ** open shared memory connection. |
| 4057 ** |
| 4058 ** The following fields are initialized when this object is created and |
| 4059 ** are read-only thereafter: |
| 4060 ** |
| 4061 ** unixShm.pFile |
| 4062 ** unixShm.id |
| 4063 ** |
| 4064 ** All other fields are read/write. The unixShm.pFile->mutex must be held |
| 4065 ** while accessing any read/write fields. |
| 4066 */ |
| 4067 struct unixShm { |
| 4068 unixShmNode *pShmNode; /* The underlying unixShmNode object */ |
| 4069 unixShm *pNext; /* Next unixShm with the same unixShmNode */ |
| 4070 u8 hasMutex; /* True if holding the unixShmNode mutex */ |
| 4071 u8 id; /* Id of this connection within its unixShmNode */ |
| 4072 u16 sharedMask; /* Mask of shared locks held */ |
| 4073 u16 exclMask; /* Mask of exclusive locks held */ |
| 4074 }; |
| 4075 |
| 4076 /* |
| 4077 ** Constants used for locking |
| 4078 */ |
| 4079 #define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */ |
| 4080 #define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */ |
| 4081 |
| 4082 /* |
| 4083 ** Apply posix advisory locks for all bytes from ofst through ofst+n-1. |
| 4084 ** |
| 4085 ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking |
| 4086 ** otherwise. |
| 4087 */ |
| 4088 static int unixShmSystemLock( |
| 4089 unixFile *pFile, /* Open connection to the WAL file */ |
| 4090 int lockType, /* F_UNLCK, F_RDLCK, or F_WRLCK */ |
| 4091 int ofst, /* First byte of the locking range */ |
| 4092 int n /* Number of bytes to lock */ |
| 4093 ){ |
| 4094 unixShmNode *pShmNode; /* Apply locks to this open shared-memory segment */ |
| 4095 struct flock f; /* The posix advisory locking structure */ |
| 4096 int rc = SQLITE_OK; /* Result code form fcntl() */ |
| 4097 |
| 4098 /* Access to the unixShmNode object is serialized by the caller */ |
| 4099 pShmNode = pFile->pInode->pShmNode; |
| 4100 assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 ); |
| 4101 |
| 4102 /* Shared locks never span more than one byte */ |
| 4103 assert( n==1 || lockType!=F_RDLCK ); |
| 4104 |
| 4105 /* Locks are within range */ |
| 4106 assert( n>=1 && n<=SQLITE_SHM_NLOCK ); |
| 4107 |
| 4108 if( pShmNode->h>=0 ){ |
| 4109 /* Initialize the locking parameters */ |
| 4110 memset(&f, 0, sizeof(f)); |
| 4111 f.l_type = lockType; |
| 4112 f.l_whence = SEEK_SET; |
| 4113 f.l_start = ofst; |
| 4114 f.l_len = n; |
| 4115 |
| 4116 rc = osFcntl(pShmNode->h, F_SETLK, &f); |
| 4117 rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY; |
| 4118 } |
| 4119 |
| 4120 /* Update the global lock state and do debug tracing */ |
| 4121 #ifdef SQLITE_DEBUG |
| 4122 { u16 mask; |
| 4123 OSTRACE(("SHM-LOCK ")); |
| 4124 mask = ofst>31 ? 0xffff : (1<<(ofst+n)) - (1<<ofst); |
| 4125 if( rc==SQLITE_OK ){ |
| 4126 if( lockType==F_UNLCK ){ |
| 4127 OSTRACE(("unlock %d ok", ofst)); |
| 4128 pShmNode->exclMask &= ~mask; |
| 4129 pShmNode->sharedMask &= ~mask; |
| 4130 }else if( lockType==F_RDLCK ){ |
| 4131 OSTRACE(("read-lock %d ok", ofst)); |
| 4132 pShmNode->exclMask &= ~mask; |
| 4133 pShmNode->sharedMask |= mask; |
| 4134 }else{ |
| 4135 assert( lockType==F_WRLCK ); |
| 4136 OSTRACE(("write-lock %d ok", ofst)); |
| 4137 pShmNode->exclMask |= mask; |
| 4138 pShmNode->sharedMask &= ~mask; |
| 4139 } |
| 4140 }else{ |
| 4141 if( lockType==F_UNLCK ){ |
| 4142 OSTRACE(("unlock %d failed", ofst)); |
| 4143 }else if( lockType==F_RDLCK ){ |
| 4144 OSTRACE(("read-lock failed")); |
| 4145 }else{ |
| 4146 assert( lockType==F_WRLCK ); |
| 4147 OSTRACE(("write-lock %d failed", ofst)); |
| 4148 } |
| 4149 } |
| 4150 OSTRACE((" - afterwards %03x,%03x\n", |
| 4151 pShmNode->sharedMask, pShmNode->exclMask)); |
| 4152 } |
| 4153 #endif |
| 4154 |
| 4155 return rc; |
| 4156 } |
| 4157 |
| 4158 /* |
| 4159 ** Return the minimum number of 32KB shm regions that should be mapped at |
| 4160 ** a time, assuming that each mapping must be an integer multiple of the |
| 4161 ** current system page-size. |
| 4162 ** |
| 4163 ** Usually, this is 1. The exception seems to be systems that are configured |
| 4164 ** to use 64KB pages - in this case each mapping must cover at least two |
| 4165 ** shm regions. |
| 4166 */ |
| 4167 static int unixShmRegionPerMap(void){ |
| 4168 int shmsz = 32*1024; /* SHM region size */ |
| 4169 int pgsz = osGetpagesize(); /* System page size */ |
| 4170 assert( ((pgsz-1)&pgsz)==0 ); /* Page size must be a power of 2 */ |
| 4171 if( pgsz<shmsz ) return 1; |
| 4172 return pgsz/shmsz; |
| 4173 } |
| 4174 |
| 4175 /* |
| 4176 ** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0. |
| 4177 ** |
| 4178 ** This is not a VFS shared-memory method; it is a utility function called |
| 4179 ** by VFS shared-memory methods. |
| 4180 */ |
| 4181 static void unixShmPurge(unixFile *pFd){ |
| 4182 unixShmNode *p = pFd->pInode->pShmNode; |
| 4183 assert( unixMutexHeld() ); |
| 4184 if( p && ALWAYS(p->nRef==0) ){ |
| 4185 int nShmPerMap = unixShmRegionPerMap(); |
| 4186 int i; |
| 4187 assert( p->pInode==pFd->pInode ); |
| 4188 sqlite3_mutex_free(p->mutex); |
| 4189 for(i=0; i<p->nRegion; i+=nShmPerMap){ |
| 4190 if( p->h>=0 ){ |
| 4191 osMunmap(p->apRegion[i], p->szRegion); |
| 4192 }else{ |
| 4193 sqlite3_free(p->apRegion[i]); |
| 4194 } |
| 4195 } |
| 4196 sqlite3_free(p->apRegion); |
| 4197 if( p->h>=0 ){ |
| 4198 robust_close(pFd, p->h, __LINE__); |
| 4199 p->h = -1; |
| 4200 } |
| 4201 p->pInode->pShmNode = 0; |
| 4202 sqlite3_free(p); |
| 4203 } |
| 4204 } |
| 4205 |
| 4206 /* |
| 4207 ** Open a shared-memory area associated with open database file pDbFd. |
| 4208 ** This particular implementation uses mmapped files. |
| 4209 ** |
| 4210 ** The file used to implement shared-memory is in the same directory |
| 4211 ** as the open database file and has the same name as the open database |
| 4212 ** file with the "-shm" suffix added. For example, if the database file |
| 4213 ** is "/home/user1/config.db" then the file that is created and mmapped |
| 4214 ** for shared memory will be called "/home/user1/config.db-shm". |
| 4215 ** |
| 4216 ** Another approach to is to use files in /dev/shm or /dev/tmp or an |
| 4217 ** some other tmpfs mount. But if a file in a different directory |
| 4218 ** from the database file is used, then differing access permissions |
| 4219 ** or a chroot() might cause two different processes on the same |
| 4220 ** database to end up using different files for shared memory - |
| 4221 ** meaning that their memory would not really be shared - resulting |
| 4222 ** in database corruption. Nevertheless, this tmpfs file usage |
| 4223 ** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm" |
| 4224 ** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time |
| 4225 ** option results in an incompatible build of SQLite; builds of SQLite |
| 4226 ** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the |
| 4227 ** same database file at the same time, database corruption will likely |
| 4228 ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered |
| 4229 ** "unsupported" and may go away in a future SQLite release. |
| 4230 ** |
| 4231 ** When opening a new shared-memory file, if no other instances of that |
| 4232 ** file are currently open, in this process or in other processes, then |
| 4233 ** the file must be truncated to zero length or have its header cleared. |
| 4234 ** |
| 4235 ** If the original database file (pDbFd) is using the "unix-excl" VFS |
| 4236 ** that means that an exclusive lock is held on the database file and |
| 4237 ** that no other processes are able to read or write the database. In |
| 4238 ** that case, we do not really need shared memory. No shared memory |
| 4239 ** file is created. The shared memory will be simulated with heap memory. |
| 4240 */ |
| 4241 static int unixOpenSharedMemory(unixFile *pDbFd){ |
| 4242 struct unixShm *p = 0; /* The connection to be opened */ |
| 4243 struct unixShmNode *pShmNode; /* The underlying mmapped file */ |
| 4244 int rc; /* Result code */ |
| 4245 unixInodeInfo *pInode; /* The inode of fd */ |
| 4246 char *zShmFilename; /* Name of the file used for SHM */ |
| 4247 int nShmFilename; /* Size of the SHM filename in bytes */ |
| 4248 |
| 4249 /* Allocate space for the new unixShm object. */ |
| 4250 p = sqlite3_malloc64( sizeof(*p) ); |
| 4251 if( p==0 ) return SQLITE_NOMEM_BKPT; |
| 4252 memset(p, 0, sizeof(*p)); |
| 4253 assert( pDbFd->pShm==0 ); |
| 4254 |
| 4255 /* Check to see if a unixShmNode object already exists. Reuse an existing |
| 4256 ** one if present. Create a new one if necessary. |
| 4257 */ |
| 4258 unixEnterMutex(); |
| 4259 pInode = pDbFd->pInode; |
| 4260 pShmNode = pInode->pShmNode; |
| 4261 if( pShmNode==0 ){ |
| 4262 struct stat sStat; /* fstat() info for database file */ |
| 4263 #ifndef SQLITE_SHM_DIRECTORY |
| 4264 const char *zBasePath = pDbFd->zPath; |
| 4265 #endif |
| 4266 |
| 4267 /* Call fstat() to figure out the permissions on the database file. If |
| 4268 ** a new *-shm file is created, an attempt will be made to create it |
| 4269 ** with the same permissions. |
| 4270 */ |
| 4271 if( osFstat(pDbFd->h, &sStat) ){ |
| 4272 rc = SQLITE_IOERR_FSTAT; |
| 4273 goto shm_open_err; |
| 4274 } |
| 4275 |
| 4276 #ifdef SQLITE_SHM_DIRECTORY |
| 4277 nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31; |
| 4278 #else |
| 4279 nShmFilename = 6 + (int)strlen(zBasePath); |
| 4280 #endif |
| 4281 pShmNode = sqlite3_malloc64( sizeof(*pShmNode) + nShmFilename ); |
| 4282 if( pShmNode==0 ){ |
| 4283 rc = SQLITE_NOMEM_BKPT; |
| 4284 goto shm_open_err; |
| 4285 } |
| 4286 memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename); |
| 4287 zShmFilename = pShmNode->zFilename = (char*)&pShmNode[1]; |
| 4288 #ifdef SQLITE_SHM_DIRECTORY |
| 4289 sqlite3_snprintf(nShmFilename, zShmFilename, |
| 4290 SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x", |
| 4291 (u32)sStat.st_ino, (u32)sStat.st_dev); |
| 4292 #else |
| 4293 sqlite3_snprintf(nShmFilename, zShmFilename, "%s-shm", zBasePath); |
| 4294 sqlite3FileSuffix3(pDbFd->zPath, zShmFilename); |
| 4295 #endif |
| 4296 pShmNode->h = -1; |
| 4297 pDbFd->pInode->pShmNode = pShmNode; |
| 4298 pShmNode->pInode = pDbFd->pInode; |
| 4299 if( sqlite3GlobalConfig.bCoreMutex ){ |
| 4300 pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); |
| 4301 if( pShmNode->mutex==0 ){ |
| 4302 rc = SQLITE_NOMEM_BKPT; |
| 4303 goto shm_open_err; |
| 4304 } |
| 4305 } |
| 4306 |
| 4307 if( pInode->bProcessLock==0 ){ |
| 4308 int openFlags = O_RDWR | O_CREAT; |
| 4309 if( sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){ |
| 4310 openFlags = O_RDONLY; |
| 4311 pShmNode->isReadonly = 1; |
| 4312 } |
| 4313 pShmNode->h = robust_open(zShmFilename, openFlags, (sStat.st_mode&0777)); |
| 4314 if( pShmNode->h<0 ){ |
| 4315 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename); |
| 4316 goto shm_open_err; |
| 4317 } |
| 4318 |
| 4319 /* If this process is running as root, make sure that the SHM file |
| 4320 ** is owned by the same user that owns the original database. Otherwise, |
| 4321 ** the original owner will not be able to connect. |
| 4322 */ |
| 4323 robustFchown(pShmNode->h, sStat.st_uid, sStat.st_gid); |
| 4324 |
| 4325 /* Check to see if another process is holding the dead-man switch. |
| 4326 ** If not, truncate the file to zero length. |
| 4327 */ |
| 4328 rc = SQLITE_OK; |
| 4329 if( unixShmSystemLock(pDbFd, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){ |
| 4330 if( robust_ftruncate(pShmNode->h, 0) ){ |
| 4331 rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename); |
| 4332 } |
| 4333 } |
| 4334 if( rc==SQLITE_OK ){ |
| 4335 rc = unixShmSystemLock(pDbFd, F_RDLCK, UNIX_SHM_DMS, 1); |
| 4336 } |
| 4337 if( rc ) goto shm_open_err; |
| 4338 } |
| 4339 } |
| 4340 |
| 4341 /* Make the new connection a child of the unixShmNode */ |
| 4342 p->pShmNode = pShmNode; |
| 4343 #ifdef SQLITE_DEBUG |
| 4344 p->id = pShmNode->nextShmId++; |
| 4345 #endif |
| 4346 pShmNode->nRef++; |
| 4347 pDbFd->pShm = p; |
| 4348 unixLeaveMutex(); |
| 4349 |
| 4350 /* The reference count on pShmNode has already been incremented under |
| 4351 ** the cover of the unixEnterMutex() mutex and the pointer from the |
| 4352 ** new (struct unixShm) object to the pShmNode has been set. All that is |
| 4353 ** left to do is to link the new object into the linked list starting |
| 4354 ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex |
| 4355 ** mutex. |
| 4356 */ |
| 4357 sqlite3_mutex_enter(pShmNode->mutex); |
| 4358 p->pNext = pShmNode->pFirst; |
| 4359 pShmNode->pFirst = p; |
| 4360 sqlite3_mutex_leave(pShmNode->mutex); |
| 4361 return SQLITE_OK; |
| 4362 |
| 4363 /* Jump here on any error */ |
| 4364 shm_open_err: |
| 4365 unixShmPurge(pDbFd); /* This call frees pShmNode if required */ |
| 4366 sqlite3_free(p); |
| 4367 unixLeaveMutex(); |
| 4368 return rc; |
| 4369 } |
| 4370 |
| 4371 /* |
| 4372 ** This function is called to obtain a pointer to region iRegion of the |
| 4373 ** shared-memory associated with the database file fd. Shared-memory regions |
| 4374 ** are numbered starting from zero. Each shared-memory region is szRegion |
| 4375 ** bytes in size. |
| 4376 ** |
| 4377 ** If an error occurs, an error code is returned and *pp is set to NULL. |
| 4378 ** |
| 4379 ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory |
| 4380 ** region has not been allocated (by any client, including one running in a |
| 4381 ** separate process), then *pp is set to NULL and SQLITE_OK returned. If |
| 4382 ** bExtend is non-zero and the requested shared-memory region has not yet |
| 4383 ** been allocated, it is allocated by this function. |
| 4384 ** |
| 4385 ** If the shared-memory region has already been allocated or is allocated by |
| 4386 ** this call as described above, then it is mapped into this processes |
| 4387 ** address space (if it is not already), *pp is set to point to the mapped |
| 4388 ** memory and SQLITE_OK returned. |
| 4389 */ |
| 4390 static int unixShmMap( |
| 4391 sqlite3_file *fd, /* Handle open on database file */ |
| 4392 int iRegion, /* Region to retrieve */ |
| 4393 int szRegion, /* Size of regions */ |
| 4394 int bExtend, /* True to extend file if necessary */ |
| 4395 void volatile **pp /* OUT: Mapped memory */ |
| 4396 ){ |
| 4397 unixFile *pDbFd = (unixFile*)fd; |
| 4398 unixShm *p; |
| 4399 unixShmNode *pShmNode; |
| 4400 int rc = SQLITE_OK; |
| 4401 int nShmPerMap = unixShmRegionPerMap(); |
| 4402 int nReqRegion; |
| 4403 |
| 4404 /* If the shared-memory file has not yet been opened, open it now. */ |
| 4405 if( pDbFd->pShm==0 ){ |
| 4406 rc = unixOpenSharedMemory(pDbFd); |
| 4407 if( rc!=SQLITE_OK ) return rc; |
| 4408 } |
| 4409 |
| 4410 p = pDbFd->pShm; |
| 4411 pShmNode = p->pShmNode; |
| 4412 sqlite3_mutex_enter(pShmNode->mutex); |
| 4413 assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); |
| 4414 assert( pShmNode->pInode==pDbFd->pInode ); |
| 4415 assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 ); |
| 4416 assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 ); |
| 4417 |
| 4418 /* Minimum number of regions required to be mapped. */ |
| 4419 nReqRegion = ((iRegion+nShmPerMap) / nShmPerMap) * nShmPerMap; |
| 4420 |
| 4421 if( pShmNode->nRegion<nReqRegion ){ |
| 4422 char **apNew; /* New apRegion[] array */ |
| 4423 int nByte = nReqRegion*szRegion; /* Minimum required file size */ |
| 4424 struct stat sStat; /* Used by fstat() */ |
| 4425 |
| 4426 pShmNode->szRegion = szRegion; |
| 4427 |
| 4428 if( pShmNode->h>=0 ){ |
| 4429 /* The requested region is not mapped into this processes address space. |
| 4430 ** Check to see if it has been allocated (i.e. if the wal-index file is |
| 4431 ** large enough to contain the requested region). |
| 4432 */ |
| 4433 if( osFstat(pShmNode->h, &sStat) ){ |
| 4434 rc = SQLITE_IOERR_SHMSIZE; |
| 4435 goto shmpage_out; |
| 4436 } |
| 4437 |
| 4438 if( sStat.st_size<nByte ){ |
| 4439 /* The requested memory region does not exist. If bExtend is set to |
| 4440 ** false, exit early. *pp will be set to NULL and SQLITE_OK returned. |
| 4441 */ |
| 4442 if( !bExtend ){ |
| 4443 goto shmpage_out; |
| 4444 } |
| 4445 |
| 4446 /* Alternatively, if bExtend is true, extend the file. Do this by |
| 4447 ** writing a single byte to the end of each (OS) page being |
| 4448 ** allocated or extended. Technically, we need only write to the |
| 4449 ** last page in order to extend the file. But writing to all new |
| 4450 ** pages forces the OS to allocate them immediately, which reduces |
| 4451 ** the chances of SIGBUS while accessing the mapped region later on. |
| 4452 */ |
| 4453 else{ |
| 4454 static const int pgsz = 4096; |
| 4455 int iPg; |
| 4456 |
| 4457 /* Write to the last byte of each newly allocated or extended page */ |
| 4458 assert( (nByte % pgsz)==0 ); |
| 4459 for(iPg=(sStat.st_size/pgsz); iPg<(nByte/pgsz); iPg++){ |
| 4460 int x = 0; |
| 4461 if( seekAndWriteFd(pShmNode->h, iPg*pgsz + pgsz-1, "", 1, &x)!=1 ){ |
| 4462 const char *zFile = pShmNode->zFilename; |
| 4463 rc = unixLogError(SQLITE_IOERR_SHMSIZE, "write", zFile); |
| 4464 goto shmpage_out; |
| 4465 } |
| 4466 } |
| 4467 } |
| 4468 } |
| 4469 } |
| 4470 |
| 4471 /* Map the requested memory region into this processes address space. */ |
| 4472 apNew = (char **)sqlite3_realloc( |
| 4473 pShmNode->apRegion, nReqRegion*sizeof(char *) |
| 4474 ); |
| 4475 if( !apNew ){ |
| 4476 rc = SQLITE_IOERR_NOMEM_BKPT; |
| 4477 goto shmpage_out; |
| 4478 } |
