Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1)

Side by Side Diff: third_party/sqlite/sqlite-src-3170000/src/build.c

Issue 2747283002: [sql] Import reference version of SQLite 3.17.. (Closed)
Patch Set: Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 ** CREATE TABLE
17 ** DROP TABLE
18 ** CREATE INDEX
19 ** DROP INDEX
20 ** creating ID lists
21 ** BEGIN TRANSACTION
22 ** COMMIT
23 ** ROLLBACK
24 */
25 #include "sqliteInt.h"
26
27 #ifndef SQLITE_OMIT_SHARED_CACHE
28 /*
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
31 */
32 struct TableLock {
33 int iDb; /* The database containing the table to be locked */
34 int iTab; /* The root page of the table to be locked */
35 u8 isWriteLock; /* True for write lock. False for a read lock */
36 const char *zLockName; /* Name of the table */
37 };
38
39 /*
40 ** Record the fact that we want to lock a table at run-time.
41 **
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
44 **
45 ** This routine just records the fact that the lock is desired. The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
48 */
49 void sqlite3TableLock(
50 Parse *pParse, /* Parsing context */
51 int iDb, /* Index of the database containing the table to lock */
52 int iTab, /* Root page number of the table to be locked */
53 u8 isWriteLock, /* True for a write lock */
54 const char *zName /* Name of the table to be locked */
55 ){
56 Parse *pToplevel = sqlite3ParseToplevel(pParse);
57 int i;
58 int nBytes;
59 TableLock *p;
60 assert( iDb>=0 );
61
62 if( iDb==1 ) return;
63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
64 for(i=0; i<pToplevel->nTableLock; i++){
65 p = &pToplevel->aTableLock[i];
66 if( p->iDb==iDb && p->iTab==iTab ){
67 p->isWriteLock = (p->isWriteLock || isWriteLock);
68 return;
69 }
70 }
71
72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
73 pToplevel->aTableLock =
74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
75 if( pToplevel->aTableLock ){
76 p = &pToplevel->aTableLock[pToplevel->nTableLock++];
77 p->iDb = iDb;
78 p->iTab = iTab;
79 p->isWriteLock = isWriteLock;
80 p->zLockName = zName;
81 }else{
82 pToplevel->nTableLock = 0;
83 sqlite3OomFault(pToplevel->db);
84 }
85 }
86
87 /*
88 ** Code an OP_TableLock instruction for each table locked by the
89 ** statement (configured by calls to sqlite3TableLock()).
90 */
91 static void codeTableLocks(Parse *pParse){
92 int i;
93 Vdbe *pVdbe;
94
95 pVdbe = sqlite3GetVdbe(pParse);
96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
97
98 for(i=0; i<pParse->nTableLock; i++){
99 TableLock *p = &pParse->aTableLock[i];
100 int p1 = p->iDb;
101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
102 p->zLockName, P4_STATIC);
103 }
104 }
105 #else
106 #define codeTableLocks(x)
107 #endif
108
109 /*
110 ** Return TRUE if the given yDbMask object is empty - if it contains no
111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
112 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
113 */
114 #if SQLITE_MAX_ATTACHED>30
115 int sqlite3DbMaskAllZero(yDbMask m){
116 int i;
117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
118 return 1;
119 }
120 #endif
121
122 /*
123 ** This routine is called after a single SQL statement has been
124 ** parsed and a VDBE program to execute that statement has been
125 ** prepared. This routine puts the finishing touches on the
126 ** VDBE program and resets the pParse structure for the next
127 ** parse.
128 **
129 ** Note that if an error occurred, it might be the case that
130 ** no VDBE code was generated.
131 */
132 void sqlite3FinishCoding(Parse *pParse){
133 sqlite3 *db;
134 Vdbe *v;
135
136 assert( pParse->pToplevel==0 );
137 db = pParse->db;
138 if( pParse->nested ) return;
139 if( db->mallocFailed || pParse->nErr ){
140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
141 return;
142 }
143
144 /* Begin by generating some termination code at the end of the
145 ** vdbe program
146 */
147 v = sqlite3GetVdbe(pParse);
148 assert( !pParse->isMultiWrite
149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
150 if( v ){
151 sqlite3VdbeAddOp0(v, OP_Halt);
152
153 #if SQLITE_USER_AUTHENTICATION
154 if( pParse->nTableLock>0 && db->init.busy==0 ){
155 sqlite3UserAuthInit(db);
156 if( db->auth.authLevel<UAUTH_User ){
157 sqlite3ErrorMsg(pParse, "user not authenticated");
158 pParse->rc = SQLITE_AUTH_USER;
159 return;
160 }
161 }
162 #endif
163
164 /* The cookie mask contains one bit for each database file open.
165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
166 ** set for each database that is used. Generate code to start a
167 ** transaction on each used database and to verify the schema cookie
168 ** on each used database.
169 */
170 if( db->mallocFailed==0
171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
172 ){
173 int iDb, i;
174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
175 sqlite3VdbeJumpHere(v, 0);
176 for(iDb=0; iDb<db->nDb; iDb++){
177 Schema *pSchema;
178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
179 sqlite3VdbeUsesBtree(v, iDb);
180 pSchema = db->aDb[iDb].pSchema;
181 sqlite3VdbeAddOp4Int(v,
182 OP_Transaction, /* Opcode */
183 iDb, /* P1 */
184 DbMaskTest(pParse->writeMask,iDb), /* P2 */
185 pSchema->schema_cookie, /* P3 */
186 pSchema->iGeneration /* P4 */
187 );
188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
189 VdbeComment((v,
190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
191 }
192 #ifndef SQLITE_OMIT_VIRTUALTABLE
193 for(i=0; i<pParse->nVtabLock; i++){
194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
196 }
197 pParse->nVtabLock = 0;
198 #endif
199
200 /* Once all the cookies have been verified and transactions opened,
201 ** obtain the required table-locks. This is a no-op unless the
202 ** shared-cache feature is enabled.
203 */
204 codeTableLocks(pParse);
205
206 /* Initialize any AUTOINCREMENT data structures required.
207 */
208 sqlite3AutoincrementBegin(pParse);
209
210 /* Code constant expressions that where factored out of inner loops */
211 if( pParse->pConstExpr ){
212 ExprList *pEL = pParse->pConstExpr;
213 pParse->okConstFactor = 0;
214 for(i=0; i<pEL->nExpr; i++){
215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
216 }
217 }
218
219 /* Finally, jump back to the beginning of the executable code. */
220 sqlite3VdbeGoto(v, 1);
221 }
222 }
223
224
225 /* Get the VDBE program ready for execution
226 */
227 if( v && pParse->nErr==0 && !db->mallocFailed ){
228 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */
229 /* A minimum of one cursor is required if autoincrement is used
230 * See ticket [a696379c1f08866] */
231 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
232 sqlite3VdbeMakeReady(v, pParse);
233 pParse->rc = SQLITE_DONE;
234 }else{
235 pParse->rc = SQLITE_ERROR;
236 }
237 }
238
239 /*
240 ** Run the parser and code generator recursively in order to generate
241 ** code for the SQL statement given onto the end of the pParse context
242 ** currently under construction. When the parser is run recursively
243 ** this way, the final OP_Halt is not appended and other initialization
244 ** and finalization steps are omitted because those are handling by the
245 ** outermost parser.
246 **
247 ** Not everything is nestable. This facility is designed to permit
248 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
249 ** care if you decide to try to use this routine for some other purposes.
250 */
251 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
252 va_list ap;
253 char *zSql;
254 char *zErrMsg = 0;
255 sqlite3 *db = pParse->db;
256 char saveBuf[PARSE_TAIL_SZ];
257
258 if( pParse->nErr ) return;
259 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
260 va_start(ap, zFormat);
261 zSql = sqlite3VMPrintf(db, zFormat, ap);
262 va_end(ap);
263 if( zSql==0 ){
264 return; /* A malloc must have failed */
265 }
266 pParse->nested++;
267 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
268 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
269 sqlite3RunParser(pParse, zSql, &zErrMsg);
270 sqlite3DbFree(db, zErrMsg);
271 sqlite3DbFree(db, zSql);
272 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
273 pParse->nested--;
274 }
275
276 #if SQLITE_USER_AUTHENTICATION
277 /*
278 ** Return TRUE if zTable is the name of the system table that stores the
279 ** list of users and their access credentials.
280 */
281 int sqlite3UserAuthTable(const char *zTable){
282 return sqlite3_stricmp(zTable, "sqlite_user")==0;
283 }
284 #endif
285
286 /*
287 ** Locate the in-memory structure that describes a particular database
288 ** table given the name of that table and (optionally) the name of the
289 ** database containing the table. Return NULL if not found.
290 **
291 ** If zDatabase is 0, all databases are searched for the table and the
292 ** first matching table is returned. (No checking for duplicate table
293 ** names is done.) The search order is TEMP first, then MAIN, then any
294 ** auxiliary databases added using the ATTACH command.
295 **
296 ** See also sqlite3LocateTable().
297 */
298 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
299 Table *p = 0;
300 int i;
301
302 /* All mutexes are required for schema access. Make sure we hold them. */
303 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
304 #if SQLITE_USER_AUTHENTICATION
305 /* Only the admin user is allowed to know that the sqlite_user table
306 ** exists */
307 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
308 return 0;
309 }
310 #endif
311 while(1){
312 for(i=OMIT_TEMPDB; i<db->nDb; i++){
313 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
314 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){
315 assert( sqlite3SchemaMutexHeld(db, j, 0) );
316 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
317 if( p ) return p;
318 }
319 }
320 /* Not found. If the name we were looking for was temp.sqlite_master
321 ** then change the name to sqlite_temp_master and try again. */
322 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break;
323 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break;
324 zName = TEMP_MASTER_NAME;
325 }
326 return 0;
327 }
328
329 /*
330 ** Locate the in-memory structure that describes a particular database
331 ** table given the name of that table and (optionally) the name of the
332 ** database containing the table. Return NULL if not found. Also leave an
333 ** error message in pParse->zErrMsg.
334 **
335 ** The difference between this routine and sqlite3FindTable() is that this
336 ** routine leaves an error message in pParse->zErrMsg where
337 ** sqlite3FindTable() does not.
338 */
339 Table *sqlite3LocateTable(
340 Parse *pParse, /* context in which to report errors */
341 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */
342 const char *zName, /* Name of the table we are looking for */
343 const char *zDbase /* Name of the database. Might be NULL */
344 ){
345 Table *p;
346
347 /* Read the database schema. If an error occurs, leave an error message
348 ** and code in pParse and return NULL. */
349 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
350 return 0;
351 }
352
353 p = sqlite3FindTable(pParse->db, zName, zDbase);
354 if( p==0 ){
355 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
356 #ifndef SQLITE_OMIT_VIRTUALTABLE
357 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
358 /* If zName is the not the name of a table in the schema created using
359 ** CREATE, then check to see if it is the name of an virtual table that
360 ** can be an eponymous virtual table. */
361 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
362 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
363 pMod = sqlite3PragmaVtabRegister(pParse->db, zName);
364 }
365 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
366 return pMod->pEpoTab;
367 }
368 }
369 #endif
370 if( (flags & LOCATE_NOERR)==0 ){
371 if( zDbase ){
372 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
373 }else{
374 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
375 }
376 pParse->checkSchema = 1;
377 }
378 }
379
380 return p;
381 }
382
383 /*
384 ** Locate the table identified by *p.
385 **
386 ** This is a wrapper around sqlite3LocateTable(). The difference between
387 ** sqlite3LocateTable() and this function is that this function restricts
388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
389 ** non-NULL if it is part of a view or trigger program definition. See
390 ** sqlite3FixSrcList() for details.
391 */
392 Table *sqlite3LocateTableItem(
393 Parse *pParse,
394 u32 flags,
395 struct SrcList_item *p
396 ){
397 const char *zDb;
398 assert( p->pSchema==0 || p->zDatabase==0 );
399 if( p->pSchema ){
400 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
401 zDb = pParse->db->aDb[iDb].zDbSName;
402 }else{
403 zDb = p->zDatabase;
404 }
405 return sqlite3LocateTable(pParse, flags, p->zName, zDb);
406 }
407
408 /*
409 ** Locate the in-memory structure that describes
410 ** a particular index given the name of that index
411 ** and the name of the database that contains the index.
412 ** Return NULL if not found.
413 **
414 ** If zDatabase is 0, all databases are searched for the
415 ** table and the first matching index is returned. (No checking
416 ** for duplicate index names is done.) The search order is
417 ** TEMP first, then MAIN, then any auxiliary databases added
418 ** using the ATTACH command.
419 */
420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
421 Index *p = 0;
422 int i;
423 /* All mutexes are required for schema access. Make sure we hold them. */
424 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
425 for(i=OMIT_TEMPDB; i<db->nDb; i++){
426 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
427 Schema *pSchema = db->aDb[j].pSchema;
428 assert( pSchema );
429 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue;
430 assert( sqlite3SchemaMutexHeld(db, j, 0) );
431 p = sqlite3HashFind(&pSchema->idxHash, zName);
432 if( p ) break;
433 }
434 return p;
435 }
436
437 /*
438 ** Reclaim the memory used by an index
439 */
440 static void freeIndex(sqlite3 *db, Index *p){
441 #ifndef SQLITE_OMIT_ANALYZE
442 sqlite3DeleteIndexSamples(db, p);
443 #endif
444 sqlite3ExprDelete(db, p->pPartIdxWhere);
445 sqlite3ExprListDelete(db, p->aColExpr);
446 sqlite3DbFree(db, p->zColAff);
447 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
449 sqlite3_free(p->aiRowEst);
450 #endif
451 sqlite3DbFree(db, p);
452 }
453
454 /*
455 ** For the index called zIdxName which is found in the database iDb,
456 ** unlike that index from its Table then remove the index from
457 ** the index hash table and free all memory structures associated
458 ** with the index.
459 */
460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
461 Index *pIndex;
462 Hash *pHash;
463
464 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
465 pHash = &db->aDb[iDb].pSchema->idxHash;
466 pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
467 if( ALWAYS(pIndex) ){
468 if( pIndex->pTable->pIndex==pIndex ){
469 pIndex->pTable->pIndex = pIndex->pNext;
470 }else{
471 Index *p;
472 /* Justification of ALWAYS(); The index must be on the list of
473 ** indices. */
474 p = pIndex->pTable->pIndex;
475 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
476 if( ALWAYS(p && p->pNext==pIndex) ){
477 p->pNext = pIndex->pNext;
478 }
479 }
480 freeIndex(db, pIndex);
481 }
482 db->flags |= SQLITE_InternChanges;
483 }
484
485 /*
486 ** Look through the list of open database files in db->aDb[] and if
487 ** any have been closed, remove them from the list. Reallocate the
488 ** db->aDb[] structure to a smaller size, if possible.
489 **
490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
491 ** are never candidates for being collapsed.
492 */
493 void sqlite3CollapseDatabaseArray(sqlite3 *db){
494 int i, j;
495 for(i=j=2; i<db->nDb; i++){
496 struct Db *pDb = &db->aDb[i];
497 if( pDb->pBt==0 ){
498 sqlite3DbFree(db, pDb->zDbSName);
499 pDb->zDbSName = 0;
500 continue;
501 }
502 if( j<i ){
503 db->aDb[j] = db->aDb[i];
504 }
505 j++;
506 }
507 db->nDb = j;
508 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
509 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
510 sqlite3DbFree(db, db->aDb);
511 db->aDb = db->aDbStatic;
512 }
513 }
514
515 /*
516 ** Reset the schema for the database at index iDb. Also reset the
517 ** TEMP schema.
518 */
519 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
520 Db *pDb;
521 assert( iDb<db->nDb );
522
523 /* Case 1: Reset the single schema identified by iDb */
524 pDb = &db->aDb[iDb];
525 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
526 assert( pDb->pSchema!=0 );
527 sqlite3SchemaClear(pDb->pSchema);
528
529 /* If any database other than TEMP is reset, then also reset TEMP
530 ** since TEMP might be holding triggers that reference tables in the
531 ** other database.
532 */
533 if( iDb!=1 ){
534 pDb = &db->aDb[1];
535 assert( pDb->pSchema!=0 );
536 sqlite3SchemaClear(pDb->pSchema);
537 }
538 return;
539 }
540
541 /*
542 ** Erase all schema information from all attached databases (including
543 ** "main" and "temp") for a single database connection.
544 */
545 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
546 int i;
547 sqlite3BtreeEnterAll(db);
548 for(i=0; i<db->nDb; i++){
549 Db *pDb = &db->aDb[i];
550 if( pDb->pSchema ){
551 sqlite3SchemaClear(pDb->pSchema);
552 }
553 }
554 db->flags &= ~SQLITE_InternChanges;
555 sqlite3VtabUnlockList(db);
556 sqlite3BtreeLeaveAll(db);
557 sqlite3CollapseDatabaseArray(db);
558 }
559
560 /*
561 ** This routine is called when a commit occurs.
562 */
563 void sqlite3CommitInternalChanges(sqlite3 *db){
564 db->flags &= ~SQLITE_InternChanges;
565 }
566
567 /*
568 ** Delete memory allocated for the column names of a table or view (the
569 ** Table.aCol[] array).
570 */
571 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
572 int i;
573 Column *pCol;
574 assert( pTable!=0 );
575 if( (pCol = pTable->aCol)!=0 ){
576 for(i=0; i<pTable->nCol; i++, pCol++){
577 sqlite3DbFree(db, pCol->zName);
578 sqlite3ExprDelete(db, pCol->pDflt);
579 sqlite3DbFree(db, pCol->zColl);
580 }
581 sqlite3DbFree(db, pTable->aCol);
582 }
583 }
584
585 /*
586 ** Remove the memory data structures associated with the given
587 ** Table. No changes are made to disk by this routine.
588 **
589 ** This routine just deletes the data structure. It does not unlink
590 ** the table data structure from the hash table. But it does destroy
591 ** memory structures of the indices and foreign keys associated with
592 ** the table.
593 **
594 ** The db parameter is optional. It is needed if the Table object
595 ** contains lookaside memory. (Table objects in the schema do not use
596 ** lookaside memory, but some ephemeral Table objects do.) Or the
597 ** db parameter can be used with db->pnBytesFreed to measure the memory
598 ** used by the Table object.
