OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2004 April 6 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This file implements an external (disk-based) database using BTrees. |
| 13 ** See the header comment on "btreeInt.h" for additional information. |
| 14 ** Including a description of file format and an overview of operation. |
| 15 */ |
| 16 #include "btreeInt.h" |
| 17 |
| 18 /* |
| 19 ** The header string that appears at the beginning of every |
| 20 ** SQLite database. |
| 21 */ |
| 22 static const char zMagicHeader[] = SQLITE_FILE_HEADER; |
| 23 |
| 24 /* |
| 25 ** Set this global variable to 1 to enable tracing using the TRACE |
| 26 ** macro. |
| 27 */ |
| 28 #if 0 |
| 29 int sqlite3BtreeTrace=1; /* True to enable tracing */ |
| 30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} |
| 31 #else |
| 32 # define TRACE(X) |
| 33 #endif |
| 34 |
| 35 /* |
| 36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes. |
| 37 ** But if the value is zero, make it 65536. |
| 38 ** |
| 39 ** This routine is used to extract the "offset to cell content area" value |
| 40 ** from the header of a btree page. If the page size is 65536 and the page |
| 41 ** is empty, the offset should be 65536, but the 2-byte value stores zero. |
| 42 ** This routine makes the necessary adjustment to 65536. |
| 43 */ |
| 44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) |
| 45 |
| 46 /* |
| 47 ** Values passed as the 5th argument to allocateBtreePage() |
| 48 */ |
| 49 #define BTALLOC_ANY 0 /* Allocate any page */ |
| 50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */ |
| 51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */ |
| 52 |
| 53 /* |
| 54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not |
| 55 ** defined, or 0 if it is. For example: |
| 56 ** |
| 57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); |
| 58 */ |
| 59 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 60 #define IfNotOmitAV(expr) (expr) |
| 61 #else |
| 62 #define IfNotOmitAV(expr) 0 |
| 63 #endif |
| 64 |
| 65 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 66 /* |
| 67 ** A list of BtShared objects that are eligible for participation |
| 68 ** in shared cache. This variable has file scope during normal builds, |
| 69 ** but the test harness needs to access it so we make it global for |
| 70 ** test builds. |
| 71 ** |
| 72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER. |
| 73 */ |
| 74 #ifdef SQLITE_TEST |
| 75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; |
| 76 #else |
| 77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; |
| 78 #endif |
| 79 #endif /* SQLITE_OMIT_SHARED_CACHE */ |
| 80 |
| 81 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 82 /* |
| 83 ** Enable or disable the shared pager and schema features. |
| 84 ** |
| 85 ** This routine has no effect on existing database connections. |
| 86 ** The shared cache setting effects only future calls to |
| 87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). |
| 88 */ |
| 89 int sqlite3_enable_shared_cache(int enable){ |
| 90 sqlite3GlobalConfig.sharedCacheEnabled = enable; |
| 91 return SQLITE_OK; |
| 92 } |
| 93 #endif |
| 94 |
| 95 |
| 96 |
| 97 #ifdef SQLITE_OMIT_SHARED_CACHE |
| 98 /* |
| 99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), |
| 100 ** and clearAllSharedCacheTableLocks() |
| 101 ** manipulate entries in the BtShared.pLock linked list used to store |
| 102 ** shared-cache table level locks. If the library is compiled with the |
| 103 ** shared-cache feature disabled, then there is only ever one user |
| 104 ** of each BtShared structure and so this locking is not necessary. |
| 105 ** So define the lock related functions as no-ops. |
| 106 */ |
| 107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK |
| 108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK |
| 109 #define clearAllSharedCacheTableLocks(a) |
| 110 #define downgradeAllSharedCacheTableLocks(a) |
| 111 #define hasSharedCacheTableLock(a,b,c,d) 1 |
| 112 #define hasReadConflicts(a, b) 0 |
| 113 #endif |
| 114 |
| 115 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 116 |
| 117 #ifdef SQLITE_DEBUG |
| 118 /* |
| 119 **** This function is only used as part of an assert() statement. *** |
| 120 ** |
| 121 ** Check to see if pBtree holds the required locks to read or write to the |
| 122 ** table with root page iRoot. Return 1 if it does and 0 if not. |
| 123 ** |
| 124 ** For example, when writing to a table with root-page iRoot via |
| 125 ** Btree connection pBtree: |
| 126 ** |
| 127 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); |
| 128 ** |
| 129 ** When writing to an index that resides in a sharable database, the |
| 130 ** caller should have first obtained a lock specifying the root page of |
| 131 ** the corresponding table. This makes things a bit more complicated, |
| 132 ** as this module treats each table as a separate structure. To determine |
| 133 ** the table corresponding to the index being written, this |
| 134 ** function has to search through the database schema. |
| 135 ** |
| 136 ** Instead of a lock on the table/index rooted at page iRoot, the caller may |
| 137 ** hold a write-lock on the schema table (root page 1). This is also |
| 138 ** acceptable. |
| 139 */ |
| 140 static int hasSharedCacheTableLock( |
| 141 Btree *pBtree, /* Handle that must hold lock */ |
| 142 Pgno iRoot, /* Root page of b-tree */ |
| 143 int isIndex, /* True if iRoot is the root of an index b-tree */ |
| 144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ |
| 145 ){ |
| 146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema; |
| 147 Pgno iTab = 0; |
| 148 BtLock *pLock; |
| 149 |
| 150 /* If this database is not shareable, or if the client is reading |
| 151 ** and has the read-uncommitted flag set, then no lock is required. |
| 152 ** Return true immediately. |
| 153 */ |
| 154 if( (pBtree->sharable==0) |
| 155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted)) |
| 156 ){ |
| 157 return 1; |
| 158 } |
| 159 |
| 160 /* If the client is reading or writing an index and the schema is |
| 161 ** not loaded, then it is too difficult to actually check to see if |
| 162 ** the correct locks are held. So do not bother - just return true. |
| 163 ** This case does not come up very often anyhow. |
| 164 */ |
| 165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ |
| 166 return 1; |
| 167 } |
| 168 |
| 169 /* Figure out the root-page that the lock should be held on. For table |
| 170 ** b-trees, this is just the root page of the b-tree being read or |
| 171 ** written. For index b-trees, it is the root page of the associated |
| 172 ** table. */ |
| 173 if( isIndex ){ |
| 174 HashElem *p; |
| 175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ |
| 176 Index *pIdx = (Index *)sqliteHashData(p); |
| 177 if( pIdx->tnum==(int)iRoot ){ |
| 178 if( iTab ){ |
| 179 /* Two or more indexes share the same root page. There must |
| 180 ** be imposter tables. So just return true. The assert is not |
| 181 ** useful in that case. */ |
| 182 return 1; |
| 183 } |
| 184 iTab = pIdx->pTable->tnum; |
| 185 } |
| 186 } |
| 187 }else{ |
| 188 iTab = iRoot; |
| 189 } |
| 190 |
| 191 /* Search for the required lock. Either a write-lock on root-page iTab, a |
| 192 ** write-lock on the schema table, or (if the client is reading) a |
| 193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */ |
| 194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ |
| 195 if( pLock->pBtree==pBtree |
| 196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) |
| 197 && pLock->eLock>=eLockType |
| 198 ){ |
| 199 return 1; |
| 200 } |
| 201 } |
| 202 |
| 203 /* Failed to find the required lock. */ |
| 204 return 0; |
| 205 } |
| 206 #endif /* SQLITE_DEBUG */ |
| 207 |
| 208 #ifdef SQLITE_DEBUG |
| 209 /* |
| 210 **** This function may be used as part of assert() statements only. **** |
| 211 ** |
| 212 ** Return true if it would be illegal for pBtree to write into the |
| 213 ** table or index rooted at iRoot because other shared connections are |
| 214 ** simultaneously reading that same table or index. |
| 215 ** |
| 216 ** It is illegal for pBtree to write if some other Btree object that |
| 217 ** shares the same BtShared object is currently reading or writing |
| 218 ** the iRoot table. Except, if the other Btree object has the |
| 219 ** read-uncommitted flag set, then it is OK for the other object to |
| 220 ** have a read cursor. |
| 221 ** |
| 222 ** For example, before writing to any part of the table or index |
| 223 ** rooted at page iRoot, one should call: |
| 224 ** |
| 225 ** assert( !hasReadConflicts(pBtree, iRoot) ); |
| 226 */ |
| 227 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ |
| 228 BtCursor *p; |
| 229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ |
| 230 if( p->pgnoRoot==iRoot |
| 231 && p->pBtree!=pBtree |
| 232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted) |
| 233 ){ |
| 234 return 1; |
| 235 } |
| 236 } |
| 237 return 0; |
| 238 } |
| 239 #endif /* #ifdef SQLITE_DEBUG */ |
| 240 |
| 241 /* |
| 242 ** Query to see if Btree handle p may obtain a lock of type eLock |
| 243 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return |
| 244 ** SQLITE_OK if the lock may be obtained (by calling |
| 245 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not. |
| 246 */ |
| 247 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ |
| 248 BtShared *pBt = p->pBt; |
| 249 BtLock *pIter; |
| 250 |
| 251 assert( sqlite3BtreeHoldsMutex(p) ); |
| 252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); |
| 253 assert( p->db!=0 ); |
| 254 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 ); |
| 255 |
| 256 /* If requesting a write-lock, then the Btree must have an open write |
| 257 ** transaction on this file. And, obviously, for this to be so there |
| 258 ** must be an open write transaction on the file itself. |
| 259 */ |
| 260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); |
| 261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); |
| 262 |
| 263 /* This routine is a no-op if the shared-cache is not enabled */ |
| 264 if( !p->sharable ){ |
| 265 return SQLITE_OK; |
| 266 } |
| 267 |
| 268 /* If some other connection is holding an exclusive lock, the |
| 269 ** requested lock may not be obtained. |
| 270 */ |
| 271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ |
| 272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); |
| 273 return SQLITE_LOCKED_SHAREDCACHE; |
| 274 } |
| 275 |
| 276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
| 277 /* The condition (pIter->eLock!=eLock) in the following if(...) |
| 278 ** statement is a simplification of: |
| 279 ** |
| 280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) |
| 281 ** |
| 282 ** since we know that if eLock==WRITE_LOCK, then no other connection |
| 283 ** may hold a WRITE_LOCK on any table in this file (since there can |
| 284 ** only be a single writer). |
| 285 */ |
| 286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); |
| 287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); |
| 288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ |
| 289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); |
| 290 if( eLock==WRITE_LOCK ){ |
| 291 assert( p==pBt->pWriter ); |
| 292 pBt->btsFlags |= BTS_PENDING; |
| 293 } |
| 294 return SQLITE_LOCKED_SHAREDCACHE; |
| 295 } |
| 296 } |
| 297 return SQLITE_OK; |
| 298 } |
| 299 #endif /* !SQLITE_OMIT_SHARED_CACHE */ |
| 300 |
| 301 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 302 /* |
| 303 ** Add a lock on the table with root-page iTable to the shared-btree used |
| 304 ** by Btree handle p. Parameter eLock must be either READ_LOCK or |
| 305 ** WRITE_LOCK. |
| 306 ** |
| 307 ** This function assumes the following: |
| 308 ** |
| 309 ** (a) The specified Btree object p is connected to a sharable |
| 310 ** database (one with the BtShared.sharable flag set), and |
| 311 ** |
| 312 ** (b) No other Btree objects hold a lock that conflicts |
| 313 ** with the requested lock (i.e. querySharedCacheTableLock() has |
| 314 ** already been called and returned SQLITE_OK). |
| 315 ** |
| 316 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM |
| 317 ** is returned if a malloc attempt fails. |
| 318 */ |
| 319 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ |
| 320 BtShared *pBt = p->pBt; |
| 321 BtLock *pLock = 0; |
| 322 BtLock *pIter; |
| 323 |
| 324 assert( sqlite3BtreeHoldsMutex(p) ); |
| 325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); |
| 326 assert( p->db!=0 ); |
| 327 |
| 328 /* A connection with the read-uncommitted flag set will never try to |
| 329 ** obtain a read-lock using this function. The only read-lock obtained |
| 330 ** by a connection in read-uncommitted mode is on the sqlite_master |
| 331 ** table, and that lock is obtained in BtreeBeginTrans(). */ |
| 332 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK ); |
| 333 |
| 334 /* This function should only be called on a sharable b-tree after it |
| 335 ** has been determined that no other b-tree holds a conflicting lock. */ |
| 336 assert( p->sharable ); |
| 337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); |
| 338 |
| 339 /* First search the list for an existing lock on this table. */ |
| 340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
| 341 if( pIter->iTable==iTable && pIter->pBtree==p ){ |
| 342 pLock = pIter; |
| 343 break; |
| 344 } |
| 345 } |
| 346 |
| 347 /* If the above search did not find a BtLock struct associating Btree p |
| 348 ** with table iTable, allocate one and link it into the list. |
| 349 */ |
| 350 if( !pLock ){ |
| 351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); |
| 352 if( !pLock ){ |
| 353 return SQLITE_NOMEM_BKPT; |
| 354 } |
| 355 pLock->iTable = iTable; |
| 356 pLock->pBtree = p; |
| 357 pLock->pNext = pBt->pLock; |
| 358 pBt->pLock = pLock; |
| 359 } |
| 360 |
| 361 /* Set the BtLock.eLock variable to the maximum of the current lock |
| 362 ** and the requested lock. This means if a write-lock was already held |
| 363 ** and a read-lock requested, we don't incorrectly downgrade the lock. |
| 364 */ |
| 365 assert( WRITE_LOCK>READ_LOCK ); |
| 366 if( eLock>pLock->eLock ){ |
| 367 pLock->eLock = eLock; |
| 368 } |
| 369 |
| 370 return SQLITE_OK; |
| 371 } |
| 372 #endif /* !SQLITE_OMIT_SHARED_CACHE */ |
| 373 |
| 374 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 375 /* |
| 376 ** Release all the table locks (locks obtained via calls to |
| 377 ** the setSharedCacheTableLock() procedure) held by Btree object p. |
| 378 ** |
| 379 ** This function assumes that Btree p has an open read or write |
| 380 ** transaction. If it does not, then the BTS_PENDING flag |
| 381 ** may be incorrectly cleared. |
| 382 */ |
| 383 static void clearAllSharedCacheTableLocks(Btree *p){ |
| 384 BtShared *pBt = p->pBt; |
| 385 BtLock **ppIter = &pBt->pLock; |
| 386 |
| 387 assert( sqlite3BtreeHoldsMutex(p) ); |
| 388 assert( p->sharable || 0==*ppIter ); |
| 389 assert( p->inTrans>0 ); |
| 390 |
| 391 while( *ppIter ){ |
| 392 BtLock *pLock = *ppIter; |
| 393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); |
| 394 assert( pLock->pBtree->inTrans>=pLock->eLock ); |
| 395 if( pLock->pBtree==p ){ |
| 396 *ppIter = pLock->pNext; |
| 397 assert( pLock->iTable!=1 || pLock==&p->lock ); |
| 398 if( pLock->iTable!=1 ){ |
| 399 sqlite3_free(pLock); |
| 400 } |
| 401 }else{ |
| 402 ppIter = &pLock->pNext; |
| 403 } |
| 404 } |
| 405 |
| 406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); |
| 407 if( pBt->pWriter==p ){ |
| 408 pBt->pWriter = 0; |
| 409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); |
| 410 }else if( pBt->nTransaction==2 ){ |
| 411 /* This function is called when Btree p is concluding its |
| 412 ** transaction. If there currently exists a writer, and p is not |
| 413 ** that writer, then the number of locks held by connections other |
| 414 ** than the writer must be about to drop to zero. In this case |
| 415 ** set the BTS_PENDING flag to 0. |
| 416 ** |
| 417 ** If there is not currently a writer, then BTS_PENDING must |
| 418 ** be zero already. So this next line is harmless in that case. |
| 419 */ |
| 420 pBt->btsFlags &= ~BTS_PENDING; |
| 421 } |
| 422 } |
| 423 |
| 424 /* |
| 425 ** This function changes all write-locks held by Btree p into read-locks. |
| 426 */ |
| 427 static void downgradeAllSharedCacheTableLocks(Btree *p){ |
| 428 BtShared *pBt = p->pBt; |
| 429 if( pBt->pWriter==p ){ |
| 430 BtLock *pLock; |
| 431 pBt->pWriter = 0; |
| 432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); |
| 433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ |
| 434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); |
| 435 pLock->eLock = READ_LOCK; |
| 436 } |
| 437 } |
| 438 } |
| 439 |
| 440 #endif /* SQLITE_OMIT_SHARED_CACHE */ |
| 441 |
| 442 static void releasePage(MemPage *pPage); /* Forward reference */ |
| 443 |
| 444 /* |
| 445 ***** This routine is used inside of assert() only **** |
| 446 ** |
| 447 ** Verify that the cursor holds the mutex on its BtShared |
| 448 */ |
| 449 #ifdef SQLITE_DEBUG |
| 450 static int cursorHoldsMutex(BtCursor *p){ |
| 451 return sqlite3_mutex_held(p->pBt->mutex); |
| 452 } |
| 453 |
| 454 /* Verify that the cursor and the BtShared agree about what is the current |
| 455 ** database connetion. This is important in shared-cache mode. If the database |
| 456 ** connection pointers get out-of-sync, it is possible for routines like |
| 457 ** btreeInitPage() to reference an stale connection pointer that references a |
| 458 ** a connection that has already closed. This routine is used inside assert() |
| 459 ** statements only and for the purpose of double-checking that the btree code |
| 460 ** does keep the database connection pointers up-to-date. |
| 461 */ |
| 462 static int cursorOwnsBtShared(BtCursor *p){ |
| 463 assert( cursorHoldsMutex(p) ); |
| 464 return (p->pBtree->db==p->pBt->db); |
| 465 } |
| 466 #endif |
| 467 |
| 468 /* |
| 469 ** Invalidate the overflow cache of the cursor passed as the first argument. |
| 470 ** on the shared btree structure pBt. |
| 471 */ |
| 472 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) |
| 473 |
| 474 /* |
| 475 ** Invalidate the overflow page-list cache for all cursors opened |
| 476 ** on the shared btree structure pBt. |
| 477 */ |
| 478 static void invalidateAllOverflowCache(BtShared *pBt){ |
| 479 BtCursor *p; |
| 480 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 481 for(p=pBt->pCursor; p; p=p->pNext){ |
| 482 invalidateOverflowCache(p); |
| 483 } |
| 484 } |
| 485 |
| 486 #ifndef SQLITE_OMIT_INCRBLOB |
| 487 /* |
| 488 ** This function is called before modifying the contents of a table |
| 489 ** to invalidate any incrblob cursors that are open on the |
| 490 ** row or one of the rows being modified. |
| 491 ** |
| 492 ** If argument isClearTable is true, then the entire contents of the |
| 493 ** table is about to be deleted. In this case invalidate all incrblob |
| 494 ** cursors open on any row within the table with root-page pgnoRoot. |
| 495 ** |
| 496 ** Otherwise, if argument isClearTable is false, then the row with |
| 497 ** rowid iRow is being replaced or deleted. In this case invalidate |
| 498 ** only those incrblob cursors open on that specific row. |
| 499 */ |
| 500 static void invalidateIncrblobCursors( |
| 501 Btree *pBtree, /* The database file to check */ |
| 502 i64 iRow, /* The rowid that might be changing */ |
| 503 int isClearTable /* True if all rows are being deleted */ |
| 504 ){ |
| 505 BtCursor *p; |
| 506 if( pBtree->hasIncrblobCur==0 ) return; |
| 507 assert( sqlite3BtreeHoldsMutex(pBtree) ); |
| 508 pBtree->hasIncrblobCur = 0; |
| 509 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ |
| 510 if( (p->curFlags & BTCF_Incrblob)!=0 ){ |
| 511 pBtree->hasIncrblobCur = 1; |
| 512 if( isClearTable || p->info.nKey==iRow ){ |
| 513 p->eState = CURSOR_INVALID; |
| 514 } |
| 515 } |
| 516 } |
| 517 } |
| 518 |
| 519 #else |
| 520 /* Stub function when INCRBLOB is omitted */ |
| 521 #define invalidateIncrblobCursors(x,y,z) |
| 522 #endif /* SQLITE_OMIT_INCRBLOB */ |
| 523 |
| 524 /* |
| 525 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called |
| 526 ** when a page that previously contained data becomes a free-list leaf |
| 527 ** page. |
| 528 ** |
| 529 ** The BtShared.pHasContent bitvec exists to work around an obscure |
| 530 ** bug caused by the interaction of two useful IO optimizations surrounding |
| 531 ** free-list leaf pages: |
| 532 ** |
| 533 ** 1) When all data is deleted from a page and the page becomes |
| 534 ** a free-list leaf page, the page is not written to the database |
| 535 ** (as free-list leaf pages contain no meaningful data). Sometimes |
| 536 ** such a page is not even journalled (as it will not be modified, |
| 537 ** why bother journalling it?). |
| 538 ** |
| 539 ** 2) When a free-list leaf page is reused, its content is not read |
| 540 ** from the database or written to the journal file (why should it |
| 541 ** be, if it is not at all meaningful?). |
| 542 ** |
| 543 ** By themselves, these optimizations work fine and provide a handy |
| 544 ** performance boost to bulk delete or insert operations. However, if |
| 545 ** a page is moved to the free-list and then reused within the same |
| 546 ** transaction, a problem comes up. If the page is not journalled when |
| 547 ** it is moved to the free-list and it is also not journalled when it |
| 548 ** is extracted from the free-list and reused, then the original data |
| 549 ** may be lost. In the event of a rollback, it may not be possible |
| 550 ** to restore the database to its original configuration. |
| 551 ** |
| 552 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is |
| 553 ** moved to become a free-list leaf page, the corresponding bit is |
| 554 ** set in the bitvec. Whenever a leaf page is extracted from the free-list, |
| 555 ** optimization 2 above is omitted if the corresponding bit is already |
| 556 ** set in BtShared.pHasContent. The contents of the bitvec are cleared |
| 557 ** at the end of every transaction. |
| 558 */ |
| 559 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ |
| 560 int rc = SQLITE_OK; |
| 561 if( !pBt->pHasContent ){ |
| 562 assert( pgno<=pBt->nPage ); |
| 563 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); |
| 564 if( !pBt->pHasContent ){ |
| 565 rc = SQLITE_NOMEM_BKPT; |
| 566 } |
| 567 } |
| 568 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ |
| 569 rc = sqlite3BitvecSet(pBt->pHasContent, pgno); |
| 570 } |
| 571 return rc; |
| 572 } |
| 573 |
| 574 /* |
| 575 ** Query the BtShared.pHasContent vector. |
| 576 ** |
| 577 ** This function is called when a free-list leaf page is removed from the |
| 578 ** free-list for reuse. It returns false if it is safe to retrieve the |
| 579 ** page from the pager layer with the 'no-content' flag set. True otherwise. |
| 580 */ |
| 581 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ |
| 582 Bitvec *p = pBt->pHasContent; |
| 583 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno))); |
| 584 } |
| 585 |
| 586 /* |
| 587 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be |
| 588 ** invoked at the conclusion of each write-transaction. |
| 589 */ |
| 590 static void btreeClearHasContent(BtShared *pBt){ |
| 591 sqlite3BitvecDestroy(pBt->pHasContent); |
| 592 pBt->pHasContent = 0; |
| 593 } |
| 594 |
| 595 /* |
| 596 ** Release all of the apPage[] pages for a cursor. |
| 597 */ |
| 598 static void btreeReleaseAllCursorPages(BtCursor *pCur){ |
| 599 int i; |
| 600 for(i=0; i<=pCur->iPage; i++){ |
| 601 releasePage(pCur->apPage[i]); |
| 602 pCur->apPage[i] = 0; |
| 603 } |
| 604 pCur->iPage = -1; |
| 605 } |
| 606 |
| 607 /* |
| 608 ** The cursor passed as the only argument must point to a valid entry |
| 609 ** when this function is called (i.e. have eState==CURSOR_VALID). This |
| 610 ** function saves the current cursor key in variables pCur->nKey and |
| 611 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error |
| 612 ** code otherwise. |
| 613 ** |
| 614 ** If the cursor is open on an intkey table, then the integer key |
| 615 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to |
| 616 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is |
| 617 ** set to point to a malloced buffer pCur->nKey bytes in size containing |
| 618 ** the key. |
| 619 */ |
| 620 static int saveCursorKey(BtCursor *pCur){ |
| 621 int rc = SQLITE_OK; |
| 622 assert( CURSOR_VALID==pCur->eState ); |
| 623 assert( 0==pCur->pKey ); |
| 624 assert( cursorHoldsMutex(pCur) ); |
| 625 |
| 626 if( pCur->curIntKey ){ |
| 627 /* Only the rowid is required for a table btree */ |
| 628 pCur->nKey = sqlite3BtreeIntegerKey(pCur); |
| 629 }else{ |
| 630 /* For an index btree, save the complete key content */ |
| 631 void *pKey; |
| 632 pCur->nKey = sqlite3BtreePayloadSize(pCur); |
| 633 pKey = sqlite3Malloc( pCur->nKey ); |
| 634 if( pKey ){ |
| 635 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey); |
| 636 if( rc==SQLITE_OK ){ |
| 637 pCur->pKey = pKey; |
| 638 }else{ |
| 639 sqlite3_free(pKey); |
| 640 } |
| 641 }else{ |
| 642 rc = SQLITE_NOMEM_BKPT; |
| 643 } |
| 644 } |
| 645 assert( !pCur->curIntKey || !pCur->pKey ); |
| 646 return rc; |
| 647 } |
| 648 |
| 649 /* |
| 650 ** Save the current cursor position in the variables BtCursor.nKey |
| 651 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. |
| 652 ** |
| 653 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) |
| 654 ** prior to calling this routine. |
| 655 */ |
| 656 static int saveCursorPosition(BtCursor *pCur){ |
| 657 int rc; |
| 658 |
| 659 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState ); |
| 660 assert( 0==pCur->pKey ); |
| 661 assert( cursorHoldsMutex(pCur) ); |
| 662 |
| 663 if( pCur->eState==CURSOR_SKIPNEXT ){ |
| 664 pCur->eState = CURSOR_VALID; |
| 665 }else{ |