| 4479 pShmNode->apRegion = apNew; |
| 4480 while( pShmNode->nRegion<nReqRegion ){ |
| 4481 int nMap = szRegion*nShmPerMap; |
| 4482 int i; |
| 4483 void *pMem; |
| 4484 if( pShmNode->h>=0 ){ |
| 4485 pMem = osMmap(0, nMap, |
| 4486 pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE, |
| 4487 MAP_SHARED, pShmNode->h, szRegion*(i64)pShmNode->nRegion |
| 4488 ); |
| 4489 if( pMem==MAP_FAILED ){ |
| 4490 rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename); |
| 4491 goto shmpage_out; |
| 4492 } |
| 4493 }else{ |
| 4494 pMem = sqlite3_malloc64(szRegion); |
| 4495 if( pMem==0 ){ |
| 4496 rc = SQLITE_NOMEM_BKPT; |
| 4497 goto shmpage_out; |
| 4498 } |
| 4499 memset(pMem, 0, szRegion); |
| 4500 } |
| 4501 |
| 4502 for(i=0; i<nShmPerMap; i++){ |
| 4503 pShmNode->apRegion[pShmNode->nRegion+i] = &((char*)pMem)[szRegion*i]; |
| 4504 } |
| 4505 pShmNode->nRegion += nShmPerMap; |
| 4506 } |
| 4507 } |
| 4508 |
| 4509 shmpage_out: |
| 4510 if( pShmNode->nRegion>iRegion ){ |
| 4511 *pp = pShmNode->apRegion[iRegion]; |
| 4512 }else{ |
| 4513 *pp = 0; |
| 4514 } |
| 4515 if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY; |
| 4516 sqlite3_mutex_leave(pShmNode->mutex); |
| 4517 return rc; |
| 4518 } |
| 4519 |
| 4520 /* |
| 4521 ** Change the lock state for a shared-memory segment. |
| 4522 ** |
| 4523 ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little |
| 4524 ** different here than in posix. In xShmLock(), one can go from unlocked |
| 4525 ** to shared and back or from unlocked to exclusive and back. But one may |
| 4526 ** not go from shared to exclusive or from exclusive to shared. |
| 4527 */ |
| 4528 static int unixShmLock( |
| 4529 sqlite3_file *fd, /* Database file holding the shared memory */ |
| 4530 int ofst, /* First lock to acquire or release */ |
| 4531 int n, /* Number of locks to acquire or release */ |
| 4532 int flags /* What to do with the lock */ |
| 4533 ){ |
| 4534 unixFile *pDbFd = (unixFile*)fd; /* Connection holding shared memory */ |
| 4535 unixShm *p = pDbFd->pShm; /* The shared memory being locked */ |
| 4536 unixShm *pX; /* For looping over all siblings */ |
| 4537 unixShmNode *pShmNode = p->pShmNode; /* The underlying file iNode */ |
| 4538 int rc = SQLITE_OK; /* Result code */ |
| 4539 u16 mask; /* Mask of locks to take or release */ |
| 4540 |
| 4541 assert( pShmNode==pDbFd->pInode->pShmNode ); |
| 4542 assert( pShmNode->pInode==pDbFd->pInode ); |
| 4543 assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK ); |
| 4544 assert( n>=1 ); |
| 4545 assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED) |
| 4546 || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE) |
| 4547 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED) |
| 4548 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) ); |
| 4549 assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 ); |
| 4550 assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 ); |
| 4551 assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 ); |
| 4552 |
| 4553 mask = (1<<(ofst+n)) - (1<<ofst); |
| 4554 assert( n>1 || mask==(1<<ofst) ); |
| 4555 sqlite3_mutex_enter(pShmNode->mutex); |
| 4556 if( flags & SQLITE_SHM_UNLOCK ){ |
| 4557 u16 allMask = 0; /* Mask of locks held by siblings */ |
| 4558 |
| 4559 /* See if any siblings hold this same lock */ |
| 4560 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ |
| 4561 if( pX==p ) continue; |
| 4562 assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 ); |
| 4563 allMask |= pX->sharedMask; |
| 4564 } |
| 4565 |
| 4566 /* Unlock the system-level locks */ |
| 4567 if( (mask & allMask)==0 ){ |
| 4568 rc = unixShmSystemLock(pDbFd, F_UNLCK, ofst+UNIX_SHM_BASE, n); |
| 4569 }else{ |
| 4570 rc = SQLITE_OK; |
| 4571 } |
| 4572 |
| 4573 /* Undo the local locks */ |
| 4574 if( rc==SQLITE_OK ){ |
| 4575 p->exclMask &= ~mask; |
| 4576 p->sharedMask &= ~mask; |
| 4577 } |
| 4578 }else if( flags & SQLITE_SHM_SHARED ){ |
| 4579 u16 allShared = 0; /* Union of locks held by connections other than "p" */ |
| 4580 |
| 4581 /* Find out which shared locks are already held by sibling connections. |
| 4582 ** If any sibling already holds an exclusive lock, go ahead and return |
| 4583 ** SQLITE_BUSY. |
| 4584 */ |
| 4585 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ |
| 4586 if( (pX->exclMask & mask)!=0 ){ |
| 4587 rc = SQLITE_BUSY; |
| 4588 break; |
| 4589 } |
| 4590 allShared |= pX->sharedMask; |
| 4591 } |
| 4592 |
| 4593 /* Get shared locks at the system level, if necessary */ |
| 4594 if( rc==SQLITE_OK ){ |
| 4595 if( (allShared & mask)==0 ){ |
| 4596 rc = unixShmSystemLock(pDbFd, F_RDLCK, ofst+UNIX_SHM_BASE, n); |
| 4597 }else{ |
| 4598 rc = SQLITE_OK; |
| 4599 } |
| 4600 } |
| 4601 |
| 4602 /* Get the local shared locks */ |
| 4603 if( rc==SQLITE_OK ){ |
| 4604 p->sharedMask |= mask; |
| 4605 } |
| 4606 }else{ |
| 4607 /* Make sure no sibling connections hold locks that will block this |
| 4608 ** lock. If any do, return SQLITE_BUSY right away. |
| 4609 */ |
| 4610 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ |
| 4611 if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){ |
| 4612 rc = SQLITE_BUSY; |
| 4613 break; |
| 4614 } |
| 4615 } |
| 4616 |
| 4617 /* Get the exclusive locks at the system level. Then if successful |
| 4618 ** also mark the local connection as being locked. |
| 4619 */ |
| 4620 if( rc==SQLITE_OK ){ |
| 4621 rc = unixShmSystemLock(pDbFd, F_WRLCK, ofst+UNIX_SHM_BASE, n); |
| 4622 if( rc==SQLITE_OK ){ |
| 4623 assert( (p->sharedMask & mask)==0 ); |
| 4624 p->exclMask |= mask; |
| 4625 } |
| 4626 } |
| 4627 } |
| 4628 sqlite3_mutex_leave(pShmNode->mutex); |
| 4629 OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n", |
| 4630 p->id, osGetpid(0), p->sharedMask, p->exclMask)); |
| 4631 return rc; |
| 4632 } |
| 4633 |
| 4634 /* |
| 4635 ** Implement a memory barrier or memory fence on shared memory. |
| 4636 ** |
| 4637 ** All loads and stores begun before the barrier must complete before |
| 4638 ** any load or store begun after the barrier. |
| 4639 */ |
| 4640 static void unixShmBarrier( |
| 4641 sqlite3_file *fd /* Database file holding the shared memory */ |
| 4642 ){ |
| 4643 UNUSED_PARAMETER(fd); |
| 4644 sqlite3MemoryBarrier(); /* compiler-defined memory barrier */ |
| 4645 unixEnterMutex(); /* Also mutex, for redundancy */ |
| 4646 unixLeaveMutex(); |
| 4647 } |
| 4648 |
| 4649 /* |
| 4650 ** Close a connection to shared-memory. Delete the underlying |
| 4651 ** storage if deleteFlag is true. |
| 4652 ** |
| 4653 ** If there is no shared memory associated with the connection then this |
| 4654 ** routine is a harmless no-op. |
| 4655 */ |
| 4656 static int unixShmUnmap( |
| 4657 sqlite3_file *fd, /* The underlying database file */ |
| 4658 int deleteFlag /* Delete shared-memory if true */ |
| 4659 ){ |
| 4660 unixShm *p; /* The connection to be closed */ |
| 4661 unixShmNode *pShmNode; /* The underlying shared-memory file */ |
| 4662 unixShm **pp; /* For looping over sibling connections */ |
| 4663 unixFile *pDbFd; /* The underlying database file */ |
| 4664 |
| 4665 pDbFd = (unixFile*)fd; |
| 4666 p = pDbFd->pShm; |
| 4667 if( p==0 ) return SQLITE_OK; |
| 4668 pShmNode = p->pShmNode; |
| 4669 |
| 4670 assert( pShmNode==pDbFd->pInode->pShmNode ); |
| 4671 assert( pShmNode->pInode==pDbFd->pInode ); |
| 4672 |
| 4673 /* Remove connection p from the set of connections associated |
| 4674 ** with pShmNode */ |
| 4675 sqlite3_mutex_enter(pShmNode->mutex); |
| 4676 for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){} |
| 4677 *pp = p->pNext; |
| 4678 |
| 4679 /* Free the connection p */ |
| 4680 sqlite3_free(p); |
| 4681 pDbFd->pShm = 0; |
| 4682 sqlite3_mutex_leave(pShmNode->mutex); |
| 4683 |
| 4684 /* If pShmNode->nRef has reached 0, then close the underlying |
| 4685 ** shared-memory file, too */ |
| 4686 unixEnterMutex(); |
| 4687 assert( pShmNode->nRef>0 ); |
| 4688 pShmNode->nRef--; |
| 4689 if( pShmNode->nRef==0 ){ |
| 4690 if( deleteFlag && pShmNode->h>=0 ){ |
| 4691 osUnlink(pShmNode->zFilename); |
| 4692 } |
| 4693 unixShmPurge(pDbFd); |
| 4694 } |
| 4695 unixLeaveMutex(); |
| 4696 |
| 4697 return SQLITE_OK; |
| 4698 } |
| 4699 |
| 4700 |
| 4701 #else |
| 4702 # define unixShmMap 0 |
| 4703 # define unixShmLock 0 |
| 4704 # define unixShmBarrier 0 |
| 4705 # define unixShmUnmap 0 |
| 4706 #endif /* #ifndef SQLITE_OMIT_WAL */ |
| 4707 |
| 4708 #if SQLITE_MAX_MMAP_SIZE>0 |
| 4709 /* |
| 4710 ** If it is currently memory mapped, unmap file pFd. |
| 4711 */ |
| 4712 static void unixUnmapfile(unixFile *pFd){ |
| 4713 assert( pFd->nFetchOut==0 ); |
| 4714 if( pFd->pMapRegion ){ |
| 4715 osMunmap(pFd->pMapRegion, pFd->mmapSizeActual); |
| 4716 pFd->pMapRegion = 0; |
| 4717 pFd->mmapSize = 0; |
| 4718 pFd->mmapSizeActual = 0; |
| 4719 } |
| 4720 } |
| 4721 |
| 4722 /* |
| 4723 ** Attempt to set the size of the memory mapping maintained by file |
| 4724 ** descriptor pFd to nNew bytes. Any existing mapping is discarded. |
| 4725 ** |
| 4726 ** If successful, this function sets the following variables: |
| 4727 ** |
| 4728 ** unixFile.pMapRegion |
| 4729 ** unixFile.mmapSize |
| 4730 ** unixFile.mmapSizeActual |
| 4731 ** |
| 4732 ** If unsuccessful, an error message is logged via sqlite3_log() and |
| 4733 ** the three variables above are zeroed. In this case SQLite should |
| 4734 ** continue accessing the database using the xRead() and xWrite() |
| 4735 ** methods. |
| 4736 */ |
| 4737 static void unixRemapfile( |
| 4738 unixFile *pFd, /* File descriptor object */ |
| 4739 i64 nNew /* Required mapping size */ |
| 4740 ){ |
| 4741 const char *zErr = "mmap"; |
| 4742 int h = pFd->h; /* File descriptor open on db file */ |
| 4743 u8 *pOrig = (u8 *)pFd->pMapRegion; /* Pointer to current file mapping */ |
| 4744 i64 nOrig = pFd->mmapSizeActual; /* Size of pOrig region in bytes */ |
| 4745 u8 *pNew = 0; /* Location of new mapping */ |
| 4746 int flags = PROT_READ; /* Flags to pass to mmap() */ |
| 4747 |
| 4748 assert( pFd->nFetchOut==0 ); |
| 4749 assert( nNew>pFd->mmapSize ); |
| 4750 assert( nNew<=pFd->mmapSizeMax ); |
| 4751 assert( nNew>0 ); |
| 4752 assert( pFd->mmapSizeActual>=pFd->mmapSize ); |
| 4753 assert( MAP_FAILED!=0 ); |
| 4754 |
| 4755 #ifdef SQLITE_MMAP_READWRITE |
| 4756 if( (pFd->ctrlFlags & UNIXFILE_RDONLY)==0 ) flags |= PROT_WRITE; |
| 4757 #endif |
| 4758 |
| 4759 if( pOrig ){ |
| 4760 #if HAVE_MREMAP |
| 4761 i64 nReuse = pFd->mmapSize; |
| 4762 #else |
| 4763 const int szSyspage = osGetpagesize(); |
| 4764 i64 nReuse = (pFd->mmapSize & ~(szSyspage-1)); |
| 4765 #endif |
| 4766 u8 *pReq = &pOrig[nReuse]; |
| 4767 |
| 4768 /* Unmap any pages of the existing mapping that cannot be reused. */ |
| 4769 if( nReuse!=nOrig ){ |
| 4770 osMunmap(pReq, nOrig-nReuse); |
| 4771 } |
| 4772 |
| 4773 #if HAVE_MREMAP |
| 4774 pNew = osMremap(pOrig, nReuse, nNew, MREMAP_MAYMOVE); |
| 4775 zErr = "mremap"; |
| 4776 #else |
| 4777 pNew = osMmap(pReq, nNew-nReuse, flags, MAP_SHARED, h, nReuse); |
| 4778 if( pNew!=MAP_FAILED ){ |
| 4779 if( pNew!=pReq ){ |
| 4780 osMunmap(pNew, nNew - nReuse); |
| 4781 pNew = 0; |
| 4782 }else{ |
| 4783 pNew = pOrig; |
| 4784 } |
| 4785 } |
| 4786 #endif |
| 4787 |
| 4788 /* The attempt to extend the existing mapping failed. Free it. */ |
| 4789 if( pNew==MAP_FAILED || pNew==0 ){ |
| 4790 osMunmap(pOrig, nReuse); |
| 4791 } |
| 4792 } |
| 4793 |
| 4794 /* If pNew is still NULL, try to create an entirely new mapping. */ |
| 4795 if( pNew==0 ){ |
| 4796 pNew = osMmap(0, nNew, flags, MAP_SHARED, h, 0); |
| 4797 } |
| 4798 |
| 4799 if( pNew==MAP_FAILED ){ |
| 4800 pNew = 0; |
| 4801 nNew = 0; |
| 4802 unixLogError(SQLITE_OK, zErr, pFd->zPath); |
| 4803 |
| 4804 /* If the mmap() above failed, assume that all subsequent mmap() calls |
| 4805 ** will probably fail too. Fall back to using xRead/xWrite exclusively |
| 4806 ** in this case. */ |
| 4807 pFd->mmapSizeMax = 0; |
| 4808 } |
| 4809 pFd->pMapRegion = (void *)pNew; |
| 4810 pFd->mmapSize = pFd->mmapSizeActual = nNew; |
| 4811 } |
| 4812 |
| 4813 /* |
| 4814 ** Memory map or remap the file opened by file-descriptor pFd (if the file |
| 4815 ** is already mapped, the existing mapping is replaced by the new). Or, if |
| 4816 ** there already exists a mapping for this file, and there are still |
| 4817 ** outstanding xFetch() references to it, this function is a no-op. |
| 4818 ** |
| 4819 ** If parameter nByte is non-negative, then it is the requested size of |
| 4820 ** the mapping to create. Otherwise, if nByte is less than zero, then the |
| 4821 ** requested size is the size of the file on disk. The actual size of the |
| 4822 ** created mapping is either the requested size or the value configured |
| 4823 ** using SQLITE_FCNTL_MMAP_LIMIT, whichever is smaller. |
| 4824 ** |
| 4825 ** SQLITE_OK is returned if no error occurs (even if the mapping is not |
| 4826 ** recreated as a result of outstanding references) or an SQLite error |
| 4827 ** code otherwise. |
| 4828 */ |
| 4829 static int unixMapfile(unixFile *pFd, i64 nMap){ |
| 4830 assert( nMap>=0 || pFd->nFetchOut==0 ); |
| 4831 assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) ); |
| 4832 if( pFd->nFetchOut>0 ) return SQLITE_OK; |
| 4833 |
| 4834 if( nMap<0 ){ |
| 4835 struct stat statbuf; /* Low-level file information */ |
| 4836 if( osFstat(pFd->h, &statbuf) ){ |
| 4837 return SQLITE_IOERR_FSTAT; |
| 4838 } |
| 4839 nMap = statbuf.st_size; |
| 4840 } |
| 4841 if( nMap>pFd->mmapSizeMax ){ |
| 4842 nMap = pFd->mmapSizeMax; |
| 4843 } |
| 4844 |
| 4845 assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) ); |
| 4846 if( nMap!=pFd->mmapSize ){ |
| 4847 unixRemapfile(pFd, nMap); |
| 4848 } |
| 4849 |
| 4850 return SQLITE_OK; |
| 4851 } |
| 4852 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ |
| 4853 |
| 4854 /* |
| 4855 ** If possible, return a pointer to a mapping of file fd starting at offset |
| 4856 ** iOff. The mapping must be valid for at least nAmt bytes. |
| 4857 ** |
| 4858 ** If such a pointer can be obtained, store it in *pp and return SQLITE_OK. |
| 4859 ** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK. |
| 4860 ** Finally, if an error does occur, return an SQLite error code. The final |
| 4861 ** value of *pp is undefined in this case. |
| 4862 ** |
| 4863 ** If this function does return a pointer, the caller must eventually |
| 4864 ** release the reference by calling unixUnfetch(). |
| 4865 */ |
| 4866 static int unixFetch(sqlite3_file *fd, i64 iOff, int nAmt, void **pp){ |
| 4867 #if SQLITE_MAX_MMAP_SIZE>0 |
| 4868 unixFile *pFd = (unixFile *)fd; /* The underlying database file */ |
| 4869 #endif |
| 4870 *pp = 0; |
| 4871 |
| 4872 #if SQLITE_MAX_MMAP_SIZE>0 |
| 4873 if( pFd->mmapSizeMax>0 ){ |
| 4874 if( pFd->pMapRegion==0 ){ |
| 4875 int rc = unixMapfile(pFd, -1); |
| 4876 if( rc!=SQLITE_OK ) return rc; |
| 4877 } |
| 4878 if( pFd->mmapSize >= iOff+nAmt ){ |
| 4879 *pp = &((u8 *)pFd->pMapRegion)[iOff]; |
| 4880 pFd->nFetchOut++; |
| 4881 } |
| 4882 } |
| 4883 #endif |
| 4884 return SQLITE_OK; |
| 4885 } |
| 4886 |
| 4887 /* |
| 4888 ** If the third argument is non-NULL, then this function releases a |
| 4889 ** reference obtained by an earlier call to unixFetch(). The second |
| 4890 ** argument passed to this function must be the same as the corresponding |
| 4891 ** argument that was passed to the unixFetch() invocation. |
| 4892 ** |
| 4893 ** Or, if the third argument is NULL, then this function is being called |
| 4894 ** to inform the VFS layer that, according to POSIX, any existing mapping |
| 4895 ** may now be invalid and should be unmapped. |
| 4896 */ |
| 4897 static int unixUnfetch(sqlite3_file *fd, i64 iOff, void *p){ |
| 4898 #if SQLITE_MAX_MMAP_SIZE>0 |
| 4899 unixFile *pFd = (unixFile *)fd; /* The underlying database file */ |
| 4900 UNUSED_PARAMETER(iOff); |
| 4901 |
| 4902 /* If p==0 (unmap the entire file) then there must be no outstanding |
| 4903 ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference), |
| 4904 ** then there must be at least one outstanding. */ |
| 4905 assert( (p==0)==(pFd->nFetchOut==0) ); |
| 4906 |
| 4907 /* If p!=0, it must match the iOff value. */ |
| 4908 assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] ); |
| 4909 |
| 4910 if( p ){ |
| 4911 pFd->nFetchOut--; |
| 4912 }else{ |
| 4913 unixUnmapfile(pFd); |
| 4914 } |
| 4915 |
| 4916 assert( pFd->nFetchOut>=0 ); |
| 4917 #else |
| 4918 UNUSED_PARAMETER(fd); |
| 4919 UNUSED_PARAMETER(p); |
| 4920 UNUSED_PARAMETER(iOff); |
| 4921 #endif |
| 4922 return SQLITE_OK; |
| 4923 } |
| 4924 |
| 4925 /* |
| 4926 ** Here ends the implementation of all sqlite3_file methods. |
| 4927 ** |
| 4928 ********************** End sqlite3_file Methods ******************************* |
| 4929 ******************************************************************************/ |
| 4930 |
| 4931 /* |
| 4932 ** This division contains definitions of sqlite3_io_methods objects that |
| 4933 ** implement various file locking strategies. It also contains definitions |
| 4934 ** of "finder" functions. A finder-function is used to locate the appropriate |
| 4935 ** sqlite3_io_methods object for a particular database file. The pAppData |
| 4936 ** field of the sqlite3_vfs VFS objects are initialized to be pointers to |
| 4937 ** the correct finder-function for that VFS. |
| 4938 ** |
| 4939 ** Most finder functions return a pointer to a fixed sqlite3_io_methods |