599 */
600 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
601 Index *pIndex, *pNext;
602 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
603
604 /* Record the number of outstanding lookaside allocations in schema Tables
605 ** prior to doing any free() operations. Since schema Tables do not use
606 ** lookaside, this number should not change. */
607 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
608 db->lookaside.nOut : 0 );
609
610 /* Delete all indices associated with this table. */
611 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
612 pNext = pIndex->pNext;
613 assert( pIndex->pSchema==pTable->pSchema
614 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
615 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
616 char *zName = pIndex->zName;
617 TESTONLY ( Index *pOld = ) sqlite3HashInsert(
618 &pIndex->pSchema->idxHash, zName, 0
619 );
620 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
621 assert( pOld==pIndex || pOld==0 );
622 }
623 freeIndex(db, pIndex);
624 }
625
626 /* Delete any foreign keys attached to this table. */
627 sqlite3FkDelete(db, pTable);
628
629 /* Delete the Table structure itself.
630 */
631 sqlite3DeleteColumnNames(db, pTable);
632 sqlite3DbFree(db, pTable->zName);
633 sqlite3DbFree(db, pTable->zColAff);
634 sqlite3SelectDelete(db, pTable->pSelect);
635 sqlite3ExprListDelete(db, pTable->pCheck);
636 #ifndef SQLITE_OMIT_VIRTUALTABLE
637 sqlite3VtabClear(db, pTable);
638 #endif
639 sqlite3DbFree(db, pTable);
640
641 /* Verify that no lookaside memory was used by schema tables */
642 assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
643 }
644 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
645 /* Do not delete the table until the reference count reaches zero. */
646 if( !pTable ) return;
647 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
648 deleteTable(db, pTable);
649 }
650
651
652 /*
653 ** Unlink the given table from the hash tables and the delete the
654 ** table structure with all its indices and foreign keys.
655 */
656 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
657 Table *p;
658 Db *pDb;
659
660 assert( db!=0 );
661 assert( iDb>=0 && iDb<db->nDb );
662 assert( zTabName );
663 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
664 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
665 pDb = &db->aDb[iDb];
666 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
667 sqlite3DeleteTable(db, p);
668 db->flags |= SQLITE_InternChanges;
669 }
670
671 /*
672 ** Given a token, return a string that consists of the text of that
673 ** token. Space to hold the returned string
674 ** is obtained from sqliteMalloc() and must be freed by the calling
675 ** function.
676 **
677 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
678 ** surround the body of the token are removed.
679 **
680 ** Tokens are often just pointers into the original SQL text and so
681 ** are not \000 terminated and are not persistent. The returned string
682 ** is \000 terminated and is persistent.
683 */
684 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
685 char *zName;
686 if( pName ){
687 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
688 sqlite3Dequote(zName);
689 }else{
690 zName = 0;
691 }
692 return zName;
693 }
694
695 /*
696 ** Open the sqlite_master table stored in database number iDb for
697 ** writing. The table is opened using cursor 0.
698 */
699 void sqlite3OpenMasterTable(Parse *p, int iDb){
700 Vdbe *v = sqlite3GetVdbe(p);
701 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME);
702 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
703 if( p->nTab==0 ){
704 p->nTab = 1;
705 }
706 }
707
708 /*
709 ** Parameter zName points to a nul-terminated buffer containing the name
710 ** of a database ("main", "temp" or the name of an attached db). This
711 ** function returns the index of the named database in db->aDb[], or
712 ** -1 if the named db cannot be found.
713 */
714 int sqlite3FindDbName(sqlite3 *db, const char *zName){
715 int i = -1; /* Database number */
716 if( zName ){
717 Db *pDb;
718 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
719 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
720 /* "main" is always an acceptable alias for the primary database
721 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
722 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
723 }
724 }
725 return i;
726 }
727
728 /*
729 ** The token *pName contains the name of a database (either "main" or
730 ** "temp" or the name of an attached db). This routine returns the
731 ** index of the named database in db->aDb[], or -1 if the named db
732 ** does not exist.
733 */
734 int sqlite3FindDb(sqlite3 *db, Token *pName){
735 int i; /* Database number */
736 char *zName; /* Name we are searching for */
737 zName = sqlite3NameFromToken(db, pName);
738 i = sqlite3FindDbName(db, zName);
739 sqlite3DbFree(db, zName);
740 return i;
741 }
742
743 /* The table or view or trigger name is passed to this routine via tokens
744 ** pName1 and pName2. If the table name was fully qualified, for example:
745 **
746 ** CREATE TABLE xxx.yyy (...);
747 **
748 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
749 ** the table name is not fully qualified, i.e.:
750 **
751 ** CREATE TABLE yyy(...);
752 **
753 ** Then pName1 is set to "yyy" and pName2 is "".
754 **
755 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
756 ** pName2) that stores the unqualified table name. The index of the
757 ** database "xxx" is returned.
758 */
759 int sqlite3TwoPartName(
760 Parse *pParse, /* Parsing and code generating context */
761 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
762 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
763 Token **pUnqual /* Write the unqualified object name here */
764 ){
765 int iDb; /* Database holding the object */
766 sqlite3 *db = pParse->db;
767
768 assert( pName2!=0 );
769 if( pName2->n>0 ){
770 if( db->init.busy ) {
771 sqlite3ErrorMsg(pParse, "corrupt database");
772 return -1;
773 }
774 *pUnqual = pName2;
775 iDb = sqlite3FindDb(db, pName1);
776 if( iDb<0 ){
777 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
778 return -1;
779 }
780 }else{
781 assert( db->init.iDb==0 || db->init.busy || (db->flags & SQLITE_Vacuum)!=0);
782 iDb = db->init.iDb;
783 *pUnqual = pName1;
784 }
785 return iDb;
786 }
787
788 /*
789 ** This routine is used to check if the UTF-8 string zName is a legal
790 ** unqualified name for a new schema object (table, index, view or
791 ** trigger). All names are legal except those that begin with the string
792 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
793 ** is reserved for internal use.
794 */
795 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
796 if( !pParse->db->init.busy && pParse->nested==0
797 && (pParse->db->flags & SQLITE_WriteSchema)==0
798 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
799 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
800 return SQLITE_ERROR;
801 }
802 return SQLITE_OK;
803 }
804
805 /*
806 ** Return the PRIMARY KEY index of a table
807 */
808 Index *sqlite3PrimaryKeyIndex(Table *pTab){
809 Index *p;
810 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
811 return p;
812 }
813
814 /*
815 ** Return the column of index pIdx that corresponds to table
816 ** column iCol. Return -1 if not found.
817 */
818 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
819 int i;
820 for(i=0; i<pIdx->nColumn; i++){
821 if( iCol==pIdx->aiColumn[i] ) return i;
822 }
823 return -1;
824 }
825
826 /*
827 ** Begin constructing a new table representation in memory. This is
828 ** the first of several action routines that get called in response
829 ** to a CREATE TABLE statement. In particular, this routine is called
830 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
831 ** flag is true if the table should be stored in the auxiliary database
832 ** file instead of in the main database file. This is normally the case
833 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
834 ** CREATE and TABLE.
835 **
836 ** The new table record is initialized and put in pParse->pNewTable.
837 ** As more of the CREATE TABLE statement is parsed, additional action
838 ** routines will be called to add more information to this record.
839 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
840 ** is called to complete the construction of the new table record.
841 */
842 void sqlite3StartTable(
843 Parse *pParse, /* Parser context */
844 Token *pName1, /* First part of the name of the table or view */
845 Token *pName2, /* Second part of the name of the table or view */
846 int isTemp, /* True if this is a TEMP table */
847 int isView, /* True if this is a VIEW */
848 int isVirtual, /* True if this is a VIRTUAL table */
849 int noErr /* Do nothing if table already exists */
850 ){
851 Table *pTable;
852 char *zName = 0; /* The name of the new table */
853 sqlite3 *db = pParse->db;
854 Vdbe *v;
855 int iDb; /* Database number to create the table in */
856 Token *pName; /* Unqualified name of the table to create */
857
858 if( db->init.busy && db->init.newTnum==1 ){
859 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */
860 iDb = db->init.iDb;
861 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
862 pName = pName1;
863 }else{
864 /* The common case */
865 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
866 if( iDb<0 ) return;
867 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
868 /* If creating a temp table, the name may not be qualified. Unless
869 ** the database name is "temp" anyway. */
870 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
871 return;
872 }
873 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
874 zName = sqlite3NameFromToken(db, pName);
875 }
876 pParse->sNameToken = *pName;
877 if( zName==0 ) return;
878 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
879 goto begin_table_error;
880 }
881 if( db->init.iDb==1 ) isTemp = 1;
882 #ifndef SQLITE_OMIT_AUTHORIZATION
883 assert( isTemp==0 || isTemp==1 );
884 assert( isView==0 || isView==1 );
885 {
886 static const u8 aCode[] = {
887 SQLITE_CREATE_TABLE,
888 SQLITE_CREATE_TEMP_TABLE,
889 SQLITE_CREATE_VIEW,
890 SQLITE_CREATE_TEMP_VIEW
891 };
892 char *zDb = db->aDb[iDb].zDbSName;
893 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
894 goto begin_table_error;
895 }
896 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
897 zName, 0, zDb) ){
898 goto begin_table_error;
899 }
900 }
901 #endif
902
903 /* Make sure the new table name does not collide with an existing
904 ** index or table name in the same database. Issue an error message if
905 ** it does. The exception is if the statement being parsed was passed
906 ** to an sqlite3_declare_vtab() call. In that case only the column names
907 ** and types will be used, so there is no need to test for namespace
908 ** collisions.
909 */
910 if( !IN_DECLARE_VTAB ){
911 char *zDb = db->aDb[iDb].zDbSName;
912 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
913 goto begin_table_error;
914 }
915 pTable = sqlite3FindTable(db, zName, zDb);
916 if( pTable ){
917 if( !noErr ){
918 sqlite3ErrorMsg(pParse, "table %T already exists", pName);
919 }else{
920 assert( !db->init.busy || CORRUPT_DB );
921 sqlite3CodeVerifySchema(pParse, iDb);
922 }
923 goto begin_table_error;
924 }
925 if( sqlite3FindIndex(db, zName, zDb)!=0 ){
926 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
927 goto begin_table_error;
928 }
929 }
930
931 pTable = sqlite3DbMallocZero(db, sizeof(Table));
932 if( pTable==0 ){
933 assert( db->mallocFailed );
934 pParse->rc = SQLITE_NOMEM_BKPT;
935 pParse->nErr++;
936 goto begin_table_error;
937 }
938 pTable->zName = zName;
939 pTable->iPKey = -1;
940 pTable->pSchema = db->aDb[iDb].pSchema;
941 pTable->nTabRef = 1;
942 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
943 assert( pParse->pNewTable==0 );
944 pParse->pNewTable = pTable;
945
946 /* If this is the magic sqlite_sequence table used by autoincrement,
947 ** then record a pointer to this table in the main database structure
948 ** so that INSERT can find the table easily.
949 */
950 #ifndef SQLITE_OMIT_AUTOINCREMENT
951 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
952 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
953 pTable->pSchema->pSeqTab = pTable;
954 }
955 #endif
956
957 /* Begin generating the code that will insert the table record into
958 ** the SQLITE_MASTER table. Note in particular that we must go ahead
959 ** and allocate the record number for the table entry now. Before any
960 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
961 ** indices to be created and the table record must come before the
962 ** indices. Hence, the record number for the table must be allocated
963 ** now.
964 */
965 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
966 int addr1;
967 int fileFormat;
968 int reg1, reg2, reg3;
969 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
970 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
971 sqlite3BeginWriteOperation(pParse, 1, iDb);
972
973 #ifndef SQLITE_OMIT_VIRTUALTABLE
974 if( isVirtual ){
975 sqlite3VdbeAddOp0(v, OP_VBegin);
976 }
977 #endif
978
979 /* If the file format and encoding in the database have not been set,
980 ** set them now.
981 */
982 reg1 = pParse->regRowid = ++pParse->nMem;
983 reg2 = pParse->regRoot = ++pParse->nMem;
984 reg3 = ++pParse->nMem;
985 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
986 sqlite3VdbeUsesBtree(v, iDb);
987 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
988 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
989 1 : SQLITE_MAX_FILE_FORMAT;
990 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
991 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
992 sqlite3VdbeJumpHere(v, addr1);
993
994 /* This just creates a place-holder record in the sqlite_master table.
995 ** The record created does not contain anything yet. It will be replaced
996 ** by the real entry in code generated at sqlite3EndTable().
997 **
998 ** The rowid for the new entry is left in register pParse->regRowid.
999 ** The root page number of the new table is left in reg pParse->regRoot.
1000 ** The rowid and root page number values are needed by the code that
1001 ** sqlite3EndTable will generate.
1002 */
1003 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1004 if( isView || isVirtual ){
1005 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1006 }else
1007 #endif
1008 {
1009 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
1010 }
1011 sqlite3OpenMasterTable(pParse, iDb);
1012 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1013 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1014 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1015 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1016 sqlite3VdbeAddOp0(v, OP_Close);
1017 }
1018
1019 /* Normal (non-error) return. */
1020 return;
1021
1022 /* If an error occurs, we jump here */
1023 begin_table_error:
1024 sqlite3DbFree(db, zName);
1025 return;
1026 }
1027
1028 /* Set properties of a table column based on the (magical)
1029 ** name of the column.
1030 */
1031 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1032 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1033 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1034 pCol->colFlags |= COLFLAG_HIDDEN;
1035 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1036 pTab->tabFlags |= TF_OOOHidden;
1037 }
1038 }
1039 #endif
1040
1041
1042 /*
1043 ** Add a new column to the table currently being constructed.
1044 **
1045 ** The parser calls this routine once for each column declaration
1046 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1047 ** first to get things going. Then this routine is called for each
1048 ** column.
1049 */
1050 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){
1051 Table *p;
1052 int i;
1053 char *z;
1054 char *zType;
1055 Column *pCol;
1056 sqlite3 *db = pParse->db;
1057 if( (p = pParse->pNewTable)==0 ) return;
1058 #if SQLITE_MAX_COLUMN
1059 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1060 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1061 return;
1062 }
1063 #endif
1064 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2);
1065 if( z==0 ) return;
1066 memcpy(z, pName->z, pName->n);
1067 z[pName->n] = 0;
1068 sqlite3Dequote(z);
1069 for(i=0; i<p->nCol; i++){
1070 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1071 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1072 sqlite3DbFree(db, z);
1073 return;
1074 }
1075 }
1076 if( (p->nCol & 0x7)==0 ){
1077 Column *aNew;
1078 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1079 if( aNew==0 ){
1080 sqlite3DbFree(db, z);
1081 return;
1082 }
1083 p->aCol = aNew;
1084 }
1085 pCol = &p->aCol[p->nCol];
1086 memset(pCol, 0, sizeof(p->aCol[0]));
1087 pCol->zName = z;
1088 sqlite3ColumnPropertiesFromName(p, pCol);
1089
1090 if( pType->n==0 ){
1091 /* If there is no type specified, columns have the default affinity
1092 ** 'BLOB'. */
1093 pCol->affinity = SQLITE_AFF_BLOB;
1094 pCol->szEst = 1;
1095 }else{
1096 zType = z + sqlite3Strlen30(z) + 1;
1097 memcpy(zType, pType->z, pType->n);
1098 zType[pType->n] = 0;
1099 sqlite3Dequote(zType);
1100 pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst);
1101 pCol->colFlags |= COLFLAG_HASTYPE;
1102 }
1103 p->nCol++;
1104 pParse->constraintName.n = 0;
1105 }
1106
1107 /*
1108 ** This routine is called by the parser while in the middle of
1109 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1110 ** been seen on a column. This routine sets the notNull flag on
1111 ** the column currently under construction.
1112 */
1113 void sqlite3AddNotNull(Parse *pParse, int onError){
1114 Table *p;
1115 p = pParse->pNewTable;
1116 if( p==0 || NEVER(p->nCol<1) ) return;
1117 p->aCol[p->nCol-1].notNull = (u8)onError;
1118 }
1119
1120 /*
1121 ** Scan the column type name zType (length nType) and return the
1122 ** associated affinity type.
1123 **
1124 ** This routine does a case-independent search of zType for the
1125 ** substrings in the following table. If one of the substrings is
1126 ** found, the corresponding affinity is returned. If zType contains
1127 ** more than one of the substrings, entries toward the top of
1128 ** the table take priority. For example, if zType is 'BLOBINT',
1129 ** SQLITE_AFF_INTEGER is returned.
1130 **
1131 ** Substring | Affinity
1132 ** --------------------------------
1133 ** 'INT' | SQLITE_AFF_INTEGER
1134 ** 'CHAR' | SQLITE_AFF_TEXT
1135 ** 'CLOB' | SQLITE_AFF_TEXT
1136 ** 'TEXT' | SQLITE_AFF_TEXT
1137 ** 'BLOB' | SQLITE_AFF_BLOB
1138 ** 'REAL' | SQLITE_AFF_REAL
1139 ** 'FLOA' | SQLITE_AFF_REAL
1140 ** 'DOUB' | SQLITE_AFF_REAL
1141 **
1142 ** If none of the substrings in the above table are found,
1143 ** SQLITE_AFF_NUMERIC is returned.
1144 */
1145 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1146 u32 h = 0;
1147 char aff = SQLITE_AFF_NUMERIC;
1148 const char *zChar = 0;
1149
1150 assert( zIn!=0 );
1151 while( zIn[0] ){
1152 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1153 zIn++;
1154 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1155 aff = SQLITE_AFF_TEXT;
1156 zChar = zIn;
1157 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1158 aff = SQLITE_AFF_TEXT;
1159 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1160 aff = SQLITE_AFF_TEXT;
1161 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1162 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1163 aff = SQLITE_AFF_BLOB;
1164 if( zIn[0]=='(' ) zChar = zIn;
1165 #ifndef SQLITE_OMIT_FLOATING_POINT
1166 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1167 && aff==SQLITE_AFF_NUMERIC ){
1168 aff = SQLITE_AFF_REAL;
1169 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1170 && aff==SQLITE_AFF_NUMERIC ){
1171 aff = SQLITE_AFF_REAL;
1172 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1173 && aff==SQLITE_AFF_NUMERIC ){
1174 aff = SQLITE_AFF_REAL;
1175 #endif
1176 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1177 aff = SQLITE_AFF_INTEGER;
1178 break;
1179 }
1180 }
1181
1182 /* If pszEst is not NULL, store an estimate of the field size. The
1183 ** estimate is scaled so that the size of an integer is 1. */
1184 if( pszEst ){
1185 *pszEst = 1; /* default size is approx 4 bytes */
1186 if( aff<SQLITE_AFF_NUMERIC ){
1187 if( zChar ){
1188 while( zChar[0] ){
1189 if( sqlite3Isdigit(zChar[0]) ){
1190 int v = 0;
1191 sqlite3GetInt32(zChar, &v);
1192 v = v/4 + 1;
1193 if( v>255 ) v = 255;
1194 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1195 break;
1196 }
1197 zChar++;
1198 }
1199 }else{
1200 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1201 }
1202 }
1203 }
1204 return aff;
1205 }
1206
1207 /*
1208 ** The expression is the default value for the most recently added column
1209 ** of the table currently under construction.
