Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(110)

Side by Side Diff: third_party/sqlite/sqlite-src-3170000/src/date.c

Issue 2747283002: [sql] Import reference version of SQLite 3.17.. (Closed)
Patch Set: Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2003 October 31
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement date and time
13 ** functions for SQLite.
14 **
15 ** There is only one exported symbol in this file - the function
16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
17 ** All other code has file scope.
18 **
19 ** SQLite processes all times and dates as julian day numbers. The
20 ** dates and times are stored as the number of days since noon
21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
22 ** calendar system.
23 **
24 ** 1970-01-01 00:00:00 is JD 2440587.5
25 ** 2000-01-01 00:00:00 is JD 2451544.5
26 **
27 ** This implementation requires years to be expressed as a 4-digit number
28 ** which means that only dates between 0000-01-01 and 9999-12-31 can
29 ** be represented, even though julian day numbers allow a much wider
30 ** range of dates.
31 **
32 ** The Gregorian calendar system is used for all dates and times,
33 ** even those that predate the Gregorian calendar. Historians usually
34 ** use the julian calendar for dates prior to 1582-10-15 and for some
35 ** dates afterwards, depending on locale. Beware of this difference.
36 **
37 ** The conversion algorithms are implemented based on descriptions
38 ** in the following text:
39 **
40 ** Jean Meeus
41 ** Astronomical Algorithms, 2nd Edition, 1998
42 ** ISBM 0-943396-61-1
43 ** Willmann-Bell, Inc
44 ** Richmond, Virginia (USA)
45 */
46 #include "sqliteInt.h"
47 #include <stdlib.h>
48 #include <assert.h>
49 #include <time.h>
50
51 #ifndef SQLITE_OMIT_DATETIME_FUNCS
52
53 /*
54 ** The MSVC CRT on Windows CE may not have a localtime() function.
55 ** So declare a substitute. The substitute function itself is
56 ** defined in "os_win.c".
57 */
58 #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \
59 (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API)
60 struct tm *__cdecl localtime(const time_t *);
61 #endif
62
63 /*
64 ** A structure for holding a single date and time.
65 */
66 typedef struct DateTime DateTime;
67 struct DateTime {
68 sqlite3_int64 iJD; /* The julian day number times 86400000 */
69 int Y, M, D; /* Year, month, and day */
70 int h, m; /* Hour and minutes */
71 int tz; /* Timezone offset in minutes */
72 double s; /* Seconds */
73 char validJD; /* True (1) if iJD is valid */
74 char rawS; /* Raw numeric value stored in s */
75 char validYMD; /* True (1) if Y,M,D are valid */
76 char validHMS; /* True (1) if h,m,s are valid */
77 char validTZ; /* True (1) if tz is valid */
78 char tzSet; /* Timezone was set explicitly */
79 char isError; /* An overflow has occurred */
80 };
81
82
83 /*
84 ** Convert zDate into one or more integers according to the conversion
85 ** specifier zFormat.
86 **
87 ** zFormat[] contains 4 characters for each integer converted, except for
88 ** the last integer which is specified by three characters. The meaning
89 ** of a four-character format specifiers ABCD is:
90 **
91 ** A: number of digits to convert. Always "2" or "4".
92 ** B: minimum value. Always "0" or "1".
93 ** C: maximum value, decoded as:
94 ** a: 12
95 ** b: 14
96 ** c: 24
97 ** d: 31
98 ** e: 59
99 ** f: 9999
100 ** D: the separator character, or \000 to indicate this is the
101 ** last number to convert.
102 **
103 ** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would
104 ** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-".
105 ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates
106 ** the 2-digit day which is the last integer in the set.
107 **
108 ** The function returns the number of successful conversions.
109 */
110 static int getDigits(const char *zDate, const char *zFormat, ...){
111 /* The aMx[] array translates the 3rd character of each format
112 ** spec into a max size: a b c d e f */
113 static const u16 aMx[] = { 12, 14, 24, 31, 59, 9999 };
114 va_list ap;
115 int cnt = 0;
116 char nextC;
117 va_start(ap, zFormat);
118 do{
119 char N = zFormat[0] - '0';
120 char min = zFormat[1] - '0';
121 int val = 0;
122 u16 max;
123
124 assert( zFormat[2]>='a' && zFormat[2]<='f' );
125 max = aMx[zFormat[2] - 'a'];
126 nextC = zFormat[3];
127 val = 0;
128 while( N-- ){
129 if( !sqlite3Isdigit(*zDate) ){
130 goto end_getDigits;
131 }
132 val = val*10 + *zDate - '0';
133 zDate++;
134 }
135 if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){
136 goto end_getDigits;
137 }
138 *va_arg(ap,int*) = val;
139 zDate++;
140 cnt++;
141 zFormat += 4;
142 }while( nextC );
143 end_getDigits:
144 va_end(ap);
145 return cnt;
146 }
147
148 /*
149 ** Parse a timezone extension on the end of a date-time.