| 666 pCur->skipNext = 0; |
| 667 } |
| 668 |
| 669 rc = saveCursorKey(pCur); |
| 670 if( rc==SQLITE_OK ){ |
| 671 btreeReleaseAllCursorPages(pCur); |
| 672 pCur->eState = CURSOR_REQUIRESEEK; |
| 673 } |
| 674 |
| 675 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); |
| 676 return rc; |
| 677 } |
| 678 |
| 679 /* Forward reference */ |
| 680 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); |
| 681 |
| 682 /* |
| 683 ** Save the positions of all cursors (except pExcept) that are open on |
| 684 ** the table with root-page iRoot. "Saving the cursor position" means that |
| 685 ** the location in the btree is remembered in such a way that it can be |
| 686 ** moved back to the same spot after the btree has been modified. This |
| 687 ** routine is called just before cursor pExcept is used to modify the |
| 688 ** table, for example in BtreeDelete() or BtreeInsert(). |
| 689 ** |
| 690 ** If there are two or more cursors on the same btree, then all such |
| 691 ** cursors should have their BTCF_Multiple flag set. The btreeCursor() |
| 692 ** routine enforces that rule. This routine only needs to be called in |
| 693 ** the uncommon case when pExpect has the BTCF_Multiple flag set. |
| 694 ** |
| 695 ** If pExpect!=NULL and if no other cursors are found on the same root-page, |
| 696 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another |
| 697 ** pointless call to this routine. |
| 698 ** |
| 699 ** Implementation note: This routine merely checks to see if any cursors |
| 700 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual) |
| 701 ** event that cursors are in need to being saved. |
| 702 */ |
| 703 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ |
| 704 BtCursor *p; |
| 705 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 706 assert( pExcept==0 || pExcept->pBt==pBt ); |
| 707 for(p=pBt->pCursor; p; p=p->pNext){ |
| 708 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; |
| 709 } |
| 710 if( p ) return saveCursorsOnList(p, iRoot, pExcept); |
| 711 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple; |
| 712 return SQLITE_OK; |
| 713 } |
| 714 |
| 715 /* This helper routine to saveAllCursors does the actual work of saving |
| 716 ** the cursors if and when a cursor is found that actually requires saving. |
| 717 ** The common case is that no cursors need to be saved, so this routine is |
| 718 ** broken out from its caller to avoid unnecessary stack pointer movement. |
| 719 */ |
| 720 static int SQLITE_NOINLINE saveCursorsOnList( |
| 721 BtCursor *p, /* The first cursor that needs saving */ |
| 722 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ |
| 723 BtCursor *pExcept /* Do not save this cursor */ |
| 724 ){ |
| 725 do{ |
| 726 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ |
| 727 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ |
| 728 int rc = saveCursorPosition(p); |
| 729 if( SQLITE_OK!=rc ){ |
| 730 return rc; |
| 731 } |
| 732 }else{ |
| 733 testcase( p->iPage>0 ); |
| 734 btreeReleaseAllCursorPages(p); |
| 735 } |
| 736 } |
| 737 p = p->pNext; |
| 738 }while( p ); |
| 739 return SQLITE_OK; |
| 740 } |
| 741 |
| 742 /* |
| 743 ** Clear the current cursor position. |
| 744 */ |
| 745 void sqlite3BtreeClearCursor(BtCursor *pCur){ |
| 746 assert( cursorHoldsMutex(pCur) ); |
| 747 sqlite3_free(pCur->pKey); |
| 748 pCur->pKey = 0; |
| 749 pCur->eState = CURSOR_INVALID; |
| 750 } |
| 751 |
| 752 /* |
| 753 ** In this version of BtreeMoveto, pKey is a packed index record |
| 754 ** such as is generated by the OP_MakeRecord opcode. Unpack the |
| 755 ** record and then call BtreeMovetoUnpacked() to do the work. |
| 756 */ |
| 757 static int btreeMoveto( |
| 758 BtCursor *pCur, /* Cursor open on the btree to be searched */ |
| 759 const void *pKey, /* Packed key if the btree is an index */ |
| 760 i64 nKey, /* Integer key for tables. Size of pKey for indices */ |
| 761 int bias, /* Bias search to the high end */ |
| 762 int *pRes /* Write search results here */ |
| 763 ){ |
| 764 int rc; /* Status code */ |
| 765 UnpackedRecord *pIdxKey; /* Unpacked index key */ |
| 766 |
| 767 if( pKey ){ |
| 768 assert( nKey==(i64)(int)nKey ); |
| 769 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo); |
| 770 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT; |
| 771 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey); |
| 772 if( pIdxKey->nField==0 ){ |
| 773 rc = SQLITE_CORRUPT_BKPT; |
| 774 goto moveto_done; |
| 775 } |
| 776 }else{ |
| 777 pIdxKey = 0; |
| 778 } |
| 779 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes); |
| 780 moveto_done: |
| 781 if( pIdxKey ){ |
| 782 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey); |
| 783 } |
| 784 return rc; |
| 785 } |
| 786 |
| 787 /* |
| 788 ** Restore the cursor to the position it was in (or as close to as possible) |
| 789 ** when saveCursorPosition() was called. Note that this call deletes the |
| 790 ** saved position info stored by saveCursorPosition(), so there can be |
| 791 ** at most one effective restoreCursorPosition() call after each |
| 792 ** saveCursorPosition(). |
| 793 */ |
| 794 static int btreeRestoreCursorPosition(BtCursor *pCur){ |
| 795 int rc; |
| 796 int skipNext; |
| 797 assert( cursorOwnsBtShared(pCur) ); |
| 798 assert( pCur->eState>=CURSOR_REQUIRESEEK ); |
| 799 if( pCur->eState==CURSOR_FAULT ){ |
| 800 return pCur->skipNext; |
| 801 } |
| 802 pCur->eState = CURSOR_INVALID; |
| 803 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext); |
| 804 if( rc==SQLITE_OK ){ |
| 805 sqlite3_free(pCur->pKey); |
| 806 pCur->pKey = 0; |
| 807 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); |
| 808 pCur->skipNext |= skipNext; |
| 809 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ |
| 810 pCur->eState = CURSOR_SKIPNEXT; |
| 811 } |
| 812 } |
| 813 return rc; |
| 814 } |
| 815 |
| 816 #define restoreCursorPosition(p) \ |
| 817 (p->eState>=CURSOR_REQUIRESEEK ? \ |
| 818 btreeRestoreCursorPosition(p) : \ |
| 819 SQLITE_OK) |
| 820 |
| 821 /* |
| 822 ** Determine whether or not a cursor has moved from the position where |
| 823 ** it was last placed, or has been invalidated for any other reason. |
| 824 ** Cursors can move when the row they are pointing at is deleted out |
| 825 ** from under them, for example. Cursor might also move if a btree |
| 826 ** is rebalanced. |
| 827 ** |
| 828 ** Calling this routine with a NULL cursor pointer returns false. |
| 829 ** |
| 830 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor |
| 831 ** back to where it ought to be if this routine returns true. |
| 832 */ |
| 833 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ |
| 834 return pCur->eState!=CURSOR_VALID; |
| 835 } |
| 836 |
| 837 /* |
| 838 ** This routine restores a cursor back to its original position after it |
| 839 ** has been moved by some outside activity (such as a btree rebalance or |
| 840 ** a row having been deleted out from under the cursor). |
| 841 ** |
| 842 ** On success, the *pDifferentRow parameter is false if the cursor is left |
| 843 ** pointing at exactly the same row. *pDifferntRow is the row the cursor |
| 844 ** was pointing to has been deleted, forcing the cursor to point to some |
| 845 ** nearby row. |
| 846 ** |
| 847 ** This routine should only be called for a cursor that just returned |
| 848 ** TRUE from sqlite3BtreeCursorHasMoved(). |
| 849 */ |
| 850 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ |
| 851 int rc; |
| 852 |
| 853 assert( pCur!=0 ); |
| 854 assert( pCur->eState!=CURSOR_VALID ); |
| 855 rc = restoreCursorPosition(pCur); |
| 856 if( rc ){ |
| 857 *pDifferentRow = 1; |
| 858 return rc; |
| 859 } |
| 860 if( pCur->eState!=CURSOR_VALID ){ |
| 861 *pDifferentRow = 1; |
| 862 }else{ |
| 863 assert( pCur->skipNext==0 ); |
| 864 *pDifferentRow = 0; |
| 865 } |
| 866 return SQLITE_OK; |
| 867 } |
| 868 |
| 869 #ifdef SQLITE_ENABLE_CURSOR_HINTS |
| 870 /* |
| 871 ** Provide hints to the cursor. The particular hint given (and the type |
| 872 ** and number of the varargs parameters) is determined by the eHintType |
| 873 ** parameter. See the definitions of the BTREE_HINT_* macros for details. |
| 874 */ |
| 875 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){ |
| 876 /* Used only by system that substitute their own storage engine */ |
| 877 } |
| 878 #endif |
| 879 |
| 880 /* |
| 881 ** Provide flag hints to the cursor. |
| 882 */ |
| 883 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){ |
| 884 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 ); |
| 885 pCur->hints = x; |
| 886 } |
| 887 |
| 888 |
| 889 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 890 /* |
| 891 ** Given a page number of a regular database page, return the page |
| 892 ** number for the pointer-map page that contains the entry for the |
| 893 ** input page number. |
| 894 ** |
| 895 ** Return 0 (not a valid page) for pgno==1 since there is |
| 896 ** no pointer map associated with page 1. The integrity_check logic |
| 897 ** requires that ptrmapPageno(*,1)!=1. |
| 898 */ |
| 899 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ |
| 900 int nPagesPerMapPage; |
| 901 Pgno iPtrMap, ret; |
| 902 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 903 if( pgno<2 ) return 0; |
| 904 nPagesPerMapPage = (pBt->usableSize/5)+1; |
| 905 iPtrMap = (pgno-2)/nPagesPerMapPage; |
| 906 ret = (iPtrMap*nPagesPerMapPage) + 2; |
| 907 if( ret==PENDING_BYTE_PAGE(pBt) ){ |
| 908 ret++; |
| 909 } |
| 910 return ret; |
| 911 } |
| 912 |
| 913 /* |
| 914 ** Write an entry into the pointer map. |
| 915 ** |
| 916 ** This routine updates the pointer map entry for page number 'key' |
| 917 ** so that it maps to type 'eType' and parent page number 'pgno'. |
| 918 ** |
| 919 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is |
| 920 ** a no-op. If an error occurs, the appropriate error code is written |
| 921 ** into *pRC. |
| 922 */ |
| 923 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ |
| 924 DbPage *pDbPage; /* The pointer map page */ |
| 925 u8 *pPtrmap; /* The pointer map data */ |
| 926 Pgno iPtrmap; /* The pointer map page number */ |
| 927 int offset; /* Offset in pointer map page */ |
| 928 int rc; /* Return code from subfunctions */ |
| 929 |
| 930 if( *pRC ) return; |
| 931 |
| 932 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 933 /* The master-journal page number must never be used as a pointer map page */ |
| 934 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); |
| 935 |
| 936 assert( pBt->autoVacuum ); |
| 937 if( key==0 ){ |
| 938 *pRC = SQLITE_CORRUPT_BKPT; |
| 939 return; |
| 940 } |
| 941 iPtrmap = PTRMAP_PAGENO(pBt, key); |
| 942 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); |
| 943 if( rc!=SQLITE_OK ){ |
| 944 *pRC = rc; |
| 945 return; |
| 946 } |
| 947 offset = PTRMAP_PTROFFSET(iPtrmap, key); |
| 948 if( offset<0 ){ |
| 949 *pRC = SQLITE_CORRUPT_BKPT; |
| 950 goto ptrmap_exit; |
| 951 } |
| 952 assert( offset <= (int)pBt->usableSize-5 ); |
| 953 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); |
| 954 |
| 955 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ |
| 956 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); |
| 957 *pRC= rc = sqlite3PagerWrite(pDbPage); |
| 958 if( rc==SQLITE_OK ){ |
| 959 pPtrmap[offset] = eType; |
| 960 put4byte(&pPtrmap[offset+1], parent); |
| 961 } |
| 962 } |
| 963 |
| 964 ptrmap_exit: |
| 965 sqlite3PagerUnref(pDbPage); |
| 966 } |
| 967 |
| 968 /* |
| 969 ** Read an entry from the pointer map. |
| 970 ** |
| 971 ** This routine retrieves the pointer map entry for page 'key', writing |
| 972 ** the type and parent page number to *pEType and *pPgno respectively. |
| 973 ** An error code is returned if something goes wrong, otherwise SQLITE_OK. |
| 974 */ |
| 975 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ |
| 976 DbPage *pDbPage; /* The pointer map page */ |
| 977 int iPtrmap; /* Pointer map page index */ |
| 978 u8 *pPtrmap; /* Pointer map page data */ |
| 979 int offset; /* Offset of entry in pointer map */ |
| 980 int rc; |
| 981 |
| 982 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 983 |
| 984 iPtrmap = PTRMAP_PAGENO(pBt, key); |
| 985 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0); |
| 986 if( rc!=0 ){ |
| 987 return rc; |
| 988 } |
| 989 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); |
| 990 |
| 991 offset = PTRMAP_PTROFFSET(iPtrmap, key); |
| 992 if( offset<0 ){ |
| 993 sqlite3PagerUnref(pDbPage); |
| 994 return SQLITE_CORRUPT_BKPT; |
| 995 } |
| 996 assert( offset <= (int)pBt->usableSize-5 ); |
| 997 assert( pEType!=0 ); |
| 998 *pEType = pPtrmap[offset]; |
| 999 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); |
| 1000 |
| 1001 sqlite3PagerUnref(pDbPage); |
| 1002 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT; |
| 1003 return SQLITE_OK; |
| 1004 } |
| 1005 |
| 1006 #else /* if defined SQLITE_OMIT_AUTOVACUUM */ |
| 1007 #define ptrmapPut(w,x,y,z,rc) |
| 1008 #define ptrmapGet(w,x,y,z) SQLITE_OK |
| 1009 #define ptrmapPutOvflPtr(x, y, rc) |
| 1010 #endif |
| 1011 |
| 1012 /* |
| 1013 ** Given a btree page and a cell index (0 means the first cell on |
| 1014 ** the page, 1 means the second cell, and so forth) return a pointer |
| 1015 ** to the cell content. |
| 1016 ** |
| 1017 ** findCellPastPtr() does the same except it skips past the initial |
| 1018 ** 4-byte child pointer found on interior pages, if there is one. |
| 1019 ** |
| 1020 ** This routine works only for pages that do not contain overflow cells. |
| 1021 */ |
| 1022 #define findCell(P,I) \ |
| 1023 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) |
| 1024 #define findCellPastPtr(P,I) \ |
| 1025 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)]))) |
| 1026 |
| 1027 |
| 1028 /* |
| 1029 ** This is common tail processing for btreeParseCellPtr() and |
| 1030 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely |
| 1031 ** on a single B-tree page. Make necessary adjustments to the CellInfo |
| 1032 ** structure. |
| 1033 */ |
| 1034 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow( |
| 1035 MemPage *pPage, /* Page containing the cell */ |
| 1036 u8 *pCell, /* Pointer to the cell text. */ |
| 1037 CellInfo *pInfo /* Fill in this structure */ |
| 1038 ){ |
| 1039 /* If the payload will not fit completely on the local page, we have |
| 1040 ** to decide how much to store locally and how much to spill onto |
| 1041 ** overflow pages. The strategy is to minimize the amount of unused |
| 1042 ** space on overflow pages while keeping the amount of local storage |
| 1043 ** in between minLocal and maxLocal. |
| 1044 ** |
| 1045 ** Warning: changing the way overflow payload is distributed in any |
| 1046 ** way will result in an incompatible file format. |
| 1047 */ |
| 1048 int minLocal; /* Minimum amount of payload held locally */ |
| 1049 int maxLocal; /* Maximum amount of payload held locally */ |
| 1050 int surplus; /* Overflow payload available for local storage */ |
| 1051 |
| 1052 minLocal = pPage->minLocal; |
| 1053 maxLocal = pPage->maxLocal; |
| 1054 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4); |
| 1055 testcase( surplus==maxLocal ); |
| 1056 testcase( surplus==maxLocal+1 ); |
| 1057 if( surplus <= maxLocal ){ |
| 1058 pInfo->nLocal = (u16)surplus; |
| 1059 }else{ |
| 1060 pInfo->nLocal = (u16)minLocal; |
| 1061 } |
| 1062 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4; |
| 1063 } |
| 1064 |
| 1065 /* |
| 1066 ** The following routines are implementations of the MemPage.xParseCell() |
| 1067 ** method. |
| 1068 ** |
| 1069 ** Parse a cell content block and fill in the CellInfo structure. |
| 1070 ** |
| 1071 ** btreeParseCellPtr() => table btree leaf nodes |
| 1072 ** btreeParseCellNoPayload() => table btree internal nodes |
| 1073 ** btreeParseCellPtrIndex() => index btree nodes |
| 1074 ** |
| 1075 ** There is also a wrapper function btreeParseCell() that works for |
| 1076 ** all MemPage types and that references the cell by index rather than |
| 1077 ** by pointer. |
| 1078 */ |
| 1079 static void btreeParseCellPtrNoPayload( |
| 1080 MemPage *pPage, /* Page containing the cell */ |
| 1081 u8 *pCell, /* Pointer to the cell text. */ |
| 1082 CellInfo *pInfo /* Fill in this structure */ |
| 1083 ){ |
| 1084 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1085 assert( pPage->leaf==0 ); |
| 1086 assert( pPage->childPtrSize==4 ); |
| 1087 #ifndef SQLITE_DEBUG |
| 1088 UNUSED_PARAMETER(pPage); |
| 1089 #endif |
| 1090 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); |
| 1091 pInfo->nPayload = 0; |
| 1092 pInfo->nLocal = 0; |
| 1093 pInfo->pPayload = 0; |
| 1094 return; |
| 1095 } |
| 1096 static void btreeParseCellPtr( |
| 1097 MemPage *pPage, /* Page containing the cell */ |
| 1098 u8 *pCell, /* Pointer to the cell text. */ |
| 1099 CellInfo *pInfo /* Fill in this structure */ |
| 1100 ){ |
| 1101 u8 *pIter; /* For scanning through pCell */ |
| 1102 u32 nPayload; /* Number of bytes of cell payload */ |
| 1103 u64 iKey; /* Extracted Key value */ |
| 1104 |
| 1105 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1106 assert( pPage->leaf==0 || pPage->leaf==1 ); |
| 1107 assert( pPage->intKeyLeaf ); |
| 1108 assert( pPage->childPtrSize==0 ); |
| 1109 pIter = pCell; |
| 1110 |
| 1111 /* The next block of code is equivalent to: |
| 1112 ** |
| 1113 ** pIter += getVarint32(pIter, nPayload); |
| 1114 ** |
| 1115 ** The code is inlined to avoid a function call. |
| 1116 */ |
| 1117 nPayload = *pIter; |
| 1118 if( nPayload>=0x80 ){ |
| 1119 u8 *pEnd = &pIter[8]; |
| 1120 nPayload &= 0x7f; |
| 1121 do{ |
| 1122 nPayload = (nPayload<<7) | (*++pIter & 0x7f); |
| 1123 }while( (*pIter)>=0x80 && pIter<pEnd ); |
| 1124 } |
| 1125 pIter++; |
| 1126 |
| 1127 /* The next block of code is equivalent to: |
| 1128 ** |
| 1129 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey); |
| 1130 ** |
| 1131 ** The code is inlined to avoid a function call. |
| 1132 */ |
| 1133 iKey = *pIter; |
| 1134 if( iKey>=0x80 ){ |
| 1135 u8 *pEnd = &pIter[7]; |
| 1136 iKey &= 0x7f; |
| 1137 while(1){ |
| 1138 iKey = (iKey<<7) | (*++pIter & 0x7f); |
| 1139 if( (*pIter)<0x80 ) break; |
| 1140 if( pIter>=pEnd ){ |
| 1141 iKey = (iKey<<8) | *++pIter; |
| 1142 break; |
| 1143 } |
| 1144 } |
| 1145 } |
| 1146 pIter++; |
| 1147 |
| 1148 pInfo->nKey = *(i64*)&iKey; |
| 1149 pInfo->nPayload = nPayload; |
| 1150 pInfo->pPayload = pIter; |
| 1151 testcase( nPayload==pPage->maxLocal ); |
| 1152 testcase( nPayload==pPage->maxLocal+1 ); |
| 1153 if( nPayload<=pPage->maxLocal ){ |
| 1154 /* This is the (easy) common case where the entire payload fits |
| 1155 ** on the local page. No overflow is required. |
| 1156 */ |
| 1157 pInfo->nSize = nPayload + (u16)(pIter - pCell); |
| 1158 if( pInfo->nSize<4 ) pInfo->nSize = 4; |
| 1159 pInfo->nLocal = (u16)nPayload; |
| 1160 }else{ |
| 1161 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); |
| 1162 } |
| 1163 } |
| 1164 static void btreeParseCellPtrIndex( |
| 1165 MemPage *pPage, /* Page containing the cell */ |
| 1166 u8 *pCell, /* Pointer to the cell text. */ |
| 1167 CellInfo *pInfo /* Fill in this structure */ |
| 1168 ){ |
| 1169 u8 *pIter; /* For scanning through pCell */ |
| 1170 u32 nPayload; /* Number of bytes of cell payload */ |
| 1171 |
| 1172 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1173 assert( pPage->leaf==0 || pPage->leaf==1 ); |
| 1174 assert( pPage->intKeyLeaf==0 ); |
| 1175 pIter = pCell + pPage->childPtrSize; |
| 1176 nPayload = *pIter; |
| 1177 if( nPayload>=0x80 ){ |
| 1178 u8 *pEnd = &pIter[8]; |
| 1179 nPayload &= 0x7f; |
| 1180 do{ |
| 1181 nPayload = (nPayload<<7) | (*++pIter & 0x7f); |
| 1182 }while( *(pIter)>=0x80 && pIter<pEnd ); |
| 1183 } |
| 1184 pIter++; |
| 1185 pInfo->nKey = nPayload; |
| 1186 pInfo->nPayload = nPayload; |
| 1187 pInfo->pPayload = pIter; |
| 1188 testcase( nPayload==pPage->maxLocal ); |
| 1189 testcase( nPayload==pPage->maxLocal+1 ); |
| 1190 if( nPayload<=pPage->maxLocal ){ |
| 1191 /* This is the (easy) common case where the entire payload fits |
| 1192 ** on the local page. No overflow is required. |
| 1193 */ |
| 1194 pInfo->nSize = nPayload + (u16)(pIter - pCell); |
| 1195 if( pInfo->nSize<4 ) pInfo->nSize = 4; |
| 1196 pInfo->nLocal = (u16)nPayload; |
| 1197 }else{ |
| 1198 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo); |
| 1199 } |
| 1200 } |
| 1201 static void btreeParseCell( |
| 1202 MemPage *pPage, /* Page containing the cell */ |
| 1203 int iCell, /* The cell index. First cell is 0 */ |
| 1204 CellInfo *pInfo /* Fill in this structure */ |
| 1205 ){ |
| 1206 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo); |
| 1207 } |
| 1208 |
| 1209 /* |
| 1210 ** The following routines are implementations of the MemPage.xCellSize |
| 1211 ** method. |
| 1212 ** |
| 1213 ** Compute the total number of bytes that a Cell needs in the cell |
| 1214 ** data area of the btree-page. The return number includes the cell |
| 1215 ** data header and the local payload, but not any overflow page or |
| 1216 ** the space used by the cell pointer. |
| 1217 ** |
| 1218 ** cellSizePtrNoPayload() => table internal nodes |
| 1219 ** cellSizePtr() => all index nodes & table leaf nodes |
| 1220 */ |
| 1221 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ |
| 1222 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ |
| 1223 u8 *pEnd; /* End mark for a varint */ |
| 1224 u32 nSize; /* Size value to return */ |
| 1225 |
| 1226 #ifdef SQLITE_DEBUG |
| 1227 /* The value returned by this function should always be the same as |
| 1228 ** the (CellInfo.nSize) value found by doing a full parse of the |
| 1229 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of |
| 1230 ** this function verifies that this invariant is not violated. */ |
| 1231 CellInfo debuginfo; |
| 1232 pPage->xParseCell(pPage, pCell, &debuginfo); |
| 1233 #endif |
| 1234 |
| 1235 nSize = *pIter; |
| 1236 if( nSize>=0x80 ){ |
| 1237 pEnd = &pIter[8]; |
| 1238 nSize &= 0x7f; |
| 1239 do{ |
| 1240 nSize = (nSize<<7) | (*++pIter & 0x7f); |
| 1241 }while( *(pIter)>=0x80 && pIter<pEnd ); |
| 1242 } |
| 1243 pIter++; |
| 1244 if( pPage->intKey ){ |
| 1245 /* pIter now points at the 64-bit integer key value, a variable length |
| 1246 ** integer. The following block moves pIter to point at the first byte |
| 1247 ** past the end of the key value. */ |
| 1248 pEnd = &pIter[9]; |
| 1249 while( (*pIter++)&0x80 && pIter<pEnd ); |
| 1250 } |
| 1251 testcase( nSize==pPage->maxLocal ); |
| 1252 testcase( nSize==pPage->maxLocal+1 ); |
| 1253 if( nSize<=pPage->maxLocal ){ |
| 1254 nSize += (u32)(pIter - pCell); |
| 1255 if( nSize<4 ) nSize = 4; |
| 1256 }else{ |
| 1257 int minLocal = pPage->minLocal; |
| 1258 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); |
| 1259 testcase( nSize==pPage->maxLocal ); |
| 1260 testcase( nSize==pPage->maxLocal+1 ); |
| 1261 if( nSize>pPage->maxLocal ){ |
| 1262 nSize = minLocal; |
| 1263 } |
| 1264 nSize += 4 + (u16)(pIter - pCell); |
| 1265 } |
| 1266 assert( nSize==debuginfo.nSize || CORRUPT_DB ); |
| 1267 return (u16)nSize; |
| 1268 } |
| 1269 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){ |
| 1270 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */ |
| 1271 u8 *pEnd; /* End mark for a varint */ |
| 1272 |
| 1273 #ifdef SQLITE_DEBUG |
| 1274 /* The value returned by this function should always be the same as |
| 1275 ** the (CellInfo.nSize) value found by doing a full parse of the |
| 1276 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of |
| 1277 ** this function verifies that this invariant is not violated. */ |
| 1278 CellInfo debuginfo; |
| 1279 pPage->xParseCell(pPage, pCell, &debuginfo); |
| 1280 #else |
| 1281 UNUSED_PARAMETER(pPage); |
| 1282 #endif |
| 1283 |
| 1284 assert( pPage->childPtrSize==4 ); |
| 1285 pEnd = pIter + 9; |
| 1286 while( (*pIter++)&0x80 && pIter<pEnd ); |
| 1287 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB ); |
| 1288 return (u16)(pIter - pCell); |
| 1289 } |
| 1290 |
| 1291 |
| 1292 #ifdef SQLITE_DEBUG |
| 1293 /* This variation on cellSizePtr() is used inside of assert() statements |
| 1294 ** only. */ |
| 1295 static u16 cellSize(MemPage *pPage, int iCell){ |
| 1296 return pPage->xCellSize(pPage, findCell(pPage, iCell)); |
| 1297 } |
| 1298 #endif |
| 1299 |
| 1300 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 1301 /* |
| 1302 ** If the cell pCell, part of page pPage contains a pointer |
| 1303 ** to an overflow page, insert an entry into the pointer-map |
| 1304 ** for the overflow page. |
| 1305 */ |
| 1306 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){ |
| 1307 CellInfo info; |
| 1308 if( *pRC ) return; |
| 1309 assert( pCell!=0 ); |
| 1310 pPage->xParseCell(pPage, pCell, &info); |
| 1311 if( info.nLocal<info.nPayload ){ |
| 1312 Pgno ovfl = get4byte(&pCell[info.nSize-4]); |
| 1313 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); |
| 1314 } |
| 1315 } |
| 1316 #endif |
| 1317 |
| 1318 |
| 1319 /* |
| 1320 ** Defragment the page given. All Cells are moved to the |
| 1321 ** end of the page and all free space is collected into one |
| 1322 ** big FreeBlk that occurs in between the header and cell |
| 1323 ** pointer array and the cell content area. |
| 1324 ** |
| 1325 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a |
| 1326 ** b-tree page so that there are no freeblocks or fragment bytes, all |
| 1327 ** unused bytes are contained in the unallocated space region, and all |
| 1328 ** cells are packed tightly at the end of the page. |
| 1329 */ |
| 1330 static int defragmentPage(MemPage *pPage){ |
| 1331 int i; /* Loop counter */ |
| 1332 int pc; /* Address of the i-th cell */ |
| 1333 int hdr; /* Offset to the page header */ |
| 1334 int size; /* Size of a cell */ |
| 1335 int usableSize; /* Number of usable bytes on a page */ |
| 1336 int cellOffset; /* Offset to the cell pointer array */ |
| 1337 int cbrk; /* Offset to the cell content area */ |
| 1338 int nCell; /* Number of cells on the page */ |
