OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2001 September 15 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** |
| 13 ** Memory allocation functions used throughout sqlite. |
| 14 */ |
| 15 #include "sqliteInt.h" |
| 16 #include <stdarg.h> |
| 17 |
| 18 /* |
| 19 ** Attempt to release up to n bytes of non-essential memory currently |
| 20 ** held by SQLite. An example of non-essential memory is memory used to |
| 21 ** cache database pages that are not currently in use. |
| 22 */ |
| 23 int sqlite3_release_memory(int n){ |
| 24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
| 25 return sqlite3PcacheReleaseMemory(n); |
| 26 #else |
| 27 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine |
| 28 ** is a no-op returning zero if SQLite is not compiled with |
| 29 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ |
| 30 UNUSED_PARAMETER(n); |
| 31 return 0; |
| 32 #endif |
| 33 } |
| 34 |
| 35 /* |
| 36 ** An instance of the following object records the location of |
| 37 ** each unused scratch buffer. |
| 38 */ |
| 39 typedef struct ScratchFreeslot { |
| 40 struct ScratchFreeslot *pNext; /* Next unused scratch buffer */ |
| 41 } ScratchFreeslot; |
| 42 |
| 43 /* |
| 44 ** State information local to the memory allocation subsystem. |
| 45 */ |
| 46 static SQLITE_WSD struct Mem0Global { |
| 47 sqlite3_mutex *mutex; /* Mutex to serialize access */ |
| 48 sqlite3_int64 alarmThreshold; /* The soft heap limit */ |
| 49 |
| 50 /* |
| 51 ** Pointers to the end of sqlite3GlobalConfig.pScratch memory |
| 52 ** (so that a range test can be used to determine if an allocation |
| 53 ** being freed came from pScratch) and a pointer to the list of |
| 54 ** unused scratch allocations. |
| 55 */ |
| 56 void *pScratchEnd; |
| 57 ScratchFreeslot *pScratchFree; |
| 58 u32 nScratchFree; |
| 59 |
| 60 /* |
| 61 ** True if heap is nearly "full" where "full" is defined by the |
| 62 ** sqlite3_soft_heap_limit() setting. |
| 63 */ |
| 64 int nearlyFull; |
| 65 } mem0 = { 0, 0, 0, 0, 0, 0 }; |
| 66 |
| 67 #define mem0 GLOBAL(struct Mem0Global, mem0) |
| 68 |
| 69 /* |
| 70 ** Return the memory allocator mutex. sqlite3_status() needs it. |
| 71 */ |
| 72 sqlite3_mutex *sqlite3MallocMutex(void){ |
| 73 return mem0.mutex; |
| 74 } |
| 75 |
| 76 #ifndef SQLITE_OMIT_DEPRECATED |
| 77 /* |
| 78 ** Deprecated external interface. It used to set an alarm callback |
| 79 ** that was invoked when memory usage grew too large. Now it is a |
| 80 ** no-op. |
| 81 */ |
| 82 int sqlite3_memory_alarm( |
| 83 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), |
| 84 void *pArg, |
| 85 sqlite3_int64 iThreshold |
| 86 ){ |
| 87 (void)xCallback; |
| 88 (void)pArg; |
| 89 (void)iThreshold; |
| 90 return SQLITE_OK; |
| 91 } |
| 92 #endif |
| 93 |
| 94 /* |
| 95 ** Set the soft heap-size limit for the library. Passing a zero or |
| 96 ** negative value indicates no limit. |
| 97 */ |
| 98 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ |
| 99 sqlite3_int64 priorLimit; |
| 100 sqlite3_int64 excess; |
| 101 sqlite3_int64 nUsed; |
| 102 #ifndef SQLITE_OMIT_AUTOINIT |
| 103 int rc = sqlite3_initialize(); |
| 104 if( rc ) return -1; |
| 105 #endif |
| 106 sqlite3_mutex_enter(mem0.mutex); |
| 107 priorLimit = mem0.alarmThreshold; |
| 108 if( n<0 ){ |
| 109 sqlite3_mutex_leave(mem0.mutex); |
| 110 return priorLimit; |
| 111 } |
| 112 mem0.alarmThreshold = n; |
| 113 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); |
| 114 mem0.nearlyFull = (n>0 && n<=nUsed); |
| 115 sqlite3_mutex_leave(mem0.mutex); |
| 116 excess = sqlite3_memory_used() - n; |
