OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2001 September 15 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This file contains C code routines that are called by the SQLite parser |
| 13 ** when syntax rules are reduced. The routines in this file handle the |
| 14 ** following kinds of SQL syntax: |
| 15 ** |
| 16 ** CREATE TABLE |
| 17 ** DROP TABLE |
| 18 ** CREATE INDEX |
| 19 ** DROP INDEX |
| 20 ** creating ID lists |
| 21 ** BEGIN TRANSACTION |
| 22 ** COMMIT |
| 23 ** ROLLBACK |
| 24 */ |
| 25 #include "sqliteInt.h" |
| 26 |
| 27 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 28 /* |
| 29 ** The TableLock structure is only used by the sqlite3TableLock() and |
| 30 ** codeTableLocks() functions. |
| 31 */ |
| 32 struct TableLock { |
| 33 int iDb; /* The database containing the table to be locked */ |
| 34 int iTab; /* The root page of the table to be locked */ |
| 35 u8 isWriteLock; /* True for write lock. False for a read lock */ |
| 36 const char *zLockName; /* Name of the table */ |
| 37 }; |
| 38 |
| 39 /* |
| 40 ** Record the fact that we want to lock a table at run-time. |
| 41 ** |
| 42 ** The table to be locked has root page iTab and is found in database iDb. |
| 43 ** A read or a write lock can be taken depending on isWritelock. |
| 44 ** |
| 45 ** This routine just records the fact that the lock is desired. The |
| 46 ** code to make the lock occur is generated by a later call to |
| 47 ** codeTableLocks() which occurs during sqlite3FinishCoding(). |
| 48 */ |
| 49 void sqlite3TableLock( |
| 50 Parse *pParse, /* Parsing context */ |
| 51 int iDb, /* Index of the database containing the table to lock */ |
| 52 int iTab, /* Root page number of the table to be locked */ |
| 53 u8 isWriteLock, /* True for a write lock */ |
| 54 const char *zName /* Name of the table to be locked */ |
| 55 ){ |
| 56 Parse *pToplevel = sqlite3ParseToplevel(pParse); |
| 57 int i; |
| 58 int nBytes; |
| 59 TableLock *p; |
| 60 assert( iDb>=0 ); |
| 61 |
| 62 if( iDb==1 ) return; |
| 63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return; |
| 64 for(i=0; i<pToplevel->nTableLock; i++){ |
| 65 p = &pToplevel->aTableLock[i]; |
| 66 if( p->iDb==iDb && p->iTab==iTab ){ |
| 67 p->isWriteLock = (p->isWriteLock || isWriteLock); |
| 68 return; |
| 69 } |
| 70 } |
| 71 |
| 72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1); |
| 73 pToplevel->aTableLock = |
| 74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes); |
| 75 if( pToplevel->aTableLock ){ |
| 76 p = &pToplevel->aTableLock[pToplevel->nTableLock++]; |
| 77 p->iDb = iDb; |
| 78 p->iTab = iTab; |
| 79 p->isWriteLock = isWriteLock; |
| 80 p->zLockName = zName; |
| 81 }else{ |
| 82 pToplevel->nTableLock = 0; |
| 83 sqlite3OomFault(pToplevel->db); |
| 84 } |
| 85 } |
| 86 |
| 87 /* |
| 88 ** Code an OP_TableLock instruction for each table locked by the |
| 89 ** statement (configured by calls to sqlite3TableLock()). |
| 90 */ |
| 91 static void codeTableLocks(Parse *pParse){ |
| 92 int i; |
| 93 Vdbe *pVdbe; |
| 94 |
| 95 pVdbe = sqlite3GetVdbe(pParse); |
| 96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */ |
| 97 |
| 98 for(i=0; i<pParse->nTableLock; i++){ |
| 99 TableLock *p = &pParse->aTableLock[i]; |
| 100 int p1 = p->iDb; |
| 101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, |
| 102 p->zLockName, P4_STATIC); |
| 103 } |
| 104 } |
| 105 #else |
| 106 #define codeTableLocks(x) |
| 107 #endif |
| 108 |
| 109 /* |
| 110 ** Return TRUE if the given yDbMask object is empty - if it contains no |
| 111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero() |
| 112 ** macros when SQLITE_MAX_ATTACHED is greater than 30. |
| 113 */ |
| 114 #if SQLITE_MAX_ATTACHED>30 |
| 115 int sqlite3DbMaskAllZero(yDbMask m){ |
| 116 int i; |
| 117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0; |
| 118 return 1; |
| 119 } |
| 120 #endif |
| 121 |
| 122 /* |
| 123 ** This routine is called after a single SQL statement has been |
| 124 ** parsed and a VDBE program to execute that statement has been |
| 125 ** prepared. This routine puts the finishing touches on the |
| 126 ** VDBE program and resets the pParse structure for the next |
| 127 ** parse. |
| 128 ** |
| 129 ** Note that if an error occurred, it might be the case that |
| 130 ** no VDBE code was generated. |
| 131 */ |
| 132 void sqlite3FinishCoding(Parse *pParse){ |
| 133 sqlite3 *db; |
| 134 Vdbe *v; |
| 135 |
| 136 assert( pParse->pToplevel==0 ); |
| 137 db = pParse->db; |
| 138 if( pParse->nested ) return; |
| 139 if( db->mallocFailed || pParse->nErr ){ |
| 140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR; |
| 141 return; |
| 142 } |
| 143 |
| 144 /* Begin by generating some termination code at the end of the |
| 145 ** vdbe program |
| 146 */ |
| 147 v = sqlite3GetVdbe(pParse); |
| 148 assert( !pParse->isMultiWrite |
| 149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort)); |
| 150 if( v ){ |
| 151 sqlite3VdbeAddOp0(v, OP_Halt); |
| 152 |
| 153 #if SQLITE_USER_AUTHENTICATION |
| 154 if( pParse->nTableLock>0 && db->init.busy==0 ){ |
| 155 sqlite3UserAuthInit(db); |
| 156 if( db->auth.authLevel<UAUTH_User ){ |
| 157 sqlite3ErrorMsg(pParse, "user not authenticated"); |
| 158 pParse->rc = SQLITE_AUTH_USER; |
| 159 return; |
| 160 } |
| 161 } |
| 162 #endif |
| 163 |
| 164 /* The cookie mask contains one bit for each database file open. |
| 165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are |
| 166 ** set for each database that is used. Generate code to start a |
| 167 ** transaction on each used database and to verify the schema cookie |
| 168 ** on each used database. |
| 169 */ |
| 170 if( db->mallocFailed==0 |
| 171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr) |
| 172 ){ |
| 173 int iDb, i; |
| 174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init ); |
| 175 sqlite3VdbeJumpHere(v, 0); |
| 176 for(iDb=0; iDb<db->nDb; iDb++){ |
| 177 Schema *pSchema; |
| 178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue; |
| 179 sqlite3VdbeUsesBtree(v, iDb); |
| 180 pSchema = db->aDb[iDb].pSchema; |
| 181 sqlite3VdbeAddOp4Int(v, |
| 182 OP_Transaction, /* Opcode */ |
| 183 iDb, /* P1 */ |
| 184 DbMaskTest(pParse->writeMask,iDb), /* P2 */ |
| 185 pSchema->schema_cookie, /* P3 */ |
| 186 pSchema->iGeneration /* P4 */ |
| 187 ); |
| 188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); |
| 189 VdbeComment((v, |
| 190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); |
| 191 } |
| 192 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 193 for(i=0; i<pParse->nVtabLock; i++){ |
| 194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); |
| 195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); |
| 196 } |
| 197 pParse->nVtabLock = 0; |
| 198 #endif |
| 199 |
| 200 /* Once all the cookies have been verified and transactions opened, |
| 201 ** obtain the required table-locks. This is a no-op unless the |
| 202 ** shared-cache feature is enabled. |
| 203 */ |
| 204 codeTableLocks(pParse); |
| 205 |
| 206 /* Initialize any AUTOINCREMENT data structures required. |
| 207 */ |
| 208 sqlite3AutoincrementBegin(pParse); |
| 209 |
| 210 /* Code constant expressions that where factored out of inner loops */ |
| 211 if( pParse->pConstExpr ){ |
| 212 ExprList *pEL = pParse->pConstExpr; |
| 213 pParse->okConstFactor = 0; |
| 214 for(i=0; i<pEL->nExpr; i++){ |
| 215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg); |
| 216 } |
| 217 } |
| 218 |
| 219 /* Finally, jump back to the beginning of the executable code. */ |
| 220 sqlite3VdbeGoto(v, 1); |
| 221 } |
| 222 } |
| 223 |
| 224 |
| 225 /* Get the VDBE program ready for execution |
| 226 */ |
| 227 if( v && pParse->nErr==0 && !db->mallocFailed ){ |
| 228 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */ |
| 229 /* A minimum of one cursor is required if autoincrement is used |
| 230 * See ticket [a696379c1f08866] */ |
| 231 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1; |
| 232 sqlite3VdbeMakeReady(v, pParse); |
| 233 pParse->rc = SQLITE_DONE; |
| 234 }else{ |
| 235 pParse->rc = SQLITE_ERROR; |
| 236 } |
| 237 } |
| 238 |
| 239 /* |
| 240 ** Run the parser and code generator recursively in order to generate |
| 241 ** code for the SQL statement given onto the end of the pParse context |
| 242 ** currently under construction. When the parser is run recursively |
| 243 ** this way, the final OP_Halt is not appended and other initialization |
| 244 ** and finalization steps are omitted because those are handling by the |
| 245 ** outermost parser. |
| 246 ** |
| 247 ** Not everything is nestable. This facility is designed to permit |
| 248 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use |
| 249 ** care if you decide to try to use this routine for some other purposes. |
| 250 */ |
| 251 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ |
| 252 va_list ap; |
| 253 char *zSql; |
| 254 char *zErrMsg = 0; |
| 255 sqlite3 *db = pParse->db; |
| 256 char saveBuf[PARSE_TAIL_SZ]; |
| 257 |
| 258 if( pParse->nErr ) return; |
| 259 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ |
| 260 va_start(ap, zFormat); |
| 261 zSql = sqlite3VMPrintf(db, zFormat, ap); |
| 262 va_end(ap); |
| 263 if( zSql==0 ){ |
| 264 return; /* A malloc must have failed */ |
| 265 } |
| 266 pParse->nested++; |
| 267 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ); |
| 268 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ); |
| 269 sqlite3RunParser(pParse, zSql, &zErrMsg); |
| 270 sqlite3DbFree(db, zErrMsg); |
| 271 sqlite3DbFree(db, zSql); |
| 272 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ); |
| 273 pParse->nested--; |
| 274 } |
| 275 |
| 276 #if SQLITE_USER_AUTHENTICATION |
| 277 /* |
| 278 ** Return TRUE if zTable is the name of the system table that stores the |
| 279 ** list of users and their access credentials. |
| 280 */ |
| 281 int sqlite3UserAuthTable(const char *zTable){ |
| 282 return sqlite3_stricmp(zTable, "sqlite_user")==0; |
| 283 } |
| 284 #endif |
| 285 |
| 286 /* |
| 287 ** Locate the in-memory structure that describes a particular database |
| 288 ** table given the name of that table and (optionally) the name of the |
| 289 ** database containing the table. Return NULL if not found. |
| 290 ** |
| 291 ** If zDatabase is 0, all databases are searched for the table and the |
| 292 ** first matching table is returned. (No checking for duplicate table |
| 293 ** names is done.) The search order is TEMP first, then MAIN, then any |
| 294 ** auxiliary databases added using the ATTACH command. |
| 295 ** |
| 296 ** See also sqlite3LocateTable(). |
| 297 */ |
| 298 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ |
| 299 Table *p = 0; |
| 300 int i; |
| 301 |
| 302 /* All mutexes are required for schema access. Make sure we hold them. */ |
| 303 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) ); |
| 304 #if SQLITE_USER_AUTHENTICATION |
| 305 /* Only the admin user is allowed to know that the sqlite_user table |
| 306 ** exists */ |
| 307 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){ |
| 308 return 0; |
| 309 } |
| 310 #endif |
| 311 while(1){ |
| 312 for(i=OMIT_TEMPDB; i<db->nDb; i++){ |
| 313 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ |
| 314 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){ |
| 315 assert( sqlite3SchemaMutexHeld(db, j, 0) ); |
| 316 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName); |
| 317 if( p ) return p; |
| 318 } |
| 319 } |
| 320 /* Not found. If the name we were looking for was temp.sqlite_master |
| 321 ** then change the name to sqlite_temp_master and try again. */ |
| 322 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break; |
| 323 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break; |
| 324 zName = TEMP_MASTER_NAME; |
| 325 } |
| 326 return 0; |
| 327 } |
| 328 |
| 329 /* |
| 330 ** Locate the in-memory structure that describes a particular database |
| 331 ** table given the name of that table and (optionally) the name of the |
| 332 ** database containing the table. Return NULL if not found. Also leave an |
| 333 ** error message in pParse->zErrMsg. |
| 334 ** |
| 335 ** The difference between this routine and sqlite3FindTable() is that this |
| 336 ** routine leaves an error message in pParse->zErrMsg where |
| 337 ** sqlite3FindTable() does not. |
| 338 */ |
| 339 Table *sqlite3LocateTable( |
| 340 Parse *pParse, /* context in which to report errors */ |
| 341 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */ |
| 342 const char *zName, /* Name of the table we are looking for */ |
| 343 const char *zDbase /* Name of the database. Might be NULL */ |
| 344 ){ |
| 345 Table *p; |
| 346 |
| 347 /* Read the database schema. If an error occurs, leave an error message |
| 348 ** and code in pParse and return NULL. */ |
| 349 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
| 350 return 0; |
| 351 } |
| 352 |
| 353 p = sqlite3FindTable(pParse->db, zName, zDbase); |
| 354 if( p==0 ){ |
| 355 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; |
| 356 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 357 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){ |
| 358 /* If zName is the not the name of a table in the schema created using |
| 359 ** CREATE, then check to see if it is the name of an virtual table that |
| 360 ** can be an eponymous virtual table. */ |
| 361 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName); |
| 362 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ |
| 363 pMod = sqlite3PragmaVtabRegister(pParse->db, zName); |
| 364 } |
| 365 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ |
| 366 return pMod->pEpoTab; |
| 367 } |
| 368 } |
| 369 #endif |
| 370 if( (flags & LOCATE_NOERR)==0 ){ |
| 371 if( zDbase ){ |
| 372 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); |
| 373 }else{ |
| 374 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); |
| 375 } |
| 376 pParse->checkSchema = 1; |
| 377 } |
| 378 } |
| 379 |
| 380 return p; |
| 381 } |
| 382 |
| 383 /* |
| 384 ** Locate the table identified by *p. |
| 385 ** |
| 386 ** This is a wrapper around sqlite3LocateTable(). The difference between |
| 387 ** sqlite3LocateTable() and this function is that this function restricts |
| 388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be |
| 389 ** non-NULL if it is part of a view or trigger program definition. See |
| 390 ** sqlite3FixSrcList() for details. |
| 391 */ |
| 392 Table *sqlite3LocateTableItem( |
| 393 Parse *pParse, |
| 394 u32 flags, |
| 395 struct SrcList_item *p |
| 396 ){ |
| 397 const char *zDb; |
| 398 assert( p->pSchema==0 || p->zDatabase==0 ); |
| 399 if( p->pSchema ){ |
| 400 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema); |
| 401 zDb = pParse->db->aDb[iDb].zDbSName; |
| 402 }else{ |
| 403 zDb = p->zDatabase; |
| 404 } |
| 405 return sqlite3LocateTable(pParse, flags, p->zName, zDb); |
| 406 } |
| 407 |
| 408 /* |
| 409 ** Locate the in-memory structure that describes |
| 410 ** a particular index given the name of that index |
| 411 ** and the name of the database that contains the index. |
| 412 ** Return NULL if not found. |
| 413 ** |
| 414 ** If zDatabase is 0, all databases are searched for the |
| 415 ** table and the first matching index is returned. (No checking |
| 416 ** for duplicate index names is done.) The search order is |
| 417 ** TEMP first, then MAIN, then any auxiliary databases added |
| 418 ** using the ATTACH command. |
| 419 */ |
| 420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ |
| 421 Index *p = 0; |
| 422 int i; |
| 423 /* All mutexes are required for schema access. Make sure we hold them. */ |
| 424 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) ); |
| 425 for(i=OMIT_TEMPDB; i<db->nDb; i++){ |
| 426 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ |
| 427 Schema *pSchema = db->aDb[j].pSchema; |
| 428 assert( pSchema ); |
| 429 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue; |
| 430 assert( sqlite3SchemaMutexHeld(db, j, 0) ); |
| 431 p = sqlite3HashFind(&pSchema->idxHash, zName); |
| 432 if( p ) break; |
| 433 } |
| 434 return p; |
| 435 } |
| 436 |
| 437 /* |
| 438 ** Reclaim the memory used by an index |
| 439 */ |
| 440 static void freeIndex(sqlite3 *db, Index *p){ |
| 441 #ifndef SQLITE_OMIT_ANALYZE |
| 442 sqlite3DeleteIndexSamples(db, p); |
| 443 #endif |
| 444 sqlite3ExprDelete(db, p->pPartIdxWhere); |
| 445 sqlite3ExprListDelete(db, p->aColExpr); |
| 446 sqlite3DbFree(db, p->zColAff); |
| 447 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl); |
| 448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 449 sqlite3_free(p->aiRowEst); |
| 450 #endif |
| 451 sqlite3DbFree(db, p); |
| 452 } |
| 453 |
| 454 /* |
| 455 ** For the index called zIdxName which is found in the database iDb, |
| 456 ** unlike that index from its Table then remove the index from |
| 457 ** the index hash table and free all memory structures associated |
| 458 ** with the index. |
| 459 */ |
| 460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ |
| 461 Index *pIndex; |
| 462 Hash *pHash; |
| 463 |
| 464 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 465 pHash = &db->aDb[iDb].pSchema->idxHash; |
| 466 pIndex = sqlite3HashInsert(pHash, zIdxName, 0); |
| 467 if( ALWAYS(pIndex) ){ |
| 468 if( pIndex->pTable->pIndex==pIndex ){ |
| 469 pIndex->pTable->pIndex = pIndex->pNext; |
| 470 }else{ |
| 471 Index *p; |
| 472 /* Justification of ALWAYS(); The index must be on the list of |
| 473 ** indices. */ |
| 474 p = pIndex->pTable->pIndex; |
| 475 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; } |
| 476 if( ALWAYS(p && p->pNext==pIndex) ){ |
| 477 p->pNext = pIndex->pNext; |
| 478 } |
| 479 } |
| 480 freeIndex(db, pIndex); |
| 481 } |
| 482 db->flags |= SQLITE_InternChanges; |
| 483 } |
| 484 |
| 485 /* |
| 486 ** Look through the list of open database files in db->aDb[] and if |
| 487 ** any have been closed, remove them from the list. Reallocate the |
| 488 ** db->aDb[] structure to a smaller size, if possible. |
| 489 ** |
| 490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database) |
| 491 ** are never candidates for being collapsed. |
| 492 */ |
| 493 void sqlite3CollapseDatabaseArray(sqlite3 *db){ |
| 494 int i, j; |
| 495 for(i=j=2; i<db->nDb; i++){ |
| 496 struct Db *pDb = &db->aDb[i]; |
| 497 if( pDb->pBt==0 ){ |
| 498 sqlite3DbFree(db, pDb->zDbSName); |
| 499 pDb->zDbSName = 0; |
| 500 continue; |
| 501 } |
| 502 if( j<i ){ |
| 503 db->aDb[j] = db->aDb[i]; |
| 504 } |
| 505 j++; |
| 506 } |
| 507 db->nDb = j; |
| 508 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ |
| 509 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); |
| 510 sqlite3DbFree(db, db->aDb); |
| 511 db->aDb = db->aDbStatic; |
| 512 } |
| 513 } |
| 514 |
| 515 /* |
| 516 ** Reset the schema for the database at index iDb. Also reset the |
| 517 ** TEMP schema. |
| 518 */ |
| 519 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){ |
| 520 Db *pDb; |
| 521 assert( iDb<db->nDb ); |
| 522 |
| 523 /* Case 1: Reset the single schema identified by iDb */ |
| 524 pDb = &db->aDb[iDb]; |
| 525 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 526 assert( pDb->pSchema!=0 ); |
| 527 sqlite3SchemaClear(pDb->pSchema); |
| 528 |
| 529 /* If any database other than TEMP is reset, then also reset TEMP |
| 530 ** since TEMP might be holding triggers that reference tables in the |
| 531 ** other database. |
| 532 */ |
| 533 if( iDb!=1 ){ |
| 534 pDb = &db->aDb[1]; |
| 535 assert( pDb->pSchema!=0 ); |
| 536 sqlite3SchemaClear(pDb->pSchema); |
| 537 } |
| 538 return; |
| 539 } |
| 540 |
| 541 /* |
| 542 ** Erase all schema information from all attached databases (including |
| 543 ** "main" and "temp") for a single database connection. |
| 544 */ |
| 545 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ |
| 546 int i; |
| 547 sqlite3BtreeEnterAll(db); |
| 548 for(i=0; i<db->nDb; i++){ |
| 549 Db *pDb = &db->aDb[i]; |
| 550 if( pDb->pSchema ){ |
| 551 sqlite3SchemaClear(pDb->pSchema); |
| 552 } |
| 553 } |
| 554 db->flags &= ~SQLITE_InternChanges; |
| 555 sqlite3VtabUnlockList(db); |
| 556 sqlite3BtreeLeaveAll(db); |
| 557 sqlite3CollapseDatabaseArray(db); |
| 558 } |
| 559 |
| 560 /* |
| 561 ** This routine is called when a commit occurs. |
| 562 */ |
| 563 void sqlite3CommitInternalChanges(sqlite3 *db){ |
| 564 db->flags &= ~SQLITE_InternChanges; |
| 565 } |
| 566 |
| 567 /* |
| 568 ** Delete memory allocated for the column names of a table or view (the |
| 569 ** Table.aCol[] array). |
| 570 */ |
| 571 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){ |
| 572 int i; |
| 573 Column *pCol; |
| 574 assert( pTable!=0 ); |
| 575 if( (pCol = pTable->aCol)!=0 ){ |
| 576 for(i=0; i<pTable->nCol; i++, pCol++){ |
| 577 sqlite3DbFree(db, pCol->zName); |
| 578 sqlite3ExprDelete(db, pCol->pDflt); |
| 579 sqlite3DbFree(db, pCol->zColl); |
| 580 } |
| 581 sqlite3DbFree(db, pTable->aCol); |
| 582 } |
| 583 } |
| 584 |
| 585 /* |
| 586 ** Remove the memory data structures associated with the given |
| 587 ** Table. No changes are made to disk by this routine. |
| 588 ** |
| 589 ** This routine just deletes the data structure. It does not unlink |
| 590 ** the table data structure from the hash table. But it does destroy |
| 591 ** memory structures of the indices and foreign keys associated with |