| 1339 unsigned char *data; /* The page data */ |
| 1340 unsigned char *temp; /* Temp area for cell content */ |
| 1341 unsigned char *src; /* Source of content */ |
| 1342 int iCellFirst; /* First allowable cell index */ |
| 1343 int iCellLast; /* Last possible cell index */ |
| 1344 |
| 1345 |
| 1346 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 1347 assert( pPage->pBt!=0 ); |
| 1348 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); |
| 1349 assert( pPage->nOverflow==0 ); |
| 1350 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1351 temp = 0; |
| 1352 src = data = pPage->aData; |
| 1353 hdr = pPage->hdrOffset; |
| 1354 cellOffset = pPage->cellOffset; |
| 1355 nCell = pPage->nCell; |
| 1356 assert( nCell==get2byte(&data[hdr+3]) ); |
| 1357 usableSize = pPage->pBt->usableSize; |
| 1358 cbrk = usableSize; |
| 1359 iCellFirst = cellOffset + 2*nCell; |
| 1360 iCellLast = usableSize - 4; |
| 1361 for(i=0; i<nCell; i++){ |
| 1362 u8 *pAddr; /* The i-th cell pointer */ |
| 1363 pAddr = &data[cellOffset + i*2]; |
| 1364 pc = get2byte(pAddr); |
| 1365 testcase( pc==iCellFirst ); |
| 1366 testcase( pc==iCellLast ); |
| 1367 /* These conditions have already been verified in btreeInitPage() |
| 1368 ** if PRAGMA cell_size_check=ON. |
| 1369 */ |
| 1370 if( pc<iCellFirst || pc>iCellLast ){ |
| 1371 return SQLITE_CORRUPT_BKPT; |
| 1372 } |
| 1373 assert( pc>=iCellFirst && pc<=iCellLast ); |
| 1374 size = pPage->xCellSize(pPage, &src[pc]); |
| 1375 cbrk -= size; |
| 1376 if( cbrk<iCellFirst || pc+size>usableSize ){ |
| 1377 return SQLITE_CORRUPT_BKPT; |
| 1378 } |
| 1379 assert( cbrk+size<=usableSize && cbrk>=iCellFirst ); |
| 1380 testcase( cbrk+size==usableSize ); |
| 1381 testcase( pc+size==usableSize ); |
| 1382 put2byte(pAddr, cbrk); |
| 1383 if( temp==0 ){ |
| 1384 int x; |
| 1385 if( cbrk==pc ) continue; |
| 1386 temp = sqlite3PagerTempSpace(pPage->pBt->pPager); |
| 1387 x = get2byte(&data[hdr+5]); |
| 1388 memcpy(&temp[x], &data[x], (cbrk+size) - x); |
| 1389 src = temp; |
| 1390 } |
| 1391 memcpy(&data[cbrk], &src[pc], size); |
| 1392 } |
| 1393 assert( cbrk>=iCellFirst ); |
| 1394 put2byte(&data[hdr+5], cbrk); |
| 1395 data[hdr+1] = 0; |
| 1396 data[hdr+2] = 0; |
| 1397 data[hdr+7] = 0; |
| 1398 memset(&data[iCellFirst], 0, cbrk-iCellFirst); |
| 1399 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 1400 if( cbrk-iCellFirst!=pPage->nFree ){ |
| 1401 return SQLITE_CORRUPT_BKPT; |
| 1402 } |
| 1403 return SQLITE_OK; |
| 1404 } |
| 1405 |
| 1406 /* |
| 1407 ** Search the free-list on page pPg for space to store a cell nByte bytes in |
| 1408 ** size. If one can be found, return a pointer to the space and remove it |
| 1409 ** from the free-list. |
| 1410 ** |
| 1411 ** If no suitable space can be found on the free-list, return NULL. |
| 1412 ** |
| 1413 ** This function may detect corruption within pPg. If corruption is |
| 1414 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned. |
| 1415 ** |
| 1416 ** Slots on the free list that are between 1 and 3 bytes larger than nByte |
| 1417 ** will be ignored if adding the extra space to the fragmentation count |
| 1418 ** causes the fragmentation count to exceed 60. |
| 1419 */ |
| 1420 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){ |
| 1421 const int hdr = pPg->hdrOffset; |
| 1422 u8 * const aData = pPg->aData; |
| 1423 int iAddr = hdr + 1; |
| 1424 int pc = get2byte(&aData[iAddr]); |
| 1425 int x; |
| 1426 int usableSize = pPg->pBt->usableSize; |
| 1427 |
| 1428 assert( pc>0 ); |
| 1429 do{ |
| 1430 int size; /* Size of the free slot */ |
| 1431 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of |
| 1432 ** increasing offset. */ |
| 1433 if( pc>usableSize-4 || pc<iAddr+4 ){ |
| 1434 *pRc = SQLITE_CORRUPT_BKPT; |
| 1435 return 0; |
| 1436 } |
| 1437 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each |
| 1438 ** freeblock form a big-endian integer which is the size of the freeblock |
| 1439 ** in bytes, including the 4-byte header. */ |
| 1440 size = get2byte(&aData[pc+2]); |
| 1441 if( (x = size - nByte)>=0 ){ |
| 1442 testcase( x==4 ); |
| 1443 testcase( x==3 ); |
| 1444 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){ |
| 1445 *pRc = SQLITE_CORRUPT_BKPT; |
| 1446 return 0; |
| 1447 }else if( x<4 ){ |
| 1448 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total |
| 1449 ** number of bytes in fragments may not exceed 60. */ |
| 1450 if( aData[hdr+7]>57 ) return 0; |
| 1451 |
| 1452 /* Remove the slot from the free-list. Update the number of |
| 1453 ** fragmented bytes within the page. */ |
| 1454 memcpy(&aData[iAddr], &aData[pc], 2); |
| 1455 aData[hdr+7] += (u8)x; |
| 1456 }else{ |
| 1457 /* The slot remains on the free-list. Reduce its size to account |
| 1458 ** for the portion used by the new allocation. */ |
| 1459 put2byte(&aData[pc+2], x); |
| 1460 } |
| 1461 return &aData[pc + x]; |
| 1462 } |
| 1463 iAddr = pc; |
| 1464 pc = get2byte(&aData[pc]); |
| 1465 }while( pc ); |
| 1466 |
| 1467 return 0; |
| 1468 } |
| 1469 |
| 1470 /* |
| 1471 ** Allocate nByte bytes of space from within the B-Tree page passed |
| 1472 ** as the first argument. Write into *pIdx the index into pPage->aData[] |
| 1473 ** of the first byte of allocated space. Return either SQLITE_OK or |
| 1474 ** an error code (usually SQLITE_CORRUPT). |
| 1475 ** |
| 1476 ** The caller guarantees that there is sufficient space to make the |
| 1477 ** allocation. This routine might need to defragment in order to bring |
| 1478 ** all the space together, however. This routine will avoid using |
| 1479 ** the first two bytes past the cell pointer area since presumably this |
| 1480 ** allocation is being made in order to insert a new cell, so we will |
| 1481 ** also end up needing a new cell pointer. |
| 1482 */ |
| 1483 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ |
| 1484 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ |
| 1485 u8 * const data = pPage->aData; /* Local cache of pPage->aData */ |
| 1486 int top; /* First byte of cell content area */ |
| 1487 int rc = SQLITE_OK; /* Integer return code */ |
| 1488 int gap; /* First byte of gap between cell pointers and cell content */ |
| 1489 |
| 1490 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 1491 assert( pPage->pBt ); |
| 1492 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1493 assert( nByte>=0 ); /* Minimum cell size is 4 */ |
| 1494 assert( pPage->nFree>=nByte ); |
| 1495 assert( pPage->nOverflow==0 ); |
| 1496 assert( nByte < (int)(pPage->pBt->usableSize-8) ); |
| 1497 |
| 1498 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); |
| 1499 gap = pPage->cellOffset + 2*pPage->nCell; |
| 1500 assert( gap<=65536 ); |
| 1501 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size |
| 1502 ** and the reserved space is zero (the usual value for reserved space) |
| 1503 ** then the cell content offset of an empty page wants to be 65536. |
| 1504 ** However, that integer is too large to be stored in a 2-byte unsigned |
| 1505 ** integer, so a value of 0 is used in its place. */ |
| 1506 top = get2byte(&data[hdr+5]); |
| 1507 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */ |
| 1508 if( gap>top ){ |
| 1509 if( top==0 && pPage->pBt->usableSize==65536 ){ |
| 1510 top = 65536; |
| 1511 }else{ |
| 1512 return SQLITE_CORRUPT_BKPT; |
| 1513 } |
| 1514 } |
| 1515 |
| 1516 /* If there is enough space between gap and top for one more cell pointer |
| 1517 ** array entry offset, and if the freelist is not empty, then search the |
| 1518 ** freelist looking for a free slot big enough to satisfy the request. |
| 1519 */ |
| 1520 testcase( gap+2==top ); |
| 1521 testcase( gap+1==top ); |
| 1522 testcase( gap==top ); |
| 1523 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){ |
| 1524 u8 *pSpace = pageFindSlot(pPage, nByte, &rc); |
| 1525 if( pSpace ){ |
| 1526 assert( pSpace>=data && (pSpace - data)<65536 ); |
| 1527 *pIdx = (int)(pSpace - data); |
| 1528 return SQLITE_OK; |
| 1529 }else if( rc ){ |
| 1530 return rc; |
| 1531 } |
| 1532 } |
| 1533 |
| 1534 /* The request could not be fulfilled using a freelist slot. Check |
| 1535 ** to see if defragmentation is necessary. |
| 1536 */ |
| 1537 testcase( gap+2+nByte==top ); |
| 1538 if( gap+2+nByte>top ){ |
| 1539 assert( pPage->nCell>0 || CORRUPT_DB ); |
| 1540 rc = defragmentPage(pPage); |
| 1541 if( rc ) return rc; |
| 1542 top = get2byteNotZero(&data[hdr+5]); |
| 1543 assert( gap+nByte<=top ); |
| 1544 } |
| 1545 |
| 1546 |
| 1547 /* Allocate memory from the gap in between the cell pointer array |
| 1548 ** and the cell content area. The btreeInitPage() call has already |
| 1549 ** validated the freelist. Given that the freelist is valid, there |
| 1550 ** is no way that the allocation can extend off the end of the page. |
| 1551 ** The assert() below verifies the previous sentence. |
| 1552 */ |
| 1553 top -= nByte; |
| 1554 put2byte(&data[hdr+5], top); |
| 1555 assert( top+nByte <= (int)pPage->pBt->usableSize ); |
| 1556 *pIdx = top; |
| 1557 return SQLITE_OK; |
| 1558 } |
| 1559 |
| 1560 /* |
| 1561 ** Return a section of the pPage->aData to the freelist. |
| 1562 ** The first byte of the new free block is pPage->aData[iStart] |
| 1563 ** and the size of the block is iSize bytes. |
| 1564 ** |
| 1565 ** Adjacent freeblocks are coalesced. |
| 1566 ** |
| 1567 ** Note that even though the freeblock list was checked by btreeInitPage(), |
| 1568 ** that routine will not detect overlap between cells or freeblocks. Nor |
| 1569 ** does it detect cells or freeblocks that encrouch into the reserved bytes |
| 1570 ** at the end of the page. So do additional corruption checks inside this |
| 1571 ** routine and return SQLITE_CORRUPT if any problems are found. |
| 1572 */ |
| 1573 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ |
| 1574 u16 iPtr; /* Address of ptr to next freeblock */ |
| 1575 u16 iFreeBlk; /* Address of the next freeblock */ |
| 1576 u8 hdr; /* Page header size. 0 or 100 */ |
| 1577 u8 nFrag = 0; /* Reduction in fragmentation */ |
| 1578 u16 iOrigSize = iSize; /* Original value of iSize */ |
| 1579 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */ |
| 1580 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ |
| 1581 unsigned char *data = pPage->aData; /* Page content */ |
| 1582 |
| 1583 assert( pPage->pBt!=0 ); |
| 1584 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 1585 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); |
| 1586 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize ); |
| 1587 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1588 assert( iSize>=4 ); /* Minimum cell size is 4 */ |
| 1589 assert( iStart<=iLast ); |
| 1590 |
| 1591 /* Overwrite deleted information with zeros when the secure_delete |
| 1592 ** option is enabled */ |
| 1593 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){ |
| 1594 memset(&data[iStart], 0, iSize); |
| 1595 } |
| 1596 |
| 1597 /* The list of freeblocks must be in ascending order. Find the |
| 1598 ** spot on the list where iStart should be inserted. |
| 1599 */ |
| 1600 hdr = pPage->hdrOffset; |
| 1601 iPtr = hdr + 1; |
| 1602 if( data[iPtr+1]==0 && data[iPtr]==0 ){ |
| 1603 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ |
| 1604 }else{ |
| 1605 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){ |
| 1606 if( iFreeBlk<iPtr+4 ){ |
| 1607 if( iFreeBlk==0 ) break; |
| 1608 return SQLITE_CORRUPT_BKPT; |
| 1609 } |
| 1610 iPtr = iFreeBlk; |
| 1611 } |
| 1612 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT; |
| 1613 assert( iFreeBlk>iPtr || iFreeBlk==0 ); |
| 1614 |
| 1615 /* At this point: |
| 1616 ** iFreeBlk: First freeblock after iStart, or zero if none |
| 1617 ** iPtr: The address of a pointer to iFreeBlk |
| 1618 ** |
| 1619 ** Check to see if iFreeBlk should be coalesced onto the end of iStart. |
| 1620 */ |
| 1621 if( iFreeBlk && iEnd+3>=iFreeBlk ){ |
| 1622 nFrag = iFreeBlk - iEnd; |
| 1623 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT; |
| 1624 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); |
| 1625 if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT; |
| 1626 iSize = iEnd - iStart; |
| 1627 iFreeBlk = get2byte(&data[iFreeBlk]); |
| 1628 } |
| 1629 |
| 1630 /* If iPtr is another freeblock (that is, if iPtr is not the freelist |
| 1631 ** pointer in the page header) then check to see if iStart should be |
| 1632 ** coalesced onto the end of iPtr. |
| 1633 */ |
| 1634 if( iPtr>hdr+1 ){ |
| 1635 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); |
| 1636 if( iPtrEnd+3>=iStart ){ |
| 1637 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT; |
| 1638 nFrag += iStart - iPtrEnd; |
| 1639 iSize = iEnd - iPtr; |
| 1640 iStart = iPtr; |
| 1641 } |
| 1642 } |
| 1643 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT; |
| 1644 data[hdr+7] -= nFrag; |
| 1645 } |
| 1646 if( iStart==get2byte(&data[hdr+5]) ){ |
| 1647 /* The new freeblock is at the beginning of the cell content area, |
| 1648 ** so just extend the cell content area rather than create another |
| 1649 ** freelist entry */ |
| 1650 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT; |
| 1651 put2byte(&data[hdr+1], iFreeBlk); |
| 1652 put2byte(&data[hdr+5], iEnd); |
| 1653 }else{ |
| 1654 /* Insert the new freeblock into the freelist */ |
| 1655 put2byte(&data[iPtr], iStart); |
| 1656 put2byte(&data[iStart], iFreeBlk); |
| 1657 put2byte(&data[iStart+2], iSize); |
| 1658 } |
| 1659 pPage->nFree += iOrigSize; |
| 1660 return SQLITE_OK; |
| 1661 } |
| 1662 |
| 1663 /* |
| 1664 ** Decode the flags byte (the first byte of the header) for a page |
| 1665 ** and initialize fields of the MemPage structure accordingly. |
| 1666 ** |
| 1667 ** Only the following combinations are supported. Anything different |
| 1668 ** indicates a corrupt database files: |
| 1669 ** |
| 1670 ** PTF_ZERODATA |
| 1671 ** PTF_ZERODATA | PTF_LEAF |
| 1672 ** PTF_LEAFDATA | PTF_INTKEY |
| 1673 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF |
| 1674 */ |
| 1675 static int decodeFlags(MemPage *pPage, int flagByte){ |
| 1676 BtShared *pBt; /* A copy of pPage->pBt */ |
| 1677 |
| 1678 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); |
| 1679 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1680 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); |
| 1681 flagByte &= ~PTF_LEAF; |
| 1682 pPage->childPtrSize = 4-4*pPage->leaf; |
| 1683 pPage->xCellSize = cellSizePtr; |
| 1684 pBt = pPage->pBt; |
| 1685 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ |
| 1686 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an |
| 1687 ** interior table b-tree page. */ |
| 1688 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 ); |
| 1689 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a |
| 1690 ** leaf table b-tree page. */ |
| 1691 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 ); |
| 1692 pPage->intKey = 1; |
| 1693 if( pPage->leaf ){ |
| 1694 pPage->intKeyLeaf = 1; |
| 1695 pPage->xParseCell = btreeParseCellPtr; |
| 1696 }else{ |
| 1697 pPage->intKeyLeaf = 0; |
| 1698 pPage->xCellSize = cellSizePtrNoPayload; |
| 1699 pPage->xParseCell = btreeParseCellPtrNoPayload; |
| 1700 } |
| 1701 pPage->maxLocal = pBt->maxLeaf; |
| 1702 pPage->minLocal = pBt->minLeaf; |
| 1703 }else if( flagByte==PTF_ZERODATA ){ |
| 1704 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an |
| 1705 ** interior index b-tree page. */ |
| 1706 assert( (PTF_ZERODATA)==2 ); |
| 1707 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a |
| 1708 ** leaf index b-tree page. */ |
| 1709 assert( (PTF_ZERODATA|PTF_LEAF)==10 ); |
| 1710 pPage->intKey = 0; |
| 1711 pPage->intKeyLeaf = 0; |
| 1712 pPage->xParseCell = btreeParseCellPtrIndex; |
| 1713 pPage->maxLocal = pBt->maxLocal; |
| 1714 pPage->minLocal = pBt->minLocal; |
| 1715 }else{ |
| 1716 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is |
| 1717 ** an error. */ |
| 1718 return SQLITE_CORRUPT_BKPT; |
| 1719 } |
| 1720 pPage->max1bytePayload = pBt->max1bytePayload; |
| 1721 return SQLITE_OK; |
| 1722 } |
| 1723 |
| 1724 /* |
| 1725 ** Initialize the auxiliary information for a disk block. |
| 1726 ** |
| 1727 ** Return SQLITE_OK on success. If we see that the page does |
| 1728 ** not contain a well-formed database page, then return |
| 1729 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not |
| 1730 ** guarantee that the page is well-formed. It only shows that |
| 1731 ** we failed to detect any corruption. |
| 1732 */ |
| 1733 static int btreeInitPage(MemPage *pPage){ |
| 1734 |
| 1735 assert( pPage->pBt!=0 ); |
| 1736 assert( pPage->pBt->db!=0 ); |
| 1737 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 1738 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); |
| 1739 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); |
| 1740 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); |
| 1741 |
| 1742 if( !pPage->isInit ){ |
| 1743 int pc; /* Address of a freeblock within pPage->aData[] */ |
| 1744 u8 hdr; /* Offset to beginning of page header */ |
| 1745 u8 *data; /* Equal to pPage->aData */ |
| 1746 BtShared *pBt; /* The main btree structure */ |
| 1747 int usableSize; /* Amount of usable space on each page */ |
| 1748 u16 cellOffset; /* Offset from start of page to first cell pointer */ |
| 1749 int nFree; /* Number of unused bytes on the page */ |
| 1750 int top; /* First byte of the cell content area */ |
| 1751 int iCellFirst; /* First allowable cell or freeblock offset */ |
| 1752 int iCellLast; /* Last possible cell or freeblock offset */ |
| 1753 |
| 1754 pBt = pPage->pBt; |
| 1755 |
| 1756 hdr = pPage->hdrOffset; |
| 1757 data = pPage->aData; |
| 1758 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating |
| 1759 ** the b-tree page type. */ |
| 1760 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT; |
| 1761 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); |
| 1762 pPage->maskPage = (u16)(pBt->pageSize - 1); |
| 1763 pPage->nOverflow = 0; |
| 1764 usableSize = pBt->usableSize; |
| 1765 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize; |
| 1766 pPage->aDataEnd = &data[usableSize]; |
| 1767 pPage->aCellIdx = &data[cellOffset]; |
| 1768 pPage->aDataOfst = &data[pPage->childPtrSize]; |
| 1769 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates |
| 1770 ** the start of the cell content area. A zero value for this integer is |
| 1771 ** interpreted as 65536. */ |
| 1772 top = get2byteNotZero(&data[hdr+5]); |
| 1773 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the |
| 1774 ** number of cells on the page. */ |
| 1775 pPage->nCell = get2byte(&data[hdr+3]); |
| 1776 if( pPage->nCell>MX_CELL(pBt) ){ |
| 1777 /* To many cells for a single page. The page must be corrupt */ |
| 1778 return SQLITE_CORRUPT_BKPT; |
| 1779 } |
| 1780 testcase( pPage->nCell==MX_CELL(pBt) ); |
| 1781 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only |
| 1782 ** possible for a root page of a table that contains no rows) then the |
| 1783 ** offset to the cell content area will equal the page size minus the |
| 1784 ** bytes of reserved space. */ |
| 1785 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB ); |
| 1786 |
| 1787 /* A malformed database page might cause us to read past the end |
| 1788 ** of page when parsing a cell. |
| 1789 ** |
| 1790 ** The following block of code checks early to see if a cell extends |
| 1791 ** past the end of a page boundary and causes SQLITE_CORRUPT to be |
| 1792 ** returned if it does. |
| 1793 */ |
| 1794 iCellFirst = cellOffset + 2*pPage->nCell; |
| 1795 iCellLast = usableSize - 4; |
| 1796 if( pBt->db->flags & SQLITE_CellSizeCk ){ |
| 1797 int i; /* Index into the cell pointer array */ |
| 1798 int sz; /* Size of a cell */ |
| 1799 |
| 1800 if( !pPage->leaf ) iCellLast--; |
| 1801 for(i=0; i<pPage->nCell; i++){ |
| 1802 pc = get2byteAligned(&data[cellOffset+i*2]); |
| 1803 testcase( pc==iCellFirst ); |
| 1804 testcase( pc==iCellLast ); |
| 1805 if( pc<iCellFirst || pc>iCellLast ){ |
| 1806 return SQLITE_CORRUPT_BKPT; |
| 1807 } |
| 1808 sz = pPage->xCellSize(pPage, &data[pc]); |
| 1809 testcase( pc+sz==usableSize ); |
| 1810 if( pc+sz>usableSize ){ |
| 1811 return SQLITE_CORRUPT_BKPT; |
| 1812 } |
| 1813 } |
| 1814 if( !pPage->leaf ) iCellLast++; |
| 1815 } |
| 1816 |
| 1817 /* Compute the total free space on the page |
| 1818 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the |
| 1819 ** start of the first freeblock on the page, or is zero if there are no |
| 1820 ** freeblocks. */ |
| 1821 pc = get2byte(&data[hdr+1]); |
| 1822 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */ |
| 1823 if( pc>0 ){ |
| 1824 u32 next, size; |
| 1825 if( pc<iCellFirst ){ |
| 1826 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will |
| 1827 ** always be at least one cell before the first freeblock. |
| 1828 */ |
| 1829 return SQLITE_CORRUPT_BKPT; |
| 1830 } |
| 1831 while( 1 ){ |
| 1832 if( pc>iCellLast ){ |
| 1833 return SQLITE_CORRUPT_BKPT; /* Freeblock off the end of the page */ |
| 1834 } |
| 1835 next = get2byte(&data[pc]); |
| 1836 size = get2byte(&data[pc+2]); |
| 1837 nFree = nFree + size; |
| 1838 if( next<=pc+size+3 ) break; |
| 1839 pc = next; |
| 1840 } |
| 1841 if( next>0 ){ |
| 1842 return SQLITE_CORRUPT_BKPT; /* Freeblock not in ascending order */ |
| 1843 } |
| 1844 if( pc+size>(unsigned int)usableSize ){ |
| 1845 return SQLITE_CORRUPT_BKPT; /* Last freeblock extends past page end */ |
| 1846 } |
| 1847 } |
| 1848 |
| 1849 /* At this point, nFree contains the sum of the offset to the start |
| 1850 ** of the cell-content area plus the number of free bytes within |
| 1851 ** the cell-content area. If this is greater than the usable-size |
| 1852 ** of the page, then the page must be corrupted. This check also |
| 1853 ** serves to verify that the offset to the start of the cell-content |
| 1854 ** area, according to the page header, lies within the page. |
| 1855 */ |
| 1856 if( nFree>usableSize ){ |
| 1857 return SQLITE_CORRUPT_BKPT; |
| 1858 } |
| 1859 pPage->nFree = (u16)(nFree - iCellFirst); |
| 1860 pPage->isInit = 1; |
| 1861 } |
| 1862 return SQLITE_OK; |
| 1863 } |
| 1864 |
| 1865 /* |
| 1866 ** Set up a raw page so that it looks like a database page holding |
| 1867 ** no entries. |
| 1868 */ |
| 1869 static void zeroPage(MemPage *pPage, int flags){ |
| 1870 unsigned char *data = pPage->aData; |
| 1871 BtShared *pBt = pPage->pBt; |
| 1872 u8 hdr = pPage->hdrOffset; |
| 1873 u16 first; |
| 1874 |
| 1875 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); |
| 1876 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); |
| 1877 assert( sqlite3PagerGetData(pPage->pDbPage) == data ); |
| 1878 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 1879 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 1880 if( pBt->btsFlags & BTS_SECURE_DELETE ){ |
| 1881 memset(&data[hdr], 0, pBt->usableSize - hdr); |
| 1882 } |
| 1883 data[hdr] = (char)flags; |
| 1884 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); |
| 1885 memset(&data[hdr+1], 0, 4); |
| 1886 data[hdr+7] = 0; |
| 1887 put2byte(&data[hdr+5], pBt->usableSize); |
| 1888 pPage->nFree = (u16)(pBt->usableSize - first); |
| 1889 decodeFlags(pPage, flags); |
| 1890 pPage->cellOffset = first; |
| 1891 pPage->aDataEnd = &data[pBt->usableSize]; |
| 1892 pPage->aCellIdx = &data[first]; |
| 1893 pPage->aDataOfst = &data[pPage->childPtrSize]; |
| 1894 pPage->nOverflow = 0; |
| 1895 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); |
| 1896 pPage->maskPage = (u16)(pBt->pageSize - 1); |
| 1897 pPage->nCell = 0; |
| 1898 pPage->isInit = 1; |
| 1899 } |
| 1900 |
| 1901 |
| 1902 /* |
| 1903 ** Convert a DbPage obtained from the pager into a MemPage used by |
| 1904 ** the btree layer. |
| 1905 */ |
| 1906 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ |
| 1907 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); |
| 1908 if( pgno!=pPage->pgno ){ |
| 1909 pPage->aData = sqlite3PagerGetData(pDbPage); |
| 1910 pPage->pDbPage = pDbPage; |
| 1911 pPage->pBt = pBt; |
| 1912 pPage->pgno = pgno; |
| 1913 pPage->hdrOffset = pgno==1 ? 100 : 0; |
| 1914 } |
| 1915 assert( pPage->aData==sqlite3PagerGetData(pDbPage) ); |
| 1916 return pPage; |
| 1917 } |
| 1918 |
| 1919 /* |
| 1920 ** Get a page from the pager. Initialize the MemPage.pBt and |
| 1921 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage(). |
| 1922 ** |
| 1923 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care |
| 1924 ** about the content of the page at this time. So do not go to the disk |
| 1925 ** to fetch the content. Just fill in the content with zeros for now. |
| 1926 ** If in the future we call sqlite3PagerWrite() on this page, that |
| 1927 ** means we have started to be concerned about content and the disk |
| 1928 ** read should occur at that point. |
| 1929 */ |
| 1930 static int btreeGetPage( |
| 1931 BtShared *pBt, /* The btree */ |
| 1932 Pgno pgno, /* Number of the page to fetch */ |
| 1933 MemPage **ppPage, /* Return the page in this parameter */ |
| 1934 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ |
| 1935 ){ |
| 1936 int rc; |
| 1937 DbPage *pDbPage; |
| 1938 |
| 1939 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); |
| 1940 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 1941 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); |
| 1942 if( rc ) return rc; |
| 1943 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); |
| 1944 return SQLITE_OK; |
| 1945 } |
| 1946 |
| 1947 /* |
| 1948 ** Retrieve a page from the pager cache. If the requested page is not |
| 1949 ** already in the pager cache return NULL. Initialize the MemPage.pBt and |
| 1950 ** MemPage.aData elements if needed. |
| 1951 */ |
| 1952 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ |
| 1953 DbPage *pDbPage; |
| 1954 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 1955 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); |
| 1956 if( pDbPage ){ |
| 1957 return btreePageFromDbPage(pDbPage, pgno, pBt); |
| 1958 } |
| 1959 return 0; |
| 1960 } |