| 4940 ** object. The only interesting finder-function is autolockIoFinder, which |
| 4941 ** looks at the filesystem type and tries to guess the best locking |
| 4942 ** strategy from that. |
| 4943 ** |
| 4944 ** For finder-function F, two objects are created: |
| 4945 ** |
| 4946 ** (1) The real finder-function named "FImpt()". |
| 4947 ** |
| 4948 ** (2) A constant pointer to this function named just "F". |
| 4949 ** |
| 4950 ** |
| 4951 ** A pointer to the F pointer is used as the pAppData value for VFS |
| 4952 ** objects. We have to do this instead of letting pAppData point |
| 4953 ** directly at the finder-function since C90 rules prevent a void* |
| 4954 ** from be cast into a function pointer. |
| 4955 ** |
| 4956 ** |
| 4957 ** Each instance of this macro generates two objects: |
| 4958 ** |
| 4959 ** * A constant sqlite3_io_methods object call METHOD that has locking |
| 4960 ** methods CLOSE, LOCK, UNLOCK, CKRESLOCK. |
| 4961 ** |
| 4962 ** * An I/O method finder function called FINDER that returns a pointer |
| 4963 ** to the METHOD object in the previous bullet. |
| 4964 */ |
| 4965 #define IOMETHODS(FINDER,METHOD,VERSION,CLOSE,LOCK,UNLOCK,CKLOCK,SHMMAP) \ |
| 4966 static const sqlite3_io_methods METHOD = { \ |
| 4967 VERSION, /* iVersion */ \ |
| 4968 CLOSE, /* xClose */ \ |
| 4969 unixRead, /* xRead */ \ |
| 4970 unixWrite, /* xWrite */ \ |
| 4971 unixTruncate, /* xTruncate */ \ |
| 4972 unixSync, /* xSync */ \ |
| 4973 unixFileSize, /* xFileSize */ \ |
| 4974 LOCK, /* xLock */ \ |
| 4975 UNLOCK, /* xUnlock */ \ |
| 4976 CKLOCK, /* xCheckReservedLock */ \ |
| 4977 unixFileControl, /* xFileControl */ \ |
| 4978 unixSectorSize, /* xSectorSize */ \ |
| 4979 unixDeviceCharacteristics, /* xDeviceCapabilities */ \ |
| 4980 SHMMAP, /* xShmMap */ \ |
| 4981 unixShmLock, /* xShmLock */ \ |
| 4982 unixShmBarrier, /* xShmBarrier */ \ |
| 4983 unixShmUnmap, /* xShmUnmap */ \ |
| 4984 unixFetch, /* xFetch */ \ |
| 4985 unixUnfetch, /* xUnfetch */ \ |
| 4986 }; \ |
| 4987 static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \ |
| 4988 UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \ |
| 4989 return &METHOD; \ |
| 4990 } \ |
| 4991 static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \ |
| 4992 = FINDER##Impl; |
| 4993 |
| 4994 /* |
| 4995 ** Here are all of the sqlite3_io_methods objects for each of the |
| 4996 ** locking strategies. Functions that return pointers to these methods |
| 4997 ** are also created. |
| 4998 */ |
| 4999 IOMETHODS( |
| 5000 posixIoFinder, /* Finder function name */ |
| 5001 posixIoMethods, /* sqlite3_io_methods object name */ |
| 5002 3, /* shared memory and mmap are enabled */ |
| 5003 unixClose, /* xClose method */ |
| 5004 unixLock, /* xLock method */ |
| 5005 unixUnlock, /* xUnlock method */ |
| 5006 unixCheckReservedLock, /* xCheckReservedLock method */ |
| 5007 unixShmMap /* xShmMap method */ |
| 5008 ) |
| 5009 IOMETHODS( |
| 5010 nolockIoFinder, /* Finder function name */ |
| 5011 nolockIoMethods, /* sqlite3_io_methods object name */ |
| 5012 3, /* shared memory is disabled */ |
| 5013 nolockClose, /* xClose method */ |
| 5014 nolockLock, /* xLock method */ |
| 5015 nolockUnlock, /* xUnlock method */ |
| 5016 nolockCheckReservedLock, /* xCheckReservedLock method */ |
| 5017 0 /* xShmMap method */ |
| 5018 ) |
| 5019 IOMETHODS( |
| 5020 dotlockIoFinder, /* Finder function name */ |
| 5021 dotlockIoMethods, /* sqlite3_io_methods object name */ |
| 5022 1, /* shared memory is disabled */ |
| 5023 dotlockClose, /* xClose method */ |
| 5024 dotlockLock, /* xLock method */ |
| 5025 dotlockUnlock, /* xUnlock method */ |
| 5026 dotlockCheckReservedLock, /* xCheckReservedLock method */ |
| 5027 0 /* xShmMap method */ |
| 5028 ) |
| 5029 |
| 5030 #if SQLITE_ENABLE_LOCKING_STYLE |
| 5031 IOMETHODS( |
| 5032 flockIoFinder, /* Finder function name */ |
| 5033 flockIoMethods, /* sqlite3_io_methods object name */ |
| 5034 1, /* shared memory is disabled */ |
| 5035 flockClose, /* xClose method */ |
| 5036 flockLock, /* xLock method */ |
| 5037 flockUnlock, /* xUnlock method */ |
| 5038 flockCheckReservedLock, /* xCheckReservedLock method */ |
| 5039 0 /* xShmMap method */ |
| 5040 ) |
| 5041 #endif |
| 5042 |
| 5043 #if OS_VXWORKS |
| 5044 IOMETHODS( |
| 5045 semIoFinder, /* Finder function name */ |
| 5046 semIoMethods, /* sqlite3_io_methods object name */ |
| 5047 1, /* shared memory is disabled */ |
| 5048 semXClose, /* xClose method */ |
| 5049 semXLock, /* xLock method */ |
| 5050 semXUnlock, /* xUnlock method */ |
| 5051 semXCheckReservedLock, /* xCheckReservedLock method */ |
| 5052 0 /* xShmMap method */ |
| 5053 ) |
| 5054 #endif |
| 5055 |
| 5056 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| 5057 IOMETHODS( |
| 5058 afpIoFinder, /* Finder function name */ |
| 5059 afpIoMethods, /* sqlite3_io_methods object name */ |
| 5060 1, /* shared memory is disabled */ |
| 5061 afpClose, /* xClose method */ |
| 5062 afpLock, /* xLock method */ |
| 5063 afpUnlock, /* xUnlock method */ |
| 5064 afpCheckReservedLock, /* xCheckReservedLock method */ |
| 5065 0 /* xShmMap method */ |
| 5066 ) |
| 5067 #endif |
| 5068 |
| 5069 /* |
| 5070 ** The proxy locking method is a "super-method" in the sense that it |
| 5071 ** opens secondary file descriptors for the conch and lock files and |
| 5072 ** it uses proxy, dot-file, AFP, and flock() locking methods on those |
| 5073 ** secondary files. For this reason, the division that implements |
| 5074 ** proxy locking is located much further down in the file. But we need |
| 5075 ** to go ahead and define the sqlite3_io_methods and finder function |
| 5076 ** for proxy locking here. So we forward declare the I/O methods. |
| 5077 */ |
| 5078 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| 5079 static int proxyClose(sqlite3_file*); |
| 5080 static int proxyLock(sqlite3_file*, int); |
| 5081 static int proxyUnlock(sqlite3_file*, int); |
| 5082 static int proxyCheckReservedLock(sqlite3_file*, int*); |
| 5083 IOMETHODS( |
| 5084 proxyIoFinder, /* Finder function name */ |
| 5085 proxyIoMethods, /* sqlite3_io_methods object name */ |
| 5086 1, /* shared memory is disabled */ |
| 5087 proxyClose, /* xClose method */ |
| 5088 proxyLock, /* xLock method */ |
| 5089 proxyUnlock, /* xUnlock method */ |
| 5090 proxyCheckReservedLock, /* xCheckReservedLock method */ |
| 5091 0 /* xShmMap method */ |
| 5092 ) |
| 5093 #endif |
| 5094 |
| 5095 /* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */ |
| 5096 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| 5097 IOMETHODS( |
| 5098 nfsIoFinder, /* Finder function name */ |
| 5099 nfsIoMethods, /* sqlite3_io_methods object name */ |
| 5100 1, /* shared memory is disabled */ |
| 5101 unixClose, /* xClose method */ |
| 5102 unixLock, /* xLock method */ |
| 5103 nfsUnlock, /* xUnlock method */ |
| 5104 unixCheckReservedLock, /* xCheckReservedLock method */ |
| 5105 0 /* xShmMap method */ |
| 5106 ) |
| 5107 #endif |
| 5108 |
| 5109 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| 5110 /* |
| 5111 ** This "finder" function attempts to determine the best locking strategy |
| 5112 ** for the database file "filePath". It then returns the sqlite3_io_methods |
| 5113 ** object that implements that strategy. |
| 5114 ** |
| 5115 ** This is for MacOSX only. |
| 5116 */ |
| 5117 static const sqlite3_io_methods *autolockIoFinderImpl( |
| 5118 const char *filePath, /* name of the database file */ |
| 5119 unixFile *pNew /* open file object for the database file */ |
| 5120 ){ |
| 5121 static const struct Mapping { |
| 5122 const char *zFilesystem; /* Filesystem type name */ |
| 5123 const sqlite3_io_methods *pMethods; /* Appropriate locking method */ |
| 5124 } aMap[] = { |
| 5125 { "hfs", &posixIoMethods }, |
| 5126 { "ufs", &posixIoMethods }, |
| 5127 { "afpfs", &afpIoMethods }, |
| 5128 { "smbfs", &afpIoMethods }, |
| 5129 { "webdav", &nolockIoMethods }, |
| 5130 { 0, 0 } |
| 5131 }; |
| 5132 int i; |
| 5133 struct statfs fsInfo; |
| 5134 struct flock lockInfo; |
| 5135 |
| 5136 if( !filePath ){ |
| 5137 /* If filePath==NULL that means we are dealing with a transient file |
| 5138 ** that does not need to be locked. */ |
| 5139 return &nolockIoMethods; |
| 5140 } |
| 5141 if( statfs(filePath, &fsInfo) != -1 ){ |
| 5142 if( fsInfo.f_flags & MNT_RDONLY ){ |
| 5143 return &nolockIoMethods; |
| 5144 } |
| 5145 for(i=0; aMap[i].zFilesystem; i++){ |
| 5146 if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){ |
| 5147 return aMap[i].pMethods; |
| 5148 } |
| 5149 } |
| 5150 } |
| 5151 |
| 5152 /* Default case. Handles, amongst others, "nfs". |
| 5153 ** Test byte-range lock using fcntl(). If the call succeeds, |
| 5154 ** assume that the file-system supports POSIX style locks. |
| 5155 */ |
| 5156 lockInfo.l_len = 1; |
| 5157 lockInfo.l_start = 0; |
| 5158 lockInfo.l_whence = SEEK_SET; |
| 5159 lockInfo.l_type = F_RDLCK; |
| 5160 if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { |
| 5161 if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){ |
| 5162 return &nfsIoMethods; |
| 5163 } else { |
| 5164 return &posixIoMethods; |
| 5165 } |
| 5166 }else{ |
| 5167 return &dotlockIoMethods; |
| 5168 } |
| 5169 } |
| 5170 static const sqlite3_io_methods |
| 5171 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; |
| 5172 |
| 5173 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ |
| 5174 |
| 5175 #if OS_VXWORKS |
| 5176 /* |
| 5177 ** This "finder" function for VxWorks checks to see if posix advisory |
| 5178 ** locking works. If it does, then that is what is used. If it does not |
| 5179 ** work, then fallback to named semaphore locking. |
| 5180 */ |
| 5181 static const sqlite3_io_methods *vxworksIoFinderImpl( |
| 5182 const char *filePath, /* name of the database file */ |
| 5183 unixFile *pNew /* the open file object */ |
| 5184 ){ |
| 5185 struct flock lockInfo; |
| 5186 |
| 5187 if( !filePath ){ |
| 5188 /* If filePath==NULL that means we are dealing with a transient file |
| 5189 ** that does not need to be locked. */ |
| 5190 return &nolockIoMethods; |
| 5191 } |
| 5192 |
| 5193 /* Test if fcntl() is supported and use POSIX style locks. |
| 5194 ** Otherwise fall back to the named semaphore method. |
| 5195 */ |
| 5196 lockInfo.l_len = 1; |
| 5197 lockInfo.l_start = 0; |
| 5198 lockInfo.l_whence = SEEK_SET; |
| 5199 lockInfo.l_type = F_RDLCK; |
| 5200 if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { |
| 5201 return &posixIoMethods; |
| 5202 }else{ |
| 5203 return &semIoMethods; |
| 5204 } |
| 5205 } |
| 5206 static const sqlite3_io_methods |
| 5207 *(*const vxworksIoFinder)(const char*,unixFile*) = vxworksIoFinderImpl; |
| 5208 |
| 5209 #endif /* OS_VXWORKS */ |
| 5210 |
| 5211 /* |
| 5212 ** An abstract type for a pointer to an IO method finder function: |
| 5213 */ |
| 5214 typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*); |
| 5215 |
| 5216 |
| 5217 /**************************************************************************** |
| 5218 **************************** sqlite3_vfs methods **************************** |
| 5219 ** |
| 5220 ** This division contains the implementation of methods on the |
| 5221 ** sqlite3_vfs object. |
| 5222 */ |
| 5223 |
| 5224 /* |
| 5225 ** Initialize the contents of the unixFile structure pointed to by pId. |
| 5226 */ |
| 5227 static int fillInUnixFile( |
| 5228 sqlite3_vfs *pVfs, /* Pointer to vfs object */ |
| 5229 int h, /* Open file descriptor of file being opened */ |
| 5230 sqlite3_file *pId, /* Write to the unixFile structure here */ |
| 5231 const char *zFilename, /* Name of the file being opened */ |
| 5232 int ctrlFlags /* Zero or more UNIXFILE_* values */ |
| 5233 ){ |
| 5234 const sqlite3_io_methods *pLockingStyle; |
| 5235 unixFile *pNew = (unixFile *)pId; |
| 5236 int rc = SQLITE_OK; |
| 5237 |
| 5238 assert( pNew->pInode==NULL ); |
| 5239 |
| 5240 /* Usually the path zFilename should not be a relative pathname. The |
| 5241 ** exception is when opening the proxy "conch" file in builds that |
| 5242 ** include the special Apple locking styles. |
| 5243 */ |
| 5244 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| 5245 assert( zFilename==0 || zFilename[0]=='/' |
| 5246 || pVfs->pAppData==(void*)&autolockIoFinder ); |
| 5247 #else |
| 5248 assert( zFilename==0 || zFilename[0]=='/' ); |
| 5249 #endif |
| 5250 |
| 5251 /* No locking occurs in temporary files */ |
| 5252 assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 ); |
| 5253 |
| 5254 OSTRACE(("OPEN %-3d %s\n", h, zFilename)); |
| 5255 pNew->h = h; |
| 5256 pNew->pVfs = pVfs; |
| 5257 pNew->zPath = zFilename; |
| 5258 pNew->ctrlFlags = (u8)ctrlFlags; |
| 5259 #if SQLITE_MAX_MMAP_SIZE>0 |
| 5260 pNew->mmapSizeMax = sqlite3GlobalConfig.szMmap; |
| 5261 #endif |
| 5262 if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0), |
| 5263 "psow", SQLITE_POWERSAFE_OVERWRITE) ){ |
| 5264 pNew->ctrlFlags |= UNIXFILE_PSOW; |
| 5265 } |
| 5266 if( strcmp(pVfs->zName,"unix-excl")==0 ){ |
| 5267 pNew->ctrlFlags |= UNIXFILE_EXCL; |
| 5268 } |
| 5269 |
| 5270 #if OS_VXWORKS |
| 5271 pNew->pId = vxworksFindFileId(zFilename); |
| 5272 if( pNew->pId==0 ){ |
| 5273 ctrlFlags |= UNIXFILE_NOLOCK; |
| 5274 rc = SQLITE_NOMEM_BKPT; |
| 5275 } |
| 5276 #endif |
| 5277 |
| 5278 if( ctrlFlags & UNIXFILE_NOLOCK ){ |
| 5279 pLockingStyle = &nolockIoMethods; |
| 5280 }else{ |
| 5281 pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew); |
| 5282 #if SQLITE_ENABLE_LOCKING_STYLE |
| 5283 /* Cache zFilename in the locking context (AFP and dotlock override) for |
| 5284 ** proxyLock activation is possible (remote proxy is based on db name) |
| 5285 ** zFilename remains valid until file is closed, to support */ |
| 5286 pNew->lockingContext = (void*)zFilename; |
| 5287 #endif |
| 5288 } |
| 5289 |
| 5290 if( pLockingStyle == &posixIoMethods |
| 5291 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| 5292 || pLockingStyle == &nfsIoMethods |
| 5293 #endif |
| 5294 ){ |
| 5295 unixEnterMutex(); |
| 5296 rc = findInodeInfo(pNew, &pNew->pInode); |
| 5297 if( rc!=SQLITE_OK ){ |
| 5298 /* If an error occurred in findInodeInfo(), close the file descriptor |
| 5299 ** immediately, before releasing the mutex. findInodeInfo() may fail |
| 5300 ** in two scenarios: |
| 5301 ** |
| 5302 ** (a) A call to fstat() failed. |
| 5303 ** (b) A malloc failed. |
| 5304 ** |
| 5305 ** Scenario (b) may only occur if the process is holding no other |
| 5306 ** file descriptors open on the same file. If there were other file |
| 5307 ** descriptors on this file, then no malloc would be required by |
| 5308 ** findInodeInfo(). If this is the case, it is quite safe to close |
| 5309 ** handle h - as it is guaranteed that no posix locks will be released |
| 5310 ** by doing so. |
| 5311 ** |
| 5312 ** If scenario (a) caused the error then things are not so safe. The |
| 5313 ** implicit assumption here is that if fstat() fails, things are in |
| 5314 ** such bad shape that dropping a lock or two doesn't matter much. |
| 5315 */ |
| 5316 robust_close(pNew, h, __LINE__); |
| 5317 h = -1; |
| 5318 } |
| 5319 unixLeaveMutex(); |
| 5320 } |
| 5321 |
| 5322 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
| 5323 else if( pLockingStyle == &afpIoMethods ){ |
| 5324 /* AFP locking uses the file path so it needs to be included in |
| 5325 ** the afpLockingContext. |
| 5326 */ |
| 5327 afpLockingContext *pCtx; |
| 5328 pNew->lockingContext = pCtx = sqlite3_malloc64( sizeof(*pCtx) ); |
| 5329 if( pCtx==0 ){ |
| 5330 rc = SQLITE_NOMEM_BKPT; |
| 5331 }else{ |
| 5332 /* NB: zFilename exists and remains valid until the file is closed |
| 5333 ** according to requirement F11141. So we do not need to make a |
| 5334 ** copy of the filename. */ |
| 5335 pCtx->dbPath = zFilename; |
| 5336 pCtx->reserved = 0; |
| 5337 srandomdev(); |
| 5338 unixEnterMutex(); |
| 5339 rc = findInodeInfo(pNew, &pNew->pInode); |
| 5340 if( rc!=SQLITE_OK ){ |
| 5341 sqlite3_free(pNew->lockingContext); |
| 5342 robust_close(pNew, h, __LINE__); |
| 5343 h = -1; |
| 5344 } |
| 5345 unixLeaveMutex(); |
| 5346 } |
| 5347 } |
| 5348 #endif |
| 5349 |
| 5350 else if( pLockingStyle == &dotlockIoMethods ){ |
| 5351 /* Dotfile locking uses the file path so it needs to be included in |
| 5352 ** the dotlockLockingContext |
| 5353 */ |
| 5354 char *zLockFile; |
| 5355 int nFilename; |
| 5356 assert( zFilename!=0 ); |
| 5357 nFilename = (int)strlen(zFilename) + 6; |
| 5358 zLockFile = (char *)sqlite3_malloc64(nFilename); |
| 5359 if( zLockFile==0 ){ |
| 5360 rc = SQLITE_NOMEM_BKPT; |
| 5361 }else{ |
| 5362 sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename); |
| 5363 } |
| 5364 pNew->lockingContext = zLockFile; |
| 5365 } |
| 5366 |
| 5367 #if OS_VXWORKS |
| 5368 else if( pLockingStyle == &semIoMethods ){ |
| 5369 /* Named semaphore locking uses the file path so it needs to be |
| 5370 ** included in the semLockingContext |
| 5371 */ |
| 5372 unixEnterMutex(); |
| 5373 rc = findInodeInfo(pNew, &pNew->pInode); |
| 5374 if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){ |
| 5375 char *zSemName = pNew->pInode->aSemName; |
| 5376 int n; |
| 5377 sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem", |
| 5378 pNew->pId->zCanonicalName); |
| 5379 for( n=1; zSemName[n]; n++ ) |
| 5380 if( zSemName[n]=='/' ) zSemName[n] = '_'; |
| 5381 pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1); |
| 5382 if( pNew->pInode->pSem == SEM_FAILED ){ |
| 5383 rc = SQLITE_NOMEM_BKPT; |
