OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2001 September 15 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This file contains C code routines that are called by the parser |
| 13 ** to handle INSERT statements in SQLite. |
| 14 */ |
| 15 #include "sqliteInt.h" |
| 16 |
| 17 /* |
| 18 ** Generate code that will |
| 19 ** |
| 20 ** (1) acquire a lock for table pTab then |
| 21 ** (2) open pTab as cursor iCur. |
| 22 ** |
| 23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index |
| 24 ** for that table that is actually opened. |
| 25 */ |
| 26 void sqlite3OpenTable( |
| 27 Parse *pParse, /* Generate code into this VDBE */ |
| 28 int iCur, /* The cursor number of the table */ |
| 29 int iDb, /* The database index in sqlite3.aDb[] */ |
| 30 Table *pTab, /* The table to be opened */ |
| 31 int opcode /* OP_OpenRead or OP_OpenWrite */ |
| 32 ){ |
| 33 Vdbe *v; |
| 34 assert( !IsVirtual(pTab) ); |
| 35 v = sqlite3GetVdbe(pParse); |
| 36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); |
| 37 sqlite3TableLock(pParse, iDb, pTab->tnum, |
| 38 (opcode==OP_OpenWrite)?1:0, pTab->zName); |
| 39 if( HasRowid(pTab) ){ |
| 40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol); |
| 41 VdbeComment((v, "%s", pTab->zName)); |
| 42 }else{ |
| 43 Index *pPk = sqlite3PrimaryKeyIndex(pTab); |
| 44 assert( pPk!=0 ); |
| 45 assert( pPk->tnum==pTab->tnum ); |
| 46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); |
| 47 sqlite3VdbeSetP4KeyInfo(pParse, pPk); |
| 48 VdbeComment((v, "%s", pTab->zName)); |
| 49 } |
| 50 } |
| 51 |
| 52 /* |
| 53 ** Return a pointer to the column affinity string associated with index |
| 54 ** pIdx. A column affinity string has one character for each column in |
| 55 ** the table, according to the affinity of the column: |
| 56 ** |
| 57 ** Character Column affinity |
| 58 ** ------------------------------ |
| 59 ** 'A' BLOB |
| 60 ** 'B' TEXT |
| 61 ** 'C' NUMERIC |
| 62 ** 'D' INTEGER |
| 63 ** 'F' REAL |
| 64 ** |
| 65 ** An extra 'D' is appended to the end of the string to cover the |
| 66 ** rowid that appears as the last column in every index. |
| 67 ** |
| 68 ** Memory for the buffer containing the column index affinity string |
| 69 ** is managed along with the rest of the Index structure. It will be |
| 70 ** released when sqlite3DeleteIndex() is called. |
| 71 */ |
| 72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ |
| 73 if( !pIdx->zColAff ){ |
| 74 /* The first time a column affinity string for a particular index is |
| 75 ** required, it is allocated and populated here. It is then stored as |
| 76 ** a member of the Index structure for subsequent use. |
| 77 ** |
| 78 ** The column affinity string will eventually be deleted by |
| 79 ** sqliteDeleteIndex() when the Index structure itself is cleaned |
| 80 ** up. |
| 81 */ |
| 82 int n; |
| 83 Table *pTab = pIdx->pTable; |
| 84 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); |
| 85 if( !pIdx->zColAff ){ |
| 86 sqlite3OomFault(db); |
| 87 return 0; |
| 88 } |
| 89 for(n=0; n<pIdx->nColumn; n++){ |
| 90 i16 x = pIdx->aiColumn[n]; |
| 91 if( x>=0 ){ |
| 92 pIdx->zColAff[n] = pTab->aCol[x].affinity; |
| 93 }else if( x==XN_ROWID ){ |
| 94 pIdx->zColAff[n] = SQLITE_AFF_INTEGER; |
| 95 }else{ |
| 96 char aff; |
| 97 assert( x==XN_EXPR ); |
| 98 assert( pIdx->aColExpr!=0 ); |
| 99 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); |
| 100 if( aff==0 ) aff = SQLITE_AFF_BLOB; |
| 101 pIdx->zColAff[n] = aff; |
| 102 } |
| 103 } |
| 104 pIdx->zColAff[n] = 0; |
| 105 } |
| 106 |
| 107 return pIdx->zColAff; |
| 108 } |
| 109 |
| 110 /* |
| 111 ** Compute the affinity string for table pTab, if it has not already been |
| 112 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. |
| 113 ** |
| 114 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and |
| 115 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities |
| 116 ** for register iReg and following. Or if affinities exists and iReg==0, |
| 117 ** then just set the P4 operand of the previous opcode (which should be |
| 118 ** an OP_MakeRecord) to the affinity string. |
| 119 ** |
| 120 ** A column affinity string has one character per column: |
| 121 ** |
| 122 ** Character Column affinity |
| 123 ** ------------------------------ |
| 124 ** 'A' BLOB |
| 125 ** 'B' TEXT |
| 126 ** 'C' NUMERIC |
| 127 ** 'D' INTEGER |
| 128 ** 'E' REAL |
| 129 */ |
| 130 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ |
| 131 int i; |
| 132 char *zColAff = pTab->zColAff; |
| 133 if( zColAff==0 ){ |
| 134 sqlite3 *db = sqlite3VdbeDb(v); |
| 135 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); |
| 136 if( !zColAff ){ |
| 137 sqlite3OomFault(db); |
| 138 return; |
| 139 } |
| 140 |
| 141 for(i=0; i<pTab->nCol; i++){ |
| 142 zColAff[i] = pTab->aCol[i].affinity; |
| 143 } |
| 144 do{ |
| 145 zColAff[i--] = 0; |
| 146 }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB ); |
| 147 pTab->zColAff = zColAff; |
| 148 } |
| 149 i = sqlite3Strlen30(zColAff); |
| 150 if( i ){ |
| 151 if( iReg ){ |
| 152 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); |
| 153 }else{ |
| 154 sqlite3VdbeChangeP4(v, -1, zColAff, i); |
| 155 } |
| 156 } |
| 157 } |
| 158 |
| 159 /* |
| 160 ** Return non-zero if the table pTab in database iDb or any of its indices |
| 161 ** have been opened at any point in the VDBE program. This is used to see if |
| 162 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can |
| 163 ** run without using a temporary table for the results of the SELECT. |
| 164 */ |
| 165 static int readsTable(Parse *p, int iDb, Table *pTab){ |
| 166 Vdbe *v = sqlite3GetVdbe(p); |
| 167 int i; |
| 168 int iEnd = sqlite3VdbeCurrentAddr(v); |
| 169 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 170 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; |
| 171 #endif |
| 172 |
| 173 for(i=1; i<iEnd; i++){ |
| 174 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); |
| 175 assert( pOp!=0 ); |
| 176 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ |
| 177 Index *pIndex; |
| 178 int tnum = pOp->p2; |
| 179 if( tnum==pTab->tnum ){ |
| 180 return 1; |
| 181 } |
| 182 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ |
| 183 if( tnum==pIndex->tnum ){ |
| 184 return 1; |
| 185 } |
| 186 } |
| 187 } |
| 188 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 189 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ |
| 190 assert( pOp->p4.pVtab!=0 ); |
| 191 assert( pOp->p4type==P4_VTAB ); |
| 192 return 1; |
| 193 } |
| 194 #endif |
| 195 } |
| 196 return 0; |
| 197 } |
| 198 |
| 199 #ifndef SQLITE_OMIT_AUTOINCREMENT |
| 200 /* |
| 201 ** Locate or create an AutoincInfo structure associated with table pTab |
| 202 ** which is in database iDb. Return the register number for the register |
| 203 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT |
| 204 ** table. (Also return zero when doing a VACUUM since we do not want to |
| 205 ** update the AUTOINCREMENT counters during a VACUUM.) |
| 206 ** |
| 207 ** There is at most one AutoincInfo structure per table even if the |
| 208 ** same table is autoincremented multiple times due to inserts within |
| 209 ** triggers. A new AutoincInfo structure is created if this is the |
| 210 ** first use of table pTab. On 2nd and subsequent uses, the original |
| 211 ** AutoincInfo structure is used. |
| 212 ** |
| 213 ** Three memory locations are allocated: |
| 214 ** |
| 215 ** (1) Register to hold the name of the pTab table. |
| 216 ** (2) Register to hold the maximum ROWID of pTab. |
| 217 ** (3) Register to hold the rowid in sqlite_sequence of pTab |
| 218 ** |
| 219 ** The 2nd register is the one that is returned. That is all the |
| 220 ** insert routine needs to know about. |
| 221 */ |
| 222 static int autoIncBegin( |
| 223 Parse *pParse, /* Parsing context */ |
| 224 int iDb, /* Index of the database holding pTab */ |
| 225 Table *pTab /* The table we are writing to */ |
| 226 ){ |
| 227 int memId = 0; /* Register holding maximum rowid */ |
| 228 if( (pTab->tabFlags & TF_Autoincrement)!=0 |
| 229 && (pParse->db->flags & SQLITE_Vacuum)==0 |
| 230 ){ |
| 231 Parse *pToplevel = sqlite3ParseToplevel(pParse); |
| 232 AutoincInfo *pInfo; |
| 233 |
| 234 pInfo = pToplevel->pAinc; |
| 235 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } |
| 236 if( pInfo==0 ){ |
| 237 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); |
| 238 if( pInfo==0 ) return 0; |
| 239 pInfo->pNext = pToplevel->pAinc; |
| 240 pToplevel->pAinc = pInfo; |
| 241 pInfo->pTab = pTab; |
| 242 pInfo->iDb = iDb; |
| 243 pToplevel->nMem++; /* Register to hold name of table */ |
| 244 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ |
| 245 pToplevel->nMem++; /* Rowid in sqlite_sequence */ |
| 246 } |
| 247 memId = pInfo->regCtr; |
| 248 } |
| 249 return memId; |
| 250 } |
| 251 |
| 252 /* |
| 253 ** This routine generates code that will initialize all of the |
| 254 ** register used by the autoincrement tracker. |
| 255 */ |
| 256 void sqlite3AutoincrementBegin(Parse *pParse){ |
| 257 AutoincInfo *p; /* Information about an AUTOINCREMENT */ |
| 258 sqlite3 *db = pParse->db; /* The database connection */ |
| 259 Db *pDb; /* Database only autoinc table */ |
| 260 int memId; /* Register holding max rowid */ |
| 261 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ |
| 262 |
| 263 /* This routine is never called during trigger-generation. It is |
| 264 ** only called from the top-level */ |
| 265 assert( pParse->pTriggerTab==0 ); |
| 266 assert( sqlite3IsToplevel(pParse) ); |
| 267 |
| 268 assert( v ); /* We failed long ago if this is not so */ |
| 269 for(p = pParse->pAinc; p; p = p->pNext){ |
| 270 static const int iLn = VDBE_OFFSET_LINENO(2); |
| 271 static const VdbeOpList autoInc[] = { |
| 272 /* 0 */ {OP_Null, 0, 0, 0}, |
| 273 /* 1 */ {OP_Rewind, 0, 9, 0}, |
| 274 /* 2 */ {OP_Column, 0, 0, 0}, |
| 275 /* 3 */ {OP_Ne, 0, 7, 0}, |
| 276 /* 4 */ {OP_Rowid, 0, 0, 0}, |
| 277 /* 5 */ {OP_Column, 0, 1, 0}, |
| 278 /* 6 */ {OP_Goto, 0, 9, 0}, |
| 279 /* 7 */ {OP_Next, 0, 2, 0}, |
| 280 /* 8 */ {OP_Integer, 0, 0, 0}, |
| 281 /* 9 */ {OP_Close, 0, 0, 0} |
| 282 }; |
| 283 VdbeOp *aOp; |
| 284 pDb = &db->aDb[p->iDb]; |
| 285 memId = p->regCtr; |
| 286 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); |
| 287 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); |
| 288 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); |
| 289 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); |
| 290 if( aOp==0 ) break; |
| 291 aOp[0].p2 = memId; |
| 292 aOp[0].p3 = memId+1; |
| 293 aOp[2].p3 = memId; |
| 294 aOp[3].p1 = memId-1; |
| 295 aOp[3].p3 = memId; |
| 296 aOp[3].p5 = SQLITE_JUMPIFNULL; |
| 297 aOp[4].p2 = memId+1; |
| 298 aOp[5].p3 = memId; |
| 299 aOp[8].p2 = memId; |
| 300 } |
| 301 } |
| 302 |
| 303 /* |
| 304 ** Update the maximum rowid for an autoincrement calculation. |
| 305 ** |
| 306 ** This routine should be called when the regRowid register holds a |
| 307 ** new rowid that is about to be inserted. If that new rowid is |
| 308 ** larger than the maximum rowid in the memId memory cell, then the |
| 309 ** memory cell is updated. |
| 310 */ |
| 311 static void autoIncStep(Parse *pParse, int memId, int regRowid){ |
| 312 if( memId>0 ){ |
| 313 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); |
| 314 } |
| 315 } |
| 316 |
| 317 /* |
| 318 ** This routine generates the code needed to write autoincrement |
| 319 ** maximum rowid values back into the sqlite_sequence register. |
| 320 ** Every statement that might do an INSERT into an autoincrement |
