Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1)

Side by Side Diff: third_party/sqlite/sqlite-src-3170000/src/insert.c

Issue 2747283002: [sql] Import reference version of SQLite 3.17.. (Closed)
Patch Set: Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16
17 /*
18 ** Generate code that will
19 **
20 ** (1) acquire a lock for table pTab then
21 ** (2) open pTab as cursor iCur.
22 **
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
25 */
26 void sqlite3OpenTable(
27 Parse *pParse, /* Generate code into this VDBE */
28 int iCur, /* The cursor number of the table */
29 int iDb, /* The database index in sqlite3.aDb[] */
30 Table *pTab, /* The table to be opened */
31 int opcode /* OP_OpenRead or OP_OpenWrite */
32 ){
33 Vdbe *v;
34 assert( !IsVirtual(pTab) );
35 v = sqlite3GetVdbe(pParse);
36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
37 sqlite3TableLock(pParse, iDb, pTab->tnum,
38 (opcode==OP_OpenWrite)?1:0, pTab->zName);
39 if( HasRowid(pTab) ){
40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol);
41 VdbeComment((v, "%s", pTab->zName));
42 }else{
43 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
44 assert( pPk!=0 );
45 assert( pPk->tnum==pTab->tnum );
46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
47 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
48 VdbeComment((v, "%s", pTab->zName));
49 }
50 }
51
52 /*
53 ** Return a pointer to the column affinity string associated with index
54 ** pIdx. A column affinity string has one character for each column in
55 ** the table, according to the affinity of the column:
56 **
57 ** Character Column affinity
58 ** ------------------------------
59 ** 'A' BLOB
60 ** 'B' TEXT
61 ** 'C' NUMERIC
62 ** 'D' INTEGER
63 ** 'F' REAL
64 **
65 ** An extra 'D' is appended to the end of the string to cover the
66 ** rowid that appears as the last column in every index.
67 **
68 ** Memory for the buffer containing the column index affinity string
69 ** is managed along with the rest of the Index structure. It will be
70 ** released when sqlite3DeleteIndex() is called.
71 */
72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
73 if( !pIdx->zColAff ){
74 /* The first time a column affinity string for a particular index is
75 ** required, it is allocated and populated here. It is then stored as
76 ** a member of the Index structure for subsequent use.
77 **
78 ** The column affinity string will eventually be deleted by
79 ** sqliteDeleteIndex() when the Index structure itself is cleaned
80 ** up.
81 */
82 int n;
83 Table *pTab = pIdx->pTable;
84 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
85 if( !pIdx->zColAff ){
86 sqlite3OomFault(db);
87 return 0;
88 }
89 for(n=0; n<pIdx->nColumn; n++){
90 i16 x = pIdx->aiColumn[n];
91 if( x>=0 ){
92 pIdx->zColAff[n] = pTab->aCol[x].affinity;
93 }else if( x==XN_ROWID ){
94 pIdx->zColAff[n] = SQLITE_AFF_INTEGER;
95 }else{
96 char aff;
97 assert( x==XN_EXPR );
98 assert( pIdx->aColExpr!=0 );
99 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
100 if( aff==0 ) aff = SQLITE_AFF_BLOB;
101 pIdx->zColAff[n] = aff;
102 }
103 }
104 pIdx->zColAff[n] = 0;
105 }
106
107 return pIdx->zColAff;
108 }
109
110 /*
111 ** Compute the affinity string for table pTab, if it has not already been
112 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
113 **
114 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and
115 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities
116 ** for register iReg and following. Or if affinities exists and iReg==0,
117 ** then just set the P4 operand of the previous opcode (which should be
118 ** an OP_MakeRecord) to the affinity string.
119 **
120 ** A column affinity string has one character per column:
121 **
122 ** Character Column affinity
123 ** ------------------------------
124 ** 'A' BLOB
125 ** 'B' TEXT
126 ** 'C' NUMERIC
127 ** 'D' INTEGER
128 ** 'E' REAL
129 */
130 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
131 int i;
132 char *zColAff = pTab->zColAff;
133 if( zColAff==0 ){
134 sqlite3 *db = sqlite3VdbeDb(v);
135 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
136 if( !zColAff ){
137 sqlite3OomFault(db);
138 return;
139 }
140
141 for(i=0; i<pTab->nCol; i++){
142 zColAff[i] = pTab->aCol[i].affinity;
143 }
144 do{
145 zColAff[i--] = 0;
146 }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB );
147 pTab->zColAff = zColAff;
148 }
149 i = sqlite3Strlen30(zColAff);
150 if( i ){
151 if( iReg ){
152 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
153 }else{
154 sqlite3VdbeChangeP4(v, -1, zColAff, i);
155 }
156 }
157 }
158
159 /*
160 ** Return non-zero if the table pTab in database iDb or any of its indices
161 ** have been opened at any point in the VDBE program. This is used to see if
162 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
163 ** run without using a temporary table for the results of the SELECT.
164 */
165 static int readsTable(Parse *p, int iDb, Table *pTab){
166 Vdbe *v = sqlite3GetVdbe(p);
167 int i;
168 int iEnd = sqlite3VdbeCurrentAddr(v);
169 #ifndef SQLITE_OMIT_VIRTUALTABLE
170 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
171 #endif
172
173 for(i=1; i<iEnd; i++){
174 VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
175 assert( pOp!=0 );
176 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
177 Index *pIndex;
178 int tnum = pOp->p2;
179 if( tnum==pTab->tnum ){
180 return 1;
181 }
182 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
183 if( tnum==pIndex->tnum ){
184 return 1;
185 }
186 }
187 }
188 #ifndef SQLITE_OMIT_VIRTUALTABLE
189 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
190 assert( pOp->p4.pVtab!=0 );
191 assert( pOp->p4type==P4_VTAB );
192 return 1;
193 }
194 #endif
195 }
196 return 0;
197 }
198
199 #ifndef SQLITE_OMIT_AUTOINCREMENT
200 /*
201 ** Locate or create an AutoincInfo structure associated with table pTab
202 ** which is in database iDb. Return the register number for the register
203 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT
204 ** table. (Also return zero when doing a VACUUM since we do not want to
205 ** update the AUTOINCREMENT counters during a VACUUM.)
206 **
207 ** There is at most one AutoincInfo structure per table even if the
208 ** same table is autoincremented multiple times due to inserts within
209 ** triggers. A new AutoincInfo structure is created if this is the
210 ** first use of table pTab. On 2nd and subsequent uses, the original
211 ** AutoincInfo structure is used.
212 **
213 ** Three memory locations are allocated:
214 **
215 ** (1) Register to hold the name of the pTab table.
216 ** (2) Register to hold the maximum ROWID of pTab.
217 ** (3) Register to hold the rowid in sqlite_sequence of pTab
218 **
219 ** The 2nd register is the one that is returned. That is all the
220 ** insert routine needs to know about.
221 */
222 static int autoIncBegin(
223 Parse *pParse, /* Parsing context */
224 int iDb, /* Index of the database holding pTab */
225 Table *pTab /* The table we are writing to */
226 ){
227 int memId = 0; /* Register holding maximum rowid */
228 if( (pTab->tabFlags & TF_Autoincrement)!=0
229 && (pParse->db->flags & SQLITE_Vacuum)==0
230 ){
231 Parse *pToplevel = sqlite3ParseToplevel(pParse);
232 AutoincInfo *pInfo;
233
234 pInfo = pToplevel->pAinc;
235 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
236 if( pInfo==0 ){
237 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
238 if( pInfo==0 ) return 0;
239 pInfo->pNext = pToplevel->pAinc;
240 pToplevel->pAinc = pInfo;
241 pInfo->pTab = pTab;
242 pInfo->iDb = iDb;
243 pToplevel->nMem++; /* Register to hold name of table */
244 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */
245 pToplevel->nMem++; /* Rowid in sqlite_sequence */
246 }
247 memId = pInfo->regCtr;
248 }
249 return memId;
250 }
251
252 /*
253 ** This routine generates code that will initialize all of the
254 ** register used by the autoincrement tracker.
255 */
256 void sqlite3AutoincrementBegin(Parse *pParse){
257 AutoincInfo *p; /* Information about an AUTOINCREMENT */
258 sqlite3 *db = pParse->db; /* The database connection */
259 Db *pDb; /* Database only autoinc table */
260 int memId; /* Register holding max rowid */
261 Vdbe *v = pParse->pVdbe; /* VDBE under construction */
262
263 /* This routine is never called during trigger-generation. It is
264 ** only called from the top-level */
265 assert( pParse->pTriggerTab==0 );
266 assert( sqlite3IsToplevel(pParse) );
267
268 assert( v ); /* We failed long ago if this is not so */
269 for(p = pParse->pAinc; p; p = p->pNext){
270 static const int iLn = VDBE_OFFSET_LINENO(2);
271 static const VdbeOpList autoInc[] = {
272 /* 0 */ {OP_Null, 0, 0, 0},
273 /* 1 */ {OP_Rewind, 0, 9, 0},
274 /* 2 */ {OP_Column, 0, 0, 0},
275 /* 3 */ {OP_Ne, 0, 7, 0},
276 /* 4 */ {OP_Rowid, 0, 0, 0},
277 /* 5 */ {OP_Column, 0, 1, 0},
278 /* 6 */ {OP_Goto, 0, 9, 0},
279 /* 7 */ {OP_Next, 0, 2, 0},
280 /* 8 */ {OP_Integer, 0, 0, 0},
281 /* 9 */ {OP_Close, 0, 0, 0}
282 };
283 VdbeOp *aOp;
284 pDb = &db->aDb[p->iDb];
285 memId = p->regCtr;
286 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
287 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
288 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
289 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
290 if( aOp==0 ) break;
291 aOp[0].p2 = memId;
292 aOp[0].p3 = memId+1;
293 aOp[2].p3 = memId;
294 aOp[3].p1 = memId-1;
295 aOp[3].p3 = memId;
296 aOp[3].p5 = SQLITE_JUMPIFNULL;
297 aOp[4].p2 = memId+1;
298 aOp[5].p3 = memId;
299 aOp[8].p2 = memId;
300 }
301 }
302
303 /*
304 ** Update the maximum rowid for an autoincrement calculation.
