OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2003 October 31 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This file contains the C functions that implement date and time |
| 13 ** functions for SQLite. |
| 14 ** |
| 15 ** There is only one exported symbol in this file - the function |
| 16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. |
| 17 ** All other code has file scope. |
| 18 ** |
| 19 ** SQLite processes all times and dates as julian day numbers. The |
| 20 ** dates and times are stored as the number of days since noon |
| 21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian |
| 22 ** calendar system. |
| 23 ** |
| 24 ** 1970-01-01 00:00:00 is JD 2440587.5 |
| 25 ** 2000-01-01 00:00:00 is JD 2451544.5 |
| 26 ** |
| 27 ** This implementation requires years to be expressed as a 4-digit number |
| 28 ** which means that only dates between 0000-01-01 and 9999-12-31 can |
| 29 ** be represented, even though julian day numbers allow a much wider |
| 30 ** range of dates. |
| 31 ** |
| 32 ** The Gregorian calendar system is used for all dates and times, |
| 33 ** even those that predate the Gregorian calendar. Historians usually |
| 34 ** use the julian calendar for dates prior to 1582-10-15 and for some |
| 35 ** dates afterwards, depending on locale. Beware of this difference. |
| 36 ** |
| 37 ** The conversion algorithms are implemented based on descriptions |
| 38 ** in the following text: |
| 39 ** |
| 40 ** Jean Meeus |
| 41 ** Astronomical Algorithms, 2nd Edition, 1998 |
| 42 ** ISBM 0-943396-61-1 |
| 43 ** Willmann-Bell, Inc |
| 44 ** Richmond, Virginia (USA) |
| 45 */ |
| 46 #include "sqliteInt.h" |
| 47 #include <stdlib.h> |
| 48 #include <assert.h> |
| 49 #include <time.h> |
| 50 |
| 51 #ifndef SQLITE_OMIT_DATETIME_FUNCS |
| 52 |
| 53 /* |
| 54 ** The MSVC CRT on Windows CE may not have a localtime() function. |
| 55 ** So declare a substitute. The substitute function itself is |
| 56 ** defined in "os_win.c". |
| 57 */ |
| 58 #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \ |
| 59 (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API) |
| 60 struct tm *__cdecl localtime(const time_t *); |
| 61 #endif |
| 62 |
| 63 /* |
| 64 ** A structure for holding a single date and time. |
| 65 */ |
| 66 typedef struct DateTime DateTime; |
| 67 struct DateTime { |
| 68 sqlite3_int64 iJD; /* The julian day number times 86400000 */ |
| 69 int Y, M, D; /* Year, month, and day */ |
| 70 int h, m; /* Hour and minutes */ |
| 71 int tz; /* Timezone offset in minutes */ |
| 72 double s; /* Seconds */ |
| 73 char validJD; /* True (1) if iJD is valid */ |
| 74 char rawS; /* Raw numeric value stored in s */ |
| 75 char validYMD; /* True (1) if Y,M,D are valid */ |
| 76 char validHMS; /* True (1) if h,m,s are valid */ |
| 77 char validTZ; /* True (1) if tz is valid */ |
| 78 char tzSet; /* Timezone was set explicitly */ |
| 79 char isError; /* An overflow has occurred */ |
| 80 }; |
| 81 |
| 82 |
| 83 /* |
| 84 ** Convert zDate into one or more integers according to the conversion |
| 85 ** specifier zFormat. |
| 86 ** |
| 87 ** zFormat[] contains 4 characters for each integer converted, except for |
| 88 ** the last integer which is specified by three characters. The meaning |
| 89 ** of a four-character format specifiers ABCD is: |
| 90 ** |
| 91 ** A: number of digits to convert. Always "2" or "4". |
| 92 ** B: minimum value. Always "0" or "1". |
| 93 ** C: maximum value, decoded as: |
| 94 ** a: 12 |
| 95 ** b: 14 |
| 96 ** c: 24 |
| 97 ** d: 31 |
| 98 ** e: 59 |
| 99 ** f: 9999 |
| 100 ** D: the separator character, or \000 to indicate this is the |
| 101 ** last number to convert. |
| 102 ** |
| 103 ** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would |
| 104 ** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-". |
| 105 ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates |
| 106 ** the 2-digit day which is the last integer in the set. |
| 107 ** |
| 108 ** The function returns the number of successful conversions. |
| 109 */ |
| 110 static int getDigits(const char *zDate, const char *zFormat, ...){ |
| 111 /* The aMx[] array translates the 3rd character of each format |
| 112 ** spec into a max size: a b c d e f */ |
| 113 static const u16 aMx[] = { 12, 14, 24, 31, 59, 9999 }; |
| 114 va_list ap; |
| 115 int cnt = 0; |
| 116 char nextC; |
| 117 va_start(ap, zFormat); |
| 118 do{ |
| 119 char N = zFormat[0] - '0'; |
| 120 char min = zFormat[1] - '0'; |
| 121 int val = 0; |
| 122 u16 max; |
| 123 |
| 124 assert( zFormat[2]>='a' && zFormat[2]<='f' ); |
| 125 max = aMx[zFormat[2] - 'a']; |
| 126 nextC = zFormat[3]; |
| 127 val = 0; |
| 128 while( N-- ){ |
| 129 if( !sqlite3Isdigit(*zDate) ){ |
| 130 goto end_getDigits; |
| 131 } |
| 132 val = val*10 + *zDate - '0'; |