150 ** The extension is of the form:
151 **
152 ** (+/-)HH:MM
153 **
154 ** Or the "zulu" notation:
155 **
156 ** Z
157 **
158 ** If the parse is successful, write the number of minutes
159 ** of change in p->tz and return 0. If a parser error occurs,
160 ** return non-zero.
161 **
162 ** A missing specifier is not considered an error.
163 */
164 static int parseTimezone(const char *zDate, DateTime *p){
165 int sgn = 0;
166 int nHr, nMn;
167 int c;
168 while( sqlite3Isspace(*zDate) ){ zDate++; }
169 p->tz = 0;
170 c = *zDate;
171 if( c=='-' ){
172 sgn = -1;
173 }else if( c=='+' ){
174 sgn = +1;
175 }else if( c=='Z' || c=='z' ){
176 zDate++;
177 goto zulu_time;
178 }else{
179 return c!=0;
180 }
181 zDate++;
182 if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){
183 return 1;
184 }
185 zDate += 5;
186 p->tz = sgn*(nMn + nHr*60);
187 zulu_time:
188 while( sqlite3Isspace(*zDate) ){ zDate++; }
189 p->tzSet = 1;
190 return *zDate!=0;
191 }
192
193 /*
194 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
195 ** The HH, MM, and SS must each be exactly 2 digits. The
196 ** fractional seconds FFFF can be one or more digits.
197 **
198 ** Return 1 if there is a parsing error and 0 on success.
199 */
200 static int parseHhMmSs(const char *zDate, DateTime *p){
201 int h, m, s;
202 double ms = 0.0;
203 if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){
204 return 1;
205 }
206 zDate += 5;
207 if( *zDate==':' ){
208 zDate++;
209 if( getDigits(zDate, "20e", &s)!=1 ){
210 return 1;
211 }
212 zDate += 2;
213 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
214 double rScale = 1.0;
215 zDate++;
216 while( sqlite3Isdigit(*zDate) ){
217 ms = ms*10.0 + *zDate - '0';
218 rScale *= 10.0;
219 zDate++;
220 }
221 ms /= rScale;
222 }
223 }else{
224 s = 0;
225 }
226 p->validJD = 0;
227 p->rawS = 0;
228 p->validHMS = 1;
229 p->h = h;
230 p->m = m;
231 p->s = s + ms;
232 if( parseTimezone(zDate, p) ) return 1;
233 p->validTZ = (p->tz!=0)?1:0;
234 return 0;
235 }
236
237 /*
238 ** Put the DateTime object into its error state.
239 */
240 static void datetimeError(DateTime *p){
241 memset(p, 0, sizeof(*p));
242 p->isError = 1;
243 }
244
245 /*
246 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
247 ** that the YYYY-MM-DD is according to the Gregorian calendar.
248 **
249 ** Reference: Meeus page 61
250 */
251 static void computeJD(DateTime *p){
252 int Y, M, D, A, B, X1, X2;
253
254 if( p->validJD ) return;
255 if( p->validYMD ){
256 Y = p->Y;
257 M = p->M;
258 D = p->D;
259 }else{
260 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
261 M = 1;
262 D = 1;
263 }
264 if( Y<-4713 || Y>9999 || p->rawS ){
265 datetimeError(p);
266 return;
267 }
268 if( M<=2 ){
269 Y--;
270 M += 12;
271 }
272 A = Y/100;
273 B = 2 - A + (A/4);
274 X1 = 36525*(Y+4716)/100;
275 X2 = 306001*(M+1)/10000;
276 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
277 p->validJD = 1;
278 if( p->validHMS ){
279 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000);
280 if( p->validTZ ){
281 p->iJD -= p->tz*60000;
282 p->validYMD = 0;
283 p->validHMS = 0;
284 p->validTZ = 0;
285 }
286 }
287 }
288
289 /*
290 ** Parse dates of the form
291 **
292 ** YYYY-MM-DD HH:MM:SS.FFF
293 ** YYYY-MM-DD HH:MM:SS
294 ** YYYY-MM-DD HH:MM
295 ** YYYY-MM-DD
296 **
297 ** Write the result into the DateTime structure and return 0
298 ** on success and 1 if the input string is not a well-formed
299 ** date.
300 */
301 static int parseYyyyMmDd(const char *zDate, DateTime *p){
302 int Y, M, D, neg;
303
304 if( zDate[0]=='-' ){
305 zDate++;
306 neg = 1;
307 }else{
308 neg = 0;
309 }
310 if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){
311 return 1;
312 }
313 zDate += 10;
314 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
315 if( parseHhMmSs(zDate, p)==0 ){
316 /* We got the time */
317 }else if( *zDate==0 ){
318 p->validHMS = 0;
319 }else{
320 return 1;
321 }
322 p->validJD = 0;
323 p->validYMD = 1;
324 p->Y = neg ? -Y : Y;
325 p->M = M;
326 p->D = D;
327 if( p->validTZ ){
328 computeJD(p);
329 }
330 return 0;
331 }
332
333 /*
334 ** Set the time to the current time reported by the VFS.
