OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2007 October 14 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This file contains the C functions that implement a memory |
| 13 ** allocation subsystem for use by SQLite. |
| 14 ** |
| 15 ** This version of the memory allocation subsystem omits all |
| 16 ** use of malloc(). The SQLite user supplies a block of memory |
| 17 ** before calling sqlite3_initialize() from which allocations |
| 18 ** are made and returned by the xMalloc() and xRealloc() |
| 19 ** implementations. Once sqlite3_initialize() has been called, |
| 20 ** the amount of memory available to SQLite is fixed and cannot |
| 21 ** be changed. |
| 22 ** |
| 23 ** This version of the memory allocation subsystem is included |
| 24 ** in the build only if SQLITE_ENABLE_MEMSYS3 is defined. |
| 25 */ |
| 26 #include "sqliteInt.h" |
| 27 |
| 28 /* |
| 29 ** This version of the memory allocator is only built into the library |
| 30 ** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not |
| 31 ** mean that the library will use a memory-pool by default, just that |
| 32 ** it is available. The mempool allocator is activated by calling |
| 33 ** sqlite3_config(). |
| 34 */ |
| 35 #ifdef SQLITE_ENABLE_MEMSYS3 |
| 36 |
| 37 /* |
| 38 ** Maximum size (in Mem3Blocks) of a "small" chunk. |
| 39 */ |
| 40 #define MX_SMALL 10 |
| 41 |
| 42 |
| 43 /* |
| 44 ** Number of freelist hash slots |
| 45 */ |
| 46 #define N_HASH 61 |
| 47 |
| 48 /* |
| 49 ** A memory allocation (also called a "chunk") consists of two or |
| 50 ** more blocks where each block is 8 bytes. The first 8 bytes are |
| 51 ** a header that is not returned to the user. |
| 52 ** |
| 53 ** A chunk is two or more blocks that is either checked out or |
| 54 ** free. The first block has format u.hdr. u.hdr.size4x is 4 times the |
| 55 ** size of the allocation in blocks if the allocation is free. |
| 56 ** The u.hdr.size4x&1 bit is true if the chunk is checked out and |
| 57 ** false if the chunk is on the freelist. The u.hdr.size4x&2 bit |
| 58 ** is true if the previous chunk is checked out and false if the |
| 59 ** previous chunk is free. The u.hdr.prevSize field is the size of |
| 60 ** the previous chunk in blocks if the previous chunk is on the |
| 61 ** freelist. If the previous chunk is checked out, then |
| 62 ** u.hdr.prevSize can be part of the data for that chunk and should |
| 63 ** not be read or written. |
| 64 ** |
| 65 ** We often identify a chunk by its index in mem3.aPool[]. When |
| 66 ** this is done, the chunk index refers to the second block of |
| 67 ** the chunk. In this way, the first chunk has an index of 1. |
| 68 ** A chunk index of 0 means "no such chunk" and is the equivalent |
| 69 ** of a NULL pointer. |
| 70 ** |
| 71 ** The second block of free chunks is of the form u.list. The |
| 72 ** two fields form a double-linked list of chunks of related sizes. |
| 73 ** Pointers to the head of the list are stored in mem3.aiSmall[] |
| 74 ** for smaller chunks and mem3.aiHash[] for larger chunks. |
| 75 ** |
| 76 ** The second block of a chunk is user data if the chunk is checked |
| 77 ** out. If a chunk is checked out, the user data may extend into |
| 78 ** the u.hdr.prevSize value of the following chunk. |
| 79 */ |
| 80 typedef struct Mem3Block Mem3Block; |
| 81 struct Mem3Block { |
| 82 union { |
| 83 struct { |