| 5384 pNew->pInode->aSemName[0] = '\0'; |
| 5385 } |
| 5386 } |
| 5387 unixLeaveMutex(); |
| 5388 } |
| 5389 #endif |
| 5390 |
| 5391 storeLastErrno(pNew, 0); |
| 5392 #if OS_VXWORKS |
| 5393 if( rc!=SQLITE_OK ){ |
| 5394 if( h>=0 ) robust_close(pNew, h, __LINE__); |
| 5395 h = -1; |
| 5396 osUnlink(zFilename); |
| 5397 pNew->ctrlFlags |= UNIXFILE_DELETE; |
| 5398 } |
| 5399 #endif |
| 5400 if( rc!=SQLITE_OK ){ |
| 5401 if( h>=0 ) robust_close(pNew, h, __LINE__); |
| 5402 }else{ |
| 5403 pNew->pMethod = pLockingStyle; |
| 5404 OpenCounter(+1); |
| 5405 verifyDbFile(pNew); |
| 5406 } |
| 5407 return rc; |
| 5408 } |
| 5409 |
| 5410 /* |
| 5411 ** Return the name of a directory in which to put temporary files. |
| 5412 ** If no suitable temporary file directory can be found, return NULL. |
| 5413 */ |
| 5414 static const char *unixTempFileDir(void){ |
| 5415 static const char *azDirs[] = { |
| 5416 0, |
| 5417 0, |
| 5418 "/var/tmp", |
| 5419 "/usr/tmp", |
| 5420 "/tmp", |
| 5421 "." |
| 5422 }; |
| 5423 unsigned int i = 0; |
| 5424 struct stat buf; |
| 5425 const char *zDir = sqlite3_temp_directory; |
| 5426 |
| 5427 if( !azDirs[0] ) azDirs[0] = getenv("SQLITE_TMPDIR"); |
| 5428 if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR"); |
| 5429 while(1){ |
| 5430 if( zDir!=0 |
| 5431 && osStat(zDir, &buf)==0 |
| 5432 && S_ISDIR(buf.st_mode) |
| 5433 && osAccess(zDir, 03)==0 |
| 5434 ){ |
| 5435 return zDir; |
| 5436 } |
| 5437 if( i>=sizeof(azDirs)/sizeof(azDirs[0]) ) break; |
| 5438 zDir = azDirs[i++]; |
| 5439 } |
| 5440 return 0; |
| 5441 } |
| 5442 |
| 5443 /* |
| 5444 ** Create a temporary file name in zBuf. zBuf must be allocated |
| 5445 ** by the calling process and must be big enough to hold at least |
| 5446 ** pVfs->mxPathname bytes. |
| 5447 */ |
| 5448 static int unixGetTempname(int nBuf, char *zBuf){ |
| 5449 const char *zDir; |
| 5450 int iLimit = 0; |
| 5451 |
| 5452 /* It's odd to simulate an io-error here, but really this is just |
| 5453 ** using the io-error infrastructure to test that SQLite handles this |
| 5454 ** function failing. |
| 5455 */ |
| 5456 zBuf[0] = 0; |
| 5457 SimulateIOError( return SQLITE_IOERR ); |
| 5458 |
| 5459 zDir = unixTempFileDir(); |
| 5460 if( zDir==0 ) return SQLITE_IOERR_GETTEMPPATH; |
| 5461 do{ |
| 5462 u64 r; |
| 5463 sqlite3_randomness(sizeof(r), &r); |
| 5464 assert( nBuf>2 ); |
| 5465 zBuf[nBuf-2] = 0; |
| 5466 sqlite3_snprintf(nBuf, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX"%llx%c", |
| 5467 zDir, r, 0); |
| 5468 if( zBuf[nBuf-2]!=0 || (iLimit++)>10 ) return SQLITE_ERROR; |
| 5469 }while( osAccess(zBuf,0)==0 ); |
| 5470 return SQLITE_OK; |
| 5471 } |
| 5472 |
| 5473 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
| 5474 /* |
| 5475 ** Routine to transform a unixFile into a proxy-locking unixFile. |
| 5476 ** Implementation in the proxy-lock division, but used by unixOpen() |
| 5477 ** if SQLITE_PREFER_PROXY_LOCKING is defined. |
| 5478 */ |
| 5479 static int proxyTransformUnixFile(unixFile*, const char*); |
| 5480 #endif |
| 5481 |
| 5482 /* |
| 5483 ** Search for an unused file descriptor that was opened on the database |
| 5484 ** file (not a journal or master-journal file) identified by pathname |
| 5485 ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second |
| 5486 ** argument to this function. |
| 5487 ** |
| 5488 ** Such a file descriptor may exist if a database connection was closed |
| 5489 ** but the associated file descriptor could not be closed because some |
| 5490 ** other file descriptor open on the same file is holding a file-lock. |
| 5491 ** Refer to comments in the unixClose() function and the lengthy comment |
| 5492 ** describing "Posix Advisory Locking" at the start of this file for |
| 5493 ** further details. Also, ticket #4018. |
| 5494 ** |
| 5495 ** If a suitable file descriptor is found, then it is returned. If no |
| 5496 ** such file descriptor is located, -1 is returned. |
| 5497 */ |
| 5498 static UnixUnusedFd *findReusableFd(const char *zPath, int flags){ |
| 5499 UnixUnusedFd *pUnused = 0; |
| 5500 |
| 5501 /* Do not search for an unused file descriptor on vxworks. Not because |
| 5502 ** vxworks would not benefit from the change (it might, we're not sure), |
| 5503 ** but because no way to test it is currently available. It is better |
| 5504 ** not to risk breaking vxworks support for the sake of such an obscure |
| 5505 ** feature. */ |
| 5506 #if !OS_VXWORKS |
| 5507 struct stat sStat; /* Results of stat() call */ |
| 5508 |
| 5509 /* A stat() call may fail for various reasons. If this happens, it is |
| 5510 ** almost certain that an open() call on the same path will also fail. |
| 5511 ** For this reason, if an error occurs in the stat() call here, it is |
| 5512 ** ignored and -1 is returned. The caller will try to open a new file |
| 5513 ** descriptor on the same path, fail, and return an error to SQLite. |
| 5514 ** |
| 5515 ** Even if a subsequent open() call does succeed, the consequences of |
| 5516 ** not searching for a reusable file descriptor are not dire. */ |
| 5517 if( 0==osStat(zPath, &sStat) ){ |
| 5518 unixInodeInfo *pInode; |
| 5519 |
| 5520 unixEnterMutex(); |
| 5521 pInode = inodeList; |
| 5522 while( pInode && (pInode->fileId.dev!=sStat.st_dev |
| 5523 || pInode->fileId.ino!=(u64)sStat.st_ino) ){ |
| 5524 pInode = pInode->pNext; |
| 5525 } |
| 5526 if( pInode ){ |
| 5527 UnixUnusedFd **pp; |
| 5528 for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext)); |
| 5529 pUnused = *pp; |
| 5530 if( pUnused ){ |
| 5531 *pp = pUnused->pNext; |
| 5532 } |
| 5533 } |
| 5534 unixLeaveMutex(); |
| 5535 } |
| 5536 #endif /* if !OS_VXWORKS */ |
| 5537 return pUnused; |
| 5538 } |
| 5539 |
| 5540 /* |
| 5541 ** Find the mode, uid and gid of file zFile. |
| 5542 */ |
| 5543 static int getFileMode( |
| 5544 const char *zFile, /* File name */ |
| 5545 mode_t *pMode, /* OUT: Permissions of zFile */ |
| 5546 uid_t *pUid, /* OUT: uid of zFile. */ |
| 5547 gid_t *pGid /* OUT: gid of zFile. */ |
| 5548 ){ |
| 5549 struct stat sStat; /* Output of stat() on database file */ |
| 5550 int rc = SQLITE_OK; |
| 5551 if( 0==osStat(zFile, &sStat) ){ |
| 5552 *pMode = sStat.st_mode & 0777; |
| 5553 *pUid = sStat.st_uid; |
| 5554 *pGid = sStat.st_gid; |
| 5555 }else{ |
| 5556 rc = SQLITE_IOERR_FSTAT; |
| 5557 } |
| 5558 return rc; |
| 5559 } |
| 5560 |
| 5561 /* |
| 5562 ** This function is called by unixOpen() to determine the unix permissions |
| 5563 ** to create new files with. If no error occurs, then SQLITE_OK is returned |
| 5564 ** and a value suitable for passing as the third argument to open(2) is |
| 5565 ** written to *pMode. If an IO error occurs, an SQLite error code is |
| 5566 ** returned and the value of *pMode is not modified. |
| 5567 ** |
| 5568 ** In most cases, this routine sets *pMode to 0, which will become |
| 5569 ** an indication to robust_open() to create the file using |
| 5570 ** SQLITE_DEFAULT_FILE_PERMISSIONS adjusted by the umask. |
| 5571 ** But if the file being opened is a WAL or regular journal file, then |
| 5572 ** this function queries the file-system for the permissions on the |
| 5573 ** corresponding database file and sets *pMode to this value. Whenever |
| 5574 ** possible, WAL and journal files are created using the same permissions |
| 5575 ** as the associated database file. |
| 5576 ** |
| 5577 ** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the |
| 5578 ** original filename is unavailable. But 8_3_NAMES is only used for |
| 5579 ** FAT filesystems and permissions do not matter there, so just use |
| 5580 ** the default permissions. |
| 5581 */ |
| 5582 static int findCreateFileMode( |
| 5583 const char *zPath, /* Path of file (possibly) being created */ |
| 5584 int flags, /* Flags passed as 4th argument to xOpen() */ |
| 5585 mode_t *pMode, /* OUT: Permissions to open file with */ |
| 5586 uid_t *pUid, /* OUT: uid to set on the file */ |
| 5587 gid_t *pGid /* OUT: gid to set on the file */ |
| 5588 ){ |
| 5589 int rc = SQLITE_OK; /* Return Code */ |
| 5590 *pMode = 0; |
| 5591 *pUid = 0; |
| 5592 *pGid = 0; |
| 5593 if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){ |
| 5594 char zDb[MAX_PATHNAME+1]; /* Database file path */ |
| 5595 int nDb; /* Number of valid bytes in zDb */ |
| 5596 |
| 5597 /* zPath is a path to a WAL or journal file. The following block derives |
| 5598 ** the path to the associated database file from zPath. This block handles |
| 5599 ** the following naming conventions: |
| 5600 ** |
| 5601 ** "<path to db>-journal" |
| 5602 ** "<path to db>-wal" |
| 5603 ** "<path to db>-journalNN" |
| 5604 ** "<path to db>-walNN" |
| 5605 ** |
| 5606 ** where NN is a decimal number. The NN naming schemes are |
| 5607 ** used by the test_multiplex.c module. |
| 5608 */ |
| 5609 nDb = sqlite3Strlen30(zPath) - 1; |
| 5610 while( zPath[nDb]!='-' ){ |
| 5611 #ifndef SQLITE_ENABLE_8_3_NAMES |
| 5612 /* In the normal case (8+3 filenames disabled) the journal filename |
| 5613 ** is guaranteed to contain a '-' character. */ |
| 5614 assert( nDb>0 ); |
| 5615 assert( sqlite3Isalnum(zPath[nDb]) ); |
| 5616 #else |
| 5617 /* If 8+3 names are possible, then the journal file might not contain |
| 5618 ** a '-' character. So check for that case and return early. */ |
| 5619 if( nDb==0 || zPath[nDb]=='.' ) return SQLITE_OK; |
| 5620 #endif |
| 5621 nDb--; |
| 5622 } |
| 5623 memcpy(zDb, zPath, nDb); |
| 5624 zDb[nDb] = '\0'; |
| 5625 |
| 5626 rc = getFileMode(zDb, pMode, pUid, pGid); |
| 5627 }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){ |
| 5628 *pMode = 0600; |
| 5629 }else if( flags & SQLITE_OPEN_URI ){ |
| 5630 /* If this is a main database file and the file was opened using a URI |
| 5631 ** filename, check for the "modeof" parameter. If present, interpret |
| 5632 ** its value as a filename and try to copy the mode, uid and gid from |
| 5633 ** that file. */ |
| 5634 const char *z = sqlite3_uri_parameter(zPath, "modeof"); |
| 5635 if( z ){ |
| 5636 rc = getFileMode(z, pMode, pUid, pGid); |
| 5637 } |
| 5638 } |
| 5639 return rc; |
| 5640 } |
| 5641 |
| 5642 /* |
| 5643 ** Open the file zPath. |
| 5644 ** |
| 5645 ** Previously, the SQLite OS layer used three functions in place of this |
| 5646 ** one: |
| 5647 ** |
| 5648 ** sqlite3OsOpenReadWrite(); |
| 5649 ** sqlite3OsOpenReadOnly(); |
| 5650 ** sqlite3OsOpenExclusive(); |
| 5651 ** |
| 5652 ** These calls correspond to the following combinations of flags: |
| 5653 ** |
| 5654 ** ReadWrite() -> (READWRITE | CREATE) |
| 5655 ** ReadOnly() -> (READONLY) |
| 5656 ** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE) |
| 5657 ** |
| 5658 ** The old OpenExclusive() accepted a boolean argument - "delFlag". If |
| 5659 ** true, the file was configured to be automatically deleted when the |
| 5660 ** file handle closed. To achieve the same effect using this new |
| 5661 ** interface, add the DELETEONCLOSE flag to those specified above for |
| 5662 ** OpenExclusive(). |
| 5663 */ |
| 5664 static int unixOpen( |
| 5665 sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */ |
| 5666 const char *zPath, /* Pathname of file to be opened */ |
| 5667 sqlite3_file *pFile, /* The file descriptor to be filled in */ |
| 5668 int flags, /* Input flags to control the opening */ |
| 5669 int *pOutFlags /* Output flags returned to SQLite core */ |
| 5670 ){ |
| 5671 unixFile *p = (unixFile *)pFile; |
| 5672 int fd = -1; /* File descriptor returned by open() */ |
| 5673 int openFlags = 0; /* Flags to pass to open() */ |
| 5674 int eType = flags&0xFFFFFF00; /* Type of file to open */ |
| 5675 int noLock; /* True to omit locking primitives */ |
| 5676 int rc = SQLITE_OK; /* Function Return Code */ |
| 5677 int ctrlFlags = 0; /* UNIXFILE_* flags */ |
| 5678 |
| 5679 int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); |
| 5680 int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE); |
| 5681 int isCreate = (flags & SQLITE_OPEN_CREATE); |
| 5682 int isReadonly = (flags & SQLITE_OPEN_READONLY); |
| 5683 int isReadWrite = (flags & SQLITE_OPEN_READWRITE); |
| 5684 #if SQLITE_ENABLE_LOCKING_STYLE |
| 5685 int isAutoProxy = (flags & SQLITE_OPEN_AUTOPROXY); |
| 5686 #endif |
| 5687 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE |
| 5688 struct statfs fsInfo; |
| 5689 #endif |
| 5690 |
| 5691 /* If creating a master or main-file journal, this function will open |
| 5692 ** a file-descriptor on the directory too. The first time unixSync() |
| 5693 ** is called the directory file descriptor will be fsync()ed and close()d. |
| 5694 */ |
| 5695 int syncDir = (isCreate && ( |
| 5696 eType==SQLITE_OPEN_MASTER_JOURNAL |
| 5697 || eType==SQLITE_OPEN_MAIN_JOURNAL |
| 5698 || eType==SQLITE_OPEN_WAL |
| 5699 )); |
| 5700 |
| 5701 /* If argument zPath is a NULL pointer, this function is required to open |
| 5702 ** a temporary file. Use this buffer to store the file name in. |
| 5703 */ |
| 5704 char zTmpname[MAX_PATHNAME+2]; |
| 5705 const char *zName = zPath; |
| 5706 |
| 5707 /* Check the following statements are true: |
| 5708 ** |
| 5709 ** (a) Exactly one of the READWRITE and READONLY flags must be set, and |
| 5710 ** (b) if CREATE is set, then READWRITE must also be set, and |
| 5711 ** (c) if EXCLUSIVE is set, then CREATE must also be set. |
| 5712 ** (d) if DELETEONCLOSE is set, then CREATE must also be set. |
| 5713 */ |
| 5714 assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); |
| 5715 assert(isCreate==0 || isReadWrite); |
| 5716 assert(isExclusive==0 || isCreate); |
| 5717 assert(isDelete==0 || isCreate); |
| 5718 |
| 5719 /* The main DB, main journal, WAL file and master journal are never |
| 5720 ** automatically deleted. Nor are they ever temporary files. */ |
| 5721 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB ); |
| 5722 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL ); |
| 5723 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL ); |
| 5724 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL ); |
| 5725 |
| 5726 /* Assert that the upper layer has set one of the "file-type" flags. */ |
| 5727 assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB |
| 5728 || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL |
| 5729 || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL |
| 5730 || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL |
| 5731 ); |
| 5732 |
| 5733 /* Detect a pid change and reset the PRNG. There is a race condition |
| 5734 ** here such that two or more threads all trying to open databases at |
| 5735 ** the same instant might all reset the PRNG. But multiple resets |
| 5736 ** are harmless. |
| 5737 */ |
| 5738 if( randomnessPid!=osGetpid(0) ){ |
| 5739 randomnessPid = osGetpid(0); |
| 5740 sqlite3_randomness(0,0); |
| 5741 } |
| 5742 |
| 5743 memset(p, 0, sizeof(unixFile)); |
| 5744 |
| 5745 if( eType==SQLITE_OPEN_MAIN_DB ){ |
| 5746 UnixUnusedFd *pUnused; |
| 5747 pUnused = findReusableFd(zName, flags); |
| 5748 if( pUnused ){ |
| 5749 fd = pUnused->fd; |
| 5750 }else{ |
| 5751 pUnused = sqlite3_malloc64(sizeof(*pUnused)); |
| 5752 if( !pUnused ){ |
| 5753 return SQLITE_NOMEM_BKPT; |
| 5754 } |
| 5755 } |
| 5756 p->pUnused = pUnused; |
| 5757 |
| 5758 /* Database filenames are double-zero terminated if they are not |
| 5759 ** URIs with parameters. Hence, they can always be passed into |
| 5760 ** sqlite3_uri_parameter(). */ |
| 5761 assert( (flags & SQLITE_OPEN_URI) || zName[strlen(zName)+1]==0 ); |
| 5762 |
| 5763 }else if( !zName ){ |
| 5764 /* If zName is NULL, the upper layer is requesting a temp file. */ |
| 5765 assert(isDelete && !syncDir); |
| 5766 rc = unixGetTempname(pVfs->mxPathname, zTmpname); |
| 5767 if( rc!=SQLITE_OK ){ |
| 5768 return rc; |
| 5769 } |
| 5770 zName = zTmpname; |
| 5771 |
| 5772 /* Generated temporary filenames are always double-zero terminated |
| 5773 ** for use by sqlite3_uri_parameter(). */ |
| 5774 assert( zName[strlen(zName)+1]==0 ); |
| 5775 } |
| 5776 |
| 5777 /* Determine the value of the flags parameter passed to POSIX function |
| 5778 ** open(). These must be calculated even if open() is not called, as |
| 5779 ** they may be stored as part of the file handle and used by the |
| 5780 ** 'conch file' locking functions later on. */ |
| 5781 if( isReadonly ) openFlags |= O_RDONLY; |
| 5782 if( isReadWrite ) openFlags |= O_RDWR; |
| 5783 if( isCreate ) openFlags |= O_CREAT; |
| 5784 if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW); |
| 5785 openFlags |= (O_LARGEFILE|O_BINARY); |
| 5786 |
| 5787 if( fd<0 ){ |
| 5788 mode_t openMode; /* Permissions to create file with */ |
| 5789 uid_t uid; /* Userid for the file */ |
| 5790 gid_t gid; /* Groupid for the file */ |
| 5791 rc = findCreateFileMode(zName, flags, &openMode, &uid, &gid); |
| 5792 if( rc!=SQLITE_OK ){ |
| 5793 assert( !p->pUnused ); |
| 5794 assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL ); |
| 5795 return rc; |
| 5796 } |
| 5797 fd = robust_open(zName, openFlags, openMode); |
| 5798 OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags)); |
| 5799 assert( !isExclusive || (openFlags & O_CREAT)!=0 ); |
| 5800 if( fd<0 && errno!=EISDIR && isReadWrite ){ |
| 5801 /* Failed to open the file for read/write access. Try read-only. */ |
| 5802 flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE); |
| 5803 openFlags &= ~(O_RDWR|O_CREAT); |
| 5804 flags |= SQLITE_OPEN_READONLY; |
| 5805 openFlags |= O_RDONLY; |
| 5806 isReadonly = 1; |