335 **
336 ** Return the number of errors.
337 */
338 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
339 p->iJD = sqlite3StmtCurrentTime(context);
340 if( p->iJD>0 ){
341 p->validJD = 1;
342 return 0;
343 }else{
344 return 1;
345 }
346 }
347
348 /*
349 ** Input "r" is a numeric quantity which might be a julian day number,
350 ** or the number of seconds since 1970. If the value if r is within
351 ** range of a julian day number, install it as such and set validJD.
352 ** If the value is a valid unix timestamp, put it in p->s and set p->rawS.
353 */
354 static void setRawDateNumber(DateTime *p, double r){
355 p->s = r;
356 p->rawS = 1;
357 if( r>=0.0 && r<5373484.5 ){
358 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
359 p->validJD = 1;
360 }
361 }
362
363 /*
364 ** Attempt to parse the given string into a julian day number. Return
365 ** the number of errors.
366 **
367 ** The following are acceptable forms for the input string:
368 **
369 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
370 ** DDDD.DD
371 ** now
372 **
373 ** In the first form, the +/-HH:MM is always optional. The fractional
374 ** seconds extension (the ".FFF") is optional. The seconds portion
375 ** (":SS.FFF") is option. The year and date can be omitted as long
376 ** as there is a time string. The time string can be omitted as long
377 ** as there is a year and date.
378 */
379 static int parseDateOrTime(
380 sqlite3_context *context,
381 const char *zDate,
382 DateTime *p
383 ){
384 double r;
385 if( parseYyyyMmDd(zDate,p)==0 ){
386 return 0;
387 }else if( parseHhMmSs(zDate, p)==0 ){
388 return 0;
389 }else if( sqlite3StrICmp(zDate,"now")==0){
390 return setDateTimeToCurrent(context, p);
391 }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){
392 setRawDateNumber(p, r);
393 return 0;
394 }
395 return 1;
396 }
397
398 /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999.
399 ** Multiplying this by 86400000 gives 464269060799999 as the maximum value
400 ** for DateTime.iJD.
401 **
402 ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with
403 ** such a large integer literal, so we have to encode it.
404 */
405 #define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff)
406
407 /*
408 ** Return TRUE if the given julian day number is within range.
409 **
410 ** The input is the JulianDay times 86400000.
411 */
412 static int validJulianDay(sqlite3_int64 iJD){
413 return iJD>=0 && iJD<=INT_464269060799999;
414 }
415
416 /*
417 ** Compute the Year, Month, and Day from the julian day number.
418 */
419 static void computeYMD(DateTime *p){
420 int Z, A, B, C, D, E, X1;
421 if( p->validYMD ) return;
422 if( !p->validJD ){
423 p->Y = 2000;
424 p->M = 1;
425 p->D = 1;
426 }else{
427 assert( validJulianDay(p->iJD) );
428 Z = (int)((p->iJD + 43200000)/86400000);
429 A = (int)((Z - 1867216.25)/36524.25);
430 A = Z + 1 + A - (A/4);
431 B = A + 1524;
432 C = (int)((B - 122.1)/365.25);
433 D = (36525*(C&32767))/100;
434 E = (int)((B-D)/30.6001);
435 X1 = (int)(30.6001*E);
436 p->D = B - D - X1;
437 p->M = E<14 ? E-1 : E-13;
438 p->Y = p->M>2 ? C - 4716 : C - 4715;
439 }
440 p->validYMD = 1;
441 }
442
443 /*
444 ** Compute the Hour, Minute, and Seconds from the julian day number.
445 */
446 static void computeHMS(DateTime *p){
447 int s;
448 if( p->validHMS ) return;
449 computeJD(p);
450 s = (int)((p->iJD + 43200000) % 86400000);
451 p->s = s/1000.0;
452 s = (int)p->s;
453 p->s -= s;
454 p->h = s/3600;
455 s -= p->h*3600;
456 p->m = s/60;
457 p->s += s - p->m*60;
458 p->rawS = 0;
459 p->validHMS = 1;
460 }
461
462 /*
463 ** Compute both YMD and HMS
464 */
465 static void computeYMD_HMS(DateTime *p){
466 computeYMD(p);
467 computeHMS(p);
468 }
469
470 /*
471 ** Clear the YMD and HMS and the TZ
472 */
473 static void clearYMD_HMS_TZ(DateTime *p){
474 p->validYMD = 0;
475 p->validHMS = 0;
476 p->validTZ = 0;
477 }
478
479 #ifndef SQLITE_OMIT_LOCALTIME
480 /*
481 ** On recent Windows platforms, the localtime_s() function is available
482 ** as part of the "Secure CRT". It is essentially equivalent to
483 ** localtime_r() available under most POSIX platforms, except that the
484 ** order of the parameters is reversed.
