OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2001 September 22 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This is the implementation of generic hash-tables |
| 13 ** used in SQLite. |
| 14 */ |
| 15 #include "sqliteInt.h" |
| 16 #include <assert.h> |
| 17 |
| 18 /* Turn bulk memory into a hash table object by initializing the |
| 19 ** fields of the Hash structure. |
| 20 ** |
| 21 ** "pNew" is a pointer to the hash table that is to be initialized. |
| 22 */ |
| 23 void sqlite3HashInit(Hash *pNew){ |
| 24 assert( pNew!=0 ); |
| 25 pNew->first = 0; |
| 26 pNew->count = 0; |
| 27 pNew->htsize = 0; |
| 28 pNew->ht = 0; |
| 29 } |
| 30 |
| 31 /* Remove all entries from a hash table. Reclaim all memory. |
| 32 ** Call this routine to delete a hash table or to reset a hash table |
| 33 ** to the empty state. |
| 34 */ |
| 35 void sqlite3HashClear(Hash *pH){ |
| 36 HashElem *elem; /* For looping over all elements of the table */ |
| 37 |
| 38 assert( pH!=0 ); |
| 39 elem = pH->first; |
| 40 pH->first = 0; |
| 41 sqlite3_free(pH->ht); |
| 42 pH->ht = 0; |
| 43 pH->htsize = 0; |
| 44 while( elem ){ |
| 45 HashElem *next_elem = elem->next; |
| 46 sqlite3_free(elem); |
| 47 elem = next_elem; |
| 48 } |
| 49 pH->count = 0; |
| 50 } |
| 51 |
| 52 /* |
| 53 ** The hashing function. |
| 54 */ |
| 55 static unsigned int strHash(const char *z){ |
| 56 unsigned int h = 0; |
| 57 unsigned char c; |
| 58 while( (c = (unsigned char)*z++)!=0 ){ /*OPTIMIZATION-IF-TRUE*/ |
| 59 /* Knuth multiplicative hashing. (Sorting & Searching, p. 510). |
| 60 ** 0x9e3779b1 is 2654435761 which is the closest prime number to |
| 61 ** (2**32)*golden_ratio, where golden_ratio = (sqrt(5) - 1)/2. */ |
| 62 h += sqlite3UpperToLower[c]; |
| 63 h *= 0x9e3779b1; |
| 64 } |
| 65 return h; |
| 66 } |
| 67 |
| 68 |
| 69 /* Link pNew element into the hash table pH. If pEntry!=0 then also |
| 70 ** insert pNew into the pEntry hash bucket. |
| 71 */ |
| 72 static void insertElement( |
| 73 Hash *pH, /* The complete hash table */ |
| 74 struct _ht *pEntry, /* The entry into which pNew is inserted */ |
| 75 HashElem *pNew /* The element to be inserted */ |
| 76 ){ |
| 77 HashElem *pHead; /* First element already in pEntry */ |
| 78 if( pEntry ){ |
| 79 pHead = pEntry->count ? pEntry->chain : 0; |
| 80 pEntry->count++; |
| 81 pEntry->chain = pNew; |
| 82 }else{ |
| 83 pHead = 0; |
| 84 } |
| 85 if( pHead ){ |
| 86 pNew->next = pHead; |
| 87 pNew->prev = pHead->prev; |
| 88 if( pHead->prev ){ pHead->prev->next = pNew; } |
| 89 else { pH->first = pNew; } |
| 90 pHead->prev = pNew; |
| 91 }else{ |
| 92 pNew->next = pH->first; |
| 93 if( pH->first ){ pH->first->prev = pNew; } |
| 94 pNew->prev = 0; |
| 95 pH->first = pNew; |
| 96 } |
| 97 } |
| 98 |
| 99 |
| 100 /* Resize the hash table so that it cantains "new_size" buckets. |
| 101 ** |
| 102 ** The hash table might fail to resize if sqlite3_malloc() fails or |
| 103 ** if the new size is the same as the prior size. |
| 104 ** Return TRUE if the resize occurs and false if not. |