| 321 ** table (either directly or through triggers) needs to call this |
| 322 ** routine just before the "exit" code. |
| 323 */ |
| 324 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ |
| 325 AutoincInfo *p; |
| 326 Vdbe *v = pParse->pVdbe; |
| 327 sqlite3 *db = pParse->db; |
| 328 |
| 329 assert( v ); |
| 330 for(p = pParse->pAinc; p; p = p->pNext){ |
| 331 static const int iLn = VDBE_OFFSET_LINENO(2); |
| 332 static const VdbeOpList autoIncEnd[] = { |
| 333 /* 0 */ {OP_NotNull, 0, 2, 0}, |
| 334 /* 1 */ {OP_NewRowid, 0, 0, 0}, |
| 335 /* 2 */ {OP_MakeRecord, 0, 2, 0}, |
| 336 /* 3 */ {OP_Insert, 0, 0, 0}, |
| 337 /* 4 */ {OP_Close, 0, 0, 0} |
| 338 }; |
| 339 VdbeOp *aOp; |
| 340 Db *pDb = &db->aDb[p->iDb]; |
| 341 int iRec; |
| 342 int memId = p->regCtr; |
| 343 |
| 344 iRec = sqlite3GetTempReg(pParse); |
| 345 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); |
| 346 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); |
| 347 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); |
| 348 if( aOp==0 ) break; |
| 349 aOp[0].p1 = memId+1; |
| 350 aOp[1].p2 = memId+1; |
| 351 aOp[2].p1 = memId-1; |
| 352 aOp[2].p3 = iRec; |
| 353 aOp[3].p2 = iRec; |
| 354 aOp[3].p3 = memId+1; |
| 355 aOp[3].p5 = OPFLAG_APPEND; |
| 356 sqlite3ReleaseTempReg(pParse, iRec); |
| 357 } |
| 358 } |
| 359 void sqlite3AutoincrementEnd(Parse *pParse){ |
| 360 if( pParse->pAinc ) autoIncrementEnd(pParse); |
| 361 } |
| 362 #else |
| 363 /* |
| 364 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines |
| 365 ** above are all no-ops |
| 366 */ |
| 367 # define autoIncBegin(A,B,C) (0) |
| 368 # define autoIncStep(A,B,C) |
| 369 #endif /* SQLITE_OMIT_AUTOINCREMENT */ |
| 370 |
| 371 |
| 372 /* Forward declaration */ |
| 373 static int xferOptimization( |
| 374 Parse *pParse, /* Parser context */ |
| 375 Table *pDest, /* The table we are inserting into */ |
| 376 Select *pSelect, /* A SELECT statement to use as the data source */ |
| 377 int onError, /* How to handle constraint errors */ |
| 378 int iDbDest /* The database of pDest */ |
| 379 ); |
| 380 |
| 381 /* |
| 382 ** This routine is called to handle SQL of the following forms: |
| 383 ** |
| 384 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... |
| 385 ** insert into TABLE (IDLIST) select |
| 386 ** insert into TABLE (IDLIST) default values |
| 387 ** |
| 388 ** The IDLIST following the table name is always optional. If omitted, |
| 389 ** then a list of all (non-hidden) columns for the table is substituted. |
| 390 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST |
| 391 ** is omitted. |
| 392 ** |
| 393 ** For the pSelect parameter holds the values to be inserted for the |
| 394 ** first two forms shown above. A VALUES clause is really just short-hand |
| 395 ** for a SELECT statement that omits the FROM clause and everything else |
| 396 ** that follows. If the pSelect parameter is NULL, that means that the |
| 397 ** DEFAULT VALUES form of the INSERT statement is intended. |
| 398 ** |
| 399 ** The code generated follows one of four templates. For a simple |
| 400 ** insert with data coming from a single-row VALUES clause, the code executes |
| 401 ** once straight down through. Pseudo-code follows (we call this |
| 402 ** the "1st template"): |
| 403 ** |
| 404 ** open write cursor to <table> and its indices |
| 405 ** put VALUES clause expressions into registers |
| 406 ** write the resulting record into <table> |
| 407 ** cleanup |
| 408 ** |
| 409 ** The three remaining templates assume the statement is of the form |
| 410 ** |
| 411 ** INSERT INTO <table> SELECT ... |
| 412 ** |
| 413 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - |
| 414 ** in other words if the SELECT pulls all columns from a single table |
| 415 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and |
| 416 ** if <table2> and <table1> are distinct tables but have identical |
| 417 ** schemas, including all the same indices, then a special optimization |
| 418 ** is invoked that copies raw records from <table2> over to <table1>. |
| 419 ** See the xferOptimization() function for the implementation of this |
| 420 ** template. This is the 2nd template. |
| 421 ** |
| 422 ** open a write cursor to <table> |
| 423 ** open read cursor on <table2> |
| 424 ** transfer all records in <table2> over to <table> |
| 425 ** close cursors |
| 426 ** foreach index on <table> |
| 427 ** open a write cursor on the <table> index |
| 428 ** open a read cursor on the corresponding <table2> index |
| 429 ** transfer all records from the read to the write cursors |
| 430 ** close cursors |
| 431 ** end foreach |
| 432 ** |
| 433 ** The 3rd template is for when the second template does not apply |
| 434 ** and the SELECT clause does not read from <table> at any time. |
| 435 ** The generated code follows this template: |
| 436 ** |
| 437 ** X <- A |
| 438 ** goto B |
| 439 ** A: setup for the SELECT |
| 440 ** loop over the rows in the SELECT |
| 441 ** load values into registers R..R+n |
| 442 ** yield X |
| 443 ** end loop |
| 444 ** cleanup after the SELECT |
| 445 ** end-coroutine X |
| 446 ** B: open write cursor to <table> and its indices |
| 447 ** C: yield X, at EOF goto D |
| 448 ** insert the select result into <table> from R..R+n |
| 449 ** goto C |
| 450 ** D: cleanup |
| 451 ** |
| 452 ** The 4th template is used if the insert statement takes its |
| 453 ** values from a SELECT but the data is being inserted into a table |
| 454 ** that is also read as part of the SELECT. In the third form, |
| 455 ** we have to use an intermediate table to store the results of |
| 456 ** the select. The template is like this: |
| 457 ** |
| 458 ** X <- A |
| 459 ** goto B |
| 460 ** A: setup for the SELECT |
| 461 ** loop over the tables in the SELECT |
| 462 ** load value into register R..R+n |
| 463 ** yield X |
| 464 ** end loop |
| 465 ** cleanup after the SELECT |
| 466 ** end co-routine R |
| 467 ** B: open temp table |
| 468 ** L: yield X, at EOF goto M |
| 469 ** insert row from R..R+n into temp table |
| 470 ** goto L |
| 471 ** M: open write cursor to <table> and its indices |
| 472 ** rewind temp table |
| 473 ** C: loop over rows of intermediate table |
| 474 ** transfer values form intermediate table into <table> |
| 475 ** end loop |
| 476 ** D: cleanup |
| 477 */ |
| 478 void sqlite3Insert( |
| 479 Parse *pParse, /* Parser context */ |
| 480 SrcList *pTabList, /* Name of table into which we are inserting */ |
| 481 Select *pSelect, /* A SELECT statement to use as the data source */ |
| 482 IdList *pColumn, /* Column names corresponding to IDLIST. */ |
| 483 int onError /* How to handle constraint errors */ |
| 484 ){ |
| 485 sqlite3 *db; /* The main database structure */ |
| 486 Table *pTab; /* The table to insert into. aka TABLE */ |
| 487 char *zTab; /* Name of the table into which we are inserting */ |
| 488 int i, j; /* Loop counters */ |
| 489 Vdbe *v; /* Generate code into this virtual machine */ |
| 490 Index *pIdx; /* For looping over indices of the table */ |
| 491 int nColumn; /* Number of columns in the data */ |
| 492 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ |
| 493 int iDataCur = 0; /* VDBE cursor that is the main data repository */ |
| 494 int iIdxCur = 0; /* First index cursor */ |
| 495 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ |
| 496 int endOfLoop; /* Label for the end of the insertion loop */ |
| 497 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ |
| 498 int addrInsTop = 0; /* Jump to label "D" */ |
| 499 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ |
| 500 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ |
| 501 int iDb; /* Index of database holding TABLE */ |
| 502 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ |
| 503 u8 appendFlag = 0; /* True if the insert is likely to be an append */ |
| 504 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ |
| 505 u8 bIdListInOrder; /* True if IDLIST is in table order */ |
| 506 ExprList *pList = 0; /* List of VALUES() to be inserted */ |
| 507 |
| 508 /* Register allocations */ |
| 509 int regFromSelect = 0;/* Base register for data coming from SELECT */ |
| 510 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ |
| 511 int regRowCount = 0; /* Memory cell used for the row counter */ |
| 512 int regIns; /* Block of regs holding rowid+data being inserted */ |
| 513 int regRowid; /* registers holding insert rowid */ |
| 514 int regData; /* register holding first column to insert */ |
| 515 int *aRegIdx = 0; /* One register allocated to each index */ |
| 516 |
| 517 #ifndef SQLITE_OMIT_TRIGGER |
| 518 int isView; /* True if attempting to insert into a view */ |
| 519 Trigger *pTrigger; /* List of triggers on pTab, if required */ |
| 520 int tmask; /* Mask of trigger times */ |
| 521 #endif |
| 522 |
| 523 db = pParse->db; |
| 524 memset(&dest, 0, sizeof(dest)); |
| 525 if( pParse->nErr || db->mallocFailed ){ |
| 526 goto insert_cleanup; |
| 527 } |
| 528 |
| 529 /* If the Select object is really just a simple VALUES() list with a |
| 530 ** single row (the common case) then keep that one row of values |
| 531 ** and discard the other (unused) parts of the pSelect object |
| 532 */ |
| 533 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ |
| 534 pList = pSelect->pEList; |
| 535 pSelect->pEList = 0; |
| 536 sqlite3SelectDelete(db, pSelect); |
| 537 pSelect = 0; |
| 538 } |
| 539 |
| 540 /* Locate the table into which we will be inserting new information. |
| 541 */ |
| 542 assert( pTabList->nSrc==1 ); |
| 543 zTab = pTabList->a[0].zName; |
| 544 if( NEVER(zTab==0) ) goto insert_cleanup; |
| 545 pTab = sqlite3SrcListLookup(pParse, pTabList); |
| 546 if( pTab==0 ){ |
| 547 goto insert_cleanup; |
| 548 } |
| 549 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| 550 assert( iDb<db->nDb ); |
| 551 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, |
| 552 db->aDb[iDb].zDbSName) ){ |
| 553 goto insert_cleanup; |
| 554 } |
| 555 withoutRowid = !HasRowid(pTab); |
| 556 |
| 557 /* Figure out if we have any triggers and if the table being |
| 558 ** inserted into is a view |
| 559 */ |
| 560 #ifndef SQLITE_OMIT_TRIGGER |
| 561 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); |
| 562 isView = pTab->pSelect!=0; |
| 563 #else |
| 564 # define pTrigger 0 |
| 565 # define tmask 0 |
| 566 # define isView 0 |
| 567 #endif |
| 568 #ifdef SQLITE_OMIT_VIEW |
| 569 # undef isView |
| 570 # define isView 0 |
| 571 #endif |
| 572 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); |
| 573 |
| 574 /* If pTab is really a view, make sure it has been initialized. |
| 575 ** ViewGetColumnNames() is a no-op if pTab is not a view. |
| 576 */ |
| 577 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ |
| 578 goto insert_cleanup; |
| 579 } |
| 580 |
| 581 /* Cannot insert into a read-only table. |
| 582 */ |
| 583 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ |
| 584 goto insert_cleanup; |
| 585 } |
| 586 |
| 587 /* Allocate a VDBE |
| 588 */ |
| 589 v = sqlite3GetVdbe(pParse); |
| 590 if( v==0 ) goto insert_cleanup; |
| 591 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); |
| 592 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); |
| 593 |
| 594 #ifndef SQLITE_OMIT_XFER_OPT |
| 595 /* If the statement is of the form |
| 596 ** |
| 597 ** INSERT INTO <table1> SELECT * FROM <table2>; |
| 598 ** |
| 599 ** Then special optimizations can be applied that make the transfer |
| 600 ** very fast and which reduce fragmentation of indices. |
| 601 ** |
| 602 ** This is the 2nd template. |
| 603 */ |