1210 **
1211 ** Default value expressions must be constant. Raise an exception if this
1212 ** is not the case.
1213 **
1214 ** This routine is called by the parser while in the middle of
1215 ** parsing a CREATE TABLE statement.
1216 */
1217 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1218 Table *p;
1219 Column *pCol;
1220 sqlite3 *db = pParse->db;
1221 p = pParse->pNewTable;
1222 if( p!=0 ){
1223 pCol = &(p->aCol[p->nCol-1]);
1224 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
1225 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1226 pCol->zName);
1227 }else{
1228 /* A copy of pExpr is used instead of the original, as pExpr contains
1229 ** tokens that point to volatile memory. The 'span' of the expression
1230 ** is required by pragma table_info.
1231 */
1232 Expr x;
1233 sqlite3ExprDelete(db, pCol->pDflt);
1234 memset(&x, 0, sizeof(x));
1235 x.op = TK_SPAN;
1236 x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1237 (int)(pSpan->zEnd - pSpan->zStart));
1238 x.pLeft = pSpan->pExpr;
1239 x.flags = EP_Skip;
1240 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1241 sqlite3DbFree(db, x.u.zToken);
1242 }
1243 }
1244 sqlite3ExprDelete(db, pSpan->pExpr);
1245 }
1246
1247 /*
1248 ** Backwards Compatibility Hack:
1249 **
1250 ** Historical versions of SQLite accepted strings as column names in
1251 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
1252 **
1253 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1254 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1255 **
1256 ** This is goofy. But to preserve backwards compatibility we continue to
1257 ** accept it. This routine does the necessary conversion. It converts
1258 ** the expression given in its argument from a TK_STRING into a TK_ID
1259 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1260 ** If the epxression is anything other than TK_STRING, the expression is
1261 ** unchanged.
1262 */
1263 static void sqlite3StringToId(Expr *p){
1264 if( p->op==TK_STRING ){
1265 p->op = TK_ID;
1266 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1267 p->pLeft->op = TK_ID;
1268 }
1269 }
1270
1271 /*
1272 ** Designate the PRIMARY KEY for the table. pList is a list of names
1273 ** of columns that form the primary key. If pList is NULL, then the
1274 ** most recently added column of the table is the primary key.
1275 **
1276 ** A table can have at most one primary key. If the table already has
1277 ** a primary key (and this is the second primary key) then create an
1278 ** error.
1279 **
1280 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1281 ** then we will try to use that column as the rowid. Set the Table.iPKey
1282 ** field of the table under construction to be the index of the
1283 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1284 ** no INTEGER PRIMARY KEY.
1285 **
1286 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1287 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1288 */
1289 void sqlite3AddPrimaryKey(
1290 Parse *pParse, /* Parsing context */
1291 ExprList *pList, /* List of field names to be indexed */
1292 int onError, /* What to do with a uniqueness conflict */
1293 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1294 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1295 ){
1296 Table *pTab = pParse->pNewTable;
1297 Column *pCol = 0;
1298 int iCol = -1, i;
1299 int nTerm;
1300 if( pTab==0 ) goto primary_key_exit;
1301 if( pTab->tabFlags & TF_HasPrimaryKey ){
1302 sqlite3ErrorMsg(pParse,
1303 "table \"%s\" has more than one primary key", pTab->zName);
1304 goto primary_key_exit;
1305 }
1306 pTab->tabFlags |= TF_HasPrimaryKey;
1307 if( pList==0 ){
1308 iCol = pTab->nCol - 1;
1309 pCol = &pTab->aCol[iCol];
1310 pCol->colFlags |= COLFLAG_PRIMKEY;
1311 nTerm = 1;
1312 }else{
1313 nTerm = pList->nExpr;
1314 for(i=0; i<nTerm; i++){
1315 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1316 assert( pCExpr!=0 );
1317 sqlite3StringToId(pCExpr);
1318 if( pCExpr->op==TK_ID ){
1319 const char *zCName = pCExpr->u.zToken;
1320 for(iCol=0; iCol<pTab->nCol; iCol++){
1321 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1322 pCol = &pTab->aCol[iCol];
1323 pCol->colFlags |= COLFLAG_PRIMKEY;
1324 break;
1325 }
1326 }
1327 }
1328 }
1329 }
1330 if( nTerm==1
1331 && pCol
1332 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0
1333 && sortOrder!=SQLITE_SO_DESC
1334 ){
1335 pTab->iPKey = iCol;
1336 pTab->keyConf = (u8)onError;
1337 assert( autoInc==0 || autoInc==1 );
1338 pTab->tabFlags |= autoInc*TF_Autoincrement;
1339 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1340 }else if( autoInc ){
1341 #ifndef SQLITE_OMIT_AUTOINCREMENT
1342 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1343 "INTEGER PRIMARY KEY");
1344 #endif
1345 }else{
1346 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1347 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1348 pList = 0;
1349 }
1350
1351 primary_key_exit:
1352 sqlite3ExprListDelete(pParse->db, pList);
1353 return;
1354 }
1355
1356 /*
1357 ** Add a new CHECK constraint to the table currently under construction.
1358 */
1359 void sqlite3AddCheckConstraint(
1360 Parse *pParse, /* Parsing context */
1361 Expr *pCheckExpr /* The check expression */
1362 ){
1363 #ifndef SQLITE_OMIT_CHECK
1364 Table *pTab = pParse->pNewTable;
1365 sqlite3 *db = pParse->db;
1366 if( pTab && !IN_DECLARE_VTAB
1367 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1368 ){
1369 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1370 if( pParse->constraintName.n ){
1371 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1372 }
1373 }else
1374 #endif
1375 {
1376 sqlite3ExprDelete(pParse->db, pCheckExpr);
1377 }
1378 }
1379
1380 /*
1381 ** Set the collation function of the most recently parsed table column
1382 ** to the CollSeq given.
1383 */
1384 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1385 Table *p;
1386 int i;
1387 char *zColl; /* Dequoted name of collation sequence */
1388 sqlite3 *db;
1389
1390 if( (p = pParse->pNewTable)==0 ) return;
1391 i = p->nCol-1;
1392 db = pParse->db;
1393 zColl = sqlite3NameFromToken(db, pToken);
1394 if( !zColl ) return;
1395
1396 if( sqlite3LocateCollSeq(pParse, zColl) ){
1397 Index *pIdx;
1398 sqlite3DbFree(db, p->aCol[i].zColl);
1399 p->aCol[i].zColl = zColl;
1400
1401 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1402 ** then an index may have been created on this column before the
1403 ** collation type was added. Correct this if it is the case.
1404 */
1405 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1406 assert( pIdx->nKeyCol==1 );
1407 if( pIdx->aiColumn[0]==i ){
1408 pIdx->azColl[0] = p->aCol[i].zColl;
1409 }
1410 }
1411 }else{
1412 sqlite3DbFree(db, zColl);
1413 }
1414 }
1415
1416 /*
1417 ** This function returns the collation sequence for database native text
1418 ** encoding identified by the string zName, length nName.
1419 **
1420 ** If the requested collation sequence is not available, or not available
1421 ** in the database native encoding, the collation factory is invoked to
1422 ** request it. If the collation factory does not supply such a sequence,
1423 ** and the sequence is available in another text encoding, then that is
1424 ** returned instead.
1425 **
1426 ** If no versions of the requested collations sequence are available, or
1427 ** another error occurs, NULL is returned and an error message written into
1428 ** pParse.
1429 **
1430 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine
1431 ** invokes the collation factory if the named collation cannot be found
1432 ** and generates an error message.
1433 **
1434 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1435 */
1436 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1437 sqlite3 *db = pParse->db;
1438 u8 enc = ENC(db);
1439 u8 initbusy = db->init.busy;
1440 CollSeq *pColl;
1441
1442 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1443 if( !initbusy && (!pColl || !pColl->xCmp) ){
1444 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1445 }
1446
1447 return pColl;
1448 }
1449
1450
1451 /*
1452 ** Generate code that will increment the schema cookie.
1453 **
1454 ** The schema cookie is used to determine when the schema for the
1455 ** database changes. After each schema change, the cookie value
1456 ** changes. When a process first reads the schema it records the
1457 ** cookie. Thereafter, whenever it goes to access the database,
1458 ** it checks the cookie to make sure the schema has not changed
1459 ** since it was last read.
1460 **
1461 ** This plan is not completely bullet-proof. It is possible for
1462 ** the schema to change multiple times and for the cookie to be
1463 ** set back to prior value. But schema changes are infrequent
1464 ** and the probability of hitting the same cookie value is only
1465 ** 1 chance in 2^32. So we're safe enough.
1466 **
1467 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
1468 ** the schema-version whenever the schema changes.
1469 */
1470 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1471 sqlite3 *db = pParse->db;
1472 Vdbe *v = pParse->pVdbe;
1473 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1474 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1475 db->aDb[iDb].pSchema->schema_cookie+1);
1476 }
1477
1478 /*
1479 ** Measure the number of characters needed to output the given
1480 ** identifier. The number returned includes any quotes used
1481 ** but does not include the null terminator.
1482 **
1483 ** The estimate is conservative. It might be larger that what is
1484 ** really needed.
1485 */
1486 static int identLength(const char *z){
1487 int n;
1488 for(n=0; *z; n++, z++){
1489 if( *z=='"' ){ n++; }
1490 }
1491 return n + 2;
1492 }
1493
1494 /*
1495 ** The first parameter is a pointer to an output buffer. The second
1496 ** parameter is a pointer to an integer that contains the offset at
1497 ** which to write into the output buffer. This function copies the
1498 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1499 ** to the specified offset in the buffer and updates *pIdx to refer
1500 ** to the first byte after the last byte written before returning.
1501 **
1502 ** If the string zSignedIdent consists entirely of alpha-numeric
1503 ** characters, does not begin with a digit and is not an SQL keyword,
1504 ** then it is copied to the output buffer exactly as it is. Otherwise,
1505 ** it is quoted using double-quotes.
1506 */
1507 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1508 unsigned char *zIdent = (unsigned char*)zSignedIdent;
1509 int i, j, needQuote;
1510 i = *pIdx;
1511
1512 for(j=0; zIdent[j]; j++){
1513 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1514 }
1515 needQuote = sqlite3Isdigit(zIdent[0])
1516 || sqlite3KeywordCode(zIdent, j)!=TK_ID
1517 || zIdent[j]!=0
1518 || j==0;
1519
1520 if( needQuote ) z[i++] = '"';
1521 for(j=0; zIdent[j]; j++){
1522 z[i++] = zIdent[j];
1523 if( zIdent[j]=='"' ) z[i++] = '"';
1524 }
1525 if( needQuote ) z[i++] = '"';
1526 z[i] = 0;
1527 *pIdx = i;
1528 }
1529
1530 /*
1531 ** Generate a CREATE TABLE statement appropriate for the given
1532 ** table. Memory to hold the text of the statement is obtained
1533 ** from sqliteMalloc() and must be freed by the calling function.
1534 */
1535 static char *createTableStmt(sqlite3 *db, Table *p){
1536 int i, k, n;
1537 char *zStmt;
1538 char *zSep, *zSep2, *zEnd;
1539 Column *pCol;
1540 n = 0;
1541 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1542 n += identLength(pCol->zName) + 5;
1543 }
1544 n += identLength(p->zName);
1545 if( n<50 ){
1546 zSep = "";
1547 zSep2 = ",";
1548 zEnd = ")";
1549 }else{
1550 zSep = "\n ";
1551 zSep2 = ",\n ";
1552 zEnd = "\n)";
1553 }
1554 n += 35 + 6*p->nCol;
1555 zStmt = sqlite3DbMallocRaw(0, n);
1556 if( zStmt==0 ){
1557 sqlite3OomFault(db);
1558 return 0;
1559 }
1560 sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1561 k = sqlite3Strlen30(zStmt);
1562 identPut(zStmt, &k, p->zName);
1563 zStmt[k++] = '(';
1564 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1565 static const char * const azType[] = {
1566 /* SQLITE_AFF_BLOB */ "",
1567 /* SQLITE_AFF_TEXT */ " TEXT",
1568 /* SQLITE_AFF_NUMERIC */ " NUM",
1569 /* SQLITE_AFF_INTEGER */ " INT",
1570 /* SQLITE_AFF_REAL */ " REAL"
1571 };
1572 int len;
1573 const char *zType;
1574
1575 sqlite3_snprintf(n-k, &zStmt[k], zSep);
1576 k += sqlite3Strlen30(&zStmt[k]);
1577 zSep = zSep2;
1578 identPut(zStmt, &k, pCol->zName);
1579 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1580 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1581 testcase( pCol->affinity==SQLITE_AFF_BLOB );
1582 testcase( pCol->affinity==SQLITE_AFF_TEXT );
1583 testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1584 testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1585 testcase( pCol->affinity==SQLITE_AFF_REAL );
1586
1587 zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1588 len = sqlite3Strlen30(zType);
1589 assert( pCol->affinity==SQLITE_AFF_BLOB
1590 || pCol->affinity==sqlite3AffinityType(zType, 0) );
1591 memcpy(&zStmt[k], zType, len);
1592 k += len;
1593 assert( k<=n );
1594 }
1595 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1596 return zStmt;
1597 }
1598
1599 /*
1600 ** Resize an Index object to hold N columns total. Return SQLITE_OK
1601 ** on success and SQLITE_NOMEM on an OOM error.
1602 */
1603 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1604 char *zExtra;
1605 int nByte;
1606 if( pIdx->nColumn>=N ) return SQLITE_OK;
1607 assert( pIdx->isResized==0 );
1608 nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1609 zExtra = sqlite3DbMallocZero(db, nByte);
1610 if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
1611 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1612 pIdx->azColl = (const char**)zExtra;
1613 zExtra += sizeof(char*)*N;
1614 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1615 pIdx->aiColumn = (i16*)zExtra;
1616 zExtra += sizeof(i16)*N;
1617 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1618 pIdx->aSortOrder = (u8*)zExtra;
1619 pIdx->nColumn = N;
1620 pIdx->isResized = 1;
1621 return SQLITE_OK;
1622 }
1623
1624 /*
1625 ** Estimate the total row width for a table.
1626 */
1627 static void estimateTableWidth(Table *pTab){
1628 unsigned wTable = 0;
1629 const Column *pTabCol;
1630 int i;
1631 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1632 wTable += pTabCol->szEst;
1633 }
1634 if( pTab->iPKey<0 ) wTable++;
1635 pTab->szTabRow = sqlite3LogEst(wTable*4);
1636 }
1637
1638 /*
1639 ** Estimate the average size of a row for an index.
1640 */
1641 static void estimateIndexWidth(Index *pIdx){
1642 unsigned wIndex = 0;
1643 int i;
1644 const Column *aCol = pIdx->pTable->aCol;
1645 for(i=0; i<pIdx->nColumn; i++){
1646 i16 x = pIdx->aiColumn[i];
1647 assert( x<pIdx->pTable->nCol );
1648 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1649 }
1650 pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1651 }
1652
1653 /* Return true if value x is found any of the first nCol entries of aiCol[]
1654 */
1655 static int hasColumn(const i16 *aiCol, int nCol, int x){
1656 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1657 return 0;
1658 }
1659
1660 /*
1661 ** This routine runs at the end of parsing a CREATE TABLE statement that
1662 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
1663 ** internal schema data structures and the generated VDBE code so that they
1664 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1665 ** Changes include:
1666 **
1667 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1668 ** (2) Convert the OP_CreateTable into an OP_CreateIndex. There is
1669 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical
1670 ** data storage is a covering index btree.
1671 ** (3) Bypass the creation of the sqlite_master table entry
1672 ** for the PRIMARY KEY as the primary key index is now
1673 ** identified by the sqlite_master table entry of the table itself.
1674 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
1675 ** schema to the rootpage from the main table.
1676 ** (5) Add all table columns to the PRIMARY KEY Index object
1677 ** so that the PRIMARY KEY is a covering index. The surplus
1678 ** columns are part of KeyInfo.nXField and are not used for
1679 ** sorting or lookup or uniqueness checks.
1680 ** (6) Replace the rowid tail on all automatically generated UNIQUE
1681 ** indices with the PRIMARY KEY columns.
1682 **
1683 ** For virtual tables, only (1) is performed.
1684 */
1685 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1686 Index *pIdx;
1687 Index *pPk;
1688 int nPk;
1689 int i, j;
1690 sqlite3 *db = pParse->db;
1691 Vdbe *v = pParse->pVdbe;
1692
1693 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
1694 */
1695 if( !db->init.imposterTable ){
1696 for(i=0; i<pTab->nCol; i++){
1697 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){
1698 pTab->aCol[i].notNull = OE_Abort;
1699 }
1700 }
1701 }
1702
1703 /* The remaining transformations only apply to b-tree tables, not to
1704 ** virtual tables */
1705 if( IN_DECLARE_VTAB ) return;
1706
1707 /* Convert the OP_CreateTable opcode that would normally create the
1708 ** root-page for the table into an OP_CreateIndex opcode. The index
1709 ** created will become the PRIMARY KEY index.
1710 */
1711 if( pParse->addrCrTab ){
1712 assert( v );
1713 sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex);
1714 }
1715
1716 /* Locate the PRIMARY KEY index. Or, if this table was originally
1717 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1718 */
1719 if( pTab->iPKey>=0 ){
1720 ExprList *pList;
1721 Token ipkToken;
1722 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
1723 pList = sqlite3ExprListAppend(pParse, 0,
1724 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1725 if( pList==0 ) return;
1726 pList->a[0].sortOrder = pParse->iPkSortOrder;
1727 assert( pParse->pNewTable==pTab );
1728 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
1729 SQLITE_IDXTYPE_PRIMARYKEY);
1730 if( db->mallocFailed ) return;
1731 pPk = sqlite3PrimaryKeyIndex(pTab);
1732 pTab->iPKey = -1;
1733 }else{
1734 pPk = sqlite3PrimaryKeyIndex(pTab);
1735
1736 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1737 ** table entry. This is only required if currently generating VDBE
1738 ** code for a CREATE TABLE (not when parsing one as part of reading
1739 ** a database schema). */
1740 if( v ){
1741 assert( db->init.busy==0 );
1742 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1743 }
1744
1745 /*
1746 ** Remove all redundant columns from the PRIMARY KEY. For example, change
1747 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
1748 ** code assumes the PRIMARY KEY contains no repeated columns.