485 **
486 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
487 **
488 ** If the user has not indicated to use localtime_r() or localtime_s()
489 ** already, check for an MSVC build environment that provides
490 ** localtime_s().
491 */
492 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \
493 && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
494 #undef HAVE_LOCALTIME_S
495 #define HAVE_LOCALTIME_S 1
496 #endif
497
498 /*
499 ** The following routine implements the rough equivalent of localtime_r()
500 ** using whatever operating-system specific localtime facility that
501 ** is available. This routine returns 0 on success and
502 ** non-zero on any kind of error.
503 **
504 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this
505 ** routine will always fail.
506 **
507 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C
508 ** library function localtime_r() is used to assist in the calculation of
509 ** local time.
510 */
511 static int osLocaltime(time_t *t, struct tm *pTm){
512 int rc;
513 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S
514 struct tm *pX;
515 #if SQLITE_THREADSAFE>0
516 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
517 #endif
518 sqlite3_mutex_enter(mutex);
519 pX = localtime(t);
520 #ifndef SQLITE_UNTESTABLE
521 if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0;
522 #endif
523 if( pX ) *pTm = *pX;
524 sqlite3_mutex_leave(mutex);
525 rc = pX==0;
526 #else
527 #ifndef SQLITE_UNTESTABLE
528 if( sqlite3GlobalConfig.bLocaltimeFault ) return 1;
529 #endif
530 #if HAVE_LOCALTIME_R
531 rc = localtime_r(t, pTm)==0;
532 #else
533 rc = localtime_s(pTm, t);
534 #endif /* HAVE_LOCALTIME_R */
535 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */
536 return rc;
537 }
538 #endif /* SQLITE_OMIT_LOCALTIME */
539
540
541 #ifndef SQLITE_OMIT_LOCALTIME
542 /*
543 ** Compute the difference (in milliseconds) between localtime and UTC
544 ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs,
545 ** return this value and set *pRc to SQLITE_OK.
546 **
547 ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value
548 ** is undefined in this case.
549 */
550 static sqlite3_int64 localtimeOffset(
551 DateTime *p, /* Date at which to calculate offset */
552 sqlite3_context *pCtx, /* Write error here if one occurs */
553 int *pRc /* OUT: Error code. SQLITE_OK or ERROR */
554 ){
555 DateTime x, y;
556 time_t t;
557 struct tm sLocal;
558
559 /* Initialize the contents of sLocal to avoid a compiler warning. */
560 memset(&sLocal, 0, sizeof(sLocal));
561
562 x = *p;
563 computeYMD_HMS(&x);
564 if( x.Y<1971 || x.Y>=2038 ){
565 /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only
566 ** works for years between 1970 and 2037. For dates outside this range,
567 ** SQLite attempts to map the year into an equivalent year within this
568 ** range, do the calculation, then map the year back.
569 */
570 x.Y = 2000;
571 x.M = 1;
572 x.D = 1;
573 x.h = 0;
574 x.m = 0;
575 x.s = 0.0;
576 } else {
577 int s = (int)(x.s + 0.5);
578 x.s = s;
579 }
580 x.tz = 0;
581 x.validJD = 0;
582 computeJD(&x);
583 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000);
584 if( osLocaltime(&t, &sLocal) ){
585 sqlite3_result_error(pCtx, "local time unavailable", -1);
586 *pRc = SQLITE_ERROR;
587 return 0;
588 }
589 y.Y = sLocal.tm_year + 1900;
590 y.M = sLocal.tm_mon + 1;
591 y.D = sLocal.tm_mday;
592 y.h = sLocal.tm_hour;
593 y.m = sLocal.tm_min;
594 y.s = sLocal.tm_sec;
595 y.validYMD = 1;
596 y.validHMS = 1;
597 y.validJD = 0;
598 y.rawS = 0;
599 y.validTZ = 0;
600 y.isError = 0;
601 computeJD(&y);
602 *pRc = SQLITE_OK;
603 return y.iJD - x.iJD;
604 }
605 #endif /* SQLITE_OMIT_LOCALTIME */
606
607 /*
608 ** The following table defines various date transformations of the form
609 **
610 ** 'NNN days'
611 **
612 ** Where NNN is an arbitrary floating-point number and "days" can be one
613 ** of several units of time.