| 84 u32 prevSize; /* Size of previous chunk in Mem3Block elements */ |
| 85 u32 size4x; /* 4x the size of current chunk in Mem3Block elements */ |
| 86 } hdr; |
| 87 struct { |
| 88 u32 next; /* Index in mem3.aPool[] of next free chunk */ |
| 89 u32 prev; /* Index in mem3.aPool[] of previous free chunk */ |
| 90 } list; |
| 91 } u; |
| 92 }; |
| 93 |
| 94 /* |
| 95 ** All of the static variables used by this module are collected |
| 96 ** into a single structure named "mem3". This is to keep the |
| 97 ** static variables organized and to reduce namespace pollution |
| 98 ** when this module is combined with other in the amalgamation. |
| 99 */ |
| 100 static SQLITE_WSD struct Mem3Global { |
| 101 /* |
| 102 ** Memory available for allocation. nPool is the size of the array |
| 103 ** (in Mem3Blocks) pointed to by aPool less 2. |
| 104 */ |
| 105 u32 nPool; |
| 106 Mem3Block *aPool; |
| 107 |
| 108 /* |
| 109 ** True if we are evaluating an out-of-memory callback. |
| 110 */ |
| 111 int alarmBusy; |
| 112 |
| 113 /* |
| 114 ** Mutex to control access to the memory allocation subsystem. |
| 115 */ |
| 116 sqlite3_mutex *mutex; |
| 117 |
| 118 /* |
| 119 ** The minimum amount of free space that we have seen. |
| 120 */ |
| 121 u32 mnMaster; |
| 122 |
| 123 /* |
| 124 ** iMaster is the index of the master chunk. Most new allocations |
| 125 ** occur off of this chunk. szMaster is the size (in Mem3Blocks) |
| 126 ** of the current master. iMaster is 0 if there is not master chunk. |
| 127 ** The master chunk is not in either the aiHash[] or aiSmall[]. |
| 128 */ |
| 129 u32 iMaster; |
| 130 u32 szMaster; |
| 131 |
| 132 /* |
| 133 ** Array of lists of free blocks according to the block size |
| 134 ** for smaller chunks, or a hash on the block size for larger |
| 135 ** chunks. |
| 136 */ |
| 137 u32 aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */ |
| 138 u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */ |
| 139 } mem3 = { 97535575 }; |
| 140 |
| 141 #define mem3 GLOBAL(struct Mem3Global, mem3) |
| 142 |
| 143 /* |
| 144 ** Unlink the chunk at mem3.aPool[i] from list it is currently |
| 145 ** on. *pRoot is the list that i is a member of. |
| 146 */ |
| 147 static void memsys3UnlinkFromList(u32 i, u32 *pRoot){ |
| 148 u32 next = mem3.aPool[i].u.list.next; |
| 149 u32 prev = mem3.aPool[i].u.list.prev; |
| 150 assert( sqlite3_mutex_held(mem3.mutex) ); |
| 151 if( prev==0 ){ |
| 152 *pRoot = next; |
| 153 }else{ |
| 154 mem3.aPool[prev].u.list.next = next; |
| 155 } |
| 156 if( next ){ |
| 157 mem3.aPool[next].u.list.prev = prev; |
| 158 } |
| 159 mem3.aPool[i].u.list.next = 0; |
| 160 mem3.aPool[i].u.list.prev = 0; |
| 161 } |
| 162 |
| 163 /* |
| 164 ** Unlink the chunk at index i from |
| 165 ** whatever list is currently a member of. |
| 166 */ |
| 167 static void memsys3Unlink(u32 i){ |
| 168 u32 size, hash; |
| 169 assert( sqlite3_mutex_held(mem3.mutex) ); |
| 170 assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 ); |
| 171 assert( i>=1 ); |
| 172 size = mem3.aPool[i-1].u.hdr.size4x/4; |
| 173 assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); |
| 174 assert( size>=2 ); |
| 175 if( size <= MX_SMALL ){ |
| 176 memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]); |
| 177 }else{ |
| 178 hash = size % N_HASH; |
| 179 memsys3UnlinkFromList(i, &mem3.aiHash[hash]); |
| 180 } |
| 181 } |
| 182 |
| 183 /* |
| 184 ** Link the chunk at mem3.aPool[i] so that is on the list rooted |