| 1961 |
| 1962 /* |
| 1963 ** Return the size of the database file in pages. If there is any kind of |
| 1964 ** error, return ((unsigned int)-1). |
| 1965 */ |
| 1966 static Pgno btreePagecount(BtShared *pBt){ |
| 1967 return pBt->nPage; |
| 1968 } |
| 1969 u32 sqlite3BtreeLastPage(Btree *p){ |
| 1970 assert( sqlite3BtreeHoldsMutex(p) ); |
| 1971 assert( ((p->pBt->nPage)&0x8000000)==0 ); |
| 1972 return btreePagecount(p->pBt); |
| 1973 } |
| 1974 |
| 1975 /* |
| 1976 ** Get a page from the pager and initialize it. |
| 1977 ** |
| 1978 ** If pCur!=0 then the page is being fetched as part of a moveToChild() |
| 1979 ** call. Do additional sanity checking on the page in this case. |
| 1980 ** And if the fetch fails, this routine must decrement pCur->iPage. |
| 1981 ** |
| 1982 ** The page is fetched as read-write unless pCur is not NULL and is |
| 1983 ** a read-only cursor. |
| 1984 ** |
| 1985 ** If an error occurs, then *ppPage is undefined. It |
| 1986 ** may remain unchanged, or it may be set to an invalid value. |
| 1987 */ |
| 1988 static int getAndInitPage( |
| 1989 BtShared *pBt, /* The database file */ |
| 1990 Pgno pgno, /* Number of the page to get */ |
| 1991 MemPage **ppPage, /* Write the page pointer here */ |
| 1992 BtCursor *pCur, /* Cursor to receive the page, or NULL */ |
| 1993 int bReadOnly /* True for a read-only page */ |
| 1994 ){ |
| 1995 int rc; |
| 1996 DbPage *pDbPage; |
| 1997 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 1998 assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] ); |
| 1999 assert( pCur==0 || bReadOnly==pCur->curPagerFlags ); |
| 2000 assert( pCur==0 || pCur->iPage>0 ); |
| 2001 |
| 2002 if( pgno>btreePagecount(pBt) ){ |
| 2003 rc = SQLITE_CORRUPT_BKPT; |
| 2004 goto getAndInitPage_error; |
| 2005 } |
| 2006 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly); |
| 2007 if( rc ){ |
| 2008 goto getAndInitPage_error; |
| 2009 } |
| 2010 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); |
| 2011 if( (*ppPage)->isInit==0 ){ |
| 2012 btreePageFromDbPage(pDbPage, pgno, pBt); |
| 2013 rc = btreeInitPage(*ppPage); |
| 2014 if( rc!=SQLITE_OK ){ |
| 2015 releasePage(*ppPage); |
| 2016 goto getAndInitPage_error; |
| 2017 } |
| 2018 } |
| 2019 assert( (*ppPage)->pgno==pgno ); |
| 2020 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) ); |
| 2021 |
| 2022 /* If obtaining a child page for a cursor, we must verify that the page is |
| 2023 ** compatible with the root page. */ |
| 2024 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){ |
| 2025 rc = SQLITE_CORRUPT_BKPT; |
| 2026 releasePage(*ppPage); |
| 2027 goto getAndInitPage_error; |
| 2028 } |
| 2029 return SQLITE_OK; |
| 2030 |
| 2031 getAndInitPage_error: |
| 2032 if( pCur ) pCur->iPage--; |
| 2033 testcase( pgno==0 ); |
| 2034 assert( pgno!=0 || rc==SQLITE_CORRUPT ); |
| 2035 return rc; |
| 2036 } |
| 2037 |
| 2038 /* |
| 2039 ** Release a MemPage. This should be called once for each prior |
| 2040 ** call to btreeGetPage. |
| 2041 */ |
| 2042 static void releasePageNotNull(MemPage *pPage){ |
| 2043 assert( pPage->aData ); |
| 2044 assert( pPage->pBt ); |
| 2045 assert( pPage->pDbPage!=0 ); |
| 2046 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); |
| 2047 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); |
| 2048 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 2049 sqlite3PagerUnrefNotNull(pPage->pDbPage); |
| 2050 } |
| 2051 static void releasePage(MemPage *pPage){ |
| 2052 if( pPage ) releasePageNotNull(pPage); |
| 2053 } |
| 2054 |
| 2055 /* |
| 2056 ** Get an unused page. |
| 2057 ** |
| 2058 ** This works just like btreeGetPage() with the addition: |
| 2059 ** |
| 2060 ** * If the page is already in use for some other purpose, immediately |
| 2061 ** release it and return an SQLITE_CURRUPT error. |
| 2062 ** * Make sure the isInit flag is clear |
| 2063 */ |
| 2064 static int btreeGetUnusedPage( |
| 2065 BtShared *pBt, /* The btree */ |
| 2066 Pgno pgno, /* Number of the page to fetch */ |
| 2067 MemPage **ppPage, /* Return the page in this parameter */ |
| 2068 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ |
| 2069 ){ |
| 2070 int rc = btreeGetPage(pBt, pgno, ppPage, flags); |
| 2071 if( rc==SQLITE_OK ){ |
| 2072 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ |
| 2073 releasePage(*ppPage); |
| 2074 *ppPage = 0; |
| 2075 return SQLITE_CORRUPT_BKPT; |
| 2076 } |
| 2077 (*ppPage)->isInit = 0; |
| 2078 }else{ |
| 2079 *ppPage = 0; |
| 2080 } |
| 2081 return rc; |
| 2082 } |
| 2083 |
| 2084 |
| 2085 /* |
| 2086 ** During a rollback, when the pager reloads information into the cache |
| 2087 ** so that the cache is restored to its original state at the start of |
| 2088 ** the transaction, for each page restored this routine is called. |
| 2089 ** |
| 2090 ** This routine needs to reset the extra data section at the end of the |
| 2091 ** page to agree with the restored data. |
| 2092 */ |
| 2093 static void pageReinit(DbPage *pData){ |
| 2094 MemPage *pPage; |
| 2095 pPage = (MemPage *)sqlite3PagerGetExtra(pData); |
| 2096 assert( sqlite3PagerPageRefcount(pData)>0 ); |
| 2097 if( pPage->isInit ){ |
| 2098 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 2099 pPage->isInit = 0; |
| 2100 if( sqlite3PagerPageRefcount(pData)>1 ){ |
| 2101 /* pPage might not be a btree page; it might be an overflow page |
| 2102 ** or ptrmap page or a free page. In those cases, the following |
| 2103 ** call to btreeInitPage() will likely return SQLITE_CORRUPT. |
| 2104 ** But no harm is done by this. And it is very important that |
| 2105 ** btreeInitPage() be called on every btree page so we make |
| 2106 ** the call for every page that comes in for re-initing. */ |
| 2107 btreeInitPage(pPage); |
| 2108 } |
| 2109 } |
| 2110 } |
| 2111 |
| 2112 /* |
| 2113 ** Invoke the busy handler for a btree. |
| 2114 */ |
| 2115 static int btreeInvokeBusyHandler(void *pArg){ |
| 2116 BtShared *pBt = (BtShared*)pArg; |
| 2117 assert( pBt->db ); |
| 2118 assert( sqlite3_mutex_held(pBt->db->mutex) ); |
| 2119 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); |
| 2120 } |
| 2121 |
| 2122 /* |
| 2123 ** Open a database file. |
| 2124 ** |
| 2125 ** zFilename is the name of the database file. If zFilename is NULL |
| 2126 ** then an ephemeral database is created. The ephemeral database might |
| 2127 ** be exclusively in memory, or it might use a disk-based memory cache. |
| 2128 ** Either way, the ephemeral database will be automatically deleted |
| 2129 ** when sqlite3BtreeClose() is called. |
| 2130 ** |
| 2131 ** If zFilename is ":memory:" then an in-memory database is created |
| 2132 ** that is automatically destroyed when it is closed. |
| 2133 ** |
| 2134 ** The "flags" parameter is a bitmask that might contain bits like |
| 2135 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. |
| 2136 ** |
| 2137 ** If the database is already opened in the same database connection |
| 2138 ** and we are in shared cache mode, then the open will fail with an |
| 2139 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared |
| 2140 ** objects in the same database connection since doing so will lead |
| 2141 ** to problems with locking. |
| 2142 */ |
| 2143 int sqlite3BtreeOpen( |
| 2144 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ |
| 2145 const char *zFilename, /* Name of the file containing the BTree database */ |
| 2146 sqlite3 *db, /* Associated database handle */ |
| 2147 Btree **ppBtree, /* Pointer to new Btree object written here */ |
| 2148 int flags, /* Options */ |
| 2149 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ |
| 2150 ){ |
| 2151 BtShared *pBt = 0; /* Shared part of btree structure */ |
| 2152 Btree *p; /* Handle to return */ |
| 2153 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ |
| 2154 int rc = SQLITE_OK; /* Result code from this function */ |
| 2155 u8 nReserve; /* Byte of unused space on each page */ |
| 2156 unsigned char zDbHeader[100]; /* Database header content */ |
| 2157 |
| 2158 /* True if opening an ephemeral, temporary database */ |
| 2159 const int isTempDb = zFilename==0 || zFilename[0]==0; |
| 2160 |
| 2161 /* Set the variable isMemdb to true for an in-memory database, or |
| 2162 ** false for a file-based database. |
| 2163 */ |
| 2164 #ifdef SQLITE_OMIT_MEMORYDB |
| 2165 const int isMemdb = 0; |
| 2166 #else |
| 2167 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) |
| 2168 || (isTempDb && sqlite3TempInMemory(db)) |
| 2169 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; |
| 2170 #endif |
| 2171 |
| 2172 assert( db!=0 ); |
| 2173 assert( pVfs!=0 ); |
| 2174 assert( sqlite3_mutex_held(db->mutex) ); |
| 2175 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ |
| 2176 |
| 2177 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ |
| 2178 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); |
| 2179 |
| 2180 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ |
| 2181 assert( (flags & BTREE_SINGLE)==0 || isTempDb ); |
| 2182 |
| 2183 if( isMemdb ){ |
| 2184 flags |= BTREE_MEMORY; |
| 2185 } |
| 2186 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ |
| 2187 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; |
| 2188 } |
| 2189 p = sqlite3MallocZero(sizeof(Btree)); |
| 2190 if( !p ){ |
| 2191 return SQLITE_NOMEM_BKPT; |
| 2192 } |
| 2193 p->inTrans = TRANS_NONE; |
| 2194 p->db = db; |
| 2195 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 2196 p->lock.pBtree = p; |
| 2197 p->lock.iTable = 1; |
| 2198 #endif |
| 2199 |
| 2200 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
| 2201 /* |
| 2202 ** If this Btree is a candidate for shared cache, try to find an |
| 2203 ** existing BtShared object that we can share with |
| 2204 */ |
| 2205 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ |
| 2206 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ |
| 2207 int nFilename = sqlite3Strlen30(zFilename)+1; |
| 2208 int nFullPathname = pVfs->mxPathname+1; |
| 2209 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename)); |
| 2210 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) |
| 2211 |
| 2212 p->sharable = 1; |
| 2213 if( !zFullPathname ){ |
| 2214 sqlite3_free(p); |
| 2215 return SQLITE_NOMEM_BKPT; |
| 2216 } |
| 2217 if( isMemdb ){ |
| 2218 memcpy(zFullPathname, zFilename, nFilename); |
| 2219 }else{ |
| 2220 rc = sqlite3OsFullPathname(pVfs, zFilename, |
| 2221 nFullPathname, zFullPathname); |
| 2222 if( rc ){ |
| 2223 sqlite3_free(zFullPathname); |
| 2224 sqlite3_free(p); |
| 2225 return rc; |
| 2226 } |
| 2227 } |
| 2228 #if SQLITE_THREADSAFE |
| 2229 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); |
| 2230 sqlite3_mutex_enter(mutexOpen); |
| 2231 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); |
| 2232 sqlite3_mutex_enter(mutexShared); |
| 2233 #endif |
| 2234 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ |
| 2235 assert( pBt->nRef>0 ); |
| 2236 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) |
| 2237 && sqlite3PagerVfs(pBt->pPager)==pVfs ){ |
| 2238 int iDb; |
| 2239 for(iDb=db->nDb-1; iDb>=0; iDb--){ |
| 2240 Btree *pExisting = db->aDb[iDb].pBt; |
| 2241 if( pExisting && pExisting->pBt==pBt ){ |
| 2242 sqlite3_mutex_leave(mutexShared); |
| 2243 sqlite3_mutex_leave(mutexOpen); |
| 2244 sqlite3_free(zFullPathname); |
| 2245 sqlite3_free(p); |
| 2246 return SQLITE_CONSTRAINT; |
| 2247 } |
| 2248 } |
| 2249 p->pBt = pBt; |
| 2250 pBt->nRef++; |
| 2251 break; |
| 2252 } |
| 2253 } |
| 2254 sqlite3_mutex_leave(mutexShared); |
| 2255 sqlite3_free(zFullPathname); |
| 2256 } |
| 2257 #ifdef SQLITE_DEBUG |
| 2258 else{ |
| 2259 /* In debug mode, we mark all persistent databases as sharable |
| 2260 ** even when they are not. This exercises the locking code and |
| 2261 ** gives more opportunity for asserts(sqlite3_mutex_held()) |
| 2262 ** statements to find locking problems. |
| 2263 */ |
| 2264 p->sharable = 1; |
| 2265 } |
| 2266 #endif |
| 2267 } |
| 2268 #endif |
| 2269 if( pBt==0 ){ |
| 2270 /* |
| 2271 ** The following asserts make sure that structures used by the btree are |
| 2272 ** the right size. This is to guard against size changes that result |
| 2273 ** when compiling on a different architecture. |
| 2274 */ |
| 2275 assert( sizeof(i64)==8 ); |
| 2276 assert( sizeof(u64)==8 ); |
| 2277 assert( sizeof(u32)==4 ); |
| 2278 assert( sizeof(u16)==2 ); |
| 2279 assert( sizeof(Pgno)==4 ); |
| 2280 |
| 2281 pBt = sqlite3MallocZero( sizeof(*pBt) ); |
| 2282 if( pBt==0 ){ |
| 2283 rc = SQLITE_NOMEM_BKPT; |
| 2284 goto btree_open_out; |
| 2285 } |
| 2286 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, |
| 2287 sizeof(MemPage), flags, vfsFlags, pageReinit); |
| 2288 if( rc==SQLITE_OK ){ |
| 2289 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); |
| 2290 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); |
| 2291 } |
| 2292 if( rc!=SQLITE_OK ){ |
| 2293 goto btree_open_out; |
| 2294 } |
| 2295 pBt->openFlags = (u8)flags; |
| 2296 pBt->db = db; |
| 2297 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt); |
| 2298 p->pBt = pBt; |
| 2299 |
| 2300 pBt->pCursor = 0; |
| 2301 pBt->pPage1 = 0; |
| 2302 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; |
| 2303 #ifdef SQLITE_SECURE_DELETE |
| 2304 pBt->btsFlags |= BTS_SECURE_DELETE; |
| 2305 #endif |
| 2306 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is |
| 2307 ** determined by the 2-byte integer located at an offset of 16 bytes from |
| 2308 ** the beginning of the database file. */ |
| 2309 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); |
| 2310 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE |
| 2311 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ |
| 2312 pBt->pageSize = 0; |
| 2313 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 2314 /* If the magic name ":memory:" will create an in-memory database, then |
| 2315 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if |
| 2316 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if |
| 2317 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a |
| 2318 ** regular file-name. In this case the auto-vacuum applies as per normal. |
| 2319 */ |
| 2320 if( zFilename && !isMemdb ){ |
| 2321 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); |
| 2322 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); |
| 2323 } |
| 2324 #endif |
| 2325 nReserve = 0; |
| 2326 }else{ |
| 2327 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is |
| 2328 ** determined by the one-byte unsigned integer found at an offset of 20 |
| 2329 ** into the database file header. */ |
| 2330 nReserve = zDbHeader[20]; |
| 2331 pBt->btsFlags |= BTS_PAGESIZE_FIXED; |
| 2332 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 2333 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); |
| 2334 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); |
| 2335 #endif |
| 2336 } |
| 2337 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); |
| 2338 if( rc ) goto btree_open_out; |
| 2339 pBt->usableSize = pBt->pageSize - nReserve; |
| 2340 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ |
| 2341 |
| 2342 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
| 2343 /* Add the new BtShared object to the linked list sharable BtShareds. |
| 2344 */ |
| 2345 pBt->nRef = 1; |
| 2346 if( p->sharable ){ |
| 2347 MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) |
| 2348 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);) |
| 2349 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ |
| 2350 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); |
| 2351 if( pBt->mutex==0 ){ |
| 2352 rc = SQLITE_NOMEM_BKPT; |
| 2353 goto btree_open_out; |
| 2354 } |
| 2355 } |
| 2356 sqlite3_mutex_enter(mutexShared); |
| 2357 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); |
| 2358 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; |
| 2359 sqlite3_mutex_leave(mutexShared); |
| 2360 } |
| 2361 #endif |
| 2362 } |
| 2363 |
| 2364 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
| 2365 /* If the new Btree uses a sharable pBtShared, then link the new |
| 2366 ** Btree into the list of all sharable Btrees for the same connection. |
| 2367 ** The list is kept in ascending order by pBt address. |
| 2368 */ |
| 2369 if( p->sharable ){ |
| 2370 int i; |
| 2371 Btree *pSib; |
| 2372 for(i=0; i<db->nDb; i++){ |
| 2373 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ |
| 2374 while( pSib->pPrev ){ pSib = pSib->pPrev; } |
| 2375 if( (uptr)p->pBt<(uptr)pSib->pBt ){ |
| 2376 p->pNext = pSib; |
| 2377 p->pPrev = 0; |
| 2378 pSib->pPrev = p; |
| 2379 }else{ |
| 2380 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){ |
| 2381 pSib = pSib->pNext; |
| 2382 } |
| 2383 p->pNext = pSib->pNext; |
| 2384 p->pPrev = pSib; |
| 2385 if( p->pNext ){ |
| 2386 p->pNext->pPrev = p; |
| 2387 } |
| 2388 pSib->pNext = p; |
| 2389 } |
| 2390 break; |
| 2391 } |
| 2392 } |
| 2393 } |
| 2394 #endif |
| 2395 *ppBtree = p; |
| 2396 |
| 2397 btree_open_out: |
| 2398 if( rc!=SQLITE_OK ){ |
| 2399 if( pBt && pBt->pPager ){ |
| 2400 sqlite3PagerClose(pBt->pPager, 0); |
| 2401 } |
| 2402 sqlite3_free(pBt); |
| 2403 sqlite3_free(p); |
| 2404 *ppBtree = 0; |
| 2405 }else{ |
| 2406 sqlite3_file *pFile; |
| 2407 |
| 2408 /* If the B-Tree was successfully opened, set the pager-cache size to the |
| 2409 ** default value. Except, when opening on an existing shared pager-cache, |
| 2410 ** do not change the pager-cache size. |
| 2411 */ |
| 2412 if( sqlite3BtreeSchema(p, 0, 0)==0 ){ |
| 2413 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE); |
| 2414 } |
| 2415 |
| 2416 pFile = sqlite3PagerFile(pBt->pPager); |
| 2417 if( pFile->pMethods ){ |
| 2418 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db); |
| 2419 } |
| 2420 } |
| 2421 if( mutexOpen ){ |
| 2422 assert( sqlite3_mutex_held(mutexOpen) ); |
| 2423 sqlite3_mutex_leave(mutexOpen); |
| 2424 } |
| 2425 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 ); |
| 2426 return rc; |
| 2427 } |
| 2428 |
| 2429 /* |
| 2430 ** Decrement the BtShared.nRef counter. When it reaches zero, |
| 2431 ** remove the BtShared structure from the sharing list. Return |
| 2432 ** true if the BtShared.nRef counter reaches zero and return |
| 2433 ** false if it is still positive. |
| 2434 */ |
| 2435 static int removeFromSharingList(BtShared *pBt){ |
| 2436 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 2437 MUTEX_LOGIC( sqlite3_mutex *pMaster; ) |
| 2438 BtShared *pList; |
| 2439 int removed = 0; |
| 2440 |
| 2441 assert( sqlite3_mutex_notheld(pBt->mutex) ); |
| 2442 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) |
| 2443 sqlite3_mutex_enter(pMaster); |
| 2444 pBt->nRef--; |
| 2445 if( pBt->nRef<=0 ){ |
| 2446 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ |
| 2447 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; |
| 2448 }else{ |
| 2449 pList = GLOBAL(BtShared*,sqlite3SharedCacheList); |
| 2450 while( ALWAYS(pList) && pList->pNext!=pBt ){ |
| 2451 pList=pList->pNext; |
| 2452 } |
| 2453 if( ALWAYS(pList) ){ |
| 2454 pList->pNext = pBt->pNext; |
| 2455 } |
| 2456 } |
| 2457 if( SQLITE_THREADSAFE ){ |
| 2458 sqlite3_mutex_free(pBt->mutex); |
| 2459 } |
| 2460 removed = 1; |
| 2461 } |
| 2462 sqlite3_mutex_leave(pMaster); |
| 2463 return removed; |
| 2464 #else |
| 2465 return 1; |
| 2466 #endif |
| 2467 } |
| 2468 |
| 2469 /* |
| 2470 ** Make sure pBt->pTmpSpace points to an allocation of |
| 2471 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child |
| 2472 ** pointer. |
| 2473 */ |
| 2474 static void allocateTempSpace(BtShared *pBt){ |
| 2475 if( !pBt->pTmpSpace ){ |
| 2476 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); |
| 2477 |
| 2478 /* One of the uses of pBt->pTmpSpace is to format cells before |
| 2479 ** inserting them into a leaf page (function fillInCell()). If |
| 2480 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes |
| 2481 ** by the various routines that manipulate binary cells. Which |
| 2482 ** can mean that fillInCell() only initializes the first 2 or 3 |
| 2483 ** bytes of pTmpSpace, but that the first 4 bytes are copied from |
| 2484 ** it into a database page. This is not actually a problem, but it |
| 2485 ** does cause a valgrind error when the 1 or 2 bytes of unitialized |
| 2486 ** data is passed to system call write(). So to avoid this error, |
| 2487 ** zero the first 4 bytes of temp space here. |
| 2488 ** |
| 2489 ** Also: Provide four bytes of initialized space before the |
| 2490 ** beginning of pTmpSpace as an area available to prepend the |
| 2491 ** left-child pointer to the beginning of a cell. |
| 2492 */ |
| 2493 if( pBt->pTmpSpace ){ |
| 2494 memset(pBt->pTmpSpace, 0, 8); |
| 2495 pBt->pTmpSpace += 4; |
| 2496 } |
| 2497 } |
| 2498 } |
| 2499 |
| 2500 /* |
| 2501 ** Free the pBt->pTmpSpace allocation |
| 2502 */ |
| 2503 static void freeTempSpace(BtShared *pBt){ |
| 2504 if( pBt->pTmpSpace ){ |
| 2505 pBt->pTmpSpace -= 4; |
| 2506 sqlite3PageFree(pBt->pTmpSpace); |
| 2507 pBt->pTmpSpace = 0; |
| 2508 } |
| 2509 } |
| 2510 |
| 2511 /* |
| 2512 ** Close an open database and invalidate all cursors. |
| 2513 */ |
| 2514 int sqlite3BtreeClose(Btree *p){ |
| 2515 BtShared *pBt = p->pBt; |
| 2516 BtCursor *pCur; |
| 2517 |
| 2518 /* Close all cursors opened via this handle. */ |
| 2519 assert( sqlite3_mutex_held(p->db->mutex) ); |
| 2520 sqlite3BtreeEnter(p); |
| 2521 pCur = pBt->pCursor; |
| 2522 while( pCur ){ |
| 2523 BtCursor *pTmp = pCur; |
| 2524 pCur = pCur->pNext; |
| 2525 if( pTmp->pBtree==p ){ |
| 2526 sqlite3BtreeCloseCursor(pTmp); |
| 2527 } |
| 2528 } |
| 2529 |
| 2530 /* Rollback any active transaction and free the handle structure. |
| 2531 ** The call to sqlite3BtreeRollback() drops any table-locks held by |
| 2532 ** this handle. |
| 2533 */ |
| 2534 sqlite3BtreeRollback(p, SQLITE_OK, 0); |
| 2535 sqlite3BtreeLeave(p); |
| 2536 |
| 2537 /* If there are still other outstanding references to the shared-btree |
| 2538 ** structure, return now. The remainder of this procedure cleans |
| 2539 ** up the shared-btree. |
| 2540 */ |
| 2541 assert( p->wantToLock==0 && p->locked==0 ); |
| 2542 if( !p->sharable || removeFromSharingList(pBt) ){ |
| 2543 /* The pBt is no longer on the sharing list, so we can access |
| 2544 ** it without having to hold the mutex. |
| 2545 ** |
| 2546 ** Clean out and delete the BtShared object. |
| 2547 */ |
| 2548 assert( !pBt->pCursor ); |
| 2549 sqlite3PagerClose(pBt->pPager, p->db); |
| 2550 if( pBt->xFreeSchema && pBt->pSchema ){ |
| 2551 pBt->xFreeSchema(pBt->pSchema); |
| 2552 } |
| 2553 sqlite3DbFree(0, pBt->pSchema); |
| 2554 freeTempSpace(pBt); |
| 2555 sqlite3_free(pBt); |
| 2556 } |
| 2557 |
| 2558 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 2559 assert( p->wantToLock==0 ); |
| 2560 assert( p->locked==0 ); |
| 2561 if( p->pPrev ) p->pPrev->pNext = p->pNext; |
| 2562 if( p->pNext ) p->pNext->pPrev = p->pPrev; |
| 2563 #endif |
| 2564 |
| 2565 sqlite3_free(p); |
| 2566 return SQLITE_OK; |
| 2567 } |
| 2568 |
| 2569 /* |
| 2570 ** Change the "soft" limit on the number of pages in the cache. |
| 2571 ** Unused and unmodified pages will be recycled when the number of |
| 2572 ** pages in the cache exceeds this soft limit. But the size of the |
| 2573 ** cache is allowed to grow larger than this limit if it contains |
| 2574 ** dirty pages or pages still in active use. |
| 2575 */ |
| 2576 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ |
| 2577 BtShared *pBt = p->pBt; |
| 2578 assert( sqlite3_mutex_held(p->db->mutex) ); |
| 2579 sqlite3BtreeEnter(p); |
| 2580 sqlite3PagerSetCachesize(pBt->pPager, mxPage); |
| 2581 sqlite3BtreeLeave(p); |
| 2582 return SQLITE_OK; |
| 2583 } |
| 2584 |
| 2585 /* |
| 2586 ** Change the "spill" limit on the number of pages in the cache. |
| 2587 ** If the number of pages exceeds this limit during a write transaction, |
| 2588 ** the pager might attempt to "spill" pages to the journal early in |
| 2589 ** order to free up memory. |
| 2590 ** |
| 2591 ** The value returned is the current spill size. If zero is passed |
| 2592 ** as an argument, no changes are made to the spill size setting, so |
| 2593 ** using mxPage of 0 is a way to query the current spill size. |
| 2594 */ |
| 2595 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){ |
| 2596 BtShared *pBt = p->pBt; |
| 2597 int res; |
| 2598 assert( sqlite3_mutex_held(p->db->mutex) ); |
| 2599 sqlite3BtreeEnter(p); |
| 2600 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage); |
| 2601 sqlite3BtreeLeave(p); |
| 2602 return res; |
| 2603 } |
| 2604 |
| 2605 #if SQLITE_MAX_MMAP_SIZE>0 |
| 2606 /* |
| 2607 ** Change the limit on the amount of the database file that may be |
| 2608 ** memory mapped. |
| 2609 */ |
| 2610 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ |
| 2611 BtShared *pBt = p->pBt; |
| 2612 assert( sqlite3_mutex_held(p->db->mutex) ); |
| 2613 sqlite3BtreeEnter(p); |
| 2614 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); |
| 2615 sqlite3BtreeLeave(p); |
| 2616 return SQLITE_OK; |
| 2617 } |
| 2618 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ |
| 2619 |
| 2620 /* |
| 2621 ** Change the way data is synced to disk in order to increase or decrease |
| 2622 ** how well the database resists damage due to OS crashes and power |
| 2623 ** failures. Level 1 is the same as asynchronous (no syncs() occur and |
| 2624 ** there is a high probability of damage) Level 2 is the default. There |
| 2625 ** is a very low but non-zero probability of damage. Level 3 reduces the |
| 2626 ** probability of damage to near zero but with a write performance reduction. |
| 2627 */ |
| 2628 #ifndef SQLITE_OMIT_PAGER_PRAGMAS |
| 2629 int sqlite3BtreeSetPagerFlags( |
| 2630 Btree *p, /* The btree to set the safety level on */ |
| 2631 unsigned pgFlags /* Various PAGER_* flags */ |
| 2632 ){ |
| 2633 BtShared *pBt = p->pBt; |
| 2634 assert( sqlite3_mutex_held(p->db->mutex) ); |
| 2635 sqlite3BtreeEnter(p); |
| 2636 sqlite3PagerSetFlags(pBt->pPager, pgFlags); |