614 */
615 static const struct {
616 u8 eType; /* Transformation type code */
617 u8 nName; /* Length of th name */
618 char *zName; /* Name of the transformation */
619 double rLimit; /* Maximum NNN value for this transform */
620 double rXform; /* Constant used for this transform */
621 } aXformType[] = {
622 { 0, 6, "second", 464269060800.0, 86400000.0/(24.0*60.0*60.0) },
623 { 0, 6, "minute", 7737817680.0, 86400000.0/(24.0*60.0) },
624 { 0, 4, "hour", 128963628.0, 86400000.0/24.0 },
625 { 0, 3, "day", 5373485.0, 86400000.0 },
626 { 1, 5, "month", 176546.0, 30.0*86400000.0 },
627 { 2, 4, "year", 14713.0, 365.0*86400000.0 },
628 };
629
630 /*
631 ** Process a modifier to a date-time stamp. The modifiers are
632 ** as follows:
633 **
634 ** NNN days
635 ** NNN hours
636 ** NNN minutes
637 ** NNN.NNNN seconds
638 ** NNN months
639 ** NNN years
640 ** start of month
641 ** start of year
642 ** start of week
643 ** start of day
644 ** weekday N
645 ** unixepoch
646 ** localtime
647 ** utc
648 **
649 ** Return 0 on success and 1 if there is any kind of error. If the error
650 ** is in a system call (i.e. localtime()), then an error message is written
651 ** to context pCtx. If the error is an unrecognized modifier, no error is
652 ** written to pCtx.
653 */
654 static int parseModifier(
655 sqlite3_context *pCtx, /* Function context */
656 const char *z, /* The text of the modifier */
657 int n, /* Length of zMod in bytes */
658 DateTime *p /* The date/time value to be modified */
659 ){
660 int rc = 1;
661 double r;
662 switch(sqlite3UpperToLower[(u8)z[0]] ){
663 #ifndef SQLITE_OMIT_LOCALTIME
664 case 'l': {
665 /* localtime
666 **
667 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
668 ** show local time.
669 */
670 if( sqlite3_stricmp(z, "localtime")==0 ){
671 computeJD(p);
672 p->iJD += localtimeOffset(p, pCtx, &rc);
673 clearYMD_HMS_TZ(p);
674 }
675 break;
676 }
677 #endif
678 case 'u': {
679 /*
680 ** unixepoch
681 **
682 ** Treat the current value of p->s as the number of
683 ** seconds since 1970. Convert to a real julian day number.
684 */
685 if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){
686 r = p->s*1000.0 + 210866760000000.0;
687 if( r>=0.0 && r<464269060800000.0 ){
688 clearYMD_HMS_TZ(p);
689 p->iJD = (sqlite3_int64)r;
690 p->validJD = 1;
691 p->rawS = 0;
692 rc = 0;
693 }
694 }
695 #ifndef SQLITE_OMIT_LOCALTIME
696 else if( sqlite3_stricmp(z, "utc")==0 ){
697 if( p->tzSet==0 ){
698 sqlite3_int64 c1;
699 computeJD(p);
700 c1 = localtimeOffset(p, pCtx, &rc);
701 if( rc==SQLITE_OK ){
702 p->iJD -= c1;
703 clearYMD_HMS_TZ(p);
704 p->iJD += c1 - localtimeOffset(p, pCtx, &rc);
705 }
706 p->tzSet = 1;
707 }else{
708 rc = SQLITE_OK;
709 }
710 }
711 #endif
712 break;
713 }
714 case 'w': {
715 /*
716 ** weekday N
717 **
718 ** Move the date to the same time on the next occurrence of
719 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
720 ** date is already on the appropriate weekday, this is a no-op.
721 */
722 if( sqlite3_strnicmp(z, "weekday ", 8)==0
723 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)
724 && (n=(int)r)==r && n>=0 && r<7 ){
725 sqlite3_int64 Z;
726 computeYMD_HMS(p);
727 p->validTZ = 0;
728 p->validJD = 0;
729 computeJD(p);
730 Z = ((p->iJD + 129600000)/86400000) % 7;
731 if( Z>n ) Z -= 7;
732 p->iJD += (n - Z)*86400000;
733 clearYMD_HMS_TZ(p);
734 rc = 0;
735 }
736 break;
737 }
738 case 's': {
739 /*
740 ** start of TTTTT
741 **
742 ** Move the date backwards to the beginning of the current day,
743 ** or month or year.
744 */
745 if( sqlite3_strnicmp(z, "start of ", 9)!=0 ) break;
746 z += 9;
747 computeYMD(p);
748 p->validHMS = 1;
749 p->h = p->m = 0;
750 p->s = 0.0;
751 p->validTZ = 0;
752 p->validJD = 0;
753 if( sqlite3_stricmp(z,"month")==0 ){
754 p->D = 1;
755 rc = 0;
756 }else if( sqlite3_stricmp(z,"year")==0 ){
757 computeYMD(p);
758 p->M = 1;
759 p->D = 1;
760 rc = 0;
761 }else if( sqlite3_stricmp(z,"day")==0 ){
762 rc = 0;
763 }
764 break;
765 }
766 case '+':
767 case '-':
768 case '0':
769 case '1':
770 case '2':
771 case '3':
772 case '4':
773 case '5':
774 case '6':
775 case '7':
776 case '8':
777 case '9': {
778 double rRounder;
779 int i;
780 for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){}
781 if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){
782 rc = 1;
783 break;
784 }
785 if( z[n]==':' ){
786 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
787 ** specified number of hours, minutes, seconds, and fractional seconds
788 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
789 ** omitted.