| 604 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ |
| 605 assert( !pTrigger ); |
| 606 assert( pList==0 ); |
| 607 goto insert_end; |
| 608 } |
| 609 #endif /* SQLITE_OMIT_XFER_OPT */ |
| 610 |
| 611 /* If this is an AUTOINCREMENT table, look up the sequence number in the |
| 612 ** sqlite_sequence table and store it in memory cell regAutoinc. |
| 613 */ |
| 614 regAutoinc = autoIncBegin(pParse, iDb, pTab); |
| 615 |
| 616 /* Allocate registers for holding the rowid of the new row, |
| 617 ** the content of the new row, and the assembled row record. |
| 618 */ |
| 619 regRowid = regIns = pParse->nMem+1; |
| 620 pParse->nMem += pTab->nCol + 1; |
| 621 if( IsVirtual(pTab) ){ |
| 622 regRowid++; |
| 623 pParse->nMem++; |
| 624 } |
| 625 regData = regRowid+1; |
| 626 |
| 627 /* If the INSERT statement included an IDLIST term, then make sure |
| 628 ** all elements of the IDLIST really are columns of the table and |
| 629 ** remember the column indices. |
| 630 ** |
| 631 ** If the table has an INTEGER PRIMARY KEY column and that column |
| 632 ** is named in the IDLIST, then record in the ipkColumn variable |
| 633 ** the index into IDLIST of the primary key column. ipkColumn is |
| 634 ** the index of the primary key as it appears in IDLIST, not as |
| 635 ** is appears in the original table. (The index of the INTEGER |
| 636 ** PRIMARY KEY in the original table is pTab->iPKey.) |
| 637 */ |
| 638 bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0; |
| 639 if( pColumn ){ |
| 640 for(i=0; i<pColumn->nId; i++){ |
| 641 pColumn->a[i].idx = -1; |
| 642 } |
| 643 for(i=0; i<pColumn->nId; i++){ |
| 644 for(j=0; j<pTab->nCol; j++){ |
| 645 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ |
| 646 pColumn->a[i].idx = j; |
| 647 if( i!=j ) bIdListInOrder = 0; |
| 648 if( j==pTab->iPKey ){ |
| 649 ipkColumn = i; assert( !withoutRowid ); |
| 650 } |
| 651 break; |
| 652 } |
| 653 } |
| 654 if( j>=pTab->nCol ){ |
| 655 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ |
| 656 ipkColumn = i; |
| 657 bIdListInOrder = 0; |
| 658 }else{ |
| 659 sqlite3ErrorMsg(pParse, "table %S has no column named %s", |
| 660 pTabList, 0, pColumn->a[i].zName); |
| 661 pParse->checkSchema = 1; |
| 662 goto insert_cleanup; |
| 663 } |
| 664 } |
| 665 } |
| 666 } |
| 667 |
| 668 /* Figure out how many columns of data are supplied. If the data |
| 669 ** is coming from a SELECT statement, then generate a co-routine that |
| 670 ** produces a single row of the SELECT on each invocation. The |
| 671 ** co-routine is the common header to the 3rd and 4th templates. |
| 672 */ |
| 673 if( pSelect ){ |
| 674 /* Data is coming from a SELECT or from a multi-row VALUES clause. |
| 675 ** Generate a co-routine to run the SELECT. */ |
| 676 int regYield; /* Register holding co-routine entry-point */ |
| 677 int addrTop; /* Top of the co-routine */ |
| 678 int rc; /* Result code */ |
| 679 |
| 680 regYield = ++pParse->nMem; |
| 681 addrTop = sqlite3VdbeCurrentAddr(v) + 1; |
| 682 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); |
| 683 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); |
| 684 dest.iSdst = bIdListInOrder ? regData : 0; |
| 685 dest.nSdst = pTab->nCol; |
| 686 rc = sqlite3Select(pParse, pSelect, &dest); |
| 687 regFromSelect = dest.iSdst; |
| 688 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup; |
| 689 sqlite3VdbeEndCoroutine(v, regYield); |
| 690 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ |
| 691 assert( pSelect->pEList ); |
| 692 nColumn = pSelect->pEList->nExpr; |
| 693 |
| 694 /* Set useTempTable to TRUE if the result of the SELECT statement |
| 695 ** should be written into a temporary table (template 4). Set to |
| 696 ** FALSE if each output row of the SELECT can be written directly into |
| 697 ** the destination table (template 3). |
| 698 ** |
| 699 ** A temp table must be used if the table being updated is also one |
| 700 ** of the tables being read by the SELECT statement. Also use a |
| 701 ** temp table in the case of row triggers. |
| 702 */ |
| 703 if( pTrigger || readsTable(pParse, iDb, pTab) ){ |
| 704 useTempTable = 1; |
| 705 } |
| 706 |
| 707 if( useTempTable ){ |
| 708 /* Invoke the coroutine to extract information from the SELECT |
| 709 ** and add it to a transient table srcTab. The code generated |
| 710 ** here is from the 4th template: |
| 711 ** |
| 712 ** B: open temp table |
| 713 ** L: yield X, goto M at EOF |
| 714 ** insert row from R..R+n into temp table |
| 715 ** goto L |
| 716 ** M: ... |
| 717 */ |
| 718 int regRec; /* Register to hold packed record */ |
| 719 int regTempRowid; /* Register to hold temp table ROWID */ |
| 720 int addrL; /* Label "L" */ |
| 721 |
| 722 srcTab = pParse->nTab++; |
| 723 regRec = sqlite3GetTempReg(pParse); |
| 724 regTempRowid = sqlite3GetTempReg(pParse); |
| 725 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); |
| 726 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); |
| 727 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); |
| 728 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); |
| 729 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); |
| 730 sqlite3VdbeGoto(v, addrL); |
| 731 sqlite3VdbeJumpHere(v, addrL); |
| 732 sqlite3ReleaseTempReg(pParse, regRec); |
| 733 sqlite3ReleaseTempReg(pParse, regTempRowid); |
| 734 } |
| 735 }else{ |
| 736 /* This is the case if the data for the INSERT is coming from a |
| 737 ** single-row VALUES clause |
| 738 */ |
| 739 NameContext sNC; |
| 740 memset(&sNC, 0, sizeof(sNC)); |
| 741 sNC.pParse = pParse; |
| 742 srcTab = -1; |
| 743 assert( useTempTable==0 ); |
| 744 if( pList ){ |
| 745 nColumn = pList->nExpr; |
| 746 if( sqlite3ResolveExprListNames(&sNC, pList) ){ |
| 747 goto insert_cleanup; |
| 748 } |
| 749 }else{ |
| 750 nColumn = 0; |
| 751 } |
| 752 } |
| 753 |
| 754 /* If there is no IDLIST term but the table has an integer primary |
| 755 ** key, the set the ipkColumn variable to the integer primary key |
| 756 ** column index in the original table definition. |
| 757 */ |
| 758 if( pColumn==0 && nColumn>0 ){ |
| 759 ipkColumn = pTab->iPKey; |
| 760 } |
| 761 |
| 762 /* Make sure the number of columns in the source data matches the number |
| 763 ** of columns to be inserted into the table. |
| 764 */ |
| 765 for(i=0; i<pTab->nCol; i++){ |
| 766 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); |
| 767 } |
| 768 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ |
| 769 sqlite3ErrorMsg(pParse, |
| 770 "table %S has %d columns but %d values were supplied", |
| 771 pTabList, 0, pTab->nCol-nHidden, nColumn); |
| 772 goto insert_cleanup; |
| 773 } |
| 774 if( pColumn!=0 && nColumn!=pColumn->nId ){ |
| 775 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); |
| 776 goto insert_cleanup; |
| 777 } |
| 778 |
| 779 /* Initialize the count of rows to be inserted |
| 780 */ |
| 781 if( db->flags & SQLITE_CountRows ){ |
| 782 regRowCount = ++pParse->nMem; |
| 783 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); |
| 784 } |
| 785 |
| 786 /* If this is not a view, open the table and and all indices */ |
| 787 if( !isView ){ |
| 788 int nIdx; |
| 789 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, |
| 790 &iDataCur, &iIdxCur); |
| 791 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+1)); |
| 792 if( aRegIdx==0 ){ |
| 793 goto insert_cleanup; |
| 794 } |
| 795 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ |
| 796 assert( pIdx ); |
| 797 aRegIdx[i] = ++pParse->nMem; |
| 798 pParse->nMem += pIdx->nColumn; |
| 799 } |
| 800 } |
| 801 |
| 802 /* This is the top of the main insertion loop */ |
| 803 if( useTempTable ){ |
| 804 /* This block codes the top of loop only. The complete loop is the |
| 805 ** following pseudocode (template 4): |
| 806 ** |
| 807 ** rewind temp table, if empty goto D |
| 808 ** C: loop over rows of intermediate table |
| 809 ** transfer values form intermediate table into <table> |
| 810 ** end loop |
| 811 ** D: ... |
| 812 */ |
| 813 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); |
| 814 addrCont = sqlite3VdbeCurrentAddr(v); |
| 815 }else if( pSelect ){ |
| 816 /* This block codes the top of loop only. The complete loop is the |
| 817 ** following pseudocode (template 3): |
| 818 ** |
| 819 ** C: yield X, at EOF goto D |
| 820 ** insert the select result into <table> from R..R+n |
| 821 ** goto C |
| 822 ** D: ... |
| 823 */ |
| 824 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); |
| 825 VdbeCoverage(v); |
| 826 } |
| 827 |
| 828 /* Run the BEFORE and INSTEAD OF triggers, if there are any |
| 829 */ |
| 830 endOfLoop = sqlite3VdbeMakeLabel(v); |
| 831 if( tmask & TRIGGER_BEFORE ){ |
| 832 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); |
| 833 |
| 834 /* build the NEW.* reference row. Note that if there is an INTEGER |
| 835 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be |
| 836 ** translated into a unique ID for the row. But on a BEFORE trigger, |
| 837 ** we do not know what the unique ID will be (because the insert has |
| 838 ** not happened yet) so we substitute a rowid of -1 |
| 839 */ |
| 840 if( ipkColumn<0 ){ |
| 841 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); |
| 842 }else{ |
| 843 int addr1; |
| 844 assert( !withoutRowid ); |
| 845 if( useTempTable ){ |
| 846 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); |
| 847 }else{ |
| 848 assert( pSelect==0 ); /* Otherwise useTempTable is true */ |
| 849 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); |
| 850 } |
| 851 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); |
| 852 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); |
| 853 sqlite3VdbeJumpHere(v, addr1); |
| 854 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); |
| 855 } |
| 856 |
| 857 /* Cannot have triggers on a virtual table. If it were possible, |
| 858 ** this block would have to account for hidden column. |
| 859 */ |
| 860 assert( !IsVirtual(pTab) ); |
| 861 |
| 862 /* Create the new column data |
| 863 */ |
| 864 for(i=j=0; i<pTab->nCol; i++){ |
| 865 if( pColumn ){ |
| 866 for(j=0; j<pColumn->nId; j++){ |
| 867 if( pColumn->a[j].idx==i ) break; |
| 868 } |
| 869 } |
| 870 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) |
| 871 || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){ |
| 872 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); |
| 873 }else if( useTempTable ){ |
| 874 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); |
| 875 }else{ |
| 876 assert( pSelect==0 ); /* Otherwise useTempTable is true */ |
| 877 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); |
| 878 } |
| 879 if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++; |
| 880 } |
| 881 |
| 882 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, |
| 883 ** do not attempt any conversions before assembling the record. |
| 884 ** If this is a real table, attempt conversions as required by the |
| 885 ** table column affinities. |
| 886 */ |
| 887 if( !isView ){ |
| 888 sqlite3TableAffinity(v, pTab, regCols+1); |
| 889 } |
| 890 |
| 891 /* Fire BEFORE or INSTEAD OF triggers */ |
| 892 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, |
| 893 pTab, regCols-pTab->nCol-1, onError, endOfLoop); |
| 894 |
| 895 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); |
| 896 } |
| 897 |
| 898 /* Compute the content of the next row to insert into a range of |
| 899 ** registers beginning at regIns. |
| 900 */ |
| 901 if( !isView ){ |
| 902 if( IsVirtual(pTab) ){ |
| 903 /* The row that the VUpdate opcode will delete: none */ |