305 **
306 ** This routine should be called when the regRowid register holds a
307 ** new rowid that is about to be inserted. If that new rowid is
308 ** larger than the maximum rowid in the memId memory cell, then the
309 ** memory cell is updated.
310 */
311 static void autoIncStep(Parse *pParse, int memId, int regRowid){
312 if( memId>0 ){
313 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
314 }
315 }
316
317 /*
318 ** This routine generates the code needed to write autoincrement
319 ** maximum rowid values back into the sqlite_sequence register.
320 ** Every statement that might do an INSERT into an autoincrement
321 ** table (either directly or through triggers) needs to call this
322 ** routine just before the "exit" code.
323 */
324 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
325 AutoincInfo *p;
326 Vdbe *v = pParse->pVdbe;
327 sqlite3 *db = pParse->db;
328
329 assert( v );
330 for(p = pParse->pAinc; p; p = p->pNext){
331 static const int iLn = VDBE_OFFSET_LINENO(2);
332 static const VdbeOpList autoIncEnd[] = {
333 /* 0 */ {OP_NotNull, 0, 2, 0},
334 /* 1 */ {OP_NewRowid, 0, 0, 0},
335 /* 2 */ {OP_MakeRecord, 0, 2, 0},
336 /* 3 */ {OP_Insert, 0, 0, 0},
337 /* 4 */ {OP_Close, 0, 0, 0}
338 };
339 VdbeOp *aOp;
340 Db *pDb = &db->aDb[p->iDb];
341 int iRec;
342 int memId = p->regCtr;
343
344 iRec = sqlite3GetTempReg(pParse);
345 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
346 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
347 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
348 if( aOp==0 ) break;
349 aOp[0].p1 = memId+1;
350 aOp[1].p2 = memId+1;
351 aOp[2].p1 = memId-1;
352 aOp[2].p3 = iRec;
353 aOp[3].p2 = iRec;
354 aOp[3].p3 = memId+1;
355 aOp[3].p5 = OPFLAG_APPEND;
356 sqlite3ReleaseTempReg(pParse, iRec);
357 }
358 }
359 void sqlite3AutoincrementEnd(Parse *pParse){
360 if( pParse->pAinc ) autoIncrementEnd(pParse);
361 }
362 #else
363 /*
364 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
365 ** above are all no-ops
366 */
367 # define autoIncBegin(A,B,C) (0)
368 # define autoIncStep(A,B,C)
369 #endif /* SQLITE_OMIT_AUTOINCREMENT */
370
371
372 /* Forward declaration */
373 static int xferOptimization(
374 Parse *pParse, /* Parser context */
375 Table *pDest, /* The table we are inserting into */
376 Select *pSelect, /* A SELECT statement to use as the data source */
377 int onError, /* How to handle constraint errors */
378 int iDbDest /* The database of pDest */
379 );
380
381 /*
382 ** This routine is called to handle SQL of the following forms:
383 **
384 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
385 ** insert into TABLE (IDLIST) select
386 ** insert into TABLE (IDLIST) default values
387 **
388 ** The IDLIST following the table name is always optional. If omitted,
389 ** then a list of all (non-hidden) columns for the table is substituted.
390 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST
391 ** is omitted.
392 **
393 ** For the pSelect parameter holds the values to be inserted for the
394 ** first two forms shown above. A VALUES clause is really just short-hand
395 ** for a SELECT statement that omits the FROM clause and everything else
396 ** that follows. If the pSelect parameter is NULL, that means that the
397 ** DEFAULT VALUES form of the INSERT statement is intended.
398 **
399 ** The code generated follows one of four templates. For a simple
400 ** insert with data coming from a single-row VALUES clause, the code executes
401 ** once straight down through. Pseudo-code follows (we call this
402 ** the "1st template"):
403 **
404 ** open write cursor to <table> and its indices
405 ** put VALUES clause expressions into registers
406 ** write the resulting record into <table>
407 ** cleanup
408 **
409 ** The three remaining templates assume the statement is of the form
410 **
411 ** INSERT INTO <table> SELECT ...
412 **
413 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
414 ** in other words if the SELECT pulls all columns from a single table
415 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
416 ** if <table2> and <table1> are distinct tables but have identical
417 ** schemas, including all the same indices, then a special optimization
418 ** is invoked that copies raw records from <table2> over to <table1>.
419 ** See the xferOptimization() function for the implementation of this
420 ** template. This is the 2nd template.
421 **
422 ** open a write cursor to <table>
423 ** open read cursor on <table2>
424 ** transfer all records in <table2> over to <table>
425 ** close cursors
426 ** foreach index on <table>
427 ** open a write cursor on the <table> index
428 ** open a read cursor on the corresponding <table2> index
429 ** transfer all records from the read to the write cursors
430 ** close cursors
431 ** end foreach
432 **
433 ** The 3rd template is for when the second template does not apply
434 ** and the SELECT clause does not read from <table> at any time.
435 ** The generated code follows this template:
436 **
437 ** X <- A
438 ** goto B
439 ** A: setup for the SELECT
440 ** loop over the rows in the SELECT
441 ** load values into registers R..R+n
442 ** yield X
443 ** end loop
444 ** cleanup after the SELECT
445 ** end-coroutine X
446 ** B: open write cursor to <table> and its indices
447 ** C: yield X, at EOF goto D
448 ** insert the select result into <table> from R..R+n
449 ** goto C
450 ** D: cleanup
451 **
452 ** The 4th template is used if the insert statement takes its
453 ** values from a SELECT but the data is being inserted into a table
454 ** that is also read as part of the SELECT. In the third form,
455 ** we have to use an intermediate table to store the results of
456 ** the select. The template is like this:
457 **
458 ** X <- A
459 ** goto B
460 ** A: setup for the SELECT
461 ** loop over the tables in the SELECT
462 ** load value into register R..R+n
463 ** yield X
464 ** end loop
465 ** cleanup after the SELECT
466 ** end co-routine R
467 ** B: open temp table
468 ** L: yield X, at EOF goto M
469 ** insert row from R..R+n into temp table
470 ** goto L
471 ** M: open write cursor to <table> and its indices
472 ** rewind temp table
473 ** C: loop over rows of intermediate table
474 ** transfer values form intermediate table into <table>
475 ** end loop
476 ** D: cleanup
477 */
478 void sqlite3Insert(
479 Parse *pParse, /* Parser context */
480 SrcList *pTabList, /* Name of table into which we are inserting */
481 Select *pSelect, /* A SELECT statement to use as the data source */
482 IdList *pColumn, /* Column names corresponding to IDLIST. */
483 int onError /* How to handle constraint errors */
484 ){
485 sqlite3 *db; /* The main database structure */
486 Table *pTab; /* The table to insert into. aka TABLE */
487 char *zTab; /* Name of the table into which we are inserting */
488 int i, j; /* Loop counters */
489 Vdbe *v; /* Generate code into this virtual machine */
490 Index *pIdx; /* For looping over indices of the table */
491 int nColumn; /* Number of columns in the data */
492 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
493 int iDataCur = 0; /* VDBE cursor that is the main data repository */
494 int iIdxCur = 0; /* First index cursor */
495 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
496 int endOfLoop; /* Label for the end of the insertion loop */
497 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
498 int addrInsTop = 0; /* Jump to label "D" */
499 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
500 SelectDest dest; /* Destination for SELECT on rhs of INSERT */
501 int iDb; /* Index of database holding TABLE */
502 u8 useTempTable = 0; /* Store SELECT results in intermediate table */
503 u8 appendFlag = 0; /* True if the insert is likely to be an append */
504 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */
505 u8 bIdListInOrder; /* True if IDLIST is in table order */
506 ExprList *pList = 0; /* List of VALUES() to be inserted */
507
508 /* Register allocations */
509 int regFromSelect = 0;/* Base register for data coming from SELECT */
510 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
511 int regRowCount = 0; /* Memory cell used for the row counter */
512 int regIns; /* Block of regs holding rowid+data being inserted */
513 int regRowid; /* registers holding insert rowid */
514 int regData; /* register holding first column to insert */
515 int *aRegIdx = 0; /* One register allocated to each index */
516
517 #ifndef SQLITE_OMIT_TRIGGER
518 int isView; /* True if attempting to insert into a view */
519 Trigger *pTrigger; /* List of triggers on pTab, if required */
520 int tmask; /* Mask of trigger times */
521 #endif
522
523 db = pParse->db;
524 memset(&dest, 0, sizeof(dest));
525 if( pParse->nErr || db->mallocFailed ){
526 goto insert_cleanup;
527 }
528
529 /* If the Select object is really just a simple VALUES() list with a
530 ** single row (the common case) then keep that one row of values
531 ** and discard the other (unused) parts of the pSelect object
532 */
533 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
534 pList = pSelect->pEList;
535 pSelect->pEList = 0;
536 sqlite3SelectDelete(db, pSelect);
537 pSelect = 0;
538 }
539
540 /* Locate the table into which we will be inserting new information.
541 */
542 assert( pTabList->nSrc==1 );
543 zTab = pTabList->a[0].zName;
544 if( NEVER(zTab==0) ) goto insert_cleanup;
545 pTab = sqlite3SrcListLookup(pParse, pTabList);
546 if( pTab==0 ){
547 goto insert_cleanup;
548 }
549 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
550 assert( iDb<db->nDb );
551 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0,
552 db->aDb[iDb].zDbSName) ){
553 goto insert_cleanup;
554 }
555 withoutRowid = !HasRowid(pTab);
556
557 /* Figure out if we have any triggers and if the table being
558 ** inserted into is a view
559 */
560 #ifndef SQLITE_OMIT_TRIGGER
561 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
562 isView = pTab->pSelect!=0;
563 #else
564 # define pTrigger 0
565 # define tmask 0
566 # define isView 0
567 #endif
568 #ifdef SQLITE_OMIT_VIEW
569 # undef isView
570 # define isView 0
571 #endif
572 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
573
574 /* If pTab is really a view, make sure it has been initialized.