790 */
791 const char *z2 = z;
792 DateTime tx;
793 sqlite3_int64 day;
794 if( !sqlite3Isdigit(*z2) ) z2++;
795 memset(&tx, 0, sizeof(tx));
796 if( parseHhMmSs(z2, &tx) ) break;
797 computeJD(&tx);
798 tx.iJD -= 43200000;
799 day = tx.iJD/86400000;
800 tx.iJD -= day*86400000;
801 if( z[0]=='-' ) tx.iJD = -tx.iJD;
802 computeJD(p);
803 clearYMD_HMS_TZ(p);
804 p->iJD += tx.iJD;
805 rc = 0;
806 break;
807 }
808
809 /* If control reaches this point, it means the transformation is
810 ** one of the forms like "+NNN days". */
811 z += n;
812 while( sqlite3Isspace(*z) ) z++;
813 n = sqlite3Strlen30(z);
814 if( n>10 || n<3 ) break;
815 if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--;
816 computeJD(p);
817 rc = 1;
818 rRounder = r<0 ? -0.5 : +0.5;
819 for(i=0; i<ArraySize(aXformType); i++){
820 if( aXformType[i].nName==n
821 && sqlite3_strnicmp(aXformType[i].zName, z, n)==0
822 && r>-aXformType[i].rLimit && r<aXformType[i].rLimit
823 ){
824 switch( aXformType[i].eType ){
825 case 1: { /* Special processing to add months */
826 int x;
827 computeYMD_HMS(p);
828 p->M += (int)r;
829 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
830 p->Y += x;
831 p->M -= x*12;
832 p->validJD = 0;
833 r -= (int)r;
834 break;
835 }
836 case 2: { /* Special processing to add years */
837 int y = (int)r;
838 computeYMD_HMS(p);
839 p->Y += y;
840 p->validJD = 0;
841 r -= (int)r;
842 break;
843 }
844 }
845 computeJD(p);
846 p->iJD += (sqlite3_int64)(r*aXformType[i].rXform + rRounder);
847 rc = 0;
848 break;
849 }
850 }
851 clearYMD_HMS_TZ(p);
852 break;
853 }
854 default: {
855 break;
856 }
857 }
858 return rc;
859 }
860
861 /*
862 ** Process time function arguments. argv[0] is a date-time stamp.
863 ** argv[1] and following are modifiers. Parse them all and write
864 ** the resulting time into the DateTime structure p. Return 0
865 ** on success and 1 if there are any errors.
866 **
867 ** If there are zero parameters (if even argv[0] is undefined)
868 ** then assume a default value of "now" for argv[0].
869 */
870 static int isDate(
871 sqlite3_context *context,
872 int argc,
873 sqlite3_value **argv,
874 DateTime *p
875 ){
876 int i, n;
877 const unsigned char *z;
878 int eType;
879 memset(p, 0, sizeof(*p));
880 if( argc==0 ){
881 return setDateTimeToCurrent(context, p);
882 }
883 if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
884 || eType==SQLITE_INTEGER ){
885 setRawDateNumber(p, sqlite3_value_double(argv[0]));
886 }else{
887 z = sqlite3_value_text(argv[0]);
888 if( !z || parseDateOrTime(context, (char*)z, p) ){
889 return 1;
890 }
891 }
892 for(i=1; i<argc; i++){
893 z = sqlite3_value_text(argv[i]);
894 n = sqlite3_value_bytes(argv[i]);
895 if( z==0 || parseModifier(context, (char*)z, n, p) ) return 1;
896 }
897 computeJD(p);
898 if( p->isError || !validJulianDay(p->iJD) ) return 1;
899 return 0;
900 }
901
902
903 /*
904 ** The following routines implement the various date and time functions
905 ** of SQLite.
906 */
907
908 /*
909 ** julianday( TIMESTRING, MOD, MOD, ...)
910 **
911 ** Return the julian day number of the date specified in the arguments
912 */
913 static void juliandayFunc(
914 sqlite3_context *context,
915 int argc,
916 sqlite3_value **argv
917 ){
918 DateTime x;
919 if( isDate(context, argc, argv, &x)==0 ){
920 computeJD(&x);
921 sqlite3_result_double(context, x.iJD/86400000.0);
922 }
923 }
924
925 /*
926 ** datetime( TIMESTRING, MOD, MOD, ...)