| 133 zDate++; |
| 134 } |
| 135 if( val<(int)min || val>(int)max || (nextC!=0 && nextC!=*zDate) ){ |
| 136 goto end_getDigits; |
| 137 } |
| 138 *va_arg(ap,int*) = val; |
| 139 zDate++; |
| 140 cnt++; |
| 141 zFormat += 4; |
| 142 }while( nextC ); |
| 143 end_getDigits: |
| 144 va_end(ap); |
| 145 return cnt; |
| 146 } |
| 147 |
| 148 /* |
| 149 ** Parse a timezone extension on the end of a date-time. |
| 150 ** The extension is of the form: |
| 151 ** |
| 152 ** (+/-)HH:MM |
| 153 ** |
| 154 ** Or the "zulu" notation: |
| 155 ** |
| 156 ** Z |
| 157 ** |
| 158 ** If the parse is successful, write the number of minutes |
| 159 ** of change in p->tz and return 0. If a parser error occurs, |
| 160 ** return non-zero. |
| 161 ** |
| 162 ** A missing specifier is not considered an error. |
| 163 */ |
| 164 static int parseTimezone(const char *zDate, DateTime *p){ |
| 165 int sgn = 0; |
| 166 int nHr, nMn; |
| 167 int c; |
| 168 while( sqlite3Isspace(*zDate) ){ zDate++; } |
| 169 p->tz = 0; |
| 170 c = *zDate; |
| 171 if( c=='-' ){ |
| 172 sgn = -1; |
| 173 }else if( c=='+' ){ |
| 174 sgn = +1; |
| 175 }else if( c=='Z' || c=='z' ){ |
| 176 zDate++; |
| 177 goto zulu_time; |
| 178 }else{ |
| 179 return c!=0; |
| 180 } |
| 181 zDate++; |
| 182 if( getDigits(zDate, "20b:20e", &nHr, &nMn)!=2 ){ |
| 183 return 1; |
| 184 } |
| 185 zDate += 5; |
| 186 p->tz = sgn*(nMn + nHr*60); |
| 187 zulu_time: |
| 188 while( sqlite3Isspace(*zDate) ){ zDate++; } |
| 189 p->tzSet = 1; |
| 190 return *zDate!=0; |
| 191 } |
| 192 |
| 193 /* |
| 194 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. |
| 195 ** The HH, MM, and SS must each be exactly 2 digits. The |
| 196 ** fractional seconds FFFF can be one or more digits. |
| 197 ** |
| 198 ** Return 1 if there is a parsing error and 0 on success. |
| 199 */ |
| 200 static int parseHhMmSs(const char *zDate, DateTime *p){ |
| 201 int h, m, s; |
| 202 double ms = 0.0; |
| 203 if( getDigits(zDate, "20c:20e", &h, &m)!=2 ){ |
| 204 return 1; |
| 205 } |
| 206 zDate += 5; |
| 207 if( *zDate==':' ){ |
| 208 zDate++; |
| 209 if( getDigits(zDate, "20e", &s)!=1 ){ |
| 210 return 1; |
| 211 } |
| 212 zDate += 2; |
| 213 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ |
| 214 double rScale = 1.0; |
| 215 zDate++; |
| 216 while( sqlite3Isdigit(*zDate) ){ |
| 217 ms = ms*10.0 + *zDate - '0'; |
| 218 rScale *= 10.0; |
| 219 zDate++; |
| 220 } |
| 221 ms /= rScale; |
| 222 } |
| 223 }else{ |
| 224 s = 0; |
| 225 } |
| 226 p->validJD = 0; |
| 227 p->rawS = 0; |
| 228 p->validHMS = 1; |
| 229 p->h = h; |
| 230 p->m = m; |
| 231 p->s = s + ms; |
| 232 if( parseTimezone(zDate, p) ) return 1; |
| 233 p->validTZ = (p->tz!=0)?1:0; |
| 234 return 0; |
| 235 } |
| 236 |
| 237 /* |
| 238 ** Put the DateTime object into its error state. |
| 239 */ |
| 240 static void datetimeError(DateTime *p){ |
| 241 memset(p, 0, sizeof(*p)); |
| 242 p->isError = 1; |
| 243 } |
| 244 |
| 245 /* |
| 246 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume |
| 247 ** that the YYYY-MM-DD is according to the Gregorian calendar. |
| 248 ** |
| 249 ** Reference: Meeus page 61 |
| 250 */ |
| 251 static void computeJD(DateTime *p){ |
| 252 int Y, M, D, A, B, X1, X2; |
| 253 |
| 254 if( p->validJD ) return; |
| 255 if( p->validYMD ){ |
| 256 Y = p->Y; |
| 257 M = p->M; |
| 258 D = p->D; |
| 259 }else{ |
| 260 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ |
| 261 M = 1; |
| 262 D = 1; |
| 263 } |
| 264 if( Y<-4713 || Y>9999 || p->rawS ){ |
| 265 datetimeError(p); |
| 266 return; |
| 267 } |
| 268 if( M<=2 ){ |
| 269 Y--; |
| 270 M += 12; |
| 271 } |
| 272 A = Y/100; |
| 273 B = 2 - A + (A/4); |
| 274 X1 = 36525*(Y+4716)/100; |
| 275 X2 = 306001*(M+1)/10000; |
| 276 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); |
| 277 p->validJD = 1; |
| 278 if( p->validHMS ){ |
| 279 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); |
| 280 if( p->validTZ ){ |
| 281 p->iJD -= p->tz*60000; |
| 282 p->validYMD = 0; |
| 283 p->validHMS = 0; |
| 284 p->validTZ = 0; |
| 285 } |
| 286 } |
| 287 } |
| 288 |
| 289 /* |
| 290 ** Parse dates of the form |
| 291 ** |
| 292 ** YYYY-MM-DD HH:MM:SS.FFF |
| 293 ** YYYY-MM-DD HH:MM:SS |
| 294 ** YYYY-MM-DD HH:MM |
| 295 ** YYYY-MM-DD |
| 296 ** |
| 297 ** Write the result into the DateTime structure and return 0 |
| 298 ** on success and 1 if the input string is not a well-formed |
| 299 ** date. |
| 300 */ |
| 301 static int parseYyyyMmDd(const char *zDate, DateTime *p){ |
| 302 int Y, M, D, neg; |
| 303 |
| 304 if( zDate[0]=='-' ){ |
| 305 zDate++; |
| 306 neg = 1; |
| 307 }else{ |
| 308 neg = 0; |
| 309 } |
| 310 if( getDigits(zDate, "40f-21a-21d", &Y, &M, &D)!=3 ){ |
| 311 return 1; |
| 312 } |
| 313 zDate += 10; |
| 314 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } |
| 315 if( parseHhMmSs(zDate, p)==0 ){ |
| 316 /* We got the time */ |
| 317 }else if( *zDate==0 ){ |
| 318 p->validHMS = 0; |
| 319 }else{ |
| 320 return 1; |
| 321 } |
| 322 p->validJD = 0; |
| 323 p->validYMD = 1; |
| 324 p->Y = neg ? -Y : Y; |
| 325 p->M = M; |
| 326 p->D = D; |
| 327 if( p->validTZ ){ |
| 328 computeJD(p); |
| 329 } |
| 330 return 0; |
| 331 } |
| 332 |
| 333 /* |
| 334 ** Set the time to the current time reported by the VFS. |
| 335 ** |
| 336 ** Return the number of errors. |
| 337 */ |
| 338 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ |
| 339 p->iJD = sqlite3StmtCurrentTime(context); |
| 340 if( p->iJD>0 ){ |
| 341 p->validJD = 1; |
| 342 return 0; |
| 343 }else{ |
| 344 return 1; |
| 345 } |
| 346 } |
| 347 |
| 348 /* |
| 349 ** Input "r" is a numeric quantity which might be a julian day number, |
| 350 ** or the number of seconds since 1970. If the value if r is within |
| 351 ** range of a julian day number, install it as such and set validJD. |
| 352 ** If the value is a valid unix timestamp, put it in p->s and set p->rawS. |
| 353 */ |
| 354 static void setRawDateNumber(DateTime *p, double r){ |
| 355 p->s = r; |
| 356 p->rawS = 1; |
| 357 if( r>=0.0 && r<5373484.5 ){ |
| 358 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); |
| 359 p->validJD = 1; |
| 360 } |
| 361 } |
| 362 |
| 363 /* |
| 364 ** Attempt to parse the given string into a julian day number. Return |
| 365 ** the number of errors. |
| 366 ** |
| 367 ** The following are acceptable forms for the input string: |
| 368 ** |
| 369 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM |
| 370 ** DDDD.DD |
| 371 ** now |
| 372 ** |
| 373 ** In the first form, the +/-HH:MM is always optional. The fractional |
| 374 ** seconds extension (the ".FFF") is optional. The seconds portion |
| 375 ** (":SS.FFF") is option. The year and date can be omitted as long |
| 376 ** as there is a time string. The time string can be omitted as long |
| 377 ** as there is a year and date. |
| 378 */ |
| 379 static int parseDateOrTime( |
| 380 sqlite3_context *context, |
| 381 const char *zDate, |
| 382 DateTime *p |
| 383 ){ |
| 384 double r; |
| 385 if( parseYyyyMmDd(zDate,p)==0 ){ |
| 386 return 0; |
| 387 }else if( parseHhMmSs(zDate, p)==0 ){ |
| 388 return 0; |
| 389 }else if( sqlite3StrICmp(zDate,"now")==0){ |
| 390 return setDateTimeToCurrent(context, p); |
| 391 }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){ |
| 392 setRawDateNumber(p, r); |
| 393 return 0; |
| 394 } |
| 395 return 1; |
| 396 } |
| 397 |
| 398 /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999. |
| 399 ** Multiplying this by 86400000 gives 464269060799999 as the maximum value |
| 400 ** for DateTime.iJD. |
| 401 ** |
| 402 ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with |
| 403 ** such a large integer literal, so we have to encode it. |
| 404 */ |
| 405 #define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff) |
| 406 |
| 407 /* |
| 408 ** Return TRUE if the given julian day number is within range. |
| 409 ** |
| 410 ** The input is the JulianDay times 86400000. |
| 411 */ |
| 412 static int validJulianDay(sqlite3_int64 iJD){ |
| 413 return iJD>=0 && iJD<=INT_464269060799999; |
| 414 } |
| 415 |
| 416 /* |
| 417 ** Compute the Year, Month, and Day from the julian day number. |
| 418 */ |
| 419 static void computeYMD(DateTime *p){ |
| 420 int Z, A, B, C, D, E, X1; |
| 421 if( p->validYMD ) return; |
| 422 if( !p->validJD ){ |
| 423 p->Y = 2000; |
| 424 p->M = 1; |
| 425 p->D = 1; |
| 426 }else{ |
| 427 assert( validJulianDay(p->iJD) ); |
| 428 Z = (int)((p->iJD + 43200000)/86400000); |
| 429 A = (int)((Z - 1867216.25)/36524.25); |
| 430 A = Z + 1 + A - (A/4); |
| 431 B = A + 1524; |
| 432 C = (int)((B - 122.1)/365.25); |
| 433 D = (36525*(C&32767))/100; |
| 434 E = (int)((B-D)/30.6001); |
| 435 X1 = (int)(30.6001*E); |
| 436 p->D = B - D - X1; |
| 437 p->M = E<14 ? E-1 : E-13; |
| 438 p->Y = p->M>2 ? C - 4716 : C - 4715; |
| 439 } |
| 440 p->validYMD = 1; |
| 441 } |
| 442 |
| 443 /* |
| 444 ** Compute the Hour, Minute, and Seconds from the julian day number. |
| 445 */ |
| 446 static void computeHMS(DateTime *p){ |
| 447 int s; |
| 448 if( p->validHMS ) return; |
| 449 computeJD(p); |
| 450 s = (int)((p->iJD + 43200000) % 86400000); |
| 451 p->s = s/1000.0; |
| 452 s = (int)p->s; |
| 453 p->s -= s; |
| 454 p->h = s/3600; |
| 455 s -= p->h*3600; |
| 456 p->m = s/60; |
| 457 p->s += s - p->m*60; |
| 458 p->rawS = 0; |
| 459 p->validHMS = 1; |
| 460 } |
| 461 |
| 462 /* |
| 463 ** Compute both YMD and HMS |
| 464 */ |
| 465 static void computeYMD_HMS(DateTime *p){ |
| 466 computeYMD(p); |
| 467 computeHMS(p); |
| 468 } |
| 469 |
| 470 /* |
| 471 ** Clear the YMD and HMS and the TZ |
| 472 */ |
| 473 static void clearYMD_HMS_TZ(DateTime *p){ |