| 592 ** the table. |
| 593 ** |
| 594 ** The db parameter is optional. It is needed if the Table object |
| 595 ** contains lookaside memory. (Table objects in the schema do not use |
| 596 ** lookaside memory, but some ephemeral Table objects do.) Or the |
| 597 ** db parameter can be used with db->pnBytesFreed to measure the memory |
| 598 ** used by the Table object. |
| 599 */ |
| 600 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){ |
| 601 Index *pIndex, *pNext; |
| 602 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */ |
| 603 |
| 604 /* Record the number of outstanding lookaside allocations in schema Tables |
| 605 ** prior to doing any free() operations. Since schema Tables do not use |
| 606 ** lookaside, this number should not change. */ |
| 607 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ? |
| 608 db->lookaside.nOut : 0 ); |
| 609 |
| 610 /* Delete all indices associated with this table. */ |
| 611 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ |
| 612 pNext = pIndex->pNext; |
| 613 assert( pIndex->pSchema==pTable->pSchema |
| 614 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) ); |
| 615 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){ |
| 616 char *zName = pIndex->zName; |
| 617 TESTONLY ( Index *pOld = ) sqlite3HashInsert( |
| 618 &pIndex->pSchema->idxHash, zName, 0 |
| 619 ); |
| 620 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); |
| 621 assert( pOld==pIndex || pOld==0 ); |
| 622 } |
| 623 freeIndex(db, pIndex); |
| 624 } |
| 625 |
| 626 /* Delete any foreign keys attached to this table. */ |
| 627 sqlite3FkDelete(db, pTable); |
| 628 |
| 629 /* Delete the Table structure itself. |
| 630 */ |
| 631 sqlite3DeleteColumnNames(db, pTable); |
| 632 sqlite3DbFree(db, pTable->zName); |
| 633 sqlite3DbFree(db, pTable->zColAff); |
| 634 sqlite3SelectDelete(db, pTable->pSelect); |
| 635 sqlite3ExprListDelete(db, pTable->pCheck); |
| 636 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 637 sqlite3VtabClear(db, pTable); |
| 638 #endif |
| 639 sqlite3DbFree(db, pTable); |
| 640 |
| 641 /* Verify that no lookaside memory was used by schema tables */ |
| 642 assert( nLookaside==0 || nLookaside==db->lookaside.nOut ); |
| 643 } |
| 644 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){ |
| 645 /* Do not delete the table until the reference count reaches zero. */ |
| 646 if( !pTable ) return; |
| 647 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return; |
| 648 deleteTable(db, pTable); |
| 649 } |
| 650 |
| 651 |
| 652 /* |
| 653 ** Unlink the given table from the hash tables and the delete the |
| 654 ** table structure with all its indices and foreign keys. |
| 655 */ |
| 656 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ |
| 657 Table *p; |
| 658 Db *pDb; |
| 659 |
| 660 assert( db!=0 ); |
| 661 assert( iDb>=0 && iDb<db->nDb ); |
| 662 assert( zTabName ); |
| 663 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 664 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */ |
| 665 pDb = &db->aDb[iDb]; |
| 666 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0); |
| 667 sqlite3DeleteTable(db, p); |
| 668 db->flags |= SQLITE_InternChanges; |
| 669 } |
| 670 |
| 671 /* |
| 672 ** Given a token, return a string that consists of the text of that |
| 673 ** token. Space to hold the returned string |
| 674 ** is obtained from sqliteMalloc() and must be freed by the calling |
| 675 ** function. |
| 676 ** |
| 677 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that |
| 678 ** surround the body of the token are removed. |
| 679 ** |
| 680 ** Tokens are often just pointers into the original SQL text and so |
| 681 ** are not \000 terminated and are not persistent. The returned string |
| 682 ** is \000 terminated and is persistent. |
| 683 */ |
| 684 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ |
| 685 char *zName; |
| 686 if( pName ){ |
| 687 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); |
| 688 sqlite3Dequote(zName); |
| 689 }else{ |
| 690 zName = 0; |
| 691 } |
| 692 return zName; |
| 693 } |
| 694 |
| 695 /* |
| 696 ** Open the sqlite_master table stored in database number iDb for |
| 697 ** writing. The table is opened using cursor 0. |
| 698 */ |
| 699 void sqlite3OpenMasterTable(Parse *p, int iDb){ |
| 700 Vdbe *v = sqlite3GetVdbe(p); |
| 701 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME); |
| 702 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5); |
| 703 if( p->nTab==0 ){ |
| 704 p->nTab = 1; |
| 705 } |
| 706 } |
| 707 |
| 708 /* |
| 709 ** Parameter zName points to a nul-terminated buffer containing the name |
| 710 ** of a database ("main", "temp" or the name of an attached db). This |
| 711 ** function returns the index of the named database in db->aDb[], or |
| 712 ** -1 if the named db cannot be found. |
| 713 */ |
| 714 int sqlite3FindDbName(sqlite3 *db, const char *zName){ |
| 715 int i = -1; /* Database number */ |
| 716 if( zName ){ |
| 717 Db *pDb; |
| 718 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ |
| 719 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break; |
| 720 /* "main" is always an acceptable alias for the primary database |
| 721 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */ |
| 722 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break; |
| 723 } |
| 724 } |
| 725 return i; |
| 726 } |
| 727 |
| 728 /* |
| 729 ** The token *pName contains the name of a database (either "main" or |
| 730 ** "temp" or the name of an attached db). This routine returns the |
| 731 ** index of the named database in db->aDb[], or -1 if the named db |
| 732 ** does not exist. |
| 733 */ |
| 734 int sqlite3FindDb(sqlite3 *db, Token *pName){ |
| 735 int i; /* Database number */ |
| 736 char *zName; /* Name we are searching for */ |
| 737 zName = sqlite3NameFromToken(db, pName); |
| 738 i = sqlite3FindDbName(db, zName); |
| 739 sqlite3DbFree(db, zName); |
| 740 return i; |
| 741 } |
| 742 |
| 743 /* The table or view or trigger name is passed to this routine via tokens |
| 744 ** pName1 and pName2. If the table name was fully qualified, for example: |
| 745 ** |
| 746 ** CREATE TABLE xxx.yyy (...); |
| 747 ** |
| 748 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if |
| 749 ** the table name is not fully qualified, i.e.: |
| 750 ** |
| 751 ** CREATE TABLE yyy(...); |
| 752 ** |
| 753 ** Then pName1 is set to "yyy" and pName2 is "". |
| 754 ** |
| 755 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or |
| 756 ** pName2) that stores the unqualified table name. The index of the |
| 757 ** database "xxx" is returned. |
| 758 */ |
| 759 int sqlite3TwoPartName( |
| 760 Parse *pParse, /* Parsing and code generating context */ |
| 761 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ |
| 762 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ |
| 763 Token **pUnqual /* Write the unqualified object name here */ |
| 764 ){ |
| 765 int iDb; /* Database holding the object */ |
| 766 sqlite3 *db = pParse->db; |
| 767 |
| 768 assert( pName2!=0 ); |
| 769 if( pName2->n>0 ){ |
| 770 if( db->init.busy ) { |
| 771 sqlite3ErrorMsg(pParse, "corrupt database"); |
| 772 return -1; |
| 773 } |
| 774 *pUnqual = pName2; |
| 775 iDb = sqlite3FindDb(db, pName1); |
| 776 if( iDb<0 ){ |
| 777 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); |
| 778 return -1; |
| 779 } |
| 780 }else{ |
| 781 assert( db->init.iDb==0 || db->init.busy || (db->flags & SQLITE_Vacuum)!=0); |
| 782 iDb = db->init.iDb; |
| 783 *pUnqual = pName1; |
| 784 } |
| 785 return iDb; |
| 786 } |
| 787 |
| 788 /* |
| 789 ** This routine is used to check if the UTF-8 string zName is a legal |
| 790 ** unqualified name for a new schema object (table, index, view or |
| 791 ** trigger). All names are legal except those that begin with the string |
| 792 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace |
| 793 ** is reserved for internal use. |
| 794 */ |
| 795 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ |
| 796 if( !pParse->db->init.busy && pParse->nested==0 |
| 797 && (pParse->db->flags & SQLITE_WriteSchema)==0 |
| 798 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ |
| 799 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); |
| 800 return SQLITE_ERROR; |
| 801 } |
| 802 return SQLITE_OK; |
| 803 } |
| 804 |
| 805 /* |
| 806 ** Return the PRIMARY KEY index of a table |
| 807 */ |
| 808 Index *sqlite3PrimaryKeyIndex(Table *pTab){ |
| 809 Index *p; |
| 810 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){} |
| 811 return p; |
| 812 } |
| 813 |
| 814 /* |
| 815 ** Return the column of index pIdx that corresponds to table |
| 816 ** column iCol. Return -1 if not found. |
| 817 */ |
| 818 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){ |
| 819 int i; |
| 820 for(i=0; i<pIdx->nColumn; i++){ |
| 821 if( iCol==pIdx->aiColumn[i] ) return i; |
| 822 } |
| 823 return -1; |
| 824 } |
| 825 |
| 826 /* |
| 827 ** Begin constructing a new table representation in memory. This is |
| 828 ** the first of several action routines that get called in response |
| 829 ** to a CREATE TABLE statement. In particular, this routine is called |
| 830 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp |
| 831 ** flag is true if the table should be stored in the auxiliary database |
| 832 ** file instead of in the main database file. This is normally the case |
| 833 ** when the "TEMP" or "TEMPORARY" keyword occurs in between |
| 834 ** CREATE and TABLE. |
| 835 ** |
| 836 ** The new table record is initialized and put in pParse->pNewTable. |
| 837 ** As more of the CREATE TABLE statement is parsed, additional action |
| 838 ** routines will be called to add more information to this record. |
| 839 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine |
| 840 ** is called to complete the construction of the new table record. |
| 841 */ |
| 842 void sqlite3StartTable( |
| 843 Parse *pParse, /* Parser context */ |
| 844 Token *pName1, /* First part of the name of the table or view */ |
| 845 Token *pName2, /* Second part of the name of the table or view */ |
| 846 int isTemp, /* True if this is a TEMP table */ |
| 847 int isView, /* True if this is a VIEW */ |
| 848 int isVirtual, /* True if this is a VIRTUAL table */ |
| 849 int noErr /* Do nothing if table already exists */ |
| 850 ){ |
| 851 Table *pTable; |
| 852 char *zName = 0; /* The name of the new table */ |
| 853 sqlite3 *db = pParse->db; |
| 854 Vdbe *v; |
| 855 int iDb; /* Database number to create the table in */ |
| 856 Token *pName; /* Unqualified name of the table to create */ |
| 857 |
| 858 if( db->init.busy && db->init.newTnum==1 ){ |
| 859 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */ |
| 860 iDb = db->init.iDb; |
| 861 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb)); |
| 862 pName = pName1; |
| 863 }else{ |
| 864 /* The common case */ |
| 865 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); |
| 866 if( iDb<0 ) return; |
| 867 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){ |
| 868 /* If creating a temp table, the name may not be qualified. Unless |
| 869 ** the database name is "temp" anyway. */ |
| 870 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); |
| 871 return; |
| 872 } |
| 873 if( !OMIT_TEMPDB && isTemp ) iDb = 1; |
| 874 zName = sqlite3NameFromToken(db, pName); |
| 875 } |
| 876 pParse->sNameToken = *pName; |
| 877 if( zName==0 ) return; |
| 878 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ |
| 879 goto begin_table_error; |
| 880 } |
| 881 if( db->init.iDb==1 ) isTemp = 1; |
| 882 #ifndef SQLITE_OMIT_AUTHORIZATION |
| 883 assert( isTemp==0 || isTemp==1 ); |
| 884 assert( isView==0 || isView==1 ); |
| 885 { |
| 886 static const u8 aCode[] = { |
| 887 SQLITE_CREATE_TABLE, |
| 888 SQLITE_CREATE_TEMP_TABLE, |
| 889 SQLITE_CREATE_VIEW, |
| 890 SQLITE_CREATE_TEMP_VIEW |
| 891 }; |
| 892 char *zDb = db->aDb[iDb].zDbSName; |
| 893 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ |
| 894 goto begin_table_error; |
| 895 } |
| 896 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView], |
| 897 zName, 0, zDb) ){ |
| 898 goto begin_table_error; |
| 899 } |
| 900 } |
| 901 #endif |
| 902 |
| 903 /* Make sure the new table name does not collide with an existing |
| 904 ** index or table name in the same database. Issue an error message if |
| 905 ** it does. The exception is if the statement being parsed was passed |
| 906 ** to an sqlite3_declare_vtab() call. In that case only the column names |
| 907 ** and types will be used, so there is no need to test for namespace |
| 908 ** collisions. |
| 909 */ |
| 910 if( !IN_DECLARE_VTAB ){ |
| 911 char *zDb = db->aDb[iDb].zDbSName; |
| 912 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
| 913 goto begin_table_error; |
| 914 } |
| 915 pTable = sqlite3FindTable(db, zName, zDb); |
| 916 if( pTable ){ |
| 917 if( !noErr ){ |
| 918 sqlite3ErrorMsg(pParse, "table %T already exists", pName); |
| 919 }else{ |
| 920 assert( !db->init.busy || CORRUPT_DB ); |
| 921 sqlite3CodeVerifySchema(pParse, iDb); |
| 922 } |
| 923 goto begin_table_error; |
| 924 } |
| 925 if( sqlite3FindIndex(db, zName, zDb)!=0 ){ |
| 926 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); |
| 927 goto begin_table_error; |
| 928 } |
| 929 } |
| 930 |
| 931 pTable = sqlite3DbMallocZero(db, sizeof(Table)); |
| 932 if( pTable==0 ){ |
| 933 assert( db->mallocFailed ); |
| 934 pParse->rc = SQLITE_NOMEM_BKPT; |
| 935 pParse->nErr++; |
| 936 goto begin_table_error; |
| 937 } |
| 938 pTable->zName = zName; |
| 939 pTable->iPKey = -1; |
| 940 pTable->pSchema = db->aDb[iDb].pSchema; |
| 941 pTable->nTabRef = 1; |
| 942 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); |
| 943 assert( pParse->pNewTable==0 ); |
| 944 pParse->pNewTable = pTable; |
| 945 |
| 946 /* If this is the magic sqlite_sequence table used by autoincrement, |
| 947 ** then record a pointer to this table in the main database structure |
| 948 ** so that INSERT can find the table easily. |
| 949 */ |
| 950 #ifndef SQLITE_OMIT_AUTOINCREMENT |
| 951 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ |
| 952 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 953 pTable->pSchema->pSeqTab = pTable; |
| 954 } |
| 955 #endif |
| 956 |
| 957 /* Begin generating the code that will insert the table record into |
| 958 ** the SQLITE_MASTER table. Note in particular that we must go ahead |
| 959 ** and allocate the record number for the table entry now. Before any |
| 960 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause |
| 961 ** indices to be created and the table record must come before the |
| 962 ** indices. Hence, the record number for the table must be allocated |
| 963 ** now. |
| 964 */ |
| 965 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ |
| 966 int addr1; |
| 967 int fileFormat; |
| 968 int reg1, reg2, reg3; |
| 969 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */ |
| 970 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 }; |
| 971 sqlite3BeginWriteOperation(pParse, 1, iDb); |
| 972 |
| 973 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 974 if( isVirtual ){ |
| 975 sqlite3VdbeAddOp0(v, OP_VBegin); |
| 976 } |
| 977 #endif |
| 978 |
| 979 /* If the file format and encoding in the database have not been set, |
| 980 ** set them now. |
| 981 */ |
| 982 reg1 = pParse->regRowid = ++pParse->nMem; |
| 983 reg2 = pParse->regRoot = ++pParse->nMem; |
| 984 reg3 = ++pParse->nMem; |
| 985 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT); |
| 986 sqlite3VdbeUsesBtree(v, iDb); |
| 987 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v); |
| 988 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? |
| 989 1 : SQLITE_MAX_FILE_FORMAT; |
| 990 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat); |
| 991 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db)); |
| 992 sqlite3VdbeJumpHere(v, addr1); |
| 993 |
| 994 /* This just creates a place-holder record in the sqlite_master table. |
| 995 ** The record created does not contain anything yet. It will be replaced |
| 996 ** by the real entry in code generated at sqlite3EndTable(). |
| 997 ** |
| 998 ** The rowid for the new entry is left in register pParse->regRowid. |
| 999 ** The root page number of the new table is left in reg pParse->regRoot. |
| 1000 ** The rowid and root page number values are needed by the code that |
| 1001 ** sqlite3EndTable will generate. |
| 1002 */ |
| 1003 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) |
| 1004 if( isView || isVirtual ){ |
| 1005 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); |
| 1006 }else |
| 1007 #endif |
| 1008 { |
| 1009 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); |
| 1010 } |
| 1011 sqlite3OpenMasterTable(pParse, iDb); |
| 1012 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); |
| 1013 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC); |
| 1014 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); |
| 1015 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
| 1016 sqlite3VdbeAddOp0(v, OP_Close); |
| 1017 } |
| 1018 |
| 1019 /* Normal (non-error) return. */ |
| 1020 return; |
| 1021 |
| 1022 /* If an error occurs, we jump here */ |
| 1023 begin_table_error: |
| 1024 sqlite3DbFree(db, zName); |
| 1025 return; |
| 1026 } |
| 1027 |
| 1028 /* Set properties of a table column based on the (magical) |
| 1029 ** name of the column. |
| 1030 */ |
| 1031 #if SQLITE_ENABLE_HIDDEN_COLUMNS |
| 1032 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){ |
| 1033 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){ |
| 1034 pCol->colFlags |= COLFLAG_HIDDEN; |
| 1035 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){ |
| 1036 pTab->tabFlags |= TF_OOOHidden; |
| 1037 } |
| 1038 } |
| 1039 #endif |
| 1040 |
| 1041 |
| 1042 /* |
| 1043 ** Add a new column to the table currently being constructed. |
| 1044 ** |
| 1045 ** The parser calls this routine once for each column declaration |
| 1046 ** in a CREATE TABLE statement. sqlite3StartTable() gets called |
| 1047 ** first to get things going. Then this routine is called for each |
| 1048 ** column. |
| 1049 */ |
| 1050 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){ |
| 1051 Table *p; |
| 1052 int i; |
| 1053 char *z; |
| 1054 char *zType; |
| 1055 Column *pCol; |
| 1056 sqlite3 *db = pParse->db; |
| 1057 if( (p = pParse->pNewTable)==0 ) return; |
| 1058 #if SQLITE_MAX_COLUMN |
| 1059 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ |
| 1060 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); |
| 1061 return; |
| 1062 } |
| 1063 #endif |
| 1064 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2); |
| 1065 if( z==0 ) return; |
| 1066 memcpy(z, pName->z, pName->n); |
| 1067 z[pName->n] = 0; |
| 1068 sqlite3Dequote(z); |
| 1069 for(i=0; i<p->nCol; i++){ |
| 1070 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){ |
| 1071 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); |
| 1072 sqlite3DbFree(db, z); |
| 1073 return; |
| 1074 } |
| 1075 } |
| 1076 if( (p->nCol & 0x7)==0 ){ |
| 1077 Column *aNew; |
| 1078 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); |
| 1079 if( aNew==0 ){ |
| 1080 sqlite3DbFree(db, z); |
| 1081 return; |
| 1082 } |
| 1083 p->aCol = aNew; |
| 1084 } |
| 1085 pCol = &p->aCol[p->nCol]; |
| 1086 memset(pCol, 0, sizeof(p->aCol[0])); |
| 1087 pCol->zName = z; |
| 1088 sqlite3ColumnPropertiesFromName(p, pCol); |
| 1089 |
| 1090 if( pType->n==0 ){ |
| 1091 /* If there is no type specified, columns have the default affinity |
| 1092 ** 'BLOB'. */ |
| 1093 pCol->affinity = SQLITE_AFF_BLOB; |
| 1094 pCol->szEst = 1; |
| 1095 }else{ |
| 1096 zType = z + sqlite3Strlen30(z) + 1; |
| 1097 memcpy(zType, pType->z, pType->n); |
| 1098 zType[pType->n] = 0; |
| 1099 sqlite3Dequote(zType); |
| 1100 pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst); |
| 1101 pCol->colFlags |= COLFLAG_HASTYPE; |
| 1102 } |
| 1103 p->nCol++; |
| 1104 pParse->constraintName.n = 0; |
| 1105 } |
| 1106 |
| 1107 /* |
| 1108 ** This routine is called by the parser while in the middle of |
| 1109 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has |
| 1110 ** been seen on a column. This routine sets the notNull flag on |
| 1111 ** the column currently under construction. |
| 1112 */ |
| 1113 void sqlite3AddNotNull(Parse *pParse, int onError){ |
| 1114 Table *p; |
| 1115 p = pParse->pNewTable; |
| 1116 if( p==0 || NEVER(p->nCol<1) ) return; |
| 1117 p->aCol[p->nCol-1].notNull = (u8)onError; |
| 1118 } |
| 1119 |
| 1120 /* |
| 1121 ** Scan the column type name zType (length nType) and return the |
| 1122 ** associated affinity type. |
| 1123 ** |
| 1124 ** This routine does a case-independent search of zType for the |
| 1125 ** substrings in the following table. If one of the substrings is |
| 1126 ** found, the corresponding affinity is returned. If zType contains |
| 1127 ** more than one of the substrings, entries toward the top of |
| 1128 ** the table take priority. For example, if zType is 'BLOBINT', |
| 1129 ** SQLITE_AFF_INTEGER is returned. |
| 1130 ** |
| 1131 ** Substring | Affinity |
| 1132 ** -------------------------------- |
| 1133 ** 'INT' | SQLITE_AFF_INTEGER |
| 1134 ** 'CHAR' | SQLITE_AFF_TEXT |
| 1135 ** 'CLOB' | SQLITE_AFF_TEXT |
| 1136 ** 'TEXT' | SQLITE_AFF_TEXT |
| 1137 ** 'BLOB' | SQLITE_AFF_BLOB |
| 1138 ** 'REAL' | SQLITE_AFF_REAL |
| 1139 ** 'FLOA' | SQLITE_AFF_REAL |