| 904 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); |
| 905 } |
| 906 if( ipkColumn>=0 ){ |
| 907 if( useTempTable ){ |
| 908 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); |
| 909 }else if( pSelect ){ |
| 910 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); |
| 911 }else{ |
| 912 VdbeOp *pOp; |
| 913 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); |
| 914 pOp = sqlite3VdbeGetOp(v, -1); |
| 915 if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ |
| 916 appendFlag = 1; |
| 917 pOp->opcode = OP_NewRowid; |
| 918 pOp->p1 = iDataCur; |
| 919 pOp->p2 = regRowid; |
| 920 pOp->p3 = regAutoinc; |
| 921 } |
| 922 } |
| 923 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid |
| 924 ** to generate a unique primary key value. |
| 925 */ |
| 926 if( !appendFlag ){ |
| 927 int addr1; |
| 928 if( !IsVirtual(pTab) ){ |
| 929 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); |
| 930 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); |
| 931 sqlite3VdbeJumpHere(v, addr1); |
| 932 }else{ |
| 933 addr1 = sqlite3VdbeCurrentAddr(v); |
| 934 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); |
| 935 } |
| 936 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); |
| 937 } |
| 938 }else if( IsVirtual(pTab) || withoutRowid ){ |
| 939 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); |
| 940 }else{ |
| 941 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); |
| 942 appendFlag = 1; |
| 943 } |
| 944 autoIncStep(pParse, regAutoinc, regRowid); |
| 945 |
| 946 /* Compute data for all columns of the new entry, beginning |
| 947 ** with the first column. |
| 948 */ |
| 949 nHidden = 0; |
| 950 for(i=0; i<pTab->nCol; i++){ |
| 951 int iRegStore = regRowid+1+i; |
| 952 if( i==pTab->iPKey ){ |
| 953 /* The value of the INTEGER PRIMARY KEY column is always a NULL. |
| 954 ** Whenever this column is read, the rowid will be substituted |
| 955 ** in its place. Hence, fill this column with a NULL to avoid |
| 956 ** taking up data space with information that will never be used. |
| 957 ** As there may be shallow copies of this value, make it a soft-NULL */ |
| 958 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); |
| 959 continue; |
| 960 } |
| 961 if( pColumn==0 ){ |
| 962 if( IsHiddenColumn(&pTab->aCol[i]) ){ |
| 963 j = -1; |
| 964 nHidden++; |
| 965 }else{ |
| 966 j = i - nHidden; |
| 967 } |
| 968 }else{ |
| 969 for(j=0; j<pColumn->nId; j++){ |
| 970 if( pColumn->a[j].idx==i ) break; |
| 971 } |
| 972 } |
| 973 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ |
| 974 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); |
| 975 }else if( useTempTable ){ |
| 976 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); |
| 977 }else if( pSelect ){ |
| 978 if( regFromSelect!=regData ){ |
| 979 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); |
| 980 } |
| 981 }else{ |
| 982 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); |
| 983 } |
| 984 } |
| 985 |
| 986 /* Generate code to check constraints and generate index keys and |
| 987 ** do the insertion. |
| 988 */ |
| 989 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 990 if( IsVirtual(pTab) ){ |
| 991 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); |
| 992 sqlite3VtabMakeWritable(pParse, pTab); |
| 993 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); |
| 994 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); |
| 995 sqlite3MayAbort(pParse); |
| 996 }else |
| 997 #endif |
| 998 { |
| 999 int isReplace; /* Set to true if constraints may cause a replace */ |
| 1000 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ |
| 1001 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, |
| 1002 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0 |
| 1003 ); |
| 1004 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); |
| 1005 |
| 1006 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE |
| 1007 ** constraints or (b) there are no triggers and this table is not a |
| 1008 ** parent table in a foreign key constraint. It is safe to set the |
| 1009 ** flag in the second case as if any REPLACE constraint is hit, an |
| 1010 ** OP_Delete or OP_IdxDelete instruction will be executed on each |
| 1011 ** cursor that is disturbed. And these instructions both clear the |
| 1012 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT |
| 1013 ** functionality. */ |
| 1014 bUseSeek = (isReplace==0 || (pTrigger==0 && |
| 1015 ((db->flags & SQLITE_ForeignKeys)==0 || sqlite3FkReferences(pTab)==0) |
| 1016 )); |
| 1017 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, |
| 1018 regIns, aRegIdx, 0, appendFlag, bUseSeek |
| 1019 ); |
| 1020 } |
| 1021 } |
| 1022 |
| 1023 /* Update the count of rows that are inserted |
| 1024 */ |
| 1025 if( (db->flags & SQLITE_CountRows)!=0 ){ |
| 1026 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); |
| 1027 } |
| 1028 |
| 1029 if( pTrigger ){ |
| 1030 /* Code AFTER triggers */ |
| 1031 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, |
| 1032 pTab, regData-2-pTab->nCol, onError, endOfLoop); |
| 1033 } |
| 1034 |
| 1035 /* The bottom of the main insertion loop, if the data source |
| 1036 ** is a SELECT statement. |
| 1037 */ |
| 1038 sqlite3VdbeResolveLabel(v, endOfLoop); |
| 1039 if( useTempTable ){ |
| 1040 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); |
| 1041 sqlite3VdbeJumpHere(v, addrInsTop); |
| 1042 sqlite3VdbeAddOp1(v, OP_Close, srcTab); |
| 1043 }else if( pSelect ){ |
| 1044 sqlite3VdbeGoto(v, addrCont); |
| 1045 sqlite3VdbeJumpHere(v, addrInsTop); |
| 1046 } |
| 1047 |
| 1048 insert_end: |
| 1049 /* Update the sqlite_sequence table by storing the content of the |
| 1050 ** maximum rowid counter values recorded while inserting into |
| 1051 ** autoincrement tables. |
| 1052 */ |
| 1053 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ |
| 1054 sqlite3AutoincrementEnd(pParse); |
| 1055 } |
| 1056 |
| 1057 /* |
| 1058 ** Return the number of rows inserted. If this routine is |
| 1059 ** generating code because of a call to sqlite3NestedParse(), do not |
| 1060 ** invoke the callback function. |
| 1061 */ |
| 1062 if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){ |
| 1063 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); |
| 1064 sqlite3VdbeSetNumCols(v, 1); |
| 1065 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); |
| 1066 } |
| 1067 |
| 1068 insert_cleanup: |
| 1069 sqlite3SrcListDelete(db, pTabList); |
| 1070 sqlite3ExprListDelete(db, pList); |
| 1071 sqlite3SelectDelete(db, pSelect); |
| 1072 sqlite3IdListDelete(db, pColumn); |
| 1073 sqlite3DbFree(db, aRegIdx); |
| 1074 } |
| 1075 |
| 1076 /* Make sure "isView" and other macros defined above are undefined. Otherwise |
| 1077 ** they may interfere with compilation of other functions in this file |
| 1078 ** (or in another file, if this file becomes part of the amalgamation). */ |
| 1079 #ifdef isView |
| 1080 #undef isView |
| 1081 #endif |
| 1082 #ifdef pTrigger |
| 1083 #undef pTrigger |
| 1084 #endif |
| 1085 #ifdef tmask |
| 1086 #undef tmask |
| 1087 #endif |
| 1088 |
| 1089 /* |
| 1090 ** Meanings of bits in of pWalker->eCode for checkConstraintUnchanged() |
| 1091 */ |
| 1092 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ |
| 1093 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ |
| 1094 |
| 1095 /* This is the Walker callback from checkConstraintUnchanged(). Set |
| 1096 ** bit 0x01 of pWalker->eCode if |
| 1097 ** pWalker->eCode to 0 if this expression node references any of the |
| 1098 ** columns that are being modifed by an UPDATE statement. |
| 1099 */ |
| 1100 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ |
| 1101 if( pExpr->op==TK_COLUMN ){ |
| 1102 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); |
| 1103 if( pExpr->iColumn>=0 ){ |
| 1104 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ |
| 1105 pWalker->eCode |= CKCNSTRNT_COLUMN; |
| 1106 } |
| 1107 }else{ |
| 1108 pWalker->eCode |= CKCNSTRNT_ROWID; |
| 1109 } |
| 1110 } |
| 1111 return WRC_Continue; |
| 1112 } |
| 1113 |
| 1114 /* |
| 1115 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The |
| 1116 ** only columns that are modified by the UPDATE are those for which |
| 1117 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. |
| 1118 ** |
| 1119 ** Return true if CHECK constraint pExpr does not use any of the |
| 1120 ** changing columns (or the rowid if it is changing). In other words, |
| 1121 ** return true if this CHECK constraint can be skipped when validating |
| 1122 ** the new row in the UPDATE statement. |
| 1123 */ |
| 1124 static int checkConstraintUnchanged(Expr *pExpr, int *aiChng, int chngRowid){ |
| 1125 Walker w; |
| 1126 memset(&w, 0, sizeof(w)); |
| 1127 w.eCode = 0; |
| 1128 w.xExprCallback = checkConstraintExprNode; |
| 1129 w.u.aiCol = aiChng; |
| 1130 sqlite3WalkExpr(&w, pExpr); |
| 1131 if( !chngRowid ){ |
| 1132 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); |
| 1133 w.eCode &= ~CKCNSTRNT_ROWID; |
| 1134 } |
| 1135 testcase( w.eCode==0 ); |
| 1136 testcase( w.eCode==CKCNSTRNT_COLUMN ); |
| 1137 testcase( w.eCode==CKCNSTRNT_ROWID ); |
| 1138 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); |
| 1139 return !w.eCode; |
| 1140 } |
| 1141 |
| 1142 /* |
| 1143 ** Generate code to do constraint checks prior to an INSERT or an UPDATE |
| 1144 ** on table pTab. |
| 1145 ** |
| 1146 ** The regNewData parameter is the first register in a range that contains |
| 1147 ** the data to be inserted or the data after the update. There will be |
| 1148 ** pTab->nCol+1 registers in this range. The first register (the one |
| 1149 ** that regNewData points to) will contain the new rowid, or NULL in the |
| 1150 ** case of a WITHOUT ROWID table. The second register in the range will |
| 1151 ** contain the content of the first table column. The third register will |
| 1152 ** contain the content of the second table column. And so forth. |
| 1153 ** |
| 1154 ** The regOldData parameter is similar to regNewData except that it contains |
| 1155 ** the data prior to an UPDATE rather than afterwards. regOldData is zero |
| 1156 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by |
| 1157 ** checking regOldData for zero. |
| 1158 ** |
| 1159 ** For an UPDATE, the pkChng boolean is true if the true primary key (the |
| 1160 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) |
| 1161 ** might be modified by the UPDATE. If pkChng is false, then the key of |
| 1162 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. |
| 1163 ** |
| 1164 ** For an INSERT, the pkChng boolean indicates whether or not the rowid |
| 1165 ** was explicitly specified as part of the INSERT statement. If pkChng |
| 1166 ** is zero, it means that the either rowid is computed automatically or |
| 1167 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, |
| 1168 ** pkChng will only be true if the INSERT statement provides an integer |
| 1169 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. |
| 1170 ** |
| 1171 ** The code generated by this routine will store new index entries into |
| 1172 ** registers identified by aRegIdx[]. No index entry is created for |
| 1173 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is |
| 1174 ** the same as the order of indices on the linked list of indices |
| 1175 ** at pTab->pIndex. |
| 1176 ** |
| 1177 ** The caller must have already opened writeable cursors on the main |
| 1178 ** table and all applicable indices (that is to say, all indices for which |
| 1179 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when |
| 1180 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY |
| 1181 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor |
| 1182 ** for the first index in the pTab->pIndex list. Cursors for other indices |
| 1183 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. |
| 1184 ** |
| 1185 ** This routine also generates code to check constraints. NOT NULL, |
| 1186 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, |
| 1187 ** then the appropriate action is performed. There are five possible |
| 1188 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. |
| 1189 ** |
| 1190 ** Constraint type Action What Happens |
| 1191 ** --------------- ---------- ---------------------------------------- |
| 1192 ** any ROLLBACK The current transaction is rolled back and |
| 1193 ** sqlite3_step() returns immediately with a |
| 1194 ** return code of SQLITE_CONSTRAINT. |
| 1195 ** |
| 1196 ** any ABORT Back out changes from the current command |
| 1197 ** only (do not do a complete rollback) then |
| 1198 ** cause sqlite3_step() to return immediately |
| 1199 ** with SQLITE_CONSTRAINT. |
| 1200 ** |
| 1201 ** any FAIL Sqlite3_step() returns immediately with a |
| 1202 ** return code of SQLITE_CONSTRAINT. The |
| 1203 ** transaction is not rolled back and any |
| 1204 ** changes to prior rows are retained. |
| 1205 ** |
| 1206 ** any IGNORE The attempt in insert or update the current |
| 1207 ** row is skipped, without throwing an error. |
| 1208 ** Processing continues with the next row. |
| 1209 ** (There is an immediate jump to ignoreDest.) |
| 1210 ** |
| 1211 ** NOT NULL REPLACE The NULL value is replace by the default |
| 1212 ** value for that column. If the default value |
| 1213 ** is NULL, the action is the same as ABORT. |
| 1214 ** |
| 1215 ** UNIQUE REPLACE The other row that conflicts with the row |
| 1216 ** being inserted is removed. |
| 1217 ** |
| 1218 ** CHECK REPLACE Illegal. The results in an exception. |
| 1219 ** |
| 1220 ** Which action to take is determined by the overrideError parameter. |
| 1221 ** Or if overrideError==OE_Default, then the pParse->onError parameter |
| 1222 ** is used. Or if pParse->onError==OE_Default then the onError value |
| 1223 ** for the constraint is used. |
| 1224 */ |
| 1225 void sqlite3GenerateConstraintChecks( |
| 1226 Parse *pParse, /* The parser context */ |
| 1227 Table *pTab, /* The table being inserted or updated */ |
| 1228 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ |
| 1229 int iDataCur, /* Canonical data cursor (main table or PK index) */ |
| 1230 int iIdxCur, /* First index cursor */ |
| 1231 int regNewData, /* First register in a range holding values to insert */ |
| 1232 int regOldData, /* Previous content. 0 for INSERTs */ |
| 1233 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ |
| 1234 u8 overrideError, /* Override onError to this if not OE_Default */ |
| 1235 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ |
| 1236 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ |
| 1237 int *aiChng /* column i is unchanged if aiChng[i]<0 */ |
| 1238 ){ |
| 1239 Vdbe *v; /* VDBE under constrution */ |
| 1240 Index *pIdx; /* Pointer to one of the indices */ |
| 1241 Index *pPk = 0; /* The PRIMARY KEY index */ |
| 1242 sqlite3 *db; /* Database connection */ |
| 1243 int i; /* loop counter */ |
| 1244 int ix; /* Index loop counter */ |
| 1245 int nCol; /* Number of columns */ |
| 1246 int onError; /* Conflict resolution strategy */ |
| 1247 int addr1; /* Address of jump instruction */ |
| 1248 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ |
| 1249 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ |
| 1250 int ipkTop = 0; /* Top of the rowid change constraint check */ |
| 1251 int ipkBottom = 0; /* Bottom of the rowid change constraint check */ |
| 1252 u8 isUpdate; /* True if this is an UPDATE operation */ |
| 1253 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ |
| 1254 |
| 1255 isUpdate = regOldData!=0; |
| 1256 db = pParse->db; |
| 1257 v = sqlite3GetVdbe(pParse); |
| 1258 assert( v!=0 ); |
| 1259 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ |
| 1260 nCol = pTab->nCol; |
| 1261 |
| 1262 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for |
| 1263 ** normal rowid tables. nPkField is the number of key fields in the |
| 1264 ** pPk index or 1 for a rowid table. In other words, nPkField is the |
| 1265 ** number of fields in the true primary key of the table. */ |
| 1266 if( HasRowid(pTab) ){ |
| 1267 pPk = 0; |
| 1268 nPkField = 1; |
| 1269 }else{ |
| 1270 pPk = sqlite3PrimaryKeyIndex(pTab); |
| 1271 nPkField = pPk->nKeyCol; |
| 1272 } |
| 1273 |
| 1274 /* Record that this module has started */ |
| 1275 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", |
| 1276 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); |
| 1277 |
| 1278 /* Test all NOT NULL constraints. |
| 1279 */ |
| 1280 for(i=0; i<nCol; i++){ |
| 1281 if( i==pTab->iPKey ){ |
| 1282 continue; /* ROWID is never NULL */ |
| 1283 } |
| 1284 if( aiChng && aiChng[i]<0 ){ |
| 1285 /* Don't bother checking for NOT NULL on columns that do not change */ |
| 1286 continue; |
| 1287 } |
| 1288 onError = pTab->aCol[i].notNull; |
| 1289 if( onError==OE_None ) continue; /* This column is allowed to be NULL */ |
| 1290 if( overrideError!=OE_Default ){ |
| 1291 onError = overrideError; |
| 1292 }else if( onError==OE_Default ){ |
| 1293 onError = OE_Abort; |
| 1294 } |
| 1295 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ |
| 1296 onError = OE_Abort; |
| 1297 } |
| 1298 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail |
| 1299 || onError==OE_Ignore || onError==OE_Replace ); |
| 1300 switch( onError ){ |
| 1301 case OE_Abort: |
| 1302 sqlite3MayAbort(pParse); |
| 1303 /* Fall through */ |
| 1304 case OE_Rollback: |
| 1305 case OE_Fail: { |
| 1306 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, |
| 1307 pTab->aCol[i].zName); |
| 1308 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, |
| 1309 regNewData+1+i); |
| 1310 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); |
| 1311 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); |
| 1312 VdbeCoverage(v); |
| 1313 break; |
| 1314 } |
| 1315 case OE_Ignore: { |
| 1316 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); |
| 1317 VdbeCoverage(v); |
| 1318 break; |
| 1319 } |
| 1320 default: { |
| 1321 assert( onError==OE_Replace ); |
| 1322 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); |
| 1323 VdbeCoverage(v); |
| 1324 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); |
| 1325 sqlite3VdbeJumpHere(v, addr1); |
| 1326 break; |
| 1327 } |
| 1328 } |
| 1329 } |
| 1330 |
| 1331 /* Test all CHECK constraints |
| 1332 */ |
| 1333 #ifndef SQLITE_OMIT_CHECK |
| 1334 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ |
| 1335 ExprList *pCheck = pTab->pCheck; |
| 1336 pParse->ckBase = regNewData+1; |
| 1337 onError = overrideError!=OE_Default ? overrideError : OE_Abort; |
| 1338 for(i=0; i<pCheck->nExpr; i++){ |
| 1339 int allOk; |
| 1340 Expr *pExpr = pCheck->a[i].pExpr; |
| 1341 if( aiChng && checkConstraintUnchanged(pExpr, aiChng, pkChng) ) continue; |
| 1342 allOk = sqlite3VdbeMakeLabel(v); |
| 1343 sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL); |
| 1344 if( onError==OE_Ignore ){ |
| 1345 sqlite3VdbeGoto(v, ignoreDest); |
| 1346 }else{ |
| 1347 char *zName = pCheck->a[i].zName; |
| 1348 if( zName==0 ) zName = pTab->zName; |
| 1349 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ |
| 1350 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, |
| 1351 onError, zName, P4_TRANSIENT, |
| 1352 P5_ConstraintCheck); |
| 1353 } |
| 1354 sqlite3VdbeResolveLabel(v, allOk); |
| 1355 } |
| 1356 } |
| 1357 #endif /* !defined(SQLITE_OMIT_CHECK) */ |
| 1358 |
| 1359 /* If rowid is changing, make sure the new rowid does not previously |
| 1360 ** exist in the table. |
| 1361 */ |
| 1362 if( pkChng && pPk==0 ){ |
| 1363 int addrRowidOk = sqlite3VdbeMakeLabel(v); |
| 1364 |
| 1365 /* Figure out what action to take in case of a rowid collision */ |
| 1366 onError = pTab->keyConf; |
| 1367 if( overrideError!=OE_Default ){ |
| 1368 onError = overrideError; |
| 1369 }else if( onError==OE_Default ){ |
| 1370 onError = OE_Abort; |
| 1371 } |
| 1372 |
| 1373 if( isUpdate ){ |
| 1374 /* pkChng!=0 does not mean that the rowid has changed, only that |
| 1375 ** it might have changed. Skip the conflict logic below if the rowid |
| 1376 ** is unchanged. */ |
| 1377 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); |
| 1378 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); |
| 1379 VdbeCoverage(v); |
| 1380 } |
| 1381 |
| 1382 /* If the response to a rowid conflict is REPLACE but the response |
| 1383 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need |
| 1384 ** to defer the running of the rowid conflict checking until after |
| 1385 ** the UNIQUE constraints have run. |
| 1386 */ |
| 1387 if( onError==OE_Replace && overrideError!=OE_Replace ){ |
| 1388 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
| 1389 if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){ |
| 1390 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto); |
| 1391 break; |
| 1392 } |
| 1393 } |
| 1394 } |
| 1395 |
| 1396 /* Check to see if the new rowid already exists in the table. Skip |
| 1397 ** the following conflict logic if it does not. */ |
| 1398 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); |
| 1399 VdbeCoverage(v); |
| 1400 |
| 1401 /* Generate code that deals with a rowid collision */ |
| 1402 switch( onError ){ |
| 1403 default: { |
| 1404 onError = OE_Abort; |
| 1405 /* Fall thru into the next case */ |
| 1406 } |
| 1407 case OE_Rollback: |
| 1408 case OE_Abort: |
| 1409 case OE_Fail: { |
| 1410 sqlite3RowidConstraint(pParse, onError, pTab); |
| 1411 break; |
| 1412 } |
| 1413 case OE_Replace: { |
| 1414 /* If there are DELETE triggers on this table and the |
| 1415 ** recursive-triggers flag is set, call GenerateRowDelete() to |
| 1416 ** remove the conflicting row from the table. This will fire |
| 1417 ** the triggers and remove both the table and index b-tree entries. |
| 1418 ** |
| 1419 ** Otherwise, if there are no triggers or the recursive-triggers |
| 1420 ** flag is not set, but the table has one or more indexes, call |
| 1421 ** GenerateRowIndexDelete(). This removes the index b-tree entries |
| 1422 ** only. The table b-tree entry will be replaced by the new entry |
| 1423 ** when it is inserted. |
| 1424 ** |
| 1425 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, |
| 1426 ** also invoke MultiWrite() to indicate that this VDBE may require |
| 1427 ** statement rollback (if the statement is aborted after the delete |
| 1428 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, |
| 1429 ** but being more selective here allows statements like: |
| 1430 ** |
| 1431 ** REPLACE INTO t(rowid) VALUES($newrowid) |
| 1432 ** |
| 1433 ** to run without a statement journal if there are no indexes on the |
| 1434 ** table. |
| 1435 */ |
| 1436 Trigger *pTrigger = 0; |
| 1437 if( db->flags&SQLITE_RecTriggers ){ |
| 1438 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); |
| 1439 } |
| 1440 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ |
| 1441 sqlite3MultiWrite(pParse); |
| 1442 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, |
| 1443 regNewData, 1, 0, OE_Replace, 1, -1); |
| 1444 }else{ |
| 1445 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK |
| 1446 if( HasRowid(pTab) ){ |
| 1447 /* This OP_Delete opcode fires the pre-update-hook only. It does |
| 1448 ** not modify the b-tree. It is more efficient to let the coming |