575 ** ViewGetColumnNames() is a no-op if pTab is not a view.
576 */
577 if( sqlite3ViewGetColumnNames(pParse, pTab) ){
578 goto insert_cleanup;
579 }
580
581 /* Cannot insert into a read-only table.
582 */
583 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
584 goto insert_cleanup;
585 }
586
587 /* Allocate a VDBE
588 */
589 v = sqlite3GetVdbe(pParse);
590 if( v==0 ) goto insert_cleanup;
591 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
592 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
593
594 #ifndef SQLITE_OMIT_XFER_OPT
595 /* If the statement is of the form
596 **
597 ** INSERT INTO <table1> SELECT * FROM <table2>;
598 **
599 ** Then special optimizations can be applied that make the transfer
600 ** very fast and which reduce fragmentation of indices.
601 **
602 ** This is the 2nd template.
603 */
604 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
605 assert( !pTrigger );
606 assert( pList==0 );
607 goto insert_end;
608 }
609 #endif /* SQLITE_OMIT_XFER_OPT */
610
611 /* If this is an AUTOINCREMENT table, look up the sequence number in the
612 ** sqlite_sequence table and store it in memory cell regAutoinc.
613 */
614 regAutoinc = autoIncBegin(pParse, iDb, pTab);
615
616 /* Allocate registers for holding the rowid of the new row,
617 ** the content of the new row, and the assembled row record.
618 */
619 regRowid = regIns = pParse->nMem+1;
620 pParse->nMem += pTab->nCol + 1;
621 if( IsVirtual(pTab) ){
622 regRowid++;
623 pParse->nMem++;
624 }
625 regData = regRowid+1;
626
627 /* If the INSERT statement included an IDLIST term, then make sure
628 ** all elements of the IDLIST really are columns of the table and
629 ** remember the column indices.
630 **
631 ** If the table has an INTEGER PRIMARY KEY column and that column
632 ** is named in the IDLIST, then record in the ipkColumn variable
633 ** the index into IDLIST of the primary key column. ipkColumn is
634 ** the index of the primary key as it appears in IDLIST, not as
635 ** is appears in the original table. (The index of the INTEGER
636 ** PRIMARY KEY in the original table is pTab->iPKey.)
637 */
638 bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0;
639 if( pColumn ){
640 for(i=0; i<pColumn->nId; i++){
641 pColumn->a[i].idx = -1;
642 }
643 for(i=0; i<pColumn->nId; i++){
644 for(j=0; j<pTab->nCol; j++){
645 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
646 pColumn->a[i].idx = j;
647 if( i!=j ) bIdListInOrder = 0;
648 if( j==pTab->iPKey ){
649 ipkColumn = i; assert( !withoutRowid );
650 }
651 break;
652 }
653 }
654 if( j>=pTab->nCol ){
655 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
656 ipkColumn = i;
657 bIdListInOrder = 0;
658 }else{
659 sqlite3ErrorMsg(pParse, "table %S has no column named %s",
660 pTabList, 0, pColumn->a[i].zName);
661 pParse->checkSchema = 1;
662 goto insert_cleanup;
663 }
664 }
665 }
666 }
667
668 /* Figure out how many columns of data are supplied. If the data
669 ** is coming from a SELECT statement, then generate a co-routine that
670 ** produces a single row of the SELECT on each invocation. The
671 ** co-routine is the common header to the 3rd and 4th templates.
672 */
673 if( pSelect ){
674 /* Data is coming from a SELECT or from a multi-row VALUES clause.
675 ** Generate a co-routine to run the SELECT. */
676 int regYield; /* Register holding co-routine entry-point */
677 int addrTop; /* Top of the co-routine */
678 int rc; /* Result code */
679
680 regYield = ++pParse->nMem;
681 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
682 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
683 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
684 dest.iSdst = bIdListInOrder ? regData : 0;
685 dest.nSdst = pTab->nCol;
686 rc = sqlite3Select(pParse, pSelect, &dest);
687 regFromSelect = dest.iSdst;
688 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup;
689 sqlite3VdbeEndCoroutine(v, regYield);
690 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */
691 assert( pSelect->pEList );
692 nColumn = pSelect->pEList->nExpr;
693
694 /* Set useTempTable to TRUE if the result of the SELECT statement
695 ** should be written into a temporary table (template 4). Set to
696 ** FALSE if each output row of the SELECT can be written directly into
697 ** the destination table (template 3).
698 **
699 ** A temp table must be used if the table being updated is also one
700 ** of the tables being read by the SELECT statement. Also use a
701 ** temp table in the case of row triggers.
702 */
703 if( pTrigger || readsTable(pParse, iDb, pTab) ){
704 useTempTable = 1;
705 }
706
707 if( useTempTable ){
708 /* Invoke the coroutine to extract information from the SELECT
709 ** and add it to a transient table srcTab. The code generated
710 ** here is from the 4th template:
711 **
712 ** B: open temp table
713 ** L: yield X, goto M at EOF
714 ** insert row from R..R+n into temp table
715 ** goto L
716 ** M: ...
717 */
718 int regRec; /* Register to hold packed record */
719 int regTempRowid; /* Register to hold temp table ROWID */
720 int addrL; /* Label "L" */
721
722 srcTab = pParse->nTab++;
723 regRec = sqlite3GetTempReg(pParse);
724 regTempRowid = sqlite3GetTempReg(pParse);
725 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
726 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
727 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
728 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
729 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
730 sqlite3VdbeGoto(v, addrL);
731 sqlite3VdbeJumpHere(v, addrL);
732 sqlite3ReleaseTempReg(pParse, regRec);
733 sqlite3ReleaseTempReg(pParse, regTempRowid);
734 }
735 }else{
736 /* This is the case if the data for the INSERT is coming from a
737 ** single-row VALUES clause
738 */
739 NameContext sNC;
740 memset(&sNC, 0, sizeof(sNC));
741 sNC.pParse = pParse;
742 srcTab = -1;
743 assert( useTempTable==0 );
744 if( pList ){
745 nColumn = pList->nExpr;
746 if( sqlite3ResolveExprListNames(&sNC, pList) ){
747 goto insert_cleanup;
748 }
749 }else{
750 nColumn = 0;
751 }
752 }
753
754 /* If there is no IDLIST term but the table has an integer primary
755 ** key, the set the ipkColumn variable to the integer primary key
756 ** column index in the original table definition.
757 */
758 if( pColumn==0 && nColumn>0 ){
759 ipkColumn = pTab->iPKey;
760 }
761
762 /* Make sure the number of columns in the source data matches the number
763 ** of columns to be inserted into the table.
764 */
765 for(i=0; i<pTab->nCol; i++){
766 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
767 }
768 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
769 sqlite3ErrorMsg(pParse,
770 "table %S has %d columns but %d values were supplied",
771 pTabList, 0, pTab->nCol-nHidden, nColumn);
772 goto insert_cleanup;
773 }
774 if( pColumn!=0 && nColumn!=pColumn->nId ){
775 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
776 goto insert_cleanup;
777 }
778
779 /* Initialize the count of rows to be inserted
780 */
781 if( db->flags & SQLITE_CountRows ){
782 regRowCount = ++pParse->nMem;
783 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
784 }
785
786 /* If this is not a view, open the table and and all indices */
787 if( !isView ){
788 int nIdx;
789 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
790 &iDataCur, &iIdxCur);
791 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+1));
792 if( aRegIdx==0 ){
793 goto insert_cleanup;
794 }
795 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
796 assert( pIdx );
797 aRegIdx[i] = ++pParse->nMem;
798 pParse->nMem += pIdx->nColumn;
799 }
800 }
801
802 /* This is the top of the main insertion loop */
803 if( useTempTable ){
804 /* This block codes the top of loop only. The complete loop is the
805 ** following pseudocode (template 4):
806 **
807 ** rewind temp table, if empty goto D
808 ** C: loop over rows of intermediate table
809 ** transfer values form intermediate table into <table>
810 ** end loop
811 ** D: ...
812 */
813 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
814 addrCont = sqlite3VdbeCurrentAddr(v);
815 }else if( pSelect ){
816 /* This block codes the top of loop only. The complete loop is the
817 ** following pseudocode (template 3):
818 **
819 ** C: yield X, at EOF goto D
820 ** insert the select result into <table> from R..R+n
821 ** goto C
822 ** D: ...
823 */
824 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
825 VdbeCoverage(v);
826 }
827
828 /* Run the BEFORE and INSTEAD OF triggers, if there are any
829 */
830 endOfLoop = sqlite3VdbeMakeLabel(v);
831 if( tmask & TRIGGER_BEFORE ){
832 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
833
834 /* build the NEW.* reference row. Note that if there is an INTEGER
835 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
836 ** translated into a unique ID for the row. But on a BEFORE trigger,
837 ** we do not know what the unique ID will be (because the insert has
838 ** not happened yet) so we substitute a rowid of -1
839 */
840 if( ipkColumn<0 ){
841 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
842 }else{
843 int addr1;
844 assert( !withoutRowid );
845 if( useTempTable ){
846 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
847 }else{
848 assert( pSelect==0 ); /* Otherwise useTempTable is true */
849 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
850 }
851 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
852 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
853 sqlite3VdbeJumpHere(v, addr1);
854 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
855 }
856
857 /* Cannot have triggers on a virtual table. If it were possible,
858 ** this block would have to account for hidden column.