1749 */
1750 for(i=j=1; i<pPk->nKeyCol; i++){
1751 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1752 pPk->nColumn--;
1753 }else{
1754 pPk->aiColumn[j++] = pPk->aiColumn[i];
1755 }
1756 }
1757 pPk->nKeyCol = j;
1758 }
1759 assert( pPk!=0 );
1760 pPk->isCovering = 1;
1761 if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
1762 nPk = pPk->nKeyCol;
1763
1764 /* The root page of the PRIMARY KEY is the table root page */
1765 pPk->tnum = pTab->tnum;
1766
1767 /* Update the in-memory representation of all UNIQUE indices by converting
1768 ** the final rowid column into one or more columns of the PRIMARY KEY.
1769 */
1770 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1771 int n;
1772 if( IsPrimaryKeyIndex(pIdx) ) continue;
1773 for(i=n=0; i<nPk; i++){
1774 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1775 }
1776 if( n==0 ){
1777 /* This index is a superset of the primary key */
1778 pIdx->nColumn = pIdx->nKeyCol;
1779 continue;
1780 }
1781 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1782 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1783 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1784 pIdx->aiColumn[j] = pPk->aiColumn[i];
1785 pIdx->azColl[j] = pPk->azColl[i];
1786 j++;
1787 }
1788 }
1789 assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1790 assert( pIdx->nColumn>=j );
1791 }
1792
1793 /* Add all table columns to the PRIMARY KEY index
1794 */
1795 if( nPk<pTab->nCol ){
1796 if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1797 for(i=0, j=nPk; i<pTab->nCol; i++){
1798 if( !hasColumn(pPk->aiColumn, j, i) ){
1799 assert( j<pPk->nColumn );
1800 pPk->aiColumn[j] = i;
1801 pPk->azColl[j] = sqlite3StrBINARY;
1802 j++;
1803 }
1804 }
1805 assert( pPk->nColumn==j );
1806 assert( pTab->nCol==j );
1807 }else{
1808 pPk->nColumn = pTab->nCol;
1809 }
1810 }
1811
1812 /*
1813 ** This routine is called to report the final ")" that terminates
1814 ** a CREATE TABLE statement.
1815 **
1816 ** The table structure that other action routines have been building
1817 ** is added to the internal hash tables, assuming no errors have
1818 ** occurred.
1819 **
1820 ** An entry for the table is made in the master table on disk, unless
1821 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
1822 ** it means we are reading the sqlite_master table because we just
1823 ** connected to the database or because the sqlite_master table has
1824 ** recently changed, so the entry for this table already exists in
1825 ** the sqlite_master table. We do not want to create it again.
1826 **
1827 ** If the pSelect argument is not NULL, it means that this routine
1828 ** was called to create a table generated from a
1829 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
1830 ** the new table will match the result set of the SELECT.
1831 */
1832 void sqlite3EndTable(
1833 Parse *pParse, /* Parse context */
1834 Token *pCons, /* The ',' token after the last column defn. */
1835 Token *pEnd, /* The ')' before options in the CREATE TABLE */
1836 u8 tabOpts, /* Extra table options. Usually 0. */
1837 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
1838 ){
1839 Table *p; /* The new table */
1840 sqlite3 *db = pParse->db; /* The database connection */
1841 int iDb; /* Database in which the table lives */
1842 Index *pIdx; /* An implied index of the table */
1843
1844 if( pEnd==0 && pSelect==0 ){
1845 return;
1846 }
1847 assert( !db->mallocFailed );
1848 p = pParse->pNewTable;
1849 if( p==0 ) return;
1850
1851 assert( !db->init.busy || !pSelect );
1852
1853 /* If the db->init.busy is 1 it means we are reading the SQL off the
1854 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1855 ** So do not write to the disk again. Extract the root page number
1856 ** for the table from the db->init.newTnum field. (The page number
1857 ** should have been put there by the sqliteOpenCb routine.)
1858 **
1859 ** If the root page number is 1, that means this is the sqlite_master
1860 ** table itself. So mark it read-only.
1861 */
1862 if( db->init.busy ){
1863 p->tnum = db->init.newTnum;
1864 if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
1865 }
1866
1867 /* Special processing for WITHOUT ROWID Tables */
1868 if( tabOpts & TF_WithoutRowid ){
1869 if( (p->tabFlags & TF_Autoincrement) ){
1870 sqlite3ErrorMsg(pParse,
1871 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1872 return;
1873 }
1874 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1875 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1876 }else{
1877 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1878 convertToWithoutRowidTable(pParse, p);
1879 }
1880 }
1881
1882 iDb = sqlite3SchemaToIndex(db, p->pSchema);
1883
1884 #ifndef SQLITE_OMIT_CHECK
1885 /* Resolve names in all CHECK constraint expressions.
1886 */
1887 if( p->pCheck ){
1888 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1889 }
1890 #endif /* !defined(SQLITE_OMIT_CHECK) */
1891
1892 /* Estimate the average row size for the table and for all implied indices */
1893 estimateTableWidth(p);
1894 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1895 estimateIndexWidth(pIdx);
1896 }
1897
1898 /* If not initializing, then create a record for the new table
1899 ** in the SQLITE_MASTER table of the database.
1900 **
1901 ** If this is a TEMPORARY table, write the entry into the auxiliary
1902 ** file instead of into the main database file.
1903 */
1904 if( !db->init.busy ){
1905 int n;
1906 Vdbe *v;
1907 char *zType; /* "view" or "table" */
1908 char *zType2; /* "VIEW" or "TABLE" */
1909 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
1910
1911 v = sqlite3GetVdbe(pParse);
1912 if( NEVER(v==0) ) return;
1913
1914 sqlite3VdbeAddOp1(v, OP_Close, 0);
1915
1916 /*
1917 ** Initialize zType for the new view or table.
1918 */
1919 if( p->pSelect==0 ){
1920 /* A regular table */
1921 zType = "table";
1922 zType2 = "TABLE";
1923 #ifndef SQLITE_OMIT_VIEW
1924 }else{
1925 /* A view */
1926 zType = "view";
1927 zType2 = "VIEW";
1928 #endif
1929 }
1930
1931 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1932 ** statement to populate the new table. The root-page number for the
1933 ** new table is in register pParse->regRoot.
1934 **
1935 ** Once the SELECT has been coded by sqlite3Select(), it is in a
1936 ** suitable state to query for the column names and types to be used
1937 ** by the new table.
1938 **
1939 ** A shared-cache write-lock is not required to write to the new table,
1940 ** as a schema-lock must have already been obtained to create it. Since
1941 ** a schema-lock excludes all other database users, the write-lock would
1942 ** be redundant.
1943 */
1944 if( pSelect ){
1945 SelectDest dest; /* Where the SELECT should store results */
1946 int regYield; /* Register holding co-routine entry-point */
1947 int addrTop; /* Top of the co-routine */
1948 int regRec; /* A record to be insert into the new table */
1949 int regRowid; /* Rowid of the next row to insert */
1950 int addrInsLoop; /* Top of the loop for inserting rows */
1951 Table *pSelTab; /* A table that describes the SELECT results */
1952
1953 regYield = ++pParse->nMem;
1954 regRec = ++pParse->nMem;
1955 regRowid = ++pParse->nMem;
1956 assert(pParse->nTab==1);
1957 sqlite3MayAbort(pParse);
1958 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1959 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1960 pParse->nTab = 2;
1961 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
1962 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
1963 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
1964 sqlite3Select(pParse, pSelect, &dest);
1965 sqlite3VdbeEndCoroutine(v, regYield);
1966 sqlite3VdbeJumpHere(v, addrTop - 1);
1967 if( pParse->nErr ) return;
1968 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1969 if( pSelTab==0 ) return;
1970 assert( p->aCol==0 );
1971 p->nCol = pSelTab->nCol;
1972 p->aCol = pSelTab->aCol;
1973 pSelTab->nCol = 0;
1974 pSelTab->aCol = 0;
1975 sqlite3DeleteTable(db, pSelTab);
1976 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1977 VdbeCoverage(v);
1978 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
1979 sqlite3TableAffinity(v, p, 0);
1980 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
1981 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
1982 sqlite3VdbeGoto(v, addrInsLoop);
1983 sqlite3VdbeJumpHere(v, addrInsLoop);
1984 sqlite3VdbeAddOp1(v, OP_Close, 1);
1985 }
1986
1987 /* Compute the complete text of the CREATE statement */
1988 if( pSelect ){
1989 zStmt = createTableStmt(db, p);
1990 }else{
1991 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
1992 n = (int)(pEnd2->z - pParse->sNameToken.z);
1993 if( pEnd2->z[0]!=';' ) n += pEnd2->n;
1994 zStmt = sqlite3MPrintf(db,
1995 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1996 );
1997 }
1998
1999 /* A slot for the record has already been allocated in the
2000 ** SQLITE_MASTER table. We just need to update that slot with all
2001 ** the information we've collected.
2002 */
2003 sqlite3NestedParse(pParse,
2004 "UPDATE %Q.%s "
2005 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
2006 "WHERE rowid=#%d",
2007 db->aDb[iDb].zDbSName, MASTER_NAME,
2008 zType,
2009 p->zName,
2010 p->zName,
2011 pParse->regRoot,
2012 zStmt,
2013 pParse->regRowid
2014 );
2015 sqlite3DbFree(db, zStmt);
2016 sqlite3ChangeCookie(pParse, iDb);
2017
2018 #ifndef SQLITE_OMIT_AUTOINCREMENT
2019 /* Check to see if we need to create an sqlite_sequence table for
2020 ** keeping track of autoincrement keys.
2021 */
2022 if( (p->tabFlags & TF_Autoincrement)!=0 ){
2023 Db *pDb = &db->aDb[iDb];
2024 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2025 if( pDb->pSchema->pSeqTab==0 ){
2026 sqlite3NestedParse(pParse,
2027 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2028 pDb->zDbSName
2029 );
2030 }
2031 }
2032 #endif
2033
2034 /* Reparse everything to update our internal data structures */
2035 sqlite3VdbeAddParseSchemaOp(v, iDb,
2036 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2037 }
2038
2039
2040 /* Add the table to the in-memory representation of the database.
2041 */
2042 if( db->init.busy ){
2043 Table *pOld;
2044 Schema *pSchema = p->pSchema;
2045 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2046 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2047 if( pOld ){
2048 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
2049 sqlite3OomFault(db);
2050 return;
2051 }
2052 pParse->pNewTable = 0;
2053 db->flags |= SQLITE_InternChanges;
2054
2055 #ifndef SQLITE_OMIT_ALTERTABLE
2056 if( !p->pSelect ){
2057 const char *zName = (const char *)pParse->sNameToken.z;
2058 int nName;
2059 assert( !pSelect && pCons && pEnd );
2060 if( pCons->z==0 ){
2061 pCons = pEnd;
2062 }
2063 nName = (int)((const char *)pCons->z - zName);
2064 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2065 }
2066 #endif
2067 }
2068 }
2069
2070 #ifndef SQLITE_OMIT_VIEW
2071 /*
2072 ** The parser calls this routine in order to create a new VIEW
2073 */
2074 void sqlite3CreateView(
2075 Parse *pParse, /* The parsing context */
2076 Token *pBegin, /* The CREATE token that begins the statement */
2077 Token *pName1, /* The token that holds the name of the view */
2078 Token *pName2, /* The token that holds the name of the view */
2079 ExprList *pCNames, /* Optional list of view column names */
2080 Select *pSelect, /* A SELECT statement that will become the new view */
2081 int isTemp, /* TRUE for a TEMPORARY view */
2082 int noErr /* Suppress error messages if VIEW already exists */
2083 ){
2084 Table *p;
2085 int n;
2086 const char *z;
2087 Token sEnd;
2088 DbFixer sFix;
2089 Token *pName = 0;
2090 int iDb;
2091 sqlite3 *db = pParse->db;
2092
2093 if( pParse->nVar>0 ){
2094 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2095 goto create_view_fail;
2096 }
2097 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2098 p = pParse->pNewTable;
2099 if( p==0 || pParse->nErr ) goto create_view_fail;
2100 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2101 iDb = sqlite3SchemaToIndex(db, p->pSchema);
2102 sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2103 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2104
2105 /* Make a copy of the entire SELECT statement that defines the view.
2106 ** This will force all the Expr.token.z values to be dynamically
2107 ** allocated rather than point to the input string - which means that
2108 ** they will persist after the current sqlite3_exec() call returns.
2109 */
2110 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2111 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2112 if( db->mallocFailed ) goto create_view_fail;
2113
2114 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
2115 ** the end.
2116 */
2117 sEnd = pParse->sLastToken;
2118 assert( sEnd.z[0]!=0 );
2119 if( sEnd.z[0]!=';' ){
2120 sEnd.z += sEnd.n;
2121 }
2122 sEnd.n = 0;
2123 n = (int)(sEnd.z - pBegin->z);
2124 assert( n>0 );
2125 z = pBegin->z;
2126 while( sqlite3Isspace(z[n-1]) ){ n--; }
2127 sEnd.z = &z[n-1];
2128 sEnd.n = 1;
2129
2130 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2131 sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2132
2133 create_view_fail:
2134 sqlite3SelectDelete(db, pSelect);
2135 sqlite3ExprListDelete(db, pCNames);
2136 return;
2137 }
2138 #endif /* SQLITE_OMIT_VIEW */
2139
2140 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2141 /*
2142 ** The Table structure pTable is really a VIEW. Fill in the names of
2143 ** the columns of the view in the pTable structure. Return the number
2144 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
2145 */
2146 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2147 Table *pSelTab; /* A fake table from which we get the result set */
2148 Select *pSel; /* Copy of the SELECT that implements the view */
2149 int nErr = 0; /* Number of errors encountered */
2150 int n; /* Temporarily holds the number of cursors assigned */
2151 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
2152 #ifndef SQLITE_OMIT_AUTHORIZATION
2153 sqlite3_xauth xAuth; /* Saved xAuth pointer */
2154 #endif
2155
2156 assert( pTable );
2157
2158 #ifndef SQLITE_OMIT_VIRTUALTABLE
2159 if( sqlite3VtabCallConnect(pParse, pTable) ){
2160 return SQLITE_ERROR;
2161 }
2162 if( IsVirtual(pTable) ) return 0;
2163 #endif
2164
2165 #ifndef SQLITE_OMIT_VIEW
2166 /* A positive nCol means the columns names for this view are
2167 ** already known.
2168 */
2169 if( pTable->nCol>0 ) return 0;
2170
2171 /* A negative nCol is a special marker meaning that we are currently
2172 ** trying to compute the column names. If we enter this routine with
2173 ** a negative nCol, it means two or more views form a loop, like this:
2174 **
2175 ** CREATE VIEW one AS SELECT * FROM two;
2176 ** CREATE VIEW two AS SELECT * FROM one;
2177 **
2178 ** Actually, the error above is now caught prior to reaching this point.
2179 ** But the following test is still important as it does come up
2180 ** in the following:
2181 **
2182 ** CREATE TABLE main.ex1(a);
2183 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2184 ** SELECT * FROM temp.ex1;
2185 */
2186 if( pTable->nCol<0 ){
2187 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2188 return 1;
2189 }
2190 assert( pTable->nCol>=0 );
2191
2192 /* If we get this far, it means we need to compute the table names.
2193 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2194 ** "*" elements in the results set of the view and will assign cursors
2195 ** to the elements of the FROM clause. But we do not want these changes
2196 ** to be permanent. So the computation is done on a copy of the SELECT
2197 ** statement that defines the view.
2198 */
2199 assert( pTable->pSelect );
2200 pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2201 if( pSel ){
2202 n = pParse->nTab;
2203 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2204 pTable->nCol = -1;
2205 db->lookaside.bDisable++;
2206 #ifndef SQLITE_OMIT_AUTHORIZATION
2207 xAuth = db->xAuth;
2208 db->xAuth = 0;
2209 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2210 db->xAuth = xAuth;
2211 #else
2212 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2213 #endif
2214 pParse->nTab = n;
2215 if( pTable->pCheck ){
2216 /* CREATE VIEW name(arglist) AS ...
2217 ** The names of the columns in the table are taken from
2218 ** arglist which is stored in pTable->pCheck. The pCheck field
2219 ** normally holds CHECK constraints on an ordinary table, but for
2220 ** a VIEW it holds the list of column names.
2221 */
2222 sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2223 &pTable->nCol, &pTable->aCol);
2224 if( db->mallocFailed==0
2225 && pParse->nErr==0
2226 && pTable->nCol==pSel->pEList->nExpr
2227 ){
2228 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel);
2229 }
2230 }else if( pSelTab ){
2231 /* CREATE VIEW name AS... without an argument list. Construct
2232 ** the column names from the SELECT statement that defines the view.
2233 */
2234 assert( pTable->aCol==0 );
2235 pTable->nCol = pSelTab->nCol;
2236 pTable->aCol = pSelTab->aCol;
2237 pSelTab->nCol = 0;
2238 pSelTab->aCol = 0;
2239 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2240 }else{
2241 pTable->nCol = 0;
2242 nErr++;
2243 }
2244 sqlite3DeleteTable(db, pSelTab);
2245 sqlite3SelectDelete(db, pSel);
2246 db->lookaside.bDisable--;
2247 } else {
2248 nErr++;
2249 }
2250 pTable->pSchema->schemaFlags |= DB_UnresetViews;
2251 #endif /* SQLITE_OMIT_VIEW */
2252 return nErr;
2253 }
2254 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2255
2256 #ifndef SQLITE_OMIT_VIEW
2257 /*
2258 ** Clear the column names from every VIEW in database idx.
2259 */
2260 static void sqliteViewResetAll(sqlite3 *db, int idx){
2261 HashElem *i;
2262 assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2263 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2264 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2265 Table *pTab = sqliteHashData(i);
2266 if( pTab->pSelect ){
2267 sqlite3DeleteColumnNames(db, pTab);
2268 pTab->aCol = 0;
2269 pTab->nCol = 0;
2270 }
2271 }
2272 DbClearProperty(db, idx, DB_UnresetViews);
2273 }
2274 #else
2275 # define sqliteViewResetAll(A,B)
2276 #endif /* SQLITE_OMIT_VIEW */
2277
2278 /*
2279 ** This function is called by the VDBE to adjust the internal schema
2280 ** used by SQLite when the btree layer moves a table root page. The
2281 ** root-page of a table or index in database iDb has changed from iFrom
2282 ** to iTo.