| 5807 fd = robust_open(zName, openFlags, openMode); |
| 5808 } |
| 5809 if( fd<0 ){ |
| 5810 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName); |
| 5811 goto open_finished; |
| 5812 } |
| 5813 |
| 5814 /* If this process is running as root and if creating a new rollback |
| 5815 ** journal or WAL file, set the ownership of the journal or WAL to be |
| 5816 ** the same as the original database. |
| 5817 */ |
| 5818 if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){ |
| 5819 robustFchown(fd, uid, gid); |
| 5820 } |
| 5821 } |
| 5822 assert( fd>=0 ); |
| 5823 if( pOutFlags ){ |
| 5824 *pOutFlags = flags; |
| 5825 } |
| 5826 |
| 5827 if( p->pUnused ){ |
| 5828 p->pUnused->fd = fd; |
| 5829 p->pUnused->flags = flags; |
| 5830 } |
| 5831 |
| 5832 if( isDelete ){ |
| 5833 #if OS_VXWORKS |
| 5834 zPath = zName; |
| 5835 #elif defined(SQLITE_UNLINK_AFTER_CLOSE) |
| 5836 zPath = sqlite3_mprintf("%s", zName); |
| 5837 if( zPath==0 ){ |
| 5838 robust_close(p, fd, __LINE__); |
| 5839 return SQLITE_NOMEM_BKPT; |
| 5840 } |
| 5841 #else |
| 5842 osUnlink(zName); |
| 5843 #endif |
| 5844 } |
| 5845 #if SQLITE_ENABLE_LOCKING_STYLE |
| 5846 else{ |
| 5847 p->openFlags = openFlags; |
| 5848 } |
| 5849 #endif |
| 5850 |
| 5851 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE |
| 5852 if( fstatfs(fd, &fsInfo) == -1 ){ |
| 5853 storeLastErrno(p, errno); |
| 5854 robust_close(p, fd, __LINE__); |
| 5855 return SQLITE_IOERR_ACCESS; |
| 5856 } |
| 5857 if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) { |
| 5858 ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS; |
| 5859 } |
| 5860 if (0 == strncmp("exfat", fsInfo.f_fstypename, 5)) { |
| 5861 ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS; |
| 5862 } |
| 5863 #endif |
| 5864 |
| 5865 /* Set up appropriate ctrlFlags */ |
| 5866 if( isDelete ) ctrlFlags |= UNIXFILE_DELETE; |
| 5867 if( isReadonly ) ctrlFlags |= UNIXFILE_RDONLY; |
| 5868 noLock = eType!=SQLITE_OPEN_MAIN_DB; |
| 5869 if( noLock ) ctrlFlags |= UNIXFILE_NOLOCK; |
| 5870 if( syncDir ) ctrlFlags |= UNIXFILE_DIRSYNC; |
| 5871 if( flags & SQLITE_OPEN_URI ) ctrlFlags |= UNIXFILE_URI; |
| 5872 |
| 5873 #if SQLITE_ENABLE_LOCKING_STYLE |
| 5874 #if SQLITE_PREFER_PROXY_LOCKING |
| 5875 isAutoProxy = 1; |
| 5876 #endif |
| 5877 if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){ |
| 5878 char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING"); |
| 5879 int useProxy = 0; |
| 5880 |
| 5881 /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means |
| 5882 ** never use proxy, NULL means use proxy for non-local files only. */ |
| 5883 if( envforce!=NULL ){ |
| 5884 useProxy = atoi(envforce)>0; |
| 5885 }else{ |
| 5886 useProxy = !(fsInfo.f_flags&MNT_LOCAL); |
| 5887 } |
| 5888 if( useProxy ){ |
| 5889 rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags); |
| 5890 if( rc==SQLITE_OK ){ |
| 5891 rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:"); |
| 5892 if( rc!=SQLITE_OK ){ |
| 5893 /* Use unixClose to clean up the resources added in fillInUnixFile |
| 5894 ** and clear all the structure's references. Specifically, |
| 5895 ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op |
| 5896 */ |
| 5897 unixClose(pFile); |
| 5898 return rc; |
| 5899 } |
| 5900 } |
| 5901 goto open_finished; |
| 5902 } |
| 5903 } |
| 5904 #endif |
| 5905 |
| 5906 rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags); |
| 5907 |
| 5908 open_finished: |
| 5909 if( rc!=SQLITE_OK ){ |
| 5910 sqlite3_free(p->pUnused); |
| 5911 } |
| 5912 return rc; |
| 5913 } |
| 5914 |
| 5915 |
| 5916 /* |
| 5917 ** Delete the file at zPath. If the dirSync argument is true, fsync() |
| 5918 ** the directory after deleting the file. |
| 5919 */ |
| 5920 static int unixDelete( |
| 5921 sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */ |
| 5922 const char *zPath, /* Name of file to be deleted */ |
| 5923 int dirSync /* If true, fsync() directory after deleting file */ |
| 5924 ){ |
| 5925 int rc = SQLITE_OK; |
| 5926 UNUSED_PARAMETER(NotUsed); |
| 5927 SimulateIOError(return SQLITE_IOERR_DELETE); |
| 5928 if( osUnlink(zPath)==(-1) ){ |
| 5929 if( errno==ENOENT |
| 5930 #if OS_VXWORKS |
| 5931 || osAccess(zPath,0)!=0 |
| 5932 #endif |
| 5933 ){ |
| 5934 rc = SQLITE_IOERR_DELETE_NOENT; |
| 5935 }else{ |
| 5936 rc = unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath); |
| 5937 } |
| 5938 return rc; |
| 5939 } |
| 5940 #ifndef SQLITE_DISABLE_DIRSYNC |
| 5941 if( (dirSync & 1)!=0 ){ |
| 5942 int fd; |
| 5943 rc = osOpenDirectory(zPath, &fd); |
| 5944 if( rc==SQLITE_OK ){ |
| 5945 if( full_fsync(fd,0,0) ){ |
| 5946 rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath); |
| 5947 } |
| 5948 robust_close(0, fd, __LINE__); |
| 5949 }else{ |
| 5950 assert( rc==SQLITE_CANTOPEN ); |
| 5951 rc = SQLITE_OK; |
| 5952 } |
| 5953 } |
| 5954 #endif |
| 5955 return rc; |
| 5956 } |
| 5957 |
| 5958 /* |
| 5959 ** Test the existence of or access permissions of file zPath. The |
| 5960 ** test performed depends on the value of flags: |
| 5961 ** |
| 5962 ** SQLITE_ACCESS_EXISTS: Return 1 if the file exists |
| 5963 ** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable. |
| 5964 ** SQLITE_ACCESS_READONLY: Return 1 if the file is readable. |
| 5965 ** |
| 5966 ** Otherwise return 0. |
| 5967 */ |
| 5968 static int unixAccess( |
| 5969 sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */ |
| 5970 const char *zPath, /* Path of the file to examine */ |
| 5971 int flags, /* What do we want to learn about the zPath file? */ |
| 5972 int *pResOut /* Write result boolean here */ |
| 5973 ){ |
| 5974 UNUSED_PARAMETER(NotUsed); |
| 5975 SimulateIOError( return SQLITE_IOERR_ACCESS; ); |
| 5976 assert( pResOut!=0 ); |
| 5977 |
| 5978 /* The spec says there are three possible values for flags. But only |
| 5979 ** two of them are actually used */ |
| 5980 assert( flags==SQLITE_ACCESS_EXISTS || flags==SQLITE_ACCESS_READWRITE ); |
| 5981 |
| 5982 if( flags==SQLITE_ACCESS_EXISTS ){ |
| 5983 struct stat buf; |
| 5984 *pResOut = (0==osStat(zPath, &buf) && buf.st_size>0); |
| 5985 }else{ |
| 5986 *pResOut = osAccess(zPath, W_OK|R_OK)==0; |
| 5987 } |
| 5988 return SQLITE_OK; |
| 5989 } |
| 5990 |
| 5991 /* |
| 5992 ** |
| 5993 */ |
| 5994 static int mkFullPathname( |
| 5995 const char *zPath, /* Input path */ |
| 5996 char *zOut, /* Output buffer */ |
| 5997 int nOut /* Allocated size of buffer zOut */ |
| 5998 ){ |
| 5999 int nPath = sqlite3Strlen30(zPath); |
| 6000 int iOff = 0; |
| 6001 if( zPath[0]!='/' ){ |
| 6002 if( osGetcwd(zOut, nOut-2)==0 ){ |
| 6003 return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath); |
| 6004 } |
| 6005 iOff = sqlite3Strlen30(zOut); |
| 6006 zOut[iOff++] = '/'; |
| 6007 } |
| 6008 if( (iOff+nPath+1)>nOut ){ |
| 6009 /* SQLite assumes that xFullPathname() nul-terminates the output buffer |
| 6010 ** even if it returns an error. */ |
| 6011 zOut[iOff] = '\0'; |
| 6012 return SQLITE_CANTOPEN_BKPT; |
| 6013 } |
| 6014 sqlite3_snprintf(nOut-iOff, &zOut[iOff], "%s", zPath); |
| 6015 return SQLITE_OK; |
| 6016 } |
| 6017 |
| 6018 /* |
| 6019 ** Turn a relative pathname into a full pathname. The relative path |
| 6020 ** is stored as a nul-terminated string in the buffer pointed to by |
| 6021 ** zPath. |
| 6022 ** |
| 6023 ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes |
| 6024 ** (in this case, MAX_PATHNAME bytes). The full-path is written to |
| 6025 ** this buffer before returning. |
| 6026 */ |
| 6027 static int unixFullPathname( |
| 6028 sqlite3_vfs *pVfs, /* Pointer to vfs object */ |
| 6029 const char *zPath, /* Possibly relative input path */ |
| 6030 int nOut, /* Size of output buffer in bytes */ |
| 6031 char *zOut /* Output buffer */ |
| 6032 ){ |
| 6033 #if !defined(HAVE_READLINK) || !defined(HAVE_LSTAT) |
| 6034 return mkFullPathname(zPath, zOut, nOut); |
| 6035 #else |
| 6036 int rc = SQLITE_OK; |
| 6037 int nByte; |
| 6038 int nLink = 1; /* Number of symbolic links followed so far */ |
| 6039 const char *zIn = zPath; /* Input path for each iteration of loop */ |
| 6040 char *zDel = 0; |
| 6041 |
| 6042 assert( pVfs->mxPathname==MAX_PATHNAME ); |
| 6043 UNUSED_PARAMETER(pVfs); |
| 6044 |
| 6045 /* It's odd to simulate an io-error here, but really this is just |
| 6046 ** using the io-error infrastructure to test that SQLite handles this |
| 6047 ** function failing. This function could fail if, for example, the |
| 6048 ** current working directory has been unlinked. |
| 6049 */ |
| 6050 SimulateIOError( return SQLITE_ERROR ); |
| 6051 |
| 6052 do { |
| 6053 |
| 6054 /* Call stat() on path zIn. Set bLink to true if the path is a symbolic |
| 6055 ** link, or false otherwise. */ |
| 6056 int bLink = 0; |
| 6057 struct stat buf; |
| 6058 if( osLstat(zIn, &buf)!=0 ){ |
| 6059 if( errno!=ENOENT ){ |
| 6060 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "lstat", zIn); |
| 6061 } |
| 6062 }else{ |
| 6063 bLink = S_ISLNK(buf.st_mode); |
| 6064 } |
| 6065 |
| 6066 if( bLink ){ |
| 6067 if( zDel==0 ){ |
| 6068 zDel = sqlite3_malloc(nOut); |
| 6069 if( zDel==0 ) rc = SQLITE_NOMEM_BKPT; |
| 6070 }else if( ++nLink>SQLITE_MAX_SYMLINKS ){ |
| 6071 rc = SQLITE_CANTOPEN_BKPT; |
| 6072 } |
| 6073 |
| 6074 if( rc==SQLITE_OK ){ |
| 6075 nByte = osReadlink(zIn, zDel, nOut-1); |
| 6076 if( nByte<0 ){ |
| 6077 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "readlink", zIn); |
| 6078 }else{ |
| 6079 if( zDel[0]!='/' ){ |
| 6080 int n; |
| 6081 for(n = sqlite3Strlen30(zIn); n>0 && zIn[n-1]!='/'; n--); |
| 6082 if( nByte+n+1>nOut ){ |
| 6083 rc = SQLITE_CANTOPEN_BKPT; |
| 6084 }else{ |
| 6085 memmove(&zDel[n], zDel, nByte+1); |
| 6086 memcpy(zDel, zIn, n); |
| 6087 nByte += n; |
| 6088 } |
| 6089 } |
| 6090 zDel[nByte] = '\0'; |
| 6091 } |
| 6092 } |
| 6093 |
| 6094 zIn = zDel; |
| 6095 } |
| 6096 |
| 6097 assert( rc!=SQLITE_OK || zIn!=zOut || zIn[0]=='/' ); |
| 6098 if( rc==SQLITE_OK && zIn!=zOut ){ |
| 6099 rc = mkFullPathname(zIn, zOut, nOut); |
| 6100 } |
| 6101 if( bLink==0 ) break; |
| 6102 zIn = zOut; |
| 6103 }while( rc==SQLITE_OK ); |
| 6104 |
| 6105 sqlite3_free(zDel); |
| 6106 return rc; |
| 6107 #endif /* HAVE_READLINK && HAVE_LSTAT */ |
| 6108 } |
| 6109 |
| 6110 |
| 6111 #ifndef SQLITE_OMIT_LOAD_EXTENSION |
| 6112 /* |
| 6113 ** Interfaces for opening a shared library, finding entry points |
| 6114 ** within the shared library, and closing the shared library. |
| 6115 */ |
| 6116 #include <dlfcn.h> |
| 6117 static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){ |
| 6118 UNUSED_PARAMETER(NotUsed); |
| 6119 return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL); |
| 6120 } |
| 6121 |
| 6122 /* |
| 6123 ** SQLite calls this function immediately after a call to unixDlSym() or |
| 6124 ** unixDlOpen() fails (returns a null pointer). If a more detailed error |
| 6125 ** message is available, it is written to zBufOut. If no error message |
| 6126 ** is available, zBufOut is left unmodified and SQLite uses a default |
| 6127 ** error message. |
| 6128 */ |
| 6129 static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){ |
| 6130 const char *zErr; |
| 6131 UNUSED_PARAMETER(NotUsed); |
| 6132 unixEnterMutex(); |
| 6133 zErr = dlerror(); |
| 6134 if( zErr ){ |
| 6135 sqlite3_snprintf(nBuf, zBufOut, "%s", zErr); |
| 6136 } |
| 6137 unixLeaveMutex(); |
| 6138 } |
| 6139 static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){ |
| 6140 /* |
| 6141 ** GCC with -pedantic-errors says that C90 does not allow a void* to be |
| 6142 ** cast into a pointer to a function. And yet the library dlsym() routine |
| 6143 ** returns a void* which is really a pointer to a function. So how do we |
| 6144 ** use dlsym() with -pedantic-errors? |
| 6145 ** |
| 6146 ** Variable x below is defined to be a pointer to a function taking |
| 6147 ** parameters void* and const char* and returning a pointer to a function. |
| 6148 ** We initialize x by assigning it a pointer to the dlsym() function. |
| 6149 ** (That assignment requires a cast.) Then we call the function that |
| 6150 ** x points to. |
| 6151 ** |
| 6152 ** This work-around is unlikely to work correctly on any system where |
| 6153 ** you really cannot cast a function pointer into void*. But then, on the |
| 6154 ** other hand, dlsym() will not work on such a system either, so we have |
| 6155 ** not really lost anything. |
| 6156 */ |
| 6157 void (*(*x)(void*,const char*))(void); |
| 6158 UNUSED_PARAMETER(NotUsed); |
| 6159 x = (void(*(*)(void*,const char*))(void))dlsym; |
| 6160 return (*x)(p, zSym); |
| 6161 } |
| 6162 static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){ |
| 6163 UNUSED_PARAMETER(NotUsed); |
| 6164 dlclose(pHandle); |
| 6165 } |
| 6166 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ |
| 6167 #define unixDlOpen 0 |
| 6168 #define unixDlError 0 |
| 6169 #define unixDlSym 0 |
| 6170 #define unixDlClose 0 |
| 6171 #endif |
| 6172 |
| 6173 /* |
| 6174 ** Write nBuf bytes of random data to the supplied buffer zBuf. |
| 6175 */ |
| 6176 static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){ |
| 6177 UNUSED_PARAMETER(NotUsed); |
| 6178 assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int))); |
| 6179 |
| 6180 /* We have to initialize zBuf to prevent valgrind from reporting |
| 6181 ** errors. The reports issued by valgrind are incorrect - we would |
| 6182 ** prefer that the randomness be increased by making use of the |
| 6183 ** uninitialized space in zBuf - but valgrind errors tend to worry |
| 6184 ** some users. Rather than argue, it seems easier just to initialize |
| 6185 ** the whole array and silence valgrind, even if that means less randomness |
| 6186 ** in the random seed. |
| 6187 ** |
| 6188 ** When testing, initializing zBuf[] to zero is all we do. That means |
| 6189 ** that we always use the same random number sequence. This makes the |
| 6190 ** tests repeatable. |
| 6191 */ |
| 6192 memset(zBuf, 0, nBuf); |
| 6193 randomnessPid = osGetpid(0); |
| 6194 #if !defined(SQLITE_TEST) && !defined(SQLITE_OMIT_RANDOMNESS) |
| 6195 { |
| 6196 int fd, got; |
| 6197 fd = robust_open("/dev/urandom", O_RDONLY, 0); |
| 6198 if( fd<0 ){ |
| 6199 time_t t; |
| 6200 time(&t); |
| 6201 memcpy(zBuf, &t, sizeof(t)); |
| 6202 memcpy(&zBuf[sizeof(t)], &randomnessPid, sizeof(randomnessPid)); |
| 6203 assert( sizeof(t)+sizeof(randomnessPid)<=(size_t)nBuf ); |
| 6204 nBuf = sizeof(t) + sizeof(randomnessPid); |
| 6205 }else{ |
| 6206 do{ got = osRead(fd, zBuf, nBuf); }while( got<0 && errno==EINTR ); |
| 6207 robust_close(0, fd, __LINE__); |
| 6208 } |
| 6209 } |
| 6210 #endif |
| 6211 return nBuf; |
| 6212 } |
| 6213 |
| 6214 |
| 6215 /* |
| 6216 ** Sleep for a little while. Return the amount of time slept. |
| 6217 ** The argument is the number of microseconds we want to sleep. |
| 6218 ** The return value is the number of microseconds of sleep actually |
| 6219 ** requested from the underlying operating system, a number which |
| 6220 ** might be greater than or equal to the argument, but not less |
| 6221 ** than the argument. |
| 6222 */ |
| 6223 static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){ |
| 6224 #if OS_VXWORKS |
| 6225 struct timespec sp; |
| 6226 |
| 6227 sp.tv_sec = microseconds / 1000000; |
| 6228 sp.tv_nsec = (microseconds % 1000000) * 1000; |
| 6229 nanosleep(&sp, NULL); |
| 6230 UNUSED_PARAMETER(NotUsed); |
| 6231 return microseconds; |
| 6232 #elif defined(HAVE_USLEEP) && HAVE_USLEEP |
| 6233 usleep(microseconds); |
| 6234 UNUSED_PARAMETER(NotUsed); |
| 6235 return microseconds; |
| 6236 #else |
| 6237 int seconds = (microseconds+999999)/1000000; |
| 6238 sleep(seconds); |
| 6239 UNUSED_PARAMETER(NotUsed); |
| 6240 return seconds*1000000; |
| 6241 #endif |
| 6242 } |
| 6243 |
| 6244 /* |
| 6245 ** The following variable, if set to a non-zero value, is interpreted as |
| 6246 ** the number of seconds since 1970 and is used to set the result of |
| 6247 ** sqlite3OsCurrentTime() during testing. |
| 6248 */ |
| 6249 #ifdef SQLITE_TEST |
| 6250 int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */ |
| 6251 #endif |
| 6252 |
| 6253 /* |
| 6254 ** Find the current time (in Universal Coordinated Time). Write into *piNow |
| 6255 ** the current time and date as a Julian Day number times 86_400_000. In |
| 6256 ** other words, write into *piNow the number of milliseconds since the Julian |
| 6257 ** epoch of noon in Greenwich on November 24, 4714 B.C according to the |
| 6258 ** proleptic Gregorian calendar. |
| 6259 ** |
| 6260 ** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date |
| 6261 ** cannot be found. |
| 6262 */ |
| 6263 static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){ |
| 6264 static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000; |
| 6265 int rc = SQLITE_OK; |
| 6266 #if defined(NO_GETTOD) |
| 6267 time_t t; |
| 6268 time(&t); |
| 6269 *piNow = ((sqlite3_int64)t)*1000 + unixEpoch; |
| 6270 #elif OS_VXWORKS |
| 6271 struct timespec sNow; |
| 6272 clock_gettime(CLOCK_REALTIME, &sNow); |
| 6273 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000; |
| 6274 #else |
| 6275 struct timeval sNow; |
| 6276 (void)gettimeofday(&sNow, 0); /* Cannot fail given valid arguments */ |
| 6277 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000; |
| 6278 #endif |
| 6279 |
| 6280 #ifdef SQLITE_TEST |
| 6281 if( sqlite3_current_time ){ |
| 6282 *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch; |
| 6283 } |
| 6284 #endif |
| 6285 UNUSED_PARAMETER(NotUsed); |