859 */
860 assert( !IsVirtual(pTab) );
861
862 /* Create the new column data
863 */
864 for(i=j=0; i<pTab->nCol; i++){
865 if( pColumn ){
866 for(j=0; j<pColumn->nId; j++){
867 if( pColumn->a[j].idx==i ) break;
868 }
869 }
870 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId)
871 || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){
872 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
873 }else if( useTempTable ){
874 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1);
875 }else{
876 assert( pSelect==0 ); /* Otherwise useTempTable is true */
877 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
878 }
879 if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++;
880 }
881
882 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
883 ** do not attempt any conversions before assembling the record.
884 ** If this is a real table, attempt conversions as required by the
885 ** table column affinities.
886 */
887 if( !isView ){
888 sqlite3TableAffinity(v, pTab, regCols+1);
889 }
890
891 /* Fire BEFORE or INSTEAD OF triggers */
892 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
893 pTab, regCols-pTab->nCol-1, onError, endOfLoop);
894
895 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
896 }
897
898 /* Compute the content of the next row to insert into a range of
899 ** registers beginning at regIns.
900 */
901 if( !isView ){
902 if( IsVirtual(pTab) ){
903 /* The row that the VUpdate opcode will delete: none */
904 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
905 }
906 if( ipkColumn>=0 ){
907 if( useTempTable ){
908 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
909 }else if( pSelect ){
910 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
911 }else{
912 VdbeOp *pOp;
913 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
914 pOp = sqlite3VdbeGetOp(v, -1);
915 if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
916 appendFlag = 1;
917 pOp->opcode = OP_NewRowid;
918 pOp->p1 = iDataCur;
919 pOp->p2 = regRowid;
920 pOp->p3 = regAutoinc;
921 }
922 }
923 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
924 ** to generate a unique primary key value.
925 */
926 if( !appendFlag ){
927 int addr1;
928 if( !IsVirtual(pTab) ){
929 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
930 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
931 sqlite3VdbeJumpHere(v, addr1);
932 }else{
933 addr1 = sqlite3VdbeCurrentAddr(v);
934 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
935 }
936 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
937 }
938 }else if( IsVirtual(pTab) || withoutRowid ){
939 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
940 }else{
941 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
942 appendFlag = 1;
943 }
944 autoIncStep(pParse, regAutoinc, regRowid);
945
946 /* Compute data for all columns of the new entry, beginning
947 ** with the first column.
948 */
949 nHidden = 0;
950 for(i=0; i<pTab->nCol; i++){
951 int iRegStore = regRowid+1+i;
952 if( i==pTab->iPKey ){
953 /* The value of the INTEGER PRIMARY KEY column is always a NULL.
954 ** Whenever this column is read, the rowid will be substituted
955 ** in its place. Hence, fill this column with a NULL to avoid
956 ** taking up data space with information that will never be used.
957 ** As there may be shallow copies of this value, make it a soft-NULL */
958 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
959 continue;
960 }
961 if( pColumn==0 ){
962 if( IsHiddenColumn(&pTab->aCol[i]) ){
963 j = -1;
964 nHidden++;
965 }else{
966 j = i - nHidden;
967 }
968 }else{
969 for(j=0; j<pColumn->nId; j++){
970 if( pColumn->a[j].idx==i ) break;
971 }
972 }
973 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
974 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
975 }else if( useTempTable ){
976 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
977 }else if( pSelect ){
978 if( regFromSelect!=regData ){
979 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
980 }
981 }else{
982 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
983 }
984 }
985
986 /* Generate code to check constraints and generate index keys and
987 ** do the insertion.
988 */
989 #ifndef SQLITE_OMIT_VIRTUALTABLE
990 if( IsVirtual(pTab) ){
991 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
992 sqlite3VtabMakeWritable(pParse, pTab);
993 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
994 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
995 sqlite3MayAbort(pParse);
996 }else
997 #endif
998 {
999 int isReplace; /* Set to true if constraints may cause a replace */
1000 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */
1001 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
1002 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0
1003 );
1004 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1005
1006 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1007 ** constraints or (b) there are no triggers and this table is not a
1008 ** parent table in a foreign key constraint. It is safe to set the
1009 ** flag in the second case as if any REPLACE constraint is hit, an
1010 ** OP_Delete or OP_IdxDelete instruction will be executed on each
1011 ** cursor that is disturbed. And these instructions both clear the
1012 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1013 ** functionality. */
1014 bUseSeek = (isReplace==0 || (pTrigger==0 &&
1015 ((db->flags & SQLITE_ForeignKeys)==0 || sqlite3FkReferences(pTab)==0)
1016 ));
1017 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1018 regIns, aRegIdx, 0, appendFlag, bUseSeek
1019 );
1020 }
1021 }
1022
1023 /* Update the count of rows that are inserted
1024 */
1025 if( (db->flags & SQLITE_CountRows)!=0 ){
1026 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1027 }
1028
1029 if( pTrigger ){
1030 /* Code AFTER triggers */
1031 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1032 pTab, regData-2-pTab->nCol, onError, endOfLoop);
1033 }
1034
1035 /* The bottom of the main insertion loop, if the data source
1036 ** is a SELECT statement.
1037 */
1038 sqlite3VdbeResolveLabel(v, endOfLoop);
1039 if( useTempTable ){
1040 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
1041 sqlite3VdbeJumpHere(v, addrInsTop);
1042 sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1043 }else if( pSelect ){
1044 sqlite3VdbeGoto(v, addrCont);
1045 sqlite3VdbeJumpHere(v, addrInsTop);
1046 }
1047
1048 insert_end:
1049 /* Update the sqlite_sequence table by storing the content of the
1050 ** maximum rowid counter values recorded while inserting into
1051 ** autoincrement tables.
1052 */
1053 if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1054 sqlite3AutoincrementEnd(pParse);
1055 }
1056
1057 /*
1058 ** Return the number of rows inserted. If this routine is
1059 ** generating code because of a call to sqlite3NestedParse(), do not
1060 ** invoke the callback function.
1061 */
1062 if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
1063 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
1064 sqlite3VdbeSetNumCols(v, 1);
1065 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
1066 }
1067
1068 insert_cleanup:
1069 sqlite3SrcListDelete(db, pTabList);
1070 sqlite3ExprListDelete(db, pList);
1071 sqlite3SelectDelete(db, pSelect);
1072 sqlite3IdListDelete(db, pColumn);
1073 sqlite3DbFree(db, aRegIdx);
1074 }
1075
1076 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1077 ** they may interfere with compilation of other functions in this file
1078 ** (or in another file, if this file becomes part of the amalgamation). */
1079 #ifdef isView
1080 #undef isView
1081 #endif
1082 #ifdef pTrigger
1083 #undef pTrigger
1084 #endif
1085 #ifdef tmask
1086 #undef tmask
1087 #endif
1088
1089 /*
1090 ** Meanings of bits in of pWalker->eCode for checkConstraintUnchanged()
1091 */
1092 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */
1093 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */
1094
1095 /* This is the Walker callback from checkConstraintUnchanged(). Set
1096 ** bit 0x01 of pWalker->eCode if
1097 ** pWalker->eCode to 0 if this expression node references any of the
1098 ** columns that are being modifed by an UPDATE statement.
1099 */
1100 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
1101 if( pExpr->op==TK_COLUMN ){
1102 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
1103 if( pExpr->iColumn>=0 ){
1104 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
1105 pWalker->eCode |= CKCNSTRNT_COLUMN;
1106 }
1107 }else{
1108 pWalker->eCode |= CKCNSTRNT_ROWID;
1109 }
1110 }
1111 return WRC_Continue;
1112 }
1113
1114 /*
1115 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The
1116 ** only columns that are modified by the UPDATE are those for which
1117 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1118 **
1119 ** Return true if CHECK constraint pExpr does not use any of the
1120 ** changing columns (or the rowid if it is changing). In other words,
1121 ** return true if this CHECK constraint can be skipped when validating
1122 ** the new row in the UPDATE statement.
1123 */
1124 static int checkConstraintUnchanged(Expr *pExpr, int *aiChng, int chngRowid){
1125 Walker w;
1126 memset(&w, 0, sizeof(w));
1127 w.eCode = 0;
1128 w.xExprCallback = checkConstraintExprNode;
1129 w.u.aiCol = aiChng;
1130 sqlite3WalkExpr(&w, pExpr);
1131 if( !chngRowid ){
1132 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
1133 w.eCode &= ~CKCNSTRNT_ROWID;
1134 }
1135 testcase( w.eCode==0 );
1136 testcase( w.eCode==CKCNSTRNT_COLUMN );
1137 testcase( w.eCode==CKCNSTRNT_ROWID );
1138 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
1139 return !w.eCode;
1140 }
1141
1142 /*
1143 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1144 ** on table pTab.
1145 **
1146 ** The regNewData parameter is the first register in a range that contains
1147 ** the data to be inserted or the data after the update. There will be
1148 ** pTab->nCol+1 registers in this range. The first register (the one
1149 ** that regNewData points to) will contain the new rowid, or NULL in the
1150 ** case of a WITHOUT ROWID table. The second register in the range will
1151 ** contain the content of the first table column. The third register will
1152 ** contain the content of the second table column. And so forth.
1153 **
1154 ** The regOldData parameter is similar to regNewData except that it contains
1155 ** the data prior to an UPDATE rather than afterwards. regOldData is zero
1156 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by
1157 ** checking regOldData for zero.
1158 **
1159 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1160 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1161 ** might be modified by the UPDATE. If pkChng is false, then the key of
1162 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1163 **
1164 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1165 ** was explicitly specified as part of the INSERT statement. If pkChng
1166 ** is zero, it means that the either rowid is computed automatically or
1167 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT,
1168 ** pkChng will only be true if the INSERT statement provides an integer
1169 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1170 **
1171 ** The code generated by this routine will store new index entries into
1172 ** registers identified by aRegIdx[]. No index entry is created for
1173 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
1174 ** the same as the order of indices on the linked list of indices
1175 ** at pTab->pIndex.