| 117 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); |
| 118 return priorLimit; |
| 119 } |
| 120 void sqlite3_soft_heap_limit(int n){ |
| 121 if( n<0 ) n = 0; |
| 122 sqlite3_soft_heap_limit64(n); |
| 123 } |
| 124 |
| 125 /* |
| 126 ** Initialize the memory allocation subsystem. |
| 127 */ |
| 128 int sqlite3MallocInit(void){ |
| 129 int rc; |
| 130 if( sqlite3GlobalConfig.m.xMalloc==0 ){ |
| 131 sqlite3MemSetDefault(); |
| 132 } |
| 133 memset(&mem0, 0, sizeof(mem0)); |
| 134 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); |
| 135 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 |
| 136 && sqlite3GlobalConfig.nScratch>0 ){ |
| 137 int i, n, sz; |
| 138 ScratchFreeslot *pSlot; |
| 139 sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch); |
| 140 sqlite3GlobalConfig.szScratch = sz; |
| 141 pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch; |
| 142 n = sqlite3GlobalConfig.nScratch; |
| 143 mem0.pScratchFree = pSlot; |
| 144 mem0.nScratchFree = n; |
| 145 for(i=0; i<n-1; i++){ |
| 146 pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot); |
| 147 pSlot = pSlot->pNext; |
| 148 } |
| 149 pSlot->pNext = 0; |
| 150 mem0.pScratchEnd = (void*)&pSlot[1]; |
| 151 }else{ |
| 152 mem0.pScratchEnd = 0; |
| 153 sqlite3GlobalConfig.pScratch = 0; |
| 154 sqlite3GlobalConfig.szScratch = 0; |
| 155 sqlite3GlobalConfig.nScratch = 0; |
| 156 } |
| 157 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 |
| 158 || sqlite3GlobalConfig.nPage<=0 ){ |
| 159 sqlite3GlobalConfig.pPage = 0; |
| 160 sqlite3GlobalConfig.szPage = 0; |
| 161 } |
| 162 rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); |
| 163 if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0)); |
| 164 return rc; |
| 165 } |
| 166 |
| 167 /* |
| 168 ** Return true if the heap is currently under memory pressure - in other |
| 169 ** words if the amount of heap used is close to the limit set by |
| 170 ** sqlite3_soft_heap_limit(). |
| 171 */ |
| 172 int sqlite3HeapNearlyFull(void){ |
| 173 return mem0.nearlyFull; |
| 174 } |
| 175 |
| 176 /* |
| 177 ** Deinitialize the memory allocation subsystem. |
| 178 */ |
| 179 void sqlite3MallocEnd(void){ |
| 180 if( sqlite3GlobalConfig.m.xShutdown ){ |
| 181 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); |
| 182 } |
| 183 memset(&mem0, 0, sizeof(mem0)); |
| 184 } |
| 185 |
| 186 /* |
| 187 ** Return the amount of memory currently checked out. |
| 188 */ |
| 189 sqlite3_int64 sqlite3_memory_used(void){ |
| 190 sqlite3_int64 res, mx; |
| 191 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0); |
| 192 return res; |
| 193 } |
| 194 |
| 195 /* |
| 196 ** Return the maximum amount of memory that has ever been |
| 197 ** checked out since either the beginning of this process |
| 198 ** or since the most recent reset. |
| 199 */ |
| 200 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ |
| 201 sqlite3_int64 res, mx; |
| 202 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag); |
| 203 return mx; |
| 204 } |
| 205 |
| 206 /* |
| 207 ** Trigger the alarm |
| 208 */ |
| 209 static void sqlite3MallocAlarm(int nByte){ |
| 210 if( mem0.alarmThreshold<=0 ) return; |
| 211 sqlite3_mutex_leave(mem0.mutex); |
| 212 sqlite3_release_memory(nByte); |
| 213 sqlite3_mutex_enter(mem0.mutex); |
| 214 } |
| 215 |
| 216 /* |
| 217 ** Do a memory allocation with statistics and alarms. Assume the |
| 218 ** lock is already held. |
| 219 */ |
| 220 static void mallocWithAlarm(int n, void **pp){ |
| 221 void *p; |
| 222 int nFull; |
| 223 assert( sqlite3_mutex_held(mem0.mutex) ); |
| 224 assert( n>0 ); |
| 225 |
| 226 /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal |
| 227 ** implementation of malloc_good_size(), which must be called in debug |
| 228 ** mode and specifically when the DMD "Dark Matter Detector" is enabled |
| 229 ** or else a crash results. Hence, do not attempt to optimize out the |
| 230 ** following xRoundup() call. */ |
| 231 nFull = sqlite3GlobalConfig.m.xRoundup(n); |
| 232 |
| 233 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n); |
| 234 if( mem0.alarmThreshold>0 ){ |
| 235 sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); |
| 236 if( nUsed >= mem0.alarmThreshold - nFull ){ |
| 237 mem0.nearlyFull = 1; |
| 238 sqlite3MallocAlarm(nFull); |
| 239 }else{ |
| 240 mem0.nearlyFull = 0; |
| 241 } |
| 242 } |
| 243 p = sqlite3GlobalConfig.m.xMalloc(nFull); |
| 244 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
| 245 if( p==0 && mem0.alarmThreshold>0 ){ |
| 246 sqlite3MallocAlarm(nFull); |
| 247 p = sqlite3GlobalConfig.m.xMalloc(nFull); |
| 248 } |
| 249 #endif |
| 250 if( p ){ |
| 251 nFull = sqlite3MallocSize(p); |
| 252 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull); |
| 253 sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1); |
| 254 } |
| 255 *pp = p; |
| 256 } |
| 257 |
| 258 /* |
| 259 ** Allocate memory. This routine is like sqlite3_malloc() except that it |
| 260 ** assumes the memory subsystem has already been initialized. |
| 261 */ |
| 262 void *sqlite3Malloc(u64 n){ |
| 263 void *p; |
| 264 if( n==0 || n>=0x7fffff00 ){ |
| 265 /* A memory allocation of a number of bytes which is near the maximum |
| 266 ** signed integer value might cause an integer overflow inside of the |
| 267 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving |
| 268 ** 255 bytes of overhead. SQLite itself will never use anything near |
| 269 ** this amount. The only way to reach the limit is with sqlite3_malloc() */ |
| 270 p = 0; |
| 271 }else if( sqlite3GlobalConfig.bMemstat ){ |
| 272 sqlite3_mutex_enter(mem0.mutex); |
| 273 mallocWithAlarm((int)n, &p); |
| 274 sqlite3_mutex_leave(mem0.mutex); |
| 275 }else{ |
| 276 p = sqlite3GlobalConfig.m.xMalloc((int)n); |
| 277 } |
| 278 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */ |
| 279 return p; |
| 280 } |
| 281 |
| 282 /* |
| 283 ** This version of the memory allocation is for use by the application. |
| 284 ** First make sure the memory subsystem is initialized, then do the |
| 285 ** allocation. |
| 286 */ |
| 287 void *sqlite3_malloc(int n){ |
| 288 #ifndef SQLITE_OMIT_AUTOINIT |
| 289 if( sqlite3_initialize() ) return 0; |
| 290 #endif |
| 291 return n<=0 ? 0 : sqlite3Malloc(n); |
| 292 } |
| 293 void *sqlite3_malloc64(sqlite3_uint64 n){ |
| 294 #ifndef SQLITE_OMIT_AUTOINIT |
| 295 if( sqlite3_initialize() ) return 0; |
| 296 #endif |
| 297 return sqlite3Malloc(n); |
| 298 } |
| 299 |
| 300 /* |
| 301 ** Each thread may only have a single outstanding allocation from |
| 302 ** xScratchMalloc(). We verify this constraint in the single-threaded |
| 303 ** case by setting scratchAllocOut to 1 when an allocation |
| 304 ** is outstanding clearing it when the allocation is freed. |
| 305 */ |
| 306 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) |
| 307 static int scratchAllocOut = 0; |
| 308 #endif |
| 309 |
| 310 |
| 311 /* |
| 312 ** Allocate memory that is to be used and released right away. |
| 313 ** This routine is similar to alloca() in that it is not intended |
| 314 ** for situations where the memory might be held long-term. This |
| 315 ** routine is intended to get memory to old large transient data |
| 316 ** structures that would not normally fit on the stack of an |