| 1449 ** OP_Insert replace the existing entry than it is to delete the |
| 1450 ** existing entry and then insert a new one. */ |
| 1451 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); |
| 1452 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); |
| 1453 } |
| 1454 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ |
| 1455 if( pTab->pIndex ){ |
| 1456 sqlite3MultiWrite(pParse); |
| 1457 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); |
| 1458 } |
| 1459 } |
| 1460 seenReplace = 1; |
| 1461 break; |
| 1462 } |
| 1463 case OE_Ignore: { |
| 1464 /*assert( seenReplace==0 );*/ |
| 1465 sqlite3VdbeGoto(v, ignoreDest); |
| 1466 break; |
| 1467 } |
| 1468 } |
| 1469 sqlite3VdbeResolveLabel(v, addrRowidOk); |
| 1470 if( ipkTop ){ |
| 1471 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); |
| 1472 sqlite3VdbeJumpHere(v, ipkTop); |
| 1473 } |
| 1474 } |
| 1475 |
| 1476 /* Test all UNIQUE constraints by creating entries for each UNIQUE |
| 1477 ** index and making sure that duplicate entries do not already exist. |
| 1478 ** Compute the revised record entries for indices as we go. |
| 1479 ** |
| 1480 ** This loop also handles the case of the PRIMARY KEY index for a |
| 1481 ** WITHOUT ROWID table. |
| 1482 */ |
| 1483 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ |
| 1484 int regIdx; /* Range of registers hold conent for pIdx */ |
| 1485 int regR; /* Range of registers holding conflicting PK */ |
| 1486 int iThisCur; /* Cursor for this UNIQUE index */ |
| 1487 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ |
| 1488 |
| 1489 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ |
| 1490 if( bAffinityDone==0 ){ |
| 1491 sqlite3TableAffinity(v, pTab, regNewData+1); |
| 1492 bAffinityDone = 1; |
| 1493 } |
| 1494 iThisCur = iIdxCur+ix; |
| 1495 addrUniqueOk = sqlite3VdbeMakeLabel(v); |
| 1496 |
| 1497 /* Skip partial indices for which the WHERE clause is not true */ |
| 1498 if( pIdx->pPartIdxWhere ){ |
| 1499 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); |
| 1500 pParse->ckBase = regNewData+1; |
| 1501 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, |
| 1502 SQLITE_JUMPIFNULL); |
| 1503 pParse->ckBase = 0; |
| 1504 } |
| 1505 |
| 1506 /* Create a record for this index entry as it should appear after |
| 1507 ** the insert or update. Store that record in the aRegIdx[ix] register |
| 1508 */ |
| 1509 regIdx = aRegIdx[ix]+1; |
| 1510 for(i=0; i<pIdx->nColumn; i++){ |
| 1511 int iField = pIdx->aiColumn[i]; |
| 1512 int x; |
| 1513 if( iField==XN_EXPR ){ |
| 1514 pParse->ckBase = regNewData+1; |
| 1515 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); |
| 1516 pParse->ckBase = 0; |
| 1517 VdbeComment((v, "%s column %d", pIdx->zName, i)); |
| 1518 }else{ |
| 1519 if( iField==XN_ROWID || iField==pTab->iPKey ){ |
| 1520 x = regNewData; |
| 1521 }else{ |
| 1522 x = iField + regNewData + 1; |
| 1523 } |
| 1524 sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i); |
| 1525 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); |
| 1526 } |
| 1527 } |
| 1528 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); |
| 1529 VdbeComment((v, "for %s", pIdx->zName)); |
| 1530 |
| 1531 /* In an UPDATE operation, if this index is the PRIMARY KEY index |
| 1532 ** of a WITHOUT ROWID table and there has been no change the |
| 1533 ** primary key, then no collision is possible. The collision detection |
| 1534 ** logic below can all be skipped. */ |
| 1535 if( isUpdate && pPk==pIdx && pkChng==0 ){ |
| 1536 sqlite3VdbeResolveLabel(v, addrUniqueOk); |
| 1537 continue; |
| 1538 } |
| 1539 |
| 1540 /* Find out what action to take in case there is a uniqueness conflict */ |
| 1541 onError = pIdx->onError; |
| 1542 if( onError==OE_None ){ |
| 1543 sqlite3VdbeResolveLabel(v, addrUniqueOk); |
| 1544 continue; /* pIdx is not a UNIQUE index */ |
| 1545 } |
| 1546 if( overrideError!=OE_Default ){ |
| 1547 onError = overrideError; |
| 1548 }else if( onError==OE_Default ){ |
| 1549 onError = OE_Abort; |
| 1550 } |
| 1551 |
| 1552 /* Collision detection may be omitted if all of the following are true: |
| 1553 ** (1) The conflict resolution algorithm is REPLACE |
| 1554 ** (2) The table is a WITHOUT ROWID table |
| 1555 ** (3) There are no secondary indexes on the table |
| 1556 ** (4) No delete triggers need to be fired if there is a conflict |
| 1557 ** (5) No FK constraint counters need to be updated if a conflict occurs. |
| 1558 */ |
| 1559 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ |
| 1560 && pPk==pIdx /* Condition 2 */ |
| 1561 && onError==OE_Replace /* Condition 1 */ |
| 1562 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ |
| 1563 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) |
| 1564 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ |
| 1565 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab))) |
| 1566 ){ |
| 1567 sqlite3VdbeResolveLabel(v, addrUniqueOk); |
| 1568 continue; |
| 1569 } |
| 1570 |
| 1571 /* Check to see if the new index entry will be unique */ |
| 1572 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, |
| 1573 regIdx, pIdx->nKeyCol); VdbeCoverage(v); |
| 1574 |
| 1575 /* Generate code to handle collisions */ |
| 1576 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); |
| 1577 if( isUpdate || onError==OE_Replace ){ |
| 1578 if( HasRowid(pTab) ){ |
| 1579 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); |
| 1580 /* Conflict only if the rowid of the existing index entry |
| 1581 ** is different from old-rowid */ |
| 1582 if( isUpdate ){ |
| 1583 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); |
| 1584 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); |
| 1585 VdbeCoverage(v); |
| 1586 } |
| 1587 }else{ |
| 1588 int x; |
| 1589 /* Extract the PRIMARY KEY from the end of the index entry and |
| 1590 ** store it in registers regR..regR+nPk-1 */ |
| 1591 if( pIdx!=pPk ){ |
| 1592 for(i=0; i<pPk->nKeyCol; i++){ |
| 1593 assert( pPk->aiColumn[i]>=0 ); |
| 1594 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); |
| 1595 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); |
| 1596 VdbeComment((v, "%s.%s", pTab->zName, |
| 1597 pTab->aCol[pPk->aiColumn[i]].zName)); |
| 1598 } |
| 1599 } |
| 1600 if( isUpdate ){ |
| 1601 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID |
| 1602 ** table, only conflict if the new PRIMARY KEY values are actually |
| 1603 ** different from the old. |
| 1604 ** |
| 1605 ** For a UNIQUE index, only conflict if the PRIMARY KEY values |
| 1606 ** of the matched index row are different from the original PRIMARY |
| 1607 ** KEY values of this row before the update. */ |
| 1608 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; |
| 1609 int op = OP_Ne; |
| 1610 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); |
| 1611 |
| 1612 for(i=0; i<pPk->nKeyCol; i++){ |
| 1613 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); |
| 1614 x = pPk->aiColumn[i]; |
| 1615 assert( x>=0 ); |
| 1616 if( i==(pPk->nKeyCol-1) ){ |
| 1617 addrJump = addrUniqueOk; |
| 1618 op = OP_Eq; |
| 1619 } |
| 1620 sqlite3VdbeAddOp4(v, op, |
| 1621 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ |
| 1622 ); |
| 1623 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); |
| 1624 VdbeCoverageIf(v, op==OP_Eq); |
| 1625 VdbeCoverageIf(v, op==OP_Ne); |
| 1626 } |
| 1627 } |
| 1628 } |
| 1629 } |
| 1630 |
| 1631 /* Generate code that executes if the new index entry is not unique */ |
| 1632 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail |
| 1633 || onError==OE_Ignore || onError==OE_Replace ); |
| 1634 switch( onError ){ |
| 1635 case OE_Rollback: |
| 1636 case OE_Abort: |
| 1637 case OE_Fail: { |
| 1638 sqlite3UniqueConstraint(pParse, onError, pIdx); |
| 1639 break; |
| 1640 } |
| 1641 case OE_Ignore: { |
| 1642 sqlite3VdbeGoto(v, ignoreDest); |
| 1643 break; |
| 1644 } |
| 1645 default: { |
| 1646 Trigger *pTrigger = 0; |
| 1647 assert( onError==OE_Replace ); |
| 1648 sqlite3MultiWrite(pParse); |
| 1649 if( db->flags&SQLITE_RecTriggers ){ |
| 1650 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); |
| 1651 } |
| 1652 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, |
| 1653 regR, nPkField, 0, OE_Replace, |
| 1654 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); |
| 1655 seenReplace = 1; |
| 1656 break; |
| 1657 } |
| 1658 } |
| 1659 sqlite3VdbeResolveLabel(v, addrUniqueOk); |
| 1660 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); |
| 1661 } |
| 1662 if( ipkTop ){ |
| 1663 sqlite3VdbeGoto(v, ipkTop+1); |
| 1664 sqlite3VdbeJumpHere(v, ipkBottom); |
| 1665 } |
| 1666 |
| 1667 *pbMayReplace = seenReplace; |
| 1668 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); |
| 1669 } |
| 1670 |
| 1671 #ifdef SQLITE_ENABLE_NULL_TRIM |
| 1672 /* |
| 1673 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) |
| 1674 ** to be the number of columns in table pTab that must not be NULL-trimmed. |
| 1675 ** |
| 1676 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. |
| 1677 */ |
| 1678 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ |
| 1679 u16 i; |
| 1680 |
| 1681 /* Records with omitted columns are only allowed for schema format |
| 1682 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ |
| 1683 if( pTab->pSchema->file_format<2 ) return; |
| 1684 |
| 1685 for(i=pTab->nCol; i>1 && pTab->aCol[i-1].pDflt==0; i--){} |
| 1686 sqlite3VdbeChangeP5(v, i); |
| 1687 } |
| 1688 #endif |
| 1689 |
| 1690 /* |
| 1691 ** This routine generates code to finish the INSERT or UPDATE operation |
| 1692 ** that was started by a prior call to sqlite3GenerateConstraintChecks. |
| 1693 ** A consecutive range of registers starting at regNewData contains the |
| 1694 ** rowid and the content to be inserted. |
| 1695 ** |
| 1696 ** The arguments to this routine should be the same as the first six |
| 1697 ** arguments to sqlite3GenerateConstraintChecks. |
| 1698 */ |
| 1699 void sqlite3CompleteInsertion( |
| 1700 Parse *pParse, /* The parser context */ |
| 1701 Table *pTab, /* the table into which we are inserting */ |
| 1702 int iDataCur, /* Cursor of the canonical data source */ |
| 1703 int iIdxCur, /* First index cursor */ |
| 1704 int regNewData, /* Range of content */ |
| 1705 int *aRegIdx, /* Register used by each index. 0 for unused indices */ |
| 1706 int update_flags, /* True for UPDATE, False for INSERT */ |
| 1707 int appendBias, /* True if this is likely to be an append */ |
| 1708 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ |
| 1709 ){ |
| 1710 Vdbe *v; /* Prepared statements under construction */ |
| 1711 Index *pIdx; /* An index being inserted or updated */ |
| 1712 u8 pik_flags; /* flag values passed to the btree insert */ |
| 1713 int regData; /* Content registers (after the rowid) */ |
| 1714 int regRec; /* Register holding assembled record for the table */ |
| 1715 int i; /* Loop counter */ |
| 1716 u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */ |
| 1717 |
| 1718 assert( update_flags==0 |
| 1719 || update_flags==OPFLAG_ISUPDATE |
| 1720 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) |
| 1721 ); |
| 1722 |
| 1723 v = sqlite3GetVdbe(pParse); |
| 1724 assert( v!=0 ); |
| 1725 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ |
| 1726 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ |
| 1727 if( aRegIdx[i]==0 ) continue; |
| 1728 bAffinityDone = 1; |
| 1729 if( pIdx->pPartIdxWhere ){ |
| 1730 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); |
| 1731 VdbeCoverage(v); |
| 1732 } |
| 1733 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); |