1176 **
1177 ** The caller must have already opened writeable cursors on the main
1178 ** table and all applicable indices (that is to say, all indices for which
1179 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when
1180 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1181 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor
1182 ** for the first index in the pTab->pIndex list. Cursors for other indices
1183 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1184 **
1185 ** This routine also generates code to check constraints. NOT NULL,
1186 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
1187 ** then the appropriate action is performed. There are five possible
1188 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1189 **
1190 ** Constraint type Action What Happens
1191 ** --------------- ---------- ----------------------------------------
1192 ** any ROLLBACK The current transaction is rolled back and
1193 ** sqlite3_step() returns immediately with a
1194 ** return code of SQLITE_CONSTRAINT.
1195 **
1196 ** any ABORT Back out changes from the current command
1197 ** only (do not do a complete rollback) then
1198 ** cause sqlite3_step() to return immediately
1199 ** with SQLITE_CONSTRAINT.
1200 **
1201 ** any FAIL Sqlite3_step() returns immediately with a
1202 ** return code of SQLITE_CONSTRAINT. The
1203 ** transaction is not rolled back and any
1204 ** changes to prior rows are retained.
1205 **
1206 ** any IGNORE The attempt in insert or update the current
1207 ** row is skipped, without throwing an error.
1208 ** Processing continues with the next row.
1209 ** (There is an immediate jump to ignoreDest.)
1210 **
1211 ** NOT NULL REPLACE The NULL value is replace by the default
1212 ** value for that column. If the default value
1213 ** is NULL, the action is the same as ABORT.
1214 **
1215 ** UNIQUE REPLACE The other row that conflicts with the row
1216 ** being inserted is removed.
1217 **
1218 ** CHECK REPLACE Illegal. The results in an exception.
1219 **
1220 ** Which action to take is determined by the overrideError parameter.
1221 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1222 ** is used. Or if pParse->onError==OE_Default then the onError value
1223 ** for the constraint is used.
1224 */
1225 void sqlite3GenerateConstraintChecks(
1226 Parse *pParse, /* The parser context */
1227 Table *pTab, /* The table being inserted or updated */
1228 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */
1229 int iDataCur, /* Canonical data cursor (main table or PK index) */
1230 int iIdxCur, /* First index cursor */
1231 int regNewData, /* First register in a range holding values to insert */
1232 int regOldData, /* Previous content. 0 for INSERTs */
1233 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */
1234 u8 overrideError, /* Override onError to this if not OE_Default */
1235 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */
1236 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */
1237 int *aiChng /* column i is unchanged if aiChng[i]<0 */
1238 ){
1239 Vdbe *v; /* VDBE under constrution */
1240 Index *pIdx; /* Pointer to one of the indices */
1241 Index *pPk = 0; /* The PRIMARY KEY index */
1242 sqlite3 *db; /* Database connection */
1243 int i; /* loop counter */
1244 int ix; /* Index loop counter */
1245 int nCol; /* Number of columns */
1246 int onError; /* Conflict resolution strategy */
1247 int addr1; /* Address of jump instruction */
1248 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1249 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1250 int ipkTop = 0; /* Top of the rowid change constraint check */
1251 int ipkBottom = 0; /* Bottom of the rowid change constraint check */
1252 u8 isUpdate; /* True if this is an UPDATE operation */
1253 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */
1254
1255 isUpdate = regOldData!=0;
1256 db = pParse->db;
1257 v = sqlite3GetVdbe(pParse);
1258 assert( v!=0 );
1259 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
1260 nCol = pTab->nCol;
1261
1262 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1263 ** normal rowid tables. nPkField is the number of key fields in the
1264 ** pPk index or 1 for a rowid table. In other words, nPkField is the
1265 ** number of fields in the true primary key of the table. */
1266 if( HasRowid(pTab) ){
1267 pPk = 0;
1268 nPkField = 1;
1269 }else{
1270 pPk = sqlite3PrimaryKeyIndex(pTab);
1271 nPkField = pPk->nKeyCol;
1272 }
1273
1274 /* Record that this module has started */
1275 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1276 iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1277
1278 /* Test all NOT NULL constraints.
1279 */
1280 for(i=0; i<nCol; i++){
1281 if( i==pTab->iPKey ){
1282 continue; /* ROWID is never NULL */
1283 }
1284 if( aiChng && aiChng[i]<0 ){
1285 /* Don't bother checking for NOT NULL on columns that do not change */
1286 continue;
1287 }
1288 onError = pTab->aCol[i].notNull;
1289 if( onError==OE_None ) continue; /* This column is allowed to be NULL */
1290 if( overrideError!=OE_Default ){
1291 onError = overrideError;
1292 }else if( onError==OE_Default ){
1293 onError = OE_Abort;
1294 }
1295 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1296 onError = OE_Abort;
1297 }
1298 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1299 || onError==OE_Ignore || onError==OE_Replace );
1300 switch( onError ){
1301 case OE_Abort:
1302 sqlite3MayAbort(pParse);
1303 /* Fall through */
1304 case OE_Rollback:
1305 case OE_Fail: {
1306 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1307 pTab->aCol[i].zName);
1308 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError,
1309 regNewData+1+i);
1310 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC);
1311 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1312 VdbeCoverage(v);
1313 break;
1314 }
1315 case OE_Ignore: {
1316 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest);
1317 VdbeCoverage(v);
1318 break;
1319 }
1320 default: {
1321 assert( onError==OE_Replace );
1322 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i);
1323 VdbeCoverage(v);
1324 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i);
1325 sqlite3VdbeJumpHere(v, addr1);
1326 break;
1327 }
1328 }
1329 }
1330
1331 /* Test all CHECK constraints
1332 */
1333 #ifndef SQLITE_OMIT_CHECK
1334 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1335 ExprList *pCheck = pTab->pCheck;
1336 pParse->ckBase = regNewData+1;
1337 onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1338 for(i=0; i<pCheck->nExpr; i++){
1339 int allOk;
1340 Expr *pExpr = pCheck->a[i].pExpr;
1341 if( aiChng && checkConstraintUnchanged(pExpr, aiChng, pkChng) ) continue;
1342 allOk = sqlite3VdbeMakeLabel(v);
1343 sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL);
1344 if( onError==OE_Ignore ){
1345 sqlite3VdbeGoto(v, ignoreDest);
1346 }else{
1347 char *zName = pCheck->a[i].zName;
1348 if( zName==0 ) zName = pTab->zName;
1349 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
1350 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1351 onError, zName, P4_TRANSIENT,
1352 P5_ConstraintCheck);
1353 }
1354 sqlite3VdbeResolveLabel(v, allOk);
1355 }
1356 }
1357 #endif /* !defined(SQLITE_OMIT_CHECK) */
1358
1359 /* If rowid is changing, make sure the new rowid does not previously
1360 ** exist in the table.
1361 */
1362 if( pkChng && pPk==0 ){
1363 int addrRowidOk = sqlite3VdbeMakeLabel(v);
1364
1365 /* Figure out what action to take in case of a rowid collision */
1366 onError = pTab->keyConf;
1367 if( overrideError!=OE_Default ){
1368 onError = overrideError;
1369 }else if( onError==OE_Default ){
1370 onError = OE_Abort;
1371 }
1372
1373 if( isUpdate ){
1374 /* pkChng!=0 does not mean that the rowid has changed, only that
1375 ** it might have changed. Skip the conflict logic below if the rowid
1376 ** is unchanged. */
1377 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
1378 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1379 VdbeCoverage(v);
1380 }
1381
1382 /* If the response to a rowid conflict is REPLACE but the response
1383 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
1384 ** to defer the running of the rowid conflict checking until after
1385 ** the UNIQUE constraints have run.
1386 */
1387 if( onError==OE_Replace && overrideError!=OE_Replace ){
1388 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1389 if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){
1390 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto);
1391 break;
1392 }
1393 }
1394 }
1395
1396 /* Check to see if the new rowid already exists in the table. Skip
1397 ** the following conflict logic if it does not. */
1398 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
1399 VdbeCoverage(v);
1400
1401 /* Generate code that deals with a rowid collision */
1402 switch( onError ){
1403 default: {
1404 onError = OE_Abort;
1405 /* Fall thru into the next case */
1406 }
1407 case OE_Rollback:
1408 case OE_Abort:
1409 case OE_Fail: {
1410 sqlite3RowidConstraint(pParse, onError, pTab);
1411 break;
1412 }
1413 case OE_Replace: {
1414 /* If there are DELETE triggers on this table and the
1415 ** recursive-triggers flag is set, call GenerateRowDelete() to
1416 ** remove the conflicting row from the table. This will fire
1417 ** the triggers and remove both the table and index b-tree entries.
1418 **
1419 ** Otherwise, if there are no triggers or the recursive-triggers
1420 ** flag is not set, but the table has one or more indexes, call
1421 ** GenerateRowIndexDelete(). This removes the index b-tree entries
1422 ** only. The table b-tree entry will be replaced by the new entry
1423 ** when it is inserted.
1424 **
1425 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
1426 ** also invoke MultiWrite() to indicate that this VDBE may require
1427 ** statement rollback (if the statement is aborted after the delete
1428 ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
1429 ** but being more selective here allows statements like:
1430 **
1431 ** REPLACE INTO t(rowid) VALUES($newrowid)
1432 **
1433 ** to run without a statement journal if there are no indexes on the
1434 ** table.