| 185 ** at *pRoot. |
| 186 */ |
| 187 static void memsys3LinkIntoList(u32 i, u32 *pRoot){ |
| 188 assert( sqlite3_mutex_held(mem3.mutex) ); |
| 189 mem3.aPool[i].u.list.next = *pRoot; |
| 190 mem3.aPool[i].u.list.prev = 0; |
| 191 if( *pRoot ){ |
| 192 mem3.aPool[*pRoot].u.list.prev = i; |
| 193 } |
| 194 *pRoot = i; |
| 195 } |
| 196 |
| 197 /* |
| 198 ** Link the chunk at index i into either the appropriate |
| 199 ** small chunk list, or into the large chunk hash table. |
| 200 */ |
| 201 static void memsys3Link(u32 i){ |
| 202 u32 size, hash; |
| 203 assert( sqlite3_mutex_held(mem3.mutex) ); |
| 204 assert( i>=1 ); |
| 205 assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 ); |
| 206 size = mem3.aPool[i-1].u.hdr.size4x/4; |
| 207 assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); |
| 208 assert( size>=2 ); |
| 209 if( size <= MX_SMALL ){ |
| 210 memsys3LinkIntoList(i, &mem3.aiSmall[size-2]); |
| 211 }else{ |
| 212 hash = size % N_HASH; |
| 213 memsys3LinkIntoList(i, &mem3.aiHash[hash]); |
| 214 } |
| 215 } |
| 216 |
| 217 /* |
| 218 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex |
| 219 ** will already be held (obtained by code in malloc.c) if |
| 220 ** sqlite3GlobalConfig.bMemStat is true. |
| 221 */ |
| 222 static void memsys3Enter(void){ |
| 223 if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){ |
| 224 mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); |
| 225 } |
| 226 sqlite3_mutex_enter(mem3.mutex); |
| 227 } |
| 228 static void memsys3Leave(void){ |
| 229 sqlite3_mutex_leave(mem3.mutex); |
| 230 } |
| 231 |
| 232 /* |
| 233 ** Called when we are unable to satisfy an allocation of nBytes. |
| 234 */ |
| 235 static void memsys3OutOfMemory(int nByte){ |
| 236 if( !mem3.alarmBusy ){ |
| 237 mem3.alarmBusy = 1; |
| 238 assert( sqlite3_mutex_held(mem3.mutex) ); |
| 239 sqlite3_mutex_leave(mem3.mutex); |
| 240 sqlite3_release_memory(nByte); |
| 241 sqlite3_mutex_enter(mem3.mutex); |
| 242 mem3.alarmBusy = 0; |
| 243 } |
| 244 } |
| 245 |
| 246 |
| 247 /* |
| 248 ** Chunk i is a free chunk that has been unlinked. Adjust its |
| 249 ** size parameters for check-out and return a pointer to the |
| 250 ** user portion of the chunk. |
| 251 */ |
| 252 static void *memsys3Checkout(u32 i, u32 nBlock){ |
| 253 u32 x; |
| 254 assert( sqlite3_mutex_held(mem3.mutex) ); |
| 255 assert( i>=1 ); |
| 256 assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ); |
| 257 assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock ); |
| 258 x = mem3.aPool[i-1].u.hdr.size4x; |
| 259 mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2); |
| 260 mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock; |
| 261 mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2; |
| 262 return &mem3.aPool[i]; |
| 263 } |
| 264 |
| 265 /* |
| 266 ** Carve a piece off of the end of the mem3.iMaster free chunk. |
| 267 ** Return a pointer to the new allocation. Or, if the master chunk |
| 268 ** is not large enough, return 0. |
| 269 */ |
| 270 static void *memsys3FromMaster(u32 nBlock){ |
| 271 assert( sqlite3_mutex_held(mem3.mutex) ); |
| 272 assert( mem3.szMaster>=nBlock ); |
| 273 if( nBlock>=mem3.szMaster-1 ){ |
| 274 /* Use the entire master */ |
| 275 void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster); |
| 276 mem3.iMaster = 0; |
| 277 mem3.szMaster = 0; |
| 278 mem3.mnMaster = 0; |