2283 **
2284 ** Ticket #1728: The symbol table might still contain information
2285 ** on tables and/or indices that are the process of being deleted.
2286 ** If you are unlucky, one of those deleted indices or tables might
2287 ** have the same rootpage number as the real table or index that is
2288 ** being moved. So we cannot stop searching after the first match
2289 ** because the first match might be for one of the deleted indices
2290 ** or tables and not the table/index that is actually being moved.
2291 ** We must continue looping until all tables and indices with
2292 ** rootpage==iFrom have been converted to have a rootpage of iTo
2293 ** in order to be certain that we got the right one.
2294 */
2295 #ifndef SQLITE_OMIT_AUTOVACUUM
2296 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2297 HashElem *pElem;
2298 Hash *pHash;
2299 Db *pDb;
2300
2301 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2302 pDb = &db->aDb[iDb];
2303 pHash = &pDb->pSchema->tblHash;
2304 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2305 Table *pTab = sqliteHashData(pElem);
2306 if( pTab->tnum==iFrom ){
2307 pTab->tnum = iTo;
2308 }
2309 }
2310 pHash = &pDb->pSchema->idxHash;
2311 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2312 Index *pIdx = sqliteHashData(pElem);
2313 if( pIdx->tnum==iFrom ){
2314 pIdx->tnum = iTo;
2315 }
2316 }
2317 }
2318 #endif
2319
2320 /*
2321 ** Write code to erase the table with root-page iTable from database iDb.
2322 ** Also write code to modify the sqlite_master table and internal schema
2323 ** if a root-page of another table is moved by the btree-layer whilst
2324 ** erasing iTable (this can happen with an auto-vacuum database).
2325 */
2326 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2327 Vdbe *v = sqlite3GetVdbe(pParse);
2328 int r1 = sqlite3GetTempReg(pParse);
2329 assert( iTable>1 );
2330 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2331 sqlite3MayAbort(pParse);
2332 #ifndef SQLITE_OMIT_AUTOVACUUM
2333 /* OP_Destroy stores an in integer r1. If this integer
2334 ** is non-zero, then it is the root page number of a table moved to
2335 ** location iTable. The following code modifies the sqlite_master table to
2336 ** reflect this.
2337 **
2338 ** The "#NNN" in the SQL is a special constant that means whatever value
2339 ** is in register NNN. See grammar rules associated with the TK_REGISTER
2340 ** token for additional information.
2341 */
2342 sqlite3NestedParse(pParse,
2343 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2344 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1);
2345 #endif
2346 sqlite3ReleaseTempReg(pParse, r1);
2347 }
2348
2349 /*
2350 ** Write VDBE code to erase table pTab and all associated indices on disk.
2351 ** Code to update the sqlite_master tables and internal schema definitions
2352 ** in case a root-page belonging to another table is moved by the btree layer
2353 ** is also added (this can happen with an auto-vacuum database).
2354 */
2355 static void destroyTable(Parse *pParse, Table *pTab){
2356 #ifdef SQLITE_OMIT_AUTOVACUUM
2357 Index *pIdx;
2358 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2359 destroyRootPage(pParse, pTab->tnum, iDb);
2360 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2361 destroyRootPage(pParse, pIdx->tnum, iDb);
2362 }
2363 #else
2364 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2365 ** is not defined), then it is important to call OP_Destroy on the
2366 ** table and index root-pages in order, starting with the numerically
2367 ** largest root-page number. This guarantees that none of the root-pages
2368 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2369 ** following were coded:
2370 **
2371 ** OP_Destroy 4 0
2372 ** ...
2373 ** OP_Destroy 5 0
2374 **
2375 ** and root page 5 happened to be the largest root-page number in the
2376 ** database, then root page 5 would be moved to page 4 by the
2377 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2378 ** a free-list page.
2379 */
2380 int iTab = pTab->tnum;
2381 int iDestroyed = 0;
2382
2383 while( 1 ){
2384 Index *pIdx;
2385 int iLargest = 0;
2386
2387 if( iDestroyed==0 || iTab<iDestroyed ){
2388 iLargest = iTab;
2389 }
2390 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2391 int iIdx = pIdx->tnum;
2392 assert( pIdx->pSchema==pTab->pSchema );
2393 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2394 iLargest = iIdx;
2395 }
2396 }
2397 if( iLargest==0 ){
2398 return;
2399 }else{
2400 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2401 assert( iDb>=0 && iDb<pParse->db->nDb );
2402 destroyRootPage(pParse, iLargest, iDb);
2403 iDestroyed = iLargest;
2404 }
2405 }
2406 #endif
2407 }
2408
2409 /*
2410 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2411 ** after a DROP INDEX or DROP TABLE command.
2412 */
2413 static void sqlite3ClearStatTables(
2414 Parse *pParse, /* The parsing context */
2415 int iDb, /* The database number */
2416 const char *zType, /* "idx" or "tbl" */
2417 const char *zName /* Name of index or table */
2418 ){
2419 int i;
2420 const char *zDbName = pParse->db->aDb[iDb].zDbSName;
2421 for(i=1; i<=4; i++){
2422 char zTab[24];
2423 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2424 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2425 sqlite3NestedParse(pParse,
2426 "DELETE FROM %Q.%s WHERE %s=%Q",
2427 zDbName, zTab, zType, zName
2428 );
2429 }
2430 }
2431 }
2432
2433 /*
2434 ** Generate code to drop a table.
2435 */
2436 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2437 Vdbe *v;
2438 sqlite3 *db = pParse->db;
2439 Trigger *pTrigger;
2440 Db *pDb = &db->aDb[iDb];
2441
2442 v = sqlite3GetVdbe(pParse);
2443 assert( v!=0 );
2444 sqlite3BeginWriteOperation(pParse, 1, iDb);
2445
2446 #ifndef SQLITE_OMIT_VIRTUALTABLE
2447 if( IsVirtual(pTab) ){
2448 sqlite3VdbeAddOp0(v, OP_VBegin);
2449 }
2450 #endif
2451
2452 /* Drop all triggers associated with the table being dropped. Code
2453 ** is generated to remove entries from sqlite_master and/or
2454 ** sqlite_temp_master if required.
2455 */
2456 pTrigger = sqlite3TriggerList(pParse, pTab);
2457 while( pTrigger ){
2458 assert( pTrigger->pSchema==pTab->pSchema ||
2459 pTrigger->pSchema==db->aDb[1].pSchema );
2460 sqlite3DropTriggerPtr(pParse, pTrigger);
2461 pTrigger = pTrigger->pNext;
2462 }
2463
2464 #ifndef SQLITE_OMIT_AUTOINCREMENT
2465 /* Remove any entries of the sqlite_sequence table associated with
2466 ** the table being dropped. This is done before the table is dropped
2467 ** at the btree level, in case the sqlite_sequence table needs to
2468 ** move as a result of the drop (can happen in auto-vacuum mode).
2469 */
2470 if( pTab->tabFlags & TF_Autoincrement ){
2471 sqlite3NestedParse(pParse,
2472 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2473 pDb->zDbSName, pTab->zName
2474 );
2475 }
2476 #endif
2477
2478 /* Drop all SQLITE_MASTER table and index entries that refer to the
2479 ** table. The program name loops through the master table and deletes
2480 ** every row that refers to a table of the same name as the one being
2481 ** dropped. Triggers are handled separately because a trigger can be
2482 ** created in the temp database that refers to a table in another
2483 ** database.
2484 */
2485 sqlite3NestedParse(pParse,
2486 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2487 pDb->zDbSName, MASTER_NAME, pTab->zName);
2488 if( !isView && !IsVirtual(pTab) ){
2489 destroyTable(pParse, pTab);
2490 }
2491
2492 /* Remove the table entry from SQLite's internal schema and modify
2493 ** the schema cookie.
2494 */
2495 if( IsVirtual(pTab) ){
2496 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2497 }
2498 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2499 sqlite3ChangeCookie(pParse, iDb);
2500 sqliteViewResetAll(db, iDb);
2501 }
2502
2503 /*
2504 ** This routine is called to do the work of a DROP TABLE statement.
2505 ** pName is the name of the table to be dropped.
2506 */
2507 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2508 Table *pTab;
2509 Vdbe *v;
2510 sqlite3 *db = pParse->db;
2511 int iDb;
2512
2513 if( db->mallocFailed ){
2514 goto exit_drop_table;
2515 }
2516 assert( pParse->nErr==0 );
2517 assert( pName->nSrc==1 );
2518 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2519 if( noErr ) db->suppressErr++;
2520 assert( isView==0 || isView==LOCATE_VIEW );
2521 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2522 if( noErr ) db->suppressErr--;
2523
2524 if( pTab==0 ){
2525 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2526 goto exit_drop_table;
2527 }
2528 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2529 assert( iDb>=0 && iDb<db->nDb );
2530
2531 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2532 ** it is initialized.
2533 */
2534 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2535 goto exit_drop_table;
2536 }
2537 #ifndef SQLITE_OMIT_AUTHORIZATION
2538 {
2539 int code;
2540 const char *zTab = SCHEMA_TABLE(iDb);
2541 const char *zDb = db->aDb[iDb].zDbSName;
2542 const char *zArg2 = 0;
2543 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2544 goto exit_drop_table;
2545 }
2546 if( isView ){
2547 if( !OMIT_TEMPDB && iDb==1 ){
2548 code = SQLITE_DROP_TEMP_VIEW;
2549 }else{
2550 code = SQLITE_DROP_VIEW;
2551 }
2552 #ifndef SQLITE_OMIT_VIRTUALTABLE
2553 }else if( IsVirtual(pTab) ){
2554 code = SQLITE_DROP_VTABLE;
2555 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2556 #endif
2557 }else{
2558 if( !OMIT_TEMPDB && iDb==1 ){
2559 code = SQLITE_DROP_TEMP_TABLE;
2560 }else{
2561 code = SQLITE_DROP_TABLE;
2562 }
2563 }
2564 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2565 goto exit_drop_table;
2566 }
2567 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2568 goto exit_drop_table;
2569 }
2570 }
2571 #endif
2572 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2573 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2574 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2575 goto exit_drop_table;
2576 }
2577
2578 #ifndef SQLITE_OMIT_VIEW
2579 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2580 ** on a table.
2581 */
2582 if( isView && pTab->pSelect==0 ){
2583 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2584 goto exit_drop_table;
2585 }
2586 if( !isView && pTab->pSelect ){
2587 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2588 goto exit_drop_table;
2589 }
2590 #endif
2591
2592 /* Generate code to remove the table from the master table
2593 ** on disk.
2594 */
2595 v = sqlite3GetVdbe(pParse);
2596 if( v ){
2597 sqlite3BeginWriteOperation(pParse, 1, iDb);
2598 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2599 sqlite3FkDropTable(pParse, pName, pTab);
2600 sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2601 }
2602
2603 exit_drop_table:
2604 sqlite3SrcListDelete(db, pName);
2605 }
2606
2607 /*
2608 ** This routine is called to create a new foreign key on the table
2609 ** currently under construction. pFromCol determines which columns
2610 ** in the current table point to the foreign key. If pFromCol==0 then
2611 ** connect the key to the last column inserted. pTo is the name of
2612 ** the table referred to (a.k.a the "parent" table). pToCol is a list
2613 ** of tables in the parent pTo table. flags contains all
2614 ** information about the conflict resolution algorithms specified
2615 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2616 **
2617 ** An FKey structure is created and added to the table currently
2618 ** under construction in the pParse->pNewTable field.
2619 **
2620 ** The foreign key is set for IMMEDIATE processing. A subsequent call
2621 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2622 */
2623 void sqlite3CreateForeignKey(
2624 Parse *pParse, /* Parsing context */
2625 ExprList *pFromCol, /* Columns in this table that point to other table */
2626 Token *pTo, /* Name of the other table */
2627 ExprList *pToCol, /* Columns in the other table */
2628 int flags /* Conflict resolution algorithms. */
2629 ){
2630 sqlite3 *db = pParse->db;
2631 #ifndef SQLITE_OMIT_FOREIGN_KEY
2632 FKey *pFKey = 0;
2633 FKey *pNextTo;
2634 Table *p = pParse->pNewTable;
2635 int nByte;
2636 int i;
2637 int nCol;
2638 char *z;
2639
2640 assert( pTo!=0 );
2641 if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2642 if( pFromCol==0 ){
2643 int iCol = p->nCol-1;
2644 if( NEVER(iCol<0) ) goto fk_end;
2645 if( pToCol && pToCol->nExpr!=1 ){
2646 sqlite3ErrorMsg(pParse, "foreign key on %s"
2647 " should reference only one column of table %T",
2648 p->aCol[iCol].zName, pTo);
2649 goto fk_end;
2650 }
2651 nCol = 1;
2652 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2653 sqlite3ErrorMsg(pParse,
2654 "number of columns in foreign key does not match the number of "
2655 "columns in the referenced table");
2656 goto fk_end;
2657 }else{
2658 nCol = pFromCol->nExpr;
2659 }
2660 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2661 if( pToCol ){
2662 for(i=0; i<pToCol->nExpr; i++){
2663 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2664 }
2665 }
2666 pFKey = sqlite3DbMallocZero(db, nByte );
2667 if( pFKey==0 ){
2668 goto fk_end;
2669 }
2670 pFKey->pFrom = p;
2671 pFKey->pNextFrom = p->pFKey;
2672 z = (char*)&pFKey->aCol[nCol];
2673 pFKey->zTo = z;
2674 memcpy(z, pTo->z, pTo->n);
2675 z[pTo->n] = 0;
2676 sqlite3Dequote(z);
2677 z += pTo->n+1;
2678 pFKey->nCol = nCol;
2679 if( pFromCol==0 ){
2680 pFKey->aCol[0].iFrom = p->nCol-1;
2681 }else{
2682 for(i=0; i<nCol; i++){
2683 int j;
2684 for(j=0; j<p->nCol; j++){
2685 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2686 pFKey->aCol[i].iFrom = j;
2687 break;
2688 }
2689 }
2690 if( j>=p->nCol ){
2691 sqlite3ErrorMsg(pParse,
2692 "unknown column \"%s\" in foreign key definition",
2693 pFromCol->a[i].zName);
2694 goto fk_end;
2695 }
2696 }
2697 }
2698 if( pToCol ){
2699 for(i=0; i<nCol; i++){
2700 int n = sqlite3Strlen30(pToCol->a[i].zName);
2701 pFKey->aCol[i].zCol = z;
2702 memcpy(z, pToCol->a[i].zName, n);
2703 z[n] = 0;
2704 z += n+1;
2705 }
2706 }
2707 pFKey->isDeferred = 0;
2708 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
2709 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
2710
2711 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2712 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2713 pFKey->zTo, (void *)pFKey
2714 );
2715 if( pNextTo==pFKey ){
2716 sqlite3OomFault(db);
2717 goto fk_end;
2718 }
2719 if( pNextTo ){
2720 assert( pNextTo->pPrevTo==0 );
2721 pFKey->pNextTo = pNextTo;
2722 pNextTo->pPrevTo = pFKey;
2723 }
2724
2725 /* Link the foreign key to the table as the last step.
2726 */
2727 p->pFKey = pFKey;
2728 pFKey = 0;
2729
2730 fk_end:
2731 sqlite3DbFree(db, pFKey);
2732 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2733 sqlite3ExprListDelete(db, pFromCol);
2734 sqlite3ExprListDelete(db, pToCol);
2735 }
2736
2737 /*
2738 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2739 ** clause is seen as part of a foreign key definition. The isDeferred
2740 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2741 ** The behavior of the most recently created foreign key is adjusted
2742 ** accordingly.
2743 */
2744 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2745 #ifndef SQLITE_OMIT_FOREIGN_KEY
2746 Table *pTab;
2747 FKey *pFKey;
2748 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2749 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2750 pFKey->isDeferred = (u8)isDeferred;
2751 #endif
2752 }
2753
2754 /*
2755 ** Generate code that will erase and refill index *pIdx. This is
2756 ** used to initialize a newly created index or to recompute the
2757 ** content of an index in response to a REINDEX command.
2758 **
2759 ** if memRootPage is not negative, it means that the index is newly
2760 ** created. The register specified by memRootPage contains the
2761 ** root page number of the index. If memRootPage is negative, then
2762 ** the index already exists and must be cleared before being refilled and
2763 ** the root page number of the index is taken from pIndex->tnum.
2764 */
2765 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2766 Table *pTab = pIndex->pTable; /* The table that is indexed */
2767 int iTab = pParse->nTab++; /* Btree cursor used for pTab */
2768 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
2769 int iSorter; /* Cursor opened by OpenSorter (if in use) */
2770 int addr1; /* Address of top of loop */
2771 int addr2; /* Address to jump to for next iteration */
2772 int tnum; /* Root page of index */
2773 int iPartIdxLabel; /* Jump to this label to skip a row */
2774 Vdbe *v; /* Generate code into this virtual machine */
2775 KeyInfo *pKey; /* KeyInfo for index */
2776 int regRecord; /* Register holding assembled index record */
2777 sqlite3 *db = pParse->db; /* The database connection */
2778 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2779
2780 #ifndef SQLITE_OMIT_AUTHORIZATION
2781 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2782 db->aDb[iDb].zDbSName ) ){
2783 return;
2784 }
2785 #endif
2786
2787 /* Require a write-lock on the table to perform this operation */
2788 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2789
2790 v = sqlite3GetVdbe(pParse);
2791 if( v==0 ) return;
2792 if( memRootPage>=0 ){
2793 tnum = memRootPage;
2794 }else{
2795 tnum = pIndex->tnum;
2796 }
2797 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2798 assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2799
2800 /* Open the sorter cursor if we are to use one. */
2801 iSorter = pParse->nTab++;
2802 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2803 sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2804
2805 /* Open the table. Loop through all rows of the table, inserting index
2806 ** records into the sorter. */
2807 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2808 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2809 regRecord = sqlite3GetTempReg(pParse);
2810
2811 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2812 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2813 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2814 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2815 sqlite3VdbeJumpHere(v, addr1);
2816 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2817 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2818 (char *)pKey, P4_KEYINFO);
2819 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2820
2821 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2822 if( IsUniqueIndex(pIndex) ){
2823 int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2824 sqlite3VdbeGoto(v, j2);
2825 addr2 = sqlite3VdbeCurrentAddr(v);
2826 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2827 pIndex->nKeyCol); VdbeCoverage(v);
2828 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2829 }else{
2830 addr2 = sqlite3VdbeCurrentAddr(v);
2831 }
2832 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2833 sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1);
2834 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2835 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2836 sqlite3ReleaseTempReg(pParse, regRecord);
2837 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2838 sqlite3VdbeJumpHere(v, addr1);
2839
2840 sqlite3VdbeAddOp1(v, OP_Close, iTab);
2841 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2842 sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2843 }
2844
2845 /*
2846 ** Allocate heap space to hold an Index object with nCol columns.