1435 */
1436 Trigger *pTrigger = 0;
1437 if( db->flags&SQLITE_RecTriggers ){
1438 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1439 }
1440 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
1441 sqlite3MultiWrite(pParse);
1442 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1443 regNewData, 1, 0, OE_Replace, 1, -1);
1444 }else{
1445 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1446 if( HasRowid(pTab) ){
1447 /* This OP_Delete opcode fires the pre-update-hook only. It does
1448 ** not modify the b-tree. It is more efficient to let the coming
1449 ** OP_Insert replace the existing entry than it is to delete the
1450 ** existing entry and then insert a new one. */
1451 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
1452 sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
1453 }
1454 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1455 if( pTab->pIndex ){
1456 sqlite3MultiWrite(pParse);
1457 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
1458 }
1459 }
1460 seenReplace = 1;
1461 break;
1462 }
1463 case OE_Ignore: {
1464 /*assert( seenReplace==0 );*/
1465 sqlite3VdbeGoto(v, ignoreDest);
1466 break;
1467 }
1468 }
1469 sqlite3VdbeResolveLabel(v, addrRowidOk);
1470 if( ipkTop ){
1471 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
1472 sqlite3VdbeJumpHere(v, ipkTop);
1473 }
1474 }
1475
1476 /* Test all UNIQUE constraints by creating entries for each UNIQUE
1477 ** index and making sure that duplicate entries do not already exist.
1478 ** Compute the revised record entries for indices as we go.
1479 **
1480 ** This loop also handles the case of the PRIMARY KEY index for a
1481 ** WITHOUT ROWID table.
1482 */
1483 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
1484 int regIdx; /* Range of registers hold conent for pIdx */
1485 int regR; /* Range of registers holding conflicting PK */
1486 int iThisCur; /* Cursor for this UNIQUE index */
1487 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */
1488
1489 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */
1490 if( bAffinityDone==0 ){
1491 sqlite3TableAffinity(v, pTab, regNewData+1);
1492 bAffinityDone = 1;
1493 }
1494 iThisCur = iIdxCur+ix;
1495 addrUniqueOk = sqlite3VdbeMakeLabel(v);
1496
1497 /* Skip partial indices for which the WHERE clause is not true */
1498 if( pIdx->pPartIdxWhere ){
1499 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
1500 pParse->ckBase = regNewData+1;
1501 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
1502 SQLITE_JUMPIFNULL);
1503 pParse->ckBase = 0;
1504 }
1505
1506 /* Create a record for this index entry as it should appear after
1507 ** the insert or update. Store that record in the aRegIdx[ix] register
1508 */
1509 regIdx = aRegIdx[ix]+1;
1510 for(i=0; i<pIdx->nColumn; i++){
1511 int iField = pIdx->aiColumn[i];
1512 int x;
1513 if( iField==XN_EXPR ){
1514 pParse->ckBase = regNewData+1;
1515 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
1516 pParse->ckBase = 0;
1517 VdbeComment((v, "%s column %d", pIdx->zName, i));
1518 }else{
1519 if( iField==XN_ROWID || iField==pTab->iPKey ){
1520 x = regNewData;
1521 }else{
1522 x = iField + regNewData + 1;
1523 }
1524 sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i);
1525 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
1526 }
1527 }
1528 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
1529 VdbeComment((v, "for %s", pIdx->zName));
1530
1531 /* In an UPDATE operation, if this index is the PRIMARY KEY index
1532 ** of a WITHOUT ROWID table and there has been no change the
1533 ** primary key, then no collision is possible. The collision detection
1534 ** logic below can all be skipped. */
1535 if( isUpdate && pPk==pIdx && pkChng==0 ){
1536 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1537 continue;
1538 }
1539
1540 /* Find out what action to take in case there is a uniqueness conflict */
1541 onError = pIdx->onError;
1542 if( onError==OE_None ){
1543 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1544 continue; /* pIdx is not a UNIQUE index */
1545 }
1546 if( overrideError!=OE_Default ){
1547 onError = overrideError;
1548 }else if( onError==OE_Default ){
1549 onError = OE_Abort;
1550 }
1551
1552 /* Collision detection may be omitted if all of the following are true:
1553 ** (1) The conflict resolution algorithm is REPLACE
1554 ** (2) The table is a WITHOUT ROWID table
1555 ** (3) There are no secondary indexes on the table
1556 ** (4) No delete triggers need to be fired if there is a conflict
1557 ** (5) No FK constraint counters need to be updated if a conflict occurs.
1558 */
1559 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */
1560 && pPk==pIdx /* Condition 2 */
1561 && onError==OE_Replace /* Condition 1 */
1562 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */
1563 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0))
1564 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */
1565 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab)))
1566 ){
1567 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1568 continue;
1569 }
1570
1571 /* Check to see if the new index entry will be unique */
1572 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
1573 regIdx, pIdx->nKeyCol); VdbeCoverage(v);
1574
1575 /* Generate code to handle collisions */
1576 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
1577 if( isUpdate || onError==OE_Replace ){
1578 if( HasRowid(pTab) ){
1579 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
1580 /* Conflict only if the rowid of the existing index entry
1581 ** is different from old-rowid */
1582 if( isUpdate ){
1583 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
1584 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1585 VdbeCoverage(v);
1586 }
1587 }else{
1588 int x;
1589 /* Extract the PRIMARY KEY from the end of the index entry and
1590 ** store it in registers regR..regR+nPk-1 */
1591 if( pIdx!=pPk ){
1592 for(i=0; i<pPk->nKeyCol; i++){
1593 assert( pPk->aiColumn[i]>=0 );
1594 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]);
1595 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
1596 VdbeComment((v, "%s.%s", pTab->zName,
1597 pTab->aCol[pPk->aiColumn[i]].zName));
1598 }
1599 }
1600 if( isUpdate ){
1601 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
1602 ** table, only conflict if the new PRIMARY KEY values are actually
1603 ** different from the old.
1604 **
1605 ** For a UNIQUE index, only conflict if the PRIMARY KEY values
1606 ** of the matched index row are different from the original PRIMARY
1607 ** KEY values of this row before the update. */
1608 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
1609 int op = OP_Ne;
1610 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
1611
1612 for(i=0; i<pPk->nKeyCol; i++){
1613 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
1614 x = pPk->aiColumn[i];
1615 assert( x>=0 );
1616 if( i==(pPk->nKeyCol-1) ){
1617 addrJump = addrUniqueOk;
1618 op = OP_Eq;
1619 }
1620 sqlite3VdbeAddOp4(v, op,
1621 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
1622 );
1623 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1624 VdbeCoverageIf(v, op==OP_Eq);
1625 VdbeCoverageIf(v, op==OP_Ne);
1626 }
1627 }
1628 }
1629 }
1630
1631 /* Generate code that executes if the new index entry is not unique */
1632 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1633 || onError==OE_Ignore || onError==OE_Replace );
1634 switch( onError ){
1635 case OE_Rollback:
1636 case OE_Abort:
1637 case OE_Fail: {
1638 sqlite3UniqueConstraint(pParse, onError, pIdx);
1639 break;
1640 }
1641 case OE_Ignore: {
1642 sqlite3VdbeGoto(v, ignoreDest);
1643 break;
1644 }
1645 default: {
1646 Trigger *pTrigger = 0;
1647 assert( onError==OE_Replace );
1648 sqlite3MultiWrite(pParse);
1649 if( db->flags&SQLITE_RecTriggers ){
1650 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1651 }
1652 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1653 regR, nPkField, 0, OE_Replace,
1654 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
1655 seenReplace = 1;
1656 break;
1657 }
1658 }
1659 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1660 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
1661 }
1662 if( ipkTop ){
1663 sqlite3VdbeGoto(v, ipkTop+1);
1664 sqlite3VdbeJumpHere(v, ipkBottom);
1665 }
1666
1667 *pbMayReplace = seenReplace;
1668 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
1669 }
1670
1671 #ifdef SQLITE_ENABLE_NULL_TRIM
1672 /*
1673 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
1674 ** to be the number of columns in table pTab that must not be NULL-trimmed.
1675 **
1676 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
1677 */
1678 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
1679 u16 i;
1680
1681 /* Records with omitted columns are only allowed for schema format
1682 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
1683 if( pTab->pSchema->file_format<2 ) return;
1684
1685 for(i=pTab->nCol; i>1 && pTab->aCol[i-1].pDflt==0; i--){}
1686 sqlite3VdbeChangeP5(v, i);
1687 }
1688 #endif
1689
1690 /*
1691 ** This routine generates code to finish the INSERT or UPDATE operation
1692 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1693 ** A consecutive range of registers starting at regNewData contains the
1694 ** rowid and the content to be inserted.
1695 **
1696 ** The arguments to this routine should be the same as the first six
1697 ** arguments to sqlite3GenerateConstraintChecks.