| 279 return p; |
| 280 }else{ |
| 281 /* Split the master block. Return the tail. */ |
| 282 u32 newi, x; |
| 283 newi = mem3.iMaster + mem3.szMaster - nBlock; |
| 284 assert( newi > mem3.iMaster+1 ); |
| 285 mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock; |
| 286 mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2; |
| 287 mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1; |
| 288 mem3.szMaster -= nBlock; |
| 289 mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster; |
| 290 x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; |
| 291 mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; |
| 292 if( mem3.szMaster < mem3.mnMaster ){ |
| 293 mem3.mnMaster = mem3.szMaster; |
| 294 } |
| 295 return (void*)&mem3.aPool[newi]; |
| 296 } |
| 297 } |
| 298 |
| 299 /* |
| 300 ** *pRoot is the head of a list of free chunks of the same size |
| 301 ** or same size hash. In other words, *pRoot is an entry in either |
| 302 ** mem3.aiSmall[] or mem3.aiHash[]. |
| 303 ** |
| 304 ** This routine examines all entries on the given list and tries |
| 305 ** to coalesce each entries with adjacent free chunks. |
| 306 ** |
| 307 ** If it sees a chunk that is larger than mem3.iMaster, it replaces |
| 308 ** the current mem3.iMaster with the new larger chunk. In order for |
| 309 ** this mem3.iMaster replacement to work, the master chunk must be |
| 310 ** linked into the hash tables. That is not the normal state of |
| 311 ** affairs, of course. The calling routine must link the master |
| 312 ** chunk before invoking this routine, then must unlink the (possibly |
| 313 ** changed) master chunk once this routine has finished. |
| 314 */ |
| 315 static void memsys3Merge(u32 *pRoot){ |
| 316 u32 iNext, prev, size, i, x; |
| 317 |
| 318 assert( sqlite3_mutex_held(mem3.mutex) ); |
| 319 for(i=*pRoot; i>0; i=iNext){ |
| 320 iNext = mem3.aPool[i].u.list.next; |
| 321 size = mem3.aPool[i-1].u.hdr.size4x; |
| 322 assert( (size&1)==0 ); |
| 323 if( (size&2)==0 ){ |
| 324 memsys3UnlinkFromList(i, pRoot); |
| 325 assert( i > mem3.aPool[i-1].u.hdr.prevSize ); |
| 326 prev = i - mem3.aPool[i-1].u.hdr.prevSize; |
| 327 if( prev==iNext ){ |
| 328 iNext = mem3.aPool[prev].u.list.next; |
| 329 } |
| 330 memsys3Unlink(prev); |
| 331 size = i + size/4 - prev; |
| 332 x = mem3.aPool[prev-1].u.hdr.size4x & 2; |
| 333 mem3.aPool[prev-1].u.hdr.size4x = size*4 | x; |
| 334 mem3.aPool[prev+size-1].u.hdr.prevSize = size; |
| 335 memsys3Link(prev); |
| 336 i = prev; |
| 337 }else{ |
| 338 size /= 4; |
| 339 } |
| 340 if( size>mem3.szMaster ){ |
| 341 mem3.iMaster = i; |
| 342 mem3.szMaster = size; |
| 343 } |
| 344 } |
| 345 } |
| 346 |
| 347 /* |
| 348 ** Return a block of memory of at least nBytes in size. |
| 349 ** Return NULL if unable. |
| 350 ** |
| 351 ** This function assumes that the necessary mutexes, if any, are |
| 352 ** already held by the caller. Hence "Unsafe". |
| 353 */ |
| 354 static void *memsys3MallocUnsafe(int nByte){ |
| 355 u32 i; |
| 356 u32 nBlock; |
| 357 u32 toFree; |
| 358 |
| 359 assert( sqlite3_mutex_held(mem3.mutex) ); |
| 360 assert( sizeof(Mem3Block)==8 ); |
| 361 if( nByte<=12 ){ |
| 362 nBlock = 2; |
| 363 }else{ |
| 364 nBlock = (nByte + 11)/8; |
| 365 } |
| 366 assert( nBlock>=2 ); |
| 367 |
| 368 /* STEP 1: |
| 369 ** Look for an entry of the correct size in either the small |
| 370 ** chunk table or in the large chunk hash table. This is |