| 317 ** embedded processor. |
| 318 */ |
| 319 void *sqlite3ScratchMalloc(int n){ |
| 320 void *p; |
| 321 assert( n>0 ); |
| 322 |
| 323 sqlite3_mutex_enter(mem0.mutex); |
| 324 sqlite3StatusHighwater(SQLITE_STATUS_SCRATCH_SIZE, n); |
| 325 if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ |
| 326 p = mem0.pScratchFree; |
| 327 mem0.pScratchFree = mem0.pScratchFree->pNext; |
| 328 mem0.nScratchFree--; |
| 329 sqlite3StatusUp(SQLITE_STATUS_SCRATCH_USED, 1); |
| 330 sqlite3_mutex_leave(mem0.mutex); |
| 331 }else{ |
| 332 sqlite3_mutex_leave(mem0.mutex); |
| 333 p = sqlite3Malloc(n); |
| 334 if( sqlite3GlobalConfig.bMemstat && p ){ |
| 335 sqlite3_mutex_enter(mem0.mutex); |
| 336 sqlite3StatusUp(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p)); |
| 337 sqlite3_mutex_leave(mem0.mutex); |
| 338 } |
| 339 sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); |
| 340 } |
| 341 assert( sqlite3_mutex_notheld(mem0.mutex) ); |
| 342 |
| 343 |
| 344 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) |
| 345 /* EVIDENCE-OF: R-12970-05880 SQLite will not use more than one scratch |
| 346 ** buffers per thread. |
| 347 ** |
| 348 ** This can only be checked in single-threaded mode. |
| 349 */ |
| 350 assert( scratchAllocOut==0 ); |
| 351 if( p ) scratchAllocOut++; |
| 352 #endif |
| 353 |
| 354 return p; |
| 355 } |
| 356 void sqlite3ScratchFree(void *p){ |
| 357 if( p ){ |
| 358 |
| 359 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) |
| 360 /* Verify that no more than two scratch allocation per thread |
| 361 ** is outstanding at one time. (This is only checked in the |
| 362 ** single-threaded case since checking in the multi-threaded case |
| 363 ** would be much more complicated.) */ |
| 364 assert( scratchAllocOut>=1 && scratchAllocOut<=2 ); |
| 365 scratchAllocOut--; |
| 366 #endif |
| 367 |
| 368 if( SQLITE_WITHIN(p, sqlite3GlobalConfig.pScratch, mem0.pScratchEnd) ){ |
| 369 /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */ |
| 370 ScratchFreeslot *pSlot; |
| 371 pSlot = (ScratchFreeslot*)p; |
| 372 sqlite3_mutex_enter(mem0.mutex); |
| 373 pSlot->pNext = mem0.pScratchFree; |
| 374 mem0.pScratchFree = pSlot; |
| 375 mem0.nScratchFree++; |
| 376 assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); |
| 377 sqlite3StatusDown(SQLITE_STATUS_SCRATCH_USED, 1); |
| 378 sqlite3_mutex_leave(mem0.mutex); |
| 379 }else{ |
| 380 /* Release memory back to the heap */ |
| 381 assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); |
| 382 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_SCRATCH) ); |
| 383 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
| 384 if( sqlite3GlobalConfig.bMemstat ){ |
| 385 int iSize = sqlite3MallocSize(p); |
| 386 sqlite3_mutex_enter(mem0.mutex); |
| 387 sqlite3StatusDown(SQLITE_STATUS_SCRATCH_OVERFLOW, iSize); |
| 388 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, iSize); |
| 389 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); |
| 390 sqlite3GlobalConfig.m.xFree(p); |
| 391 sqlite3_mutex_leave(mem0.mutex); |
| 392 }else{ |
| 393 sqlite3GlobalConfig.m.xFree(p); |
| 394 } |
| 395 } |
| 396 } |
| 397 } |
| 398 |
| 399 /* |
| 400 ** TRUE if p is a lookaside memory allocation from db |
| 401 */ |
| 402 #ifndef SQLITE_OMIT_LOOKASIDE |
| 403 static int isLookaside(sqlite3 *db, void *p){ |
| 404 return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pEnd); |
| 405 } |
| 406 #else |
| 407 #define isLookaside(A,B) 0 |
| 408 #endif |
| 409 |
| 410 /* |
| 411 ** Return the size of a memory allocation previously obtained from |
| 412 ** sqlite3Malloc() or sqlite3_malloc(). |
| 413 */ |