927 **
928 ** Return YYYY-MM-DD HH:MM:SS
929 */
930 static void datetimeFunc(
931 sqlite3_context *context,
932 int argc,
933 sqlite3_value **argv
934 ){
935 DateTime x;
936 if( isDate(context, argc, argv, &x)==0 ){
937 char zBuf[100];
938 computeYMD_HMS(&x);
939 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
940 x.Y, x.M, x.D, x.h, x.m, (int)(x.s));
941 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
942 }
943 }
944
945 /*
946 ** time( TIMESTRING, MOD, MOD, ...)
947 **
948 ** Return HH:MM:SS
949 */
950 static void timeFunc(
951 sqlite3_context *context,
952 int argc,
953 sqlite3_value **argv
954 ){
955 DateTime x;
956 if( isDate(context, argc, argv, &x)==0 ){
957 char zBuf[100];
958 computeHMS(&x);
959 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
960 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
961 }
962 }
963
964 /*
965 ** date( TIMESTRING, MOD, MOD, ...)
966 **
967 ** Return YYYY-MM-DD
968 */
969 static void dateFunc(
970 sqlite3_context *context,
971 int argc,
972 sqlite3_value **argv
973 ){
974 DateTime x;
975 if( isDate(context, argc, argv, &x)==0 ){
976 char zBuf[100];
977 computeYMD(&x);
978 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
979 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
980 }
981 }
982
983 /*
984 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
985 **
986 ** Return a string described by FORMAT. Conversions as follows:
987 **
988 ** %d day of month
989 ** %f ** fractional seconds SS.SSS
990 ** %H hour 00-24
991 ** %j day of year 000-366
992 ** %J ** julian day number
993 ** %m month 01-12
994 ** %M minute 00-59
995 ** %s seconds since 1970-01-01
996 ** %S seconds 00-59
997 ** %w day of week 0-6 sunday==0
998 ** %W week of year 00-53
999 ** %Y year 0000-9999
1000 ** %% %
1001 */
1002 static void strftimeFunc(
1003 sqlite3_context *context,
1004 int argc,
1005 sqlite3_value **argv
1006 ){
1007 DateTime x;
1008 u64 n;
1009 size_t i,j;
1010 char *z;
1011 sqlite3 *db;
1012 const char *zFmt;
1013 char zBuf[100];
1014 if( argc==0 ) return;
1015 zFmt = (const char*)sqlite3_value_text(argv[0]);
1016 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
1017 db = sqlite3_context_db_handle(context);
1018 for(i=0, n=1; zFmt[i]; i++, n++){
1019 if( zFmt[i]=='%' ){
1020 switch( zFmt[i+1] ){
1021 case 'd':
1022 case 'H':
1023 case 'm':
1024 case 'M':
1025 case 'S':
1026 case 'W':
1027 n++;
1028 /* fall thru */
1029 case 'w':
1030 case '%':
1031 break;
1032 case 'f':
1033 n += 8;
1034 break;
1035 case 'j':
1036 n += 3;
1037 break;
1038 case 'Y':
1039 n += 8;
1040 break;
1041 case 's':
1042 case 'J':
1043 n += 50;
1044 break;
1045 default:
1046 return; /* ERROR. return a NULL */
1047 }
1048 i++;
1049 }
1050 }
1051 testcase( n==sizeof(zBuf)-1 );
1052 testcase( n==sizeof(zBuf) );
1053 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
1054 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] );
1055 if( n<sizeof(zBuf) ){
1056 z = zBuf;
1057 }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){
1058 sqlite3_result_error_toobig(context);
1059 return;
1060 }else{
1061 z = sqlite3DbMallocRawNN(db, (int)n);
1062 if( z==0 ){
1063 sqlite3_result_error_nomem(context);
1064 return;
1065 }
1066 }
1067 computeJD(&x);
1068 computeYMD_HMS(&x);
1069 for(i=j=0; zFmt[i]; i++){
1070 if( zFmt[i]!='%' ){
1071 z[j++] = zFmt[i];
1072 }else{
1073 i++;
1074 switch( zFmt[i] ){
1075 case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break;
1076 case 'f': {
1077 double s = x.s;
1078 if( s>59.999 ) s = 59.999;
1079 sqlite3_snprintf(7, &z[j],"%06.3f", s);
1080 j += sqlite3Strlen30(&z[j]);
1081 break;
1082 }
1083 case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
1084 case 'W': /* Fall thru */
1085 case 'j': {
1086 int nDay; /* Number of days since 1st day of year */
1087 DateTime y = x;
1088 y.validJD = 0;
1089 y.M = 1;
1090 y.D = 1;
1091 computeJD(&y);
1092 nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
1093 if( zFmt[i]=='W' ){
1094 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
1095 wd = (int)(((x.iJD+43200000)/86400000)%7);
1096 sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
1097 j += 2;
1098 }else{
1099 sqlite3_snprintf(4, &z[j],"%03d",nDay+1);
1100 j += 3;
1101 }
1102 break;
1103 }
1104 case 'J': {
1105 sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0);
1106 j+=sqlite3Strlen30(&z[j]);
1107 break;
1108 }
1109 case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
1110 case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
1111 case 's': {
1112 sqlite3_snprintf(30,&z[j],"%lld",
1113 (i64)(x.iJD/1000 - 21086676*(i64)10000));
1114 j += sqlite3Strlen30(&z[j]);
1115 break;
1116 }
1117 case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
1118 case 'w': {
1119 z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0';
1120 break;
1121 }
1122 case 'Y': {
1123 sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]);
1124 break;
1125 }
1126 default: z[j++] = '%'; break;
1127 }
1128 }
1129 }
1130 z[j] = 0;
1131 sqlite3_result_text(context, z, -1,
1132 z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC);
1133 }
1134
1135 /*
1136 ** current_time()
1137 **
1138 ** This function returns the same value as time('now').