| 1140 ** 'DOUB' | SQLITE_AFF_REAL |
| 1141 ** |
| 1142 ** If none of the substrings in the above table are found, |
| 1143 ** SQLITE_AFF_NUMERIC is returned. |
| 1144 */ |
| 1145 char sqlite3AffinityType(const char *zIn, u8 *pszEst){ |
| 1146 u32 h = 0; |
| 1147 char aff = SQLITE_AFF_NUMERIC; |
| 1148 const char *zChar = 0; |
| 1149 |
| 1150 assert( zIn!=0 ); |
| 1151 while( zIn[0] ){ |
| 1152 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff]; |
| 1153 zIn++; |
| 1154 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ |
| 1155 aff = SQLITE_AFF_TEXT; |
| 1156 zChar = zIn; |
| 1157 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ |
| 1158 aff = SQLITE_AFF_TEXT; |
| 1159 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ |
| 1160 aff = SQLITE_AFF_TEXT; |
| 1161 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ |
| 1162 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ |
| 1163 aff = SQLITE_AFF_BLOB; |
| 1164 if( zIn[0]=='(' ) zChar = zIn; |
| 1165 #ifndef SQLITE_OMIT_FLOATING_POINT |
| 1166 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ |
| 1167 && aff==SQLITE_AFF_NUMERIC ){ |
| 1168 aff = SQLITE_AFF_REAL; |
| 1169 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ |
| 1170 && aff==SQLITE_AFF_NUMERIC ){ |
| 1171 aff = SQLITE_AFF_REAL; |
| 1172 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ |
| 1173 && aff==SQLITE_AFF_NUMERIC ){ |
| 1174 aff = SQLITE_AFF_REAL; |
| 1175 #endif |
| 1176 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ |
| 1177 aff = SQLITE_AFF_INTEGER; |
| 1178 break; |
| 1179 } |
| 1180 } |
| 1181 |
| 1182 /* If pszEst is not NULL, store an estimate of the field size. The |
| 1183 ** estimate is scaled so that the size of an integer is 1. */ |
| 1184 if( pszEst ){ |
| 1185 *pszEst = 1; /* default size is approx 4 bytes */ |
| 1186 if( aff<SQLITE_AFF_NUMERIC ){ |
| 1187 if( zChar ){ |
| 1188 while( zChar[0] ){ |
| 1189 if( sqlite3Isdigit(zChar[0]) ){ |
| 1190 int v = 0; |
| 1191 sqlite3GetInt32(zChar, &v); |
| 1192 v = v/4 + 1; |
| 1193 if( v>255 ) v = 255; |
| 1194 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */ |
| 1195 break; |
| 1196 } |
| 1197 zChar++; |
| 1198 } |
| 1199 }else{ |
| 1200 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/ |
| 1201 } |
| 1202 } |
| 1203 } |
| 1204 return aff; |
| 1205 } |
| 1206 |
| 1207 /* |
| 1208 ** The expression is the default value for the most recently added column |
| 1209 ** of the table currently under construction. |
| 1210 ** |
| 1211 ** Default value expressions must be constant. Raise an exception if this |
| 1212 ** is not the case. |
| 1213 ** |
| 1214 ** This routine is called by the parser while in the middle of |
| 1215 ** parsing a CREATE TABLE statement. |
| 1216 */ |
| 1217 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){ |
| 1218 Table *p; |
| 1219 Column *pCol; |
| 1220 sqlite3 *db = pParse->db; |
| 1221 p = pParse->pNewTable; |
| 1222 if( p!=0 ){ |
| 1223 pCol = &(p->aCol[p->nCol-1]); |
| 1224 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){ |
| 1225 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", |
| 1226 pCol->zName); |
| 1227 }else{ |
| 1228 /* A copy of pExpr is used instead of the original, as pExpr contains |
| 1229 ** tokens that point to volatile memory. The 'span' of the expression |
| 1230 ** is required by pragma table_info. |
| 1231 */ |
| 1232 Expr x; |
| 1233 sqlite3ExprDelete(db, pCol->pDflt); |
| 1234 memset(&x, 0, sizeof(x)); |
| 1235 x.op = TK_SPAN; |
| 1236 x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart, |
| 1237 (int)(pSpan->zEnd - pSpan->zStart)); |
| 1238 x.pLeft = pSpan->pExpr; |
| 1239 x.flags = EP_Skip; |
| 1240 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE); |
| 1241 sqlite3DbFree(db, x.u.zToken); |
| 1242 } |
| 1243 } |
| 1244 sqlite3ExprDelete(db, pSpan->pExpr); |
| 1245 } |
| 1246 |
| 1247 /* |
| 1248 ** Backwards Compatibility Hack: |
| 1249 ** |
| 1250 ** Historical versions of SQLite accepted strings as column names in |
| 1251 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example: |
| 1252 ** |
| 1253 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim) |
| 1254 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC); |
| 1255 ** |
| 1256 ** This is goofy. But to preserve backwards compatibility we continue to |
| 1257 ** accept it. This routine does the necessary conversion. It converts |
| 1258 ** the expression given in its argument from a TK_STRING into a TK_ID |
| 1259 ** if the expression is just a TK_STRING with an optional COLLATE clause. |
| 1260 ** If the epxression is anything other than TK_STRING, the expression is |
| 1261 ** unchanged. |
| 1262 */ |
| 1263 static void sqlite3StringToId(Expr *p){ |
| 1264 if( p->op==TK_STRING ){ |
| 1265 p->op = TK_ID; |
| 1266 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){ |
| 1267 p->pLeft->op = TK_ID; |
| 1268 } |
| 1269 } |
| 1270 |
| 1271 /* |
| 1272 ** Designate the PRIMARY KEY for the table. pList is a list of names |
| 1273 ** of columns that form the primary key. If pList is NULL, then the |
| 1274 ** most recently added column of the table is the primary key. |
| 1275 ** |
| 1276 ** A table can have at most one primary key. If the table already has |
| 1277 ** a primary key (and this is the second primary key) then create an |
| 1278 ** error. |
| 1279 ** |
| 1280 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, |
| 1281 ** then we will try to use that column as the rowid. Set the Table.iPKey |
| 1282 ** field of the table under construction to be the index of the |
| 1283 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is |
| 1284 ** no INTEGER PRIMARY KEY. |
| 1285 ** |
| 1286 ** If the key is not an INTEGER PRIMARY KEY, then create a unique |
| 1287 ** index for the key. No index is created for INTEGER PRIMARY KEYs. |
| 1288 */ |
| 1289 void sqlite3AddPrimaryKey( |
| 1290 Parse *pParse, /* Parsing context */ |
| 1291 ExprList *pList, /* List of field names to be indexed */ |
| 1292 int onError, /* What to do with a uniqueness conflict */ |
| 1293 int autoInc, /* True if the AUTOINCREMENT keyword is present */ |
| 1294 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ |
| 1295 ){ |
| 1296 Table *pTab = pParse->pNewTable; |
| 1297 Column *pCol = 0; |
| 1298 int iCol = -1, i; |
| 1299 int nTerm; |
| 1300 if( pTab==0 ) goto primary_key_exit; |
| 1301 if( pTab->tabFlags & TF_HasPrimaryKey ){ |
| 1302 sqlite3ErrorMsg(pParse, |
| 1303 "table \"%s\" has more than one primary key", pTab->zName); |
| 1304 goto primary_key_exit; |
| 1305 } |
| 1306 pTab->tabFlags |= TF_HasPrimaryKey; |
| 1307 if( pList==0 ){ |
| 1308 iCol = pTab->nCol - 1; |
| 1309 pCol = &pTab->aCol[iCol]; |
| 1310 pCol->colFlags |= COLFLAG_PRIMKEY; |
| 1311 nTerm = 1; |
| 1312 }else{ |
| 1313 nTerm = pList->nExpr; |
| 1314 for(i=0; i<nTerm; i++){ |
| 1315 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr); |
| 1316 assert( pCExpr!=0 ); |
| 1317 sqlite3StringToId(pCExpr); |
| 1318 if( pCExpr->op==TK_ID ){ |
| 1319 const char *zCName = pCExpr->u.zToken; |
| 1320 for(iCol=0; iCol<pTab->nCol; iCol++){ |
| 1321 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){ |
| 1322 pCol = &pTab->aCol[iCol]; |
| 1323 pCol->colFlags |= COLFLAG_PRIMKEY; |
| 1324 break; |
| 1325 } |
| 1326 } |
| 1327 } |
| 1328 } |
| 1329 } |
| 1330 if( nTerm==1 |
| 1331 && pCol |
| 1332 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0 |
| 1333 && sortOrder!=SQLITE_SO_DESC |
| 1334 ){ |
| 1335 pTab->iPKey = iCol; |
| 1336 pTab->keyConf = (u8)onError; |
| 1337 assert( autoInc==0 || autoInc==1 ); |
| 1338 pTab->tabFlags |= autoInc*TF_Autoincrement; |
| 1339 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder; |
| 1340 }else if( autoInc ){ |
| 1341 #ifndef SQLITE_OMIT_AUTOINCREMENT |
| 1342 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " |
| 1343 "INTEGER PRIMARY KEY"); |
| 1344 #endif |
| 1345 }else{ |
| 1346 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, |
| 1347 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY); |
| 1348 pList = 0; |
| 1349 } |
| 1350 |
| 1351 primary_key_exit: |
| 1352 sqlite3ExprListDelete(pParse->db, pList); |
| 1353 return; |
| 1354 } |
| 1355 |
| 1356 /* |
| 1357 ** Add a new CHECK constraint to the table currently under construction. |
| 1358 */ |
| 1359 void sqlite3AddCheckConstraint( |
| 1360 Parse *pParse, /* Parsing context */ |
| 1361 Expr *pCheckExpr /* The check expression */ |
| 1362 ){ |
| 1363 #ifndef SQLITE_OMIT_CHECK |
| 1364 Table *pTab = pParse->pNewTable; |
| 1365 sqlite3 *db = pParse->db; |
| 1366 if( pTab && !IN_DECLARE_VTAB |
| 1367 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt) |
| 1368 ){ |
| 1369 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr); |
| 1370 if( pParse->constraintName.n ){ |
| 1371 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1); |
| 1372 } |
| 1373 }else |
| 1374 #endif |
| 1375 { |
| 1376 sqlite3ExprDelete(pParse->db, pCheckExpr); |
| 1377 } |
| 1378 } |
| 1379 |
| 1380 /* |
| 1381 ** Set the collation function of the most recently parsed table column |
| 1382 ** to the CollSeq given. |
| 1383 */ |
| 1384 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ |
| 1385 Table *p; |
| 1386 int i; |
| 1387 char *zColl; /* Dequoted name of collation sequence */ |
| 1388 sqlite3 *db; |
| 1389 |
| 1390 if( (p = pParse->pNewTable)==0 ) return; |
| 1391 i = p->nCol-1; |
| 1392 db = pParse->db; |
| 1393 zColl = sqlite3NameFromToken(db, pToken); |
| 1394 if( !zColl ) return; |
| 1395 |
| 1396 if( sqlite3LocateCollSeq(pParse, zColl) ){ |
| 1397 Index *pIdx; |
| 1398 sqlite3DbFree(db, p->aCol[i].zColl); |
| 1399 p->aCol[i].zColl = zColl; |
| 1400 |
| 1401 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", |
| 1402 ** then an index may have been created on this column before the |
| 1403 ** collation type was added. Correct this if it is the case. |
| 1404 */ |
| 1405 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ |
| 1406 assert( pIdx->nKeyCol==1 ); |
| 1407 if( pIdx->aiColumn[0]==i ){ |
| 1408 pIdx->azColl[0] = p->aCol[i].zColl; |
| 1409 } |
| 1410 } |
| 1411 }else{ |
| 1412 sqlite3DbFree(db, zColl); |
| 1413 } |
| 1414 } |
| 1415 |
| 1416 /* |
| 1417 ** This function returns the collation sequence for database native text |
| 1418 ** encoding identified by the string zName, length nName. |
| 1419 ** |
| 1420 ** If the requested collation sequence is not available, or not available |
| 1421 ** in the database native encoding, the collation factory is invoked to |
| 1422 ** request it. If the collation factory does not supply such a sequence, |
| 1423 ** and the sequence is available in another text encoding, then that is |
| 1424 ** returned instead. |
| 1425 ** |
| 1426 ** If no versions of the requested collations sequence are available, or |
| 1427 ** another error occurs, NULL is returned and an error message written into |
| 1428 ** pParse. |
| 1429 ** |
| 1430 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine |
| 1431 ** invokes the collation factory if the named collation cannot be found |
| 1432 ** and generates an error message. |
| 1433 ** |
| 1434 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq() |
| 1435 */ |
| 1436 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){ |
| 1437 sqlite3 *db = pParse->db; |
| 1438 u8 enc = ENC(db); |
| 1439 u8 initbusy = db->init.busy; |
| 1440 CollSeq *pColl; |
| 1441 |
| 1442 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy); |
| 1443 if( !initbusy && (!pColl || !pColl->xCmp) ){ |
| 1444 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName); |
| 1445 } |
| 1446 |
| 1447 return pColl; |
| 1448 } |
| 1449 |
| 1450 |
| 1451 /* |
| 1452 ** Generate code that will increment the schema cookie. |
| 1453 ** |
| 1454 ** The schema cookie is used to determine when the schema for the |
| 1455 ** database changes. After each schema change, the cookie value |
| 1456 ** changes. When a process first reads the schema it records the |
| 1457 ** cookie. Thereafter, whenever it goes to access the database, |
| 1458 ** it checks the cookie to make sure the schema has not changed |
| 1459 ** since it was last read. |
| 1460 ** |
| 1461 ** This plan is not completely bullet-proof. It is possible for |
| 1462 ** the schema to change multiple times and for the cookie to be |
| 1463 ** set back to prior value. But schema changes are infrequent |
| 1464 ** and the probability of hitting the same cookie value is only |
| 1465 ** 1 chance in 2^32. So we're safe enough. |
| 1466 ** |
| 1467 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments |
| 1468 ** the schema-version whenever the schema changes. |
| 1469 */ |
| 1470 void sqlite3ChangeCookie(Parse *pParse, int iDb){ |
| 1471 sqlite3 *db = pParse->db; |
| 1472 Vdbe *v = pParse->pVdbe; |
| 1473 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 1474 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, |
| 1475 db->aDb[iDb].pSchema->schema_cookie+1); |
| 1476 } |
| 1477 |
| 1478 /* |
| 1479 ** Measure the number of characters needed to output the given |
| 1480 ** identifier. The number returned includes any quotes used |
| 1481 ** but does not include the null terminator. |
| 1482 ** |
| 1483 ** The estimate is conservative. It might be larger that what is |
| 1484 ** really needed. |
| 1485 */ |
| 1486 static int identLength(const char *z){ |
| 1487 int n; |
| 1488 for(n=0; *z; n++, z++){ |
| 1489 if( *z=='"' ){ n++; } |
| 1490 } |
| 1491 return n + 2; |
| 1492 } |
| 1493 |
| 1494 /* |
| 1495 ** The first parameter is a pointer to an output buffer. The second |
| 1496 ** parameter is a pointer to an integer that contains the offset at |
| 1497 ** which to write into the output buffer. This function copies the |
| 1498 ** nul-terminated string pointed to by the third parameter, zSignedIdent, |
| 1499 ** to the specified offset in the buffer and updates *pIdx to refer |
| 1500 ** to the first byte after the last byte written before returning. |
| 1501 ** |
| 1502 ** If the string zSignedIdent consists entirely of alpha-numeric |
| 1503 ** characters, does not begin with a digit and is not an SQL keyword, |
| 1504 ** then it is copied to the output buffer exactly as it is. Otherwise, |
| 1505 ** it is quoted using double-quotes. |
| 1506 */ |
| 1507 static void identPut(char *z, int *pIdx, char *zSignedIdent){ |
| 1508 unsigned char *zIdent = (unsigned char*)zSignedIdent; |
| 1509 int i, j, needQuote; |
| 1510 i = *pIdx; |
| 1511 |
| 1512 for(j=0; zIdent[j]; j++){ |
| 1513 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break; |
| 1514 } |
| 1515 needQuote = sqlite3Isdigit(zIdent[0]) |
| 1516 || sqlite3KeywordCode(zIdent, j)!=TK_ID |
| 1517 || zIdent[j]!=0 |
| 1518 || j==0; |
| 1519 |
| 1520 if( needQuote ) z[i++] = '"'; |
| 1521 for(j=0; zIdent[j]; j++){ |
| 1522 z[i++] = zIdent[j]; |
| 1523 if( zIdent[j]=='"' ) z[i++] = '"'; |
| 1524 } |
| 1525 if( needQuote ) z[i++] = '"'; |
| 1526 z[i] = 0; |
| 1527 *pIdx = i; |
| 1528 } |
| 1529 |
| 1530 /* |
| 1531 ** Generate a CREATE TABLE statement appropriate for the given |
| 1532 ** table. Memory to hold the text of the statement is obtained |
| 1533 ** from sqliteMalloc() and must be freed by the calling function. |
| 1534 */ |
| 1535 static char *createTableStmt(sqlite3 *db, Table *p){ |
| 1536 int i, k, n; |
| 1537 char *zStmt; |
| 1538 char *zSep, *zSep2, *zEnd; |
| 1539 Column *pCol; |
| 1540 n = 0; |
| 1541 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ |
| 1542 n += identLength(pCol->zName) + 5; |
| 1543 } |
| 1544 n += identLength(p->zName); |
| 1545 if( n<50 ){ |
| 1546 zSep = ""; |
| 1547 zSep2 = ","; |
| 1548 zEnd = ")"; |
| 1549 }else{ |
| 1550 zSep = "\n "; |
| 1551 zSep2 = ",\n "; |
| 1552 zEnd = "\n)"; |
| 1553 } |
| 1554 n += 35 + 6*p->nCol; |
| 1555 zStmt = sqlite3DbMallocRaw(0, n); |
| 1556 if( zStmt==0 ){ |
| 1557 sqlite3OomFault(db); |
| 1558 return 0; |
| 1559 } |
| 1560 sqlite3_snprintf(n, zStmt, "CREATE TABLE "); |
| 1561 k = sqlite3Strlen30(zStmt); |
| 1562 identPut(zStmt, &k, p->zName); |
| 1563 zStmt[k++] = '('; |
| 1564 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ |
| 1565 static const char * const azType[] = { |
| 1566 /* SQLITE_AFF_BLOB */ "", |
| 1567 /* SQLITE_AFF_TEXT */ " TEXT", |
| 1568 /* SQLITE_AFF_NUMERIC */ " NUM", |
| 1569 /* SQLITE_AFF_INTEGER */ " INT", |
| 1570 /* SQLITE_AFF_REAL */ " REAL" |
| 1571 }; |
| 1572 int len; |
| 1573 const char *zType; |
| 1574 |
| 1575 sqlite3_snprintf(n-k, &zStmt[k], zSep); |
| 1576 k += sqlite3Strlen30(&zStmt[k]); |
| 1577 zSep = zSep2; |
| 1578 identPut(zStmt, &k, pCol->zName); |
| 1579 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 ); |
| 1580 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) ); |
| 1581 testcase( pCol->affinity==SQLITE_AFF_BLOB ); |
| 1582 testcase( pCol->affinity==SQLITE_AFF_TEXT ); |
| 1583 testcase( pCol->affinity==SQLITE_AFF_NUMERIC ); |
| 1584 testcase( pCol->affinity==SQLITE_AFF_INTEGER ); |
| 1585 testcase( pCol->affinity==SQLITE_AFF_REAL ); |
| 1586 |
| 1587 zType = azType[pCol->affinity - SQLITE_AFF_BLOB]; |
| 1588 len = sqlite3Strlen30(zType); |
| 1589 assert( pCol->affinity==SQLITE_AFF_BLOB |
| 1590 || pCol->affinity==sqlite3AffinityType(zType, 0) ); |
| 1591 memcpy(&zStmt[k], zType, len); |
| 1592 k += len; |
| 1593 assert( k<=n ); |
| 1594 } |
| 1595 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); |
| 1596 return zStmt; |
| 1597 } |
| 1598 |
| 1599 /* |
| 1600 ** Resize an Index object to hold N columns total. Return SQLITE_OK |
| 1601 ** on success and SQLITE_NOMEM on an OOM error. |
| 1602 */ |
| 1603 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){ |
| 1604 char *zExtra; |
| 1605 int nByte; |
| 1606 if( pIdx->nColumn>=N ) return SQLITE_OK; |
| 1607 assert( pIdx->isResized==0 ); |
| 1608 nByte = (sizeof(char*) + sizeof(i16) + 1)*N; |
| 1609 zExtra = sqlite3DbMallocZero(db, nByte); |
| 1610 if( zExtra==0 ) return SQLITE_NOMEM_BKPT; |
| 1611 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn); |
| 1612 pIdx->azColl = (const char**)zExtra; |
| 1613 zExtra += sizeof(char*)*N; |
| 1614 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn); |
| 1615 pIdx->aiColumn = (i16*)zExtra; |
| 1616 zExtra += sizeof(i16)*N; |
| 1617 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn); |
| 1618 pIdx->aSortOrder = (u8*)zExtra; |
| 1619 pIdx->nColumn = N; |
| 1620 pIdx->isResized = 1; |
| 1621 return SQLITE_OK; |
| 1622 } |
| 1623 |
| 1624 /* |
| 1625 ** Estimate the total row width for a table. |
| 1626 */ |
| 1627 static void estimateTableWidth(Table *pTab){ |
| 1628 unsigned wTable = 0; |
| 1629 const Column *pTabCol; |
| 1630 int i; |
| 1631 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){ |
| 1632 wTable += pTabCol->szEst; |
| 1633 } |
| 1634 if( pTab->iPKey<0 ) wTable++; |
| 1635 pTab->szTabRow = sqlite3LogEst(wTable*4); |
| 1636 } |
| 1637 |
| 1638 /* |
| 1639 ** Estimate the average size of a row for an index. |
| 1640 */ |
| 1641 static void estimateIndexWidth(Index *pIdx){ |
| 1642 unsigned wIndex = 0; |
| 1643 int i; |
| 1644 const Column *aCol = pIdx->pTable->aCol; |
| 1645 for(i=0; i<pIdx->nColumn; i++){ |
| 1646 i16 x = pIdx->aiColumn[i]; |
| 1647 assert( x<pIdx->pTable->nCol ); |
| 1648 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst; |
| 1649 } |
| 1650 pIdx->szIdxRow = sqlite3LogEst(wIndex*4); |
| 1651 } |
| 1652 |
| 1653 /* Return true if value x is found any of the first nCol entries of aiCol[] |
| 1654 */ |
| 1655 static int hasColumn(const i16 *aiCol, int nCol, int x){ |
| 1656 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1; |
| 1657 return 0; |
| 1658 } |
| 1659 |
| 1660 /* |
| 1661 ** This routine runs at the end of parsing a CREATE TABLE statement that |
| 1662 ** has a WITHOUT ROWID clause. The job of this routine is to convert both |
| 1663 ** internal schema data structures and the generated VDBE code so that they |
| 1664 ** are appropriate for a WITHOUT ROWID table instead of a rowid table. |
| 1665 ** Changes include: |
| 1666 ** |
| 1667 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL. |
| 1668 ** (2) Convert the OP_CreateTable into an OP_CreateIndex. There is |
| 1669 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical |
| 1670 ** data storage is a covering index btree. |
| 1671 ** (3) Bypass the creation of the sqlite_master table entry |
| 1672 ** for the PRIMARY KEY as the primary key index is now |
| 1673 ** identified by the sqlite_master table entry of the table itself. |
| 1674 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the |
| 1675 ** schema to the rootpage from the main table. |
| 1676 ** (5) Add all table columns to the PRIMARY KEY Index object |
| 1677 ** so that the PRIMARY KEY is a covering index. The surplus |
| 1678 ** columns are part of KeyInfo.nXField and are not used for |
| 1679 ** sorting or lookup or uniqueness checks. |
| 1680 ** (6) Replace the rowid tail on all automatically generated UNIQUE |
| 1681 ** indices with the PRIMARY KEY columns. |
| 1682 ** |
| 1683 ** For virtual tables, only (1) is performed. |
| 1684 */ |
| 1685 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){ |
| 1686 Index *pIdx; |
| 1687 Index *pPk; |
| 1688 int nPk; |
| 1689 int i, j; |
| 1690 sqlite3 *db = pParse->db; |
| 1691 Vdbe *v = pParse->pVdbe; |
| 1692 |
| 1693 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables) |
| 1694 */ |