| 2637 sqlite3BtreeLeave(p); |
| 2638 return SQLITE_OK; |
| 2639 } |
| 2640 #endif |
| 2641 |
| 2642 /* |
| 2643 ** Change the default pages size and the number of reserved bytes per page. |
| 2644 ** Or, if the page size has already been fixed, return SQLITE_READONLY |
| 2645 ** without changing anything. |
| 2646 ** |
| 2647 ** The page size must be a power of 2 between 512 and 65536. If the page |
| 2648 ** size supplied does not meet this constraint then the page size is not |
| 2649 ** changed. |
| 2650 ** |
| 2651 ** Page sizes are constrained to be a power of two so that the region |
| 2652 ** of the database file used for locking (beginning at PENDING_BYTE, |
| 2653 ** the first byte past the 1GB boundary, 0x40000000) needs to occur |
| 2654 ** at the beginning of a page. |
| 2655 ** |
| 2656 ** If parameter nReserve is less than zero, then the number of reserved |
| 2657 ** bytes per page is left unchanged. |
| 2658 ** |
| 2659 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size |
| 2660 ** and autovacuum mode can no longer be changed. |
| 2661 */ |
| 2662 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ |
| 2663 int rc = SQLITE_OK; |
| 2664 BtShared *pBt = p->pBt; |
| 2665 assert( nReserve>=-1 && nReserve<=255 ); |
| 2666 sqlite3BtreeEnter(p); |
| 2667 #if SQLITE_HAS_CODEC |
| 2668 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve; |
| 2669 #endif |
| 2670 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ |
| 2671 sqlite3BtreeLeave(p); |
| 2672 return SQLITE_READONLY; |
| 2673 } |
| 2674 if( nReserve<0 ){ |
| 2675 nReserve = pBt->pageSize - pBt->usableSize; |
| 2676 } |
| 2677 assert( nReserve>=0 && nReserve<=255 ); |
| 2678 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && |
| 2679 ((pageSize-1)&pageSize)==0 ){ |
| 2680 assert( (pageSize & 7)==0 ); |
| 2681 assert( !pBt->pCursor ); |
| 2682 pBt->pageSize = (u32)pageSize; |
| 2683 freeTempSpace(pBt); |
| 2684 } |
| 2685 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); |
| 2686 pBt->usableSize = pBt->pageSize - (u16)nReserve; |
| 2687 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; |
| 2688 sqlite3BtreeLeave(p); |
| 2689 return rc; |
| 2690 } |
| 2691 |
| 2692 /* |
| 2693 ** Return the currently defined page size |
| 2694 */ |
| 2695 int sqlite3BtreeGetPageSize(Btree *p){ |
| 2696 return p->pBt->pageSize; |
| 2697 } |
| 2698 |
| 2699 /* |
| 2700 ** This function is similar to sqlite3BtreeGetReserve(), except that it |
| 2701 ** may only be called if it is guaranteed that the b-tree mutex is already |
| 2702 ** held. |
| 2703 ** |
| 2704 ** This is useful in one special case in the backup API code where it is |
| 2705 ** known that the shared b-tree mutex is held, but the mutex on the |
| 2706 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter() |
| 2707 ** were to be called, it might collide with some other operation on the |
| 2708 ** database handle that owns *p, causing undefined behavior. |
| 2709 */ |
| 2710 int sqlite3BtreeGetReserveNoMutex(Btree *p){ |
| 2711 int n; |
| 2712 assert( sqlite3_mutex_held(p->pBt->mutex) ); |
| 2713 n = p->pBt->pageSize - p->pBt->usableSize; |
| 2714 return n; |
| 2715 } |
| 2716 |
| 2717 /* |
| 2718 ** Return the number of bytes of space at the end of every page that |
| 2719 ** are intentually left unused. This is the "reserved" space that is |
| 2720 ** sometimes used by extensions. |
| 2721 ** |
| 2722 ** If SQLITE_HAS_MUTEX is defined then the number returned is the |
| 2723 ** greater of the current reserved space and the maximum requested |
| 2724 ** reserve space. |
| 2725 */ |
| 2726 int sqlite3BtreeGetOptimalReserve(Btree *p){ |
| 2727 int n; |
| 2728 sqlite3BtreeEnter(p); |
| 2729 n = sqlite3BtreeGetReserveNoMutex(p); |
| 2730 #ifdef SQLITE_HAS_CODEC |
| 2731 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve; |
| 2732 #endif |
| 2733 sqlite3BtreeLeave(p); |
| 2734 return n; |
| 2735 } |
| 2736 |
| 2737 |
| 2738 /* |
| 2739 ** Set the maximum page count for a database if mxPage is positive. |
| 2740 ** No changes are made if mxPage is 0 or negative. |
| 2741 ** Regardless of the value of mxPage, return the maximum page count. |
| 2742 */ |
| 2743 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){ |
| 2744 int n; |
| 2745 sqlite3BtreeEnter(p); |
| 2746 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); |
| 2747 sqlite3BtreeLeave(p); |
| 2748 return n; |
| 2749 } |
| 2750 |
| 2751 /* |
| 2752 ** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1, |
| 2753 ** then make no changes. Always return the value of the BTS_SECURE_DELETE |
| 2754 ** setting after the change. |
| 2755 */ |
| 2756 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ |
| 2757 int b; |
| 2758 if( p==0 ) return 0; |
| 2759 sqlite3BtreeEnter(p); |
| 2760 if( newFlag>=0 ){ |
| 2761 p->pBt->btsFlags &= ~BTS_SECURE_DELETE; |
| 2762 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE; |
| 2763 } |
| 2764 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0; |
| 2765 sqlite3BtreeLeave(p); |
| 2766 return b; |
| 2767 } |
| 2768 |
| 2769 /* |
| 2770 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' |
| 2771 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it |
| 2772 ** is disabled. The default value for the auto-vacuum property is |
| 2773 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. |
| 2774 */ |
| 2775 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ |
| 2776 #ifdef SQLITE_OMIT_AUTOVACUUM |
| 2777 return SQLITE_READONLY; |
| 2778 #else |
| 2779 BtShared *pBt = p->pBt; |
| 2780 int rc = SQLITE_OK; |
| 2781 u8 av = (u8)autoVacuum; |
| 2782 |
| 2783 sqlite3BtreeEnter(p); |
| 2784 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ |
| 2785 rc = SQLITE_READONLY; |
| 2786 }else{ |
| 2787 pBt->autoVacuum = av ?1:0; |
| 2788 pBt->incrVacuum = av==2 ?1:0; |
| 2789 } |
| 2790 sqlite3BtreeLeave(p); |
| 2791 return rc; |
| 2792 #endif |
| 2793 } |
| 2794 |
| 2795 /* |
| 2796 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is |
| 2797 ** enabled 1 is returned. Otherwise 0. |
| 2798 */ |
| 2799 int sqlite3BtreeGetAutoVacuum(Btree *p){ |
| 2800 #ifdef SQLITE_OMIT_AUTOVACUUM |
| 2801 return BTREE_AUTOVACUUM_NONE; |
| 2802 #else |
| 2803 int rc; |
| 2804 sqlite3BtreeEnter(p); |
| 2805 rc = ( |
| 2806 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: |
| 2807 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: |
| 2808 BTREE_AUTOVACUUM_INCR |
| 2809 ); |
| 2810 sqlite3BtreeLeave(p); |
| 2811 return rc; |
| 2812 #endif |
| 2813 } |
| 2814 |
| 2815 |
| 2816 /* |
| 2817 ** Get a reference to pPage1 of the database file. This will |
| 2818 ** also acquire a readlock on that file. |
| 2819 ** |
| 2820 ** SQLITE_OK is returned on success. If the file is not a |
| 2821 ** well-formed database file, then SQLITE_CORRUPT is returned. |
| 2822 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM |
| 2823 ** is returned if we run out of memory. |
| 2824 */ |
| 2825 static int lockBtree(BtShared *pBt){ |
| 2826 int rc; /* Result code from subfunctions */ |
| 2827 MemPage *pPage1; /* Page 1 of the database file */ |
| 2828 int nPage; /* Number of pages in the database */ |
| 2829 int nPageFile = 0; /* Number of pages in the database file */ |
| 2830 int nPageHeader; /* Number of pages in the database according to hdr */ |
| 2831 |
| 2832 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 2833 assert( pBt->pPage1==0 ); |
| 2834 rc = sqlite3PagerSharedLock(pBt->pPager); |
| 2835 if( rc!=SQLITE_OK ) return rc; |
| 2836 rc = btreeGetPage(pBt, 1, &pPage1, 0); |
| 2837 if( rc!=SQLITE_OK ) return rc; |
| 2838 |
| 2839 /* Do some checking to help insure the file we opened really is |
| 2840 ** a valid database file. |
| 2841 */ |
| 2842 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData); |
| 2843 sqlite3PagerPagecount(pBt->pPager, &nPageFile); |
| 2844 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ |
| 2845 nPage = nPageFile; |
| 2846 } |
| 2847 if( nPage>0 ){ |
| 2848 u32 pageSize; |
| 2849 u32 usableSize; |
| 2850 u8 *page1 = pPage1->aData; |
| 2851 rc = SQLITE_NOTADB; |
| 2852 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins |
| 2853 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d |
| 2854 ** 61 74 20 33 00. */ |
| 2855 if( memcmp(page1, zMagicHeader, 16)!=0 ){ |
| 2856 goto page1_init_failed; |
| 2857 } |
| 2858 |
| 2859 #ifdef SQLITE_OMIT_WAL |
| 2860 if( page1[18]>1 ){ |
| 2861 pBt->btsFlags |= BTS_READ_ONLY; |
| 2862 } |
| 2863 if( page1[19]>1 ){ |
| 2864 goto page1_init_failed; |
| 2865 } |
| 2866 #else |
| 2867 if( page1[18]>2 ){ |
| 2868 pBt->btsFlags |= BTS_READ_ONLY; |
| 2869 } |
| 2870 if( page1[19]>2 ){ |
| 2871 goto page1_init_failed; |
| 2872 } |
| 2873 |
| 2874 /* If the write version is set to 2, this database should be accessed |
| 2875 ** in WAL mode. If the log is not already open, open it now. Then |
| 2876 ** return SQLITE_OK and return without populating BtShared.pPage1. |
| 2877 ** The caller detects this and calls this function again. This is |
| 2878 ** required as the version of page 1 currently in the page1 buffer |
| 2879 ** may not be the latest version - there may be a newer one in the log |
| 2880 ** file. |
| 2881 */ |
| 2882 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ |
| 2883 int isOpen = 0; |
| 2884 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); |
| 2885 if( rc!=SQLITE_OK ){ |
| 2886 goto page1_init_failed; |
| 2887 }else{ |
| 2888 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS |
| 2889 sqlite3 *db; |
| 2890 Db *pDb; |
| 2891 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){ |
| 2892 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; } |
| 2893 if( pDb->bSyncSet==0 |
| 2894 && pDb->safety_level==SQLITE_DEFAULT_SYNCHRONOUS+1 |
| 2895 ){ |
| 2896 pDb->safety_level = SQLITE_DEFAULT_WAL_SYNCHRONOUS+1; |
| 2897 sqlite3PagerSetFlags(pBt->pPager, |
| 2898 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK)); |
| 2899 } |
| 2900 } |
| 2901 #endif |
| 2902 if( isOpen==0 ){ |
| 2903 releasePage(pPage1); |
| 2904 return SQLITE_OK; |
| 2905 } |
| 2906 } |
| 2907 rc = SQLITE_NOTADB; |
| 2908 } |
| 2909 #endif |
| 2910 |
| 2911 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload |
| 2912 ** fractions and the leaf payload fraction values must be 64, 32, and 32. |
| 2913 ** |
| 2914 ** The original design allowed these amounts to vary, but as of |
| 2915 ** version 3.6.0, we require them to be fixed. |
| 2916 */ |
| 2917 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ |
| 2918 goto page1_init_failed; |
| 2919 } |
| 2920 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is |
| 2921 ** determined by the 2-byte integer located at an offset of 16 bytes from |
| 2922 ** the beginning of the database file. */ |
| 2923 pageSize = (page1[16]<<8) | (page1[17]<<16); |
| 2924 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two |
| 2925 ** between 512 and 65536 inclusive. */ |
| 2926 if( ((pageSize-1)&pageSize)!=0 |
| 2927 || pageSize>SQLITE_MAX_PAGE_SIZE |
| 2928 || pageSize<=256 |
| 2929 ){ |
| 2930 goto page1_init_failed; |
| 2931 } |
| 2932 assert( (pageSize & 7)==0 ); |
| 2933 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte |
| 2934 ** integer at offset 20 is the number of bytes of space at the end of |
| 2935 ** each page to reserve for extensions. |
| 2936 ** |
| 2937 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is |
| 2938 ** determined by the one-byte unsigned integer found at an offset of 20 |
| 2939 ** into the database file header. */ |
| 2940 usableSize = pageSize - page1[20]; |
| 2941 if( (u32)pageSize!=pBt->pageSize ){ |
| 2942 /* After reading the first page of the database assuming a page size |
| 2943 ** of BtShared.pageSize, we have discovered that the page-size is |
| 2944 ** actually pageSize. Unlock the database, leave pBt->pPage1 at |
| 2945 ** zero and return SQLITE_OK. The caller will call this function |
| 2946 ** again with the correct page-size. |
| 2947 */ |
| 2948 releasePage(pPage1); |
| 2949 pBt->usableSize = usableSize; |
| 2950 pBt->pageSize = pageSize; |
| 2951 freeTempSpace(pBt); |
| 2952 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, |
| 2953 pageSize-usableSize); |
| 2954 return rc; |
| 2955 } |
| 2956 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){ |
| 2957 rc = SQLITE_CORRUPT_BKPT; |
| 2958 goto page1_init_failed; |
| 2959 } |
| 2960 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to |
| 2961 ** be less than 480. In other words, if the page size is 512, then the |
| 2962 ** reserved space size cannot exceed 32. */ |
| 2963 if( usableSize<480 ){ |
| 2964 goto page1_init_failed; |
| 2965 } |
| 2966 pBt->pageSize = pageSize; |
| 2967 pBt->usableSize = usableSize; |
| 2968 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 2969 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); |
| 2970 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); |
| 2971 #endif |
| 2972 } |
| 2973 |
| 2974 /* maxLocal is the maximum amount of payload to store locally for |
| 2975 ** a cell. Make sure it is small enough so that at least minFanout |
| 2976 ** cells can will fit on one page. We assume a 10-byte page header. |
| 2977 ** Besides the payload, the cell must store: |
| 2978 ** 2-byte pointer to the cell |
| 2979 ** 4-byte child pointer |
| 2980 ** 9-byte nKey value |
| 2981 ** 4-byte nData value |
| 2982 ** 4-byte overflow page pointer |
| 2983 ** So a cell consists of a 2-byte pointer, a header which is as much as |
| 2984 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow |
| 2985 ** page pointer. |
| 2986 */ |
| 2987 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); |
| 2988 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); |
| 2989 pBt->maxLeaf = (u16)(pBt->usableSize - 35); |
| 2990 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); |
| 2991 if( pBt->maxLocal>127 ){ |
| 2992 pBt->max1bytePayload = 127; |
| 2993 }else{ |
| 2994 pBt->max1bytePayload = (u8)pBt->maxLocal; |
| 2995 } |
| 2996 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); |
| 2997 pBt->pPage1 = pPage1; |
| 2998 pBt->nPage = nPage; |
| 2999 return SQLITE_OK; |
| 3000 |
| 3001 page1_init_failed: |
| 3002 releasePage(pPage1); |
| 3003 pBt->pPage1 = 0; |
| 3004 return rc; |
| 3005 } |
| 3006 |
| 3007 #ifndef NDEBUG |
| 3008 /* |
| 3009 ** Return the number of cursors open on pBt. This is for use |
| 3010 ** in assert() expressions, so it is only compiled if NDEBUG is not |
| 3011 ** defined. |
| 3012 ** |
| 3013 ** Only write cursors are counted if wrOnly is true. If wrOnly is |
| 3014 ** false then all cursors are counted. |
| 3015 ** |
| 3016 ** For the purposes of this routine, a cursor is any cursor that |
| 3017 ** is capable of reading or writing to the database. Cursors that |
| 3018 ** have been tripped into the CURSOR_FAULT state are not counted. |
| 3019 */ |
| 3020 static int countValidCursors(BtShared *pBt, int wrOnly){ |
| 3021 BtCursor *pCur; |
| 3022 int r = 0; |
| 3023 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ |
| 3024 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) |
| 3025 && pCur->eState!=CURSOR_FAULT ) r++; |
| 3026 } |
| 3027 return r; |
| 3028 } |
| 3029 #endif |
| 3030 |
| 3031 /* |
| 3032 ** If there are no outstanding cursors and we are not in the middle |
| 3033 ** of a transaction but there is a read lock on the database, then |
| 3034 ** this routine unrefs the first page of the database file which |
| 3035 ** has the effect of releasing the read lock. |
| 3036 ** |
| 3037 ** If there is a transaction in progress, this routine is a no-op. |
| 3038 */ |
| 3039 static void unlockBtreeIfUnused(BtShared *pBt){ |
| 3040 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 3041 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); |
| 3042 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ |
| 3043 MemPage *pPage1 = pBt->pPage1; |
| 3044 assert( pPage1->aData ); |
| 3045 assert( sqlite3PagerRefcount(pBt->pPager)==1 ); |
| 3046 pBt->pPage1 = 0; |
| 3047 releasePageNotNull(pPage1); |
| 3048 } |
| 3049 } |
| 3050 |
| 3051 /* |
| 3052 ** If pBt points to an empty file then convert that empty file |
| 3053 ** into a new empty database by initializing the first page of |
| 3054 ** the database. |
| 3055 */ |
| 3056 static int newDatabase(BtShared *pBt){ |
| 3057 MemPage *pP1; |
| 3058 unsigned char *data; |
| 3059 int rc; |
| 3060 |
| 3061 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 3062 if( pBt->nPage>0 ){ |
| 3063 return SQLITE_OK; |
| 3064 } |
| 3065 pP1 = pBt->pPage1; |
| 3066 assert( pP1!=0 ); |
| 3067 data = pP1->aData; |
| 3068 rc = sqlite3PagerWrite(pP1->pDbPage); |
| 3069 if( rc ) return rc; |
| 3070 memcpy(data, zMagicHeader, sizeof(zMagicHeader)); |
| 3071 assert( sizeof(zMagicHeader)==16 ); |
| 3072 data[16] = (u8)((pBt->pageSize>>8)&0xff); |
| 3073 data[17] = (u8)((pBt->pageSize>>16)&0xff); |
| 3074 data[18] = 1; |
| 3075 data[19] = 1; |
| 3076 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); |
| 3077 data[20] = (u8)(pBt->pageSize - pBt->usableSize); |
| 3078 data[21] = 64; |
| 3079 data[22] = 32; |
| 3080 data[23] = 32; |
| 3081 memset(&data[24], 0, 100-24); |
| 3082 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); |
| 3083 pBt->btsFlags |= BTS_PAGESIZE_FIXED; |
| 3084 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 3085 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); |
| 3086 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); |
| 3087 put4byte(&data[36 + 4*4], pBt->autoVacuum); |
| 3088 put4byte(&data[36 + 7*4], pBt->incrVacuum); |
| 3089 #endif |
| 3090 pBt->nPage = 1; |
| 3091 data[31] = 1; |
| 3092 return SQLITE_OK; |
| 3093 } |
| 3094 |
| 3095 /* |
| 3096 ** Initialize the first page of the database file (creating a database |
| 3097 ** consisting of a single page and no schema objects). Return SQLITE_OK |
| 3098 ** if successful, or an SQLite error code otherwise. |
| 3099 */ |
| 3100 int sqlite3BtreeNewDb(Btree *p){ |
| 3101 int rc; |
| 3102 sqlite3BtreeEnter(p); |
| 3103 p->pBt->nPage = 0; |
| 3104 rc = newDatabase(p->pBt); |
| 3105 sqlite3BtreeLeave(p); |
| 3106 return rc; |
| 3107 } |
| 3108 |
| 3109 /* |
| 3110 ** Attempt to start a new transaction. A write-transaction |
| 3111 ** is started if the second argument is nonzero, otherwise a read- |
| 3112 ** transaction. If the second argument is 2 or more and exclusive |
| 3113 ** transaction is started, meaning that no other process is allowed |
| 3114 ** to access the database. A preexisting transaction may not be |
| 3115 ** upgraded to exclusive by calling this routine a second time - the |
| 3116 ** exclusivity flag only works for a new transaction. |
| 3117 ** |
| 3118 ** A write-transaction must be started before attempting any |
| 3119 ** changes to the database. None of the following routines |
| 3120 ** will work unless a transaction is started first: |
| 3121 ** |
| 3122 ** sqlite3BtreeCreateTable() |
| 3123 ** sqlite3BtreeCreateIndex() |
| 3124 ** sqlite3BtreeClearTable() |
| 3125 ** sqlite3BtreeDropTable() |
| 3126 ** sqlite3BtreeInsert() |
| 3127 ** sqlite3BtreeDelete() |
| 3128 ** sqlite3BtreeUpdateMeta() |
| 3129 ** |
| 3130 ** If an initial attempt to acquire the lock fails because of lock contention |
| 3131 ** and the database was previously unlocked, then invoke the busy handler |
| 3132 ** if there is one. But if there was previously a read-lock, do not |
| 3133 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is |
| 3134 ** returned when there is already a read-lock in order to avoid a deadlock. |
| 3135 ** |
| 3136 ** Suppose there are two processes A and B. A has a read lock and B has |
| 3137 ** a reserved lock. B tries to promote to exclusive but is blocked because |
| 3138 ** of A's read lock. A tries to promote to reserved but is blocked by B. |
| 3139 ** One or the other of the two processes must give way or there can be |
| 3140 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback |
| 3141 ** when A already has a read lock, we encourage A to give up and let B |
| 3142 ** proceed. |
| 3143 */ |
| 3144 int sqlite3BtreeBeginTrans(Btree *p, int wrflag){ |
| 3145 BtShared *pBt = p->pBt; |
| 3146 int rc = SQLITE_OK; |
| 3147 |
| 3148 sqlite3BtreeEnter(p); |
| 3149 btreeIntegrity(p); |
| 3150 |
| 3151 /* If the btree is already in a write-transaction, or it |
| 3152 ** is already in a read-transaction and a read-transaction |
| 3153 ** is requested, this is a no-op. |
| 3154 */ |
| 3155 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ |
| 3156 goto trans_begun; |
| 3157 } |
| 3158 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); |
| 3159 |
| 3160 /* Write transactions are not possible on a read-only database */ |
| 3161 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ |
| 3162 rc = SQLITE_READONLY; |
| 3163 goto trans_begun; |
| 3164 } |
| 3165 |
| 3166 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 3167 { |
| 3168 sqlite3 *pBlock = 0; |
| 3169 /* If another database handle has already opened a write transaction |
| 3170 ** on this shared-btree structure and a second write transaction is |
| 3171 ** requested, return SQLITE_LOCKED. |
| 3172 */ |
| 3173 if( (wrflag && pBt->inTransaction==TRANS_WRITE) |
| 3174 || (pBt->btsFlags & BTS_PENDING)!=0 |
| 3175 ){ |
| 3176 pBlock = pBt->pWriter->db; |
| 3177 }else if( wrflag>1 ){ |
| 3178 BtLock *pIter; |
| 3179 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
| 3180 if( pIter->pBtree!=p ){ |
| 3181 pBlock = pIter->pBtree->db; |
| 3182 break; |
| 3183 } |
| 3184 } |
| 3185 } |
| 3186 if( pBlock ){ |
| 3187 sqlite3ConnectionBlocked(p->db, pBlock); |
| 3188 rc = SQLITE_LOCKED_SHAREDCACHE; |
| 3189 goto trans_begun; |
| 3190 } |
| 3191 } |
| 3192 #endif |
| 3193 |
| 3194 /* Any read-only or read-write transaction implies a read-lock on |
| 3195 ** page 1. So if some other shared-cache client already has a write-lock |
| 3196 ** on page 1, the transaction cannot be opened. */ |
| 3197 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); |
| 3198 if( SQLITE_OK!=rc ) goto trans_begun; |
| 3199 |
| 3200 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; |
| 3201 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; |
| 3202 do { |
| 3203 /* Call lockBtree() until either pBt->pPage1 is populated or |
| 3204 ** lockBtree() returns something other than SQLITE_OK. lockBtree() |
| 3205 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after |
| 3206 ** reading page 1 it discovers that the page-size of the database |
| 3207 ** file is not pBt->pageSize. In this case lockBtree() will update |
| 3208 ** pBt->pageSize to the page-size of the file on disk. |
| 3209 */ |
| 3210 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); |
| 3211 |
| 3212 if( rc==SQLITE_OK && wrflag ){ |
| 3213 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ |
| 3214 rc = SQLITE_READONLY; |
| 3215 }else{ |
| 3216 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db)); |
| 3217 if( rc==SQLITE_OK ){ |
| 3218 rc = newDatabase(pBt); |
| 3219 } |
| 3220 } |
| 3221 } |
| 3222 |
| 3223 if( rc!=SQLITE_OK ){ |
| 3224 unlockBtreeIfUnused(pBt); |
| 3225 } |
| 3226 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && |
| 3227 btreeInvokeBusyHandler(pBt) ); |
| 3228 |
| 3229 if( rc==SQLITE_OK ){ |
| 3230 if( p->inTrans==TRANS_NONE ){ |
| 3231 pBt->nTransaction++; |
| 3232 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 3233 if( p->sharable ){ |
| 3234 assert( p->lock.pBtree==p && p->lock.iTable==1 ); |
| 3235 p->lock.eLock = READ_LOCK; |
| 3236 p->lock.pNext = pBt->pLock; |
| 3237 pBt->pLock = &p->lock; |
| 3238 } |
| 3239 #endif |
| 3240 } |
| 3241 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); |
| 3242 if( p->inTrans>pBt->inTransaction ){ |
| 3243 pBt->inTransaction = p->inTrans; |
| 3244 } |
| 3245 if( wrflag ){ |
| 3246 MemPage *pPage1 = pBt->pPage1; |
| 3247 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 3248 assert( !pBt->pWriter ); |
| 3249 pBt->pWriter = p; |
| 3250 pBt->btsFlags &= ~BTS_EXCLUSIVE; |
| 3251 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; |
| 3252 #endif |
| 3253 |
| 3254 /* If the db-size header field is incorrect (as it may be if an old |
| 3255 ** client has been writing the database file), update it now. Doing |
| 3256 ** this sooner rather than later means the database size can safely |
| 3257 ** re-read the database size from page 1 if a savepoint or transaction |
| 3258 ** rollback occurs within the transaction. |
| 3259 */ |
| 3260 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ |
| 3261 rc = sqlite3PagerWrite(pPage1->pDbPage); |
| 3262 if( rc==SQLITE_OK ){ |
| 3263 put4byte(&pPage1->aData[28], pBt->nPage); |
| 3264 } |
| 3265 } |
| 3266 } |
| 3267 } |
| 3268 |
| 3269 |
| 3270 trans_begun: |
| 3271 if( rc==SQLITE_OK && wrflag ){ |
| 3272 /* This call makes sure that the pager has the correct number of |
| 3273 ** open savepoints. If the second parameter is greater than 0 and |
| 3274 ** the sub-journal is not already open, then it will be opened here. |
| 3275 */ |
| 3276 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint); |
| 3277 } |
| 3278 |
| 3279 btreeIntegrity(p); |
| 3280 sqlite3BtreeLeave(p); |
| 3281 return rc; |
| 3282 } |
| 3283 |
| 3284 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 3285 |
| 3286 /* |
| 3287 ** Set the pointer-map entries for all children of page pPage. Also, if |
| 3288 ** pPage contains cells that point to overflow pages, set the pointer |
| 3289 ** map entries for the overflow pages as well. |
| 3290 */ |
| 3291 static int setChildPtrmaps(MemPage *pPage){ |
| 3292 int i; /* Counter variable */ |
| 3293 int nCell; /* Number of cells in page pPage */ |
| 3294 int rc; /* Return code */ |
| 3295 BtShared *pBt = pPage->pBt; |
| 3296 Pgno pgno = pPage->pgno; |
| 3297 |
| 3298 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 3299 rc = btreeInitPage(pPage); |
| 3300 if( rc!=SQLITE_OK ) return rc; |
| 3301 nCell = pPage->nCell; |
| 3302 |
| 3303 for(i=0; i<nCell; i++){ |