| 371 ** successful most of the time (about 9 times out of 10). |
| 372 */ |
| 373 if( nBlock <= MX_SMALL ){ |
| 374 i = mem3.aiSmall[nBlock-2]; |
| 375 if( i>0 ){ |
| 376 memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]); |
| 377 return memsys3Checkout(i, nBlock); |
| 378 } |
| 379 }else{ |
| 380 int hash = nBlock % N_HASH; |
| 381 for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){ |
| 382 if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){ |
| 383 memsys3UnlinkFromList(i, &mem3.aiHash[hash]); |
| 384 return memsys3Checkout(i, nBlock); |
| 385 } |
| 386 } |
| 387 } |
| 388 |
| 389 /* STEP 2: |
| 390 ** Try to satisfy the allocation by carving a piece off of the end |
| 391 ** of the master chunk. This step usually works if step 1 fails. |
| 392 */ |
| 393 if( mem3.szMaster>=nBlock ){ |
| 394 return memsys3FromMaster(nBlock); |
| 395 } |
| 396 |
| 397 |
| 398 /* STEP 3: |
| 399 ** Loop through the entire memory pool. Coalesce adjacent free |
| 400 ** chunks. Recompute the master chunk as the largest free chunk. |
| 401 ** Then try again to satisfy the allocation by carving a piece off |
| 402 ** of the end of the master chunk. This step happens very |
| 403 ** rarely (we hope!) |
| 404 */ |
| 405 for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){ |
| 406 memsys3OutOfMemory(toFree); |
| 407 if( mem3.iMaster ){ |
| 408 memsys3Link(mem3.iMaster); |
| 409 mem3.iMaster = 0; |
| 410 mem3.szMaster = 0; |
| 411 } |
| 412 for(i=0; i<N_HASH; i++){ |
| 413 memsys3Merge(&mem3.aiHash[i]); |
| 414 } |
| 415 for(i=0; i<MX_SMALL-1; i++){ |
| 416 memsys3Merge(&mem3.aiSmall[i]); |
| 417 } |
| 418 if( mem3.szMaster ){ |
| 419 memsys3Unlink(mem3.iMaster); |
| 420 if( mem3.szMaster>=nBlock ){ |
| 421 return memsys3FromMaster(nBlock); |
| 422 } |
| 423 } |
| 424 } |
| 425 |
| 426 /* If none of the above worked, then we fail. */ |
| 427 return 0; |
| 428 } |
| 429 |
| 430 /* |
| 431 ** Free an outstanding memory allocation. |
| 432 ** |
| 433 ** This function assumes that the necessary mutexes, if any, are |
| 434 ** already held by the caller. Hence "Unsafe". |
| 435 */ |
| 436 static void memsys3FreeUnsafe(void *pOld){ |
| 437 Mem3Block *p = (Mem3Block*)pOld; |
| 438 int i; |
| 439 u32 size, x; |
| 440 assert( sqlite3_mutex_held(mem3.mutex) ); |
| 441 assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] ); |
| 442 i = p - mem3.aPool; |
| 443 assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 ); |
| 444 size = mem3.aPool[i-1].u.hdr.size4x/4; |
| 445 assert( i+size<=mem3.nPool+1 ); |
| 446 mem3.aPool[i-1].u.hdr.size4x &= ~1; |
| 447 mem3.aPool[i+size-1].u.hdr.prevSize = size; |
| 448 mem3.aPool[i+size-1].u.hdr.size4x &= ~2; |
| 449 memsys3Link(i); |
| 450 |
| 451 /* Try to expand the master using the newly freed chunk */ |
| 452 if( mem3.iMaster ){ |
| 453 while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){ |
| 454 size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize; |
| 455 mem3.iMaster -= size; |
| 456 mem3.szMaster += size; |
| 457 memsys3Unlink(mem3.iMaster); |
| 458 x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; |
| 459 mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; |
| 460 mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster; |
| 461 } |
| 462 x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; |
| 463 while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){ |