| 414 int sqlite3MallocSize(void *p){ |
| 415 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); |
| 416 return sqlite3GlobalConfig.m.xSize(p); |
| 417 } |
| 418 int sqlite3DbMallocSize(sqlite3 *db, void *p){ |
| 419 assert( p!=0 ); |
| 420 if( db==0 || !isLookaside(db,p) ){ |
| 421 #if SQLITE_DEBUG |
| 422 if( db==0 ){ |
| 423 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); |
| 424 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); |
| 425 }else{ |
| 426 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); |
| 427 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); |
| 428 } |
| 429 #endif |
| 430 return sqlite3GlobalConfig.m.xSize(p); |
| 431 }else{ |
| 432 assert( sqlite3_mutex_held(db->mutex) ); |
| 433 return db->lookaside.sz; |
| 434 } |
| 435 } |
| 436 sqlite3_uint64 sqlite3_msize(void *p){ |
| 437 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); |
| 438 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); |
| 439 return p ? sqlite3GlobalConfig.m.xSize(p) : 0; |
| 440 } |
| 441 |
| 442 /* |
| 443 ** Free memory previously obtained from sqlite3Malloc(). |
| 444 */ |
| 445 void sqlite3_free(void *p){ |
| 446 if( p==0 ) return; /* IMP: R-49053-54554 */ |
| 447 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); |
| 448 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); |
| 449 if( sqlite3GlobalConfig.bMemstat ){ |
| 450 sqlite3_mutex_enter(mem0.mutex); |
| 451 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p)); |
| 452 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); |
| 453 sqlite3GlobalConfig.m.xFree(p); |
| 454 sqlite3_mutex_leave(mem0.mutex); |
| 455 }else{ |
| 456 sqlite3GlobalConfig.m.xFree(p); |
| 457 } |
| 458 } |
| 459 |
| 460 /* |
| 461 ** Add the size of memory allocation "p" to the count in |
| 462 ** *db->pnBytesFreed. |
| 463 */ |
| 464 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){ |
| 465 *db->pnBytesFreed += sqlite3DbMallocSize(db,p); |
| 466 } |
| 467 |
| 468 /* |
| 469 ** Free memory that might be associated with a particular database |
| 470 ** connection. |
| 471 */ |
| 472 void sqlite3DbFree(sqlite3 *db, void *p){ |
| 473 assert( db==0 || sqlite3_mutex_held(db->mutex) ); |
| 474 if( p==0 ) return; |
| 475 if( db ){ |
| 476 if( db->pnBytesFreed ){ |
| 477 measureAllocationSize(db, p); |
| 478 return; |
| 479 } |
| 480 if( isLookaside(db, p) ){ |
| 481 LookasideSlot *pBuf = (LookasideSlot*)p; |
| 482 #if SQLITE_DEBUG |
| 483 /* Trash all content in the buffer being freed */ |
| 484 memset(p, 0xaa, db->lookaside.sz); |
| 485 #endif |
| 486 pBuf->pNext = db->lookaside.pFree; |
| 487 db->lookaside.pFree = pBuf; |
| 488 db->lookaside.nOut--; |
| 489 return; |
| 490 } |
| 491 } |
| 492 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); |
| 493 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); |
| 494 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); |
| 495 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
| 496 sqlite3_free(p); |
| 497 } |
| 498 |
| 499 /* |
| 500 ** Change the size of an existing memory allocation |
| 501 */ |
| 502 void *sqlite3Realloc(void *pOld, u64 nBytes){ |
| 503 int nOld, nNew, nDiff; |
| 504 void *pNew; |
| 505 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); |
| 506 assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) ); |
| 507 if( pOld==0 ){ |
| 508 return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ |
| 509 } |
| 510 if( nBytes==0 ){ |
| 511 sqlite3_free(pOld); /* IMP: R-26507-47431 */ |
| 512 return 0; |
| 513 } |
| 514 if( nBytes>=0x7fffff00 ){ |
| 515 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ |
| 516 return 0; |
| 517 } |
| 518 nOld = sqlite3MallocSize(pOld); |
| 519 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second |
| 520 ** argument to xRealloc is always a value returned by a prior call to |
| 521 ** xRoundup. */ |
| 522 nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); |
| 523 if( nOld==nNew ){ |
| 524 pNew = pOld; |
| 525 }else if( sqlite3GlobalConfig.bMemstat ){ |
| 526 sqlite3_mutex_enter(mem0.mutex); |
| 527 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes); |
| 528 nDiff = nNew - nOld; |
| 529 if( nDiff>0 && sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= |
| 530 mem0.alarmThreshold-nDiff ){ |
| 531 sqlite3MallocAlarm(nDiff); |
| 532 } |
| 533 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); |
| 534 if( pNew==0 && mem0.alarmThreshold>0 ){ |
| 535 sqlite3MallocAlarm((int)nBytes); |
| 536 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); |
| 537 } |
| 538 if( pNew ){ |
| 539 nNew = sqlite3MallocSize(pNew); |
| 540 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld); |
| 541 } |
| 542 sqlite3_mutex_leave(mem0.mutex); |
| 543 }else{ |
| 544 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); |
| 545 } |
| 546 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ |
| 547 return pNew; |
| 548 } |
| 549 |
| 550 /* |
| 551 ** The public interface to sqlite3Realloc. Make sure that the memory |
| 552 ** subsystem is initialized prior to invoking sqliteRealloc. |
| 553 */ |
| 554 void *sqlite3_realloc(void *pOld, int n){ |
| 555 #ifndef SQLITE_OMIT_AUTOINIT |
| 556 if( sqlite3_initialize() ) return 0; |
| 557 #endif |
| 558 if( n<0 ) n = 0; /* IMP: R-26507-47431 */ |
| 559 return sqlite3Realloc(pOld, n); |
| 560 } |
| 561 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){ |
| 562 #ifndef SQLITE_OMIT_AUTOINIT |
| 563 if( sqlite3_initialize() ) return 0; |
| 564 #endif |
| 565 return sqlite3Realloc(pOld, n); |
| 566 } |
| 567 |
| 568 |
| 569 /* |
| 570 ** Allocate and zero memory. |
| 571 */ |
| 572 void *sqlite3MallocZero(u64 n){ |
| 573 void *p = sqlite3Malloc(n); |
| 574 if( p ){ |
| 575 memset(p, 0, (size_t)n); |
| 576 } |
| 577 return p; |
| 578 } |
| 579 |
| 580 /* |
| 581 ** Allocate and zero memory. If the allocation fails, make |
| 582 ** the mallocFailed flag in the connection pointer. |
| 583 */ |
| 584 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ |
| 585 void *p; |
| 586 testcase( db==0 ); |
| 587 p = sqlite3DbMallocRaw(db, n); |
| 588 if( p ) memset(p, 0, (size_t)n); |
| 589 return p; |
| 590 } |
| 591 |
| 592 |
| 593 /* Finish the work of sqlite3DbMallocRawNN for the unusual and |
| 594 ** slower case when the allocation cannot be fulfilled using lookaside. |
| 595 */ |
| 596 static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){ |
| 597 void *p; |
| 598 assert( db!=0 ); |
| 599 p = sqlite3Malloc(n); |
| 600 if( !p ) sqlite3OomFault(db); |
| 601 sqlite3MemdebugSetType(p, |
| 602 (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP); |
| 603 return p; |
| 604 } |
| 605 |
| 606 /* |
| 607 ** Allocate memory, either lookaside (if possible) or heap. |
| 608 ** If the allocation fails, set the mallocFailed flag in |
| 609 ** the connection pointer. |
| 610 ** |
| 611 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc |
| 612 ** failure on the same database connection) then always return 0. |
| 613 ** Hence for a particular database connection, once malloc starts |
| 614 ** failing, it fails consistently until mallocFailed is reset. |
| 615 ** This is an important assumption. There are many places in the |
| 616 ** code that do things like this: |
| 617 ** |