| 474 p->validYMD = 0; |
| 475 p->validHMS = 0; |
| 476 p->validTZ = 0; |
| 477 } |
| 478 |
| 479 #ifndef SQLITE_OMIT_LOCALTIME |
| 480 /* |
| 481 ** On recent Windows platforms, the localtime_s() function is available |
| 482 ** as part of the "Secure CRT". It is essentially equivalent to |
| 483 ** localtime_r() available under most POSIX platforms, except that the |
| 484 ** order of the parameters is reversed. |
| 485 ** |
| 486 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. |
| 487 ** |
| 488 ** If the user has not indicated to use localtime_r() or localtime_s() |
| 489 ** already, check for an MSVC build environment that provides |
| 490 ** localtime_s(). |
| 491 */ |
| 492 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \ |
| 493 && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) |
| 494 #undef HAVE_LOCALTIME_S |
| 495 #define HAVE_LOCALTIME_S 1 |
| 496 #endif |
| 497 |
| 498 /* |
| 499 ** The following routine implements the rough equivalent of localtime_r() |
| 500 ** using whatever operating-system specific localtime facility that |
| 501 ** is available. This routine returns 0 on success and |
| 502 ** non-zero on any kind of error. |
| 503 ** |
| 504 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this |
| 505 ** routine will always fail. |
| 506 ** |
| 507 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C |
| 508 ** library function localtime_r() is used to assist in the calculation of |
| 509 ** local time. |
| 510 */ |
| 511 static int osLocaltime(time_t *t, struct tm *pTm){ |
| 512 int rc; |
| 513 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S |
| 514 struct tm *pX; |
| 515 #if SQLITE_THREADSAFE>0 |
| 516 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); |
| 517 #endif |
| 518 sqlite3_mutex_enter(mutex); |
| 519 pX = localtime(t); |
| 520 #ifndef SQLITE_UNTESTABLE |
| 521 if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0; |
| 522 #endif |
| 523 if( pX ) *pTm = *pX; |
| 524 sqlite3_mutex_leave(mutex); |
| 525 rc = pX==0; |
| 526 #else |
| 527 #ifndef SQLITE_UNTESTABLE |
| 528 if( sqlite3GlobalConfig.bLocaltimeFault ) return 1; |
| 529 #endif |
| 530 #if HAVE_LOCALTIME_R |
| 531 rc = localtime_r(t, pTm)==0; |
| 532 #else |
| 533 rc = localtime_s(pTm, t); |
| 534 #endif /* HAVE_LOCALTIME_R */ |
| 535 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */ |
| 536 return rc; |
| 537 } |
| 538 #endif /* SQLITE_OMIT_LOCALTIME */ |
| 539 |
| 540 |
| 541 #ifndef SQLITE_OMIT_LOCALTIME |
| 542 /* |
| 543 ** Compute the difference (in milliseconds) between localtime and UTC |
| 544 ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs, |
| 545 ** return this value and set *pRc to SQLITE_OK. |
| 546 ** |
| 547 ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value |
| 548 ** is undefined in this case. |
| 549 */ |
| 550 static sqlite3_int64 localtimeOffset( |
| 551 DateTime *p, /* Date at which to calculate offset */ |
| 552 sqlite3_context *pCtx, /* Write error here if one occurs */ |
| 553 int *pRc /* OUT: Error code. SQLITE_OK or ERROR */ |
| 554 ){ |
| 555 DateTime x, y; |
| 556 time_t t; |
| 557 struct tm sLocal; |
| 558 |
| 559 /* Initialize the contents of sLocal to avoid a compiler warning. */ |
| 560 memset(&sLocal, 0, sizeof(sLocal)); |
| 561 |
| 562 x = *p; |
| 563 computeYMD_HMS(&x); |
| 564 if( x.Y<1971 || x.Y>=2038 ){ |
| 565 /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only |
| 566 ** works for years between 1970 and 2037. For dates outside this range, |
| 567 ** SQLite attempts to map the year into an equivalent year within this |
| 568 ** range, do the calculation, then map the year back. |
| 569 */ |
| 570 x.Y = 2000; |
| 571 x.M = 1; |
| 572 x.D = 1; |
| 573 x.h = 0; |
| 574 x.m = 0; |
| 575 x.s = 0.0; |
| 576 } else { |
| 577 int s = (int)(x.s + 0.5); |
| 578 x.s = s; |
| 579 } |
| 580 x.tz = 0; |
| 581 x.validJD = 0; |
| 582 computeJD(&x); |
| 583 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); |
| 584 if( osLocaltime(&t, &sLocal) ){ |
| 585 sqlite3_result_error(pCtx, "local time unavailable", -1); |
| 586 *pRc = SQLITE_ERROR; |
| 587 return 0; |
| 588 } |
| 589 y.Y = sLocal.tm_year + 1900; |
| 590 y.M = sLocal.tm_mon + 1; |
| 591 y.D = sLocal.tm_mday; |
| 592 y.h = sLocal.tm_hour; |
| 593 y.m = sLocal.tm_min; |
| 594 y.s = sLocal.tm_sec; |
| 595 y.validYMD = 1; |
| 596 y.validHMS = 1; |
| 597 y.validJD = 0; |
| 598 y.rawS = 0; |
| 599 y.validTZ = 0; |
| 600 y.isError = 0; |
| 601 computeJD(&y); |
| 602 *pRc = SQLITE_OK; |
| 603 return y.iJD - x.iJD; |
| 604 } |
| 605 #endif /* SQLITE_OMIT_LOCALTIME */ |
| 606 |
| 607 /* |
| 608 ** The following table defines various date transformations of the form |
| 609 ** |
| 610 ** 'NNN days' |
| 611 ** |
| 612 ** Where NNN is an arbitrary floating-point number and "days" can be one |