| 3304 u8 *pCell = findCell(pPage, i); |
| 3305 |
| 3306 ptrmapPutOvflPtr(pPage, pCell, &rc); |
| 3307 |
| 3308 if( !pPage->leaf ){ |
| 3309 Pgno childPgno = get4byte(pCell); |
| 3310 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); |
| 3311 } |
| 3312 } |
| 3313 |
| 3314 if( !pPage->leaf ){ |
| 3315 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| 3316 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); |
| 3317 } |
| 3318 |
| 3319 return rc; |
| 3320 } |
| 3321 |
| 3322 /* |
| 3323 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so |
| 3324 ** that it points to iTo. Parameter eType describes the type of pointer to |
| 3325 ** be modified, as follows: |
| 3326 ** |
| 3327 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child |
| 3328 ** page of pPage. |
| 3329 ** |
| 3330 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow |
| 3331 ** page pointed to by one of the cells on pPage. |
| 3332 ** |
| 3333 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next |
| 3334 ** overflow page in the list. |
| 3335 */ |
| 3336 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ |
| 3337 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 3338 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 3339 if( eType==PTRMAP_OVERFLOW2 ){ |
| 3340 /* The pointer is always the first 4 bytes of the page in this case. */ |
| 3341 if( get4byte(pPage->aData)!=iFrom ){ |
| 3342 return SQLITE_CORRUPT_BKPT; |
| 3343 } |
| 3344 put4byte(pPage->aData, iTo); |
| 3345 }else{ |
| 3346 int i; |
| 3347 int nCell; |
| 3348 int rc; |
| 3349 |
| 3350 rc = btreeInitPage(pPage); |
| 3351 if( rc ) return rc; |
| 3352 nCell = pPage->nCell; |
| 3353 |
| 3354 for(i=0; i<nCell; i++){ |
| 3355 u8 *pCell = findCell(pPage, i); |
| 3356 if( eType==PTRMAP_OVERFLOW1 ){ |
| 3357 CellInfo info; |
| 3358 pPage->xParseCell(pPage, pCell, &info); |
| 3359 if( info.nLocal<info.nPayload ){ |
| 3360 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){ |
| 3361 return SQLITE_CORRUPT_BKPT; |
| 3362 } |
| 3363 if( iFrom==get4byte(pCell+info.nSize-4) ){ |
| 3364 put4byte(pCell+info.nSize-4, iTo); |
| 3365 break; |
| 3366 } |
| 3367 } |
| 3368 }else{ |
| 3369 if( get4byte(pCell)==iFrom ){ |
| 3370 put4byte(pCell, iTo); |
| 3371 break; |
| 3372 } |
| 3373 } |
| 3374 } |
| 3375 |
| 3376 if( i==nCell ){ |
| 3377 if( eType!=PTRMAP_BTREE || |
| 3378 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ |
| 3379 return SQLITE_CORRUPT_BKPT; |
| 3380 } |
| 3381 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); |
| 3382 } |
| 3383 } |
| 3384 return SQLITE_OK; |
| 3385 } |
| 3386 |
| 3387 |
| 3388 /* |
| 3389 ** Move the open database page pDbPage to location iFreePage in the |
| 3390 ** database. The pDbPage reference remains valid. |
| 3391 ** |
| 3392 ** The isCommit flag indicates that there is no need to remember that |
| 3393 ** the journal needs to be sync()ed before database page pDbPage->pgno |
| 3394 ** can be written to. The caller has already promised not to write to that |
| 3395 ** page. |
| 3396 */ |
| 3397 static int relocatePage( |
| 3398 BtShared *pBt, /* Btree */ |
| 3399 MemPage *pDbPage, /* Open page to move */ |
| 3400 u8 eType, /* Pointer map 'type' entry for pDbPage */ |
| 3401 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ |
| 3402 Pgno iFreePage, /* The location to move pDbPage to */ |
| 3403 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ |
| 3404 ){ |
| 3405 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ |
| 3406 Pgno iDbPage = pDbPage->pgno; |
| 3407 Pager *pPager = pBt->pPager; |
| 3408 int rc; |
| 3409 |
| 3410 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || |
| 3411 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); |
| 3412 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 3413 assert( pDbPage->pBt==pBt ); |
| 3414 |
| 3415 /* Move page iDbPage from its current location to page number iFreePage */ |
| 3416 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", |
| 3417 iDbPage, iFreePage, iPtrPage, eType)); |
| 3418 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); |
| 3419 if( rc!=SQLITE_OK ){ |
| 3420 return rc; |
| 3421 } |
| 3422 pDbPage->pgno = iFreePage; |
| 3423 |
| 3424 /* If pDbPage was a btree-page, then it may have child pages and/or cells |
| 3425 ** that point to overflow pages. The pointer map entries for all these |
| 3426 ** pages need to be changed. |
| 3427 ** |
| 3428 ** If pDbPage is an overflow page, then the first 4 bytes may store a |
| 3429 ** pointer to a subsequent overflow page. If this is the case, then |
| 3430 ** the pointer map needs to be updated for the subsequent overflow page. |
| 3431 */ |
| 3432 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ |
| 3433 rc = setChildPtrmaps(pDbPage); |
| 3434 if( rc!=SQLITE_OK ){ |
| 3435 return rc; |
| 3436 } |
| 3437 }else{ |
| 3438 Pgno nextOvfl = get4byte(pDbPage->aData); |
| 3439 if( nextOvfl!=0 ){ |
| 3440 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); |
| 3441 if( rc!=SQLITE_OK ){ |
| 3442 return rc; |
| 3443 } |
| 3444 } |
| 3445 } |
| 3446 |
| 3447 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so |
| 3448 ** that it points at iFreePage. Also fix the pointer map entry for |
| 3449 ** iPtrPage. |
| 3450 */ |
| 3451 if( eType!=PTRMAP_ROOTPAGE ){ |
| 3452 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); |
| 3453 if( rc!=SQLITE_OK ){ |
| 3454 return rc; |
| 3455 } |
| 3456 rc = sqlite3PagerWrite(pPtrPage->pDbPage); |
| 3457 if( rc!=SQLITE_OK ){ |
| 3458 releasePage(pPtrPage); |
| 3459 return rc; |
| 3460 } |
| 3461 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); |
| 3462 releasePage(pPtrPage); |
| 3463 if( rc==SQLITE_OK ){ |
| 3464 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); |
| 3465 } |
| 3466 } |
| 3467 return rc; |
| 3468 } |
| 3469 |
| 3470 /* Forward declaration required by incrVacuumStep(). */ |
| 3471 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); |
| 3472 |
| 3473 /* |
| 3474 ** Perform a single step of an incremental-vacuum. If successful, return |
| 3475 ** SQLITE_OK. If there is no work to do (and therefore no point in |
| 3476 ** calling this function again), return SQLITE_DONE. Or, if an error |
| 3477 ** occurs, return some other error code. |
| 3478 ** |
| 3479 ** More specifically, this function attempts to re-organize the database so |
| 3480 ** that the last page of the file currently in use is no longer in use. |
| 3481 ** |
| 3482 ** Parameter nFin is the number of pages that this database would contain |
| 3483 ** were this function called until it returns SQLITE_DONE. |
| 3484 ** |
| 3485 ** If the bCommit parameter is non-zero, this function assumes that the |
| 3486 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE |
| 3487 ** or an error. bCommit is passed true for an auto-vacuum-on-commit |
| 3488 ** operation, or false for an incremental vacuum. |
| 3489 */ |
| 3490 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ |
| 3491 Pgno nFreeList; /* Number of pages still on the free-list */ |
| 3492 int rc; |
| 3493 |
| 3494 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 3495 assert( iLastPg>nFin ); |
| 3496 |
| 3497 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ |
| 3498 u8 eType; |
| 3499 Pgno iPtrPage; |
| 3500 |
| 3501 nFreeList = get4byte(&pBt->pPage1->aData[36]); |
| 3502 if( nFreeList==0 ){ |
| 3503 return SQLITE_DONE; |
| 3504 } |
| 3505 |
| 3506 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); |
| 3507 if( rc!=SQLITE_OK ){ |
| 3508 return rc; |
| 3509 } |
| 3510 if( eType==PTRMAP_ROOTPAGE ){ |
| 3511 return SQLITE_CORRUPT_BKPT; |
| 3512 } |
| 3513 |
| 3514 if( eType==PTRMAP_FREEPAGE ){ |
| 3515 if( bCommit==0 ){ |
| 3516 /* Remove the page from the files free-list. This is not required |
| 3517 ** if bCommit is non-zero. In that case, the free-list will be |
| 3518 ** truncated to zero after this function returns, so it doesn't |
| 3519 ** matter if it still contains some garbage entries. |
| 3520 */ |
| 3521 Pgno iFreePg; |
| 3522 MemPage *pFreePg; |
| 3523 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); |
| 3524 if( rc!=SQLITE_OK ){ |
| 3525 return rc; |
| 3526 } |
| 3527 assert( iFreePg==iLastPg ); |
| 3528 releasePage(pFreePg); |
| 3529 } |
| 3530 } else { |
| 3531 Pgno iFreePg; /* Index of free page to move pLastPg to */ |
| 3532 MemPage *pLastPg; |
| 3533 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ |
| 3534 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ |
| 3535 |
| 3536 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); |
| 3537 if( rc!=SQLITE_OK ){ |
| 3538 return rc; |
| 3539 } |
| 3540 |
| 3541 /* If bCommit is zero, this loop runs exactly once and page pLastPg |
| 3542 ** is swapped with the first free page pulled off the free list. |
| 3543 ** |
| 3544 ** On the other hand, if bCommit is greater than zero, then keep |
| 3545 ** looping until a free-page located within the first nFin pages |
| 3546 ** of the file is found. |
| 3547 */ |
| 3548 if( bCommit==0 ){ |
| 3549 eMode = BTALLOC_LE; |
| 3550 iNear = nFin; |
| 3551 } |
| 3552 do { |
| 3553 MemPage *pFreePg; |
| 3554 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); |
| 3555 if( rc!=SQLITE_OK ){ |
| 3556 releasePage(pLastPg); |
| 3557 return rc; |
| 3558 } |
| 3559 releasePage(pFreePg); |
| 3560 }while( bCommit && iFreePg>nFin ); |
| 3561 assert( iFreePg<iLastPg ); |
| 3562 |
| 3563 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); |
| 3564 releasePage(pLastPg); |
| 3565 if( rc!=SQLITE_OK ){ |
| 3566 return rc; |
| 3567 } |
| 3568 } |
| 3569 } |
| 3570 |
| 3571 if( bCommit==0 ){ |
| 3572 do { |
| 3573 iLastPg--; |
| 3574 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); |
| 3575 pBt->bDoTruncate = 1; |
| 3576 pBt->nPage = iLastPg; |
| 3577 } |
| 3578 return SQLITE_OK; |
| 3579 } |
| 3580 |
| 3581 /* |
| 3582 ** The database opened by the first argument is an auto-vacuum database |
| 3583 ** nOrig pages in size containing nFree free pages. Return the expected |
| 3584 ** size of the database in pages following an auto-vacuum operation. |
| 3585 */ |
| 3586 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ |
| 3587 int nEntry; /* Number of entries on one ptrmap page */ |
| 3588 Pgno nPtrmap; /* Number of PtrMap pages to be freed */ |
| 3589 Pgno nFin; /* Return value */ |
| 3590 |
| 3591 nEntry = pBt->usableSize/5; |
| 3592 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; |
| 3593 nFin = nOrig - nFree - nPtrmap; |
| 3594 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ |
| 3595 nFin--; |
| 3596 } |
| 3597 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ |
| 3598 nFin--; |
| 3599 } |
| 3600 |
| 3601 return nFin; |
| 3602 } |
| 3603 |
| 3604 /* |
| 3605 ** A write-transaction must be opened before calling this function. |
| 3606 ** It performs a single unit of work towards an incremental vacuum. |
| 3607 ** |
| 3608 ** If the incremental vacuum is finished after this function has run, |
| 3609 ** SQLITE_DONE is returned. If it is not finished, but no error occurred, |
| 3610 ** SQLITE_OK is returned. Otherwise an SQLite error code. |
| 3611 */ |
| 3612 int sqlite3BtreeIncrVacuum(Btree *p){ |
| 3613 int rc; |
| 3614 BtShared *pBt = p->pBt; |
| 3615 |
| 3616 sqlite3BtreeEnter(p); |
| 3617 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); |
| 3618 if( !pBt->autoVacuum ){ |
| 3619 rc = SQLITE_DONE; |
| 3620 }else{ |
| 3621 Pgno nOrig = btreePagecount(pBt); |
| 3622 Pgno nFree = get4byte(&pBt->pPage1->aData[36]); |
| 3623 Pgno nFin = finalDbSize(pBt, nOrig, nFree); |
| 3624 |
| 3625 if( nOrig<nFin ){ |
| 3626 rc = SQLITE_CORRUPT_BKPT; |
| 3627 }else if( nFree>0 ){ |
| 3628 rc = saveAllCursors(pBt, 0, 0); |
| 3629 if( rc==SQLITE_OK ){ |
| 3630 invalidateAllOverflowCache(pBt); |
| 3631 rc = incrVacuumStep(pBt, nFin, nOrig, 0); |
| 3632 } |
| 3633 if( rc==SQLITE_OK ){ |
| 3634 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
| 3635 put4byte(&pBt->pPage1->aData[28], pBt->nPage); |
| 3636 } |
| 3637 }else{ |
| 3638 rc = SQLITE_DONE; |
| 3639 } |
| 3640 } |
| 3641 sqlite3BtreeLeave(p); |
| 3642 return rc; |
| 3643 } |
| 3644 |
| 3645 /* |
| 3646 ** This routine is called prior to sqlite3PagerCommit when a transaction |
| 3647 ** is committed for an auto-vacuum database. |
| 3648 ** |
| 3649 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages |
| 3650 ** the database file should be truncated to during the commit process. |
| 3651 ** i.e. the database has been reorganized so that only the first *pnTrunc |
| 3652 ** pages are in use. |
| 3653 */ |
| 3654 static int autoVacuumCommit(BtShared *pBt){ |
| 3655 int rc = SQLITE_OK; |
| 3656 Pager *pPager = pBt->pPager; |
| 3657 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); ) |
| 3658 |
| 3659 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 3660 invalidateAllOverflowCache(pBt); |
| 3661 assert(pBt->autoVacuum); |
| 3662 if( !pBt->incrVacuum ){ |
| 3663 Pgno nFin; /* Number of pages in database after autovacuuming */ |
| 3664 Pgno nFree; /* Number of pages on the freelist initially */ |
| 3665 Pgno iFree; /* The next page to be freed */ |
| 3666 Pgno nOrig; /* Database size before freeing */ |
| 3667 |
| 3668 nOrig = btreePagecount(pBt); |
| 3669 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ |
| 3670 /* It is not possible to create a database for which the final page |
| 3671 ** is either a pointer-map page or the pending-byte page. If one |
| 3672 ** is encountered, this indicates corruption. |
| 3673 */ |
| 3674 return SQLITE_CORRUPT_BKPT; |
| 3675 } |
| 3676 |
| 3677 nFree = get4byte(&pBt->pPage1->aData[36]); |
| 3678 nFin = finalDbSize(pBt, nOrig, nFree); |
| 3679 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; |
| 3680 if( nFin<nOrig ){ |
| 3681 rc = saveAllCursors(pBt, 0, 0); |
| 3682 } |
| 3683 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ |
| 3684 rc = incrVacuumStep(pBt, nFin, iFree, 1); |
| 3685 } |
| 3686 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ |
| 3687 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
| 3688 put4byte(&pBt->pPage1->aData[32], 0); |
| 3689 put4byte(&pBt->pPage1->aData[36], 0); |
| 3690 put4byte(&pBt->pPage1->aData[28], nFin); |
| 3691 pBt->bDoTruncate = 1; |
| 3692 pBt->nPage = nFin; |
| 3693 } |
| 3694 if( rc!=SQLITE_OK ){ |
| 3695 sqlite3PagerRollback(pPager); |
| 3696 } |
| 3697 } |
| 3698 |
| 3699 assert( nRef>=sqlite3PagerRefcount(pPager) ); |
| 3700 return rc; |
| 3701 } |
| 3702 |
| 3703 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */ |
| 3704 # define setChildPtrmaps(x) SQLITE_OK |
| 3705 #endif |
| 3706 |
| 3707 /* |
| 3708 ** This routine does the first phase of a two-phase commit. This routine |
| 3709 ** causes a rollback journal to be created (if it does not already exist) |
| 3710 ** and populated with enough information so that if a power loss occurs |
| 3711 ** the database can be restored to its original state by playing back |
| 3712 ** the journal. Then the contents of the journal are flushed out to |
| 3713 ** the disk. After the journal is safely on oxide, the changes to the |
| 3714 ** database are written into the database file and flushed to oxide. |
| 3715 ** At the end of this call, the rollback journal still exists on the |
| 3716 ** disk and we are still holding all locks, so the transaction has not |
| 3717 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the |
| 3718 ** commit process. |
| 3719 ** |
| 3720 ** This call is a no-op if no write-transaction is currently active on pBt. |
| 3721 ** |
| 3722 ** Otherwise, sync the database file for the btree pBt. zMaster points to |
| 3723 ** the name of a master journal file that should be written into the |
| 3724 ** individual journal file, or is NULL, indicating no master journal file |
| 3725 ** (single database transaction). |
| 3726 ** |
| 3727 ** When this is called, the master journal should already have been |
| 3728 ** created, populated with this journal pointer and synced to disk. |
| 3729 ** |
| 3730 ** Once this is routine has returned, the only thing required to commit |
| 3731 ** the write-transaction for this database file is to delete the journal. |
| 3732 */ |
| 3733 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){ |
| 3734 int rc = SQLITE_OK; |
| 3735 if( p->inTrans==TRANS_WRITE ){ |
| 3736 BtShared *pBt = p->pBt; |
| 3737 sqlite3BtreeEnter(p); |
| 3738 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 3739 if( pBt->autoVacuum ){ |
| 3740 rc = autoVacuumCommit(pBt); |
| 3741 if( rc!=SQLITE_OK ){ |
| 3742 sqlite3BtreeLeave(p); |
| 3743 return rc; |
| 3744 } |
| 3745 } |
| 3746 if( pBt->bDoTruncate ){ |
| 3747 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); |
| 3748 } |
| 3749 #endif |
| 3750 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0); |
| 3751 sqlite3BtreeLeave(p); |
| 3752 } |
| 3753 return rc; |
| 3754 } |
| 3755 |
| 3756 /* |
| 3757 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() |
| 3758 ** at the conclusion of a transaction. |
| 3759 */ |
| 3760 static void btreeEndTransaction(Btree *p){ |
| 3761 BtShared *pBt = p->pBt; |
| 3762 sqlite3 *db = p->db; |
| 3763 assert( sqlite3BtreeHoldsMutex(p) ); |
| 3764 |
| 3765 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 3766 pBt->bDoTruncate = 0; |
| 3767 #endif |
| 3768 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ |
| 3769 /* If there are other active statements that belong to this database |
| 3770 ** handle, downgrade to a read-only transaction. The other statements |
| 3771 ** may still be reading from the database. */ |
| 3772 downgradeAllSharedCacheTableLocks(p); |
| 3773 p->inTrans = TRANS_READ; |
| 3774 }else{ |
| 3775 /* If the handle had any kind of transaction open, decrement the |
| 3776 ** transaction count of the shared btree. If the transaction count |
| 3777 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() |
| 3778 ** call below will unlock the pager. */ |
| 3779 if( p->inTrans!=TRANS_NONE ){ |
| 3780 clearAllSharedCacheTableLocks(p); |
| 3781 pBt->nTransaction--; |
| 3782 if( 0==pBt->nTransaction ){ |
| 3783 pBt->inTransaction = TRANS_NONE; |
| 3784 } |
| 3785 } |
| 3786 |
| 3787 /* Set the current transaction state to TRANS_NONE and unlock the |
| 3788 ** pager if this call closed the only read or write transaction. */ |
| 3789 p->inTrans = TRANS_NONE; |
| 3790 unlockBtreeIfUnused(pBt); |
| 3791 } |
| 3792 |
| 3793 btreeIntegrity(p); |
| 3794 } |
| 3795 |
| 3796 /* |
| 3797 ** Commit the transaction currently in progress. |
| 3798 ** |
| 3799 ** This routine implements the second phase of a 2-phase commit. The |
| 3800 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should |
| 3801 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() |
| 3802 ** routine did all the work of writing information out to disk and flushing the |
| 3803 ** contents so that they are written onto the disk platter. All this |
| 3804 ** routine has to do is delete or truncate or zero the header in the |
| 3805 ** the rollback journal (which causes the transaction to commit) and |
| 3806 ** drop locks. |
| 3807 ** |
| 3808 ** Normally, if an error occurs while the pager layer is attempting to |
| 3809 ** finalize the underlying journal file, this function returns an error and |
| 3810 ** the upper layer will attempt a rollback. However, if the second argument |
| 3811 ** is non-zero then this b-tree transaction is part of a multi-file |
| 3812 ** transaction. In this case, the transaction has already been committed |
| 3813 ** (by deleting a master journal file) and the caller will ignore this |
| 3814 ** functions return code. So, even if an error occurs in the pager layer, |
| 3815 ** reset the b-tree objects internal state to indicate that the write |
| 3816 ** transaction has been closed. This is quite safe, as the pager will have |
| 3817 ** transitioned to the error state. |
| 3818 ** |
| 3819 ** This will release the write lock on the database file. If there |
| 3820 ** are no active cursors, it also releases the read lock. |
| 3821 */ |
| 3822 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ |
| 3823 |
| 3824 if( p->inTrans==TRANS_NONE ) return SQLITE_OK; |
| 3825 sqlite3BtreeEnter(p); |
| 3826 btreeIntegrity(p); |
| 3827 |
| 3828 /* If the handle has a write-transaction open, commit the shared-btrees |
| 3829 ** transaction and set the shared state to TRANS_READ. |
| 3830 */ |
| 3831 if( p->inTrans==TRANS_WRITE ){ |
| 3832 int rc; |
| 3833 BtShared *pBt = p->pBt; |
| 3834 assert( pBt->inTransaction==TRANS_WRITE ); |
| 3835 assert( pBt->nTransaction>0 ); |
| 3836 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); |
| 3837 if( rc!=SQLITE_OK && bCleanup==0 ){ |
| 3838 sqlite3BtreeLeave(p); |
| 3839 return rc; |
| 3840 } |
| 3841 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */ |
| 3842 pBt->inTransaction = TRANS_READ; |
| 3843 btreeClearHasContent(pBt); |
| 3844 } |
| 3845 |
| 3846 btreeEndTransaction(p); |
| 3847 sqlite3BtreeLeave(p); |
| 3848 return SQLITE_OK; |
| 3849 } |
| 3850 |
| 3851 /* |
| 3852 ** Do both phases of a commit. |
| 3853 */ |
| 3854 int sqlite3BtreeCommit(Btree *p){ |
| 3855 int rc; |
| 3856 sqlite3BtreeEnter(p); |
| 3857 rc = sqlite3BtreeCommitPhaseOne(p, 0); |
| 3858 if( rc==SQLITE_OK ){ |
| 3859 rc = sqlite3BtreeCommitPhaseTwo(p, 0); |
| 3860 } |
| 3861 sqlite3BtreeLeave(p); |
| 3862 return rc; |
| 3863 } |
| 3864 |
| 3865 /* |
| 3866 ** This routine sets the state to CURSOR_FAULT and the error |
| 3867 ** code to errCode for every cursor on any BtShared that pBtree |
| 3868 ** references. Or if the writeOnly flag is set to 1, then only |
| 3869 ** trip write cursors and leave read cursors unchanged. |
| 3870 ** |
| 3871 ** Every cursor is a candidate to be tripped, including cursors |
| 3872 ** that belong to other database connections that happen to be |
| 3873 ** sharing the cache with pBtree. |
| 3874 ** |
| 3875 ** This routine gets called when a rollback occurs. If the writeOnly |
| 3876 ** flag is true, then only write-cursors need be tripped - read-only |
| 3877 ** cursors save their current positions so that they may continue |
| 3878 ** following the rollback. Or, if writeOnly is false, all cursors are |
| 3879 ** tripped. In general, writeOnly is false if the transaction being |
| 3880 ** rolled back modified the database schema. In this case b-tree root |
| 3881 ** pages may be moved or deleted from the database altogether, making |
| 3882 ** it unsafe for read cursors to continue. |
| 3883 ** |
| 3884 ** If the writeOnly flag is true and an error is encountered while |
| 3885 ** saving the current position of a read-only cursor, all cursors, |
| 3886 ** including all read-cursors are tripped. |
| 3887 ** |
| 3888 ** SQLITE_OK is returned if successful, or if an error occurs while |
| 3889 ** saving a cursor position, an SQLite error code. |
| 3890 */ |
| 3891 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ |
| 3892 BtCursor *p; |
| 3893 int rc = SQLITE_OK; |
| 3894 |
| 3895 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); |
| 3896 if( pBtree ){ |
| 3897 sqlite3BtreeEnter(pBtree); |
| 3898 for(p=pBtree->pBt->pCursor; p; p=p->pNext){ |
| 3899 int i; |
| 3900 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ |
| 3901 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){ |
| 3902 rc = saveCursorPosition(p); |
| 3903 if( rc!=SQLITE_OK ){ |
| 3904 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); |
| 3905 break; |
| 3906 } |
| 3907 } |
| 3908 }else{ |
| 3909 sqlite3BtreeClearCursor(p); |
| 3910 p->eState = CURSOR_FAULT; |
| 3911 p->skipNext = errCode; |
| 3912 } |
| 3913 for(i=0; i<=p->iPage; i++){ |
| 3914 releasePage(p->apPage[i]); |
| 3915 p->apPage[i] = 0; |
| 3916 } |
| 3917 } |
| 3918 sqlite3BtreeLeave(pBtree); |
| 3919 } |
| 3920 return rc; |
| 3921 } |
| 3922 |
| 3923 /* |
| 3924 ** Rollback the transaction in progress. |
| 3925 ** |
| 3926 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). |
| 3927 ** Only write cursors are tripped if writeOnly is true but all cursors are |
| 3928 ** tripped if writeOnly is false. Any attempt to use |
| 3929 ** a tripped cursor will result in an error. |
| 3930 ** |
| 3931 ** This will release the write lock on the database file. If there |
| 3932 ** are no active cursors, it also releases the read lock. |
| 3933 */ |
| 3934 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ |
| 3935 int rc; |
| 3936 BtShared *pBt = p->pBt; |
| 3937 MemPage *pPage1; |
| 3938 |
| 3939 assert( writeOnly==1 || writeOnly==0 ); |
| 3940 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); |
| 3941 sqlite3BtreeEnter(p); |
| 3942 if( tripCode==SQLITE_OK ){ |
| 3943 rc = tripCode = saveAllCursors(pBt, 0, 0); |
| 3944 if( rc ) writeOnly = 0; |
| 3945 }else{ |
| 3946 rc = SQLITE_OK; |
| 3947 } |
| 3948 if( tripCode ){ |
| 3949 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); |
| 3950 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); |
| 3951 if( rc2!=SQLITE_OK ) rc = rc2; |
| 3952 } |
| 3953 btreeIntegrity(p); |
| 3954 |
| 3955 if( p->inTrans==TRANS_WRITE ){ |
| 3956 int rc2; |
| 3957 |
| 3958 assert( TRANS_WRITE==pBt->inTransaction ); |
| 3959 rc2 = sqlite3PagerRollback(pBt->pPager); |
| 3960 if( rc2!=SQLITE_OK ){ |
| 3961 rc = rc2; |
| 3962 } |
| 3963 |
| 3964 /* The rollback may have destroyed the pPage1->aData value. So |
| 3965 ** call btreeGetPage() on page 1 again to make |
| 3966 ** sure pPage1->aData is set correctly. */ |
| 3967 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ |
| 3968 int nPage = get4byte(28+(u8*)pPage1->aData); |
| 3969 testcase( nPage==0 ); |
| 3970 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); |
| 3971 testcase( pBt->nPage!=nPage ); |
| 3972 pBt->nPage = nPage; |
| 3973 releasePage(pPage1); |
| 3974 } |
| 3975 assert( countValidCursors(pBt, 1)==0 ); |
| 3976 pBt->inTransaction = TRANS_READ; |
| 3977 btreeClearHasContent(pBt); |
| 3978 } |
| 3979 |
| 3980 btreeEndTransaction(p); |
| 3981 sqlite3BtreeLeave(p); |
| 3982 return rc; |
| 3983 } |