2847 **
2848 ** Increase the allocation size to provide an extra nExtra bytes
2849 ** of 8-byte aligned space after the Index object and return a
2850 ** pointer to this extra space in *ppExtra.
2851 */
2852 Index *sqlite3AllocateIndexObject(
2853 sqlite3 *db, /* Database connection */
2854 i16 nCol, /* Total number of columns in the index */
2855 int nExtra, /* Number of bytes of extra space to alloc */
2856 char **ppExtra /* Pointer to the "extra" space */
2857 ){
2858 Index *p; /* Allocated index object */
2859 int nByte; /* Bytes of space for Index object + arrays */
2860
2861 nByte = ROUND8(sizeof(Index)) + /* Index structure */
2862 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */
2863 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */
2864 sizeof(i16)*nCol + /* Index.aiColumn */
2865 sizeof(u8)*nCol); /* Index.aSortOrder */
2866 p = sqlite3DbMallocZero(db, nByte + nExtra);
2867 if( p ){
2868 char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2869 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
2870 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2871 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol;
2872 p->aSortOrder = (u8*)pExtra;
2873 p->nColumn = nCol;
2874 p->nKeyCol = nCol - 1;
2875 *ppExtra = ((char*)p) + nByte;
2876 }
2877 return p;
2878 }
2879
2880 /*
2881 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
2882 ** and pTblList is the name of the table that is to be indexed. Both will
2883 ** be NULL for a primary key or an index that is created to satisfy a
2884 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
2885 ** as the table to be indexed. pParse->pNewTable is a table that is
2886 ** currently being constructed by a CREATE TABLE statement.
2887 **
2888 ** pList is a list of columns to be indexed. pList will be NULL if this
2889 ** is a primary key or unique-constraint on the most recent column added
2890 ** to the table currently under construction.
2891 */
2892 void sqlite3CreateIndex(
2893 Parse *pParse, /* All information about this parse */
2894 Token *pName1, /* First part of index name. May be NULL */
2895 Token *pName2, /* Second part of index name. May be NULL */
2896 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2897 ExprList *pList, /* A list of columns to be indexed */
2898 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2899 Token *pStart, /* The CREATE token that begins this statement */
2900 Expr *pPIWhere, /* WHERE clause for partial indices */
2901 int sortOrder, /* Sort order of primary key when pList==NULL */
2902 int ifNotExist, /* Omit error if index already exists */
2903 u8 idxType /* The index type */
2904 ){
2905 Table *pTab = 0; /* Table to be indexed */
2906 Index *pIndex = 0; /* The index to be created */
2907 char *zName = 0; /* Name of the index */
2908 int nName; /* Number of characters in zName */
2909 int i, j;
2910 DbFixer sFix; /* For assigning database names to pTable */
2911 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
2912 sqlite3 *db = pParse->db;
2913 Db *pDb; /* The specific table containing the indexed database */
2914 int iDb; /* Index of the database that is being written */
2915 Token *pName = 0; /* Unqualified name of the index to create */
2916 struct ExprList_item *pListItem; /* For looping over pList */
2917 int nExtra = 0; /* Space allocated for zExtra[] */
2918 int nExtraCol; /* Number of extra columns needed */
2919 char *zExtra = 0; /* Extra space after the Index object */
2920 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
2921
2922 if( db->mallocFailed || pParse->nErr>0 ){
2923 goto exit_create_index;
2924 }
2925 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
2926 goto exit_create_index;
2927 }
2928 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2929 goto exit_create_index;
2930 }
2931
2932 /*
2933 ** Find the table that is to be indexed. Return early if not found.
2934 */
2935 if( pTblName!=0 ){
2936
2937 /* Use the two-part index name to determine the database
2938 ** to search for the table. 'Fix' the table name to this db
2939 ** before looking up the table.
2940 */
2941 assert( pName1 && pName2 );
2942 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2943 if( iDb<0 ) goto exit_create_index;
2944 assert( pName && pName->z );
2945
2946 #ifndef SQLITE_OMIT_TEMPDB
2947 /* If the index name was unqualified, check if the table
2948 ** is a temp table. If so, set the database to 1. Do not do this
2949 ** if initialising a database schema.
2950 */
2951 if( !db->init.busy ){
2952 pTab = sqlite3SrcListLookup(pParse, pTblName);
2953 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2954 iDb = 1;
2955 }
2956 }
2957 #endif
2958
2959 sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2960 if( sqlite3FixSrcList(&sFix, pTblName) ){
2961 /* Because the parser constructs pTblName from a single identifier,
2962 ** sqlite3FixSrcList can never fail. */
2963 assert(0);
2964 }
2965 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
2966 assert( db->mallocFailed==0 || pTab==0 );
2967 if( pTab==0 ) goto exit_create_index;
2968 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
2969 sqlite3ErrorMsg(pParse,
2970 "cannot create a TEMP index on non-TEMP table \"%s\"",
2971 pTab->zName);
2972 goto exit_create_index;
2973 }
2974 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
2975 }else{
2976 assert( pName==0 );
2977 assert( pStart==0 );
2978 pTab = pParse->pNewTable;
2979 if( !pTab ) goto exit_create_index;
2980 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2981 }
2982 pDb = &db->aDb[iDb];
2983
2984 assert( pTab!=0 );
2985 assert( pParse->nErr==0 );
2986 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2987 && db->init.busy==0
2988 #if SQLITE_USER_AUTHENTICATION
2989 && sqlite3UserAuthTable(pTab->zName)==0
2990 #endif
2991 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
2992 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2993 goto exit_create_index;
2994 }
2995 #ifndef SQLITE_OMIT_VIEW
2996 if( pTab->pSelect ){
2997 sqlite3ErrorMsg(pParse, "views may not be indexed");
2998 goto exit_create_index;
2999 }
3000 #endif
3001 #ifndef SQLITE_OMIT_VIRTUALTABLE
3002 if( IsVirtual(pTab) ){
3003 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
3004 goto exit_create_index;
3005 }
3006 #endif
3007
3008 /*
3009 ** Find the name of the index. Make sure there is not already another
3010 ** index or table with the same name.
3011 **
3012 ** Exception: If we are reading the names of permanent indices from the
3013 ** sqlite_master table (because some other process changed the schema) and
3014 ** one of the index names collides with the name of a temporary table or
3015 ** index, then we will continue to process this index.
3016 **
3017 ** If pName==0 it means that we are
3018 ** dealing with a primary key or UNIQUE constraint. We have to invent our
3019 ** own name.
3020 */
3021 if( pName ){
3022 zName = sqlite3NameFromToken(db, pName);
3023 if( zName==0 ) goto exit_create_index;
3024 assert( pName->z!=0 );
3025 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3026 goto exit_create_index;
3027 }
3028 if( !db->init.busy ){
3029 if( sqlite3FindTable(db, zName, 0)!=0 ){
3030 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3031 goto exit_create_index;
3032 }
3033 }
3034 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
3035 if( !ifNotExist ){
3036 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3037 }else{
3038 assert( !db->init.busy );
3039 sqlite3CodeVerifySchema(pParse, iDb);
3040 }
3041 goto exit_create_index;
3042 }
3043 }else{
3044 int n;
3045 Index *pLoop;
3046 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3047 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3048 if( zName==0 ){
3049 goto exit_create_index;
3050 }
3051
3052 /* Automatic index names generated from within sqlite3_declare_vtab()
3053 ** must have names that are distinct from normal automatic index names.
3054 ** The following statement converts "sqlite3_autoindex..." into
3055 ** "sqlite3_butoindex..." in order to make the names distinct.
3056 ** The "vtab_err.test" test demonstrates the need of this statement. */
3057 if( IN_DECLARE_VTAB ) zName[7]++;
3058 }
3059
3060 /* Check for authorization to create an index.
3061 */
3062 #ifndef SQLITE_OMIT_AUTHORIZATION
3063 {
3064 const char *zDb = pDb->zDbSName;
3065 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3066 goto exit_create_index;
3067 }
3068 i = SQLITE_CREATE_INDEX;
3069 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3070 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3071 goto exit_create_index;
3072 }
3073 }
3074 #endif
3075
3076 /* If pList==0, it means this routine was called to make a primary
3077 ** key out of the last column added to the table under construction.
3078 ** So create a fake list to simulate this.
3079 */
3080 if( pList==0 ){
3081 Token prevCol;
3082 sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName);
3083 pList = sqlite3ExprListAppend(pParse, 0,
3084 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3085 if( pList==0 ) goto exit_create_index;
3086 assert( pList->nExpr==1 );
3087 sqlite3ExprListSetSortOrder(pList, sortOrder);
3088 }else{
3089 sqlite3ExprListCheckLength(pParse, pList, "index");
3090 }
3091
3092 /* Figure out how many bytes of space are required to store explicitly
3093 ** specified collation sequence names.
3094 */
3095 for(i=0; i<pList->nExpr; i++){
3096 Expr *pExpr = pList->a[i].pExpr;
3097 assert( pExpr!=0 );
3098 if( pExpr->op==TK_COLLATE ){
3099 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3100 }
3101 }
3102
3103 /*
3104 ** Allocate the index structure.
3105 */
3106 nName = sqlite3Strlen30(zName);
3107 nExtraCol = pPk ? pPk->nKeyCol : 1;
3108 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3109 nName + nExtra + 1, &zExtra);
3110 if( db->mallocFailed ){
3111 goto exit_create_index;
3112 }
3113 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3114 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3115 pIndex->zName = zExtra;
3116 zExtra += nName + 1;
3117 memcpy(pIndex->zName, zName, nName+1);
3118 pIndex->pTable = pTab;
3119 pIndex->onError = (u8)onError;
3120 pIndex->uniqNotNull = onError!=OE_None;
3121 pIndex->idxType = idxType;
3122 pIndex->pSchema = db->aDb[iDb].pSchema;
3123 pIndex->nKeyCol = pList->nExpr;
3124 if( pPIWhere ){
3125 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3126 pIndex->pPartIdxWhere = pPIWhere;
3127 pPIWhere = 0;
3128 }
3129 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3130
3131 /* Check to see if we should honor DESC requests on index columns
3132 */
3133 if( pDb->pSchema->file_format>=4 ){
3134 sortOrderMask = -1; /* Honor DESC */
3135 }else{
3136 sortOrderMask = 0; /* Ignore DESC */
3137 }
3138
3139 /* Analyze the list of expressions that form the terms of the index and
3140 ** report any errors. In the common case where the expression is exactly
3141 ** a table column, store that column in aiColumn[]. For general expressions,
3142 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3143 **
3144 ** TODO: Issue a warning if two or more columns of the index are identical.
3145 ** TODO: Issue a warning if the table primary key is used as part of the
3146 ** index key.
3147 */
3148 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3149 Expr *pCExpr; /* The i-th index expression */
3150 int requestedSortOrder; /* ASC or DESC on the i-th expression */
3151 const char *zColl; /* Collation sequence name */
3152
3153 sqlite3StringToId(pListItem->pExpr);
3154 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3155 if( pParse->nErr ) goto exit_create_index;
3156 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3157 if( pCExpr->op!=TK_COLUMN ){
3158 if( pTab==pParse->pNewTable ){
3159 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3160 "UNIQUE constraints");
3161 goto exit_create_index;
3162 }
3163 if( pIndex->aColExpr==0 ){
3164 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3165 pIndex->aColExpr = pCopy;
3166 if( !db->mallocFailed ){
3167 assert( pCopy!=0 );
3168 pListItem = &pCopy->a[i];
3169 }
3170 }
3171 j = XN_EXPR;
3172 pIndex->aiColumn[i] = XN_EXPR;
3173 pIndex->uniqNotNull = 0;
3174 }else{
3175 j = pCExpr->iColumn;
3176 assert( j<=0x7fff );
3177 if( j<0 ){
3178 j = pTab->iPKey;
3179 }else if( pTab->aCol[j].notNull==0 ){
3180 pIndex->uniqNotNull = 0;
3181 }
3182 pIndex->aiColumn[i] = (i16)j;
3183 }
3184 zColl = 0;
3185 if( pListItem->pExpr->op==TK_COLLATE ){
3186 int nColl;
3187 zColl = pListItem->pExpr->u.zToken;
3188 nColl = sqlite3Strlen30(zColl) + 1;
3189 assert( nExtra>=nColl );
3190 memcpy(zExtra, zColl, nColl);
3191 zColl = zExtra;
3192 zExtra += nColl;
3193 nExtra -= nColl;
3194 }else if( j>=0 ){
3195 zColl = pTab->aCol[j].zColl;
3196 }
3197 if( !zColl ) zColl = sqlite3StrBINARY;
3198 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3199 goto exit_create_index;
3200 }
3201 pIndex->azColl[i] = zColl;
3202 requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3203 pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3204 }
3205
3206 /* Append the table key to the end of the index. For WITHOUT ROWID
3207 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
3208 ** normal tables (when pPk==0) this will be the rowid.
3209 */
3210 if( pPk ){
3211 for(j=0; j<pPk->nKeyCol; j++){
3212 int x = pPk->aiColumn[j];
3213 assert( x>=0 );
3214 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3215 pIndex->nColumn--;
3216 }else{
3217 pIndex->aiColumn[i] = x;
3218 pIndex->azColl[i] = pPk->azColl[j];
3219 pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3220 i++;
3221 }
3222 }
3223 assert( i==pIndex->nColumn );
3224 }else{
3225 pIndex->aiColumn[i] = XN_ROWID;
3226 pIndex->azColl[i] = sqlite3StrBINARY;
3227 }
3228 sqlite3DefaultRowEst(pIndex);
3229 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3230
3231 /* If this index contains every column of its table, then mark
3232 ** it as a covering index */
3233 assert( HasRowid(pTab)
3234 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 );
3235 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
3236 pIndex->isCovering = 1;
3237 for(j=0; j<pTab->nCol; j++){
3238 if( j==pTab->iPKey ) continue;
3239 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue;
3240 pIndex->isCovering = 0;
3241 break;
3242 }
3243 }
3244
3245 if( pTab==pParse->pNewTable ){
3246 /* This routine has been called to create an automatic index as a
3247 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3248 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3249 ** i.e. one of:
3250 **
3251 ** CREATE TABLE t(x PRIMARY KEY, y);
3252 ** CREATE TABLE t(x, y, UNIQUE(x, y));
3253 **
3254 ** Either way, check to see if the table already has such an index. If
3255 ** so, don't bother creating this one. This only applies to
3256 ** automatically created indices. Users can do as they wish with
3257 ** explicit indices.
3258 **
3259 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3260 ** (and thus suppressing the second one) even if they have different
3261 ** sort orders.
3262 **
3263 ** If there are different collating sequences or if the columns of
3264 ** the constraint occur in different orders, then the constraints are
3265 ** considered distinct and both result in separate indices.
3266 */
3267 Index *pIdx;
3268 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3269 int k;
3270 assert( IsUniqueIndex(pIdx) );
3271 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3272 assert( IsUniqueIndex(pIndex) );
3273
3274 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3275 for(k=0; k<pIdx->nKeyCol; k++){
3276 const char *z1;
3277 const char *z2;
3278 assert( pIdx->aiColumn[k]>=0 );
3279 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3280 z1 = pIdx->azColl[k];
3281 z2 = pIndex->azColl[k];
3282 if( sqlite3StrICmp(z1, z2) ) break;
3283 }
3284 if( k==pIdx->nKeyCol ){
3285 if( pIdx->onError!=pIndex->onError ){
3286 /* This constraint creates the same index as a previous
3287 ** constraint specified somewhere in the CREATE TABLE statement.
3288 ** However the ON CONFLICT clauses are different. If both this
3289 ** constraint and the previous equivalent constraint have explicit
3290 ** ON CONFLICT clauses this is an error. Otherwise, use the
3291 ** explicitly specified behavior for the index.
3292 */
3293 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3294 sqlite3ErrorMsg(pParse,
3295 "conflicting ON CONFLICT clauses specified", 0);
3296 }
3297 if( pIdx->onError==OE_Default ){
3298 pIdx->onError = pIndex->onError;
3299 }
3300 }
3301 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
3302 goto exit_create_index;
3303 }
3304 }
3305 }
3306
3307 /* Link the new Index structure to its table and to the other
3308 ** in-memory database structures.
3309 */
3310 assert( pParse->nErr==0 );
3311 if( db->init.busy ){
3312 Index *p;
3313 assert( !IN_DECLARE_VTAB );
3314 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3315 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3316 pIndex->zName, pIndex);
3317 if( p ){
3318 assert( p==pIndex ); /* Malloc must have failed */
3319 sqlite3OomFault(db);
3320 goto exit_create_index;
3321 }
3322 db->flags |= SQLITE_InternChanges;
3323 if( pTblName!=0 ){
3324 pIndex->tnum = db->init.newTnum;
3325 }
3326 }
3327
3328 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3329 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3330 ** emit code to allocate the index rootpage on disk and make an entry for
3331 ** the index in the sqlite_master table and populate the index with
3332 ** content. But, do not do this if we are simply reading the sqlite_master
3333 ** table to parse the schema, or if this index is the PRIMARY KEY index
3334 ** of a WITHOUT ROWID table.
3335 **
3336 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3337 ** or UNIQUE index in a CREATE TABLE statement. Since the table
3338 ** has just been created, it contains no data and the index initialization
3339 ** step can be skipped.