| 1695 if( !db->init.imposterTable ){ |
| 1696 for(i=0; i<pTab->nCol; i++){ |
| 1697 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ |
| 1698 pTab->aCol[i].notNull = OE_Abort; |
| 1699 } |
| 1700 } |
| 1701 } |
| 1702 |
| 1703 /* The remaining transformations only apply to b-tree tables, not to |
| 1704 ** virtual tables */ |
| 1705 if( IN_DECLARE_VTAB ) return; |
| 1706 |
| 1707 /* Convert the OP_CreateTable opcode that would normally create the |
| 1708 ** root-page for the table into an OP_CreateIndex opcode. The index |
| 1709 ** created will become the PRIMARY KEY index. |
| 1710 */ |
| 1711 if( pParse->addrCrTab ){ |
| 1712 assert( v ); |
| 1713 sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex); |
| 1714 } |
| 1715 |
| 1716 /* Locate the PRIMARY KEY index. Or, if this table was originally |
| 1717 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index. |
| 1718 */ |
| 1719 if( pTab->iPKey>=0 ){ |
| 1720 ExprList *pList; |
| 1721 Token ipkToken; |
| 1722 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName); |
| 1723 pList = sqlite3ExprListAppend(pParse, 0, |
| 1724 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0)); |
| 1725 if( pList==0 ) return; |
| 1726 pList->a[0].sortOrder = pParse->iPkSortOrder; |
| 1727 assert( pParse->pNewTable==pTab ); |
| 1728 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0, |
| 1729 SQLITE_IDXTYPE_PRIMARYKEY); |
| 1730 if( db->mallocFailed ) return; |
| 1731 pPk = sqlite3PrimaryKeyIndex(pTab); |
| 1732 pTab->iPKey = -1; |
| 1733 }else{ |
| 1734 pPk = sqlite3PrimaryKeyIndex(pTab); |
| 1735 |
| 1736 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master |
| 1737 ** table entry. This is only required if currently generating VDBE |
| 1738 ** code for a CREATE TABLE (not when parsing one as part of reading |
| 1739 ** a database schema). */ |
| 1740 if( v ){ |
| 1741 assert( db->init.busy==0 ); |
| 1742 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto); |
| 1743 } |
| 1744 |
| 1745 /* |
| 1746 ** Remove all redundant columns from the PRIMARY KEY. For example, change |
| 1747 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later |
| 1748 ** code assumes the PRIMARY KEY contains no repeated columns. |
| 1749 */ |
| 1750 for(i=j=1; i<pPk->nKeyCol; i++){ |
| 1751 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){ |
| 1752 pPk->nColumn--; |
| 1753 }else{ |
| 1754 pPk->aiColumn[j++] = pPk->aiColumn[i]; |
| 1755 } |
| 1756 } |
| 1757 pPk->nKeyCol = j; |
| 1758 } |
| 1759 assert( pPk!=0 ); |
| 1760 pPk->isCovering = 1; |
| 1761 if( !db->init.imposterTable ) pPk->uniqNotNull = 1; |
| 1762 nPk = pPk->nKeyCol; |
| 1763 |
| 1764 /* The root page of the PRIMARY KEY is the table root page */ |
| 1765 pPk->tnum = pTab->tnum; |
| 1766 |
| 1767 /* Update the in-memory representation of all UNIQUE indices by converting |
| 1768 ** the final rowid column into one or more columns of the PRIMARY KEY. |
| 1769 */ |
| 1770 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
| 1771 int n; |
| 1772 if( IsPrimaryKeyIndex(pIdx) ) continue; |
| 1773 for(i=n=0; i<nPk; i++){ |
| 1774 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++; |
| 1775 } |
| 1776 if( n==0 ){ |
| 1777 /* This index is a superset of the primary key */ |
| 1778 pIdx->nColumn = pIdx->nKeyCol; |
| 1779 continue; |
| 1780 } |
| 1781 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return; |
| 1782 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){ |
| 1783 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){ |
| 1784 pIdx->aiColumn[j] = pPk->aiColumn[i]; |
| 1785 pIdx->azColl[j] = pPk->azColl[i]; |
| 1786 j++; |
| 1787 } |
| 1788 } |
| 1789 assert( pIdx->nColumn>=pIdx->nKeyCol+n ); |
| 1790 assert( pIdx->nColumn>=j ); |
| 1791 } |
| 1792 |
| 1793 /* Add all table columns to the PRIMARY KEY index |
| 1794 */ |
| 1795 if( nPk<pTab->nCol ){ |
| 1796 if( resizeIndexObject(db, pPk, pTab->nCol) ) return; |
| 1797 for(i=0, j=nPk; i<pTab->nCol; i++){ |
| 1798 if( !hasColumn(pPk->aiColumn, j, i) ){ |
| 1799 assert( j<pPk->nColumn ); |
| 1800 pPk->aiColumn[j] = i; |
| 1801 pPk->azColl[j] = sqlite3StrBINARY; |
| 1802 j++; |
| 1803 } |
| 1804 } |
| 1805 assert( pPk->nColumn==j ); |
| 1806 assert( pTab->nCol==j ); |
| 1807 }else{ |
| 1808 pPk->nColumn = pTab->nCol; |
| 1809 } |
| 1810 } |
| 1811 |
| 1812 /* |
| 1813 ** This routine is called to report the final ")" that terminates |
| 1814 ** a CREATE TABLE statement. |
| 1815 ** |
| 1816 ** The table structure that other action routines have been building |
| 1817 ** is added to the internal hash tables, assuming no errors have |
| 1818 ** occurred. |
| 1819 ** |
| 1820 ** An entry for the table is made in the master table on disk, unless |
| 1821 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 |
| 1822 ** it means we are reading the sqlite_master table because we just |
| 1823 ** connected to the database or because the sqlite_master table has |
| 1824 ** recently changed, so the entry for this table already exists in |
| 1825 ** the sqlite_master table. We do not want to create it again. |
| 1826 ** |
| 1827 ** If the pSelect argument is not NULL, it means that this routine |
| 1828 ** was called to create a table generated from a |
| 1829 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of |
| 1830 ** the new table will match the result set of the SELECT. |
| 1831 */ |
| 1832 void sqlite3EndTable( |
| 1833 Parse *pParse, /* Parse context */ |
| 1834 Token *pCons, /* The ',' token after the last column defn. */ |
| 1835 Token *pEnd, /* The ')' before options in the CREATE TABLE */ |
| 1836 u8 tabOpts, /* Extra table options. Usually 0. */ |
| 1837 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ |
| 1838 ){ |
| 1839 Table *p; /* The new table */ |
| 1840 sqlite3 *db = pParse->db; /* The database connection */ |
| 1841 int iDb; /* Database in which the table lives */ |
| 1842 Index *pIdx; /* An implied index of the table */ |
| 1843 |
| 1844 if( pEnd==0 && pSelect==0 ){ |
| 1845 return; |
| 1846 } |
| 1847 assert( !db->mallocFailed ); |
| 1848 p = pParse->pNewTable; |
| 1849 if( p==0 ) return; |
| 1850 |
| 1851 assert( !db->init.busy || !pSelect ); |
| 1852 |
| 1853 /* If the db->init.busy is 1 it means we are reading the SQL off the |
| 1854 ** "sqlite_master" or "sqlite_temp_master" table on the disk. |
| 1855 ** So do not write to the disk again. Extract the root page number |
| 1856 ** for the table from the db->init.newTnum field. (The page number |
| 1857 ** should have been put there by the sqliteOpenCb routine.) |
| 1858 ** |
| 1859 ** If the root page number is 1, that means this is the sqlite_master |
| 1860 ** table itself. So mark it read-only. |
| 1861 */ |
| 1862 if( db->init.busy ){ |
| 1863 p->tnum = db->init.newTnum; |
| 1864 if( p->tnum==1 ) p->tabFlags |= TF_Readonly; |
| 1865 } |
| 1866 |
| 1867 /* Special processing for WITHOUT ROWID Tables */ |
| 1868 if( tabOpts & TF_WithoutRowid ){ |
| 1869 if( (p->tabFlags & TF_Autoincrement) ){ |
| 1870 sqlite3ErrorMsg(pParse, |
| 1871 "AUTOINCREMENT not allowed on WITHOUT ROWID tables"); |
| 1872 return; |
| 1873 } |
| 1874 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){ |
| 1875 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName); |
| 1876 }else{ |
| 1877 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid; |
| 1878 convertToWithoutRowidTable(pParse, p); |
| 1879 } |
| 1880 } |
| 1881 |
| 1882 iDb = sqlite3SchemaToIndex(db, p->pSchema); |
| 1883 |
| 1884 #ifndef SQLITE_OMIT_CHECK |
| 1885 /* Resolve names in all CHECK constraint expressions. |
| 1886 */ |
| 1887 if( p->pCheck ){ |
| 1888 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck); |
| 1889 } |
| 1890 #endif /* !defined(SQLITE_OMIT_CHECK) */ |
| 1891 |
| 1892 /* Estimate the average row size for the table and for all implied indices */ |
| 1893 estimateTableWidth(p); |
| 1894 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ |
| 1895 estimateIndexWidth(pIdx); |
| 1896 } |
| 1897 |
| 1898 /* If not initializing, then create a record for the new table |
| 1899 ** in the SQLITE_MASTER table of the database. |
| 1900 ** |
| 1901 ** If this is a TEMPORARY table, write the entry into the auxiliary |
| 1902 ** file instead of into the main database file. |
| 1903 */ |
| 1904 if( !db->init.busy ){ |
| 1905 int n; |
| 1906 Vdbe *v; |
| 1907 char *zType; /* "view" or "table" */ |
| 1908 char *zType2; /* "VIEW" or "TABLE" */ |
| 1909 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ |
| 1910 |
| 1911 v = sqlite3GetVdbe(pParse); |
| 1912 if( NEVER(v==0) ) return; |
| 1913 |
| 1914 sqlite3VdbeAddOp1(v, OP_Close, 0); |
| 1915 |
| 1916 /* |
| 1917 ** Initialize zType for the new view or table. |
| 1918 */ |
| 1919 if( p->pSelect==0 ){ |
| 1920 /* A regular table */ |
| 1921 zType = "table"; |
| 1922 zType2 = "TABLE"; |
| 1923 #ifndef SQLITE_OMIT_VIEW |
| 1924 }else{ |
| 1925 /* A view */ |
| 1926 zType = "view"; |
| 1927 zType2 = "VIEW"; |
| 1928 #endif |
| 1929 } |
| 1930 |
| 1931 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT |
| 1932 ** statement to populate the new table. The root-page number for the |
| 1933 ** new table is in register pParse->regRoot. |
| 1934 ** |
| 1935 ** Once the SELECT has been coded by sqlite3Select(), it is in a |
| 1936 ** suitable state to query for the column names and types to be used |
| 1937 ** by the new table. |
| 1938 ** |
| 1939 ** A shared-cache write-lock is not required to write to the new table, |
| 1940 ** as a schema-lock must have already been obtained to create it. Since |
| 1941 ** a schema-lock excludes all other database users, the write-lock would |
| 1942 ** be redundant. |
| 1943 */ |
| 1944 if( pSelect ){ |
| 1945 SelectDest dest; /* Where the SELECT should store results */ |
| 1946 int regYield; /* Register holding co-routine entry-point */ |
| 1947 int addrTop; /* Top of the co-routine */ |
| 1948 int regRec; /* A record to be insert into the new table */ |
| 1949 int regRowid; /* Rowid of the next row to insert */ |
| 1950 int addrInsLoop; /* Top of the loop for inserting rows */ |
| 1951 Table *pSelTab; /* A table that describes the SELECT results */ |
| 1952 |
| 1953 regYield = ++pParse->nMem; |
| 1954 regRec = ++pParse->nMem; |
| 1955 regRowid = ++pParse->nMem; |
| 1956 assert(pParse->nTab==1); |
| 1957 sqlite3MayAbort(pParse); |
| 1958 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); |
| 1959 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG); |
| 1960 pParse->nTab = 2; |
| 1961 addrTop = sqlite3VdbeCurrentAddr(v) + 1; |
| 1962 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); |
| 1963 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); |
| 1964 sqlite3Select(pParse, pSelect, &dest); |
| 1965 sqlite3VdbeEndCoroutine(v, regYield); |
| 1966 sqlite3VdbeJumpHere(v, addrTop - 1); |
| 1967 if( pParse->nErr ) return; |
| 1968 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect); |
| 1969 if( pSelTab==0 ) return; |
| 1970 assert( p->aCol==0 ); |
| 1971 p->nCol = pSelTab->nCol; |
| 1972 p->aCol = pSelTab->aCol; |
| 1973 pSelTab->nCol = 0; |
| 1974 pSelTab->aCol = 0; |
| 1975 sqlite3DeleteTable(db, pSelTab); |
| 1976 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); |
| 1977 VdbeCoverage(v); |
| 1978 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec); |
| 1979 sqlite3TableAffinity(v, p, 0); |
| 1980 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid); |
| 1981 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid); |
| 1982 sqlite3VdbeGoto(v, addrInsLoop); |
| 1983 sqlite3VdbeJumpHere(v, addrInsLoop); |
| 1984 sqlite3VdbeAddOp1(v, OP_Close, 1); |
| 1985 } |
| 1986 |
| 1987 /* Compute the complete text of the CREATE statement */ |
| 1988 if( pSelect ){ |
| 1989 zStmt = createTableStmt(db, p); |
| 1990 }else{ |
| 1991 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd; |
| 1992 n = (int)(pEnd2->z - pParse->sNameToken.z); |
| 1993 if( pEnd2->z[0]!=';' ) n += pEnd2->n; |
| 1994 zStmt = sqlite3MPrintf(db, |
| 1995 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z |
| 1996 ); |
| 1997 } |
| 1998 |
| 1999 /* A slot for the record has already been allocated in the |
| 2000 ** SQLITE_MASTER table. We just need to update that slot with all |
| 2001 ** the information we've collected. |
| 2002 */ |
| 2003 sqlite3NestedParse(pParse, |
| 2004 "UPDATE %Q.%s " |
| 2005 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " |
| 2006 "WHERE rowid=#%d", |
| 2007 db->aDb[iDb].zDbSName, MASTER_NAME, |
| 2008 zType, |
| 2009 p->zName, |
| 2010 p->zName, |
| 2011 pParse->regRoot, |
| 2012 zStmt, |
| 2013 pParse->regRowid |
| 2014 ); |
| 2015 sqlite3DbFree(db, zStmt); |
| 2016 sqlite3ChangeCookie(pParse, iDb); |
| 2017 |
| 2018 #ifndef SQLITE_OMIT_AUTOINCREMENT |
| 2019 /* Check to see if we need to create an sqlite_sequence table for |
| 2020 ** keeping track of autoincrement keys. |
| 2021 */ |
| 2022 if( (p->tabFlags & TF_Autoincrement)!=0 ){ |
| 2023 Db *pDb = &db->aDb[iDb]; |
| 2024 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 2025 if( pDb->pSchema->pSeqTab==0 ){ |
| 2026 sqlite3NestedParse(pParse, |
| 2027 "CREATE TABLE %Q.sqlite_sequence(name,seq)", |
| 2028 pDb->zDbSName |
| 2029 ); |
| 2030 } |
| 2031 } |
| 2032 #endif |
| 2033 |
| 2034 /* Reparse everything to update our internal data structures */ |
| 2035 sqlite3VdbeAddParseSchemaOp(v, iDb, |
| 2036 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName)); |
| 2037 } |
| 2038 |
| 2039 |
| 2040 /* Add the table to the in-memory representation of the database. |
| 2041 */ |
| 2042 if( db->init.busy ){ |
| 2043 Table *pOld; |
| 2044 Schema *pSchema = p->pSchema; |
| 2045 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 2046 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p); |
| 2047 if( pOld ){ |
| 2048 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ |
| 2049 sqlite3OomFault(db); |
| 2050 return; |
| 2051 } |
| 2052 pParse->pNewTable = 0; |
| 2053 db->flags |= SQLITE_InternChanges; |
| 2054 |
| 2055 #ifndef SQLITE_OMIT_ALTERTABLE |
| 2056 if( !p->pSelect ){ |
| 2057 const char *zName = (const char *)pParse->sNameToken.z; |
| 2058 int nName; |
| 2059 assert( !pSelect && pCons && pEnd ); |
| 2060 if( pCons->z==0 ){ |
| 2061 pCons = pEnd; |
| 2062 } |
| 2063 nName = (int)((const char *)pCons->z - zName); |
| 2064 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); |
| 2065 } |
| 2066 #endif |
| 2067 } |
| 2068 } |
| 2069 |
| 2070 #ifndef SQLITE_OMIT_VIEW |
| 2071 /* |
| 2072 ** The parser calls this routine in order to create a new VIEW |
| 2073 */ |
| 2074 void sqlite3CreateView( |
| 2075 Parse *pParse, /* The parsing context */ |
| 2076 Token *pBegin, /* The CREATE token that begins the statement */ |
| 2077 Token *pName1, /* The token that holds the name of the view */ |
| 2078 Token *pName2, /* The token that holds the name of the view */ |
| 2079 ExprList *pCNames, /* Optional list of view column names */ |
| 2080 Select *pSelect, /* A SELECT statement that will become the new view */ |
| 2081 int isTemp, /* TRUE for a TEMPORARY view */ |
| 2082 int noErr /* Suppress error messages if VIEW already exists */ |
| 2083 ){ |
| 2084 Table *p; |
| 2085 int n; |
| 2086 const char *z; |
| 2087 Token sEnd; |
| 2088 DbFixer sFix; |
| 2089 Token *pName = 0; |
| 2090 int iDb; |
| 2091 sqlite3 *db = pParse->db; |
| 2092 |
| 2093 if( pParse->nVar>0 ){ |
| 2094 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); |
| 2095 goto create_view_fail; |
| 2096 } |
| 2097 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); |
| 2098 p = pParse->pNewTable; |
| 2099 if( p==0 || pParse->nErr ) goto create_view_fail; |
| 2100 sqlite3TwoPartName(pParse, pName1, pName2, &pName); |
| 2101 iDb = sqlite3SchemaToIndex(db, p->pSchema); |
| 2102 sqlite3FixInit(&sFix, pParse, iDb, "view", pName); |
| 2103 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail; |
| 2104 |
| 2105 /* Make a copy of the entire SELECT statement that defines the view. |
| 2106 ** This will force all the Expr.token.z values to be dynamically |
| 2107 ** allocated rather than point to the input string - which means that |
| 2108 ** they will persist after the current sqlite3_exec() call returns. |
| 2109 */ |
| 2110 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); |
| 2111 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE); |
| 2112 if( db->mallocFailed ) goto create_view_fail; |
| 2113 |
| 2114 /* Locate the end of the CREATE VIEW statement. Make sEnd point to |
| 2115 ** the end. |
| 2116 */ |
| 2117 sEnd = pParse->sLastToken; |
| 2118 assert( sEnd.z[0]!=0 ); |
| 2119 if( sEnd.z[0]!=';' ){ |
| 2120 sEnd.z += sEnd.n; |
| 2121 } |
| 2122 sEnd.n = 0; |
| 2123 n = (int)(sEnd.z - pBegin->z); |
| 2124 assert( n>0 ); |
| 2125 z = pBegin->z; |
| 2126 while( sqlite3Isspace(z[n-1]) ){ n--; } |
| 2127 sEnd.z = &z[n-1]; |
| 2128 sEnd.n = 1; |
| 2129 |
| 2130 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ |
| 2131 sqlite3EndTable(pParse, 0, &sEnd, 0, 0); |
| 2132 |
| 2133 create_view_fail: |
| 2134 sqlite3SelectDelete(db, pSelect); |
| 2135 sqlite3ExprListDelete(db, pCNames); |
| 2136 return; |
| 2137 } |
| 2138 #endif /* SQLITE_OMIT_VIEW */ |
| 2139 |
| 2140 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) |
| 2141 /* |
| 2142 ** The Table structure pTable is really a VIEW. Fill in the names of |
| 2143 ** the columns of the view in the pTable structure. Return the number |
| 2144 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. |
| 2145 */ |
| 2146 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ |
| 2147 Table *pSelTab; /* A fake table from which we get the result set */ |
| 2148 Select *pSel; /* Copy of the SELECT that implements the view */ |
| 2149 int nErr = 0; /* Number of errors encountered */ |
| 2150 int n; /* Temporarily holds the number of cursors assigned */ |
| 2151 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ |
| 2152 #ifndef SQLITE_OMIT_AUTHORIZATION |
| 2153 sqlite3_xauth xAuth; /* Saved xAuth pointer */ |
| 2154 #endif |
| 2155 |
| 2156 assert( pTable ); |
| 2157 |
| 2158 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 2159 if( sqlite3VtabCallConnect(pParse, pTable) ){ |
| 2160 return SQLITE_ERROR; |
| 2161 } |
| 2162 if( IsVirtual(pTable) ) return 0; |
| 2163 #endif |
| 2164 |
| 2165 #ifndef SQLITE_OMIT_VIEW |
| 2166 /* A positive nCol means the columns names for this view are |
| 2167 ** already known. |
| 2168 */ |
| 2169 if( pTable->nCol>0 ) return 0; |
| 2170 |
| 2171 /* A negative nCol is a special marker meaning that we are currently |
| 2172 ** trying to compute the column names. If we enter this routine with |
| 2173 ** a negative nCol, it means two or more views form a loop, like this: |
| 2174 ** |
| 2175 ** CREATE VIEW one AS SELECT * FROM two; |
| 2176 ** CREATE VIEW two AS SELECT * FROM one; |
| 2177 ** |
| 2178 ** Actually, the error above is now caught prior to reaching this point. |
| 2179 ** But the following test is still important as it does come up |
| 2180 ** in the following: |
| 2181 ** |
| 2182 ** CREATE TABLE main.ex1(a); |
| 2183 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1; |
| 2184 ** SELECT * FROM temp.ex1; |
| 2185 */ |
| 2186 if( pTable->nCol<0 ){ |
| 2187 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); |
| 2188 return 1; |
| 2189 } |
| 2190 assert( pTable->nCol>=0 ); |
| 2191 |
| 2192 /* If we get this far, it means we need to compute the table names. |
| 2193 ** Note that the call to sqlite3ResultSetOfSelect() will expand any |
| 2194 ** "*" elements in the results set of the view and will assign cursors |
| 2195 ** to the elements of the FROM clause. But we do not want these changes |
| 2196 ** to be permanent. So the computation is done on a copy of the SELECT |
| 2197 ** statement that defines the view. |
| 2198 */ |
| 2199 assert( pTable->pSelect ); |
| 2200 pSel = sqlite3SelectDup(db, pTable->pSelect, 0); |
| 2201 if( pSel ){ |
| 2202 n = pParse->nTab; |
| 2203 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); |
| 2204 pTable->nCol = -1; |
| 2205 db->lookaside.bDisable++; |
| 2206 #ifndef SQLITE_OMIT_AUTHORIZATION |
| 2207 xAuth = db->xAuth; |
| 2208 db->xAuth = 0; |
| 2209 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); |
| 2210 db->xAuth = xAuth; |
| 2211 #else |
| 2212 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel); |
| 2213 #endif |
| 2214 pParse->nTab = n; |
| 2215 if( pTable->pCheck ){ |
| 2216 /* CREATE VIEW name(arglist) AS ... |
| 2217 ** The names of the columns in the table are taken from |
| 2218 ** arglist which is stored in pTable->pCheck. The pCheck field |
| 2219 ** normally holds CHECK constraints on an ordinary table, but for |
| 2220 ** a VIEW it holds the list of column names. |
| 2221 */ |
| 2222 sqlite3ColumnsFromExprList(pParse, pTable->pCheck, |
| 2223 &pTable->nCol, &pTable->aCol); |
| 2224 if( db->mallocFailed==0 |
| 2225 && pParse->nErr==0 |
| 2226 && pTable->nCol==pSel->pEList->nExpr |
| 2227 ){ |
| 2228 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel); |
| 2229 } |
| 2230 }else if( pSelTab ){ |
| 2231 /* CREATE VIEW name AS... without an argument list. Construct |
| 2232 ** the column names from the SELECT statement that defines the view. |
| 2233 */ |
| 2234 assert( pTable->aCol==0 ); |
| 2235 pTable->nCol = pSelTab->nCol; |
| 2236 pTable->aCol = pSelTab->aCol; |
| 2237 pSelTab->nCol = 0; |
| 2238 pSelTab->aCol = 0; |