1139 */
1140 static void ctimeFunc(
1141 sqlite3_context *context,
1142 int NotUsed,
1143 sqlite3_value **NotUsed2
1144 ){
1145 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1146 timeFunc(context, 0, 0);
1147 }
1148
1149 /*
1150 ** current_date()
1151 **
1152 ** This function returns the same value as date('now').
1153 */
1154 static void cdateFunc(
1155 sqlite3_context *context,
1156 int NotUsed,
1157 sqlite3_value **NotUsed2
1158 ){
1159 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1160 dateFunc(context, 0, 0);
1161 }
1162
1163 /*
1164 ** current_timestamp()
1165 **
1166 ** This function returns the same value as datetime('now').
1167 */
1168 static void ctimestampFunc(
1169 sqlite3_context *context,
1170 int NotUsed,
1171 sqlite3_value **NotUsed2
1172 ){
1173 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1174 datetimeFunc(context, 0, 0);
1175 }
1176 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
1177
1178 #ifdef SQLITE_OMIT_DATETIME_FUNCS
1179 /*
1180 ** If the library is compiled to omit the full-scale date and time
1181 ** handling (to get a smaller binary), the following minimal version
1182 ** of the functions current_time(), current_date() and current_timestamp()
1183 ** are included instead. This is to support column declarations that
1184 ** include "DEFAULT CURRENT_TIME" etc.
1185 **
1186 ** This function uses the C-library functions time(), gmtime()
1187 ** and strftime(). The format string to pass to strftime() is supplied
1188 ** as the user-data for the function.
1189 */
1190 static void currentTimeFunc(
1191 sqlite3_context *context,
1192 int argc,
1193 sqlite3_value **argv
1194 ){
1195 time_t t;
1196 char *zFormat = (char *)sqlite3_user_data(context);
1197 sqlite3_int64 iT;
1198 struct tm *pTm;
1199 struct tm sNow;
1200 char zBuf[20];
1201
1202 UNUSED_PARAMETER(argc);
1203 UNUSED_PARAMETER(argv);
1204
1205 iT = sqlite3StmtCurrentTime(context);
1206 if( iT<=0 ) return;
1207 t = iT/1000 - 10000*(sqlite3_int64)21086676;
1208 #if HAVE_GMTIME_R
1209 pTm = gmtime_r(&t, &sNow);
1210 #else
1211 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
1212 pTm = gmtime(&t);
1213 if( pTm ) memcpy(&sNow, pTm, sizeof(sNow));
1214 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
1215 #endif
1216 if( pTm ){
1217 strftime(zBuf, 20, zFormat, &sNow);
1218 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
1219 }
1220 }
1221 #endif
1222
1223 /*
1224 ** This function registered all of the above C functions as SQL
1225 ** functions. This should be the only routine in this file with
1226 ** external linkage.
1227 */
1228 void sqlite3RegisterDateTimeFunctions(void){
1229 static FuncDef aDateTimeFuncs[] = {
1230 #ifndef SQLITE_OMIT_DATETIME_FUNCS
1231 DFUNCTION(julianday, -1, 0, 0, juliandayFunc ),
1232 DFUNCTION(date, -1, 0, 0, dateFunc ),
1233 DFUNCTION(time, -1, 0, 0, timeFunc ),
1234 DFUNCTION(datetime, -1, 0, 0, datetimeFunc ),
1235 DFUNCTION(strftime, -1, 0, 0, strftimeFunc ),
1236 DFUNCTION(current_time, 0, 0, 0, ctimeFunc ),
1237 DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
1238 DFUNCTION(current_date, 0, 0, 0, cdateFunc ),
1239 #else
1240 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc),
1241 STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc),
1242 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
1243 #endif
1244 };
1245 sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs));
1246 }
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3170000/src/ctime.c ('k') | third_party/sqlite/sqlite-src-3170000/src/dbstat.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698