3340 */
3341 else if( HasRowid(pTab) || pTblName!=0 ){
3342 Vdbe *v;
3343 char *zStmt;
3344 int iMem = ++pParse->nMem;
3345
3346 v = sqlite3GetVdbe(pParse);
3347 if( v==0 ) goto exit_create_index;
3348
3349 sqlite3BeginWriteOperation(pParse, 1, iDb);
3350
3351 /* Create the rootpage for the index using CreateIndex. But before
3352 ** doing so, code a Noop instruction and store its address in
3353 ** Index.tnum. This is required in case this index is actually a
3354 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3355 ** that case the convertToWithoutRowidTable() routine will replace
3356 ** the Noop with a Goto to jump over the VDBE code generated below. */
3357 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3358 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
3359
3360 /* Gather the complete text of the CREATE INDEX statement into
3361 ** the zStmt variable
3362 */
3363 if( pStart ){
3364 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3365 if( pName->z[n-1]==';' ) n--;
3366 /* A named index with an explicit CREATE INDEX statement */
3367 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3368 onError==OE_None ? "" : " UNIQUE", n, pName->z);
3369 }else{
3370 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3371 /* zStmt = sqlite3MPrintf(""); */
3372 zStmt = 0;
3373 }
3374
3375 /* Add an entry in sqlite_master for this index
3376 */
3377 sqlite3NestedParse(pParse,
3378 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3379 db->aDb[iDb].zDbSName, MASTER_NAME,
3380 pIndex->zName,
3381 pTab->zName,
3382 iMem,
3383 zStmt
3384 );
3385 sqlite3DbFree(db, zStmt);
3386
3387 /* Fill the index with data and reparse the schema. Code an OP_Expire
3388 ** to invalidate all pre-compiled statements.
3389 */
3390 if( pTblName ){
3391 sqlite3RefillIndex(pParse, pIndex, iMem);
3392 sqlite3ChangeCookie(pParse, iDb);
3393 sqlite3VdbeAddParseSchemaOp(v, iDb,
3394 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3395 sqlite3VdbeAddOp0(v, OP_Expire);
3396 }
3397
3398 sqlite3VdbeJumpHere(v, pIndex->tnum);
3399 }
3400
3401 /* When adding an index to the list of indices for a table, make
3402 ** sure all indices labeled OE_Replace come after all those labeled
3403 ** OE_Ignore. This is necessary for the correct constraint check
3404 ** processing (in sqlite3GenerateConstraintChecks()) as part of
3405 ** UPDATE and INSERT statements.
3406 */
3407 if( db->init.busy || pTblName==0 ){
3408 if( onError!=OE_Replace || pTab->pIndex==0
3409 || pTab->pIndex->onError==OE_Replace){
3410 pIndex->pNext = pTab->pIndex;
3411 pTab->pIndex = pIndex;
3412 }else{
3413 Index *pOther = pTab->pIndex;
3414 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3415 pOther = pOther->pNext;
3416 }
3417 pIndex->pNext = pOther->pNext;
3418 pOther->pNext = pIndex;
3419 }
3420 pIndex = 0;
3421 }
3422
3423 /* Clean up before exiting */
3424 exit_create_index:
3425 if( pIndex ) freeIndex(db, pIndex);
3426 sqlite3ExprDelete(db, pPIWhere);
3427 sqlite3ExprListDelete(db, pList);
3428 sqlite3SrcListDelete(db, pTblName);
3429 sqlite3DbFree(db, zName);
3430 }
3431
3432 /*
3433 ** Fill the Index.aiRowEst[] array with default information - information
3434 ** to be used when we have not run the ANALYZE command.
3435 **
3436 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3437 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
3438 ** number of rows in the table that match any particular value of the
3439 ** first column of the index. aiRowEst[2] is an estimate of the number
3440 ** of rows that match any particular combination of the first 2 columns
3441 ** of the index. And so forth. It must always be the case that
3442 *
3443 ** aiRowEst[N]<=aiRowEst[N-1]
3444 ** aiRowEst[N]>=1
3445 **
3446 ** Apart from that, we have little to go on besides intuition as to
3447 ** how aiRowEst[] should be initialized. The numbers generated here
3448 ** are based on typical values found in actual indices.
3449 */
3450 void sqlite3DefaultRowEst(Index *pIdx){
3451 /* 10, 9, 8, 7, 6 */
3452 LogEst aVal[] = { 33, 32, 30, 28, 26 };
3453 LogEst *a = pIdx->aiRowLogEst;
3454 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3455 int i;
3456
3457 /* Set the first entry (number of rows in the index) to the estimated
3458 ** number of rows in the table, or half the number of rows in the table
3459 ** for a partial index. But do not let the estimate drop below 10. */
3460 a[0] = pIdx->pTable->nRowLogEst;
3461 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) );
3462 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) );
3463
3464 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3465 ** 6 and each subsequent value (if any) is 5. */
3466 memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3467 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3468 a[i] = 23; assert( 23==sqlite3LogEst(5) );
3469 }
3470
3471 assert( 0==sqlite3LogEst(1) );
3472 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3473 }
3474
3475 /*
3476 ** This routine will drop an existing named index. This routine
3477 ** implements the DROP INDEX statement.
3478 */
3479 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3480 Index *pIndex;
3481 Vdbe *v;
3482 sqlite3 *db = pParse->db;
3483 int iDb;
3484
3485 assert( pParse->nErr==0 ); /* Never called with prior errors */
3486 if( db->mallocFailed ){
3487 goto exit_drop_index;
3488 }
3489 assert( pName->nSrc==1 );
3490 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3491 goto exit_drop_index;
3492 }
3493 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3494 if( pIndex==0 ){
3495 if( !ifExists ){
3496 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3497 }else{
3498 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3499 }
3500 pParse->checkSchema = 1;
3501 goto exit_drop_index;
3502 }
3503 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3504 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3505 "or PRIMARY KEY constraint cannot be dropped", 0);
3506 goto exit_drop_index;
3507 }
3508 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3509 #ifndef SQLITE_OMIT_AUTHORIZATION
3510 {
3511 int code = SQLITE_DROP_INDEX;
3512 Table *pTab = pIndex->pTable;
3513 const char *zDb = db->aDb[iDb].zDbSName;
3514 const char *zTab = SCHEMA_TABLE(iDb);
3515 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3516 goto exit_drop_index;
3517 }
3518 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3519 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3520 goto exit_drop_index;
3521 }
3522 }
3523 #endif
3524
3525 /* Generate code to remove the index and from the master table */
3526 v = sqlite3GetVdbe(pParse);
3527 if( v ){
3528 sqlite3BeginWriteOperation(pParse, 1, iDb);
3529 sqlite3NestedParse(pParse,
3530 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3531 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName
3532 );
3533 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3534 sqlite3ChangeCookie(pParse, iDb);
3535 destroyRootPage(pParse, pIndex->tnum, iDb);
3536 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3537 }
3538
3539 exit_drop_index:
3540 sqlite3SrcListDelete(db, pName);
3541 }
3542
3543 /*
3544 ** pArray is a pointer to an array of objects. Each object in the
3545 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3546 ** to extend the array so that there is space for a new object at the end.
3547 **
3548 ** When this function is called, *pnEntry contains the current size of
3549 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3550 ** in total).
3551 **
3552 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3553 ** space allocated for the new object is zeroed, *pnEntry updated to
3554 ** reflect the new size of the array and a pointer to the new allocation
3555 ** returned. *pIdx is set to the index of the new array entry in this case.
3556 **
3557 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3558 ** unchanged and a copy of pArray returned.
3559 */
3560 void *sqlite3ArrayAllocate(
3561 sqlite3 *db, /* Connection to notify of malloc failures */
3562 void *pArray, /* Array of objects. Might be reallocated */
3563 int szEntry, /* Size of each object in the array */
3564 int *pnEntry, /* Number of objects currently in use */
3565 int *pIdx /* Write the index of a new slot here */
3566 ){
3567 char *z;
3568 int n = *pnEntry;
3569 if( (n & (n-1))==0 ){
3570 int sz = (n==0) ? 1 : 2*n;
3571 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3572 if( pNew==0 ){
3573 *pIdx = -1;
3574 return pArray;
3575 }
3576 pArray = pNew;
3577 }
3578 z = (char*)pArray;
3579 memset(&z[n * szEntry], 0, szEntry);
3580 *pIdx = n;
3581 ++*pnEntry;
3582 return pArray;
3583 }
3584
3585 /*
3586 ** Append a new element to the given IdList. Create a new IdList if
3587 ** need be.
3588 **
3589 ** A new IdList is returned, or NULL if malloc() fails.
3590 */
3591 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3592 int i;
3593 if( pList==0 ){
3594 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3595 if( pList==0 ) return 0;
3596 }
3597 pList->a = sqlite3ArrayAllocate(
3598 db,
3599 pList->a,
3600 sizeof(pList->a[0]),
3601 &pList->nId,
3602 &i
3603 );
3604 if( i<0 ){
3605 sqlite3IdListDelete(db, pList);
3606 return 0;
3607 }
3608 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3609 return pList;
3610 }
3611
3612 /*
3613 ** Delete an IdList.
3614 */
3615 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3616 int i;
3617 if( pList==0 ) return;
3618 for(i=0; i<pList->nId; i++){
3619 sqlite3DbFree(db, pList->a[i].zName);
3620 }
3621 sqlite3DbFree(db, pList->a);
3622 sqlite3DbFree(db, pList);
3623 }
3624
3625 /*
3626 ** Return the index in pList of the identifier named zId. Return -1
3627 ** if not found.
3628 */
3629 int sqlite3IdListIndex(IdList *pList, const char *zName){
3630 int i;
3631 if( pList==0 ) return -1;
3632 for(i=0; i<pList->nId; i++){
3633 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3634 }
3635 return -1;
3636 }
3637
3638 /*
3639 ** Expand the space allocated for the given SrcList object by
3640 ** creating nExtra new slots beginning at iStart. iStart is zero based.
3641 ** New slots are zeroed.
3642 **
3643 ** For example, suppose a SrcList initially contains two entries: A,B.
3644 ** To append 3 new entries onto the end, do this:
3645 **
3646 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3647 **
3648 ** After the call above it would contain: A, B, nil, nil, nil.
3649 ** If the iStart argument had been 1 instead of 2, then the result
3650 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
3651 ** the iStart value would be 0. The result then would
3652 ** be: nil, nil, nil, A, B.
3653 **
3654 ** If a memory allocation fails the SrcList is unchanged. The
3655 ** db->mallocFailed flag will be set to true.
3656 */
3657 SrcList *sqlite3SrcListEnlarge(
3658 sqlite3 *db, /* Database connection to notify of OOM errors */
3659 SrcList *pSrc, /* The SrcList to be enlarged */
3660 int nExtra, /* Number of new slots to add to pSrc->a[] */
3661 int iStart /* Index in pSrc->a[] of first new slot */
3662 ){
3663 int i;
3664
3665 /* Sanity checking on calling parameters */
3666 assert( iStart>=0 );
3667 assert( nExtra>=1 );
3668 assert( pSrc!=0 );
3669 assert( iStart<=pSrc->nSrc );
3670
3671 /* Allocate additional space if needed */
3672 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3673 SrcList *pNew;
3674 int nAlloc = pSrc->nSrc*2+nExtra;
3675 int nGot;
3676 pNew = sqlite3DbRealloc(db, pSrc,
3677 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3678 if( pNew==0 ){
3679 assert( db->mallocFailed );
3680 return pSrc;
3681 }
3682 pSrc = pNew;
3683 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3684 pSrc->nAlloc = nGot;
3685 }
3686
3687 /* Move existing slots that come after the newly inserted slots
3688 ** out of the way */
3689 for(i=pSrc->nSrc-1; i>=iStart; i--){
3690 pSrc->a[i+nExtra] = pSrc->a[i];
3691 }
3692 pSrc->nSrc += nExtra;
3693
3694 /* Zero the newly allocated slots */
3695 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3696 for(i=iStart; i<iStart+nExtra; i++){
3697 pSrc->a[i].iCursor = -1;
3698 }
3699
3700 /* Return a pointer to the enlarged SrcList */
3701 return pSrc;
3702 }
3703
3704
3705 /*
3706 ** Append a new table name to the given SrcList. Create a new SrcList if
3707 ** need be. A new entry is created in the SrcList even if pTable is NULL.
3708 **
3709 ** A SrcList is returned, or NULL if there is an OOM error. The returned
3710 ** SrcList might be the same as the SrcList that was input or it might be
3711 ** a new one. If an OOM error does occurs, then the prior value of pList
3712 ** that is input to this routine is automatically freed.
3713 **
3714 ** If pDatabase is not null, it means that the table has an optional
3715 ** database name prefix. Like this: "database.table". The pDatabase
3716 ** points to the table name and the pTable points to the database name.
3717 ** The SrcList.a[].zName field is filled with the table name which might
3718 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3719 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3720 ** or with NULL if no database is specified.
3721 **
3722 ** In other words, if call like this:
3723 **
3724 ** sqlite3SrcListAppend(D,A,B,0);
3725 **
3726 ** Then B is a table name and the database name is unspecified. If called
3727 ** like this:
3728 **
3729 ** sqlite3SrcListAppend(D,A,B,C);
3730 **
3731 ** Then C is the table name and B is the database name. If C is defined
3732 ** then so is B. In other words, we never have a case where:
3733 **
3734 ** sqlite3SrcListAppend(D,A,0,C);
3735 **
3736 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
3737 ** before being added to the SrcList.
3738 */
3739 SrcList *sqlite3SrcListAppend(
3740 sqlite3 *db, /* Connection to notify of malloc failures */
3741 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
3742 Token *pTable, /* Table to append */
3743 Token *pDatabase /* Database of the table */
3744 ){
3745 struct SrcList_item *pItem;
3746 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
3747 assert( db!=0 );
3748 if( pList==0 ){
3749 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) );
3750 if( pList==0 ) return 0;
3751 pList->nAlloc = 1;
3752 pList->nSrc = 1;
3753 memset(&pList->a[0], 0, sizeof(pList->a[0]));
3754 pList->a[0].iCursor = -1;
3755 }else{
3756 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3757 }
3758 if( db->mallocFailed ){
3759 sqlite3SrcListDelete(db, pList);
3760 return 0;
3761 }
3762 pItem = &pList->a[pList->nSrc-1];
3763 if( pDatabase && pDatabase->z==0 ){
3764 pDatabase = 0;
3765 }
3766 if( pDatabase ){
3767 Token *pTemp = pDatabase;
3768 pDatabase = pTable;
3769 pTable = pTemp;
3770 }
3771 pItem->zName = sqlite3NameFromToken(db, pTable);
3772 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3773 return pList;
3774 }
3775
3776 /*
3777 ** Assign VdbeCursor index numbers to all tables in a SrcList
3778 */
3779 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3780 int i;
3781 struct SrcList_item *pItem;
3782 assert(pList || pParse->db->mallocFailed );
3783 if( pList ){
3784 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3785 if( pItem->iCursor>=0 ) break;
3786 pItem->iCursor = pParse->nTab++;
3787 if( pItem->pSelect ){
3788 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3789 }
3790 }
3791 }
3792 }
3793
3794 /*
3795 ** Delete an entire SrcList including all its substructure.
3796 */
3797 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3798 int i;
3799 struct SrcList_item *pItem;
3800 if( pList==0 ) return;
3801 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3802 sqlite3DbFree(db, pItem->zDatabase);
3803 sqlite3DbFree(db, pItem->zName);
3804 sqlite3DbFree(db, pItem->zAlias);
3805 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3806 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3807 sqlite3DeleteTable(db, pItem->pTab);
3808 sqlite3SelectDelete(db, pItem->pSelect);
3809 sqlite3ExprDelete(db, pItem->pOn);
3810 sqlite3IdListDelete(db, pItem->pUsing);
3811 }
3812 sqlite3DbFree(db, pList);
3813 }
3814
3815 /*
3816 ** This routine is called by the parser to add a new term to the
3817 ** end of a growing FROM clause. The "p" parameter is the part of
3818 ** the FROM clause that has already been constructed. "p" is NULL
3819 ** if this is the first term of the FROM clause. pTable and pDatabase
3820 ** are the name of the table and database named in the FROM clause term.
3821 ** pDatabase is NULL if the database name qualifier is missing - the
3822 ** usual case. If the term has an alias, then pAlias points to the
3823 ** alias token. If the term is a subquery, then pSubquery is the
3824 ** SELECT statement that the subquery encodes. The pTable and
3825 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
3826 ** parameters are the content of the ON and USING clauses.
3827 **
3828 ** Return a new SrcList which encodes is the FROM with the new
3829 ** term added.
3830 */
3831 SrcList *sqlite3SrcListAppendFromTerm(
3832 Parse *pParse, /* Parsing context */
3833 SrcList *p, /* The left part of the FROM clause already seen */
3834 Token *pTable, /* Name of the table to add to the FROM clause */
3835 Token *pDatabase, /* Name of the database containing pTable */
3836 Token *pAlias, /* The right-hand side of the AS subexpression */
3837 Select *pSubquery, /* A subquery used in place of a table name */
3838 Expr *pOn, /* The ON clause of a join */
3839 IdList *pUsing /* The USING clause of a join */
3840 ){
3841 struct SrcList_item *pItem;
3842 sqlite3 *db = pParse->db;
3843 if( !p && (pOn || pUsing) ){
3844 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3845 (pOn ? "ON" : "USING")
3846 );
3847 goto append_from_error;
3848 }
3849 p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3850 if( p==0 || NEVER(p->nSrc==0) ){
3851 goto append_from_error;
3852 }
3853 pItem = &p->a[p->nSrc-1];
3854 assert( pAlias!=0 );
3855 if( pAlias->n ){
3856 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3857 }
3858 pItem->pSelect = pSubquery;
3859 pItem->pOn = pOn;
3860 pItem->pUsing = pUsing;
3861 return p;
3862
3863 append_from_error:
3864 assert( p==0 );
3865 sqlite3ExprDelete(db, pOn);
3866 sqlite3IdListDelete(db, pUsing);
3867 sqlite3SelectDelete(db, pSubquery);
3868 return 0;
3869 }
3870
3871 /*
3872 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3873 ** element of the source-list passed as the second argument.
3874 */
3875 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3876 assert( pIndexedBy!=0 );
3877 if( p && ALWAYS(p->nSrc>0) ){
3878 struct SrcList_item *pItem = &p->a[p->nSrc-1];
3879 assert( pItem->fg.notIndexed==0 );
3880 assert( pItem->fg.isIndexedBy==0 );
3881 assert( pItem->fg.isTabFunc==0 );
3882 if( pIndexedBy->n==1 && !pIndexedBy->z ){
3883 /* A "NOT INDEXED" clause was supplied. See parse.y
3884 ** construct "indexed_opt" for details. */
3885 pItem->fg.notIndexed = 1;
3886 }else{
3887 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3888 pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0);
3889 }
3890 }
3891 }
3892
3893 /*
3894 ** Add the list of function arguments to the SrcList entry for a
3895 ** table-valued-function.