| 2239 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) ); |
| 2240 }else{ |
| 2241 pTable->nCol = 0; |
| 2242 nErr++; |
| 2243 } |
| 2244 sqlite3DeleteTable(db, pSelTab); |
| 2245 sqlite3SelectDelete(db, pSel); |
| 2246 db->lookaside.bDisable--; |
| 2247 } else { |
| 2248 nErr++; |
| 2249 } |
| 2250 pTable->pSchema->schemaFlags |= DB_UnresetViews; |
| 2251 #endif /* SQLITE_OMIT_VIEW */ |
| 2252 return nErr; |
| 2253 } |
| 2254 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ |
| 2255 |
| 2256 #ifndef SQLITE_OMIT_VIEW |
| 2257 /* |
| 2258 ** Clear the column names from every VIEW in database idx. |
| 2259 */ |
| 2260 static void sqliteViewResetAll(sqlite3 *db, int idx){ |
| 2261 HashElem *i; |
| 2262 assert( sqlite3SchemaMutexHeld(db, idx, 0) ); |
| 2263 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; |
| 2264 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ |
| 2265 Table *pTab = sqliteHashData(i); |
| 2266 if( pTab->pSelect ){ |
| 2267 sqlite3DeleteColumnNames(db, pTab); |
| 2268 pTab->aCol = 0; |
| 2269 pTab->nCol = 0; |
| 2270 } |
| 2271 } |
| 2272 DbClearProperty(db, idx, DB_UnresetViews); |
| 2273 } |
| 2274 #else |
| 2275 # define sqliteViewResetAll(A,B) |
| 2276 #endif /* SQLITE_OMIT_VIEW */ |
| 2277 |
| 2278 /* |
| 2279 ** This function is called by the VDBE to adjust the internal schema |
| 2280 ** used by SQLite when the btree layer moves a table root page. The |
| 2281 ** root-page of a table or index in database iDb has changed from iFrom |
| 2282 ** to iTo. |
| 2283 ** |
| 2284 ** Ticket #1728: The symbol table might still contain information |
| 2285 ** on tables and/or indices that are the process of being deleted. |
| 2286 ** If you are unlucky, one of those deleted indices or tables might |
| 2287 ** have the same rootpage number as the real table or index that is |
| 2288 ** being moved. So we cannot stop searching after the first match |
| 2289 ** because the first match might be for one of the deleted indices |
| 2290 ** or tables and not the table/index that is actually being moved. |
| 2291 ** We must continue looping until all tables and indices with |
| 2292 ** rootpage==iFrom have been converted to have a rootpage of iTo |
| 2293 ** in order to be certain that we got the right one. |
| 2294 */ |
| 2295 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 2296 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){ |
| 2297 HashElem *pElem; |
| 2298 Hash *pHash; |
| 2299 Db *pDb; |
| 2300 |
| 2301 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 2302 pDb = &db->aDb[iDb]; |
| 2303 pHash = &pDb->pSchema->tblHash; |
| 2304 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ |
| 2305 Table *pTab = sqliteHashData(pElem); |
| 2306 if( pTab->tnum==iFrom ){ |
| 2307 pTab->tnum = iTo; |
| 2308 } |
| 2309 } |
| 2310 pHash = &pDb->pSchema->idxHash; |
| 2311 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ |
| 2312 Index *pIdx = sqliteHashData(pElem); |
| 2313 if( pIdx->tnum==iFrom ){ |
| 2314 pIdx->tnum = iTo; |
| 2315 } |
| 2316 } |
| 2317 } |
| 2318 #endif |
| 2319 |
| 2320 /* |
| 2321 ** Write code to erase the table with root-page iTable from database iDb. |
| 2322 ** Also write code to modify the sqlite_master table and internal schema |
| 2323 ** if a root-page of another table is moved by the btree-layer whilst |
| 2324 ** erasing iTable (this can happen with an auto-vacuum database). |
| 2325 */ |
| 2326 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ |
| 2327 Vdbe *v = sqlite3GetVdbe(pParse); |
| 2328 int r1 = sqlite3GetTempReg(pParse); |
| 2329 assert( iTable>1 ); |
| 2330 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); |
| 2331 sqlite3MayAbort(pParse); |
| 2332 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 2333 /* OP_Destroy stores an in integer r1. If this integer |
| 2334 ** is non-zero, then it is the root page number of a table moved to |
| 2335 ** location iTable. The following code modifies the sqlite_master table to |
| 2336 ** reflect this. |
| 2337 ** |
| 2338 ** The "#NNN" in the SQL is a special constant that means whatever value |
| 2339 ** is in register NNN. See grammar rules associated with the TK_REGISTER |
| 2340 ** token for additional information. |
| 2341 */ |
| 2342 sqlite3NestedParse(pParse, |
| 2343 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", |
| 2344 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1); |
| 2345 #endif |
| 2346 sqlite3ReleaseTempReg(pParse, r1); |
| 2347 } |
| 2348 |
| 2349 /* |
| 2350 ** Write VDBE code to erase table pTab and all associated indices on disk. |
| 2351 ** Code to update the sqlite_master tables and internal schema definitions |
| 2352 ** in case a root-page belonging to another table is moved by the btree layer |
| 2353 ** is also added (this can happen with an auto-vacuum database). |
| 2354 */ |
| 2355 static void destroyTable(Parse *pParse, Table *pTab){ |
| 2356 #ifdef SQLITE_OMIT_AUTOVACUUM |
| 2357 Index *pIdx; |
| 2358 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
| 2359 destroyRootPage(pParse, pTab->tnum, iDb); |
| 2360 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
| 2361 destroyRootPage(pParse, pIdx->tnum, iDb); |
| 2362 } |
| 2363 #else |
| 2364 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM |
| 2365 ** is not defined), then it is important to call OP_Destroy on the |
| 2366 ** table and index root-pages in order, starting with the numerically |
| 2367 ** largest root-page number. This guarantees that none of the root-pages |
| 2368 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the |
| 2369 ** following were coded: |
| 2370 ** |
| 2371 ** OP_Destroy 4 0 |
| 2372 ** ... |
| 2373 ** OP_Destroy 5 0 |
| 2374 ** |
| 2375 ** and root page 5 happened to be the largest root-page number in the |
| 2376 ** database, then root page 5 would be moved to page 4 by the |
| 2377 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit |
| 2378 ** a free-list page. |
| 2379 */ |
| 2380 int iTab = pTab->tnum; |
| 2381 int iDestroyed = 0; |
| 2382 |
| 2383 while( 1 ){ |
| 2384 Index *pIdx; |
| 2385 int iLargest = 0; |
| 2386 |
| 2387 if( iDestroyed==0 || iTab<iDestroyed ){ |
| 2388 iLargest = iTab; |
| 2389 } |
| 2390 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
| 2391 int iIdx = pIdx->tnum; |
| 2392 assert( pIdx->pSchema==pTab->pSchema ); |
| 2393 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ |
| 2394 iLargest = iIdx; |
| 2395 } |
| 2396 } |
| 2397 if( iLargest==0 ){ |
| 2398 return; |
| 2399 }else{ |
| 2400 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
| 2401 assert( iDb>=0 && iDb<pParse->db->nDb ); |
| 2402 destroyRootPage(pParse, iLargest, iDb); |
| 2403 iDestroyed = iLargest; |
| 2404 } |
| 2405 } |
| 2406 #endif |
| 2407 } |
| 2408 |
| 2409 /* |
| 2410 ** Remove entries from the sqlite_statN tables (for N in (1,2,3)) |
| 2411 ** after a DROP INDEX or DROP TABLE command. |
| 2412 */ |
| 2413 static void sqlite3ClearStatTables( |
| 2414 Parse *pParse, /* The parsing context */ |
| 2415 int iDb, /* The database number */ |
| 2416 const char *zType, /* "idx" or "tbl" */ |
| 2417 const char *zName /* Name of index or table */ |
| 2418 ){ |
| 2419 int i; |
| 2420 const char *zDbName = pParse->db->aDb[iDb].zDbSName; |
| 2421 for(i=1; i<=4; i++){ |
| 2422 char zTab[24]; |
| 2423 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i); |
| 2424 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){ |
| 2425 sqlite3NestedParse(pParse, |
| 2426 "DELETE FROM %Q.%s WHERE %s=%Q", |
| 2427 zDbName, zTab, zType, zName |
| 2428 ); |
| 2429 } |
| 2430 } |
| 2431 } |
| 2432 |
| 2433 /* |
| 2434 ** Generate code to drop a table. |
| 2435 */ |
| 2436 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){ |
| 2437 Vdbe *v; |
| 2438 sqlite3 *db = pParse->db; |
| 2439 Trigger *pTrigger; |
| 2440 Db *pDb = &db->aDb[iDb]; |
| 2441 |
| 2442 v = sqlite3GetVdbe(pParse); |
| 2443 assert( v!=0 ); |
| 2444 sqlite3BeginWriteOperation(pParse, 1, iDb); |
| 2445 |
| 2446 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 2447 if( IsVirtual(pTab) ){ |
| 2448 sqlite3VdbeAddOp0(v, OP_VBegin); |
| 2449 } |
| 2450 #endif |
| 2451 |
| 2452 /* Drop all triggers associated with the table being dropped. Code |
| 2453 ** is generated to remove entries from sqlite_master and/or |
| 2454 ** sqlite_temp_master if required. |
| 2455 */ |
| 2456 pTrigger = sqlite3TriggerList(pParse, pTab); |
| 2457 while( pTrigger ){ |
| 2458 assert( pTrigger->pSchema==pTab->pSchema || |
| 2459 pTrigger->pSchema==db->aDb[1].pSchema ); |
| 2460 sqlite3DropTriggerPtr(pParse, pTrigger); |
| 2461 pTrigger = pTrigger->pNext; |
| 2462 } |
| 2463 |
| 2464 #ifndef SQLITE_OMIT_AUTOINCREMENT |
| 2465 /* Remove any entries of the sqlite_sequence table associated with |
| 2466 ** the table being dropped. This is done before the table is dropped |
| 2467 ** at the btree level, in case the sqlite_sequence table needs to |
| 2468 ** move as a result of the drop (can happen in auto-vacuum mode). |
| 2469 */ |
| 2470 if( pTab->tabFlags & TF_Autoincrement ){ |
| 2471 sqlite3NestedParse(pParse, |
| 2472 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q", |
| 2473 pDb->zDbSName, pTab->zName |
| 2474 ); |
| 2475 } |
| 2476 #endif |
| 2477 |
| 2478 /* Drop all SQLITE_MASTER table and index entries that refer to the |
| 2479 ** table. The program name loops through the master table and deletes |
| 2480 ** every row that refers to a table of the same name as the one being |
| 2481 ** dropped. Triggers are handled separately because a trigger can be |
| 2482 ** created in the temp database that refers to a table in another |
| 2483 ** database. |
| 2484 */ |
| 2485 sqlite3NestedParse(pParse, |
| 2486 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", |
| 2487 pDb->zDbSName, MASTER_NAME, pTab->zName); |
| 2488 if( !isView && !IsVirtual(pTab) ){ |
| 2489 destroyTable(pParse, pTab); |
| 2490 } |
| 2491 |
| 2492 /* Remove the table entry from SQLite's internal schema and modify |
| 2493 ** the schema cookie. |
| 2494 */ |
| 2495 if( IsVirtual(pTab) ){ |
| 2496 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); |
| 2497 } |
| 2498 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); |
| 2499 sqlite3ChangeCookie(pParse, iDb); |
| 2500 sqliteViewResetAll(db, iDb); |
| 2501 } |
| 2502 |
| 2503 /* |
| 2504 ** This routine is called to do the work of a DROP TABLE statement. |
| 2505 ** pName is the name of the table to be dropped. |
| 2506 */ |
| 2507 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ |
| 2508 Table *pTab; |
| 2509 Vdbe *v; |
| 2510 sqlite3 *db = pParse->db; |
| 2511 int iDb; |
| 2512 |
| 2513 if( db->mallocFailed ){ |
| 2514 goto exit_drop_table; |
| 2515 } |
| 2516 assert( pParse->nErr==0 ); |
| 2517 assert( pName->nSrc==1 ); |
| 2518 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table; |
| 2519 if( noErr ) db->suppressErr++; |
| 2520 assert( isView==0 || isView==LOCATE_VIEW ); |
| 2521 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]); |
| 2522 if( noErr ) db->suppressErr--; |
| 2523 |
| 2524 if( pTab==0 ){ |
| 2525 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); |
| 2526 goto exit_drop_table; |
| 2527 } |
| 2528 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| 2529 assert( iDb>=0 && iDb<db->nDb ); |
| 2530 |
| 2531 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure |
| 2532 ** it is initialized. |
| 2533 */ |
| 2534 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ |
| 2535 goto exit_drop_table; |
| 2536 } |
| 2537 #ifndef SQLITE_OMIT_AUTHORIZATION |
| 2538 { |
| 2539 int code; |
| 2540 const char *zTab = SCHEMA_TABLE(iDb); |
| 2541 const char *zDb = db->aDb[iDb].zDbSName; |
| 2542 const char *zArg2 = 0; |
| 2543 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ |
| 2544 goto exit_drop_table; |
| 2545 } |
| 2546 if( isView ){ |
| 2547 if( !OMIT_TEMPDB && iDb==1 ){ |
| 2548 code = SQLITE_DROP_TEMP_VIEW; |
| 2549 }else{ |
| 2550 code = SQLITE_DROP_VIEW; |
| 2551 } |
| 2552 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 2553 }else if( IsVirtual(pTab) ){ |
| 2554 code = SQLITE_DROP_VTABLE; |
| 2555 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName; |
| 2556 #endif |
| 2557 }else{ |
| 2558 if( !OMIT_TEMPDB && iDb==1 ){ |
| 2559 code = SQLITE_DROP_TEMP_TABLE; |
| 2560 }else{ |
| 2561 code = SQLITE_DROP_TABLE; |
| 2562 } |
| 2563 } |
| 2564 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ |
| 2565 goto exit_drop_table; |
| 2566 } |
| 2567 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ |
| 2568 goto exit_drop_table; |
| 2569 } |
| 2570 } |
| 2571 #endif |
| 2572 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 |
| 2573 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){ |
| 2574 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); |
| 2575 goto exit_drop_table; |
| 2576 } |
| 2577 |
| 2578 #ifndef SQLITE_OMIT_VIEW |
| 2579 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used |
| 2580 ** on a table. |
| 2581 */ |
| 2582 if( isView && pTab->pSelect==0 ){ |
| 2583 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); |
| 2584 goto exit_drop_table; |
| 2585 } |
| 2586 if( !isView && pTab->pSelect ){ |
| 2587 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); |
| 2588 goto exit_drop_table; |
| 2589 } |
| 2590 #endif |
| 2591 |
| 2592 /* Generate code to remove the table from the master table |
| 2593 ** on disk. |
| 2594 */ |
| 2595 v = sqlite3GetVdbe(pParse); |
| 2596 if( v ){ |
| 2597 sqlite3BeginWriteOperation(pParse, 1, iDb); |
| 2598 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName); |
| 2599 sqlite3FkDropTable(pParse, pName, pTab); |
| 2600 sqlite3CodeDropTable(pParse, pTab, iDb, isView); |
| 2601 } |
| 2602 |
| 2603 exit_drop_table: |
| 2604 sqlite3SrcListDelete(db, pName); |
| 2605 } |
| 2606 |
| 2607 /* |
| 2608 ** This routine is called to create a new foreign key on the table |
| 2609 ** currently under construction. pFromCol determines which columns |
| 2610 ** in the current table point to the foreign key. If pFromCol==0 then |
| 2611 ** connect the key to the last column inserted. pTo is the name of |
| 2612 ** the table referred to (a.k.a the "parent" table). pToCol is a list |
| 2613 ** of tables in the parent pTo table. flags contains all |
| 2614 ** information about the conflict resolution algorithms specified |
| 2615 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. |
| 2616 ** |
| 2617 ** An FKey structure is created and added to the table currently |
| 2618 ** under construction in the pParse->pNewTable field. |
| 2619 ** |
| 2620 ** The foreign key is set for IMMEDIATE processing. A subsequent call |
| 2621 ** to sqlite3DeferForeignKey() might change this to DEFERRED. |
| 2622 */ |
| 2623 void sqlite3CreateForeignKey( |
| 2624 Parse *pParse, /* Parsing context */ |
| 2625 ExprList *pFromCol, /* Columns in this table that point to other table */ |
| 2626 Token *pTo, /* Name of the other table */ |
| 2627 ExprList *pToCol, /* Columns in the other table */ |
| 2628 int flags /* Conflict resolution algorithms. */ |
| 2629 ){ |
| 2630 sqlite3 *db = pParse->db; |
| 2631 #ifndef SQLITE_OMIT_FOREIGN_KEY |
| 2632 FKey *pFKey = 0; |
| 2633 FKey *pNextTo; |
| 2634 Table *p = pParse->pNewTable; |
| 2635 int nByte; |
| 2636 int i; |
| 2637 int nCol; |
| 2638 char *z; |
| 2639 |
| 2640 assert( pTo!=0 ); |
| 2641 if( p==0 || IN_DECLARE_VTAB ) goto fk_end; |
| 2642 if( pFromCol==0 ){ |
| 2643 int iCol = p->nCol-1; |
| 2644 if( NEVER(iCol<0) ) goto fk_end; |
| 2645 if( pToCol && pToCol->nExpr!=1 ){ |
| 2646 sqlite3ErrorMsg(pParse, "foreign key on %s" |
| 2647 " should reference only one column of table %T", |
| 2648 p->aCol[iCol].zName, pTo); |
| 2649 goto fk_end; |
| 2650 } |
| 2651 nCol = 1; |
| 2652 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ |
| 2653 sqlite3ErrorMsg(pParse, |
| 2654 "number of columns in foreign key does not match the number of " |
| 2655 "columns in the referenced table"); |
| 2656 goto fk_end; |
| 2657 }else{ |
| 2658 nCol = pFromCol->nExpr; |
| 2659 } |
| 2660 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1; |
| 2661 if( pToCol ){ |
| 2662 for(i=0; i<pToCol->nExpr; i++){ |
| 2663 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1; |
| 2664 } |
| 2665 } |
| 2666 pFKey = sqlite3DbMallocZero(db, nByte ); |
| 2667 if( pFKey==0 ){ |
| 2668 goto fk_end; |
| 2669 } |
| 2670 pFKey->pFrom = p; |
| 2671 pFKey->pNextFrom = p->pFKey; |
| 2672 z = (char*)&pFKey->aCol[nCol]; |
| 2673 pFKey->zTo = z; |
| 2674 memcpy(z, pTo->z, pTo->n); |
| 2675 z[pTo->n] = 0; |
| 2676 sqlite3Dequote(z); |
| 2677 z += pTo->n+1; |
| 2678 pFKey->nCol = nCol; |
| 2679 if( pFromCol==0 ){ |
| 2680 pFKey->aCol[0].iFrom = p->nCol-1; |
| 2681 }else{ |
| 2682 for(i=0; i<nCol; i++){ |
| 2683 int j; |
| 2684 for(j=0; j<p->nCol; j++){ |
| 2685 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ |
| 2686 pFKey->aCol[i].iFrom = j; |
| 2687 break; |
| 2688 } |
| 2689 } |
| 2690 if( j>=p->nCol ){ |
| 2691 sqlite3ErrorMsg(pParse, |
| 2692 "unknown column \"%s\" in foreign key definition", |
| 2693 pFromCol->a[i].zName); |
| 2694 goto fk_end; |
| 2695 } |
| 2696 } |
| 2697 } |
| 2698 if( pToCol ){ |
| 2699 for(i=0; i<nCol; i++){ |
| 2700 int n = sqlite3Strlen30(pToCol->a[i].zName); |
| 2701 pFKey->aCol[i].zCol = z; |
| 2702 memcpy(z, pToCol->a[i].zName, n); |
| 2703 z[n] = 0; |
| 2704 z += n+1; |
| 2705 } |
| 2706 } |
| 2707 pFKey->isDeferred = 0; |
| 2708 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */ |
| 2709 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */ |
| 2710 |
| 2711 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); |
| 2712 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash, |
| 2713 pFKey->zTo, (void *)pFKey |
| 2714 ); |
| 2715 if( pNextTo==pFKey ){ |
| 2716 sqlite3OomFault(db); |
| 2717 goto fk_end; |
| 2718 } |
| 2719 if( pNextTo ){ |
| 2720 assert( pNextTo->pPrevTo==0 ); |
| 2721 pFKey->pNextTo = pNextTo; |
| 2722 pNextTo->pPrevTo = pFKey; |
| 2723 } |
| 2724 |
| 2725 /* Link the foreign key to the table as the last step. |
| 2726 */ |
| 2727 p->pFKey = pFKey; |
| 2728 pFKey = 0; |
| 2729 |
| 2730 fk_end: |
| 2731 sqlite3DbFree(db, pFKey); |
| 2732 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ |
| 2733 sqlite3ExprListDelete(db, pFromCol); |
| 2734 sqlite3ExprListDelete(db, pToCol); |
| 2735 } |
| 2736 |
| 2737 /* |
| 2738 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED |
| 2739 ** clause is seen as part of a foreign key definition. The isDeferred |
| 2740 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. |
| 2741 ** The behavior of the most recently created foreign key is adjusted |
| 2742 ** accordingly. |
| 2743 */ |
| 2744 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ |
| 2745 #ifndef SQLITE_OMIT_FOREIGN_KEY |
| 2746 Table *pTab; |
| 2747 FKey *pFKey; |
| 2748 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; |
| 2749 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */ |
| 2750 pFKey->isDeferred = (u8)isDeferred; |
| 2751 #endif |
| 2752 } |
| 2753 |
| 2754 /* |
| 2755 ** Generate code that will erase and refill index *pIdx. This is |
| 2756 ** used to initialize a newly created index or to recompute the |
| 2757 ** content of an index in response to a REINDEX command. |
| 2758 ** |
| 2759 ** if memRootPage is not negative, it means that the index is newly |
| 2760 ** created. The register specified by memRootPage contains the |
| 2761 ** root page number of the index. If memRootPage is negative, then |
| 2762 ** the index already exists and must be cleared before being refilled and |
| 2763 ** the root page number of the index is taken from pIndex->tnum. |
| 2764 */ |
| 2765 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ |
| 2766 Table *pTab = pIndex->pTable; /* The table that is indexed */ |
| 2767 int iTab = pParse->nTab++; /* Btree cursor used for pTab */ |
| 2768 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ |
| 2769 int iSorter; /* Cursor opened by OpenSorter (if in use) */ |
| 2770 int addr1; /* Address of top of loop */ |
| 2771 int addr2; /* Address to jump to for next iteration */ |
| 2772 int tnum; /* Root page of index */ |
| 2773 int iPartIdxLabel; /* Jump to this label to skip a row */ |
| 2774 Vdbe *v; /* Generate code into this virtual machine */ |
| 2775 KeyInfo *pKey; /* KeyInfo for index */ |
| 2776 int regRecord; /* Register holding assembled index record */ |
| 2777 sqlite3 *db = pParse->db; /* The database connection */ |
| 2778 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); |
| 2779 |
| 2780 #ifndef SQLITE_OMIT_AUTHORIZATION |
| 2781 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, |
| 2782 db->aDb[iDb].zDbSName ) ){ |
| 2783 return; |
| 2784 } |
| 2785 #endif |
| 2786 |
| 2787 /* Require a write-lock on the table to perform this operation */ |
| 2788 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); |
| 2789 |
| 2790 v = sqlite3GetVdbe(pParse); |
| 2791 if( v==0 ) return; |
| 2792 if( memRootPage>=0 ){ |
| 2793 tnum = memRootPage; |
| 2794 }else{ |
| 2795 tnum = pIndex->tnum; |
| 2796 } |
| 2797 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex); |
| 2798 assert( pKey!=0 || db->mallocFailed || pParse->nErr ); |
| 2799 |
| 2800 /* Open the sorter cursor if we are to use one. */ |
| 2801 iSorter = pParse->nTab++; |
| 2802 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*) |