| 105 */ |
| 106 static int rehash(Hash *pH, unsigned int new_size){ |
| 107 struct _ht *new_ht; /* The new hash table */ |
| 108 HashElem *elem, *next_elem; /* For looping over existing elements */ |
| 109 |
| 110 #if SQLITE_MALLOC_SOFT_LIMIT>0 |
| 111 if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){ |
| 112 new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht); |
| 113 } |
| 114 if( new_size==pH->htsize ) return 0; |
| 115 #endif |
| 116 |
| 117 /* The inability to allocates space for a larger hash table is |
| 118 ** a performance hit but it is not a fatal error. So mark the |
| 119 ** allocation as a benign. Use sqlite3Malloc()/memset(0) instead of |
| 120 ** sqlite3MallocZero() to make the allocation, as sqlite3MallocZero() |
| 121 ** only zeroes the requested number of bytes whereas this module will |
| 122 ** use the actual amount of space allocated for the hash table (which |
| 123 ** may be larger than the requested amount). |
| 124 */ |
| 125 sqlite3BeginBenignMalloc(); |
| 126 new_ht = (struct _ht *)sqlite3Malloc( new_size*sizeof(struct _ht) ); |
| 127 sqlite3EndBenignMalloc(); |
| 128 |
| 129 if( new_ht==0 ) return 0; |
| 130 sqlite3_free(pH->ht); |
| 131 pH->ht = new_ht; |
| 132 pH->htsize = new_size = sqlite3MallocSize(new_ht)/sizeof(struct _ht); |
| 133 memset(new_ht, 0, new_size*sizeof(struct _ht)); |
| 134 for(elem=pH->first, pH->first=0; elem; elem = next_elem){ |
| 135 unsigned int h = strHash(elem->pKey) % new_size; |
| 136 next_elem = elem->next; |
| 137 insertElement(pH, &new_ht[h], elem); |
| 138 } |
| 139 return 1; |
| 140 } |
| 141 |
| 142 /* This function (for internal use only) locates an element in an |
| 143 ** hash table that matches the given key. The hash for this key is |
| 144 ** also computed and returned in the *pH parameter. |
| 145 */ |
| 146 static HashElem *findElementWithHash( |
| 147 const Hash *pH, /* The pH to be searched */ |
| 148 const char *pKey, /* The key we are searching for */ |
| 149 unsigned int *pHash /* Write the hash value here */ |
| 150 ){ |
| 151 HashElem *elem; /* Used to loop thru the element list */ |
| 152 int count; /* Number of elements left to test */ |
| 153 unsigned int h; /* The computed hash */ |
| 154 |
| 155 if( pH->ht ){ /*OPTIMIZATION-IF-TRUE*/ |
| 156 struct _ht *pEntry; |
| 157 h = strHash(pKey) % pH->htsize; |
| 158 pEntry = &pH->ht[h]; |
| 159 elem = pEntry->chain; |
| 160 count = pEntry->count; |
| 161 }else{ |
| 162 h = 0; |
| 163 elem = pH->first; |
| 164 count = pH->count; |
| 165 } |
| 166 *pHash = h; |
| 167 while( count-- ){ |
| 168 assert( elem!=0 ); |
| 169 if( sqlite3StrICmp(elem->pKey,pKey)==0 ){ |
| 170 return elem; |
| 171 } |
| 172 elem = elem->next; |
| 173 } |
| 174 return 0; |
| 175 } |
| 176 |
| 177 /* Remove a single entry from the hash table given a pointer to that |
| 178 ** element and a hash on the element's key. |
| 179 */ |
| 180 static void removeElementGivenHash( |
| 181 Hash *pH, /* The pH containing "elem" */ |
| 182 HashElem* elem, /* The element to be removed from the pH */ |