| 1734 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ |
| 1735 assert( pParse->nested==0 ); |
| 1736 pik_flags |= OPFLAG_NCHANGE; |
| 1737 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); |
| 1738 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK |
| 1739 if( update_flags==0 ){ |
| 1740 sqlite3VdbeAddOp4(v, OP_InsertInt, |
| 1741 iIdxCur+i, aRegIdx[i], 0, (char*)pTab, P4_TABLE |
| 1742 ); |
| 1743 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); |
| 1744 } |
| 1745 #endif |
| 1746 } |
| 1747 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], |
| 1748 aRegIdx[i]+1, |
| 1749 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); |
| 1750 sqlite3VdbeChangeP5(v, pik_flags); |
| 1751 } |
| 1752 if( !HasRowid(pTab) ) return; |
| 1753 regData = regNewData + 1; |
| 1754 regRec = sqlite3GetTempReg(pParse); |
| 1755 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); |
| 1756 sqlite3SetMakeRecordP5(v, pTab); |
| 1757 if( !bAffinityDone ){ |
| 1758 sqlite3TableAffinity(v, pTab, 0); |
| 1759 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); |
| 1760 } |
| 1761 if( pParse->nested ){ |
| 1762 pik_flags = 0; |
| 1763 }else{ |
| 1764 pik_flags = OPFLAG_NCHANGE; |
| 1765 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); |
| 1766 } |
| 1767 if( appendBias ){ |
| 1768 pik_flags |= OPFLAG_APPEND; |
| 1769 } |
| 1770 if( useSeekResult ){ |
| 1771 pik_flags |= OPFLAG_USESEEKRESULT; |
| 1772 } |
| 1773 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData); |
| 1774 if( !pParse->nested ){ |
| 1775 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); |
| 1776 } |
| 1777 sqlite3VdbeChangeP5(v, pik_flags); |
| 1778 } |
| 1779 |
| 1780 /* |
| 1781 ** Allocate cursors for the pTab table and all its indices and generate |
| 1782 ** code to open and initialized those cursors. |
| 1783 ** |
| 1784 ** The cursor for the object that contains the complete data (normally |
| 1785 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT |
| 1786 ** ROWID table) is returned in *piDataCur. The first index cursor is |
| 1787 ** returned in *piIdxCur. The number of indices is returned. |
| 1788 ** |
| 1789 ** Use iBase as the first cursor (either the *piDataCur for rowid tables |
| 1790 ** or the first index for WITHOUT ROWID tables) if it is non-negative. |
| 1791 ** If iBase is negative, then allocate the next available cursor. |
| 1792 ** |
| 1793 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. |
| 1794 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range |
| 1795 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the |
| 1796 ** pTab->pIndex list. |
| 1797 ** |
| 1798 ** If pTab is a virtual table, then this routine is a no-op and the |
| 1799 ** *piDataCur and *piIdxCur values are left uninitialized. |
| 1800 */ |
| 1801 int sqlite3OpenTableAndIndices( |
| 1802 Parse *pParse, /* Parsing context */ |
| 1803 Table *pTab, /* Table to be opened */ |
| 1804 int op, /* OP_OpenRead or OP_OpenWrite */ |
| 1805 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ |
| 1806 int iBase, /* Use this for the table cursor, if there is one */ |
| 1807 u8 *aToOpen, /* If not NULL: boolean for each table and index */ |
| 1808 int *piDataCur, /* Write the database source cursor number here */ |
| 1809 int *piIdxCur /* Write the first index cursor number here */ |
| 1810 ){ |
| 1811 int i; |
| 1812 int iDb; |
| 1813 int iDataCur; |
| 1814 Index *pIdx; |
| 1815 Vdbe *v; |
| 1816 |
| 1817 assert( op==OP_OpenRead || op==OP_OpenWrite ); |
| 1818 assert( op==OP_OpenWrite || p5==0 ); |
| 1819 if( IsVirtual(pTab) ){ |
| 1820 /* This routine is a no-op for virtual tables. Leave the output |
| 1821 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind |
| 1822 ** can detect if they are used by mistake in the caller. */ |
| 1823 return 0; |
| 1824 } |
| 1825 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
| 1826 v = sqlite3GetVdbe(pParse); |
| 1827 assert( v!=0 ); |
| 1828 if( iBase<0 ) iBase = pParse->nTab; |
| 1829 iDataCur = iBase++; |
| 1830 if( piDataCur ) *piDataCur = iDataCur; |
| 1831 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ |
| 1832 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); |
| 1833 }else{ |
| 1834 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); |
| 1835 } |
| 1836 if( piIdxCur ) *piIdxCur = iBase; |
| 1837 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ |
| 1838 int iIdxCur = iBase++; |
| 1839 assert( pIdx->pSchema==pTab->pSchema ); |
| 1840 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ |
| 1841 if( piDataCur ) *piDataCur = iIdxCur; |
| 1842 p5 = 0; |
| 1843 } |
| 1844 if( aToOpen==0 || aToOpen[i+1] ){ |
| 1845 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); |
| 1846 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); |
| 1847 sqlite3VdbeChangeP5(v, p5); |
| 1848 VdbeComment((v, "%s", pIdx->zName)); |
| 1849 } |
| 1850 } |
| 1851 if( iBase>pParse->nTab ) pParse->nTab = iBase; |
| 1852 return i; |
| 1853 } |
| 1854 |
| 1855 |
| 1856 #ifdef SQLITE_TEST |
| 1857 /* |
| 1858 ** The following global variable is incremented whenever the |
| 1859 ** transfer optimization is used. This is used for testing |
| 1860 ** purposes only - to make sure the transfer optimization really |
| 1861 ** is happening when it is supposed to. |
| 1862 */ |
| 1863 int sqlite3_xferopt_count; |
| 1864 #endif /* SQLITE_TEST */ |
| 1865 |
| 1866 |
| 1867 #ifndef SQLITE_OMIT_XFER_OPT |
| 1868 /* |
| 1869 ** Check to see if index pSrc is compatible as a source of data |
| 1870 ** for index pDest in an insert transfer optimization. The rules |
| 1871 ** for a compatible index: |
| 1872 ** |
| 1873 ** * The index is over the same set of columns |
| 1874 ** * The same DESC and ASC markings occurs on all columns |
| 1875 ** * The same onError processing (OE_Abort, OE_Ignore, etc) |
| 1876 ** * The same collating sequence on each column |
| 1877 ** * The index has the exact same WHERE clause |
| 1878 */ |
| 1879 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ |
| 1880 int i; |
| 1881 assert( pDest && pSrc ); |
| 1882 assert( pDest->pTable!=pSrc->pTable ); |
| 1883 if( pDest->nKeyCol!=pSrc->nKeyCol ){ |
| 1884 return 0; /* Different number of columns */ |
| 1885 } |
| 1886 if( pDest->onError!=pSrc->onError ){ |
| 1887 return 0; /* Different conflict resolution strategies */ |
| 1888 } |
| 1889 for(i=0; i<pSrc->nKeyCol; i++){ |
| 1890 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ |
| 1891 return 0; /* Different columns indexed */ |
| 1892 } |
| 1893 if( pSrc->aiColumn[i]==XN_EXPR ){ |
| 1894 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); |
| 1895 if( sqlite3ExprCompare(pSrc->aColExpr->a[i].pExpr, |
| 1896 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ |
| 1897 return 0; /* Different expressions in the index */ |
| 1898 } |
| 1899 } |
| 1900 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ |
| 1901 return 0; /* Different sort orders */ |
| 1902 } |
| 1903 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ |
| 1904 return 0; /* Different collating sequences */ |
| 1905 } |
| 1906 } |
| 1907 if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ |
| 1908 return 0; /* Different WHERE clauses */ |
| 1909 } |
| 1910 |
| 1911 /* If no test above fails then the indices must be compatible */ |
| 1912 return 1; |
| 1913 } |
| 1914 |
| 1915 /* |
| 1916 ** Attempt the transfer optimization on INSERTs of the form |
| 1917 ** |
| 1918 ** INSERT INTO tab1 SELECT * FROM tab2; |
| 1919 ** |
| 1920 ** The xfer optimization transfers raw records from tab2 over to tab1. |
| 1921 ** Columns are not decoded and reassembled, which greatly improves |
| 1922 ** performance. Raw index records are transferred in the same way. |
| 1923 ** |
| 1924 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. |
| 1925 ** There are lots of rules for determining compatibility - see comments |
| 1926 ** embedded in the code for details. |
| 1927 ** |
| 1928 ** This routine returns TRUE if the optimization is guaranteed to be used. |
| 1929 ** Sometimes the xfer optimization will only work if the destination table |
| 1930 ** is empty - a factor that can only be determined at run-time. In that |
| 1931 ** case, this routine generates code for the xfer optimization but also |
| 1932 ** does a test to see if the destination table is empty and jumps over the |
| 1933 ** xfer optimization code if the test fails. In that case, this routine |
| 1934 ** returns FALSE so that the caller will know to go ahead and generate |
| 1935 ** an unoptimized transfer. This routine also returns FALSE if there |
| 1936 ** is no chance that the xfer optimization can be applied. |
| 1937 ** |
| 1938 ** This optimization is particularly useful at making VACUUM run faster. |
| 1939 */ |
| 1940 static int xferOptimization( |
| 1941 Parse *pParse, /* Parser context */ |
| 1942 Table *pDest, /* The table we are inserting into */ |
| 1943 Select *pSelect, /* A SELECT statement to use as the data source */ |
| 1944 int onError, /* How to handle constraint errors */ |
| 1945 int iDbDest /* The database of pDest */ |
| 1946 ){ |
| 1947 sqlite3 *db = pParse->db; |
| 1948 ExprList *pEList; /* The result set of the SELECT */ |
| 1949 Table *pSrc; /* The table in the FROM clause of SELECT */ |
| 1950 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ |
| 1951 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ |
| 1952 int i; /* Loop counter */ |
| 1953 int iDbSrc; /* The database of pSrc */ |
| 1954 int iSrc, iDest; /* Cursors from source and destination */ |
| 1955 int addr1, addr2; /* Loop addresses */ |
| 1956 int emptyDestTest = 0; /* Address of test for empty pDest */ |
| 1957 int emptySrcTest = 0; /* Address of test for empty pSrc */ |
| 1958 Vdbe *v; /* The VDBE we are building */ |
| 1959 int regAutoinc; /* Memory register used by AUTOINC */ |
| 1960 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ |
| 1961 int regData, regRowid; /* Registers holding data and rowid */ |
| 1962 |
| 1963 if( pSelect==0 ){ |
| 1964 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ |
| 1965 } |
| 1966 if( pParse->pWith || pSelect->pWith ){ |
| 1967 /* Do not attempt to process this query if there are an WITH clauses |
| 1968 ** attached to it. Proceeding may generate a false "no such table: xxx" |
| 1969 ** error if pSelect reads from a CTE named "xxx". */ |
| 1970 return 0; |
| 1971 } |
| 1972 if( sqlite3TriggerList(pParse, pDest) ){ |
| 1973 return 0; /* tab1 must not have triggers */ |
| 1974 } |
| 1975 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 1976 if( pDest->tabFlags & TF_Virtual ){ |
| 1977 return 0; /* tab1 must not be a virtual table */ |
| 1978 } |
| 1979 #endif |
| 1980 if( onError==OE_Default ){ |
| 1981 if( pDest->iPKey>=0 ) onError = pDest->keyConf; |
| 1982 if( onError==OE_Default ) onError = OE_Abort; |
| 1983 } |
| 1984 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ |
| 1985 if( pSelect->pSrc->nSrc!=1 ){ |
| 1986 return 0; /* FROM clause must have exactly one term */ |
| 1987 } |
| 1988 if( pSelect->pSrc->a[0].pSelect ){ |
| 1989 return 0; /* FROM clause cannot contain a subquery */ |
| 1990 } |
| 1991 if( pSelect->pWhere ){ |
| 1992 return 0; /* SELECT may not have a WHERE clause */ |
| 1993 } |
| 1994 if( pSelect->pOrderBy ){ |
| 1995 return 0; /* SELECT may not have an ORDER BY clause */ |
| 1996 } |
| 1997 /* Do not need to test for a HAVING clause. If HAVING is present but |
| 1998 ** there is no ORDER BY, we will get an error. */ |
| 1999 if( pSelect->pGroupBy ){ |
| 2000 return 0; /* SELECT may not have a GROUP BY clause */ |