| 2803 sqlite3KeyInfoRef(pKey), P4_KEYINFO); |
| 2804 |
| 2805 /* Open the table. Loop through all rows of the table, inserting index |
| 2806 ** records into the sorter. */ |
| 2807 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); |
| 2808 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v); |
| 2809 regRecord = sqlite3GetTempReg(pParse); |
| 2810 |
| 2811 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0); |
| 2812 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); |
| 2813 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel); |
| 2814 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v); |
| 2815 sqlite3VdbeJumpHere(v, addr1); |
| 2816 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); |
| 2817 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, |
| 2818 (char *)pKey, P4_KEYINFO); |
| 2819 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0)); |
| 2820 |
| 2821 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v); |
| 2822 if( IsUniqueIndex(pIndex) ){ |
| 2823 int j2 = sqlite3VdbeCurrentAddr(v) + 3; |
| 2824 sqlite3VdbeGoto(v, j2); |
| 2825 addr2 = sqlite3VdbeCurrentAddr(v); |
| 2826 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord, |
| 2827 pIndex->nKeyCol); VdbeCoverage(v); |
| 2828 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex); |
| 2829 }else{ |
| 2830 addr2 = sqlite3VdbeCurrentAddr(v); |
| 2831 } |
| 2832 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx); |
| 2833 sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1); |
| 2834 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); |
| 2835 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
| 2836 sqlite3ReleaseTempReg(pParse, regRecord); |
| 2837 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v); |
| 2838 sqlite3VdbeJumpHere(v, addr1); |
| 2839 |
| 2840 sqlite3VdbeAddOp1(v, OP_Close, iTab); |
| 2841 sqlite3VdbeAddOp1(v, OP_Close, iIdx); |
| 2842 sqlite3VdbeAddOp1(v, OP_Close, iSorter); |
| 2843 } |
| 2844 |
| 2845 /* |
| 2846 ** Allocate heap space to hold an Index object with nCol columns. |
| 2847 ** |
| 2848 ** Increase the allocation size to provide an extra nExtra bytes |
| 2849 ** of 8-byte aligned space after the Index object and return a |
| 2850 ** pointer to this extra space in *ppExtra. |
| 2851 */ |
| 2852 Index *sqlite3AllocateIndexObject( |
| 2853 sqlite3 *db, /* Database connection */ |
| 2854 i16 nCol, /* Total number of columns in the index */ |
| 2855 int nExtra, /* Number of bytes of extra space to alloc */ |
| 2856 char **ppExtra /* Pointer to the "extra" space */ |
| 2857 ){ |
| 2858 Index *p; /* Allocated index object */ |
| 2859 int nByte; /* Bytes of space for Index object + arrays */ |
| 2860 |
| 2861 nByte = ROUND8(sizeof(Index)) + /* Index structure */ |
| 2862 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */ |
| 2863 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */ |
| 2864 sizeof(i16)*nCol + /* Index.aiColumn */ |
| 2865 sizeof(u8)*nCol); /* Index.aSortOrder */ |
| 2866 p = sqlite3DbMallocZero(db, nByte + nExtra); |
| 2867 if( p ){ |
| 2868 char *pExtra = ((char*)p)+ROUND8(sizeof(Index)); |
| 2869 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol); |
| 2870 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1); |
| 2871 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol; |
| 2872 p->aSortOrder = (u8*)pExtra; |
| 2873 p->nColumn = nCol; |
| 2874 p->nKeyCol = nCol - 1; |
| 2875 *ppExtra = ((char*)p) + nByte; |
| 2876 } |
| 2877 return p; |
| 2878 } |
| 2879 |
| 2880 /* |
| 2881 ** Create a new index for an SQL table. pName1.pName2 is the name of the index |
| 2882 ** and pTblList is the name of the table that is to be indexed. Both will |
| 2883 ** be NULL for a primary key or an index that is created to satisfy a |
| 2884 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable |
| 2885 ** as the table to be indexed. pParse->pNewTable is a table that is |
| 2886 ** currently being constructed by a CREATE TABLE statement. |
| 2887 ** |
| 2888 ** pList is a list of columns to be indexed. pList will be NULL if this |
| 2889 ** is a primary key or unique-constraint on the most recent column added |
| 2890 ** to the table currently under construction. |
| 2891 */ |
| 2892 void sqlite3CreateIndex( |
| 2893 Parse *pParse, /* All information about this parse */ |
| 2894 Token *pName1, /* First part of index name. May be NULL */ |
| 2895 Token *pName2, /* Second part of index name. May be NULL */ |
| 2896 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ |
| 2897 ExprList *pList, /* A list of columns to be indexed */ |
| 2898 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ |
| 2899 Token *pStart, /* The CREATE token that begins this statement */ |
| 2900 Expr *pPIWhere, /* WHERE clause for partial indices */ |
| 2901 int sortOrder, /* Sort order of primary key when pList==NULL */ |
| 2902 int ifNotExist, /* Omit error if index already exists */ |
| 2903 u8 idxType /* The index type */ |
| 2904 ){ |
| 2905 Table *pTab = 0; /* Table to be indexed */ |
| 2906 Index *pIndex = 0; /* The index to be created */ |
| 2907 char *zName = 0; /* Name of the index */ |
| 2908 int nName; /* Number of characters in zName */ |
| 2909 int i, j; |
| 2910 DbFixer sFix; /* For assigning database names to pTable */ |
| 2911 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ |
| 2912 sqlite3 *db = pParse->db; |
| 2913 Db *pDb; /* The specific table containing the indexed database */ |
| 2914 int iDb; /* Index of the database that is being written */ |
| 2915 Token *pName = 0; /* Unqualified name of the index to create */ |
| 2916 struct ExprList_item *pListItem; /* For looping over pList */ |
| 2917 int nExtra = 0; /* Space allocated for zExtra[] */ |
| 2918 int nExtraCol; /* Number of extra columns needed */ |
| 2919 char *zExtra = 0; /* Extra space after the Index object */ |
| 2920 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */ |
| 2921 |
| 2922 if( db->mallocFailed || pParse->nErr>0 ){ |
| 2923 goto exit_create_index; |
| 2924 } |
| 2925 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){ |
| 2926 goto exit_create_index; |
| 2927 } |
| 2928 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
| 2929 goto exit_create_index; |
| 2930 } |
| 2931 |
| 2932 /* |
| 2933 ** Find the table that is to be indexed. Return early if not found. |
| 2934 */ |
| 2935 if( pTblName!=0 ){ |
| 2936 |
| 2937 /* Use the two-part index name to determine the database |
| 2938 ** to search for the table. 'Fix' the table name to this db |
| 2939 ** before looking up the table. |
| 2940 */ |
| 2941 assert( pName1 && pName2 ); |
| 2942 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); |
| 2943 if( iDb<0 ) goto exit_create_index; |
| 2944 assert( pName && pName->z ); |
| 2945 |
| 2946 #ifndef SQLITE_OMIT_TEMPDB |
| 2947 /* If the index name was unqualified, check if the table |
| 2948 ** is a temp table. If so, set the database to 1. Do not do this |
| 2949 ** if initialising a database schema. |
| 2950 */ |
| 2951 if( !db->init.busy ){ |
| 2952 pTab = sqlite3SrcListLookup(pParse, pTblName); |
| 2953 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ |
| 2954 iDb = 1; |
| 2955 } |
| 2956 } |
| 2957 #endif |
| 2958 |
| 2959 sqlite3FixInit(&sFix, pParse, iDb, "index", pName); |
| 2960 if( sqlite3FixSrcList(&sFix, pTblName) ){ |
| 2961 /* Because the parser constructs pTblName from a single identifier, |
| 2962 ** sqlite3FixSrcList can never fail. */ |
| 2963 assert(0); |
| 2964 } |
| 2965 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); |
| 2966 assert( db->mallocFailed==0 || pTab==0 ); |
| 2967 if( pTab==0 ) goto exit_create_index; |
| 2968 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){ |
| 2969 sqlite3ErrorMsg(pParse, |
| 2970 "cannot create a TEMP index on non-TEMP table \"%s\"", |
| 2971 pTab->zName); |
| 2972 goto exit_create_index; |
| 2973 } |
| 2974 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab); |
| 2975 }else{ |
| 2976 assert( pName==0 ); |
| 2977 assert( pStart==0 ); |
| 2978 pTab = pParse->pNewTable; |
| 2979 if( !pTab ) goto exit_create_index; |
| 2980 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| 2981 } |
| 2982 pDb = &db->aDb[iDb]; |
| 2983 |
| 2984 assert( pTab!=0 ); |
| 2985 assert( pParse->nErr==0 ); |
| 2986 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 |
| 2987 && db->init.busy==0 |
| 2988 #if SQLITE_USER_AUTHENTICATION |
| 2989 && sqlite3UserAuthTable(pTab->zName)==0 |
| 2990 #endif |
| 2991 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){ |
| 2992 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); |
| 2993 goto exit_create_index; |
| 2994 } |
| 2995 #ifndef SQLITE_OMIT_VIEW |
| 2996 if( pTab->pSelect ){ |
| 2997 sqlite3ErrorMsg(pParse, "views may not be indexed"); |
| 2998 goto exit_create_index; |
| 2999 } |
| 3000 #endif |
| 3001 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 3002 if( IsVirtual(pTab) ){ |
| 3003 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); |
| 3004 goto exit_create_index; |
| 3005 } |
| 3006 #endif |
| 3007 |
| 3008 /* |
| 3009 ** Find the name of the index. Make sure there is not already another |
| 3010 ** index or table with the same name. |
| 3011 ** |
| 3012 ** Exception: If we are reading the names of permanent indices from the |
| 3013 ** sqlite_master table (because some other process changed the schema) and |
| 3014 ** one of the index names collides with the name of a temporary table or |
| 3015 ** index, then we will continue to process this index. |
| 3016 ** |
| 3017 ** If pName==0 it means that we are |
| 3018 ** dealing with a primary key or UNIQUE constraint. We have to invent our |
| 3019 ** own name. |
| 3020 */ |
| 3021 if( pName ){ |
| 3022 zName = sqlite3NameFromToken(db, pName); |
| 3023 if( zName==0 ) goto exit_create_index; |
| 3024 assert( pName->z!=0 ); |
| 3025 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ |
| 3026 goto exit_create_index; |
| 3027 } |
| 3028 if( !db->init.busy ){ |
| 3029 if( sqlite3FindTable(db, zName, 0)!=0 ){ |
| 3030 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); |
| 3031 goto exit_create_index; |
| 3032 } |
| 3033 } |
| 3034 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){ |
| 3035 if( !ifNotExist ){ |
| 3036 sqlite3ErrorMsg(pParse, "index %s already exists", zName); |
| 3037 }else{ |
| 3038 assert( !db->init.busy ); |
| 3039 sqlite3CodeVerifySchema(pParse, iDb); |
| 3040 } |
| 3041 goto exit_create_index; |
| 3042 } |
| 3043 }else{ |
| 3044 int n; |
| 3045 Index *pLoop; |
| 3046 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} |
| 3047 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); |
| 3048 if( zName==0 ){ |
| 3049 goto exit_create_index; |
| 3050 } |
| 3051 |
| 3052 /* Automatic index names generated from within sqlite3_declare_vtab() |
| 3053 ** must have names that are distinct from normal automatic index names. |
| 3054 ** The following statement converts "sqlite3_autoindex..." into |
| 3055 ** "sqlite3_butoindex..." in order to make the names distinct. |
| 3056 ** The "vtab_err.test" test demonstrates the need of this statement. */ |
| 3057 if( IN_DECLARE_VTAB ) zName[7]++; |
| 3058 } |
| 3059 |
| 3060 /* Check for authorization to create an index. |
| 3061 */ |
| 3062 #ifndef SQLITE_OMIT_AUTHORIZATION |
| 3063 { |
| 3064 const char *zDb = pDb->zDbSName; |
| 3065 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ |
| 3066 goto exit_create_index; |
| 3067 } |
| 3068 i = SQLITE_CREATE_INDEX; |
| 3069 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; |
| 3070 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ |
| 3071 goto exit_create_index; |
| 3072 } |
| 3073 } |
| 3074 #endif |
| 3075 |
| 3076 /* If pList==0, it means this routine was called to make a primary |
| 3077 ** key out of the last column added to the table under construction. |
| 3078 ** So create a fake list to simulate this. |
| 3079 */ |
| 3080 if( pList==0 ){ |
| 3081 Token prevCol; |
| 3082 sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName); |
| 3083 pList = sqlite3ExprListAppend(pParse, 0, |
| 3084 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0)); |
| 3085 if( pList==0 ) goto exit_create_index; |
| 3086 assert( pList->nExpr==1 ); |
| 3087 sqlite3ExprListSetSortOrder(pList, sortOrder); |
| 3088 }else{ |
| 3089 sqlite3ExprListCheckLength(pParse, pList, "index"); |
| 3090 } |
| 3091 |
| 3092 /* Figure out how many bytes of space are required to store explicitly |
| 3093 ** specified collation sequence names. |
| 3094 */ |
| 3095 for(i=0; i<pList->nExpr; i++){ |
| 3096 Expr *pExpr = pList->a[i].pExpr; |
| 3097 assert( pExpr!=0 ); |
| 3098 if( pExpr->op==TK_COLLATE ){ |
| 3099 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken)); |
| 3100 } |
| 3101 } |
| 3102 |
| 3103 /* |
| 3104 ** Allocate the index structure. |
| 3105 */ |
| 3106 nName = sqlite3Strlen30(zName); |
| 3107 nExtraCol = pPk ? pPk->nKeyCol : 1; |
| 3108 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol, |
| 3109 nName + nExtra + 1, &zExtra); |
| 3110 if( db->mallocFailed ){ |
| 3111 goto exit_create_index; |
| 3112 } |
| 3113 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) ); |
| 3114 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) ); |
| 3115 pIndex->zName = zExtra; |
| 3116 zExtra += nName + 1; |
| 3117 memcpy(pIndex->zName, zName, nName+1); |
| 3118 pIndex->pTable = pTab; |
| 3119 pIndex->onError = (u8)onError; |
| 3120 pIndex->uniqNotNull = onError!=OE_None; |
| 3121 pIndex->idxType = idxType; |
| 3122 pIndex->pSchema = db->aDb[iDb].pSchema; |
| 3123 pIndex->nKeyCol = pList->nExpr; |
| 3124 if( pPIWhere ){ |
| 3125 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0); |
| 3126 pIndex->pPartIdxWhere = pPIWhere; |
| 3127 pPIWhere = 0; |
| 3128 } |
| 3129 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
| 3130 |
| 3131 /* Check to see if we should honor DESC requests on index columns |
| 3132 */ |
| 3133 if( pDb->pSchema->file_format>=4 ){ |
| 3134 sortOrderMask = -1; /* Honor DESC */ |
| 3135 }else{ |
| 3136 sortOrderMask = 0; /* Ignore DESC */ |
| 3137 } |
| 3138 |
| 3139 /* Analyze the list of expressions that form the terms of the index and |
| 3140 ** report any errors. In the common case where the expression is exactly |
| 3141 ** a table column, store that column in aiColumn[]. For general expressions, |
| 3142 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. |
| 3143 ** |
| 3144 ** TODO: Issue a warning if two or more columns of the index are identical. |
| 3145 ** TODO: Issue a warning if the table primary key is used as part of the |
| 3146 ** index key. |
| 3147 */ |
| 3148 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ |
| 3149 Expr *pCExpr; /* The i-th index expression */ |
| 3150 int requestedSortOrder; /* ASC or DESC on the i-th expression */ |
| 3151 const char *zColl; /* Collation sequence name */ |
| 3152 |
| 3153 sqlite3StringToId(pListItem->pExpr); |
| 3154 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0); |
| 3155 if( pParse->nErr ) goto exit_create_index; |
| 3156 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr); |
| 3157 if( pCExpr->op!=TK_COLUMN ){ |
| 3158 if( pTab==pParse->pNewTable ){ |
| 3159 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and " |
| 3160 "UNIQUE constraints"); |
| 3161 goto exit_create_index; |
| 3162 } |
| 3163 if( pIndex->aColExpr==0 ){ |
| 3164 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0); |
| 3165 pIndex->aColExpr = pCopy; |
| 3166 if( !db->mallocFailed ){ |
| 3167 assert( pCopy!=0 ); |
| 3168 pListItem = &pCopy->a[i]; |
| 3169 } |
| 3170 } |
| 3171 j = XN_EXPR; |
| 3172 pIndex->aiColumn[i] = XN_EXPR; |
| 3173 pIndex->uniqNotNull = 0; |
| 3174 }else{ |
| 3175 j = pCExpr->iColumn; |
| 3176 assert( j<=0x7fff ); |
| 3177 if( j<0 ){ |
| 3178 j = pTab->iPKey; |
| 3179 }else if( pTab->aCol[j].notNull==0 ){ |
| 3180 pIndex->uniqNotNull = 0; |
| 3181 } |
| 3182 pIndex->aiColumn[i] = (i16)j; |
| 3183 } |
| 3184 zColl = 0; |
| 3185 if( pListItem->pExpr->op==TK_COLLATE ){ |
| 3186 int nColl; |
| 3187 zColl = pListItem->pExpr->u.zToken; |
| 3188 nColl = sqlite3Strlen30(zColl) + 1; |
| 3189 assert( nExtra>=nColl ); |
| 3190 memcpy(zExtra, zColl, nColl); |
| 3191 zColl = zExtra; |
| 3192 zExtra += nColl; |
| 3193 nExtra -= nColl; |
| 3194 }else if( j>=0 ){ |
| 3195 zColl = pTab->aCol[j].zColl; |
| 3196 } |
| 3197 if( !zColl ) zColl = sqlite3StrBINARY; |
| 3198 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ |
| 3199 goto exit_create_index; |
| 3200 } |
| 3201 pIndex->azColl[i] = zColl; |
| 3202 requestedSortOrder = pListItem->sortOrder & sortOrderMask; |
| 3203 pIndex->aSortOrder[i] = (u8)requestedSortOrder; |
| 3204 } |
| 3205 |
| 3206 /* Append the table key to the end of the index. For WITHOUT ROWID |
| 3207 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For |
| 3208 ** normal tables (when pPk==0) this will be the rowid. |
| 3209 */ |
| 3210 if( pPk ){ |
| 3211 for(j=0; j<pPk->nKeyCol; j++){ |
| 3212 int x = pPk->aiColumn[j]; |
| 3213 assert( x>=0 ); |
| 3214 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){ |
| 3215 pIndex->nColumn--; |
| 3216 }else{ |
| 3217 pIndex->aiColumn[i] = x; |
| 3218 pIndex->azColl[i] = pPk->azColl[j]; |
| 3219 pIndex->aSortOrder[i] = pPk->aSortOrder[j]; |
| 3220 i++; |
| 3221 } |
| 3222 } |
| 3223 assert( i==pIndex->nColumn ); |
| 3224 }else{ |
| 3225 pIndex->aiColumn[i] = XN_ROWID; |
| 3226 pIndex->azColl[i] = sqlite3StrBINARY; |
| 3227 } |
| 3228 sqlite3DefaultRowEst(pIndex); |
| 3229 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); |
| 3230 |
| 3231 /* If this index contains every column of its table, then mark |
| 3232 ** it as a covering index */ |
| 3233 assert( HasRowid(pTab) |
| 3234 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 ); |
| 3235 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){ |
| 3236 pIndex->isCovering = 1; |
| 3237 for(j=0; j<pTab->nCol; j++){ |
| 3238 if( j==pTab->iPKey ) continue; |
| 3239 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue; |
| 3240 pIndex->isCovering = 0; |
| 3241 break; |
| 3242 } |
| 3243 } |
| 3244 |
| 3245 if( pTab==pParse->pNewTable ){ |
| 3246 /* This routine has been called to create an automatic index as a |
| 3247 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or |
| 3248 ** a PRIMARY KEY or UNIQUE clause following the column definitions. |
| 3249 ** i.e. one of: |
| 3250 ** |
| 3251 ** CREATE TABLE t(x PRIMARY KEY, y); |
| 3252 ** CREATE TABLE t(x, y, UNIQUE(x, y)); |
| 3253 ** |
| 3254 ** Either way, check to see if the table already has such an index. If |
| 3255 ** so, don't bother creating this one. This only applies to |
| 3256 ** automatically created indices. Users can do as they wish with |
| 3257 ** explicit indices. |
| 3258 ** |
| 3259 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent |
| 3260 ** (and thus suppressing the second one) even if they have different |
| 3261 ** sort orders. |
| 3262 ** |
| 3263 ** If there are different collating sequences or if the columns of |
| 3264 ** the constraint occur in different orders, then the constraints are |
| 3265 ** considered distinct and both result in separate indices. |
| 3266 */ |
| 3267 Index *pIdx; |
| 3268 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
| 3269 int k; |
| 3270 assert( IsUniqueIndex(pIdx) ); |
| 3271 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF ); |
| 3272 assert( IsUniqueIndex(pIndex) ); |
| 3273 |
| 3274 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue; |
| 3275 for(k=0; k<pIdx->nKeyCol; k++){ |
| 3276 const char *z1; |
| 3277 const char *z2; |
| 3278 assert( pIdx->aiColumn[k]>=0 ); |
| 3279 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; |
| 3280 z1 = pIdx->azColl[k]; |
| 3281 z2 = pIndex->azColl[k]; |
| 3282 if( sqlite3StrICmp(z1, z2) ) break; |
| 3283 } |
| 3284 if( k==pIdx->nKeyCol ){ |
| 3285 if( pIdx->onError!=pIndex->onError ){ |
| 3286 /* This constraint creates the same index as a previous |
| 3287 ** constraint specified somewhere in the CREATE TABLE statement. |
| 3288 ** However the ON CONFLICT clauses are different. If both this |
| 3289 ** constraint and the previous equivalent constraint have explicit |
| 3290 ** ON CONFLICT clauses this is an error. Otherwise, use the |
| 3291 ** explicitly specified behavior for the index. |
| 3292 */ |
| 3293 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ |
| 3294 sqlite3ErrorMsg(pParse, |
| 3295 "conflicting ON CONFLICT clauses specified", 0); |
| 3296 } |
| 3297 if( pIdx->onError==OE_Default ){ |
| 3298 pIdx->onError = pIndex->onError; |
| 3299 } |
| 3300 } |
| 3301 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType; |
| 3302 goto exit_create_index; |
| 3303 } |
| 3304 } |
| 3305 } |
| 3306 |
| 3307 /* Link the new Index structure to its table and to the other |
| 3308 ** in-memory database structures. |
| 3309 */ |
| 3310 assert( pParse->nErr==0 ); |
| 3311 if( db->init.busy ){ |
| 3312 Index *p; |
| 3313 assert( !IN_DECLARE_VTAB ); |
| 3314 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) ); |
| 3315 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, |
| 3316 pIndex->zName, pIndex); |
| 3317 if( p ){ |
| 3318 assert( p==pIndex ); /* Malloc must have failed */ |
| 3319 sqlite3OomFault(db); |
| 3320 goto exit_create_index; |
| 3321 } |
| 3322 db->flags |= SQLITE_InternChanges; |
| 3323 if( pTblName!=0 ){ |