| 618 ** int *a = (int*)sqlite3DbMallocRaw(db, 100); |
| 619 ** int *b = (int*)sqlite3DbMallocRaw(db, 200); |
| 620 ** if( b ) a[10] = 9; |
| 621 ** |
| 622 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed |
| 623 ** that all prior mallocs (ex: "a") worked too. |
| 624 ** |
| 625 ** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is |
| 626 ** not a NULL pointer. |
| 627 */ |
| 628 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){ |
| 629 void *p; |
| 630 if( db ) return sqlite3DbMallocRawNN(db, n); |
| 631 p = sqlite3Malloc(n); |
| 632 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
| 633 return p; |
| 634 } |
| 635 void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){ |
| 636 #ifndef SQLITE_OMIT_LOOKASIDE |
| 637 LookasideSlot *pBuf; |
| 638 assert( db!=0 ); |
| 639 assert( sqlite3_mutex_held(db->mutex) ); |
| 640 assert( db->pnBytesFreed==0 ); |
| 641 if( db->lookaside.bDisable==0 ){ |
| 642 assert( db->mallocFailed==0 ); |
| 643 if( n>db->lookaside.sz ){ |
| 644 db->lookaside.anStat[1]++; |
| 645 }else if( (pBuf = db->lookaside.pFree)==0 ){ |
| 646 db->lookaside.anStat[2]++; |
| 647 }else{ |
| 648 db->lookaside.pFree = pBuf->pNext; |
| 649 db->lookaside.nOut++; |
| 650 db->lookaside.anStat[0]++; |
| 651 if( db->lookaside.nOut>db->lookaside.mxOut ){ |
| 652 db->lookaside.mxOut = db->lookaside.nOut; |
| 653 } |
| 654 return (void*)pBuf; |
| 655 } |
| 656 }else if( db->mallocFailed ){ |
| 657 return 0; |
| 658 } |
| 659 #else |
| 660 assert( db!=0 ); |
| 661 assert( sqlite3_mutex_held(db->mutex) ); |
| 662 assert( db->pnBytesFreed==0 ); |
| 663 if( db->mallocFailed ){ |
| 664 return 0; |
| 665 } |
| 666 #endif |
| 667 return dbMallocRawFinish(db, n); |
| 668 } |
| 669 |
| 670 /* Forward declaration */ |
| 671 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n); |
| 672 |
| 673 /* |
| 674 ** Resize the block of memory pointed to by p to n bytes. If the |
| 675 ** resize fails, set the mallocFailed flag in the connection object. |
| 676 */ |
| 677 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ |
| 678 assert( db!=0 ); |
| 679 if( p==0 ) return sqlite3DbMallocRawNN(db, n); |
| 680 assert( sqlite3_mutex_held(db->mutex) ); |
| 681 if( isLookaside(db,p) && n<=db->lookaside.sz ) return p; |
| 682 return dbReallocFinish(db, p, n); |
| 683 } |
| 684 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){ |
| 685 void *pNew = 0; |
| 686 assert( db!=0 ); |
| 687 assert( p!=0 ); |
| 688 if( db->mallocFailed==0 ){ |
| 689 if( isLookaside(db, p) ){ |
| 690 pNew = sqlite3DbMallocRawNN(db, n); |
| 691 if( pNew ){ |
| 692 memcpy(pNew, p, db->lookaside.sz); |
| 693 sqlite3DbFree(db, p); |
| 694 } |
| 695 }else{ |
| 696 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); |
| 697 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); |
| 698 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
| 699 pNew = sqlite3_realloc64(p, n); |
| 700 if( !pNew ){ |
| 701 sqlite3OomFault(db); |
| 702 } |
| 703 sqlite3MemdebugSetType(pNew, |
| 704 (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); |
| 705 } |
| 706 } |
| 707 return pNew; |
| 708 } |
| 709 |
| 710 /* |
| 711 ** Attempt to reallocate p. If the reallocation fails, then free p |
| 712 ** and set the mallocFailed flag in the database connection. |
| 713 */ |
| 714 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){ |
| 715 void *pNew; |
| 716 pNew = sqlite3DbRealloc(db, p, n); |
| 717 if( !pNew ){ |
| 718 sqlite3DbFree(db, p); |
| 719 } |
| 720 return pNew; |
| 721 } |
| 722 |
| 723 /* |
| 724 ** Make a copy of a string in memory obtained from sqliteMalloc(). These |