| 2001 } |
| 2002 if( pSelect->pLimit ){ |
| 2003 return 0; /* SELECT may not have a LIMIT clause */ |
| 2004 } |
| 2005 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ |
| 2006 if( pSelect->pPrior ){ |
| 2007 return 0; /* SELECT may not be a compound query */ |
| 2008 } |
| 2009 if( pSelect->selFlags & SF_Distinct ){ |
| 2010 return 0; /* SELECT may not be DISTINCT */ |
| 2011 } |
| 2012 pEList = pSelect->pEList; |
| 2013 assert( pEList!=0 ); |
| 2014 if( pEList->nExpr!=1 ){ |
| 2015 return 0; /* The result set must have exactly one column */ |
| 2016 } |
| 2017 assert( pEList->a[0].pExpr ); |
| 2018 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ |
| 2019 return 0; /* The result set must be the special operator "*" */ |
| 2020 } |
| 2021 |
| 2022 /* At this point we have established that the statement is of the |
| 2023 ** correct syntactic form to participate in this optimization. Now |
| 2024 ** we have to check the semantics. |
| 2025 */ |
| 2026 pItem = pSelect->pSrc->a; |
| 2027 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); |
| 2028 if( pSrc==0 ){ |
| 2029 return 0; /* FROM clause does not contain a real table */ |
| 2030 } |
| 2031 if( pSrc==pDest ){ |
| 2032 return 0; /* tab1 and tab2 may not be the same table */ |
| 2033 } |
| 2034 if( HasRowid(pDest)!=HasRowid(pSrc) ){ |
| 2035 return 0; /* source and destination must both be WITHOUT ROWID or not */ |
| 2036 } |
| 2037 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 2038 if( pSrc->tabFlags & TF_Virtual ){ |
| 2039 return 0; /* tab2 must not be a virtual table */ |
| 2040 } |
| 2041 #endif |
| 2042 if( pSrc->pSelect ){ |
| 2043 return 0; /* tab2 may not be a view */ |
| 2044 } |
| 2045 if( pDest->nCol!=pSrc->nCol ){ |
| 2046 return 0; /* Number of columns must be the same in tab1 and tab2 */ |
| 2047 } |
| 2048 if( pDest->iPKey!=pSrc->iPKey ){ |
| 2049 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ |
| 2050 } |
| 2051 for(i=0; i<pDest->nCol; i++){ |
| 2052 Column *pDestCol = &pDest->aCol[i]; |
| 2053 Column *pSrcCol = &pSrc->aCol[i]; |
| 2054 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS |
| 2055 if( (db->flags & SQLITE_Vacuum)==0 |
| 2056 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN |
| 2057 ){ |
| 2058 return 0; /* Neither table may have __hidden__ columns */ |
| 2059 } |
| 2060 #endif |
| 2061 if( pDestCol->affinity!=pSrcCol->affinity ){ |
| 2062 return 0; /* Affinity must be the same on all columns */ |
| 2063 } |
| 2064 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){ |
| 2065 return 0; /* Collating sequence must be the same on all columns */ |
| 2066 } |
| 2067 if( pDestCol->notNull && !pSrcCol->notNull ){ |
| 2068 return 0; /* tab2 must be NOT NULL if tab1 is */ |
| 2069 } |
| 2070 /* Default values for second and subsequent columns need to match. */ |
| 2071 if( i>0 ){ |
| 2072 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN ); |
| 2073 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN ); |
| 2074 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0) |
| 2075 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken, |
| 2076 pSrcCol->pDflt->u.zToken)!=0) |
| 2077 ){ |
| 2078 return 0; /* Default values must be the same for all columns */ |
| 2079 } |
| 2080 } |
| 2081 } |
| 2082 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ |
| 2083 if( IsUniqueIndex(pDestIdx) ){ |
| 2084 destHasUniqueIdx = 1; |
| 2085 } |
| 2086 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ |
| 2087 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; |
| 2088 } |
| 2089 if( pSrcIdx==0 ){ |
| 2090 return 0; /* pDestIdx has no corresponding index in pSrc */ |
| 2091 } |
| 2092 } |
| 2093 #ifndef SQLITE_OMIT_CHECK |
| 2094 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ |
| 2095 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ |
| 2096 } |
| 2097 #endif |
| 2098 #ifndef SQLITE_OMIT_FOREIGN_KEY |
| 2099 /* Disallow the transfer optimization if the destination table constains |
| 2100 ** any foreign key constraints. This is more restrictive than necessary. |
| 2101 ** But the main beneficiary of the transfer optimization is the VACUUM |
| 2102 ** command, and the VACUUM command disables foreign key constraints. So |
| 2103 ** the extra complication to make this rule less restrictive is probably |
| 2104 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] |
| 2105 */ |
| 2106 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ |
| 2107 return 0; |
| 2108 } |
| 2109 #endif |
| 2110 if( (db->flags & SQLITE_CountRows)!=0 ){ |
| 2111 return 0; /* xfer opt does not play well with PRAGMA count_changes */ |
| 2112 } |
| 2113 |
| 2114 /* If we get this far, it means that the xfer optimization is at |
| 2115 ** least a possibility, though it might only work if the destination |
| 2116 ** table (tab1) is initially empty. |
| 2117 */ |
| 2118 #ifdef SQLITE_TEST |
| 2119 sqlite3_xferopt_count++; |
| 2120 #endif |
| 2121 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); |
| 2122 v = sqlite3GetVdbe(pParse); |
| 2123 sqlite3CodeVerifySchema(pParse, iDbSrc); |
| 2124 iSrc = pParse->nTab++; |
| 2125 iDest = pParse->nTab++; |
| 2126 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); |
| 2127 regData = sqlite3GetTempReg(pParse); |
| 2128 regRowid = sqlite3GetTempReg(pParse); |
| 2129 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); |
| 2130 assert( HasRowid(pDest) || destHasUniqueIdx ); |
| 2131 if( (db->flags & SQLITE_Vacuum)==0 && ( |
| 2132 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ |
| 2133 || destHasUniqueIdx /* (2) */ |
| 2134 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ |
| 2135 )){ |
| 2136 /* In some circumstances, we are able to run the xfer optimization |
| 2137 ** only if the destination table is initially empty. Unless the |
| 2138 ** SQLITE_Vacuum flag is set, this block generates code to make |
| 2139 ** that determination. If SQLITE_Vacuum is set, then the destination |
| 2140 ** table is always empty. |
| 2141 ** |
| 2142 ** Conditions under which the destination must be empty: |
| 2143 ** |
| 2144 ** (1) There is no INTEGER PRIMARY KEY but there are indices. |
| 2145 ** (If the destination is not initially empty, the rowid fields |
| 2146 ** of index entries might need to change.) |
| 2147 ** |
| 2148 ** (2) The destination has a unique index. (The xfer optimization |
| 2149 ** is unable to test uniqueness.) |
| 2150 ** |
| 2151 ** (3) onError is something other than OE_Abort and OE_Rollback. |
| 2152 */ |
| 2153 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); |
| 2154 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); |
| 2155 sqlite3VdbeJumpHere(v, addr1); |
| 2156 } |
| 2157 if( HasRowid(pSrc) ){ |
| 2158 u8 insFlags; |
| 2159 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); |
| 2160 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); |
| 2161 if( pDest->iPKey>=0 ){ |
| 2162 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); |
| 2163 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); |
| 2164 VdbeCoverage(v); |
| 2165 sqlite3RowidConstraint(pParse, onError, pDest); |
| 2166 sqlite3VdbeJumpHere(v, addr2); |
| 2167 autoIncStep(pParse, regAutoinc, regRowid); |
| 2168 }else if( pDest->pIndex==0 ){ |
| 2169 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); |
| 2170 }else{ |
| 2171 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); |
| 2172 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); |
| 2173 } |
| 2174 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); |
| 2175 if( db->flags & SQLITE_Vacuum ){ |
| 2176 sqlite3VdbeAddOp3(v, OP_Last, iDest, 0, -1); |
| 2177 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID| |
| 2178 OPFLAG_APPEND|OPFLAG_USESEEKRESULT; |
| 2179 }else{ |
| 2180 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND; |
| 2181 } |
| 2182 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid, |
| 2183 (char*)pDest, P4_TABLE); |
| 2184 sqlite3VdbeChangeP5(v, insFlags); |
| 2185 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); |
| 2186 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); |
| 2187 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); |
| 2188 }else{ |
| 2189 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); |
| 2190 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); |
| 2191 } |
| 2192 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ |
| 2193 u8 idxInsFlags = 0; |
| 2194 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ |
| 2195 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; |
| 2196 } |
| 2197 assert( pSrcIdx ); |
| 2198 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); |
| 2199 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); |
| 2200 VdbeComment((v, "%s", pSrcIdx->zName)); |
| 2201 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); |
| 2202 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); |
| 2203 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); |
| 2204 VdbeComment((v, "%s", pDestIdx->zName)); |
| 2205 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); |
| 2206 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); |
| 2207 if( db->flags & SQLITE_Vacuum ){ |
| 2208 /* This INSERT command is part of a VACUUM operation, which guarantees |
| 2209 ** that the destination table is empty. If all indexed columns use |
| 2210 ** collation sequence BINARY, then it can also be assumed that the |
| 2211 ** index will be populated by inserting keys in strictly sorted |
| 2212 ** order. In this case, instead of seeking within the b-tree as part |
| 2213 ** of every OP_IdxInsert opcode, an OP_Last is added before the |
| 2214 ** OP_IdxInsert to seek to the point within the b-tree where each key |
| 2215 ** should be inserted. This is faster. |
| 2216 ** |
| 2217 ** If any of the indexed columns use a collation sequence other than |
| 2218 ** BINARY, this optimization is disabled. This is because the user |
| 2219 ** might change the definition of a collation sequence and then run |
| 2220 ** a VACUUM command. In that case keys may not be written in strictly |
| 2221 ** sorted order. */ |
| 2222 for(i=0; i<pSrcIdx->nColumn; i++){ |
| 2223 const char *zColl = pSrcIdx->azColl[i]; |
| 2224 assert( sqlite3_stricmp(sqlite3StrBINARY, zColl)!=0 |
| 2225 || sqlite3StrBINARY==zColl ); |
| 2226 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; |
| 2227 } |
| 2228 if( i==pSrcIdx->nColumn ){ |
| 2229 idxInsFlags = OPFLAG_USESEEKRESULT; |
| 2230 sqlite3VdbeAddOp3(v, OP_Last, iDest, 0, -1); |
| 2231 } |
| 2232 } |
| 2233 if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){ |
| 2234 idxInsFlags |= OPFLAG_NCHANGE; |
| 2235 } |
| 2236 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); |
| 2237 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); |
| 2238 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); |
| 2239 sqlite3VdbeJumpHere(v, addr1); |
| 2240 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); |
| 2241 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); |
| 2242 } |
| 2243 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); |
| 2244 sqlite3ReleaseTempReg(pParse, regRowid); |
| 2245 sqlite3ReleaseTempReg(pParse, regData); |
| 2246 if( emptyDestTest ){ |
| 2247 sqlite3AutoincrementEnd(pParse); |
| 2248 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); |
| 2249 sqlite3VdbeJumpHere(v, emptyDestTest); |
| 2250 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); |
| 2251 return 0; |
| 2252 }else{ |
| 2253 return 1; |
| 2254 } |
| 2255 } |
| 2256 #endif /* SQLITE_OMIT_XFER_OPT */ |
OLD | NEW |