| 183 unsigned int h /* Hash value for the element */ |
| 184 ){ |
| 185 struct _ht *pEntry; |
| 186 if( elem->prev ){ |
| 187 elem->prev->next = elem->next; |
| 188 }else{ |
| 189 pH->first = elem->next; |
| 190 } |
| 191 if( elem->next ){ |
| 192 elem->next->prev = elem->prev; |
| 193 } |
| 194 if( pH->ht ){ |
| 195 pEntry = &pH->ht[h]; |
| 196 if( pEntry->chain==elem ){ |
| 197 pEntry->chain = elem->next; |
| 198 } |
| 199 pEntry->count--; |
| 200 assert( pEntry->count>=0 ); |
| 201 } |
| 202 sqlite3_free( elem ); |
| 203 pH->count--; |
| 204 if( pH->count==0 ){ |
| 205 assert( pH->first==0 ); |
| 206 assert( pH->count==0 ); |
| 207 sqlite3HashClear(pH); |
| 208 } |
| 209 } |
| 210 |
| 211 /* Attempt to locate an element of the hash table pH with a key |
| 212 ** that matches pKey. Return the data for this element if it is |
| 213 ** found, or NULL if there is no match. |
| 214 */ |
| 215 void *sqlite3HashFind(const Hash *pH, const char *pKey){ |
| 216 HashElem *elem; /* The element that matches key */ |
| 217 unsigned int h; /* A hash on key */ |
| 218 |
| 219 assert( pH!=0 ); |
| 220 assert( pKey!=0 ); |
| 221 elem = findElementWithHash(pH, pKey, &h); |
| 222 return elem ? elem->data : 0; |
| 223 } |
| 224 |
| 225 /* Insert an element into the hash table pH. The key is pKey |
| 226 ** and the data is "data". |
| 227 ** |
| 228 ** If no element exists with a matching key, then a new |
| 229 ** element is created and NULL is returned. |
| 230 ** |
| 231 ** If another element already exists with the same key, then the |
| 232 ** new data replaces the old data and the old data is returned. |
| 233 ** The key is not copied in this instance. If a malloc fails, then |
| 234 ** the new data is returned and the hash table is unchanged. |
| 235 ** |
| 236 ** If the "data" parameter to this function is NULL, then the |
| 237 ** element corresponding to "key" is removed from the hash table. |
| 238 */ |
| 239 void *sqlite3HashInsert(Hash *pH, const char *pKey, void *data){ |
| 240 unsigned int h; /* the hash of the key modulo hash table size */ |
| 241 HashElem *elem; /* Used to loop thru the element list */ |
| 242 HashElem *new_elem; /* New element added to the pH */ |
| 243 |
| 244 assert( pH!=0 ); |
| 245 assert( pKey!=0 ); |
| 246 elem = findElementWithHash(pH,pKey,&h); |
| 247 if( elem ){ |
| 248 void *old_data = elem->data; |
| 249 if( data==0 ){ |
| 250 removeElementGivenHash(pH,elem,h); |
| 251 }else{ |
| 252 elem->data = data; |
| 253 elem->pKey = pKey; |
| 254 } |
| 255 return old_data; |
| 256 } |
| 257 if( data==0 ) return 0; |
| 258 new_elem = (HashElem*)sqlite3Malloc( sizeof(HashElem) ); |
| 259 if( new_elem==0 ) return data; |
| 260 new_elem->pKey = pKey; |
| 261 new_elem->data = data; |
| 262 pH->count++; |
| 263 if( pH->count>=10 && pH->count > 2*pH->htsize ){ |
| 264 if( rehash(pH, pH->count*2) ){ |
| 265 assert( pH->htsize>0 ); |
| 266 h = strHash(pKey) % pH->htsize; |
| 267 } |
| 268 } |
| 269 insertElement(pH, pH->ht ? &pH->ht[h] : 0, new_elem); |
| 270 return 0; |
| 271 } |
OLD | NEW |