| 6286 return rc; |
| 6287 } |
| 6288 |
| 6289 #ifndef SQLITE_OMIT_DEPRECATED |
| 6290 /* |
| 6291 ** Find the current time (in Universal Coordinated Time). Write the |
| 6292 ** current time and date as a Julian Day number into *prNow and |
| 6293 ** return 0. Return 1 if the time and date cannot be found. |
| 6294 */ |
| 6295 static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){ |
| 6296 sqlite3_int64 i = 0; |
| 6297 int rc; |
| 6298 UNUSED_PARAMETER(NotUsed); |
| 6299 rc = unixCurrentTimeInt64(0, &i); |
| 6300 *prNow = i/86400000.0; |
| 6301 return rc; |
| 6302 } |
| 6303 #else |
| 6304 # define unixCurrentTime 0 |
| 6305 #endif |
| 6306 |
| 6307 /* |
| 6308 ** The xGetLastError() method is designed to return a better |
| 6309 ** low-level error message when operating-system problems come up |
| 6310 ** during SQLite operation. Only the integer return code is currently |
| 6311 ** used. |
| 6312 */ |
| 6313 static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){ |
| 6314 UNUSED_PARAMETER(NotUsed); |
| 6315 UNUSED_PARAMETER(NotUsed2); |
| 6316 UNUSED_PARAMETER(NotUsed3); |
| 6317 return errno; |
| 6318 } |
| 6319 |
| 6320 |
| 6321 /* |
| 6322 ************************ End of sqlite3_vfs methods *************************** |
| 6323 ******************************************************************************/ |
| 6324 |
| 6325 /****************************************************************************** |
| 6326 ************************** Begin Proxy Locking ******************************** |
| 6327 ** |
| 6328 ** Proxy locking is a "uber-locking-method" in this sense: It uses the |
| 6329 ** other locking methods on secondary lock files. Proxy locking is a |
| 6330 ** meta-layer over top of the primitive locking implemented above. For |
| 6331 ** this reason, the division that implements of proxy locking is deferred |
| 6332 ** until late in the file (here) after all of the other I/O methods have |
| 6333 ** been defined - so that the primitive locking methods are available |
| 6334 ** as services to help with the implementation of proxy locking. |
| 6335 ** |
| 6336 **** |
| 6337 ** |
| 6338 ** The default locking schemes in SQLite use byte-range locks on the |
| 6339 ** database file to coordinate safe, concurrent access by multiple readers |
| 6340 ** and writers [http://sqlite.org/lockingv3.html]. The five file locking |
| 6341 ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented |
| 6342 ** as POSIX read & write locks over fixed set of locations (via fsctl), |
| 6343 ** on AFP and SMB only exclusive byte-range locks are available via fsctl |
| 6344 ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states. |
| 6345 ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected |
| 6346 ** address in the shared range is taken for a SHARED lock, the entire |
| 6347 ** shared range is taken for an EXCLUSIVE lock): |
| 6348 ** |
| 6349 ** PENDING_BYTE 0x40000000 |
| 6350 ** RESERVED_BYTE 0x40000001 |
| 6351 ** SHARED_RANGE 0x40000002 -> 0x40000200 |
| 6352 ** |
| 6353 ** This works well on the local file system, but shows a nearly 100x |
| 6354 ** slowdown in read performance on AFP because the AFP client disables |
| 6355 ** the read cache when byte-range locks are present. Enabling the read |
| 6356 ** cache exposes a cache coherency problem that is present on all OS X |
| 6357 ** supported network file systems. NFS and AFP both observe the |
| 6358 ** close-to-open semantics for ensuring cache coherency |
| 6359 ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively |
| 6360 ** address the requirements for concurrent database access by multiple |
| 6361 ** readers and writers |
| 6362 ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html]. |
| 6363 ** |
| 6364 ** To address the performance and cache coherency issues, proxy file locking |
| 6365 ** changes the way database access is controlled by limiting access to a |
| 6366 ** single host at a time and moving file locks off of the database file |
| 6367 ** and onto a proxy file on the local file system. |
| 6368 ** |
| 6369 ** |
| 6370 ** Using proxy locks |
| 6371 ** ----------------- |
| 6372 ** |
| 6373 ** C APIs |
| 6374 ** |
| 6375 ** sqlite3_file_control(db, dbname, SQLITE_FCNTL_SET_LOCKPROXYFILE, |
| 6376 ** <proxy_path> | ":auto:"); |
| 6377 ** sqlite3_file_control(db, dbname, SQLITE_FCNTL_GET_LOCKPROXYFILE, |
| 6378 ** &<proxy_path>); |
| 6379 ** |
| 6380 ** |
| 6381 ** SQL pragmas |
| 6382 ** |
| 6383 ** PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto: |
| 6384 ** PRAGMA [database.]lock_proxy_file |
| 6385 ** |
| 6386 ** Specifying ":auto:" means that if there is a conch file with a matching |
| 6387 ** host ID in it, the proxy path in the conch file will be used, otherwise |
| 6388 ** a proxy path based on the user's temp dir |
| 6389 ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the |
| 6390 ** actual proxy file name is generated from the name and path of the |
| 6391 ** database file. For example: |
| 6392 ** |
| 6393 ** For database path "/Users/me/foo.db" |
| 6394 ** The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:") |
| 6395 ** |
| 6396 ** Once a lock proxy is configured for a database connection, it can not |
| 6397 ** be removed, however it may be switched to a different proxy path via |
| 6398 ** the above APIs (assuming the conch file is not being held by another |
| 6399 ** connection or process). |
| 6400 ** |
| 6401 ** |
| 6402 ** How proxy locking works |
| 6403 ** ----------------------- |
| 6404 ** |
| 6405 ** Proxy file locking relies primarily on two new supporting files: |
| 6406 ** |
| 6407 ** * conch file to limit access to the database file to a single host |
| 6408 ** at a time |
| 6409 ** |
| 6410 ** * proxy file to act as a proxy for the advisory locks normally |
| 6411 ** taken on the database |
| 6412 ** |
| 6413 ** The conch file - to use a proxy file, sqlite must first "hold the conch" |
| 6414 ** by taking an sqlite-style shared lock on the conch file, reading the |
| 6415 ** contents and comparing the host's unique host ID (see below) and lock |
| 6416 ** proxy path against the values stored in the conch. The conch file is |
| 6417 ** stored in the same directory as the database file and the file name |
| 6418 ** is patterned after the database file name as ".<databasename>-conch". |
| 6419 ** If the conch file does not exist, or its contents do not match the |
| 6420 ** host ID and/or proxy path, then the lock is escalated to an exclusive |
| 6421 ** lock and the conch file contents is updated with the host ID and proxy |
| 6422 ** path and the lock is downgraded to a shared lock again. If the conch |
| 6423 ** is held by another process (with a shared lock), the exclusive lock |
| 6424 ** will fail and SQLITE_BUSY is returned. |
| 6425 ** |
| 6426 ** The proxy file - a single-byte file used for all advisory file locks |
| 6427 ** normally taken on the database file. This allows for safe sharing |
| 6428 ** of the database file for multiple readers and writers on the same |
| 6429 ** host (the conch ensures that they all use the same local lock file). |
| 6430 ** |
| 6431 ** Requesting the lock proxy does not immediately take the conch, it is |
| 6432 ** only taken when the first request to lock database file is made. |
| 6433 ** This matches the semantics of the traditional locking behavior, where |
| 6434 ** opening a connection to a database file does not take a lock on it. |
| 6435 ** The shared lock and an open file descriptor are maintained until |
| 6436 ** the connection to the database is closed. |
| 6437 ** |
| 6438 ** The proxy file and the lock file are never deleted so they only need |
| 6439 ** to be created the first time they are used. |
| 6440 ** |
| 6441 ** Configuration options |
| 6442 ** --------------------- |
| 6443 ** |
| 6444 ** SQLITE_PREFER_PROXY_LOCKING |
| 6445 ** |
| 6446 ** Database files accessed on non-local file systems are |
| 6447 ** automatically configured for proxy locking, lock files are |
| 6448 ** named automatically using the same logic as |
| 6449 ** PRAGMA lock_proxy_file=":auto:" |
| 6450 ** |
| 6451 ** SQLITE_PROXY_DEBUG |
| 6452 ** |
| 6453 ** Enables the logging of error messages during host id file |
| 6454 ** retrieval and creation |
| 6455 ** |
| 6456 ** LOCKPROXYDIR |
| 6457 ** |
| 6458 ** Overrides the default directory used for lock proxy files that |
| 6459 ** are named automatically via the ":auto:" setting |
| 6460 ** |
| 6461 ** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS |
| 6462 ** |
| 6463 ** Permissions to use when creating a directory for storing the |
| 6464 ** lock proxy files, only used when LOCKPROXYDIR is not set. |
| 6465 ** |
| 6466 ** |
| 6467 ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING, |
| 6468 ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will |
| 6469 ** force proxy locking to be used for every database file opened, and 0 |
| 6470 ** will force automatic proxy locking to be disabled for all database |
| 6471 ** files (explicitly calling the SQLITE_FCNTL_SET_LOCKPROXYFILE pragma or |
| 6472 ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING). |
| 6473 */ |
| 6474 |
| 6475 /* |
| 6476 ** Proxy locking is only available on MacOSX |
| 6477 */ |
| 6478 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE |
| 6479 |
| 6480 /* |
| 6481 ** The proxyLockingContext has the path and file structures for the remote |
| 6482 ** and local proxy files in it |
| 6483 */ |
| 6484 typedef struct proxyLockingContext proxyLockingContext; |
| 6485 struct proxyLockingContext { |
| 6486 unixFile *conchFile; /* Open conch file */ |
| 6487 char *conchFilePath; /* Name of the conch file */ |
| 6488 unixFile *lockProxy; /* Open proxy lock file */ |
| 6489 char *lockProxyPath; /* Name of the proxy lock file */ |
| 6490 char *dbPath; /* Name of the open file */ |
| 6491 int conchHeld; /* 1 if the conch is held, -1 if lockless */ |
| 6492 int nFails; /* Number of conch taking failures */ |
| 6493 void *oldLockingContext; /* Original lockingcontext to restore on close */ |
| 6494 sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */ |
| 6495 }; |
| 6496 |
| 6497 /* |
| 6498 ** The proxy lock file path for the database at dbPath is written into lPath, |
| 6499 ** which must point to valid, writable memory large enough for a maxLen length |
| 6500 ** file path. |
| 6501 */ |
| 6502 static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){ |
| 6503 int len; |
| 6504 int dbLen; |
| 6505 int i; |
| 6506 |
| 6507 #ifdef LOCKPROXYDIR |
| 6508 len = strlcpy(lPath, LOCKPROXYDIR, maxLen); |
| 6509 #else |
| 6510 # ifdef _CS_DARWIN_USER_TEMP_DIR |
| 6511 { |
| 6512 if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){ |
| 6513 OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n", |
| 6514 lPath, errno, osGetpid(0))); |
| 6515 return SQLITE_IOERR_LOCK; |
| 6516 } |
| 6517 len = strlcat(lPath, "sqliteplocks", maxLen); |
| 6518 } |
| 6519 # else |
| 6520 len = strlcpy(lPath, "/tmp/", maxLen); |
| 6521 # endif |
| 6522 #endif |
| 6523 |
| 6524 if( lPath[len-1]!='/' ){ |
| 6525 len = strlcat(lPath, "/", maxLen); |
| 6526 } |
| 6527 |
| 6528 /* transform the db path to a unique cache name */ |
| 6529 dbLen = (int)strlen(dbPath); |
| 6530 for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){ |
| 6531 char c = dbPath[i]; |
| 6532 lPath[i+len] = (c=='/')?'_':c; |
| 6533 } |
| 6534 lPath[i+len]='\0'; |
| 6535 strlcat(lPath, ":auto:", maxLen); |
| 6536 OSTRACE(("GETLOCKPATH proxy lock path=%s pid=%d\n", lPath, osGetpid(0))); |
| 6537 return SQLITE_OK; |
| 6538 } |
| 6539 |
| 6540 /* |
| 6541 ** Creates the lock file and any missing directories in lockPath |
| 6542 */ |
| 6543 static int proxyCreateLockPath(const char *lockPath){ |
| 6544 int i, len; |
| 6545 char buf[MAXPATHLEN]; |
| 6546 int start = 0; |
| 6547 |
| 6548 assert(lockPath!=NULL); |
| 6549 /* try to create all the intermediate directories */ |
| 6550 len = (int)strlen(lockPath); |
| 6551 buf[0] = lockPath[0]; |
| 6552 for( i=1; i<len; i++ ){ |
| 6553 if( lockPath[i] == '/' && (i - start > 0) ){ |
| 6554 /* only mkdir if leaf dir != "." or "/" or ".." */ |
| 6555 if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/') |
| 6556 || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){ |
| 6557 buf[i]='\0'; |
| 6558 if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){ |
| 6559 int err=errno; |
| 6560 if( err!=EEXIST ) { |
| 6561 OSTRACE(("CREATELOCKPATH FAILED creating %s, " |
| 6562 "'%s' proxy lock path=%s pid=%d\n", |
| 6563 buf, strerror(err), lockPath, osGetpid(0))); |
| 6564 return err; |
| 6565 } |
| 6566 } |
| 6567 } |
| 6568 start=i+1; |
| 6569 } |
| 6570 buf[i] = lockPath[i]; |
| 6571 } |
| 6572 OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n",lockPath,osGetpid(0))); |
| 6573 return 0; |
| 6574 } |
| 6575 |
| 6576 /* |
| 6577 ** Create a new VFS file descriptor (stored in memory obtained from |
| 6578 ** sqlite3_malloc) and open the file named "path" in the file descriptor. |
| 6579 ** |
| 6580 ** The caller is responsible not only for closing the file descriptor |
| 6581 ** but also for freeing the memory associated with the file descriptor. |
| 6582 */ |
| 6583 static int proxyCreateUnixFile( |
| 6584 const char *path, /* path for the new unixFile */ |
| 6585 unixFile **ppFile, /* unixFile created and returned by ref */ |
| 6586 int islockfile /* if non zero missing dirs will be created */ |
| 6587 ) { |
| 6588 int fd = -1; |
| 6589 unixFile *pNew; |
| 6590 int rc = SQLITE_OK; |
| 6591 int openFlags = O_RDWR | O_CREAT; |
| 6592 sqlite3_vfs dummyVfs; |
| 6593 int terrno = 0; |
| 6594 UnixUnusedFd *pUnused = NULL; |
| 6595 |
| 6596 /* 1. first try to open/create the file |
| 6597 ** 2. if that fails, and this is a lock file (not-conch), try creating |
| 6598 ** the parent directories and then try again. |
| 6599 ** 3. if that fails, try to open the file read-only |
| 6600 ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file |
| 6601 */ |
| 6602 pUnused = findReusableFd(path, openFlags); |
| 6603 if( pUnused ){ |
| 6604 fd = pUnused->fd; |
| 6605 }else{ |
| 6606 pUnused = sqlite3_malloc64(sizeof(*pUnused)); |
| 6607 if( !pUnused ){ |
| 6608 return SQLITE_NOMEM_BKPT; |
| 6609 } |
| 6610 } |
| 6611 if( fd<0 ){ |
| 6612 fd = robust_open(path, openFlags, 0); |
| 6613 terrno = errno; |
| 6614 if( fd<0 && errno==ENOENT && islockfile ){ |
| 6615 if( proxyCreateLockPath(path) == SQLITE_OK ){ |
| 6616 fd = robust_open(path, openFlags, 0); |
| 6617 } |
| 6618 } |
| 6619 } |
| 6620 if( fd<0 ){ |
| 6621 openFlags = O_RDONLY; |
| 6622 fd = robust_open(path, openFlags, 0); |
| 6623 terrno = errno; |
| 6624 } |
| 6625 if( fd<0 ){ |
| 6626 if( islockfile ){ |
| 6627 return SQLITE_BUSY; |
| 6628 } |
| 6629 switch (terrno) { |
| 6630 case EACCES: |
| 6631 return SQLITE_PERM; |
| 6632 case EIO: |
| 6633 return SQLITE_IOERR_LOCK; /* even though it is the conch */ |
| 6634 default: |
| 6635 return SQLITE_CANTOPEN_BKPT; |
| 6636 } |
| 6637 } |
| 6638 |
| 6639 pNew = (unixFile *)sqlite3_malloc64(sizeof(*pNew)); |
| 6640 if( pNew==NULL ){ |
| 6641 rc = SQLITE_NOMEM_BKPT; |
| 6642 goto end_create_proxy; |
| 6643 } |
| 6644 memset(pNew, 0, sizeof(unixFile)); |
| 6645 pNew->openFlags = openFlags; |
| 6646 memset(&dummyVfs, 0, sizeof(dummyVfs)); |
| 6647 dummyVfs.pAppData = (void*)&autolockIoFinder; |
| 6648 dummyVfs.zName = "dummy"; |
| 6649 pUnused->fd = fd; |
| 6650 pUnused->flags = openFlags; |
| 6651 pNew->pUnused = pUnused; |
| 6652 |
| 6653 rc = fillInUnixFile(&dummyVfs, fd, (sqlite3_file*)pNew, path, 0); |
| 6654 if( rc==SQLITE_OK ){ |
| 6655 *ppFile = pNew; |
| 6656 return SQLITE_OK; |
| 6657 } |
| 6658 end_create_proxy: |
| 6659 robust_close(pNew, fd, __LINE__); |
| 6660 sqlite3_free(pNew); |
| 6661 sqlite3_free(pUnused); |
| 6662 return rc; |
| 6663 } |
| 6664 |
| 6665 #ifdef SQLITE_TEST |
| 6666 /* simulate multiple hosts by creating unique hostid file paths */ |
| 6667 int sqlite3_hostid_num = 0; |
| 6668 #endif |
| 6669 |
| 6670 #define PROXY_HOSTIDLEN 16 /* conch file host id length */ |
| 6671 |
| 6672 #ifdef HAVE_GETHOSTUUID |
| 6673 /* Not always defined in the headers as it ought to be */ |
| 6674 extern int gethostuuid(uuid_t id, const struct timespec *wait); |
| 6675 #endif |
| 6676 |
| 6677 /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN |
| 6678 ** bytes of writable memory. |
| 6679 */ |
| 6680 static int proxyGetHostID(unsigned char *pHostID, int *pError){ |
| 6681 assert(PROXY_HOSTIDLEN == sizeof(uuid_t)); |
| 6682 memset(pHostID, 0, PROXY_HOSTIDLEN); |
| 6683 #ifdef HAVE_GETHOSTUUID |
| 6684 { |
| 6685 struct timespec timeout = {1, 0}; /* 1 sec timeout */ |
| 6686 if( gethostuuid(pHostID, &timeout) ){ |
| 6687 int err = errno; |
| 6688 if( pError ){ |
| 6689 *pError = err; |
| 6690 } |
| 6691 return SQLITE_IOERR; |
| 6692 } |
| 6693 } |
| 6694 #else |
| 6695 UNUSED_PARAMETER(pError); |
| 6696 #endif |
| 6697 #ifdef SQLITE_TEST |
| 6698 /* simulate multiple hosts by creating unique hostid file paths */ |
| 6699 if( sqlite3_hostid_num != 0){ |
| 6700 pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF)); |
| 6701 } |
| 6702 #endif |
| 6703 |
| 6704 return SQLITE_OK; |
| 6705 } |
| 6706 |
| 6707 /* The conch file contains the header, host id and lock file path |
| 6708 */ |
| 6709 #define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */ |
| 6710 #define PROXY_HEADERLEN 1 /* conch file header length */ |