| 3324 pIndex->tnum = db->init.newTnum; |
| 3325 } |
| 3326 } |
| 3327 |
| 3328 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the |
| 3329 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then |
| 3330 ** emit code to allocate the index rootpage on disk and make an entry for |
| 3331 ** the index in the sqlite_master table and populate the index with |
| 3332 ** content. But, do not do this if we are simply reading the sqlite_master |
| 3333 ** table to parse the schema, or if this index is the PRIMARY KEY index |
| 3334 ** of a WITHOUT ROWID table. |
| 3335 ** |
| 3336 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY |
| 3337 ** or UNIQUE index in a CREATE TABLE statement. Since the table |
| 3338 ** has just been created, it contains no data and the index initialization |
| 3339 ** step can be skipped. |
| 3340 */ |
| 3341 else if( HasRowid(pTab) || pTblName!=0 ){ |
| 3342 Vdbe *v; |
| 3343 char *zStmt; |
| 3344 int iMem = ++pParse->nMem; |
| 3345 |
| 3346 v = sqlite3GetVdbe(pParse); |
| 3347 if( v==0 ) goto exit_create_index; |
| 3348 |
| 3349 sqlite3BeginWriteOperation(pParse, 1, iDb); |
| 3350 |
| 3351 /* Create the rootpage for the index using CreateIndex. But before |
| 3352 ** doing so, code a Noop instruction and store its address in |
| 3353 ** Index.tnum. This is required in case this index is actually a |
| 3354 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In |
| 3355 ** that case the convertToWithoutRowidTable() routine will replace |
| 3356 ** the Noop with a Goto to jump over the VDBE code generated below. */ |
| 3357 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop); |
| 3358 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); |
| 3359 |
| 3360 /* Gather the complete text of the CREATE INDEX statement into |
| 3361 ** the zStmt variable |
| 3362 */ |
| 3363 if( pStart ){ |
| 3364 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n; |
| 3365 if( pName->z[n-1]==';' ) n--; |
| 3366 /* A named index with an explicit CREATE INDEX statement */ |
| 3367 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", |
| 3368 onError==OE_None ? "" : " UNIQUE", n, pName->z); |
| 3369 }else{ |
| 3370 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ |
| 3371 /* zStmt = sqlite3MPrintf(""); */ |
| 3372 zStmt = 0; |
| 3373 } |
| 3374 |
| 3375 /* Add an entry in sqlite_master for this index |
| 3376 */ |
| 3377 sqlite3NestedParse(pParse, |
| 3378 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", |
| 3379 db->aDb[iDb].zDbSName, MASTER_NAME, |
| 3380 pIndex->zName, |
| 3381 pTab->zName, |
| 3382 iMem, |
| 3383 zStmt |
| 3384 ); |
| 3385 sqlite3DbFree(db, zStmt); |
| 3386 |
| 3387 /* Fill the index with data and reparse the schema. Code an OP_Expire |
| 3388 ** to invalidate all pre-compiled statements. |
| 3389 */ |
| 3390 if( pTblName ){ |
| 3391 sqlite3RefillIndex(pParse, pIndex, iMem); |
| 3392 sqlite3ChangeCookie(pParse, iDb); |
| 3393 sqlite3VdbeAddParseSchemaOp(v, iDb, |
| 3394 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName)); |
| 3395 sqlite3VdbeAddOp0(v, OP_Expire); |
| 3396 } |
| 3397 |
| 3398 sqlite3VdbeJumpHere(v, pIndex->tnum); |
| 3399 } |
| 3400 |
| 3401 /* When adding an index to the list of indices for a table, make |
| 3402 ** sure all indices labeled OE_Replace come after all those labeled |
| 3403 ** OE_Ignore. This is necessary for the correct constraint check |
| 3404 ** processing (in sqlite3GenerateConstraintChecks()) as part of |
| 3405 ** UPDATE and INSERT statements. |
| 3406 */ |
| 3407 if( db->init.busy || pTblName==0 ){ |
| 3408 if( onError!=OE_Replace || pTab->pIndex==0 |
| 3409 || pTab->pIndex->onError==OE_Replace){ |
| 3410 pIndex->pNext = pTab->pIndex; |
| 3411 pTab->pIndex = pIndex; |
| 3412 }else{ |
| 3413 Index *pOther = pTab->pIndex; |
| 3414 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ |
| 3415 pOther = pOther->pNext; |
| 3416 } |
| 3417 pIndex->pNext = pOther->pNext; |
| 3418 pOther->pNext = pIndex; |
| 3419 } |
| 3420 pIndex = 0; |
| 3421 } |
| 3422 |
| 3423 /* Clean up before exiting */ |
| 3424 exit_create_index: |
| 3425 if( pIndex ) freeIndex(db, pIndex); |
| 3426 sqlite3ExprDelete(db, pPIWhere); |
| 3427 sqlite3ExprListDelete(db, pList); |
| 3428 sqlite3SrcListDelete(db, pTblName); |
| 3429 sqlite3DbFree(db, zName); |
| 3430 } |
| 3431 |
| 3432 /* |
| 3433 ** Fill the Index.aiRowEst[] array with default information - information |
| 3434 ** to be used when we have not run the ANALYZE command. |
| 3435 ** |
| 3436 ** aiRowEst[0] is supposed to contain the number of elements in the index. |
| 3437 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the |
| 3438 ** number of rows in the table that match any particular value of the |
| 3439 ** first column of the index. aiRowEst[2] is an estimate of the number |
| 3440 ** of rows that match any particular combination of the first 2 columns |
| 3441 ** of the index. And so forth. It must always be the case that |
| 3442 * |
| 3443 ** aiRowEst[N]<=aiRowEst[N-1] |
| 3444 ** aiRowEst[N]>=1 |
| 3445 ** |
| 3446 ** Apart from that, we have little to go on besides intuition as to |
| 3447 ** how aiRowEst[] should be initialized. The numbers generated here |
| 3448 ** are based on typical values found in actual indices. |
| 3449 */ |
| 3450 void sqlite3DefaultRowEst(Index *pIdx){ |
| 3451 /* 10, 9, 8, 7, 6 */ |
| 3452 LogEst aVal[] = { 33, 32, 30, 28, 26 }; |
| 3453 LogEst *a = pIdx->aiRowLogEst; |
| 3454 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol); |
| 3455 int i; |
| 3456 |
| 3457 /* Set the first entry (number of rows in the index) to the estimated |
| 3458 ** number of rows in the table, or half the number of rows in the table |
| 3459 ** for a partial index. But do not let the estimate drop below 10. */ |
| 3460 a[0] = pIdx->pTable->nRowLogEst; |
| 3461 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) ); |
| 3462 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) ); |
| 3463 |
| 3464 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is |
| 3465 ** 6 and each subsequent value (if any) is 5. */ |
| 3466 memcpy(&a[1], aVal, nCopy*sizeof(LogEst)); |
| 3467 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){ |
| 3468 a[i] = 23; assert( 23==sqlite3LogEst(5) ); |
| 3469 } |
| 3470 |
| 3471 assert( 0==sqlite3LogEst(1) ); |
| 3472 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0; |
| 3473 } |
| 3474 |
| 3475 /* |
| 3476 ** This routine will drop an existing named index. This routine |
| 3477 ** implements the DROP INDEX statement. |
| 3478 */ |
| 3479 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ |
| 3480 Index *pIndex; |
| 3481 Vdbe *v; |
| 3482 sqlite3 *db = pParse->db; |
| 3483 int iDb; |
| 3484 |
| 3485 assert( pParse->nErr==0 ); /* Never called with prior errors */ |
| 3486 if( db->mallocFailed ){ |
| 3487 goto exit_drop_index; |
| 3488 } |
| 3489 assert( pName->nSrc==1 ); |
| 3490 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
| 3491 goto exit_drop_index; |
| 3492 } |
| 3493 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); |
| 3494 if( pIndex==0 ){ |
| 3495 if( !ifExists ){ |
| 3496 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); |
| 3497 }else{ |
| 3498 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase); |
| 3499 } |
| 3500 pParse->checkSchema = 1; |
| 3501 goto exit_drop_index; |
| 3502 } |
| 3503 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){ |
| 3504 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " |
| 3505 "or PRIMARY KEY constraint cannot be dropped", 0); |
| 3506 goto exit_drop_index; |
| 3507 } |
| 3508 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); |
| 3509 #ifndef SQLITE_OMIT_AUTHORIZATION |
| 3510 { |
| 3511 int code = SQLITE_DROP_INDEX; |
| 3512 Table *pTab = pIndex->pTable; |
| 3513 const char *zDb = db->aDb[iDb].zDbSName; |
| 3514 const char *zTab = SCHEMA_TABLE(iDb); |
| 3515 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ |
| 3516 goto exit_drop_index; |
| 3517 } |
| 3518 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; |
| 3519 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ |
| 3520 goto exit_drop_index; |
| 3521 } |
| 3522 } |
| 3523 #endif |
| 3524 |
| 3525 /* Generate code to remove the index and from the master table */ |
| 3526 v = sqlite3GetVdbe(pParse); |
| 3527 if( v ){ |
| 3528 sqlite3BeginWriteOperation(pParse, 1, iDb); |
| 3529 sqlite3NestedParse(pParse, |
| 3530 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'", |
| 3531 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName |
| 3532 ); |
| 3533 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName); |
| 3534 sqlite3ChangeCookie(pParse, iDb); |
| 3535 destroyRootPage(pParse, pIndex->tnum, iDb); |
| 3536 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); |
| 3537 } |
| 3538 |
| 3539 exit_drop_index: |
| 3540 sqlite3SrcListDelete(db, pName); |
| 3541 } |
| 3542 |
| 3543 /* |
| 3544 ** pArray is a pointer to an array of objects. Each object in the |
| 3545 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc() |
| 3546 ** to extend the array so that there is space for a new object at the end. |
| 3547 ** |
| 3548 ** When this function is called, *pnEntry contains the current size of |
| 3549 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes |
| 3550 ** in total). |
| 3551 ** |
| 3552 ** If the realloc() is successful (i.e. if no OOM condition occurs), the |
| 3553 ** space allocated for the new object is zeroed, *pnEntry updated to |
| 3554 ** reflect the new size of the array and a pointer to the new allocation |
| 3555 ** returned. *pIdx is set to the index of the new array entry in this case. |
| 3556 ** |
| 3557 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains |
| 3558 ** unchanged and a copy of pArray returned. |
| 3559 */ |
| 3560 void *sqlite3ArrayAllocate( |
| 3561 sqlite3 *db, /* Connection to notify of malloc failures */ |
| 3562 void *pArray, /* Array of objects. Might be reallocated */ |
| 3563 int szEntry, /* Size of each object in the array */ |
| 3564 int *pnEntry, /* Number of objects currently in use */ |
| 3565 int *pIdx /* Write the index of a new slot here */ |
| 3566 ){ |
| 3567 char *z; |
| 3568 int n = *pnEntry; |
| 3569 if( (n & (n-1))==0 ){ |
| 3570 int sz = (n==0) ? 1 : 2*n; |
| 3571 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry); |
| 3572 if( pNew==0 ){ |
| 3573 *pIdx = -1; |
| 3574 return pArray; |
| 3575 } |
| 3576 pArray = pNew; |
| 3577 } |
| 3578 z = (char*)pArray; |
| 3579 memset(&z[n * szEntry], 0, szEntry); |
| 3580 *pIdx = n; |
| 3581 ++*pnEntry; |
| 3582 return pArray; |
| 3583 } |
| 3584 |
| 3585 /* |
| 3586 ** Append a new element to the given IdList. Create a new IdList if |
| 3587 ** need be. |
| 3588 ** |
| 3589 ** A new IdList is returned, or NULL if malloc() fails. |
| 3590 */ |
| 3591 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ |
| 3592 int i; |
| 3593 if( pList==0 ){ |
| 3594 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); |
| 3595 if( pList==0 ) return 0; |
| 3596 } |
| 3597 pList->a = sqlite3ArrayAllocate( |
| 3598 db, |
| 3599 pList->a, |
| 3600 sizeof(pList->a[0]), |
| 3601 &pList->nId, |
| 3602 &i |
| 3603 ); |
| 3604 if( i<0 ){ |
| 3605 sqlite3IdListDelete(db, pList); |
| 3606 return 0; |
| 3607 } |
| 3608 pList->a[i].zName = sqlite3NameFromToken(db, pToken); |
| 3609 return pList; |
| 3610 } |
| 3611 |
| 3612 /* |
| 3613 ** Delete an IdList. |
| 3614 */ |
| 3615 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ |
| 3616 int i; |
| 3617 if( pList==0 ) return; |
| 3618 for(i=0; i<pList->nId; i++){ |
| 3619 sqlite3DbFree(db, pList->a[i].zName); |
| 3620 } |
| 3621 sqlite3DbFree(db, pList->a); |
| 3622 sqlite3DbFree(db, pList); |
| 3623 } |
| 3624 |
| 3625 /* |
| 3626 ** Return the index in pList of the identifier named zId. Return -1 |
| 3627 ** if not found. |
| 3628 */ |
| 3629 int sqlite3IdListIndex(IdList *pList, const char *zName){ |
| 3630 int i; |
| 3631 if( pList==0 ) return -1; |
| 3632 for(i=0; i<pList->nId; i++){ |
| 3633 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; |
| 3634 } |
| 3635 return -1; |
| 3636 } |
| 3637 |
| 3638 /* |
| 3639 ** Expand the space allocated for the given SrcList object by |
| 3640 ** creating nExtra new slots beginning at iStart. iStart is zero based. |
| 3641 ** New slots are zeroed. |
| 3642 ** |
| 3643 ** For example, suppose a SrcList initially contains two entries: A,B. |
| 3644 ** To append 3 new entries onto the end, do this: |
| 3645 ** |
| 3646 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2); |
| 3647 ** |
| 3648 ** After the call above it would contain: A, B, nil, nil, nil. |
| 3649 ** If the iStart argument had been 1 instead of 2, then the result |
| 3650 ** would have been: A, nil, nil, nil, B. To prepend the new slots, |
| 3651 ** the iStart value would be 0. The result then would |
| 3652 ** be: nil, nil, nil, A, B. |
| 3653 ** |
| 3654 ** If a memory allocation fails the SrcList is unchanged. The |
| 3655 ** db->mallocFailed flag will be set to true. |
| 3656 */ |
| 3657 SrcList *sqlite3SrcListEnlarge( |
| 3658 sqlite3 *db, /* Database connection to notify of OOM errors */ |
| 3659 SrcList *pSrc, /* The SrcList to be enlarged */ |
| 3660 int nExtra, /* Number of new slots to add to pSrc->a[] */ |
| 3661 int iStart /* Index in pSrc->a[] of first new slot */ |
| 3662 ){ |
| 3663 int i; |
| 3664 |
| 3665 /* Sanity checking on calling parameters */ |
| 3666 assert( iStart>=0 ); |
| 3667 assert( nExtra>=1 ); |
| 3668 assert( pSrc!=0 ); |
| 3669 assert( iStart<=pSrc->nSrc ); |
| 3670 |
| 3671 /* Allocate additional space if needed */ |
| 3672 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){ |
| 3673 SrcList *pNew; |
| 3674 int nAlloc = pSrc->nSrc*2+nExtra; |
| 3675 int nGot; |
| 3676 pNew = sqlite3DbRealloc(db, pSrc, |
| 3677 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); |
| 3678 if( pNew==0 ){ |
| 3679 assert( db->mallocFailed ); |
| 3680 return pSrc; |
| 3681 } |
| 3682 pSrc = pNew; |
| 3683 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; |
| 3684 pSrc->nAlloc = nGot; |
| 3685 } |
| 3686 |
| 3687 /* Move existing slots that come after the newly inserted slots |
| 3688 ** out of the way */ |
| 3689 for(i=pSrc->nSrc-1; i>=iStart; i--){ |
| 3690 pSrc->a[i+nExtra] = pSrc->a[i]; |
| 3691 } |
| 3692 pSrc->nSrc += nExtra; |
| 3693 |
| 3694 /* Zero the newly allocated slots */ |
| 3695 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); |
| 3696 for(i=iStart; i<iStart+nExtra; i++){ |
| 3697 pSrc->a[i].iCursor = -1; |
| 3698 } |
| 3699 |
| 3700 /* Return a pointer to the enlarged SrcList */ |
| 3701 return pSrc; |
| 3702 } |
| 3703 |
| 3704 |
| 3705 /* |
| 3706 ** Append a new table name to the given SrcList. Create a new SrcList if |
| 3707 ** need be. A new entry is created in the SrcList even if pTable is NULL. |
| 3708 ** |
| 3709 ** A SrcList is returned, or NULL if there is an OOM error. The returned |
| 3710 ** SrcList might be the same as the SrcList that was input or it might be |
| 3711 ** a new one. If an OOM error does occurs, then the prior value of pList |
| 3712 ** that is input to this routine is automatically freed. |
| 3713 ** |
| 3714 ** If pDatabase is not null, it means that the table has an optional |
| 3715 ** database name prefix. Like this: "database.table". The pDatabase |
| 3716 ** points to the table name and the pTable points to the database name. |
| 3717 ** The SrcList.a[].zName field is filled with the table name which might |
| 3718 ** come from pTable (if pDatabase is NULL) or from pDatabase. |
| 3719 ** SrcList.a[].zDatabase is filled with the database name from pTable, |
| 3720 ** or with NULL if no database is specified. |
| 3721 ** |
| 3722 ** In other words, if call like this: |
| 3723 ** |
| 3724 ** sqlite3SrcListAppend(D,A,B,0); |
| 3725 ** |
| 3726 ** Then B is a table name and the database name is unspecified. If called |
| 3727 ** like this: |
| 3728 ** |
| 3729 ** sqlite3SrcListAppend(D,A,B,C); |
| 3730 ** |
| 3731 ** Then C is the table name and B is the database name. If C is defined |
| 3732 ** then so is B. In other words, we never have a case where: |
| 3733 ** |
| 3734 ** sqlite3SrcListAppend(D,A,0,C); |
| 3735 ** |
| 3736 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted |
| 3737 ** before being added to the SrcList. |
| 3738 */ |
| 3739 SrcList *sqlite3SrcListAppend( |
| 3740 sqlite3 *db, /* Connection to notify of malloc failures */ |
| 3741 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ |
| 3742 Token *pTable, /* Table to append */ |
| 3743 Token *pDatabase /* Database of the table */ |
| 3744 ){ |
| 3745 struct SrcList_item *pItem; |
| 3746 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */ |
| 3747 assert( db!=0 ); |
| 3748 if( pList==0 ){ |
| 3749 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) ); |
| 3750 if( pList==0 ) return 0; |
| 3751 pList->nAlloc = 1; |
| 3752 pList->nSrc = 1; |
| 3753 memset(&pList->a[0], 0, sizeof(pList->a[0])); |
| 3754 pList->a[0].iCursor = -1; |
| 3755 }else{ |
| 3756 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc); |
| 3757 } |
| 3758 if( db->mallocFailed ){ |
| 3759 sqlite3SrcListDelete(db, pList); |
| 3760 return 0; |
| 3761 } |
| 3762 pItem = &pList->a[pList->nSrc-1]; |
| 3763 if( pDatabase && pDatabase->z==0 ){ |
| 3764 pDatabase = 0; |
| 3765 } |
| 3766 if( pDatabase ){ |
| 3767 Token *pTemp = pDatabase; |
| 3768 pDatabase = pTable; |
| 3769 pTable = pTemp; |
| 3770 } |
| 3771 pItem->zName = sqlite3NameFromToken(db, pTable); |
| 3772 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); |
| 3773 return pList; |
| 3774 } |
| 3775 |
| 3776 /* |
| 3777 ** Assign VdbeCursor index numbers to all tables in a SrcList |
| 3778 */ |
| 3779 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ |
| 3780 int i; |
| 3781 struct SrcList_item *pItem; |
| 3782 assert(pList || pParse->db->mallocFailed ); |
| 3783 if( pList ){ |
| 3784 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ |
| 3785 if( pItem->iCursor>=0 ) break; |
| 3786 pItem->iCursor = pParse->nTab++; |
| 3787 if( pItem->pSelect ){ |
| 3788 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); |
| 3789 } |
| 3790 } |
| 3791 } |
| 3792 } |
| 3793 |
| 3794 /* |
| 3795 ** Delete an entire SrcList including all its substructure. |
| 3796 */ |
| 3797 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ |
| 3798 int i; |
| 3799 struct SrcList_item *pItem; |
| 3800 if( pList==0 ) return; |
| 3801 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ |
| 3802 sqlite3DbFree(db, pItem->zDatabase); |
| 3803 sqlite3DbFree(db, pItem->zName); |
| 3804 sqlite3DbFree(db, pItem->zAlias); |
| 3805 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy); |
| 3806 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg); |
| 3807 sqlite3DeleteTable(db, pItem->pTab); |
| 3808 sqlite3SelectDelete(db, pItem->pSelect); |
| 3809 sqlite3ExprDelete(db, pItem->pOn); |
| 3810 sqlite3IdListDelete(db, pItem->pUsing); |
| 3811 } |
| 3812 sqlite3DbFree(db, pList); |
| 3813 } |
| 3814 |
| 3815 /* |
| 3816 ** This routine is called by the parser to add a new term to the |
| 3817 ** end of a growing FROM clause. The "p" parameter is the part of |
| 3818 ** the FROM clause that has already been constructed. "p" is NULL |
| 3819 ** if this is the first term of the FROM clause. pTable and pDatabase |
| 3820 ** are the name of the table and database named in the FROM clause term. |
| 3821 ** pDatabase is NULL if the database name qualifier is missing - the |
| 3822 ** usual case. If the term has an alias, then pAlias points to the |
| 3823 ** alias token. If the term is a subquery, then pSubquery is the |
| 3824 ** SELECT statement that the subquery encodes. The pTable and |
| 3825 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing |
| 3826 ** parameters are the content of the ON and USING clauses. |
| 3827 ** |
| 3828 ** Return a new SrcList which encodes is the FROM with the new |
| 3829 ** term added. |
| 3830 */ |
| 3831 SrcList *sqlite3SrcListAppendFromTerm( |
| 3832 Parse *pParse, /* Parsing context */ |
| 3833 SrcList *p, /* The left part of the FROM clause already seen */ |
| 3834 Token *pTable, /* Name of the table to add to the FROM clause */ |
| 3835 Token *pDatabase, /* Name of the database containing pTable */ |
| 3836 Token *pAlias, /* The right-hand side of the AS subexpression */ |
| 3837 Select *pSubquery, /* A subquery used in place of a table name */ |
| 3838 Expr *pOn, /* The ON clause of a join */ |
| 3839 IdList *pUsing /* The USING clause of a join */ |
| 3840 ){ |
| 3841 struct SrcList_item *pItem; |
| 3842 sqlite3 *db = pParse->db; |
| 3843 if( !p && (pOn || pUsing) ){ |
| 3844 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s", |
| 3845 (pOn ? "ON" : "USING") |
| 3846 ); |
| 3847 goto append_from_error; |
| 3848 } |
| 3849 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); |
| 3850 if( p==0 || NEVER(p->nSrc==0) ){ |
| 3851 goto append_from_error; |
| 3852 } |
| 3853 pItem = &p->a[p->nSrc-1]; |
| 3854 assert( pAlias!=0 ); |
| 3855 if( pAlias->n ){ |
| 3856 pItem->zAlias = sqlite3NameFromToken(db, pAlias); |
| 3857 } |
| 3858 pItem->pSelect = pSubquery; |
| 3859 pItem->pOn = pOn; |
| 3860 pItem->pUsing = pUsing; |
| 3861 return p; |
| 3862 |
| 3863 append_from_error: |
| 3864 assert( p==0 ); |
| 3865 sqlite3ExprDelete(db, pOn); |