3896 */
3897 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3898 if( p ){
3899 struct SrcList_item *pItem = &p->a[p->nSrc-1];
3900 assert( pItem->fg.notIndexed==0 );
3901 assert( pItem->fg.isIndexedBy==0 );
3902 assert( pItem->fg.isTabFunc==0 );
3903 pItem->u1.pFuncArg = pList;
3904 pItem->fg.isTabFunc = 1;
3905 }else{
3906 sqlite3ExprListDelete(pParse->db, pList);
3907 }
3908 }
3909
3910 /*
3911 ** When building up a FROM clause in the parser, the join operator
3912 ** is initially attached to the left operand. But the code generator
3913 ** expects the join operator to be on the right operand. This routine
3914 ** Shifts all join operators from left to right for an entire FROM
3915 ** clause.
3916 **
3917 ** Example: Suppose the join is like this:
3918 **
3919 ** A natural cross join B
3920 **
3921 ** The operator is "natural cross join". The A and B operands are stored
3922 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
3923 ** operator with A. This routine shifts that operator over to B.
3924 */
3925 void sqlite3SrcListShiftJoinType(SrcList *p){
3926 if( p ){
3927 int i;
3928 for(i=p->nSrc-1; i>0; i--){
3929 p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3930 }
3931 p->a[0].fg.jointype = 0;
3932 }
3933 }
3934
3935 /*
3936 ** Generate VDBE code for a BEGIN statement.
3937 */
3938 void sqlite3BeginTransaction(Parse *pParse, int type){
3939 sqlite3 *db;
3940 Vdbe *v;
3941 int i;
3942
3943 assert( pParse!=0 );
3944 db = pParse->db;
3945 assert( db!=0 );
3946 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3947 return;
3948 }
3949 v = sqlite3GetVdbe(pParse);
3950 if( !v ) return;
3951 if( type!=TK_DEFERRED ){
3952 for(i=0; i<db->nDb; i++){
3953 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3954 sqlite3VdbeUsesBtree(v, i);
3955 }
3956 }
3957 sqlite3VdbeAddOp0(v, OP_AutoCommit);
3958 }
3959
3960 /*
3961 ** Generate VDBE code for a COMMIT statement.
3962 */
3963 void sqlite3CommitTransaction(Parse *pParse){
3964 Vdbe *v;
3965
3966 assert( pParse!=0 );
3967 assert( pParse->db!=0 );
3968 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3969 return;
3970 }
3971 v = sqlite3GetVdbe(pParse);
3972 if( v ){
3973 sqlite3VdbeAddOp1(v, OP_AutoCommit, 1);
3974 }
3975 }
3976
3977 /*
3978 ** Generate VDBE code for a ROLLBACK statement.
3979 */
3980 void sqlite3RollbackTransaction(Parse *pParse){
3981 Vdbe *v;
3982
3983 assert( pParse!=0 );
3984 assert( pParse->db!=0 );
3985 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3986 return;
3987 }
3988 v = sqlite3GetVdbe(pParse);
3989 if( v ){
3990 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3991 }
3992 }
3993
3994 /*
3995 ** This function is called by the parser when it parses a command to create,
3996 ** release or rollback an SQL savepoint.
3997 */
3998 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3999 char *zName = sqlite3NameFromToken(pParse->db, pName);
4000 if( zName ){
4001 Vdbe *v = sqlite3GetVdbe(pParse);
4002 #ifndef SQLITE_OMIT_AUTHORIZATION
4003 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
4004 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
4005 #endif
4006 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
4007 sqlite3DbFree(pParse->db, zName);
4008 return;
4009 }
4010 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
4011 }
4012 }
4013
4014 /*
4015 ** Make sure the TEMP database is open and available for use. Return
4016 ** the number of errors. Leave any error messages in the pParse structure.
4017 */
4018 int sqlite3OpenTempDatabase(Parse *pParse){
4019 sqlite3 *db = pParse->db;
4020 if( db->aDb[1].pBt==0 && !pParse->explain ){
4021 int rc;
4022 Btree *pBt;
4023 static const int flags =
4024 SQLITE_OPEN_READWRITE |
4025 SQLITE_OPEN_CREATE |
4026 SQLITE_OPEN_EXCLUSIVE |
4027 SQLITE_OPEN_DELETEONCLOSE |
4028 SQLITE_OPEN_TEMP_DB;
4029
4030 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4031 if( rc!=SQLITE_OK ){
4032 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4033 "file for storing temporary tables");
4034 pParse->rc = rc;
4035 return 1;
4036 }
4037 db->aDb[1].pBt = pBt;
4038 assert( db->aDb[1].pSchema );
4039 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4040 sqlite3OomFault(db);
4041 return 1;
4042 }
4043 }
4044 return 0;
4045 }
4046
4047 /*
4048 ** Record the fact that the schema cookie will need to be verified
4049 ** for database iDb. The code to actually verify the schema cookie
4050 ** will occur at the end of the top-level VDBE and will be generated
4051 ** later, by sqlite3FinishCoding().
4052 */
4053 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4054 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4055
4056 assert( iDb>=0 && iDb<pParse->db->nDb );
4057 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 );
4058 assert( iDb<SQLITE_MAX_ATTACHED+2 );
4059 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) );
4060 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4061 DbMaskSet(pToplevel->cookieMask, iDb);
4062 if( !OMIT_TEMPDB && iDb==1 ){
4063 sqlite3OpenTempDatabase(pToplevel);
4064 }
4065 }
4066 }
4067
4068 /*
4069 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4070 ** attached database. Otherwise, invoke it for the database named zDb only.
4071 */
4072 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4073 sqlite3 *db = pParse->db;
4074 int i;
4075 for(i=0; i<db->nDb; i++){
4076 Db *pDb = &db->aDb[i];
4077 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
4078 sqlite3CodeVerifySchema(pParse, i);
4079 }
4080 }
4081 }
4082
4083 /*
4084 ** Generate VDBE code that prepares for doing an operation that
4085 ** might change the database.
4086 **
4087 ** This routine starts a new transaction if we are not already within
4088 ** a transaction. If we are already within a transaction, then a checkpoint
4089 ** is set if the setStatement parameter is true. A checkpoint should
4090 ** be set for operations that might fail (due to a constraint) part of
4091 ** the way through and which will need to undo some writes without having to
4092 ** rollback the whole transaction. For operations where all constraints
4093 ** can be checked before any changes are made to the database, it is never
4094 ** necessary to undo a write and the checkpoint should not be set.
4095 */
4096 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4097 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4098 sqlite3CodeVerifySchema(pParse, iDb);
4099 DbMaskSet(pToplevel->writeMask, iDb);
4100 pToplevel->isMultiWrite |= setStatement;
4101 }
4102
4103 /*
4104 ** Indicate that the statement currently under construction might write
4105 ** more than one entry (example: deleting one row then inserting another,
4106 ** inserting multiple rows in a table, or inserting a row and index entries.)
4107 ** If an abort occurs after some of these writes have completed, then it will
4108 ** be necessary to undo the completed writes.
4109 */
4110 void sqlite3MultiWrite(Parse *pParse){
4111 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4112 pToplevel->isMultiWrite = 1;
4113 }
4114
4115 /*
4116 ** The code generator calls this routine if is discovers that it is
4117 ** possible to abort a statement prior to completion. In order to
4118 ** perform this abort without corrupting the database, we need to make
4119 ** sure that the statement is protected by a statement transaction.
4120 **
4121 ** Technically, we only need to set the mayAbort flag if the
4122 ** isMultiWrite flag was previously set. There is a time dependency
4123 ** such that the abort must occur after the multiwrite. This makes
4124 ** some statements involving the REPLACE conflict resolution algorithm
4125 ** go a little faster. But taking advantage of this time dependency
4126 ** makes it more difficult to prove that the code is correct (in
4127 ** particular, it prevents us from writing an effective
4128 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4129 ** to take the safe route and skip the optimization.
4130 */
4131 void sqlite3MayAbort(Parse *pParse){
4132 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4133 pToplevel->mayAbort = 1;
4134 }
4135
4136 /*
4137 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4138 ** error. The onError parameter determines which (if any) of the statement
4139 ** and/or current transaction is rolled back.
4140 */
4141 void sqlite3HaltConstraint(
4142 Parse *pParse, /* Parsing context */
4143 int errCode, /* extended error code */
4144 int onError, /* Constraint type */
4145 char *p4, /* Error message */
4146 i8 p4type, /* P4_STATIC or P4_TRANSIENT */
4147 u8 p5Errmsg /* P5_ErrMsg type */
4148 ){
4149 Vdbe *v = sqlite3GetVdbe(pParse);
4150 assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4151 if( onError==OE_Abort ){
4152 sqlite3MayAbort(pParse);
4153 }
4154 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4155 sqlite3VdbeChangeP5(v, p5Errmsg);
4156 }
4157
4158 /*
4159 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4160 */
4161 void sqlite3UniqueConstraint(
4162 Parse *pParse, /* Parsing context */
4163 int onError, /* Constraint type */
4164 Index *pIdx /* The index that triggers the constraint */
4165 ){
4166 char *zErr;
4167 int j;
4168 StrAccum errMsg;
4169 Table *pTab = pIdx->pTable;
4170
4171 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4172 if( pIdx->aColExpr ){
4173 sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName);
4174 }else{
4175 for(j=0; j<pIdx->nKeyCol; j++){
4176 char *zCol;
4177 assert( pIdx->aiColumn[j]>=0 );
4178 zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4179 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4180 sqlite3XPrintf(&errMsg, "%s.%s", pTab->zName, zCol);
4181 }
4182 }
4183 zErr = sqlite3StrAccumFinish(&errMsg);
4184 sqlite3HaltConstraint(pParse,
4185 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4186 : SQLITE_CONSTRAINT_UNIQUE,
4187 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4188 }
4189
4190
4191 /*
4192 ** Code an OP_Halt due to non-unique rowid.
4193 */
4194 void sqlite3RowidConstraint(
4195 Parse *pParse, /* Parsing context */
4196 int onError, /* Conflict resolution algorithm */
4197 Table *pTab /* The table with the non-unique rowid */
4198 ){
4199 char *zMsg;
4200 int rc;
4201 if( pTab->iPKey>=0 ){
4202 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4203 pTab->aCol[pTab->iPKey].zName);
4204 rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4205 }else{
4206 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4207 rc = SQLITE_CONSTRAINT_ROWID;
4208 }
4209 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4210 P5_ConstraintUnique);
4211 }
4212
4213 /*
4214 ** Check to see if pIndex uses the collating sequence pColl. Return
4215 ** true if it does and false if it does not.
4216 */
4217 #ifndef SQLITE_OMIT_REINDEX
4218 static int collationMatch(const char *zColl, Index *pIndex){
4219 int i;
4220 assert( zColl!=0 );
4221 for(i=0; i<pIndex->nColumn; i++){
4222 const char *z = pIndex->azColl[i];
4223 assert( z!=0 || pIndex->aiColumn[i]<0 );
4224 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4225 return 1;
4226 }
4227 }
4228 return 0;
4229 }
4230 #endif
4231
4232 /*
4233 ** Recompute all indices of pTab that use the collating sequence pColl.
4234 ** If pColl==0 then recompute all indices of pTab.
4235 */
4236 #ifndef SQLITE_OMIT_REINDEX
4237 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4238 Index *pIndex; /* An index associated with pTab */
4239
4240 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4241 if( zColl==0 || collationMatch(zColl, pIndex) ){
4242 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4243 sqlite3BeginWriteOperation(pParse, 0, iDb);
4244 sqlite3RefillIndex(pParse, pIndex, -1);
4245 }
4246 }
4247 }
4248 #endif
4249
4250 /*
4251 ** Recompute all indices of all tables in all databases where the
4252 ** indices use the collating sequence pColl. If pColl==0 then recompute
4253 ** all indices everywhere.
4254 */
4255 #ifndef SQLITE_OMIT_REINDEX
4256 static void reindexDatabases(Parse *pParse, char const *zColl){
4257 Db *pDb; /* A single database */
4258 int iDb; /* The database index number */
4259 sqlite3 *db = pParse->db; /* The database connection */
4260 HashElem *k; /* For looping over tables in pDb */
4261 Table *pTab; /* A table in the database */
4262
4263 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
4264 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4265 assert( pDb!=0 );
4266 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
4267 pTab = (Table*)sqliteHashData(k);
4268 reindexTable(pParse, pTab, zColl);
4269 }
4270 }
4271 }
4272 #endif
4273
4274 /*
4275 ** Generate code for the REINDEX command.
4276 **
4277 ** REINDEX -- 1
4278 ** REINDEX <collation> -- 2
4279 ** REINDEX ?<database>.?<tablename> -- 3
4280 ** REINDEX ?<database>.?<indexname> -- 4
4281 **
4282 ** Form 1 causes all indices in all attached databases to be rebuilt.
4283 ** Form 2 rebuilds all indices in all databases that use the named
4284 ** collating function. Forms 3 and 4 rebuild the named index or all
4285 ** indices associated with the named table.
4286 */
4287 #ifndef SQLITE_OMIT_REINDEX
4288 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4289 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
4290 char *z; /* Name of a table or index */
4291 const char *zDb; /* Name of the database */
4292 Table *pTab; /* A table in the database */
4293 Index *pIndex; /* An index associated with pTab */
4294 int iDb; /* The database index number */
4295 sqlite3 *db = pParse->db; /* The database connection */
4296 Token *pObjName; /* Name of the table or index to be reindexed */
4297
4298 /* Read the database schema. If an error occurs, leave an error message
4299 ** and code in pParse and return NULL. */
4300 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4301 return;
4302 }
4303
4304 if( pName1==0 ){
4305 reindexDatabases(pParse, 0);
4306 return;
4307 }else if( NEVER(pName2==0) || pName2->z==0 ){
4308 char *zColl;
4309 assert( pName1->z );
4310 zColl = sqlite3NameFromToken(pParse->db, pName1);
4311 if( !zColl ) return;
4312 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4313 if( pColl ){
4314 reindexDatabases(pParse, zColl);
4315 sqlite3DbFree(db, zColl);
4316 return;
4317 }
4318 sqlite3DbFree(db, zColl);
4319 }
4320 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4321 if( iDb<0 ) return;
4322 z = sqlite3NameFromToken(db, pObjName);
4323 if( z==0 ) return;
4324 zDb = db->aDb[iDb].zDbSName;
4325 pTab = sqlite3FindTable(db, z, zDb);
4326 if( pTab ){
4327 reindexTable(pParse, pTab, 0);
4328 sqlite3DbFree(db, z);
4329 return;
4330 }
4331 pIndex = sqlite3FindIndex(db, z, zDb);
4332 sqlite3DbFree(db, z);
4333 if( pIndex ){
4334 sqlite3BeginWriteOperation(pParse, 0, iDb);
4335 sqlite3RefillIndex(pParse, pIndex, -1);
4336 return;
4337 }
4338 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4339 }
4340 #endif
4341
4342 /*
4343 ** Return a KeyInfo structure that is appropriate for the given Index.
4344 **
4345 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4346 ** when it has finished using it.
4347 */
4348 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4349 int i;
4350 int nCol = pIdx->nColumn;
4351 int nKey = pIdx->nKeyCol;
4352 KeyInfo *pKey;
4353 if( pParse->nErr ) return 0;
4354 if( pIdx->uniqNotNull ){
4355 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4356 }else{
4357 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4358 }
4359 if( pKey ){
4360 assert( sqlite3KeyInfoIsWriteable(pKey) );
4361 for(i=0; i<nCol; i++){
4362 const char *zColl = pIdx->azColl[i];
4363 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
4364 sqlite3LocateCollSeq(pParse, zColl);
4365 pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4366 }
4367 if( pParse->nErr ){
4368 sqlite3KeyInfoUnref(pKey);
4369 pKey = 0;
4370 }
4371 }
4372 return pKey;
4373 }
4374
4375 #ifndef SQLITE_OMIT_CTE
4376 /*
4377 ** This routine is invoked once per CTE by the parser while parsing a
4378 ** WITH clause.
4379 */
4380 With *sqlite3WithAdd(
4381 Parse *pParse, /* Parsing context */
4382 With *pWith, /* Existing WITH clause, or NULL */
4383 Token *pName, /* Name of the common-table */
4384 ExprList *pArglist, /* Optional column name list for the table */
4385 Select *pQuery /* Query used to initialize the table */
4386 ){
4387 sqlite3 *db = pParse->db;
4388 With *pNew;
4389 char *zName;
4390
4391 /* Check that the CTE name is unique within this WITH clause. If
4392 ** not, store an error in the Parse structure. */
4393 zName = sqlite3NameFromToken(pParse->db, pName);
4394 if( zName && pWith ){
4395 int i;
4396 for(i=0; i<pWith->nCte; i++){
4397 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4398 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4399 }
4400 }
4401 }
4402
4403 if( pWith ){
4404 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4405 pNew = sqlite3DbRealloc(db, pWith, nByte);
4406 }else{
4407 pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4408 }
4409 assert( (pNew!=0 && zName!=0) || db->mallocFailed );
4410
4411 if( db->mallocFailed ){
4412 sqlite3ExprListDelete(db, pArglist);
4413 sqlite3SelectDelete(db, pQuery);
4414 sqlite3DbFree(db, zName);
4415 pNew = pWith;
4416 }else{
4417 pNew->a[pNew->nCte].pSelect = pQuery;
4418 pNew->a[pNew->nCte].pCols = pArglist;
4419 pNew->a[pNew->nCte].zName = zName;
4420 pNew->a[pNew->nCte].zCteErr = 0;
4421 pNew->nCte++;
4422 }
4423
4424 return pNew;
4425 }
4426
4427 /*
4428 ** Free the contents of the With object passed as the second argument.
4429 */
4430 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4431 if( pWith ){
4432 int i;
4433 for(i=0; i<pWith->nCte; i++){
4434 struct Cte *pCte = &pWith->a[i];
4435 sqlite3ExprListDelete(db, pCte->pCols);
4436 sqlite3SelectDelete(db, pCte->pSelect);
4437 sqlite3DbFree(db, pCte->zName);
4438 }
4439 sqlite3DbFree(db, pWith);
4440 }
4441 }
4442 #endif /* !defined(SQLITE_OMIT_CTE) */
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3170000/src/btreeInt.h ('k') | third_party/sqlite/sqlite-src-3170000/src/callback.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698