| 6711 #define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN) |
| 6712 #define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN) |
| 6713 |
| 6714 /* |
| 6715 ** Takes an open conch file, copies the contents to a new path and then moves |
| 6716 ** it back. The newly created file's file descriptor is assigned to the |
| 6717 ** conch file structure and finally the original conch file descriptor is |
| 6718 ** closed. Returns zero if successful. |
| 6719 */ |
| 6720 static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){ |
| 6721 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
| 6722 unixFile *conchFile = pCtx->conchFile; |
| 6723 char tPath[MAXPATHLEN]; |
| 6724 char buf[PROXY_MAXCONCHLEN]; |
| 6725 char *cPath = pCtx->conchFilePath; |
| 6726 size_t readLen = 0; |
| 6727 size_t pathLen = 0; |
| 6728 char errmsg[64] = ""; |
| 6729 int fd = -1; |
| 6730 int rc = -1; |
| 6731 UNUSED_PARAMETER(myHostID); |
| 6732 |
| 6733 /* create a new path by replace the trailing '-conch' with '-break' */ |
| 6734 pathLen = strlcpy(tPath, cPath, MAXPATHLEN); |
| 6735 if( pathLen>MAXPATHLEN || pathLen<6 || |
| 6736 (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){ |
| 6737 sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen); |
| 6738 goto end_breaklock; |
| 6739 } |
| 6740 /* read the conch content */ |
| 6741 readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0); |
| 6742 if( readLen<PROXY_PATHINDEX ){ |
| 6743 sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen); |
| 6744 goto end_breaklock; |
| 6745 } |
| 6746 /* write it out to the temporary break file */ |
| 6747 fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL), 0); |
| 6748 if( fd<0 ){ |
| 6749 sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno); |
| 6750 goto end_breaklock; |
| 6751 } |
| 6752 if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){ |
| 6753 sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno); |
| 6754 goto end_breaklock; |
| 6755 } |
| 6756 if( rename(tPath, cPath) ){ |
| 6757 sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno); |
| 6758 goto end_breaklock; |
| 6759 } |
| 6760 rc = 0; |
| 6761 fprintf(stderr, "broke stale lock on %s\n", cPath); |
| 6762 robust_close(pFile, conchFile->h, __LINE__); |
| 6763 conchFile->h = fd; |
| 6764 conchFile->openFlags = O_RDWR | O_CREAT; |
| 6765 |
| 6766 end_breaklock: |
| 6767 if( rc ){ |
| 6768 if( fd>=0 ){ |
| 6769 osUnlink(tPath); |
| 6770 robust_close(pFile, fd, __LINE__); |
| 6771 } |
| 6772 fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg); |
| 6773 } |
| 6774 return rc; |
| 6775 } |
| 6776 |
| 6777 /* Take the requested lock on the conch file and break a stale lock if the |
| 6778 ** host id matches. |
| 6779 */ |
| 6780 static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){ |
| 6781 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
| 6782 unixFile *conchFile = pCtx->conchFile; |
| 6783 int rc = SQLITE_OK; |
| 6784 int nTries = 0; |
| 6785 struct timespec conchModTime; |
| 6786 |
| 6787 memset(&conchModTime, 0, sizeof(conchModTime)); |
| 6788 do { |
| 6789 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); |
| 6790 nTries ++; |
| 6791 if( rc==SQLITE_BUSY ){ |
| 6792 /* If the lock failed (busy): |
| 6793 * 1st try: get the mod time of the conch, wait 0.5s and try again. |
| 6794 * 2nd try: fail if the mod time changed or host id is different, wait |
| 6795 * 10 sec and try again |
| 6796 * 3rd try: break the lock unless the mod time has changed. |
| 6797 */ |
| 6798 struct stat buf; |
| 6799 if( osFstat(conchFile->h, &buf) ){ |
| 6800 storeLastErrno(pFile, errno); |
| 6801 return SQLITE_IOERR_LOCK; |
| 6802 } |
| 6803 |
| 6804 if( nTries==1 ){ |
| 6805 conchModTime = buf.st_mtimespec; |
| 6806 usleep(500000); /* wait 0.5 sec and try the lock again*/ |
| 6807 continue; |
| 6808 } |
| 6809 |
| 6810 assert( nTries>1 ); |
| 6811 if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec || |
| 6812 conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){ |
| 6813 return SQLITE_BUSY; |
| 6814 } |
| 6815 |
| 6816 if( nTries==2 ){ |
| 6817 char tBuf[PROXY_MAXCONCHLEN]; |
| 6818 int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0); |
| 6819 if( len<0 ){ |
| 6820 storeLastErrno(pFile, errno); |
| 6821 return SQLITE_IOERR_LOCK; |
| 6822 } |
| 6823 if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){ |
| 6824 /* don't break the lock if the host id doesn't match */ |
| 6825 if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){ |
| 6826 return SQLITE_BUSY; |
| 6827 } |
| 6828 }else{ |
| 6829 /* don't break the lock on short read or a version mismatch */ |
| 6830 return SQLITE_BUSY; |
| 6831 } |
| 6832 usleep(10000000); /* wait 10 sec and try the lock again */ |
| 6833 continue; |
| 6834 } |
| 6835 |
| 6836 assert( nTries==3 ); |
| 6837 if( 0==proxyBreakConchLock(pFile, myHostID) ){ |
| 6838 rc = SQLITE_OK; |
| 6839 if( lockType==EXCLUSIVE_LOCK ){ |
| 6840 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK); |
| 6841 } |
| 6842 if( !rc ){ |
| 6843 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); |
| 6844 } |
| 6845 } |
| 6846 } |
| 6847 } while( rc==SQLITE_BUSY && nTries<3 ); |
| 6848 |
| 6849 return rc; |
| 6850 } |
| 6851 |
| 6852 /* Takes the conch by taking a shared lock and read the contents conch, if |
| 6853 ** lockPath is non-NULL, the host ID and lock file path must match. A NULL |
| 6854 ** lockPath means that the lockPath in the conch file will be used if the |
| 6855 ** host IDs match, or a new lock path will be generated automatically |
| 6856 ** and written to the conch file. |
| 6857 */ |
| 6858 static int proxyTakeConch(unixFile *pFile){ |
| 6859 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
| 6860 |
| 6861 if( pCtx->conchHeld!=0 ){ |
| 6862 return SQLITE_OK; |
| 6863 }else{ |
| 6864 unixFile *conchFile = pCtx->conchFile; |
| 6865 uuid_t myHostID; |
| 6866 int pError = 0; |
| 6867 char readBuf[PROXY_MAXCONCHLEN]; |
| 6868 char lockPath[MAXPATHLEN]; |
| 6869 char *tempLockPath = NULL; |
| 6870 int rc = SQLITE_OK; |
| 6871 int createConch = 0; |
| 6872 int hostIdMatch = 0; |
| 6873 int readLen = 0; |
| 6874 int tryOldLockPath = 0; |
| 6875 int forceNewLockPath = 0; |
| 6876 |
| 6877 OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h, |
| 6878 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), |
| 6879 osGetpid(0))); |
| 6880 |
| 6881 rc = proxyGetHostID(myHostID, &pError); |
| 6882 if( (rc&0xff)==SQLITE_IOERR ){ |
| 6883 storeLastErrno(pFile, pError); |
| 6884 goto end_takeconch; |
| 6885 } |
| 6886 rc = proxyConchLock(pFile, myHostID, SHARED_LOCK); |
| 6887 if( rc!=SQLITE_OK ){ |
| 6888 goto end_takeconch; |
| 6889 } |
| 6890 /* read the existing conch file */ |
| 6891 readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN); |
| 6892 if( readLen<0 ){ |
| 6893 /* I/O error: lastErrno set by seekAndRead */ |
| 6894 storeLastErrno(pFile, conchFile->lastErrno); |
| 6895 rc = SQLITE_IOERR_READ; |
| 6896 goto end_takeconch; |
| 6897 }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) || |
| 6898 readBuf[0]!=(char)PROXY_CONCHVERSION ){ |
| 6899 /* a short read or version format mismatch means we need to create a new |
| 6900 ** conch file. |
| 6901 */ |
| 6902 createConch = 1; |
| 6903 } |
| 6904 /* if the host id matches and the lock path already exists in the conch |
| 6905 ** we'll try to use the path there, if we can't open that path, we'll |
| 6906 ** retry with a new auto-generated path |
| 6907 */ |
| 6908 do { /* in case we need to try again for an :auto: named lock file */ |
| 6909 |
| 6910 if( !createConch && !forceNewLockPath ){ |
| 6911 hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID, |
| 6912 PROXY_HOSTIDLEN); |
| 6913 /* if the conch has data compare the contents */ |
| 6914 if( !pCtx->lockProxyPath ){ |
| 6915 /* for auto-named local lock file, just check the host ID and we'll |
| 6916 ** use the local lock file path that's already in there |
| 6917 */ |
| 6918 if( hostIdMatch ){ |
| 6919 size_t pathLen = (readLen - PROXY_PATHINDEX); |
| 6920 |
| 6921 if( pathLen>=MAXPATHLEN ){ |
| 6922 pathLen=MAXPATHLEN-1; |
| 6923 } |
| 6924 memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen); |
| 6925 lockPath[pathLen] = 0; |
| 6926 tempLockPath = lockPath; |
| 6927 tryOldLockPath = 1; |
| 6928 /* create a copy of the lock path if the conch is taken */ |
| 6929 goto end_takeconch; |
| 6930 } |
| 6931 }else if( hostIdMatch |
| 6932 && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX], |
| 6933 readLen-PROXY_PATHINDEX) |
| 6934 ){ |
| 6935 /* conch host and lock path match */ |
| 6936 goto end_takeconch; |
| 6937 } |
| 6938 } |
| 6939 |
| 6940 /* if the conch isn't writable and doesn't match, we can't take it */ |
| 6941 if( (conchFile->openFlags&O_RDWR) == 0 ){ |
| 6942 rc = SQLITE_BUSY; |
| 6943 goto end_takeconch; |
| 6944 } |
| 6945 |
| 6946 /* either the conch didn't match or we need to create a new one */ |
| 6947 if( !pCtx->lockProxyPath ){ |
| 6948 proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN); |
| 6949 tempLockPath = lockPath; |
| 6950 /* create a copy of the lock path _only_ if the conch is taken */ |
| 6951 } |
| 6952 |
| 6953 /* update conch with host and path (this will fail if other process |
| 6954 ** has a shared lock already), if the host id matches, use the big |
| 6955 ** stick. |
| 6956 */ |
| 6957 futimes(conchFile->h, NULL); |
| 6958 if( hostIdMatch && !createConch ){ |
| 6959 if( conchFile->pInode && conchFile->pInode->nShared>1 ){ |
| 6960 /* We are trying for an exclusive lock but another thread in this |
| 6961 ** same process is still holding a shared lock. */ |
| 6962 rc = SQLITE_BUSY; |
| 6963 } else { |
| 6964 rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK); |
| 6965 } |
| 6966 }else{ |
| 6967 rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK); |
| 6968 } |
| 6969 if( rc==SQLITE_OK ){ |
| 6970 char writeBuffer[PROXY_MAXCONCHLEN]; |
| 6971 int writeSize = 0; |
| 6972 |
| 6973 writeBuffer[0] = (char)PROXY_CONCHVERSION; |
| 6974 memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN); |
| 6975 if( pCtx->lockProxyPath!=NULL ){ |
| 6976 strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, |
| 6977 MAXPATHLEN); |
| 6978 }else{ |
| 6979 strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN); |
| 6980 } |
| 6981 writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]); |
| 6982 robust_ftruncate(conchFile->h, writeSize); |
| 6983 rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0); |
| 6984 full_fsync(conchFile->h,0,0); |
| 6985 /* If we created a new conch file (not just updated the contents of a |
| 6986 ** valid conch file), try to match the permissions of the database |
| 6987 */ |
| 6988 if( rc==SQLITE_OK && createConch ){ |
| 6989 struct stat buf; |
| 6990 int err = osFstat(pFile->h, &buf); |
| 6991 if( err==0 ){ |
| 6992 mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP | |
| 6993 S_IROTH|S_IWOTH); |
| 6994 /* try to match the database file R/W permissions, ignore failure */ |
| 6995 #ifndef SQLITE_PROXY_DEBUG |
| 6996 osFchmod(conchFile->h, cmode); |
| 6997 #else |
| 6998 do{ |
| 6999 rc = osFchmod(conchFile->h, cmode); |
| 7000 }while( rc==(-1) && errno==EINTR ); |
| 7001 if( rc!=0 ){ |
| 7002 int code = errno; |
| 7003 fprintf(stderr, "fchmod %o FAILED with %d %s\n", |
| 7004 cmode, code, strerror(code)); |
| 7005 } else { |
| 7006 fprintf(stderr, "fchmod %o SUCCEDED\n",cmode); |
| 7007 } |
| 7008 }else{ |
| 7009 int code = errno; |
| 7010 fprintf(stderr, "STAT FAILED[%d] with %d %s\n", |
| 7011 err, code, strerror(code)); |
| 7012 #endif |
| 7013 } |
| 7014 } |
| 7015 } |
| 7016 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK); |
| 7017 |
| 7018 end_takeconch: |
| 7019 OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile->h)); |
| 7020 if( rc==SQLITE_OK && pFile->openFlags ){ |
| 7021 int fd; |
| 7022 if( pFile->h>=0 ){ |
| 7023 robust_close(pFile, pFile->h, __LINE__); |
| 7024 } |
| 7025 pFile->h = -1; |
| 7026 fd = robust_open(pCtx->dbPath, pFile->openFlags, 0); |
| 7027 OSTRACE(("TRANSPROXY: OPEN %d\n", fd)); |
| 7028 if( fd>=0 ){ |
| 7029 pFile->h = fd; |
| 7030 }else{ |
| 7031 rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called |
| 7032 during locking */ |
| 7033 } |
| 7034 } |
| 7035 if( rc==SQLITE_OK && !pCtx->lockProxy ){ |
| 7036 char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath; |
| 7037 rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1); |
| 7038 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){ |
| 7039 /* we couldn't create the proxy lock file with the old lock file path |
| 7040 ** so try again via auto-naming |
| 7041 */ |
| 7042 forceNewLockPath = 1; |
| 7043 tryOldLockPath = 0; |
| 7044 continue; /* go back to the do {} while start point, try again */ |
| 7045 } |
| 7046 } |
| 7047 if( rc==SQLITE_OK ){ |
| 7048 /* Need to make a copy of path if we extracted the value |
| 7049 ** from the conch file or the path was allocated on the stack |
| 7050 */ |
| 7051 if( tempLockPath ){ |
| 7052 pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath); |
| 7053 if( !pCtx->lockProxyPath ){ |
| 7054 rc = SQLITE_NOMEM_BKPT; |
| 7055 } |
| 7056 } |
| 7057 } |
| 7058 if( rc==SQLITE_OK ){ |
| 7059 pCtx->conchHeld = 1; |
| 7060 |
| 7061 if( pCtx->lockProxy->pMethod == &afpIoMethods ){ |
| 7062 afpLockingContext *afpCtx; |
| 7063 afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext; |
| 7064 afpCtx->dbPath = pCtx->lockProxyPath; |
| 7065 } |
| 7066 } else { |
| 7067 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); |
| 7068 } |
| 7069 OSTRACE(("TAKECONCH %d %s\n", conchFile->h, |
| 7070 rc==SQLITE_OK?"ok":"failed")); |
| 7071 return rc; |
| 7072 } while (1); /* in case we need to retry the :auto: lock file - |
| 7073 ** we should never get here except via the 'continue' call. */ |
| 7074 } |
| 7075 } |
| 7076 |
| 7077 /* |
| 7078 ** If pFile holds a lock on a conch file, then release that lock. |
| 7079 */ |
| 7080 static int proxyReleaseConch(unixFile *pFile){ |
| 7081 int rc = SQLITE_OK; /* Subroutine return code */ |
| 7082 proxyLockingContext *pCtx; /* The locking context for the proxy lock */ |
| 7083 unixFile *conchFile; /* Name of the conch file */ |
| 7084 |
| 7085 pCtx = (proxyLockingContext *)pFile->lockingContext; |
| 7086 conchFile = pCtx->conchFile; |
| 7087 OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h, |
| 7088 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), |
| 7089 osGetpid(0))); |
| 7090 if( pCtx->conchHeld>0 ){ |
| 7091 rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); |
| 7092 } |
| 7093 pCtx->conchHeld = 0; |
| 7094 OSTRACE(("RELEASECONCH %d %s\n", conchFile->h, |
| 7095 (rc==SQLITE_OK ? "ok" : "failed"))); |
| 7096 return rc; |
| 7097 } |
| 7098 |
| 7099 /* |
| 7100 ** Given the name of a database file, compute the name of its conch file. |
| 7101 ** Store the conch filename in memory obtained from sqlite3_malloc64(). |
| 7102 ** Make *pConchPath point to the new name. Return SQLITE_OK on success |
| 7103 ** or SQLITE_NOMEM if unable to obtain memory. |
| 7104 ** |
| 7105 ** The caller is responsible for ensuring that the allocated memory |
| 7106 ** space is eventually freed. |
| 7107 ** |
| 7108 ** *pConchPath is set to NULL if a memory allocation error occurs. |
| 7109 */ |
| 7110 static int proxyCreateConchPathname(char *dbPath, char **pConchPath){ |
| 7111 int i; /* Loop counter */ |
| 7112 int len = (int)strlen(dbPath); /* Length of database filename - dbPath */ |
| 7113 char *conchPath; /* buffer in which to construct conch name */ |
| 7114 |
| 7115 /* Allocate space for the conch filename and initialize the name to |
| 7116 ** the name of the original database file. */ |
| 7117 *pConchPath = conchPath = (char *)sqlite3_malloc64(len + 8); |
| 7118 if( conchPath==0 ){ |
| 7119 return SQLITE_NOMEM_BKPT; |
| 7120 } |
| 7121 memcpy(conchPath, dbPath, len+1); |
| 7122 |
| 7123 /* now insert a "." before the last / character */ |
| 7124 for( i=(len-1); i>=0; i-- ){ |
| 7125 if( conchPath[i]=='/' ){ |
| 7126 i++; |
| 7127 break; |
| 7128 } |
| 7129 } |
| 7130 conchPath[i]='.'; |
| 7131 while ( i<len ){ |
| 7132 conchPath[i+1]=dbPath[i]; |
| 7133 i++; |
| 7134 } |
| 7135 |
| 7136 /* append the "-conch" suffix to the file */ |
| 7137 memcpy(&conchPath[i+1], "-conch", 7); |
| 7138 assert( (int)strlen(conchPath) == len+7 ); |
| 7139 |
| 7140 return SQLITE_OK; |
| 7141 } |
| 7142 |
| 7143 |
| 7144 /* Takes a fully configured proxy locking-style unix file and switches |
| 7145 ** the local lock file path |
| 7146 */ |
| 7147 static int switchLockProxyPath(unixFile *pFile, const char *path) { |
| 7148 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; |
| 7149 char *oldPath = pCtx->lockProxyPath; |
| 7150 int rc = SQLITE_OK; |
| 7151 |
| 7152 if( pFile->eFileLock!=NO_LOCK ){ |
| 7153 return SQLITE_BUSY; |
| 7154 } |
| 7155 |
| 7156 /* nothing to do if the path is NULL, :auto: or matches the existing path */ |
| 7157 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") || |
| 7158 (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){ |
| 7159 return SQLITE_OK; |
| 7160 }else{ |
| 7161 unixFile *lockProxy = pCtx->lockProxy; |
| 7162 pCtx->lockProxy=NULL; |
| 7163 pCtx->conchHeld = 0; |
| 7164 if( lockProxy!=NULL ){ |
| 7165 rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy); |
| 7166 if( rc ) return rc; |
| 7167 sqlite3_free(lockProxy); |
| 7168 } |
| 7169 sqlite3_free(oldPath); |