| 3866 sqlite3IdListDelete(db, pUsing); |
| 3867 sqlite3SelectDelete(db, pSubquery); |
| 3868 return 0; |
| 3869 } |
| 3870 |
| 3871 /* |
| 3872 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added |
| 3873 ** element of the source-list passed as the second argument. |
| 3874 */ |
| 3875 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){ |
| 3876 assert( pIndexedBy!=0 ); |
| 3877 if( p && ALWAYS(p->nSrc>0) ){ |
| 3878 struct SrcList_item *pItem = &p->a[p->nSrc-1]; |
| 3879 assert( pItem->fg.notIndexed==0 ); |
| 3880 assert( pItem->fg.isIndexedBy==0 ); |
| 3881 assert( pItem->fg.isTabFunc==0 ); |
| 3882 if( pIndexedBy->n==1 && !pIndexedBy->z ){ |
| 3883 /* A "NOT INDEXED" clause was supplied. See parse.y |
| 3884 ** construct "indexed_opt" for details. */ |
| 3885 pItem->fg.notIndexed = 1; |
| 3886 }else{ |
| 3887 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy); |
| 3888 pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0); |
| 3889 } |
| 3890 } |
| 3891 } |
| 3892 |
| 3893 /* |
| 3894 ** Add the list of function arguments to the SrcList entry for a |
| 3895 ** table-valued-function. |
| 3896 */ |
| 3897 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){ |
| 3898 if( p ){ |
| 3899 struct SrcList_item *pItem = &p->a[p->nSrc-1]; |
| 3900 assert( pItem->fg.notIndexed==0 ); |
| 3901 assert( pItem->fg.isIndexedBy==0 ); |
| 3902 assert( pItem->fg.isTabFunc==0 ); |
| 3903 pItem->u1.pFuncArg = pList; |
| 3904 pItem->fg.isTabFunc = 1; |
| 3905 }else{ |
| 3906 sqlite3ExprListDelete(pParse->db, pList); |
| 3907 } |
| 3908 } |
| 3909 |
| 3910 /* |
| 3911 ** When building up a FROM clause in the parser, the join operator |
| 3912 ** is initially attached to the left operand. But the code generator |
| 3913 ** expects the join operator to be on the right operand. This routine |
| 3914 ** Shifts all join operators from left to right for an entire FROM |
| 3915 ** clause. |
| 3916 ** |
| 3917 ** Example: Suppose the join is like this: |
| 3918 ** |
| 3919 ** A natural cross join B |
| 3920 ** |
| 3921 ** The operator is "natural cross join". The A and B operands are stored |
| 3922 ** in p->a[0] and p->a[1], respectively. The parser initially stores the |
| 3923 ** operator with A. This routine shifts that operator over to B. |
| 3924 */ |
| 3925 void sqlite3SrcListShiftJoinType(SrcList *p){ |
| 3926 if( p ){ |
| 3927 int i; |
| 3928 for(i=p->nSrc-1; i>0; i--){ |
| 3929 p->a[i].fg.jointype = p->a[i-1].fg.jointype; |
| 3930 } |
| 3931 p->a[0].fg.jointype = 0; |
| 3932 } |
| 3933 } |
| 3934 |
| 3935 /* |
| 3936 ** Generate VDBE code for a BEGIN statement. |
| 3937 */ |
| 3938 void sqlite3BeginTransaction(Parse *pParse, int type){ |
| 3939 sqlite3 *db; |
| 3940 Vdbe *v; |
| 3941 int i; |
| 3942 |
| 3943 assert( pParse!=0 ); |
| 3944 db = pParse->db; |
| 3945 assert( db!=0 ); |
| 3946 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){ |
| 3947 return; |
| 3948 } |
| 3949 v = sqlite3GetVdbe(pParse); |
| 3950 if( !v ) return; |
| 3951 if( type!=TK_DEFERRED ){ |
| 3952 for(i=0; i<db->nDb; i++){ |
| 3953 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); |
| 3954 sqlite3VdbeUsesBtree(v, i); |
| 3955 } |
| 3956 } |
| 3957 sqlite3VdbeAddOp0(v, OP_AutoCommit); |
| 3958 } |
| 3959 |
| 3960 /* |
| 3961 ** Generate VDBE code for a COMMIT statement. |
| 3962 */ |
| 3963 void sqlite3CommitTransaction(Parse *pParse){ |
| 3964 Vdbe *v; |
| 3965 |
| 3966 assert( pParse!=0 ); |
| 3967 assert( pParse->db!=0 ); |
| 3968 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){ |
| 3969 return; |
| 3970 } |
| 3971 v = sqlite3GetVdbe(pParse); |
| 3972 if( v ){ |
| 3973 sqlite3VdbeAddOp1(v, OP_AutoCommit, 1); |
| 3974 } |
| 3975 } |
| 3976 |
| 3977 /* |
| 3978 ** Generate VDBE code for a ROLLBACK statement. |
| 3979 */ |
| 3980 void sqlite3RollbackTransaction(Parse *pParse){ |
| 3981 Vdbe *v; |
| 3982 |
| 3983 assert( pParse!=0 ); |
| 3984 assert( pParse->db!=0 ); |
| 3985 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){ |
| 3986 return; |
| 3987 } |
| 3988 v = sqlite3GetVdbe(pParse); |
| 3989 if( v ){ |
| 3990 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); |
| 3991 } |
| 3992 } |
| 3993 |
| 3994 /* |
| 3995 ** This function is called by the parser when it parses a command to create, |
| 3996 ** release or rollback an SQL savepoint. |
| 3997 */ |
| 3998 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){ |
| 3999 char *zName = sqlite3NameFromToken(pParse->db, pName); |
| 4000 if( zName ){ |
| 4001 Vdbe *v = sqlite3GetVdbe(pParse); |
| 4002 #ifndef SQLITE_OMIT_AUTHORIZATION |
| 4003 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" }; |
| 4004 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 ); |
| 4005 #endif |
| 4006 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){ |
| 4007 sqlite3DbFree(pParse->db, zName); |
| 4008 return; |
| 4009 } |
| 4010 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC); |
| 4011 } |
| 4012 } |
| 4013 |
| 4014 /* |
| 4015 ** Make sure the TEMP database is open and available for use. Return |
| 4016 ** the number of errors. Leave any error messages in the pParse structure. |
| 4017 */ |
| 4018 int sqlite3OpenTempDatabase(Parse *pParse){ |
| 4019 sqlite3 *db = pParse->db; |
| 4020 if( db->aDb[1].pBt==0 && !pParse->explain ){ |
| 4021 int rc; |
| 4022 Btree *pBt; |
| 4023 static const int flags = |
| 4024 SQLITE_OPEN_READWRITE | |
| 4025 SQLITE_OPEN_CREATE | |
| 4026 SQLITE_OPEN_EXCLUSIVE | |
| 4027 SQLITE_OPEN_DELETEONCLOSE | |
| 4028 SQLITE_OPEN_TEMP_DB; |
| 4029 |
| 4030 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags); |
| 4031 if( rc!=SQLITE_OK ){ |
| 4032 sqlite3ErrorMsg(pParse, "unable to open a temporary database " |
| 4033 "file for storing temporary tables"); |
| 4034 pParse->rc = rc; |
| 4035 return 1; |
| 4036 } |
| 4037 db->aDb[1].pBt = pBt; |
| 4038 assert( db->aDb[1].pSchema ); |
| 4039 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){ |
| 4040 sqlite3OomFault(db); |
| 4041 return 1; |
| 4042 } |
| 4043 } |
| 4044 return 0; |
| 4045 } |
| 4046 |
| 4047 /* |
| 4048 ** Record the fact that the schema cookie will need to be verified |
| 4049 ** for database iDb. The code to actually verify the schema cookie |
| 4050 ** will occur at the end of the top-level VDBE and will be generated |
| 4051 ** later, by sqlite3FinishCoding(). |
| 4052 */ |
| 4053 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ |
| 4054 Parse *pToplevel = sqlite3ParseToplevel(pParse); |
| 4055 |
| 4056 assert( iDb>=0 && iDb<pParse->db->nDb ); |
| 4057 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 ); |
| 4058 assert( iDb<SQLITE_MAX_ATTACHED+2 ); |
| 4059 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) ); |
| 4060 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){ |
| 4061 DbMaskSet(pToplevel->cookieMask, iDb); |
| 4062 if( !OMIT_TEMPDB && iDb==1 ){ |
| 4063 sqlite3OpenTempDatabase(pToplevel); |
| 4064 } |
| 4065 } |
| 4066 } |
| 4067 |
| 4068 /* |
| 4069 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each |
| 4070 ** attached database. Otherwise, invoke it for the database named zDb only. |
| 4071 */ |
| 4072 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){ |
| 4073 sqlite3 *db = pParse->db; |
| 4074 int i; |
| 4075 for(i=0; i<db->nDb; i++){ |
| 4076 Db *pDb = &db->aDb[i]; |
| 4077 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){ |
| 4078 sqlite3CodeVerifySchema(pParse, i); |
| 4079 } |
| 4080 } |
| 4081 } |
| 4082 |
| 4083 /* |
| 4084 ** Generate VDBE code that prepares for doing an operation that |
| 4085 ** might change the database. |
| 4086 ** |
| 4087 ** This routine starts a new transaction if we are not already within |
| 4088 ** a transaction. If we are already within a transaction, then a checkpoint |
| 4089 ** is set if the setStatement parameter is true. A checkpoint should |
| 4090 ** be set for operations that might fail (due to a constraint) part of |
| 4091 ** the way through and which will need to undo some writes without having to |
| 4092 ** rollback the whole transaction. For operations where all constraints |
| 4093 ** can be checked before any changes are made to the database, it is never |
| 4094 ** necessary to undo a write and the checkpoint should not be set. |
| 4095 */ |
| 4096 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ |
| 4097 Parse *pToplevel = sqlite3ParseToplevel(pParse); |
| 4098 sqlite3CodeVerifySchema(pParse, iDb); |
| 4099 DbMaskSet(pToplevel->writeMask, iDb); |
| 4100 pToplevel->isMultiWrite |= setStatement; |
| 4101 } |
| 4102 |
| 4103 /* |
| 4104 ** Indicate that the statement currently under construction might write |
| 4105 ** more than one entry (example: deleting one row then inserting another, |
| 4106 ** inserting multiple rows in a table, or inserting a row and index entries.) |
| 4107 ** If an abort occurs after some of these writes have completed, then it will |
| 4108 ** be necessary to undo the completed writes. |
| 4109 */ |
| 4110 void sqlite3MultiWrite(Parse *pParse){ |
| 4111 Parse *pToplevel = sqlite3ParseToplevel(pParse); |
| 4112 pToplevel->isMultiWrite = 1; |
| 4113 } |
| 4114 |
| 4115 /* |
| 4116 ** The code generator calls this routine if is discovers that it is |
| 4117 ** possible to abort a statement prior to completion. In order to |
| 4118 ** perform this abort without corrupting the database, we need to make |
| 4119 ** sure that the statement is protected by a statement transaction. |
| 4120 ** |
| 4121 ** Technically, we only need to set the mayAbort flag if the |
| 4122 ** isMultiWrite flag was previously set. There is a time dependency |
| 4123 ** such that the abort must occur after the multiwrite. This makes |
| 4124 ** some statements involving the REPLACE conflict resolution algorithm |
| 4125 ** go a little faster. But taking advantage of this time dependency |
| 4126 ** makes it more difficult to prove that the code is correct (in |
| 4127 ** particular, it prevents us from writing an effective |
| 4128 ** implementation of sqlite3AssertMayAbort()) and so we have chosen |
| 4129 ** to take the safe route and skip the optimization. |
| 4130 */ |
| 4131 void sqlite3MayAbort(Parse *pParse){ |
| 4132 Parse *pToplevel = sqlite3ParseToplevel(pParse); |
| 4133 pToplevel->mayAbort = 1; |
| 4134 } |
| 4135 |
| 4136 /* |
| 4137 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT |
| 4138 ** error. The onError parameter determines which (if any) of the statement |
| 4139 ** and/or current transaction is rolled back. |
| 4140 */ |
| 4141 void sqlite3HaltConstraint( |
| 4142 Parse *pParse, /* Parsing context */ |
| 4143 int errCode, /* extended error code */ |
| 4144 int onError, /* Constraint type */ |
| 4145 char *p4, /* Error message */ |
| 4146 i8 p4type, /* P4_STATIC or P4_TRANSIENT */ |
| 4147 u8 p5Errmsg /* P5_ErrMsg type */ |
| 4148 ){ |
| 4149 Vdbe *v = sqlite3GetVdbe(pParse); |
| 4150 assert( (errCode&0xff)==SQLITE_CONSTRAINT ); |
| 4151 if( onError==OE_Abort ){ |
| 4152 sqlite3MayAbort(pParse); |
| 4153 } |
| 4154 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type); |
| 4155 sqlite3VdbeChangeP5(v, p5Errmsg); |
| 4156 } |
| 4157 |
| 4158 /* |
| 4159 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation. |
| 4160 */ |
| 4161 void sqlite3UniqueConstraint( |
| 4162 Parse *pParse, /* Parsing context */ |
| 4163 int onError, /* Constraint type */ |
| 4164 Index *pIdx /* The index that triggers the constraint */ |
| 4165 ){ |
| 4166 char *zErr; |
| 4167 int j; |
| 4168 StrAccum errMsg; |
| 4169 Table *pTab = pIdx->pTable; |
| 4170 |
| 4171 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200); |
| 4172 if( pIdx->aColExpr ){ |
| 4173 sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName); |
| 4174 }else{ |
| 4175 for(j=0; j<pIdx->nKeyCol; j++){ |
| 4176 char *zCol; |
| 4177 assert( pIdx->aiColumn[j]>=0 ); |
| 4178 zCol = pTab->aCol[pIdx->aiColumn[j]].zName; |
| 4179 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2); |
| 4180 sqlite3XPrintf(&errMsg, "%s.%s", pTab->zName, zCol); |
| 4181 } |
| 4182 } |
| 4183 zErr = sqlite3StrAccumFinish(&errMsg); |
| 4184 sqlite3HaltConstraint(pParse, |
| 4185 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY |
| 4186 : SQLITE_CONSTRAINT_UNIQUE, |
| 4187 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique); |
| 4188 } |
| 4189 |
| 4190 |
| 4191 /* |
| 4192 ** Code an OP_Halt due to non-unique rowid. |
| 4193 */ |
| 4194 void sqlite3RowidConstraint( |
| 4195 Parse *pParse, /* Parsing context */ |
| 4196 int onError, /* Conflict resolution algorithm */ |
| 4197 Table *pTab /* The table with the non-unique rowid */ |
| 4198 ){ |
| 4199 char *zMsg; |
| 4200 int rc; |
| 4201 if( pTab->iPKey>=0 ){ |
| 4202 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName, |
| 4203 pTab->aCol[pTab->iPKey].zName); |
| 4204 rc = SQLITE_CONSTRAINT_PRIMARYKEY; |
| 4205 }else{ |
| 4206 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName); |
| 4207 rc = SQLITE_CONSTRAINT_ROWID; |
| 4208 } |
| 4209 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC, |
| 4210 P5_ConstraintUnique); |
| 4211 } |
| 4212 |
| 4213 /* |
| 4214 ** Check to see if pIndex uses the collating sequence pColl. Return |
| 4215 ** true if it does and false if it does not. |
| 4216 */ |
| 4217 #ifndef SQLITE_OMIT_REINDEX |
| 4218 static int collationMatch(const char *zColl, Index *pIndex){ |
| 4219 int i; |
| 4220 assert( zColl!=0 ); |
| 4221 for(i=0; i<pIndex->nColumn; i++){ |
| 4222 const char *z = pIndex->azColl[i]; |
| 4223 assert( z!=0 || pIndex->aiColumn[i]<0 ); |
| 4224 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){ |
| 4225 return 1; |
| 4226 } |
| 4227 } |
| 4228 return 0; |
| 4229 } |
| 4230 #endif |
| 4231 |
| 4232 /* |
| 4233 ** Recompute all indices of pTab that use the collating sequence pColl. |
| 4234 ** If pColl==0 then recompute all indices of pTab. |
| 4235 */ |
| 4236 #ifndef SQLITE_OMIT_REINDEX |
| 4237 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ |
| 4238 Index *pIndex; /* An index associated with pTab */ |
| 4239 |
| 4240 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ |
| 4241 if( zColl==0 || collationMatch(zColl, pIndex) ){ |
| 4242 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
| 4243 sqlite3BeginWriteOperation(pParse, 0, iDb); |
| 4244 sqlite3RefillIndex(pParse, pIndex, -1); |
| 4245 } |
| 4246 } |
| 4247 } |
| 4248 #endif |
| 4249 |
| 4250 /* |
| 4251 ** Recompute all indices of all tables in all databases where the |
| 4252 ** indices use the collating sequence pColl. If pColl==0 then recompute |
| 4253 ** all indices everywhere. |
| 4254 */ |
| 4255 #ifndef SQLITE_OMIT_REINDEX |
| 4256 static void reindexDatabases(Parse *pParse, char const *zColl){ |
| 4257 Db *pDb; /* A single database */ |
| 4258 int iDb; /* The database index number */ |
| 4259 sqlite3 *db = pParse->db; /* The database connection */ |
| 4260 HashElem *k; /* For looping over tables in pDb */ |
| 4261 Table *pTab; /* A table in the database */ |
| 4262 |
| 4263 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */ |
| 4264 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ |
| 4265 assert( pDb!=0 ); |
| 4266 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ |
| 4267 pTab = (Table*)sqliteHashData(k); |
| 4268 reindexTable(pParse, pTab, zColl); |
| 4269 } |
| 4270 } |
| 4271 } |
| 4272 #endif |
| 4273 |
| 4274 /* |
| 4275 ** Generate code for the REINDEX command. |
| 4276 ** |
| 4277 ** REINDEX -- 1 |
| 4278 ** REINDEX <collation> -- 2 |
| 4279 ** REINDEX ?<database>.?<tablename> -- 3 |
| 4280 ** REINDEX ?<database>.?<indexname> -- 4 |
| 4281 ** |
| 4282 ** Form 1 causes all indices in all attached databases to be rebuilt. |
| 4283 ** Form 2 rebuilds all indices in all databases that use the named |
| 4284 ** collating function. Forms 3 and 4 rebuild the named index or all |
| 4285 ** indices associated with the named table. |
| 4286 */ |
| 4287 #ifndef SQLITE_OMIT_REINDEX |
| 4288 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ |
| 4289 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ |
| 4290 char *z; /* Name of a table or index */ |
| 4291 const char *zDb; /* Name of the database */ |
| 4292 Table *pTab; /* A table in the database */ |
| 4293 Index *pIndex; /* An index associated with pTab */ |
| 4294 int iDb; /* The database index number */ |
| 4295 sqlite3 *db = pParse->db; /* The database connection */ |
| 4296 Token *pObjName; /* Name of the table or index to be reindexed */ |
| 4297 |
| 4298 /* Read the database schema. If an error occurs, leave an error message |
| 4299 ** and code in pParse and return NULL. */ |
| 4300 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
| 4301 return; |
| 4302 } |
| 4303 |
| 4304 if( pName1==0 ){ |
| 4305 reindexDatabases(pParse, 0); |
| 4306 return; |
| 4307 }else if( NEVER(pName2==0) || pName2->z==0 ){ |
| 4308 char *zColl; |
| 4309 assert( pName1->z ); |
| 4310 zColl = sqlite3NameFromToken(pParse->db, pName1); |
| 4311 if( !zColl ) return; |
| 4312 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); |
| 4313 if( pColl ){ |
| 4314 reindexDatabases(pParse, zColl); |
| 4315 sqlite3DbFree(db, zColl); |
| 4316 return; |
| 4317 } |
| 4318 sqlite3DbFree(db, zColl); |
| 4319 } |
| 4320 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); |
| 4321 if( iDb<0 ) return; |
| 4322 z = sqlite3NameFromToken(db, pObjName); |
| 4323 if( z==0 ) return; |
| 4324 zDb = db->aDb[iDb].zDbSName; |
| 4325 pTab = sqlite3FindTable(db, z, zDb); |
| 4326 if( pTab ){ |
| 4327 reindexTable(pParse, pTab, 0); |
| 4328 sqlite3DbFree(db, z); |
| 4329 return; |
| 4330 } |
| 4331 pIndex = sqlite3FindIndex(db, z, zDb); |
| 4332 sqlite3DbFree(db, z); |
| 4333 if( pIndex ){ |
| 4334 sqlite3BeginWriteOperation(pParse, 0, iDb); |
| 4335 sqlite3RefillIndex(pParse, pIndex, -1); |
| 4336 return; |
| 4337 } |
| 4338 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); |
| 4339 } |
| 4340 #endif |
| 4341 |
| 4342 /* |
| 4343 ** Return a KeyInfo structure that is appropriate for the given Index. |
| 4344 ** |
| 4345 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object |
| 4346 ** when it has finished using it. |
| 4347 */ |
| 4348 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){ |
| 4349 int i; |
| 4350 int nCol = pIdx->nColumn; |
| 4351 int nKey = pIdx->nKeyCol; |
| 4352 KeyInfo *pKey; |
| 4353 if( pParse->nErr ) return 0; |
| 4354 if( pIdx->uniqNotNull ){ |
| 4355 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey); |
| 4356 }else{ |
| 4357 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0); |
| 4358 } |
| 4359 if( pKey ){ |
| 4360 assert( sqlite3KeyInfoIsWriteable(pKey) ); |
| 4361 for(i=0; i<nCol; i++){ |
| 4362 const char *zColl = pIdx->azColl[i]; |
| 4363 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 : |
| 4364 sqlite3LocateCollSeq(pParse, zColl); |
| 4365 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; |
| 4366 } |
| 4367 if( pParse->nErr ){ |
| 4368 sqlite3KeyInfoUnref(pKey); |
| 4369 pKey = 0; |
| 4370 } |
| 4371 } |
| 4372 return pKey; |
| 4373 } |
| 4374 |
| 4375 #ifndef SQLITE_OMIT_CTE |
| 4376 /* |
| 4377 ** This routine is invoked once per CTE by the parser while parsing a |
| 4378 ** WITH clause. |
| 4379 */ |
| 4380 With *sqlite3WithAdd( |
| 4381 Parse *pParse, /* Parsing context */ |
| 4382 With *pWith, /* Existing WITH clause, or NULL */ |
| 4383 Token *pName, /* Name of the common-table */ |
| 4384 ExprList *pArglist, /* Optional column name list for the table */ |
| 4385 Select *pQuery /* Query used to initialize the table */ |
| 4386 ){ |
| 4387 sqlite3 *db = pParse->db; |
| 4388 With *pNew; |
| 4389 char *zName; |
| 4390 |
| 4391 /* Check that the CTE name is unique within this WITH clause. If |
| 4392 ** not, store an error in the Parse structure. */ |
| 4393 zName = sqlite3NameFromToken(pParse->db, pName); |
| 4394 if( zName && pWith ){ |
| 4395 int i; |
| 4396 for(i=0; i<pWith->nCte; i++){ |
| 4397 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){ |
| 4398 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName); |
| 4399 } |
| 4400 } |
| 4401 } |
| 4402 |
| 4403 if( pWith ){ |
| 4404 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte); |
| 4405 pNew = sqlite3DbRealloc(db, pWith, nByte); |
| 4406 }else{ |
| 4407 pNew = sqlite3DbMallocZero(db, sizeof(*pWith)); |
| 4408 } |
| 4409 assert( (pNew!=0 && zName!=0) || db->mallocFailed ); |
| 4410 |
| 4411 if( db->mallocFailed ){ |
| 4412 sqlite3ExprListDelete(db, pArglist); |
| 4413 sqlite3SelectDelete(db, pQuery); |
| 4414 sqlite3DbFree(db, zName); |
| 4415 pNew = pWith; |
| 4416 }else{ |
| 4417 pNew->a[pNew->nCte].pSelect = pQuery; |
| 4418 pNew->a[pNew->nCte].pCols = pArglist; |
| 4419 pNew->a[pNew->nCte].zName = zName; |
| 4420 pNew->a[pNew->nCte].zCteErr = 0; |
| 4421 pNew->nCte++; |
| 4422 } |
| 4423 |
| 4424 return pNew; |
| 4425 } |
| 4426 |
| 4427 /* |
| 4428 ** Free the contents of the With object passed as the second argument. |
| 4429 */ |
| 4430 void sqlite3WithDelete(sqlite3 *db, With *pWith){ |
| 4431 if( pWith ){ |
| 4432 int i; |
| 4433 for(i=0; i<pWith->nCte; i++){ |
| 4434 struct Cte *pCte = &pWith->a[i]; |
| 4435 sqlite3ExprListDelete(db, pCte->pCols); |
| 4436 sqlite3SelectDelete(db, pCte->pSelect); |
| 4437 sqlite3DbFree(db, pCte->zName); |
| 4438 } |
| 4439 sqlite3DbFree(db, pWith); |
| 4440 } |
| 4441 } |
| 4442 #endif /* !defined(SQLITE_OMIT_CTE) */ |
OLD | NEW |