| 464 memsys3Unlink(mem3.iMaster+mem3.szMaster); |
| 465 mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4; |
| 466 mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; |
| 467 mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster; |
| 468 } |
| 469 } |
| 470 } |
| 471 |
| 472 /* |
| 473 ** Return the size of an outstanding allocation, in bytes. The |
| 474 ** size returned omits the 8-byte header overhead. This only |
| 475 ** works for chunks that are currently checked out. |
| 476 */ |
| 477 static int memsys3Size(void *p){ |
| 478 Mem3Block *pBlock; |
| 479 assert( p!=0 ); |
| 480 pBlock = (Mem3Block*)p; |
| 481 assert( (pBlock[-1].u.hdr.size4x&1)!=0 ); |
| 482 return (pBlock[-1].u.hdr.size4x&~3)*2 - 4; |
| 483 } |
| 484 |
| 485 /* |
| 486 ** Round up a request size to the next valid allocation size. |
| 487 */ |
| 488 static int memsys3Roundup(int n){ |
| 489 if( n<=12 ){ |
| 490 return 12; |
| 491 }else{ |
| 492 return ((n+11)&~7) - 4; |
| 493 } |
| 494 } |
| 495 |
| 496 /* |
| 497 ** Allocate nBytes of memory. |
| 498 */ |
| 499 static void *memsys3Malloc(int nBytes){ |
| 500 sqlite3_int64 *p; |
| 501 assert( nBytes>0 ); /* malloc.c filters out 0 byte requests */ |
| 502 memsys3Enter(); |
| 503 p = memsys3MallocUnsafe(nBytes); |
| 504 memsys3Leave(); |
| 505 return (void*)p; |
| 506 } |
| 507 |
| 508 /* |
| 509 ** Free memory. |
| 510 */ |
| 511 static void memsys3Free(void *pPrior){ |
| 512 assert( pPrior ); |
| 513 memsys3Enter(); |
| 514 memsys3FreeUnsafe(pPrior); |
| 515 memsys3Leave(); |
| 516 } |
| 517 |
| 518 /* |
| 519 ** Change the size of an existing memory allocation |
| 520 */ |
| 521 static void *memsys3Realloc(void *pPrior, int nBytes){ |
| 522 int nOld; |
| 523 void *p; |
| 524 if( pPrior==0 ){ |
| 525 return sqlite3_malloc(nBytes); |
| 526 } |
| 527 if( nBytes<=0 ){ |
| 528 sqlite3_free(pPrior); |
| 529 return 0; |
| 530 } |
| 531 nOld = memsys3Size(pPrior); |
| 532 if( nBytes<=nOld && nBytes>=nOld-128 ){ |
| 533 return pPrior; |
| 534 } |
| 535 memsys3Enter(); |
| 536 p = memsys3MallocUnsafe(nBytes); |
| 537 if( p ){ |
| 538 if( nOld<nBytes ){ |
| 539 memcpy(p, pPrior, nOld); |
| 540 }else{ |
| 541 memcpy(p, pPrior, nBytes); |
| 542 } |
| 543 memsys3FreeUnsafe(pPrior); |
| 544 } |
| 545 memsys3Leave(); |
| 546 return p; |
| 547 } |
| 548 |
| 549 /* |
| 550 ** Initialize this module. |
| 551 */ |
| 552 static int memsys3Init(void *NotUsed){ |
| 553 UNUSED_PARAMETER(NotUsed); |
| 554 if( !sqlite3GlobalConfig.pHeap ){ |
| 555 return SQLITE_ERROR; |
| 556 } |
| 557 |
| 558 /* Store a pointer to the memory block in global structure mem3. */ |
| 559 assert( sizeof(Mem3Block)==8 ); |
| 560 mem3.aPool = (Mem3Block *)sqlite3GlobalConfig.pHeap; |
| 561 mem3.nPool = (sqlite3GlobalConfig.nHeap / sizeof(Mem3Block)) - 2; |
| 562 |
| 563 /* Initialize the master block. */ |
| 564 mem3.szMaster = mem3.nPool; |
| 565 mem3.mnMaster = mem3.szMaster; |
| 566 mem3.iMaster = 1; |
| 567 mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2; |
| 568 mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool; |
| 569 mem3.aPool[mem3.nPool].u.hdr.size4x = 1; |
| 570 |
| 571 return SQLITE_OK; |
| 572 } |
| 573 |
| 574 /* |
| 575 ** Deinitialize this module. |
| 576 */ |
| 577 static void memsys3Shutdown(void *NotUsed){ |
| 578 UNUSED_PARAMETER(NotUsed); |
| 579 mem3.mutex = 0; |
| 580 return; |
| 581 } |
| 582 |
| 583 |