| 7170 pCtx->lockProxyPath = sqlite3DbStrDup(0, path); |
| 7171 } |
| 7172 |
| 7173 return rc; |
| 7174 } |
| 7175 |
| 7176 /* |
| 7177 ** pFile is a file that has been opened by a prior xOpen call. dbPath |
| 7178 ** is a string buffer at least MAXPATHLEN+1 characters in size. |
| 7179 ** |
| 7180 ** This routine find the filename associated with pFile and writes it |
| 7181 ** int dbPath. |
| 7182 */ |
| 7183 static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){ |
| 7184 #if defined(__APPLE__) |
| 7185 if( pFile->pMethod == &afpIoMethods ){ |
| 7186 /* afp style keeps a reference to the db path in the filePath field |
| 7187 ** of the struct */ |
| 7188 assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); |
| 7189 strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, |
| 7190 MAXPATHLEN); |
| 7191 } else |
| 7192 #endif |
| 7193 if( pFile->pMethod == &dotlockIoMethods ){ |
| 7194 /* dot lock style uses the locking context to store the dot lock |
| 7195 ** file path */ |
| 7196 int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX); |
| 7197 memcpy(dbPath, (char *)pFile->lockingContext, len + 1); |
| 7198 }else{ |
| 7199 /* all other styles use the locking context to store the db file path */ |
| 7200 assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); |
| 7201 strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN); |
| 7202 } |
| 7203 return SQLITE_OK; |
| 7204 } |
| 7205 |
| 7206 /* |
| 7207 ** Takes an already filled in unix file and alters it so all file locking |
| 7208 ** will be performed on the local proxy lock file. The following fields |
| 7209 ** are preserved in the locking context so that they can be restored and |
| 7210 ** the unix structure properly cleaned up at close time: |
| 7211 ** ->lockingContext |
| 7212 ** ->pMethod |
| 7213 */ |
| 7214 static int proxyTransformUnixFile(unixFile *pFile, const char *path) { |
| 7215 proxyLockingContext *pCtx; |
| 7216 char dbPath[MAXPATHLEN+1]; /* Name of the database file */ |
| 7217 char *lockPath=NULL; |
| 7218 int rc = SQLITE_OK; |
| 7219 |
| 7220 if( pFile->eFileLock!=NO_LOCK ){ |
| 7221 return SQLITE_BUSY; |
| 7222 } |
| 7223 proxyGetDbPathForUnixFile(pFile, dbPath); |
| 7224 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){ |
| 7225 lockPath=NULL; |
| 7226 }else{ |
| 7227 lockPath=(char *)path; |
| 7228 } |
| 7229 |
| 7230 OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h, |
| 7231 (lockPath ? lockPath : ":auto:"), osGetpid(0))); |
| 7232 |
| 7233 pCtx = sqlite3_malloc64( sizeof(*pCtx) ); |
| 7234 if( pCtx==0 ){ |
| 7235 return SQLITE_NOMEM_BKPT; |
| 7236 } |
| 7237 memset(pCtx, 0, sizeof(*pCtx)); |
| 7238 |
| 7239 rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath); |
| 7240 if( rc==SQLITE_OK ){ |
| 7241 rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0); |
| 7242 if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){ |
| 7243 /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and |
| 7244 ** (c) the file system is read-only, then enable no-locking access. |
| 7245 ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts |
| 7246 ** that openFlags will have only one of O_RDONLY or O_RDWR. |
| 7247 */ |
| 7248 struct statfs fsInfo; |
| 7249 struct stat conchInfo; |
| 7250 int goLockless = 0; |
| 7251 |
| 7252 if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) { |
| 7253 int err = errno; |
| 7254 if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){ |
| 7255 goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY; |
| 7256 } |
| 7257 } |
| 7258 if( goLockless ){ |
| 7259 pCtx->conchHeld = -1; /* read only FS/ lockless */ |
| 7260 rc = SQLITE_OK; |
| 7261 } |
| 7262 } |
| 7263 } |
| 7264 if( rc==SQLITE_OK && lockPath ){ |
| 7265 pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath); |
| 7266 } |
| 7267 |
| 7268 if( rc==SQLITE_OK ){ |
| 7269 pCtx->dbPath = sqlite3DbStrDup(0, dbPath); |
| 7270 if( pCtx->dbPath==NULL ){ |
| 7271 rc = SQLITE_NOMEM_BKPT; |
| 7272 } |
| 7273 } |
| 7274 if( rc==SQLITE_OK ){ |
| 7275 /* all memory is allocated, proxys are created and assigned, |
| 7276 ** switch the locking context and pMethod then return. |
| 7277 */ |
| 7278 pCtx->oldLockingContext = pFile->lockingContext; |
| 7279 pFile->lockingContext = pCtx; |
| 7280 pCtx->pOldMethod = pFile->pMethod; |
| 7281 pFile->pMethod = &proxyIoMethods; |
| 7282 }else{ |
| 7283 if( pCtx->conchFile ){ |
| 7284 pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile); |
| 7285 sqlite3_free(pCtx->conchFile); |
| 7286 } |
| 7287 sqlite3DbFree(0, pCtx->lockProxyPath); |
| 7288 sqlite3_free(pCtx->conchFilePath); |
| 7289 sqlite3_free(pCtx); |
| 7290 } |
| 7291 OSTRACE(("TRANSPROXY %d %s\n", pFile->h, |
| 7292 (rc==SQLITE_OK ? "ok" : "failed"))); |
| 7293 return rc; |
| 7294 } |
| 7295 |
| 7296 |
| 7297 /* |
| 7298 ** This routine handles sqlite3_file_control() calls that are specific |
| 7299 ** to proxy locking. |
| 7300 */ |
| 7301 static int proxyFileControl(sqlite3_file *id, int op, void *pArg){ |
| 7302 switch( op ){ |
| 7303 case SQLITE_FCNTL_GET_LOCKPROXYFILE: { |
| 7304 unixFile *pFile = (unixFile*)id; |
| 7305 if( pFile->pMethod == &proxyIoMethods ){ |
| 7306 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; |
| 7307 proxyTakeConch(pFile); |
| 7308 if( pCtx->lockProxyPath ){ |
| 7309 *(const char **)pArg = pCtx->lockProxyPath; |
| 7310 }else{ |
| 7311 *(const char **)pArg = ":auto: (not held)"; |
| 7312 } |
| 7313 } else { |
| 7314 *(const char **)pArg = NULL; |
| 7315 } |
| 7316 return SQLITE_OK; |
| 7317 } |
| 7318 case SQLITE_FCNTL_SET_LOCKPROXYFILE: { |
| 7319 unixFile *pFile = (unixFile*)id; |
| 7320 int rc = SQLITE_OK; |
| 7321 int isProxyStyle = (pFile->pMethod == &proxyIoMethods); |
| 7322 if( pArg==NULL || (const char *)pArg==0 ){ |
| 7323 if( isProxyStyle ){ |
| 7324 /* turn off proxy locking - not supported. If support is added for |
| 7325 ** switching proxy locking mode off then it will need to fail if |
| 7326 ** the journal mode is WAL mode. |
| 7327 */ |
| 7328 rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/; |
| 7329 }else{ |
| 7330 /* turn off proxy locking - already off - NOOP */ |
| 7331 rc = SQLITE_OK; |
| 7332 } |
| 7333 }else{ |
| 7334 const char *proxyPath = (const char *)pArg; |
| 7335 if( isProxyStyle ){ |
| 7336 proxyLockingContext *pCtx = |
| 7337 (proxyLockingContext*)pFile->lockingContext; |
| 7338 if( !strcmp(pArg, ":auto:") |
| 7339 || (pCtx->lockProxyPath && |
| 7340 !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN)) |
| 7341 ){ |
| 7342 rc = SQLITE_OK; |
| 7343 }else{ |
| 7344 rc = switchLockProxyPath(pFile, proxyPath); |
| 7345 } |
| 7346 }else{ |
| 7347 /* turn on proxy file locking */ |
| 7348 rc = proxyTransformUnixFile(pFile, proxyPath); |
| 7349 } |
| 7350 } |
| 7351 return rc; |
| 7352 } |
| 7353 default: { |
| 7354 assert( 0 ); /* The call assures that only valid opcodes are sent */ |
| 7355 } |
| 7356 } |
| 7357 /*NOTREACHED*/ |
| 7358 return SQLITE_ERROR; |
| 7359 } |
| 7360 |
| 7361 /* |
| 7362 ** Within this division (the proxying locking implementation) the procedures |
| 7363 ** above this point are all utilities. The lock-related methods of the |
| 7364 ** proxy-locking sqlite3_io_method object follow. |
| 7365 */ |
| 7366 |
| 7367 |
| 7368 /* |
| 7369 ** This routine checks if there is a RESERVED lock held on the specified |
| 7370 ** file by this or any other process. If such a lock is held, set *pResOut |
| 7371 ** to a non-zero value otherwise *pResOut is set to zero. The return value |
| 7372 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
| 7373 */ |
| 7374 static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) { |
| 7375 unixFile *pFile = (unixFile*)id; |
| 7376 int rc = proxyTakeConch(pFile); |
| 7377 if( rc==SQLITE_OK ){ |
| 7378 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
| 7379 if( pCtx->conchHeld>0 ){ |
| 7380 unixFile *proxy = pCtx->lockProxy; |
| 7381 return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut); |
| 7382 }else{ /* conchHeld < 0 is lockless */ |
| 7383 pResOut=0; |
| 7384 } |
| 7385 } |
| 7386 return rc; |
| 7387 } |
| 7388 |
| 7389 /* |
| 7390 ** Lock the file with the lock specified by parameter eFileLock - one |
| 7391 ** of the following: |
| 7392 ** |
| 7393 ** (1) SHARED_LOCK |
| 7394 ** (2) RESERVED_LOCK |
| 7395 ** (3) PENDING_LOCK |
| 7396 ** (4) EXCLUSIVE_LOCK |
| 7397 ** |
| 7398 ** Sometimes when requesting one lock state, additional lock states |
| 7399 ** are inserted in between. The locking might fail on one of the later |
| 7400 ** transitions leaving the lock state different from what it started but |
| 7401 ** still short of its goal. The following chart shows the allowed |
| 7402 ** transitions and the inserted intermediate states: |
| 7403 ** |
| 7404 ** UNLOCKED -> SHARED |
| 7405 ** SHARED -> RESERVED |
| 7406 ** SHARED -> (PENDING) -> EXCLUSIVE |
| 7407 ** RESERVED -> (PENDING) -> EXCLUSIVE |
| 7408 ** PENDING -> EXCLUSIVE |
| 7409 ** |
| 7410 ** This routine will only increase a lock. Use the sqlite3OsUnlock() |
| 7411 ** routine to lower a locking level. |
| 7412 */ |
| 7413 static int proxyLock(sqlite3_file *id, int eFileLock) { |
| 7414 unixFile *pFile = (unixFile*)id; |
| 7415 int rc = proxyTakeConch(pFile); |
| 7416 if( rc==SQLITE_OK ){ |
| 7417 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
| 7418 if( pCtx->conchHeld>0 ){ |
| 7419 unixFile *proxy = pCtx->lockProxy; |
| 7420 rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock); |
| 7421 pFile->eFileLock = proxy->eFileLock; |
| 7422 }else{ |
| 7423 /* conchHeld < 0 is lockless */ |
| 7424 } |
| 7425 } |
| 7426 return rc; |
| 7427 } |
| 7428 |
| 7429 |
| 7430 /* |
| 7431 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock |
| 7432 ** must be either NO_LOCK or SHARED_LOCK. |
| 7433 ** |
| 7434 ** If the locking level of the file descriptor is already at or below |
| 7435 ** the requested locking level, this routine is a no-op. |
| 7436 */ |
| 7437 static int proxyUnlock(sqlite3_file *id, int eFileLock) { |
| 7438 unixFile *pFile = (unixFile*)id; |
| 7439 int rc = proxyTakeConch(pFile); |
| 7440 if( rc==SQLITE_OK ){ |
| 7441 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
| 7442 if( pCtx->conchHeld>0 ){ |
| 7443 unixFile *proxy = pCtx->lockProxy; |
| 7444 rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock); |
| 7445 pFile->eFileLock = proxy->eFileLock; |
| 7446 }else{ |
| 7447 /* conchHeld < 0 is lockless */ |
| 7448 } |
| 7449 } |
| 7450 return rc; |
| 7451 } |
| 7452 |
| 7453 /* |
| 7454 ** Close a file that uses proxy locks. |
| 7455 */ |
| 7456 static int proxyClose(sqlite3_file *id) { |
| 7457 if( ALWAYS(id) ){ |
| 7458 unixFile *pFile = (unixFile*)id; |
| 7459 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; |
| 7460 unixFile *lockProxy = pCtx->lockProxy; |
| 7461 unixFile *conchFile = pCtx->conchFile; |
| 7462 int rc = SQLITE_OK; |
| 7463 |
| 7464 if( lockProxy ){ |
| 7465 rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK); |
| 7466 if( rc ) return rc; |
| 7467 rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy); |
| 7468 if( rc ) return rc; |
| 7469 sqlite3_free(lockProxy); |
| 7470 pCtx->lockProxy = 0; |
| 7471 } |
| 7472 if( conchFile ){ |
| 7473 if( pCtx->conchHeld ){ |
| 7474 rc = proxyReleaseConch(pFile); |
| 7475 if( rc ) return rc; |
| 7476 } |
| 7477 rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile); |
| 7478 if( rc ) return rc; |
| 7479 sqlite3_free(conchFile); |
| 7480 } |
| 7481 sqlite3DbFree(0, pCtx->lockProxyPath); |
| 7482 sqlite3_free(pCtx->conchFilePath); |
| 7483 sqlite3DbFree(0, pCtx->dbPath); |
| 7484 /* restore the original locking context and pMethod then close it */ |
| 7485 pFile->lockingContext = pCtx->oldLockingContext; |
| 7486 pFile->pMethod = pCtx->pOldMethod; |
| 7487 sqlite3_free(pCtx); |
| 7488 return pFile->pMethod->xClose(id); |
| 7489 } |
| 7490 return SQLITE_OK; |
| 7491 } |
| 7492 |
| 7493 |
| 7494 |
| 7495 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ |
| 7496 /* |
| 7497 ** The proxy locking style is intended for use with AFP filesystems. |
| 7498 ** And since AFP is only supported on MacOSX, the proxy locking is also |
| 7499 ** restricted to MacOSX. |
| 7500 ** |
| 7501 ** |
| 7502 ******************* End of the proxy lock implementation ********************** |
| 7503 ******************************************************************************/ |
| 7504 |
| 7505 /* |
| 7506 ** Initialize the operating system interface. |
| 7507 ** |
| 7508 ** This routine registers all VFS implementations for unix-like operating |
| 7509 ** systems. This routine, and the sqlite3_os_end() routine that follows, |
| 7510 ** should be the only routines in this file that are visible from other |
| 7511 ** files. |
| 7512 ** |
| 7513 ** This routine is called once during SQLite initialization and by a |
| 7514 ** single thread. The memory allocation and mutex subsystems have not |
| 7515 ** necessarily been initialized when this routine is called, and so they |
| 7516 ** should not be used. |
| 7517 */ |
| 7518 int sqlite3_os_init(void){ |
| 7519 /* |
| 7520 ** The following macro defines an initializer for an sqlite3_vfs object. |
| 7521 ** The name of the VFS is NAME. The pAppData is a pointer to a pointer |
| 7522 ** to the "finder" function. (pAppData is a pointer to a pointer because |
| 7523 ** silly C90 rules prohibit a void* from being cast to a function pointer |
| 7524 ** and so we have to go through the intermediate pointer to avoid problems |
| 7525 ** when compiling with -pedantic-errors on GCC.) |
| 7526 ** |
| 7527 ** The FINDER parameter to this macro is the name of the pointer to the |
| 7528 ** finder-function. The finder-function returns a pointer to the |
| 7529 ** sqlite_io_methods object that implements the desired locking |
| 7530 ** behaviors. See the division above that contains the IOMETHODS |
| 7531 ** macro for addition information on finder-functions. |
| 7532 ** |
| 7533 ** Most finders simply return a pointer to a fixed sqlite3_io_methods |
| 7534 ** object. But the "autolockIoFinder" available on MacOSX does a little |
| 7535 ** more than that; it looks at the filesystem type that hosts the |
| 7536 ** database file and tries to choose an locking method appropriate for |
| 7537 ** that filesystem time. |
| 7538 */ |
| 7539 #define UNIXVFS(VFSNAME, FINDER) { \ |
| 7540 3, /* iVersion */ \ |
| 7541 sizeof(unixFile), /* szOsFile */ \ |
| 7542 MAX_PATHNAME, /* mxPathname */ \ |
| 7543 0, /* pNext */ \ |
| 7544 VFSNAME, /* zName */ \ |
| 7545 (void*)&FINDER, /* pAppData */ \ |
| 7546 unixOpen, /* xOpen */ \ |
| 7547 unixDelete, /* xDelete */ \ |
| 7548 unixAccess, /* xAccess */ \ |
| 7549 unixFullPathname, /* xFullPathname */ \ |
| 7550 unixDlOpen, /* xDlOpen */ \ |
| 7551 unixDlError, /* xDlError */ \ |
| 7552 unixDlSym, /* xDlSym */ \ |
| 7553 unixDlClose, /* xDlClose */ \ |
| 7554 unixRandomness, /* xRandomness */ \ |
| 7555 unixSleep, /* xSleep */ \ |
| 7556 unixCurrentTime, /* xCurrentTime */ \ |
| 7557 unixGetLastError, /* xGetLastError */ \ |
| 7558 unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \ |
| 7559 unixSetSystemCall, /* xSetSystemCall */ \ |
| 7560 unixGetSystemCall, /* xGetSystemCall */ \ |
| 7561 unixNextSystemCall, /* xNextSystemCall */ \ |
| 7562 } |
| 7563 |
| 7564 /* |
| 7565 ** All default VFSes for unix are contained in the following array. |
| 7566 ** |
| 7567 ** Note that the sqlite3_vfs.pNext field of the VFS object is modified |
| 7568 ** by the SQLite core when the VFS is registered. So the following |
| 7569 ** array cannot be const. |
| 7570 */ |
| 7571 static sqlite3_vfs aVfs[] = { |
| 7572 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
| 7573 UNIXVFS("unix", autolockIoFinder ), |
| 7574 #elif OS_VXWORKS |
| 7575 UNIXVFS("unix", vxworksIoFinder ), |
| 7576 #else |
| 7577 UNIXVFS("unix", posixIoFinder ), |
| 7578 #endif |
| 7579 UNIXVFS("unix-none", nolockIoFinder ), |
| 7580 UNIXVFS("unix-dotfile", dotlockIoFinder ), |
| 7581 UNIXVFS("unix-excl", posixIoFinder ), |
| 7582 #if OS_VXWORKS |
| 7583 UNIXVFS("unix-namedsem", semIoFinder ), |
| 7584 #endif |
| 7585 #if SQLITE_ENABLE_LOCKING_STYLE || OS_VXWORKS |
| 7586 UNIXVFS("unix-posix", posixIoFinder ), |
| 7587 #endif |
| 7588 #if SQLITE_ENABLE_LOCKING_STYLE |
| 7589 UNIXVFS("unix-flock", flockIoFinder ), |
| 7590 #endif |
| 7591 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) |
| 7592 UNIXVFS("unix-afp", afpIoFinder ), |
| 7593 UNIXVFS("unix-nfs", nfsIoFinder ), |
| 7594 UNIXVFS("unix-proxy", proxyIoFinder ), |
| 7595 #endif |
| 7596 }; |
| 7597 unsigned int i; /* Loop counter */ |
| 7598 |
| 7599 /* Double-check that the aSyscall[] array has been constructed |
| 7600 ** correctly. See ticket [bb3a86e890c8e96ab] */ |
| 7601 assert( ArraySize(aSyscall)==28 ); |
| 7602 |
| 7603 /* Register all VFSes defined in the aVfs[] array */ |
| 7604 for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){ |
| 7605 sqlite3_vfs_register(&aVfs[i], i==0); |
| 7606 } |
| 7607 return SQLITE_OK; |
| 7608 } |
| 7609 |
| 7610 /* |
| 7611 ** Shutdown the operating system interface. |
| 7612 ** |
| 7613 ** Some operating systems might need to do some cleanup in this routine, |
| 7614 ** to release dynamically allocated objects. But not on unix. |
| 7615 ** This routine is a no-op for unix. |
| 7616 */ |
| 7617 int sqlite3_os_end(void){ |
| 7618 return SQLITE_OK; |
| 7619 } |
| 7620 |
| 7621 #endif /* SQLITE_OS_UNIX */ |
OLD | NEW |