1698 */
1699 void sqlite3CompleteInsertion(
1700 Parse *pParse, /* The parser context */
1701 Table *pTab, /* the table into which we are inserting */
1702 int iDataCur, /* Cursor of the canonical data source */
1703 int iIdxCur, /* First index cursor */
1704 int regNewData, /* Range of content */
1705 int *aRegIdx, /* Register used by each index. 0 for unused indices */
1706 int update_flags, /* True for UPDATE, False for INSERT */
1707 int appendBias, /* True if this is likely to be an append */
1708 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
1709 ){
1710 Vdbe *v; /* Prepared statements under construction */
1711 Index *pIdx; /* An index being inserted or updated */
1712 u8 pik_flags; /* flag values passed to the btree insert */
1713 int regData; /* Content registers (after the rowid) */
1714 int regRec; /* Register holding assembled record for the table */
1715 int i; /* Loop counter */
1716 u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */
1717
1718 assert( update_flags==0
1719 || update_flags==OPFLAG_ISUPDATE
1720 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
1721 );
1722
1723 v = sqlite3GetVdbe(pParse);
1724 assert( v!=0 );
1725 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
1726 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1727 if( aRegIdx[i]==0 ) continue;
1728 bAffinityDone = 1;
1729 if( pIdx->pPartIdxWhere ){
1730 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
1731 VdbeCoverage(v);
1732 }
1733 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
1734 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
1735 assert( pParse->nested==0 );
1736 pik_flags |= OPFLAG_NCHANGE;
1737 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
1738 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1739 if( update_flags==0 ){
1740 sqlite3VdbeAddOp4(v, OP_InsertInt,
1741 iIdxCur+i, aRegIdx[i], 0, (char*)pTab, P4_TABLE
1742 );
1743 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
1744 }
1745 #endif
1746 }
1747 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
1748 aRegIdx[i]+1,
1749 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
1750 sqlite3VdbeChangeP5(v, pik_flags);
1751 }
1752 if( !HasRowid(pTab) ) return;
1753 regData = regNewData + 1;
1754 regRec = sqlite3GetTempReg(pParse);
1755 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
1756 sqlite3SetMakeRecordP5(v, pTab);
1757 if( !bAffinityDone ){
1758 sqlite3TableAffinity(v, pTab, 0);
1759 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
1760 }
1761 if( pParse->nested ){
1762 pik_flags = 0;
1763 }else{
1764 pik_flags = OPFLAG_NCHANGE;
1765 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
1766 }
1767 if( appendBias ){
1768 pik_flags |= OPFLAG_APPEND;
1769 }
1770 if( useSeekResult ){
1771 pik_flags |= OPFLAG_USESEEKRESULT;
1772 }
1773 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData);
1774 if( !pParse->nested ){
1775 sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
1776 }
1777 sqlite3VdbeChangeP5(v, pik_flags);
1778 }
1779
1780 /*
1781 ** Allocate cursors for the pTab table and all its indices and generate
1782 ** code to open and initialized those cursors.
1783 **
1784 ** The cursor for the object that contains the complete data (normally
1785 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
1786 ** ROWID table) is returned in *piDataCur. The first index cursor is
1787 ** returned in *piIdxCur. The number of indices is returned.
1788 **
1789 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
1790 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
1791 ** If iBase is negative, then allocate the next available cursor.
1792 **
1793 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
1794 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
1795 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
1796 ** pTab->pIndex list.
1797 **
1798 ** If pTab is a virtual table, then this routine is a no-op and the
1799 ** *piDataCur and *piIdxCur values are left uninitialized.
1800 */
1801 int sqlite3OpenTableAndIndices(
1802 Parse *pParse, /* Parsing context */
1803 Table *pTab, /* Table to be opened */
1804 int op, /* OP_OpenRead or OP_OpenWrite */
1805 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
1806 int iBase, /* Use this for the table cursor, if there is one */
1807 u8 *aToOpen, /* If not NULL: boolean for each table and index */
1808 int *piDataCur, /* Write the database source cursor number here */
1809 int *piIdxCur /* Write the first index cursor number here */
1810 ){
1811 int i;
1812 int iDb;
1813 int iDataCur;
1814 Index *pIdx;
1815 Vdbe *v;
1816
1817 assert( op==OP_OpenRead || op==OP_OpenWrite );
1818 assert( op==OP_OpenWrite || p5==0 );
1819 if( IsVirtual(pTab) ){
1820 /* This routine is a no-op for virtual tables. Leave the output
1821 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
1822 ** can detect if they are used by mistake in the caller. */
1823 return 0;
1824 }
1825 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1826 v = sqlite3GetVdbe(pParse);
1827 assert( v!=0 );
1828 if( iBase<0 ) iBase = pParse->nTab;
1829 iDataCur = iBase++;
1830 if( piDataCur ) *piDataCur = iDataCur;
1831 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
1832 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
1833 }else{
1834 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
1835 }
1836 if( piIdxCur ) *piIdxCur = iBase;
1837 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1838 int iIdxCur = iBase++;
1839 assert( pIdx->pSchema==pTab->pSchema );
1840 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
1841 if( piDataCur ) *piDataCur = iIdxCur;
1842 p5 = 0;
1843 }
1844 if( aToOpen==0 || aToOpen[i+1] ){
1845 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
1846 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1847 sqlite3VdbeChangeP5(v, p5);
1848 VdbeComment((v, "%s", pIdx->zName));
1849 }
1850 }
1851 if( iBase>pParse->nTab ) pParse->nTab = iBase;
1852 return i;
1853 }
1854
1855
1856 #ifdef SQLITE_TEST
1857 /*
1858 ** The following global variable is incremented whenever the
1859 ** transfer optimization is used. This is used for testing
1860 ** purposes only - to make sure the transfer optimization really
1861 ** is happening when it is supposed to.
1862 */
1863 int sqlite3_xferopt_count;
1864 #endif /* SQLITE_TEST */
1865
1866
1867 #ifndef SQLITE_OMIT_XFER_OPT
1868 /*
1869 ** Check to see if index pSrc is compatible as a source of data
1870 ** for index pDest in an insert transfer optimization. The rules
1871 ** for a compatible index:
1872 **
1873 ** * The index is over the same set of columns
1874 ** * The same DESC and ASC markings occurs on all columns
1875 ** * The same onError processing (OE_Abort, OE_Ignore, etc)
1876 ** * The same collating sequence on each column
1877 ** * The index has the exact same WHERE clause
1878 */
1879 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
1880 int i;
1881 assert( pDest && pSrc );
1882 assert( pDest->pTable!=pSrc->pTable );
1883 if( pDest->nKeyCol!=pSrc->nKeyCol ){
1884 return 0; /* Different number of columns */
1885 }
1886 if( pDest->onError!=pSrc->onError ){
1887 return 0; /* Different conflict resolution strategies */
1888 }
1889 for(i=0; i<pSrc->nKeyCol; i++){
1890 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
1891 return 0; /* Different columns indexed */
1892 }
1893 if( pSrc->aiColumn[i]==XN_EXPR ){
1894 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
1895 if( sqlite3ExprCompare(pSrc->aColExpr->a[i].pExpr,
1896 pDest->aColExpr->a[i].pExpr, -1)!=0 ){
1897 return 0; /* Different expressions in the index */
1898 }
1899 }
1900 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
1901 return 0; /* Different sort orders */
1902 }
1903 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
1904 return 0; /* Different collating sequences */
1905 }
1906 }
1907 if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
1908 return 0; /* Different WHERE clauses */
1909 }
1910
1911 /* If no test above fails then the indices must be compatible */
1912 return 1;
1913 }
1914
1915 /*
1916 ** Attempt the transfer optimization on INSERTs of the form
1917 **
1918 ** INSERT INTO tab1 SELECT * FROM tab2;
1919 **
1920 ** The xfer optimization transfers raw records from tab2 over to tab1.
1921 ** Columns are not decoded and reassembled, which greatly improves
1922 ** performance. Raw index records are transferred in the same way.
1923 **
1924 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
1925 ** There are lots of rules for determining compatibility - see comments
1926 ** embedded in the code for details.
1927 **
1928 ** This routine returns TRUE if the optimization is guaranteed to be used.
1929 ** Sometimes the xfer optimization will only work if the destination table
1930 ** is empty - a factor that can only be determined at run-time. In that
1931 ** case, this routine generates code for the xfer optimization but also
1932 ** does a test to see if the destination table is empty and jumps over the
1933 ** xfer optimization code if the test fails. In that case, this routine
1934 ** returns FALSE so that the caller will know to go ahead and generate
1935 ** an unoptimized transfer. This routine also returns FALSE if there
1936 ** is no chance that the xfer optimization can be applied.
1937 **
1938 ** This optimization is particularly useful at making VACUUM run faster.
1939 */
1940 static int xferOptimization(
1941 Parse *pParse, /* Parser context */
1942 Table *pDest, /* The table we are inserting into */
1943 Select *pSelect, /* A SELECT statement to use as the data source */
1944 int onError, /* How to handle constraint errors */
1945 int iDbDest /* The database of pDest */
1946 ){
1947 sqlite3 *db = pParse->db;
1948 ExprList *pEList; /* The result set of the SELECT */
1949 Table *pSrc; /* The table in the FROM clause of SELECT */
1950 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
1951 struct SrcList_item *pItem; /* An element of pSelect->pSrc */
1952 int i; /* Loop counter */
1953 int iDbSrc; /* The database of pSrc */
1954 int iSrc, iDest; /* Cursors from source and destination */
1955 int addr1, addr2; /* Loop addresses */
1956 int emptyDestTest = 0; /* Address of test for empty pDest */
1957 int emptySrcTest = 0; /* Address of test for empty pSrc */
1958 Vdbe *v; /* The VDBE we are building */
1959 int regAutoinc; /* Memory register used by AUTOINC */
1960 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
1961 int regData, regRowid; /* Registers holding data and rowid */
1962
1963 if( pSelect==0 ){
1964 return 0; /* Must be of the form INSERT INTO ... SELECT ... */
1965 }
1966 if( pParse->pWith || pSelect->pWith ){
1967 /* Do not attempt to process this query if there are an WITH clauses
1968 ** attached to it. Proceeding may generate a false "no such table: xxx"
1969 ** error if pSelect reads from a CTE named "xxx". */
1970 return 0;
1971 }
1972 if( sqlite3TriggerList(pParse, pDest) ){
1973 return 0; /* tab1 must not have triggers */
1974 }
1975 #ifndef SQLITE_OMIT_VIRTUALTABLE
1976 if( pDest->tabFlags & TF_Virtual ){
1977 return 0; /* tab1 must not be a virtual table */
1978 }
1979 #endif
1980 if( onError==OE_Default ){
1981 if( pDest->iPKey>=0 ) onError = pDest->keyConf;
1982 if( onError==OE_Default ) onError = OE_Abort;
1983 }
1984 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
1985 if( pSelect->pSrc->nSrc!=1 ){
1986 return 0; /* FROM clause must have exactly one term */
1987 }
1988 if( pSelect->pSrc->a[0].pSelect ){
1989 return 0; /* FROM clause cannot contain a subquery */
1990 }
1991 if( pSelect->pWhere ){
1992 return 0; /* SELECT may not have a WHERE clause */
1993 }
1994 if( pSelect->pOrderBy ){
1995 return 0; /* SELECT may not have an ORDER BY clause */
1996 }
1997 /* Do not need to test for a HAVING clause. If HAVING is present but
1998 ** there is no ORDER BY, we will get an error. */
1999 if( pSelect->pGroupBy ){
2000 return 0; /* SELECT may not have a GROUP BY clause */
2001 }
2002 if( pSelect->pLimit ){
2003 return 0; /* SELECT may not have a LIMIT clause */
2004 }
2005 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */
2006 if( pSelect->pPrior ){
2007 return 0; /* SELECT may not be a compound query */
2008 }
2009 if( pSelect->selFlags & SF_Distinct ){
2010 return 0; /* SELECT may not be DISTINCT */
2011 }
2012 pEList = pSelect->pEList;
2013 assert( pEList!=0 );
2014 if( pEList->nExpr!=1 ){
2015 return 0; /* The result set must have exactly one column */
2016 }
2017 assert( pEList->a[0].pExpr );
2018 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
2019 return 0; /* The result set must be the special operator "*" */
2020 }
2021
2022 /* At this point we have established that the statement is of the
2023 ** correct syntactic form to participate in this optimization. Now
2024 ** we have to check the semantics.