| 613 ** of several units of time. |
| 614 */ |
| 615 static const struct { |
| 616 u8 eType; /* Transformation type code */ |
| 617 u8 nName; /* Length of th name */ |
| 618 char *zName; /* Name of the transformation */ |
| 619 double rLimit; /* Maximum NNN value for this transform */ |
| 620 double rXform; /* Constant used for this transform */ |
| 621 } aXformType[] = { |
| 622 { 0, 6, "second", 464269060800.0, 86400000.0/(24.0*60.0*60.0) }, |
| 623 { 0, 6, "minute", 7737817680.0, 86400000.0/(24.0*60.0) }, |
| 624 { 0, 4, "hour", 128963628.0, 86400000.0/24.0 }, |
| 625 { 0, 3, "day", 5373485.0, 86400000.0 }, |
| 626 { 1, 5, "month", 176546.0, 30.0*86400000.0 }, |
| 627 { 2, 4, "year", 14713.0, 365.0*86400000.0 }, |
| 628 }; |
| 629 |
| 630 /* |
| 631 ** Process a modifier to a date-time stamp. The modifiers are |
| 632 ** as follows: |
| 633 ** |
| 634 ** NNN days |
| 635 ** NNN hours |
| 636 ** NNN minutes |
| 637 ** NNN.NNNN seconds |
| 638 ** NNN months |
| 639 ** NNN years |
| 640 ** start of month |
| 641 ** start of year |
| 642 ** start of week |
| 643 ** start of day |
| 644 ** weekday N |
| 645 ** unixepoch |
| 646 ** localtime |
| 647 ** utc |
| 648 ** |
| 649 ** Return 0 on success and 1 if there is any kind of error. If the error |
| 650 ** is in a system call (i.e. localtime()), then an error message is written |
| 651 ** to context pCtx. If the error is an unrecognized modifier, no error is |
| 652 ** written to pCtx. |
| 653 */ |
| 654 static int parseModifier( |
| 655 sqlite3_context *pCtx, /* Function context */ |
| 656 const char *z, /* The text of the modifier */ |
| 657 int n, /* Length of zMod in bytes */ |
| 658 DateTime *p /* The date/time value to be modified */ |
| 659 ){ |
| 660 int rc = 1; |
| 661 double r; |
| 662 switch(sqlite3UpperToLower[(u8)z[0]] ){ |
| 663 #ifndef SQLITE_OMIT_LOCALTIME |
| 664 case 'l': { |
| 665 /* localtime |
| 666 ** |
| 667 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to |
| 668 ** show local time. |
| 669 */ |
| 670 if( sqlite3_stricmp(z, "localtime")==0 ){ |
| 671 computeJD(p); |
| 672 p->iJD += localtimeOffset(p, pCtx, &rc); |
| 673 clearYMD_HMS_TZ(p); |
| 674 } |
| 675 break; |
| 676 } |
| 677 #endif |
| 678 case 'u': { |
| 679 /* |
| 680 ** unixepoch |
| 681 ** |
| 682 ** Treat the current value of p->s as the number of |
| 683 ** seconds since 1970. Convert to a real julian day number. |
| 684 */ |
| 685 if( sqlite3_stricmp(z, "unixepoch")==0 && p->rawS ){ |
| 686 r = p->s*1000.0 + 210866760000000.0; |
| 687 if( r>=0.0 && r<464269060800000.0 ){ |
| 688 clearYMD_HMS_TZ(p); |
| 689 p->iJD = (sqlite3_int64)r; |
| 690 p->validJD = 1; |
| 691 p->rawS = 0; |
| 692 rc = 0; |
| 693 } |
| 694 } |
| 695 #ifndef SQLITE_OMIT_LOCALTIME |
| 696 else if( sqlite3_stricmp(z, "utc")==0 ){ |
| 697 if( p->tzSet==0 ){ |
| 698 sqlite3_int64 c1; |
| 699 computeJD(p); |
| 700 c1 = localtimeOffset(p, pCtx, &rc); |
| 701 if( rc==SQLITE_OK ){ |
| 702 p->iJD -= c1; |
| 703 clearYMD_HMS_TZ(p); |
| 704 p->iJD += c1 - localtimeOffset(p, pCtx, &rc); |
| 705 } |
| 706 p->tzSet = 1; |
| 707 }else{ |
| 708 rc = SQLITE_OK; |
| 709 } |
| 710 } |
| 711 #endif |
| 712 break; |
| 713 } |
| 714 case 'w': { |
| 715 /* |
| 716 ** weekday N |
| 717 ** |
| 718 ** Move the date to the same time on the next occurrence of |
| 719 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the |
| 720 ** date is already on the appropriate weekday, this is a no-op. |
| 721 */ |
| 722 if( sqlite3_strnicmp(z, "weekday ", 8)==0 |
| 723 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8) |
| 724 && (n=(int)r)==r && n>=0 && r<7 ){ |
| 725 sqlite3_int64 Z; |
| 726 computeYMD_HMS(p); |
| 727 p->validTZ = 0; |
| 728 p->validJD = 0; |
| 729 computeJD(p); |
| 730 Z = ((p->iJD + 129600000)/86400000) % 7; |
| 731 if( Z>n ) Z -= 7; |
| 732 p->iJD += (n - Z)*86400000; |
| 733 clearYMD_HMS_TZ(p); |
| 734 rc = 0; |
| 735 } |
| 736 break; |
| 737 } |
| 738 case 's': { |
| 739 /* |
| 740 ** start of TTTTT |
| 741 ** |
| 742 ** Move the date backwards to the beginning of the current day, |
| 743 ** or month or year. |
| 744 */ |
| 745 if( sqlite3_strnicmp(z, "start of ", 9)!=0 ) break; |
| 746 z += 9; |
| 747 computeYMD(p); |
| 748 p->validHMS = 1; |
| 749 p->h = p->m = 0; |
| 750 p->s = 0.0; |
| 751 p->validTZ = 0; |
| 752 p->validJD = 0; |
| 753 if( sqlite3_stricmp(z,"month")==0 ){ |
| 754 p->D = 1; |
| 755 rc = 0; |
| 756 }else if( sqlite3_stricmp(z,"year")==0 ){ |
| 757 computeYMD(p); |
| 758 p->M = 1; |
| 759 p->D = 1; |
| 760 rc = 0; |
| 761 }else if( sqlite3_stricmp(z,"day")==0 ){ |
| 762 rc = 0; |
| 763 } |
| 764 break; |
| 765 } |
| 766 case '+': |
| 767 case '-': |
| 768 case '0': |
| 769 case '1': |
| 770 case '2': |
| 771 case '3': |
| 772 case '4': |
| 773 case '5': |
| 774 case '6': |