| 3984 |
| 3985 /* |
| 3986 ** Start a statement subtransaction. The subtransaction can be rolled |
| 3987 ** back independently of the main transaction. You must start a transaction |
| 3988 ** before starting a subtransaction. The subtransaction is ended automatically |
| 3989 ** if the main transaction commits or rolls back. |
| 3990 ** |
| 3991 ** Statement subtransactions are used around individual SQL statements |
| 3992 ** that are contained within a BEGIN...COMMIT block. If a constraint |
| 3993 ** error occurs within the statement, the effect of that one statement |
| 3994 ** can be rolled back without having to rollback the entire transaction. |
| 3995 ** |
| 3996 ** A statement sub-transaction is implemented as an anonymous savepoint. The |
| 3997 ** value passed as the second parameter is the total number of savepoints, |
| 3998 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there |
| 3999 ** are no active savepoints and no other statement-transactions open, |
| 4000 ** iStatement is 1. This anonymous savepoint can be released or rolled back |
| 4001 ** using the sqlite3BtreeSavepoint() function. |
| 4002 */ |
| 4003 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ |
| 4004 int rc; |
| 4005 BtShared *pBt = p->pBt; |
| 4006 sqlite3BtreeEnter(p); |
| 4007 assert( p->inTrans==TRANS_WRITE ); |
| 4008 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
| 4009 assert( iStatement>0 ); |
| 4010 assert( iStatement>p->db->nSavepoint ); |
| 4011 assert( pBt->inTransaction==TRANS_WRITE ); |
| 4012 /* At the pager level, a statement transaction is a savepoint with |
| 4013 ** an index greater than all savepoints created explicitly using |
| 4014 ** SQL statements. It is illegal to open, release or rollback any |
| 4015 ** such savepoints while the statement transaction savepoint is active. |
| 4016 */ |
| 4017 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); |
| 4018 sqlite3BtreeLeave(p); |
| 4019 return rc; |
| 4020 } |
| 4021 |
| 4022 /* |
| 4023 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK |
| 4024 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the |
| 4025 ** savepoint identified by parameter iSavepoint, depending on the value |
| 4026 ** of op. |
| 4027 ** |
| 4028 ** Normally, iSavepoint is greater than or equal to zero. However, if op is |
| 4029 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the |
| 4030 ** contents of the entire transaction are rolled back. This is different |
| 4031 ** from a normal transaction rollback, as no locks are released and the |
| 4032 ** transaction remains open. |
| 4033 */ |
| 4034 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ |
| 4035 int rc = SQLITE_OK; |
| 4036 if( p && p->inTrans==TRANS_WRITE ){ |
| 4037 BtShared *pBt = p->pBt; |
| 4038 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); |
| 4039 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); |
| 4040 sqlite3BtreeEnter(p); |
| 4041 if( op==SAVEPOINT_ROLLBACK ){ |
| 4042 rc = saveAllCursors(pBt, 0, 0); |
| 4043 } |
| 4044 if( rc==SQLITE_OK ){ |
| 4045 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); |
| 4046 } |
| 4047 if( rc==SQLITE_OK ){ |
| 4048 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ |
| 4049 pBt->nPage = 0; |
| 4050 } |
| 4051 rc = newDatabase(pBt); |
| 4052 pBt->nPage = get4byte(28 + pBt->pPage1->aData); |
| 4053 |
| 4054 /* The database size was written into the offset 28 of the header |
| 4055 ** when the transaction started, so we know that the value at offset |
| 4056 ** 28 is nonzero. */ |
| 4057 assert( pBt->nPage>0 ); |
| 4058 } |
| 4059 sqlite3BtreeLeave(p); |
| 4060 } |
| 4061 return rc; |
| 4062 } |
| 4063 |
| 4064 /* |
| 4065 ** Create a new cursor for the BTree whose root is on the page |
| 4066 ** iTable. If a read-only cursor is requested, it is assumed that |
| 4067 ** the caller already has at least a read-only transaction open |
| 4068 ** on the database already. If a write-cursor is requested, then |
| 4069 ** the caller is assumed to have an open write transaction. |
| 4070 ** |
| 4071 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only |
| 4072 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor |
| 4073 ** can be used for reading or for writing if other conditions for writing |
| 4074 ** are also met. These are the conditions that must be met in order |
| 4075 ** for writing to be allowed: |
| 4076 ** |
| 4077 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR |
| 4078 ** |
| 4079 ** 2: Other database connections that share the same pager cache |
| 4080 ** but which are not in the READ_UNCOMMITTED state may not have |
| 4081 ** cursors open with wrFlag==0 on the same table. Otherwise |
| 4082 ** the changes made by this write cursor would be visible to |
| 4083 ** the read cursors in the other database connection. |
| 4084 ** |
| 4085 ** 3: The database must be writable (not on read-only media) |
| 4086 ** |
| 4087 ** 4: There must be an active transaction. |
| 4088 ** |
| 4089 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR |
| 4090 ** is set. If FORDELETE is set, that is a hint to the implementation that |
| 4091 ** this cursor will only be used to seek to and delete entries of an index |
| 4092 ** as part of a larger DELETE statement. The FORDELETE hint is not used by |
| 4093 ** this implementation. But in a hypothetical alternative storage engine |
| 4094 ** in which index entries are automatically deleted when corresponding table |
| 4095 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE |
| 4096 ** operations on this cursor can be no-ops and all READ operations can |
| 4097 ** return a null row (2-bytes: 0x01 0x00). |
| 4098 ** |
| 4099 ** No checking is done to make sure that page iTable really is the |
| 4100 ** root page of a b-tree. If it is not, then the cursor acquired |
| 4101 ** will not work correctly. |
| 4102 ** |
| 4103 ** It is assumed that the sqlite3BtreeCursorZero() has been called |
| 4104 ** on pCur to initialize the memory space prior to invoking this routine. |
| 4105 */ |
| 4106 static int btreeCursor( |
| 4107 Btree *p, /* The btree */ |
| 4108 int iTable, /* Root page of table to open */ |
| 4109 int wrFlag, /* 1 to write. 0 read-only */ |
| 4110 struct KeyInfo *pKeyInfo, /* First arg to comparison function */ |
| 4111 BtCursor *pCur /* Space for new cursor */ |
| 4112 ){ |
| 4113 BtShared *pBt = p->pBt; /* Shared b-tree handle */ |
| 4114 BtCursor *pX; /* Looping over other all cursors */ |
| 4115 |
| 4116 assert( sqlite3BtreeHoldsMutex(p) ); |
| 4117 assert( wrFlag==0 |
| 4118 || wrFlag==BTREE_WRCSR |
| 4119 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) |
| 4120 ); |
| 4121 |
| 4122 /* The following assert statements verify that if this is a sharable |
| 4123 ** b-tree database, the connection is holding the required table locks, |
| 4124 ** and that no other connection has any open cursor that conflicts with |
| 4125 ** this lock. */ |
| 4126 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) ); |
| 4127 assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); |
| 4128 |
| 4129 /* Assert that the caller has opened the required transaction. */ |
| 4130 assert( p->inTrans>TRANS_NONE ); |
| 4131 assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); |
| 4132 assert( pBt->pPage1 && pBt->pPage1->aData ); |
| 4133 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
| 4134 |
| 4135 if( wrFlag ){ |
| 4136 allocateTempSpace(pBt); |
| 4137 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT; |
| 4138 } |
| 4139 if( iTable==1 && btreePagecount(pBt)==0 ){ |
| 4140 assert( wrFlag==0 ); |
| 4141 iTable = 0; |
| 4142 } |
| 4143 |
| 4144 /* Now that no other errors can occur, finish filling in the BtCursor |
| 4145 ** variables and link the cursor into the BtShared list. */ |
| 4146 pCur->pgnoRoot = (Pgno)iTable; |
| 4147 pCur->iPage = -1; |
| 4148 pCur->pKeyInfo = pKeyInfo; |
| 4149 pCur->pBtree = p; |
| 4150 pCur->pBt = pBt; |
| 4151 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0; |
| 4152 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY; |
| 4153 /* If there are two or more cursors on the same btree, then all such |
| 4154 ** cursors *must* have the BTCF_Multiple flag set. */ |
| 4155 for(pX=pBt->pCursor; pX; pX=pX->pNext){ |
| 4156 if( pX->pgnoRoot==(Pgno)iTable ){ |
| 4157 pX->curFlags |= BTCF_Multiple; |
| 4158 pCur->curFlags |= BTCF_Multiple; |
| 4159 } |
| 4160 } |
| 4161 pCur->pNext = pBt->pCursor; |
| 4162 pBt->pCursor = pCur; |
| 4163 pCur->eState = CURSOR_INVALID; |
| 4164 return SQLITE_OK; |
| 4165 } |
| 4166 int sqlite3BtreeCursor( |
| 4167 Btree *p, /* The btree */ |
| 4168 int iTable, /* Root page of table to open */ |
| 4169 int wrFlag, /* 1 to write. 0 read-only */ |
| 4170 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ |
| 4171 BtCursor *pCur /* Write new cursor here */ |
| 4172 ){ |
| 4173 int rc; |
| 4174 if( iTable<1 ){ |
| 4175 rc = SQLITE_CORRUPT_BKPT; |
| 4176 }else{ |
| 4177 sqlite3BtreeEnter(p); |
| 4178 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); |
| 4179 sqlite3BtreeLeave(p); |
| 4180 } |
| 4181 return rc; |
| 4182 } |
| 4183 |
| 4184 /* |
| 4185 ** Return the size of a BtCursor object in bytes. |
| 4186 ** |
| 4187 ** This interfaces is needed so that users of cursors can preallocate |
| 4188 ** sufficient storage to hold a cursor. The BtCursor object is opaque |
| 4189 ** to users so they cannot do the sizeof() themselves - they must call |
| 4190 ** this routine. |
| 4191 */ |
| 4192 int sqlite3BtreeCursorSize(void){ |
| 4193 return ROUND8(sizeof(BtCursor)); |
| 4194 } |
| 4195 |
| 4196 /* |
| 4197 ** Initialize memory that will be converted into a BtCursor object. |
| 4198 ** |
| 4199 ** The simple approach here would be to memset() the entire object |
| 4200 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays |
| 4201 ** do not need to be zeroed and they are large, so we can save a lot |
| 4202 ** of run-time by skipping the initialization of those elements. |
| 4203 */ |
| 4204 void sqlite3BtreeCursorZero(BtCursor *p){ |
| 4205 memset(p, 0, offsetof(BtCursor, iPage)); |
| 4206 } |
| 4207 |
| 4208 /* |
| 4209 ** Close a cursor. The read lock on the database file is released |
| 4210 ** when the last cursor is closed. |
| 4211 */ |
| 4212 int sqlite3BtreeCloseCursor(BtCursor *pCur){ |
| 4213 Btree *pBtree = pCur->pBtree; |
| 4214 if( pBtree ){ |
| 4215 int i; |
| 4216 BtShared *pBt = pCur->pBt; |
| 4217 sqlite3BtreeEnter(pBtree); |
| 4218 sqlite3BtreeClearCursor(pCur); |
| 4219 assert( pBt->pCursor!=0 ); |
| 4220 if( pBt->pCursor==pCur ){ |
| 4221 pBt->pCursor = pCur->pNext; |
| 4222 }else{ |
| 4223 BtCursor *pPrev = pBt->pCursor; |
| 4224 do{ |
| 4225 if( pPrev->pNext==pCur ){ |
| 4226 pPrev->pNext = pCur->pNext; |
| 4227 break; |
| 4228 } |
| 4229 pPrev = pPrev->pNext; |
| 4230 }while( ALWAYS(pPrev) ); |
| 4231 } |
| 4232 for(i=0; i<=pCur->iPage; i++){ |
| 4233 releasePage(pCur->apPage[i]); |
| 4234 } |
| 4235 unlockBtreeIfUnused(pBt); |
| 4236 sqlite3_free(pCur->aOverflow); |
| 4237 /* sqlite3_free(pCur); */ |
| 4238 sqlite3BtreeLeave(pBtree); |
| 4239 } |
| 4240 return SQLITE_OK; |
| 4241 } |
| 4242 |
| 4243 /* |
| 4244 ** Make sure the BtCursor* given in the argument has a valid |
| 4245 ** BtCursor.info structure. If it is not already valid, call |
| 4246 ** btreeParseCell() to fill it in. |
| 4247 ** |
| 4248 ** BtCursor.info is a cache of the information in the current cell. |
| 4249 ** Using this cache reduces the number of calls to btreeParseCell(). |
| 4250 */ |
| 4251 #ifndef NDEBUG |
| 4252 static void assertCellInfo(BtCursor *pCur){ |
| 4253 CellInfo info; |
| 4254 int iPage = pCur->iPage; |
| 4255 memset(&info, 0, sizeof(info)); |
| 4256 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info); |
| 4257 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 ); |
| 4258 } |
| 4259 #else |
| 4260 #define assertCellInfo(x) |
| 4261 #endif |
| 4262 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){ |
| 4263 if( pCur->info.nSize==0 ){ |
| 4264 int iPage = pCur->iPage; |
| 4265 pCur->curFlags |= BTCF_ValidNKey; |
| 4266 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); |
| 4267 }else{ |
| 4268 assertCellInfo(pCur); |
| 4269 } |
| 4270 } |
| 4271 |
| 4272 #ifndef NDEBUG /* The next routine used only within assert() statements */ |
| 4273 /* |
| 4274 ** Return true if the given BtCursor is valid. A valid cursor is one |
| 4275 ** that is currently pointing to a row in a (non-empty) table. |
| 4276 ** This is a verification routine is used only within assert() statements. |
| 4277 */ |
| 4278 int sqlite3BtreeCursorIsValid(BtCursor *pCur){ |
| 4279 return pCur && pCur->eState==CURSOR_VALID; |
| 4280 } |
| 4281 #endif /* NDEBUG */ |
| 4282 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){ |
| 4283 assert( pCur!=0 ); |
| 4284 return pCur->eState==CURSOR_VALID; |
| 4285 } |
| 4286 |
| 4287 /* |
| 4288 ** Return the value of the integer key or "rowid" for a table btree. |
| 4289 ** This routine is only valid for a cursor that is pointing into a |
| 4290 ** ordinary table btree. If the cursor points to an index btree or |
| 4291 ** is invalid, the result of this routine is undefined. |
| 4292 */ |
| 4293 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){ |
| 4294 assert( cursorHoldsMutex(pCur) ); |
| 4295 assert( pCur->eState==CURSOR_VALID ); |
| 4296 assert( pCur->curIntKey ); |
| 4297 getCellInfo(pCur); |
| 4298 return pCur->info.nKey; |
| 4299 } |
| 4300 |
| 4301 /* |
| 4302 ** Return the number of bytes of payload for the entry that pCur is |
| 4303 ** currently pointing to. For table btrees, this will be the amount |
| 4304 ** of data. For index btrees, this will be the size of the key. |
| 4305 ** |
| 4306 ** The caller must guarantee that the cursor is pointing to a non-NULL |
| 4307 ** valid entry. In other words, the calling procedure must guarantee |
| 4308 ** that the cursor has Cursor.eState==CURSOR_VALID. |
| 4309 */ |
| 4310 u32 sqlite3BtreePayloadSize(BtCursor *pCur){ |
| 4311 assert( cursorHoldsMutex(pCur) ); |
| 4312 assert( pCur->eState==CURSOR_VALID ); |
| 4313 getCellInfo(pCur); |
| 4314 return pCur->info.nPayload; |
| 4315 } |
| 4316 |
| 4317 /* |
| 4318 ** Given the page number of an overflow page in the database (parameter |
| 4319 ** ovfl), this function finds the page number of the next page in the |
| 4320 ** linked list of overflow pages. If possible, it uses the auto-vacuum |
| 4321 ** pointer-map data instead of reading the content of page ovfl to do so. |
| 4322 ** |
| 4323 ** If an error occurs an SQLite error code is returned. Otherwise: |
| 4324 ** |
| 4325 ** The page number of the next overflow page in the linked list is |
| 4326 ** written to *pPgnoNext. If page ovfl is the last page in its linked |
| 4327 ** list, *pPgnoNext is set to zero. |
| 4328 ** |
| 4329 ** If ppPage is not NULL, and a reference to the MemPage object corresponding |
| 4330 ** to page number pOvfl was obtained, then *ppPage is set to point to that |
| 4331 ** reference. It is the responsibility of the caller to call releasePage() |
| 4332 ** on *ppPage to free the reference. In no reference was obtained (because |
| 4333 ** the pointer-map was used to obtain the value for *pPgnoNext), then |
| 4334 ** *ppPage is set to zero. |
| 4335 */ |
| 4336 static int getOverflowPage( |
| 4337 BtShared *pBt, /* The database file */ |
| 4338 Pgno ovfl, /* Current overflow page number */ |
| 4339 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ |
| 4340 Pgno *pPgnoNext /* OUT: Next overflow page number */ |
| 4341 ){ |
| 4342 Pgno next = 0; |
| 4343 MemPage *pPage = 0; |
| 4344 int rc = SQLITE_OK; |
| 4345 |
| 4346 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 4347 assert(pPgnoNext); |
| 4348 |
| 4349 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 4350 /* Try to find the next page in the overflow list using the |
| 4351 ** autovacuum pointer-map pages. Guess that the next page in |
| 4352 ** the overflow list is page number (ovfl+1). If that guess turns |
| 4353 ** out to be wrong, fall back to loading the data of page |
| 4354 ** number ovfl to determine the next page number. |
| 4355 */ |
| 4356 if( pBt->autoVacuum ){ |
| 4357 Pgno pgno; |
| 4358 Pgno iGuess = ovfl+1; |
| 4359 u8 eType; |
| 4360 |
| 4361 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ |
| 4362 iGuess++; |
| 4363 } |
| 4364 |
| 4365 if( iGuess<=btreePagecount(pBt) ){ |
| 4366 rc = ptrmapGet(pBt, iGuess, &eType, &pgno); |
| 4367 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ |
| 4368 next = iGuess; |
| 4369 rc = SQLITE_DONE; |
| 4370 } |
| 4371 } |
| 4372 } |
| 4373 #endif |
| 4374 |
| 4375 assert( next==0 || rc==SQLITE_DONE ); |
| 4376 if( rc==SQLITE_OK ){ |
| 4377 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); |
| 4378 assert( rc==SQLITE_OK || pPage==0 ); |
| 4379 if( rc==SQLITE_OK ){ |
| 4380 next = get4byte(pPage->aData); |
| 4381 } |
| 4382 } |
| 4383 |
| 4384 *pPgnoNext = next; |
| 4385 if( ppPage ){ |
| 4386 *ppPage = pPage; |
| 4387 }else{ |
| 4388 releasePage(pPage); |
| 4389 } |
| 4390 return (rc==SQLITE_DONE ? SQLITE_OK : rc); |
| 4391 } |
| 4392 |
| 4393 /* |
| 4394 ** Copy data from a buffer to a page, or from a page to a buffer. |
| 4395 ** |
| 4396 ** pPayload is a pointer to data stored on database page pDbPage. |
| 4397 ** If argument eOp is false, then nByte bytes of data are copied |
| 4398 ** from pPayload to the buffer pointed at by pBuf. If eOp is true, |
| 4399 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes |
| 4400 ** of data are copied from the buffer pBuf to pPayload. |
| 4401 ** |
| 4402 ** SQLITE_OK is returned on success, otherwise an error code. |
| 4403 */ |
| 4404 static int copyPayload( |
| 4405 void *pPayload, /* Pointer to page data */ |
| 4406 void *pBuf, /* Pointer to buffer */ |
| 4407 int nByte, /* Number of bytes to copy */ |
| 4408 int eOp, /* 0 -> copy from page, 1 -> copy to page */ |
| 4409 DbPage *pDbPage /* Page containing pPayload */ |
| 4410 ){ |
| 4411 if( eOp ){ |
| 4412 /* Copy data from buffer to page (a write operation) */ |
| 4413 int rc = sqlite3PagerWrite(pDbPage); |
| 4414 if( rc!=SQLITE_OK ){ |
| 4415 return rc; |
| 4416 } |
| 4417 memcpy(pPayload, pBuf, nByte); |
| 4418 }else{ |
| 4419 /* Copy data from page to buffer (a read operation) */ |
| 4420 memcpy(pBuf, pPayload, nByte); |
| 4421 } |
| 4422 return SQLITE_OK; |
| 4423 } |
| 4424 |
| 4425 /* |
| 4426 ** This function is used to read or overwrite payload information |
| 4427 ** for the entry that the pCur cursor is pointing to. The eOp |
| 4428 ** argument is interpreted as follows: |
| 4429 ** |
| 4430 ** 0: The operation is a read. Populate the overflow cache. |
| 4431 ** 1: The operation is a write. Populate the overflow cache. |
| 4432 ** |
| 4433 ** A total of "amt" bytes are read or written beginning at "offset". |
| 4434 ** Data is read to or from the buffer pBuf. |
| 4435 ** |
| 4436 ** The content being read or written might appear on the main page |
| 4437 ** or be scattered out on multiple overflow pages. |
| 4438 ** |
| 4439 ** If the current cursor entry uses one or more overflow pages |
| 4440 ** this function may allocate space for and lazily populate |
| 4441 ** the overflow page-list cache array (BtCursor.aOverflow). |
| 4442 ** Subsequent calls use this cache to make seeking to the supplied offset |
| 4443 ** more efficient. |
| 4444 ** |
| 4445 ** Once an overflow page-list cache has been allocated, it must be |
| 4446 ** invalidated if some other cursor writes to the same table, or if |
| 4447 ** the cursor is moved to a different row. Additionally, in auto-vacuum |
| 4448 ** mode, the following events may invalidate an overflow page-list cache. |
| 4449 ** |
| 4450 ** * An incremental vacuum, |
| 4451 ** * A commit in auto_vacuum="full" mode, |
| 4452 ** * Creating a table (may require moving an overflow page). |
| 4453 */ |
| 4454 static int accessPayload( |
| 4455 BtCursor *pCur, /* Cursor pointing to entry to read from */ |
| 4456 u32 offset, /* Begin reading this far into payload */ |
| 4457 u32 amt, /* Read this many bytes */ |
| 4458 unsigned char *pBuf, /* Write the bytes into this buffer */ |
| 4459 int eOp /* zero to read. non-zero to write. */ |
| 4460 ){ |
| 4461 unsigned char *aPayload; |
| 4462 int rc = SQLITE_OK; |
| 4463 int iIdx = 0; |
| 4464 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */ |
| 4465 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ |
| 4466 #ifdef SQLITE_DIRECT_OVERFLOW_READ |
| 4467 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */ |
| 4468 #endif |
| 4469 |
| 4470 assert( pPage ); |
| 4471 assert( eOp==0 || eOp==1 ); |
| 4472 assert( pCur->eState==CURSOR_VALID ); |
| 4473 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell ); |
| 4474 assert( cursorHoldsMutex(pCur) ); |
| 4475 |
| 4476 getCellInfo(pCur); |
| 4477 aPayload = pCur->info.pPayload; |
| 4478 assert( offset+amt <= pCur->info.nPayload ); |
| 4479 |
| 4480 assert( aPayload > pPage->aData ); |
| 4481 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){ |
| 4482 /* Trying to read or write past the end of the data is an error. The |
| 4483 ** conditional above is really: |
| 4484 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] |
| 4485 ** but is recast into its current form to avoid integer overflow problems |
| 4486 */ |
| 4487 return SQLITE_CORRUPT_BKPT; |
| 4488 } |
| 4489 |
| 4490 /* Check if data must be read/written to/from the btree page itself. */ |
| 4491 if( offset<pCur->info.nLocal ){ |
| 4492 int a = amt; |
| 4493 if( a+offset>pCur->info.nLocal ){ |
| 4494 a = pCur->info.nLocal - offset; |
| 4495 } |
| 4496 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); |
| 4497 offset = 0; |
| 4498 pBuf += a; |
| 4499 amt -= a; |
| 4500 }else{ |
| 4501 offset -= pCur->info.nLocal; |
| 4502 } |
| 4503 |
| 4504 |
| 4505 if( rc==SQLITE_OK && amt>0 ){ |
| 4506 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ |
| 4507 Pgno nextPage; |
| 4508 |
| 4509 nextPage = get4byte(&aPayload[pCur->info.nLocal]); |
| 4510 |
| 4511 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. |
| 4512 ** |
| 4513 ** The aOverflow[] array is sized at one entry for each overflow page |
| 4514 ** in the overflow chain. The page number of the first overflow page is |
| 4515 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array |
| 4516 ** means "not yet known" (the cache is lazily populated). |
| 4517 */ |
| 4518 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){ |
| 4519 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; |
| 4520 if( nOvfl>pCur->nOvflAlloc ){ |
| 4521 Pgno *aNew = (Pgno*)sqlite3Realloc( |
| 4522 pCur->aOverflow, nOvfl*2*sizeof(Pgno) |
| 4523 ); |
| 4524 if( aNew==0 ){ |
| 4525 return SQLITE_NOMEM_BKPT; |
| 4526 }else{ |
| 4527 pCur->nOvflAlloc = nOvfl*2; |
| 4528 pCur->aOverflow = aNew; |
| 4529 } |
| 4530 } |
| 4531 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); |
| 4532 pCur->curFlags |= BTCF_ValidOvfl; |
| 4533 }else{ |
| 4534 /* If the overflow page-list cache has been allocated and the |
| 4535 ** entry for the first required overflow page is valid, skip |
| 4536 ** directly to it. |
| 4537 */ |
| 4538 if( pCur->aOverflow[offset/ovflSize] ){ |
| 4539 iIdx = (offset/ovflSize); |
| 4540 nextPage = pCur->aOverflow[iIdx]; |
| 4541 offset = (offset%ovflSize); |
| 4542 } |
| 4543 } |
| 4544 |
| 4545 assert( rc==SQLITE_OK && amt>0 ); |
| 4546 while( nextPage ){ |
| 4547 /* If required, populate the overflow page-list cache. */ |
| 4548 assert( pCur->aOverflow[iIdx]==0 |
| 4549 || pCur->aOverflow[iIdx]==nextPage |
| 4550 || CORRUPT_DB ); |
| 4551 pCur->aOverflow[iIdx] = nextPage; |
| 4552 |
| 4553 if( offset>=ovflSize ){ |
| 4554 /* The only reason to read this page is to obtain the page |
| 4555 ** number for the next page in the overflow chain. The page |
| 4556 ** data is not required. So first try to lookup the overflow |
| 4557 ** page-list cache, if any, then fall back to the getOverflowPage() |
| 4558 ** function. |
| 4559 */ |
| 4560 assert( pCur->curFlags & BTCF_ValidOvfl ); |
| 4561 assert( pCur->pBtree->db==pBt->db ); |
| 4562 if( pCur->aOverflow[iIdx+1] ){ |
| 4563 nextPage = pCur->aOverflow[iIdx+1]; |
| 4564 }else{ |
| 4565 rc = getOverflowPage(pBt, nextPage, 0, &nextPage); |
| 4566 } |
| 4567 offset -= ovflSize; |
| 4568 }else{ |
| 4569 /* Need to read this page properly. It contains some of the |
| 4570 ** range of data that is being read (eOp==0) or written (eOp!=0). |
| 4571 */ |
| 4572 #ifdef SQLITE_DIRECT_OVERFLOW_READ |
| 4573 sqlite3_file *fd; /* File from which to do direct overflow read */ |
| 4574 #endif |
| 4575 int a = amt; |
| 4576 if( a + offset > ovflSize ){ |
| 4577 a = ovflSize - offset; |
| 4578 } |
| 4579 |
| 4580 #ifdef SQLITE_DIRECT_OVERFLOW_READ |
| 4581 /* If all the following are true: |
| 4582 ** |
| 4583 ** 1) this is a read operation, and |
| 4584 ** 2) data is required from the start of this overflow page, and |
| 4585 ** 3) there is no open write-transaction, and |
| 4586 ** 4) the database is file-backed, and |
| 4587 ** 5) the page is not in the WAL file |
| 4588 ** 6) at least 4 bytes have already been read into the output buffer |
| 4589 ** |
| 4590 ** then data can be read directly from the database file into the |
| 4591 ** output buffer, bypassing the page-cache altogether. This speeds |
| 4592 ** up loading large records that span many overflow pages. |
| 4593 */ |
| 4594 if( eOp==0 /* (1) */ |
| 4595 && offset==0 /* (2) */ |
| 4596 && pBt->inTransaction==TRANS_READ /* (3) */ |
| 4597 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (4) */ |
| 4598 && 0==sqlite3PagerUseWal(pBt->pPager, nextPage) /* (5) */ |
| 4599 && &pBuf[-4]>=pBufStart /* (6) */ |
| 4600 ){ |
| 4601 u8 aSave[4]; |
| 4602 u8 *aWrite = &pBuf[-4]; |
| 4603 assert( aWrite>=pBufStart ); /* due to (6) */ |
| 4604 memcpy(aSave, aWrite, 4); |
| 4605 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); |
| 4606 nextPage = get4byte(aWrite); |