2025 */
2026 pItem = pSelect->pSrc->a;
2027 pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
2028 if( pSrc==0 ){
2029 return 0; /* FROM clause does not contain a real table */
2030 }
2031 if( pSrc==pDest ){
2032 return 0; /* tab1 and tab2 may not be the same table */
2033 }
2034 if( HasRowid(pDest)!=HasRowid(pSrc) ){
2035 return 0; /* source and destination must both be WITHOUT ROWID or not */
2036 }
2037 #ifndef SQLITE_OMIT_VIRTUALTABLE
2038 if( pSrc->tabFlags & TF_Virtual ){
2039 return 0; /* tab2 must not be a virtual table */
2040 }
2041 #endif
2042 if( pSrc->pSelect ){
2043 return 0; /* tab2 may not be a view */
2044 }
2045 if( pDest->nCol!=pSrc->nCol ){
2046 return 0; /* Number of columns must be the same in tab1 and tab2 */
2047 }
2048 if( pDest->iPKey!=pSrc->iPKey ){
2049 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
2050 }
2051 for(i=0; i<pDest->nCol; i++){
2052 Column *pDestCol = &pDest->aCol[i];
2053 Column *pSrcCol = &pSrc->aCol[i];
2054 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2055 if( (db->flags & SQLITE_Vacuum)==0
2056 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
2057 ){
2058 return 0; /* Neither table may have __hidden__ columns */
2059 }
2060 #endif
2061 if( pDestCol->affinity!=pSrcCol->affinity ){
2062 return 0; /* Affinity must be the same on all columns */
2063 }
2064 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){
2065 return 0; /* Collating sequence must be the same on all columns */
2066 }
2067 if( pDestCol->notNull && !pSrcCol->notNull ){
2068 return 0; /* tab2 must be NOT NULL if tab1 is */
2069 }
2070 /* Default values for second and subsequent columns need to match. */
2071 if( i>0 ){
2072 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN );
2073 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN );
2074 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0)
2075 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken,
2076 pSrcCol->pDflt->u.zToken)!=0)
2077 ){
2078 return 0; /* Default values must be the same for all columns */
2079 }
2080 }
2081 }
2082 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2083 if( IsUniqueIndex(pDestIdx) ){
2084 destHasUniqueIdx = 1;
2085 }
2086 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
2087 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2088 }
2089 if( pSrcIdx==0 ){
2090 return 0; /* pDestIdx has no corresponding index in pSrc */
2091 }
2092 }
2093 #ifndef SQLITE_OMIT_CHECK
2094 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
2095 return 0; /* Tables have different CHECK constraints. Ticket #2252 */
2096 }
2097 #endif
2098 #ifndef SQLITE_OMIT_FOREIGN_KEY
2099 /* Disallow the transfer optimization if the destination table constains
2100 ** any foreign key constraints. This is more restrictive than necessary.
2101 ** But the main beneficiary of the transfer optimization is the VACUUM
2102 ** command, and the VACUUM command disables foreign key constraints. So
2103 ** the extra complication to make this rule less restrictive is probably
2104 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2105 */
2106 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
2107 return 0;
2108 }
2109 #endif
2110 if( (db->flags & SQLITE_CountRows)!=0 ){
2111 return 0; /* xfer opt does not play well with PRAGMA count_changes */
2112 }
2113
2114 /* If we get this far, it means that the xfer optimization is at
2115 ** least a possibility, though it might only work if the destination
2116 ** table (tab1) is initially empty.
2117 */
2118 #ifdef SQLITE_TEST
2119 sqlite3_xferopt_count++;
2120 #endif
2121 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
2122 v = sqlite3GetVdbe(pParse);
2123 sqlite3CodeVerifySchema(pParse, iDbSrc);
2124 iSrc = pParse->nTab++;
2125 iDest = pParse->nTab++;
2126 regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
2127 regData = sqlite3GetTempReg(pParse);
2128 regRowid = sqlite3GetTempReg(pParse);
2129 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
2130 assert( HasRowid(pDest) || destHasUniqueIdx );
2131 if( (db->flags & SQLITE_Vacuum)==0 && (
2132 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */
2133 || destHasUniqueIdx /* (2) */
2134 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */
2135 )){
2136 /* In some circumstances, we are able to run the xfer optimization
2137 ** only if the destination table is initially empty. Unless the
2138 ** SQLITE_Vacuum flag is set, this block generates code to make
2139 ** that determination. If SQLITE_Vacuum is set, then the destination
2140 ** table is always empty.
2141 **
2142 ** Conditions under which the destination must be empty:
2143 **
2144 ** (1) There is no INTEGER PRIMARY KEY but there are indices.
2145 ** (If the destination is not initially empty, the rowid fields
2146 ** of index entries might need to change.)
2147 **
2148 ** (2) The destination has a unique index. (The xfer optimization
2149 ** is unable to test uniqueness.)
2150 **
2151 ** (3) onError is something other than OE_Abort and OE_Rollback.
2152 */
2153 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
2154 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
2155 sqlite3VdbeJumpHere(v, addr1);
2156 }
2157 if( HasRowid(pSrc) ){
2158 u8 insFlags;
2159 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
2160 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2161 if( pDest->iPKey>=0 ){
2162 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2163 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
2164 VdbeCoverage(v);
2165 sqlite3RowidConstraint(pParse, onError, pDest);
2166 sqlite3VdbeJumpHere(v, addr2);
2167 autoIncStep(pParse, regAutoinc, regRowid);
2168 }else if( pDest->pIndex==0 ){
2169 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
2170 }else{
2171 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2172 assert( (pDest->tabFlags & TF_Autoincrement)==0 );
2173 }
2174 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
2175 if( db->flags & SQLITE_Vacuum ){
2176 sqlite3VdbeAddOp3(v, OP_Last, iDest, 0, -1);
2177 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|
2178 OPFLAG_APPEND|OPFLAG_USESEEKRESULT;
2179 }else{
2180 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND;
2181 }
2182 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid,
2183 (char*)pDest, P4_TABLE);
2184 sqlite3VdbeChangeP5(v, insFlags);
2185 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
2186 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2187 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2188 }else{
2189 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
2190 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
2191 }
2192 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2193 u8 idxInsFlags = 0;
2194 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
2195 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2196 }
2197 assert( pSrcIdx );
2198 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
2199 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
2200 VdbeComment((v, "%s", pSrcIdx->zName));
2201 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
2202 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
2203 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
2204 VdbeComment((v, "%s", pDestIdx->zName));
2205 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2206 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
2207 if( db->flags & SQLITE_Vacuum ){
2208 /* This INSERT command is part of a VACUUM operation, which guarantees
2209 ** that the destination table is empty. If all indexed columns use
2210 ** collation sequence BINARY, then it can also be assumed that the
2211 ** index will be populated by inserting keys in strictly sorted
2212 ** order. In this case, instead of seeking within the b-tree as part
2213 ** of every OP_IdxInsert opcode, an OP_Last is added before the
2214 ** OP_IdxInsert to seek to the point within the b-tree where each key
2215 ** should be inserted. This is faster.
2216 **
2217 ** If any of the indexed columns use a collation sequence other than
2218 ** BINARY, this optimization is disabled. This is because the user
2219 ** might change the definition of a collation sequence and then run
2220 ** a VACUUM command. In that case keys may not be written in strictly
2221 ** sorted order. */
2222 for(i=0; i<pSrcIdx->nColumn; i++){
2223 const char *zColl = pSrcIdx->azColl[i];
2224 assert( sqlite3_stricmp(sqlite3StrBINARY, zColl)!=0
2225 || sqlite3StrBINARY==zColl );
2226 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
2227 }
2228 if( i==pSrcIdx->nColumn ){
2229 idxInsFlags = OPFLAG_USESEEKRESULT;
2230 sqlite3VdbeAddOp3(v, OP_Last, iDest, 0, -1);
2231 }
2232 }
2233 if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){
2234 idxInsFlags |= OPFLAG_NCHANGE;
2235 }
2236 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
2237 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
2238 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
2239 sqlite3VdbeJumpHere(v, addr1);
2240 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2241 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2242 }
2243 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
2244 sqlite3ReleaseTempReg(pParse, regRowid);
2245 sqlite3ReleaseTempReg(pParse, regData);
2246 if( emptyDestTest ){
2247 sqlite3AutoincrementEnd(pParse);
2248 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
2249 sqlite3VdbeJumpHere(v, emptyDestTest);
2250 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2251 return 0;
2252 }else{
2253 return 1;
2254 }
2255 }
2256 #endif /* SQLITE_OMIT_XFER_OPT */
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3170000/src/in-operator.md ('k') | third_party/sqlite/sqlite-src-3170000/src/legacy.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698