| 775 case '7': |
| 776 case '8': |
| 777 case '9': { |
| 778 double rRounder; |
| 779 int i; |
| 780 for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){} |
| 781 if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){ |
| 782 rc = 1; |
| 783 break; |
| 784 } |
| 785 if( z[n]==':' ){ |
| 786 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the |
| 787 ** specified number of hours, minutes, seconds, and fractional seconds |
| 788 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be |
| 789 ** omitted. |
| 790 */ |
| 791 const char *z2 = z; |
| 792 DateTime tx; |
| 793 sqlite3_int64 day; |
| 794 if( !sqlite3Isdigit(*z2) ) z2++; |
| 795 memset(&tx, 0, sizeof(tx)); |
| 796 if( parseHhMmSs(z2, &tx) ) break; |
| 797 computeJD(&tx); |
| 798 tx.iJD -= 43200000; |
| 799 day = tx.iJD/86400000; |
| 800 tx.iJD -= day*86400000; |
| 801 if( z[0]=='-' ) tx.iJD = -tx.iJD; |
| 802 computeJD(p); |
| 803 clearYMD_HMS_TZ(p); |
| 804 p->iJD += tx.iJD; |
| 805 rc = 0; |
| 806 break; |
| 807 } |
| 808 |
| 809 /* If control reaches this point, it means the transformation is |
| 810 ** one of the forms like "+NNN days". */ |
| 811 z += n; |
| 812 while( sqlite3Isspace(*z) ) z++; |
| 813 n = sqlite3Strlen30(z); |
| 814 if( n>10 || n<3 ) break; |
| 815 if( sqlite3UpperToLower[(u8)z[n-1]]=='s' ) n--; |
| 816 computeJD(p); |
| 817 rc = 1; |
| 818 rRounder = r<0 ? -0.5 : +0.5; |
| 819 for(i=0; i<ArraySize(aXformType); i++){ |
| 820 if( aXformType[i].nName==n |
| 821 && sqlite3_strnicmp(aXformType[i].zName, z, n)==0 |
| 822 && r>-aXformType[i].rLimit && r<aXformType[i].rLimit |
| 823 ){ |
| 824 switch( aXformType[i].eType ){ |
| 825 case 1: { /* Special processing to add months */ |
| 826 int x; |
| 827 computeYMD_HMS(p); |
| 828 p->M += (int)r; |
| 829 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; |
| 830 p->Y += x; |
| 831 p->M -= x*12; |
| 832 p->validJD = 0; |
| 833 r -= (int)r; |
| 834 break; |
| 835 } |
| 836 case 2: { /* Special processing to add years */ |
| 837 int y = (int)r; |
| 838 computeYMD_HMS(p); |
| 839 p->Y += y; |
| 840 p->validJD = 0; |
| 841 r -= (int)r; |
| 842 break; |
| 843 } |
| 844 } |
| 845 computeJD(p); |
| 846 p->iJD += (sqlite3_int64)(r*aXformType[i].rXform + rRounder); |
| 847 rc = 0; |
| 848 break; |
| 849 } |
| 850 } |
| 851 clearYMD_HMS_TZ(p); |
| 852 break; |
| 853 } |
| 854 default: { |
| 855 break; |
| 856 } |
| 857 } |
| 858 return rc; |
| 859 } |
| 860 |
| 861 /* |
| 862 ** Process time function arguments. argv[0] is a date-time stamp. |
| 863 ** argv[1] and following are modifiers. Parse them all and write |
| 864 ** the resulting time into the DateTime structure p. Return 0 |
| 865 ** on success and 1 if there are any errors. |
| 866 ** |
| 867 ** If there are zero parameters (if even argv[0] is undefined) |
| 868 ** then assume a default value of "now" for argv[0]. |
| 869 */ |
| 870 static int isDate( |
| 871 sqlite3_context *context, |
| 872 int argc, |
| 873 sqlite3_value **argv, |
| 874 DateTime *p |
| 875 ){ |
| 876 int i, n; |
| 877 const unsigned char *z; |
| 878 int eType; |
| 879 memset(p, 0, sizeof(*p)); |
| 880 if( argc==0 ){ |
| 881 return setDateTimeToCurrent(context, p); |
| 882 } |
| 883 if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT |
| 884 || eType==SQLITE_INTEGER ){ |
| 885 setRawDateNumber(p, sqlite3_value_double(argv[0])); |
| 886 }else{ |
| 887 z = sqlite3_value_text(argv[0]); |
| 888 if( !z || parseDateOrTime(context, (char*)z, p) ){ |
| 889 return 1; |
| 890 } |
| 891 } |
| 892 for(i=1; i<argc; i++){ |
| 893 z = sqlite3_value_text(argv[i]); |
| 894 n = sqlite3_value_bytes(argv[i]); |
| 895 if( z==0 || parseModifier(context, (char*)z, n, p) ) return 1; |
| 896 } |
| 897 computeJD(p); |
| 898 if( p->isError || !validJulianDay(p->iJD) ) return 1; |
| 899 return 0; |
| 900 } |
| 901 |
| 902 |
| 903 /* |
| 904 ** The following routines implement the various date and time functions |
| 905 ** of SQLite. |
| 906 */ |
| 907 |
| 908 /* |
| 909 ** julianday( TIMESTRING, MOD, MOD, ...) |
| 910 ** |
| 911 ** Return the julian day number of the date specified in the arguments |
| 912 */ |
| 913 static void juliandayFunc( |
| 914 sqlite3_context *context, |
| 915 int argc, |
| 916 sqlite3_value **argv |
| 917 ){ |
| 918 DateTime x; |
| 919 if( isDate(context, argc, argv, &x)==0 ){ |
| 920 computeJD(&x); |
| 921 sqlite3_result_double(context, x.iJD/86400000.0); |
| 922 } |
| 923 } |
| 924 |
| 925 /* |
| 926 ** datetime( TIMESTRING, MOD, MOD, ...) |
| 927 ** |
| 928 ** Return YYYY-MM-DD HH:MM:SS |
| 929 */ |
| 930 static void datetimeFunc( |
| 931 sqlite3_context *context, |
| 932 int argc, |
| 933 sqlite3_value **argv |
| 934 ){ |
| 935 DateTime x; |
| 936 if( isDate(context, argc, argv, &x)==0 ){ |
| 937 char zBuf[100]; |
| 938 computeYMD_HMS(&x); |