| 725 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This |
| 726 ** is because when memory debugging is turned on, these two functions are |
| 727 ** called via macros that record the current file and line number in the |
| 728 ** ThreadData structure. |
| 729 */ |
| 730 char *sqlite3DbStrDup(sqlite3 *db, const char *z){ |
| 731 char *zNew; |
| 732 size_t n; |
| 733 if( z==0 ){ |
| 734 return 0; |
| 735 } |
| 736 n = strlen(z) + 1; |
| 737 zNew = sqlite3DbMallocRaw(db, n); |
| 738 if( zNew ){ |
| 739 memcpy(zNew, z, n); |
| 740 } |
| 741 return zNew; |
| 742 } |
| 743 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){ |
| 744 char *zNew; |
| 745 assert( db!=0 ); |
| 746 if( z==0 ){ |
| 747 return 0; |
| 748 } |
| 749 assert( (n&0x7fffffff)==n ); |
| 750 zNew = sqlite3DbMallocRawNN(db, n+1); |
| 751 if( zNew ){ |
| 752 memcpy(zNew, z, (size_t)n); |
| 753 zNew[n] = 0; |
| 754 } |
| 755 return zNew; |
| 756 } |
| 757 |
| 758 /* |
| 759 ** Free any prior content in *pz and replace it with a copy of zNew. |
| 760 */ |
| 761 void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){ |
| 762 sqlite3DbFree(db, *pz); |
| 763 *pz = sqlite3DbStrDup(db, zNew); |
| 764 } |
| 765 |
| 766 /* |
| 767 ** Call this routine to record the fact that an OOM (out-of-memory) error |
| 768 ** has happened. This routine will set db->mallocFailed, and also |
| 769 ** temporarily disable the lookaside memory allocator and interrupt |
| 770 ** any running VDBEs. |
| 771 */ |
| 772 void sqlite3OomFault(sqlite3 *db){ |
| 773 if( db->mallocFailed==0 && db->bBenignMalloc==0 ){ |
| 774 db->mallocFailed = 1; |
| 775 if( db->nVdbeExec>0 ){ |
| 776 db->u1.isInterrupted = 1; |
| 777 } |
| 778 db->lookaside.bDisable++; |
| 779 } |
| 780 } |
| 781 |
| 782 /* |
| 783 ** This routine reactivates the memory allocator and clears the |
| 784 ** db->mallocFailed flag as necessary. |
| 785 ** |
| 786 ** The memory allocator is not restarted if there are running |
| 787 ** VDBEs. |
| 788 */ |
| 789 void sqlite3OomClear(sqlite3 *db){ |
| 790 if( db->mallocFailed && db->nVdbeExec==0 ){ |
| 791 db->mallocFailed = 0; |
| 792 db->u1.isInterrupted = 0; |
| 793 assert( db->lookaside.bDisable>0 ); |
| 794 db->lookaside.bDisable--; |
| 795 } |
| 796 } |
| 797 |
| 798 /* |
| 799 ** Take actions at the end of an API call to indicate an OOM error |
| 800 */ |
| 801 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){ |
| 802 sqlite3OomClear(db); |
| 803 sqlite3Error(db, SQLITE_NOMEM); |
| 804 return SQLITE_NOMEM_BKPT; |
| 805 } |
| 806 |
| 807 /* |
| 808 ** This function must be called before exiting any API function (i.e. |
| 809 ** returning control to the user) that has called sqlite3_malloc or |
| 810 ** sqlite3_realloc. |
| 811 ** |
| 812 ** The returned value is normally a copy of the second argument to this |
| 813 ** function. However, if a malloc() failure has occurred since the previous |
| 814 ** invocation SQLITE_NOMEM is returned instead. |
| 815 ** |
| 816 ** If an OOM as occurred, then the connection error-code (the value |
| 817 ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM. |
| 818 */ |
| 819 int sqlite3ApiExit(sqlite3* db, int rc){ |
| 820 /* If the db handle must hold the connection handle mutex here. |
| 821 ** Otherwise the read (and possible write) of db->mallocFailed |
| 822 ** is unsafe, as is the call to sqlite3Error(). |
| 823 */ |
| 824 assert( db!=0 ); |
| 825 assert( sqlite3_mutex_held(db->mutex) ); |
| 826 if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ |
| 827 return apiOomError(db); |
| 828 } |
| 829 return rc & db->errMask; |
| 830 } |
OLD | NEW |