| 584 |
| 585 /* |
| 586 ** Open the file indicated and write a log of all unfreed memory |
| 587 ** allocations into that log. |
| 588 */ |
| 589 void sqlite3Memsys3Dump(const char *zFilename){ |
| 590 #ifdef SQLITE_DEBUG |
| 591 FILE *out; |
| 592 u32 i, j; |
| 593 u32 size; |
| 594 if( zFilename==0 || zFilename[0]==0 ){ |
| 595 out = stdout; |
| 596 }else{ |
| 597 out = fopen(zFilename, "w"); |
| 598 if( out==0 ){ |
| 599 fprintf(stderr, "** Unable to output memory debug output log: %s **\n", |
| 600 zFilename); |
| 601 return; |
| 602 } |
| 603 } |
| 604 memsys3Enter(); |
| 605 fprintf(out, "CHUNKS:\n"); |
| 606 for(i=1; i<=mem3.nPool; i+=size/4){ |
| 607 size = mem3.aPool[i-1].u.hdr.size4x; |
| 608 if( size/4<=1 ){ |
| 609 fprintf(out, "%p size error\n", &mem3.aPool[i]); |
| 610 assert( 0 ); |
| 611 break; |
| 612 } |
| 613 if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){ |
| 614 fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]); |
| 615 assert( 0 ); |
| 616 break; |
| 617 } |
| 618 if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){ |
| 619 fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]); |
| 620 assert( 0 ); |
| 621 break; |
| 622 } |
| 623 if( size&1 ){ |
| 624 fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8); |
| 625 }else{ |
| 626 fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8, |
| 627 i==mem3.iMaster ? " **master**" : ""); |
| 628 } |
| 629 } |
| 630 for(i=0; i<MX_SMALL-1; i++){ |
| 631 if( mem3.aiSmall[i]==0 ) continue; |
| 632 fprintf(out, "small(%2d):", i); |
| 633 for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){ |
| 634 fprintf(out, " %p(%d)", &mem3.aPool[j], |
| 635 (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); |
| 636 } |
| 637 fprintf(out, "\n"); |
| 638 } |
| 639 for(i=0; i<N_HASH; i++){ |
| 640 if( mem3.aiHash[i]==0 ) continue; |
| 641 fprintf(out, "hash(%2d):", i); |
| 642 for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){ |
| 643 fprintf(out, " %p(%d)", &mem3.aPool[j], |
| 644 (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); |
| 645 } |
| 646 fprintf(out, "\n"); |
| 647 } |
| 648 fprintf(out, "master=%d\n", mem3.iMaster); |
| 649 fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8); |
| 650 fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8); |
| 651 sqlite3_mutex_leave(mem3.mutex); |
| 652 if( out==stdout ){ |
| 653 fflush(stdout); |
| 654 }else{ |
| 655 fclose(out); |
| 656 } |
| 657 #else |
| 658 UNUSED_PARAMETER(zFilename); |
| 659 #endif |
| 660 } |
| 661 |
| 662 /* |
| 663 ** This routine is the only routine in this file with external |
| 664 ** linkage. |
| 665 ** |
| 666 ** Populate the low-level memory allocation function pointers in |
| 667 ** sqlite3GlobalConfig.m with pointers to the routines in this file. The |
| 668 ** arguments specify the block of memory to manage. |
| 669 ** |
| 670 ** This routine is only called by sqlite3_config(), and therefore |
| 671 ** is not required to be threadsafe (it is not). |
| 672 */ |
| 673 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){ |
| 674 static const sqlite3_mem_methods mempoolMethods = { |
| 675 memsys3Malloc, |
| 676 memsys3Free, |
| 677 memsys3Realloc, |
| 678 memsys3Size, |
| 679 memsys3Roundup, |
| 680 memsys3Init, |
| 681 memsys3Shutdown, |
| 682 0 |
| 683 }; |
| 684 return &mempoolMethods; |
| 685 } |
| 686 |
| 687 #endif /* SQLITE_ENABLE_MEMSYS3 */ |
OLD | NEW |