| 939 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", |
| 940 x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); |
| 941 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); |
| 942 } |
| 943 } |
| 944 |
| 945 /* |
| 946 ** time( TIMESTRING, MOD, MOD, ...) |
| 947 ** |
| 948 ** Return HH:MM:SS |
| 949 */ |
| 950 static void timeFunc( |
| 951 sqlite3_context *context, |
| 952 int argc, |
| 953 sqlite3_value **argv |
| 954 ){ |
| 955 DateTime x; |
| 956 if( isDate(context, argc, argv, &x)==0 ){ |
| 957 char zBuf[100]; |
| 958 computeHMS(&x); |
| 959 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); |
| 960 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); |
| 961 } |
| 962 } |
| 963 |
| 964 /* |
| 965 ** date( TIMESTRING, MOD, MOD, ...) |
| 966 ** |
| 967 ** Return YYYY-MM-DD |
| 968 */ |
| 969 static void dateFunc( |
| 970 sqlite3_context *context, |
| 971 int argc, |
| 972 sqlite3_value **argv |
| 973 ){ |
| 974 DateTime x; |
| 975 if( isDate(context, argc, argv, &x)==0 ){ |
| 976 char zBuf[100]; |
| 977 computeYMD(&x); |
| 978 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); |
| 979 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); |
| 980 } |
| 981 } |
| 982 |
| 983 /* |
| 984 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) |
| 985 ** |
| 986 ** Return a string described by FORMAT. Conversions as follows: |
| 987 ** |
| 988 ** %d day of month |
| 989 ** %f ** fractional seconds SS.SSS |
| 990 ** %H hour 00-24 |
| 991 ** %j day of year 000-366 |
| 992 ** %J ** julian day number |
| 993 ** %m month 01-12 |
| 994 ** %M minute 00-59 |
| 995 ** %s seconds since 1970-01-01 |
| 996 ** %S seconds 00-59 |
| 997 ** %w day of week 0-6 sunday==0 |
| 998 ** %W week of year 00-53 |
| 999 ** %Y year 0000-9999 |
| 1000 ** %% % |
| 1001 */ |
| 1002 static void strftimeFunc( |
| 1003 sqlite3_context *context, |
| 1004 int argc, |
| 1005 sqlite3_value **argv |
| 1006 ){ |
| 1007 DateTime x; |
| 1008 u64 n; |
| 1009 size_t i,j; |
| 1010 char *z; |
| 1011 sqlite3 *db; |
| 1012 const char *zFmt; |
| 1013 char zBuf[100]; |
| 1014 if( argc==0 ) return; |
| 1015 zFmt = (const char*)sqlite3_value_text(argv[0]); |
| 1016 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; |
| 1017 db = sqlite3_context_db_handle(context); |
| 1018 for(i=0, n=1; zFmt[i]; i++, n++){ |
| 1019 if( zFmt[i]=='%' ){ |
| 1020 switch( zFmt[i+1] ){ |
| 1021 case 'd': |
| 1022 case 'H': |
| 1023 case 'm': |
| 1024 case 'M': |
| 1025 case 'S': |
| 1026 case 'W': |
| 1027 n++; |
| 1028 /* fall thru */ |
| 1029 case 'w': |
| 1030 case '%': |
| 1031 break; |
| 1032 case 'f': |
| 1033 n += 8; |
| 1034 break; |
| 1035 case 'j': |
| 1036 n += 3; |
| 1037 break; |
| 1038 case 'Y': |
| 1039 n += 8; |
| 1040 break; |
| 1041 case 's': |
| 1042 case 'J': |
| 1043 n += 50; |
| 1044 break; |
| 1045 default: |
| 1046 return; /* ERROR. return a NULL */ |
| 1047 } |
| 1048 i++; |
| 1049 } |
| 1050 } |
| 1051 testcase( n==sizeof(zBuf)-1 ); |
| 1052 testcase( n==sizeof(zBuf) ); |
| 1053 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); |
| 1054 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ); |
| 1055 if( n<sizeof(zBuf) ){ |
| 1056 z = zBuf; |
| 1057 }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
| 1058 sqlite3_result_error_toobig(context); |
| 1059 return; |
| 1060 }else{ |
| 1061 z = sqlite3DbMallocRawNN(db, (int)n); |
| 1062 if( z==0 ){ |
| 1063 sqlite3_result_error_nomem(context); |
| 1064 return; |
| 1065 } |
| 1066 } |
| 1067 computeJD(&x); |
| 1068 computeYMD_HMS(&x); |
| 1069 for(i=j=0; zFmt[i]; i++){ |
| 1070 if( zFmt[i]!='%' ){ |
| 1071 z[j++] = zFmt[i]; |
| 1072 }else{ |
| 1073 i++; |
| 1074 switch( zFmt[i] ){ |
| 1075 case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break; |
| 1076 case 'f': { |
| 1077 double s = x.s; |
| 1078 if( s>59.999 ) s = 59.999; |
| 1079 sqlite3_snprintf(7, &z[j],"%06.3f", s); |
| 1080 j += sqlite3Strlen30(&z[j]); |
| 1081 break; |
| 1082 } |
| 1083 case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break; |
| 1084 case 'W': /* Fall thru */ |
| 1085 case 'j': { |
| 1086 int nDay; /* Number of days since 1st day of year */ |
| 1087 DateTime y = x; |
| 1088 y.validJD = 0; |
| 1089 y.M = 1; |
| 1090 y.D = 1; |
| 1091 computeJD(&y); |
| 1092 nDay = (int)((x.iJD-y.iJD+43200000)/86400000); |
| 1093 if( zFmt[i]=='W' ){ |
| 1094 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ |
| 1095 wd = (int)(((x.iJD+43200000)/86400000)%7); |
| 1096 sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7); |
| 1097 j += 2; |
| 1098 }else{ |
| 1099 sqlite3_snprintf(4, &z[j],"%03d",nDay+1); |
| 1100 j += 3; |
| 1101 } |
| 1102 break; |
| 1103 } |
| 1104 case 'J': { |
| 1105 sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0); |
| 1106 j+=sqlite3Strlen30(&z[j]); |
| 1107 break; |
| 1108 } |
| 1109 case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break; |
| 1110 case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break; |
| 1111 case 's': { |
| 1112 sqlite3_snprintf(30,&z[j],"%lld", |
| 1113 (i64)(x.iJD/1000 - 21086676*(i64)10000)); |
| 1114 j += sqlite3Strlen30(&z[j]); |
| 1115 break; |
| 1116 } |
| 1117 case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break; |
| 1118 case 'w': { |
| 1119 z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0'; |
| 1120 break; |
| 1121 } |
| 1122 case 'Y': { |
| 1123 sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]); |
| 1124 break; |
| 1125 } |
| 1126 default: z[j++] = '%'; break; |
| 1127 } |
| 1128 } |
| 1129 } |
| 1130 z[j] = 0; |
| 1131 sqlite3_result_text(context, z, -1, |
| 1132 z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC); |
| 1133 } |
| 1134 |
| 1135 /* |
| 1136 ** current_time() |
| 1137 ** |
| 1138 ** This function returns the same value as time('now'). |
| 1139 */ |
| 1140 static void ctimeFunc( |
| 1141 sqlite3_context *context, |
| 1142 int NotUsed, |
| 1143 sqlite3_value **NotUsed2 |
| 1144 ){ |
| 1145 UNUSED_PARAMETER2(NotUsed, NotUsed2); |
| 1146 timeFunc(context, 0, 0); |
| 1147 } |
| 1148 |
| 1149 /* |
| 1150 ** current_date() |
| 1151 ** |
| 1152 ** This function returns the same value as date('now'). |
| 1153 */ |
| 1154 static void cdateFunc( |
| 1155 sqlite3_context *context, |
| 1156 int NotUsed, |
| 1157 sqlite3_value **NotUsed2 |
| 1158 ){ |
| 1159 UNUSED_PARAMETER2(NotUsed, NotUsed2); |
| 1160 dateFunc(context, 0, 0); |
| 1161 } |
| 1162 |
| 1163 /* |
| 1164 ** current_timestamp() |
| 1165 ** |
| 1166 ** This function returns the same value as datetime('now'). |
| 1167 */ |
| 1168 static void ctimestampFunc( |
| 1169 sqlite3_context *context, |
| 1170 int NotUsed, |
| 1171 sqlite3_value **NotUsed2 |
| 1172 ){ |
| 1173 UNUSED_PARAMETER2(NotUsed, NotUsed2); |
| 1174 datetimeFunc(context, 0, 0); |
| 1175 } |
| 1176 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ |
| 1177 |
| 1178 #ifdef SQLITE_OMIT_DATETIME_FUNCS |
| 1179 /* |
| 1180 ** If the library is compiled to omit the full-scale date and time |
| 1181 ** handling (to get a smaller binary), the following minimal version |
| 1182 ** of the functions current_time(), current_date() and current_timestamp() |
| 1183 ** are included instead. This is to support column declarations that |
| 1184 ** include "DEFAULT CURRENT_TIME" etc. |
| 1185 ** |
| 1186 ** This function uses the C-library functions time(), gmtime() |
| 1187 ** and strftime(). The format string to pass to strftime() is supplied |
| 1188 ** as the user-data for the function. |
| 1189 */ |
| 1190 static void currentTimeFunc( |
| 1191 sqlite3_context *context, |
| 1192 int argc, |
| 1193 sqlite3_value **argv |
| 1194 ){ |
| 1195 time_t t; |
| 1196 char *zFormat = (char *)sqlite3_user_data(context); |
| 1197 sqlite3_int64 iT; |
| 1198 struct tm *pTm; |
| 1199 struct tm sNow; |
| 1200 char zBuf[20]; |
| 1201 |
| 1202 UNUSED_PARAMETER(argc); |
| 1203 UNUSED_PARAMETER(argv); |
| 1204 |
| 1205 iT = sqlite3StmtCurrentTime(context); |
| 1206 if( iT<=0 ) return; |
| 1207 t = iT/1000 - 10000*(sqlite3_int64)21086676; |
| 1208 #if HAVE_GMTIME_R |
| 1209 pTm = gmtime_r(&t, &sNow); |
| 1210 #else |
| 1211 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); |
| 1212 pTm = gmtime(&t); |
| 1213 if( pTm ) memcpy(&sNow, pTm, sizeof(sNow)); |
| 1214 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); |
| 1215 #endif |
| 1216 if( pTm ){ |
| 1217 strftime(zBuf, 20, zFormat, &sNow); |
| 1218 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); |
| 1219 } |
| 1220 } |
| 1221 #endif |
| 1222 |
| 1223 /* |
| 1224 ** This function registered all of the above C functions as SQL |
| 1225 ** functions. This should be the only routine in this file with |
| 1226 ** external linkage. |
| 1227 */ |
| 1228 void sqlite3RegisterDateTimeFunctions(void){ |
| 1229 static FuncDef aDateTimeFuncs[] = { |
| 1230 #ifndef SQLITE_OMIT_DATETIME_FUNCS |
| 1231 DFUNCTION(julianday, -1, 0, 0, juliandayFunc ), |
| 1232 DFUNCTION(date, -1, 0, 0, dateFunc ), |
| 1233 DFUNCTION(time, -1, 0, 0, timeFunc ), |
| 1234 DFUNCTION(datetime, -1, 0, 0, datetimeFunc ), |
| 1235 DFUNCTION(strftime, -1, 0, 0, strftimeFunc ), |
| 1236 DFUNCTION(current_time, 0, 0, 0, ctimeFunc ), |
| 1237 DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), |
| 1238 DFUNCTION(current_date, 0, 0, 0, cdateFunc ), |
| 1239 #else |
| 1240 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), |
| 1241 STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), |
| 1242 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), |
| 1243 #endif |
| 1244 }; |
| 1245 sqlite3InsertBuiltinFuncs(aDateTimeFuncs, ArraySize(aDateTimeFuncs)); |
| 1246 } |
OLD | NEW |