| 4607 memcpy(aWrite, aSave, 4); |
| 4608 }else |
| 4609 #endif |
| 4610 |
| 4611 { |
| 4612 DbPage *pDbPage; |
| 4613 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage, |
| 4614 (eOp==0 ? PAGER_GET_READONLY : 0) |
| 4615 ); |
| 4616 if( rc==SQLITE_OK ){ |
| 4617 aPayload = sqlite3PagerGetData(pDbPage); |
| 4618 nextPage = get4byte(aPayload); |
| 4619 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); |
| 4620 sqlite3PagerUnref(pDbPage); |
| 4621 offset = 0; |
| 4622 } |
| 4623 } |
| 4624 amt -= a; |
| 4625 if( amt==0 ) return rc; |
| 4626 pBuf += a; |
| 4627 } |
| 4628 if( rc ) break; |
| 4629 iIdx++; |
| 4630 } |
| 4631 } |
| 4632 |
| 4633 if( rc==SQLITE_OK && amt>0 ){ |
| 4634 return SQLITE_CORRUPT_BKPT; /* Overflow chain ends prematurely */ |
| 4635 } |
| 4636 return rc; |
| 4637 } |
| 4638 |
| 4639 /* |
| 4640 ** Read part of the payload for the row at which that cursor pCur is currently |
| 4641 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer |
| 4642 ** begins at "offset". |
| 4643 ** |
| 4644 ** pCur can be pointing to either a table or an index b-tree. |
| 4645 ** If pointing to a table btree, then the content section is read. If |
| 4646 ** pCur is pointing to an index b-tree then the key section is read. |
| 4647 ** |
| 4648 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing |
| 4649 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the |
| 4650 ** cursor might be invalid or might need to be restored before being read. |
| 4651 ** |
| 4652 ** Return SQLITE_OK on success or an error code if anything goes |
| 4653 ** wrong. An error is returned if "offset+amt" is larger than |
| 4654 ** the available payload. |
| 4655 */ |
| 4656 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ |
| 4657 assert( cursorHoldsMutex(pCur) ); |
| 4658 assert( pCur->eState==CURSOR_VALID ); |
| 4659 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] ); |
| 4660 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); |
| 4661 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); |
| 4662 } |
| 4663 |
| 4664 /* |
| 4665 ** This variant of sqlite3BtreePayload() works even if the cursor has not |
| 4666 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read() |
| 4667 ** interface. |
| 4668 */ |
| 4669 #ifndef SQLITE_OMIT_INCRBLOB |
| 4670 static SQLITE_NOINLINE int accessPayloadChecked( |
| 4671 BtCursor *pCur, |
| 4672 u32 offset, |
| 4673 u32 amt, |
| 4674 void *pBuf |
| 4675 ){ |
| 4676 int rc; |
| 4677 if ( pCur->eState==CURSOR_INVALID ){ |
| 4678 return SQLITE_ABORT; |
| 4679 } |
| 4680 assert( cursorOwnsBtShared(pCur) ); |
| 4681 rc = btreeRestoreCursorPosition(pCur); |
| 4682 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0); |
| 4683 } |
| 4684 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ |
| 4685 if( pCur->eState==CURSOR_VALID ){ |
| 4686 assert( cursorOwnsBtShared(pCur) ); |
| 4687 return accessPayload(pCur, offset, amt, pBuf, 0); |
| 4688 }else{ |
| 4689 return accessPayloadChecked(pCur, offset, amt, pBuf); |
| 4690 } |
| 4691 } |
| 4692 #endif /* SQLITE_OMIT_INCRBLOB */ |
| 4693 |
| 4694 /* |
| 4695 ** Return a pointer to payload information from the entry that the |
| 4696 ** pCur cursor is pointing to. The pointer is to the beginning of |
| 4697 ** the key if index btrees (pPage->intKey==0) and is the data for |
| 4698 ** table btrees (pPage->intKey==1). The number of bytes of available |
| 4699 ** key/data is written into *pAmt. If *pAmt==0, then the value |
| 4700 ** returned will not be a valid pointer. |
| 4701 ** |
| 4702 ** This routine is an optimization. It is common for the entire key |
| 4703 ** and data to fit on the local page and for there to be no overflow |
| 4704 ** pages. When that is so, this routine can be used to access the |
| 4705 ** key and data without making a copy. If the key and/or data spills |
| 4706 ** onto overflow pages, then accessPayload() must be used to reassemble |
| 4707 ** the key/data and copy it into a preallocated buffer. |
| 4708 ** |
| 4709 ** The pointer returned by this routine looks directly into the cached |
| 4710 ** page of the database. The data might change or move the next time |
| 4711 ** any btree routine is called. |
| 4712 */ |
| 4713 static const void *fetchPayload( |
| 4714 BtCursor *pCur, /* Cursor pointing to entry to read from */ |
| 4715 u32 *pAmt /* Write the number of available bytes here */ |
| 4716 ){ |
| 4717 u32 amt; |
| 4718 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]); |
| 4719 assert( pCur->eState==CURSOR_VALID ); |
| 4720 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
| 4721 assert( cursorOwnsBtShared(pCur) ); |
| 4722 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); |
| 4723 assert( pCur->info.nSize>0 ); |
| 4724 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB ); |
| 4725 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB); |
| 4726 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload); |
| 4727 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal; |
| 4728 *pAmt = amt; |
| 4729 return (void*)pCur->info.pPayload; |
| 4730 } |
| 4731 |
| 4732 |
| 4733 /* |
| 4734 ** For the entry that cursor pCur is point to, return as |
| 4735 ** many bytes of the key or data as are available on the local |
| 4736 ** b-tree page. Write the number of available bytes into *pAmt. |
| 4737 ** |
| 4738 ** The pointer returned is ephemeral. The key/data may move |
| 4739 ** or be destroyed on the next call to any Btree routine, |
| 4740 ** including calls from other threads against the same cache. |
| 4741 ** Hence, a mutex on the BtShared should be held prior to calling |
| 4742 ** this routine. |
| 4743 ** |
| 4744 ** These routines is used to get quick access to key and data |
| 4745 ** in the common case where no overflow pages are used. |
| 4746 */ |
| 4747 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){ |
| 4748 return fetchPayload(pCur, pAmt); |
| 4749 } |
| 4750 |
| 4751 |
| 4752 /* |
| 4753 ** Move the cursor down to a new child page. The newPgno argument is the |
| 4754 ** page number of the child page to move to. |
| 4755 ** |
| 4756 ** This function returns SQLITE_CORRUPT if the page-header flags field of |
| 4757 ** the new child page does not match the flags field of the parent (i.e. |
| 4758 ** if an intkey page appears to be the parent of a non-intkey page, or |
| 4759 ** vice-versa). |
| 4760 */ |
| 4761 static int moveToChild(BtCursor *pCur, u32 newPgno){ |
| 4762 BtShared *pBt = pCur->pBt; |
| 4763 |
| 4764 assert( cursorOwnsBtShared(pCur) ); |
| 4765 assert( pCur->eState==CURSOR_VALID ); |
| 4766 assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); |
| 4767 assert( pCur->iPage>=0 ); |
| 4768 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ |
| 4769 return SQLITE_CORRUPT_BKPT; |
| 4770 } |
| 4771 pCur->info.nSize = 0; |
| 4772 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); |
| 4773 pCur->iPage++; |
| 4774 pCur->aiIdx[pCur->iPage] = 0; |
| 4775 return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage], |
| 4776 pCur, pCur->curPagerFlags); |
| 4777 } |
| 4778 |
| 4779 #if SQLITE_DEBUG |
| 4780 /* |
| 4781 ** Page pParent is an internal (non-leaf) tree page. This function |
| 4782 ** asserts that page number iChild is the left-child if the iIdx'th |
| 4783 ** cell in page pParent. Or, if iIdx is equal to the total number of |
| 4784 ** cells in pParent, that page number iChild is the right-child of |
| 4785 ** the page. |
| 4786 */ |
| 4787 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ |
| 4788 if( CORRUPT_DB ) return; /* The conditions tested below might not be true |
| 4789 ** in a corrupt database */ |
| 4790 assert( iIdx<=pParent->nCell ); |
| 4791 if( iIdx==pParent->nCell ){ |
| 4792 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); |
| 4793 }else{ |
| 4794 assert( get4byte(findCell(pParent, iIdx))==iChild ); |
| 4795 } |
| 4796 } |
| 4797 #else |
| 4798 # define assertParentIndex(x,y,z) |
| 4799 #endif |
| 4800 |
| 4801 /* |
| 4802 ** Move the cursor up to the parent page. |
| 4803 ** |
| 4804 ** pCur->idx is set to the cell index that contains the pointer |
| 4805 ** to the page we are coming from. If we are coming from the |
| 4806 ** right-most child page then pCur->idx is set to one more than |
| 4807 ** the largest cell index. |
| 4808 */ |
| 4809 static void moveToParent(BtCursor *pCur){ |
| 4810 assert( cursorOwnsBtShared(pCur) ); |
| 4811 assert( pCur->eState==CURSOR_VALID ); |
| 4812 assert( pCur->iPage>0 ); |
| 4813 assert( pCur->apPage[pCur->iPage] ); |
| 4814 assertParentIndex( |
| 4815 pCur->apPage[pCur->iPage-1], |
| 4816 pCur->aiIdx[pCur->iPage-1], |
| 4817 pCur->apPage[pCur->iPage]->pgno |
| 4818 ); |
| 4819 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); |
| 4820 pCur->info.nSize = 0; |
| 4821 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); |
| 4822 releasePageNotNull(pCur->apPage[pCur->iPage--]); |
| 4823 } |
| 4824 |
| 4825 /* |
| 4826 ** Move the cursor to point to the root page of its b-tree structure. |
| 4827 ** |
| 4828 ** If the table has a virtual root page, then the cursor is moved to point |
| 4829 ** to the virtual root page instead of the actual root page. A table has a |
| 4830 ** virtual root page when the actual root page contains no cells and a |
| 4831 ** single child page. This can only happen with the table rooted at page 1. |
| 4832 ** |
| 4833 ** If the b-tree structure is empty, the cursor state is set to |
| 4834 ** CURSOR_INVALID. Otherwise, the cursor is set to point to the first |
| 4835 ** cell located on the root (or virtual root) page and the cursor state |
| 4836 ** is set to CURSOR_VALID. |
| 4837 ** |
| 4838 ** If this function returns successfully, it may be assumed that the |
| 4839 ** page-header flags indicate that the [virtual] root-page is the expected |
| 4840 ** kind of b-tree page (i.e. if when opening the cursor the caller did not |
| 4841 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, |
| 4842 ** indicating a table b-tree, or if the caller did specify a KeyInfo |
| 4843 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index |
| 4844 ** b-tree). |
| 4845 */ |
| 4846 static int moveToRoot(BtCursor *pCur){ |
| 4847 MemPage *pRoot; |
| 4848 int rc = SQLITE_OK; |
| 4849 |
| 4850 assert( cursorOwnsBtShared(pCur) ); |
| 4851 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); |
| 4852 assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); |
| 4853 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); |
| 4854 if( pCur->eState>=CURSOR_REQUIRESEEK ){ |
| 4855 if( pCur->eState==CURSOR_FAULT ){ |
| 4856 assert( pCur->skipNext!=SQLITE_OK ); |
| 4857 return pCur->skipNext; |
| 4858 } |
| 4859 sqlite3BtreeClearCursor(pCur); |
| 4860 } |
| 4861 |
| 4862 if( pCur->iPage>=0 ){ |
| 4863 if( pCur->iPage ){ |
| 4864 do{ |
| 4865 assert( pCur->apPage[pCur->iPage]!=0 ); |
| 4866 releasePageNotNull(pCur->apPage[pCur->iPage--]); |
| 4867 }while( pCur->iPage); |
| 4868 goto skip_init; |
| 4869 } |
| 4870 }else if( pCur->pgnoRoot==0 ){ |
| 4871 pCur->eState = CURSOR_INVALID; |
| 4872 return SQLITE_OK; |
| 4873 }else{ |
| 4874 assert( pCur->iPage==(-1) ); |
| 4875 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0], |
| 4876 0, pCur->curPagerFlags); |
| 4877 if( rc!=SQLITE_OK ){ |
| 4878 pCur->eState = CURSOR_INVALID; |
| 4879 return rc; |
| 4880 } |
| 4881 pCur->iPage = 0; |
| 4882 pCur->curIntKey = pCur->apPage[0]->intKey; |
| 4883 } |
| 4884 pRoot = pCur->apPage[0]; |
| 4885 assert( pRoot->pgno==pCur->pgnoRoot ); |
| 4886 |
| 4887 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor |
| 4888 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is |
| 4889 ** NULL, the caller expects a table b-tree. If this is not the case, |
| 4890 ** return an SQLITE_CORRUPT error. |
| 4891 ** |
| 4892 ** Earlier versions of SQLite assumed that this test could not fail |
| 4893 ** if the root page was already loaded when this function was called (i.e. |
| 4894 ** if pCur->iPage>=0). But this is not so if the database is corrupted |
| 4895 ** in such a way that page pRoot is linked into a second b-tree table |
| 4896 ** (or the freelist). */ |
| 4897 assert( pRoot->intKey==1 || pRoot->intKey==0 ); |
| 4898 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ |
| 4899 return SQLITE_CORRUPT_BKPT; |
| 4900 } |
| 4901 |
| 4902 skip_init: |
| 4903 pCur->aiIdx[0] = 0; |
| 4904 pCur->info.nSize = 0; |
| 4905 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); |
| 4906 |
| 4907 pRoot = pCur->apPage[0]; |
| 4908 if( pRoot->nCell>0 ){ |
| 4909 pCur->eState = CURSOR_VALID; |
| 4910 }else if( !pRoot->leaf ){ |
| 4911 Pgno subpage; |
| 4912 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; |
| 4913 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); |
| 4914 pCur->eState = CURSOR_VALID; |
| 4915 rc = moveToChild(pCur, subpage); |
| 4916 }else{ |
| 4917 pCur->eState = CURSOR_INVALID; |
| 4918 } |
| 4919 return rc; |
| 4920 } |
| 4921 |
| 4922 /* |
| 4923 ** Move the cursor down to the left-most leaf entry beneath the |
| 4924 ** entry to which it is currently pointing. |
| 4925 ** |
| 4926 ** The left-most leaf is the one with the smallest key - the first |
| 4927 ** in ascending order. |
| 4928 */ |
| 4929 static int moveToLeftmost(BtCursor *pCur){ |
| 4930 Pgno pgno; |
| 4931 int rc = SQLITE_OK; |
| 4932 MemPage *pPage; |
| 4933 |
| 4934 assert( cursorOwnsBtShared(pCur) ); |
| 4935 assert( pCur->eState==CURSOR_VALID ); |
| 4936 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){ |
| 4937 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell ); |
| 4938 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage])); |
| 4939 rc = moveToChild(pCur, pgno); |
| 4940 } |
| 4941 return rc; |
| 4942 } |
| 4943 |
| 4944 /* |
| 4945 ** Move the cursor down to the right-most leaf entry beneath the |
| 4946 ** page to which it is currently pointing. Notice the difference |
| 4947 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() |
| 4948 ** finds the left-most entry beneath the *entry* whereas moveToRightmost() |
| 4949 ** finds the right-most entry beneath the *page*. |
| 4950 ** |
| 4951 ** The right-most entry is the one with the largest key - the last |
| 4952 ** key in ascending order. |
| 4953 */ |
| 4954 static int moveToRightmost(BtCursor *pCur){ |
| 4955 Pgno pgno; |
| 4956 int rc = SQLITE_OK; |
| 4957 MemPage *pPage = 0; |
| 4958 |
| 4959 assert( cursorOwnsBtShared(pCur) ); |
| 4960 assert( pCur->eState==CURSOR_VALID ); |
| 4961 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){ |
| 4962 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| 4963 pCur->aiIdx[pCur->iPage] = pPage->nCell; |
| 4964 rc = moveToChild(pCur, pgno); |
| 4965 if( rc ) return rc; |
| 4966 } |
| 4967 pCur->aiIdx[pCur->iPage] = pPage->nCell-1; |
| 4968 assert( pCur->info.nSize==0 ); |
| 4969 assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); |
| 4970 return SQLITE_OK; |
| 4971 } |
| 4972 |
| 4973 /* Move the cursor to the first entry in the table. Return SQLITE_OK |
| 4974 ** on success. Set *pRes to 0 if the cursor actually points to something |
| 4975 ** or set *pRes to 1 if the table is empty. |
| 4976 */ |
| 4977 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ |
| 4978 int rc; |
| 4979 |
| 4980 assert( cursorOwnsBtShared(pCur) ); |
| 4981 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
| 4982 rc = moveToRoot(pCur); |
| 4983 if( rc==SQLITE_OK ){ |
| 4984 if( pCur->eState==CURSOR_INVALID ){ |
| 4985 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); |
| 4986 *pRes = 1; |
| 4987 }else{ |
| 4988 assert( pCur->apPage[pCur->iPage]->nCell>0 ); |
| 4989 *pRes = 0; |
| 4990 rc = moveToLeftmost(pCur); |
| 4991 } |
| 4992 } |
| 4993 return rc; |
| 4994 } |
| 4995 |
| 4996 /* Move the cursor to the last entry in the table. Return SQLITE_OK |
| 4997 ** on success. Set *pRes to 0 if the cursor actually points to something |
| 4998 ** or set *pRes to 1 if the table is empty. |
| 4999 */ |
| 5000 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ |
| 5001 int rc; |
| 5002 |
| 5003 assert( cursorOwnsBtShared(pCur) ); |
| 5004 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
| 5005 |
| 5006 /* If the cursor already points to the last entry, this is a no-op. */ |
| 5007 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ |
| 5008 #ifdef SQLITE_DEBUG |
| 5009 /* This block serves to assert() that the cursor really does point |
| 5010 ** to the last entry in the b-tree. */ |
| 5011 int ii; |
| 5012 for(ii=0; ii<pCur->iPage; ii++){ |
| 5013 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); |
| 5014 } |
| 5015 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 ); |
| 5016 assert( pCur->apPage[pCur->iPage]->leaf ); |
| 5017 #endif |
| 5018 return SQLITE_OK; |
| 5019 } |
| 5020 |
| 5021 rc = moveToRoot(pCur); |
| 5022 if( rc==SQLITE_OK ){ |
| 5023 if( CURSOR_INVALID==pCur->eState ){ |
| 5024 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); |
| 5025 *pRes = 1; |
| 5026 }else{ |
| 5027 assert( pCur->eState==CURSOR_VALID ); |
| 5028 *pRes = 0; |
| 5029 rc = moveToRightmost(pCur); |
| 5030 if( rc==SQLITE_OK ){ |
| 5031 pCur->curFlags |= BTCF_AtLast; |
| 5032 }else{ |
| 5033 pCur->curFlags &= ~BTCF_AtLast; |
| 5034 } |
| 5035 |
| 5036 } |
| 5037 } |
| 5038 return rc; |
| 5039 } |
| 5040 |
| 5041 /* Move the cursor so that it points to an entry near the key |
| 5042 ** specified by pIdxKey or intKey. Return a success code. |
| 5043 ** |
| 5044 ** For INTKEY tables, the intKey parameter is used. pIdxKey |
| 5045 ** must be NULL. For index tables, pIdxKey is used and intKey |
| 5046 ** is ignored. |
| 5047 ** |
| 5048 ** If an exact match is not found, then the cursor is always |
| 5049 ** left pointing at a leaf page which would hold the entry if it |
| 5050 ** were present. The cursor might point to an entry that comes |
| 5051 ** before or after the key. |
| 5052 ** |
| 5053 ** An integer is written into *pRes which is the result of |
| 5054 ** comparing the key with the entry to which the cursor is |
| 5055 ** pointing. The meaning of the integer written into |
| 5056 ** *pRes is as follows: |
| 5057 ** |
| 5058 ** *pRes<0 The cursor is left pointing at an entry that |
| 5059 ** is smaller than intKey/pIdxKey or if the table is empty |
| 5060 ** and the cursor is therefore left point to nothing. |
| 5061 ** |
| 5062 ** *pRes==0 The cursor is left pointing at an entry that |
| 5063 ** exactly matches intKey/pIdxKey. |
| 5064 ** |
| 5065 ** *pRes>0 The cursor is left pointing at an entry that |
| 5066 ** is larger than intKey/pIdxKey. |
| 5067 ** |
| 5068 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there |
| 5069 ** exists an entry in the table that exactly matches pIdxKey. |
| 5070 */ |
| 5071 int sqlite3BtreeMovetoUnpacked( |
| 5072 BtCursor *pCur, /* The cursor to be moved */ |
| 5073 UnpackedRecord *pIdxKey, /* Unpacked index key */ |
| 5074 i64 intKey, /* The table key */ |
| 5075 int biasRight, /* If true, bias the search to the high end */ |
| 5076 int *pRes /* Write search results here */ |
| 5077 ){ |
| 5078 int rc; |
| 5079 RecordCompare xRecordCompare; |
| 5080 |
| 5081 assert( cursorOwnsBtShared(pCur) ); |
| 5082 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
| 5083 assert( pRes ); |
| 5084 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); |
| 5085 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) ); |
| 5086 |
| 5087 /* If the cursor is already positioned at the point we are trying |
| 5088 ** to move to, then just return without doing any work */ |
| 5089 if( pIdxKey==0 |
| 5090 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 |
| 5091 ){ |
| 5092 if( pCur->info.nKey==intKey ){ |
| 5093 *pRes = 0; |
| 5094 return SQLITE_OK; |
| 5095 } |
| 5096 if( pCur->info.nKey<intKey ){ |
| 5097 if( (pCur->curFlags & BTCF_AtLast)!=0 ){ |
| 5098 *pRes = -1; |
| 5099 return SQLITE_OK; |
| 5100 } |
| 5101 /* If the requested key is one more than the previous key, then |
| 5102 ** try to get there using sqlite3BtreeNext() rather than a full |
| 5103 ** binary search. This is an optimization only. The correct answer |
| 5104 ** is still obtained without this ase, only a little more slowely */ |
| 5105 if( pCur->info.nKey+1==intKey && !pCur->skipNext ){ |
| 5106 *pRes = 0; |
| 5107 rc = sqlite3BtreeNext(pCur, pRes); |
| 5108 if( rc ) return rc; |
| 5109 if( *pRes==0 ){ |
| 5110 getCellInfo(pCur); |
| 5111 if( pCur->info.nKey==intKey ){ |
| 5112 return SQLITE_OK; |
| 5113 } |
| 5114 } |
| 5115 } |
| 5116 } |
| 5117 } |
| 5118 |
| 5119 if( pIdxKey ){ |
| 5120 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); |
| 5121 pIdxKey->errCode = 0; |
| 5122 assert( pIdxKey->default_rc==1 |
| 5123 || pIdxKey->default_rc==0 |
| 5124 || pIdxKey->default_rc==-1 |
| 5125 ); |
| 5126 }else{ |
| 5127 xRecordCompare = 0; /* All keys are integers */ |
| 5128 } |
| 5129 |
| 5130 rc = moveToRoot(pCur); |
| 5131 if( rc ){ |
| 5132 return rc; |
| 5133 } |
| 5134 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] ); |
| 5135 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit ); |
| 5136 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 ); |
| 5137 if( pCur->eState==CURSOR_INVALID ){ |
| 5138 *pRes = -1; |
| 5139 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); |
| 5140 return SQLITE_OK; |
| 5141 } |
| 5142 assert( pCur->apPage[0]->intKey==pCur->curIntKey ); |
| 5143 assert( pCur->curIntKey || pIdxKey ); |
| 5144 for(;;){ |
| 5145 int lwr, upr, idx, c; |
| 5146 Pgno chldPg; |
| 5147 MemPage *pPage = pCur->apPage[pCur->iPage]; |
| 5148 u8 *pCell; /* Pointer to current cell in pPage */ |
| 5149 |
| 5150 /* pPage->nCell must be greater than zero. If this is the root-page |
| 5151 ** the cursor would have been INVALID above and this for(;;) loop |
| 5152 ** not run. If this is not the root-page, then the moveToChild() routine |
| 5153 ** would have already detected db corruption. Similarly, pPage must |
| 5154 ** be the right kind (index or table) of b-tree page. Otherwise |
| 5155 ** a moveToChild() or moveToRoot() call would have detected corruption. */ |
| 5156 assert( pPage->nCell>0 ); |
| 5157 assert( pPage->intKey==(pIdxKey==0) ); |
| 5158 lwr = 0; |
| 5159 upr = pPage->nCell-1; |
| 5160 assert( biasRight==0 || biasRight==1 ); |
| 5161 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ |
| 5162 pCur->aiIdx[pCur->iPage] = (u16)idx; |
| 5163 if( xRecordCompare==0 ){ |
| 5164 for(;;){ |
| 5165 i64 nCellKey; |
| 5166 pCell = findCellPastPtr(pPage, idx); |
| 5167 if( pPage->intKeyLeaf ){ |
| 5168 while( 0x80 <= *(pCell++) ){ |
| 5169 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT; |
| 5170 } |
| 5171 } |
| 5172 getVarint(pCell, (u64*)&nCellKey); |
| 5173 if( nCellKey<intKey ){ |
| 5174 lwr = idx+1; |
| 5175 if( lwr>upr ){ c = -1; break; } |
| 5176 }else if( nCellKey>intKey ){ |
| 5177 upr = idx-1; |
| 5178 if( lwr>upr ){ c = +1; break; } |
| 5179 }else{ |
| 5180 assert( nCellKey==intKey ); |
| 5181 pCur->aiIdx[pCur->iPage] = (u16)idx; |
| 5182 if( !pPage->leaf ){ |
| 5183 lwr = idx; |
| 5184 goto moveto_next_layer; |
| 5185 }else{ |
| 5186 pCur->curFlags |= BTCF_ValidNKey; |
| 5187 pCur->info.nKey = nCellKey; |
| 5188 pCur->info.nSize = 0; |
| 5189 *pRes = 0; |
| 5190 return SQLITE_OK; |
| 5191 } |
| 5192 } |
| 5193 assert( lwr+upr>=0 ); |
| 5194 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ |
| 5195 } |
| 5196 }else{ |
| 5197 for(;;){ |
| 5198 int nCell; /* Size of the pCell cell in bytes */ |
| 5199 pCell = findCellPastPtr(pPage, idx); |
| 5200 |
| 5201 /* The maximum supported page-size is 65536 bytes. This means that |
| 5202 ** the maximum number of record bytes stored on an index B-Tree |
| 5203 ** page is less than 16384 bytes and may be stored as a 2-byte |
| 5204 ** varint. This information is used to attempt to avoid parsing |
| 5205 ** the entire cell by checking for the cases where the record is |
| 5206 ** stored entirely within the b-tree page by inspecting the first |
| 5207 ** 2 bytes of the cell. |
| 5208 */ |
| 5209 nCell = pCell[0]; |
| 5210 if( nCell<=pPage->max1bytePayload ){ |
| 5211 /* This branch runs if the record-size field of the cell is a |
| 5212 ** single byte varint and the record fits entirely on the main |
| 5213 ** b-tree page. */ |
| 5214 testcase( pCell+nCell+1==pPage->aDataEnd ); |
| 5215 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); |
| 5216 }else if( !(pCell[1] & 0x80) |
| 5217 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal |
| 5218 ){ |
| 5219 /* The record-size field is a 2 byte varint and the record |
| 5220 ** fits entirely on the main b-tree page. */ |
| 5221 testcase( pCell+nCell+2==pPage->aDataEnd ); |
| 5222 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); |
| 5223 }else{ |
| 5224 /* The record flows over onto one or more overflow pages. In |
| 5225 ** this case the whole cell needs to be parsed, a buffer allocated |
| 5226 ** and accessPayload() used to retrieve the record into the |
| 5227 ** buffer before VdbeRecordCompare() can be called. |
| 5228 ** |
| 5229 ** If the record is corrupt, the xRecordCompare routine may read |
| 5230 ** up to two varints past the end of the buffer. An extra 18 |
| 5231 ** bytes of padding is allocated at the end of the buffer in |
| 5232 ** case this happens. */ |
| 5233 void *pCellKey; |
| 5234 u8 * const pCellBody = pCell - pPage->childPtrSize; |
| 5235 pPage->xParseCell(pPage, pCellBody, &pCur->info); |
| 5236 nCell = (int)pCur->info.nKey; |
| 5237 testcase( nCell<0 ); /* True if key size is 2^32 or more */ |
| 5238 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */ |
| 5239 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */ |
| 5240 testcase( nCell==2 ); /* Minimum legal index key size */ |
| 5241 if( nCell<2 ){ |
| 5242 rc = SQLITE_CORRUPT_BKPT; |
| 5243 goto moveto_finish; |
| 5244 } |
| 5245 pCellKey = sqlite3Malloc( nCell+18 ); |
| 5246 if( pCellKey==0 ){ |
| 5247 rc = SQLITE_NOMEM_BKPT; |
| 5248 goto moveto_finish; |
| 5249 } |
| 5250 pCur->aiIdx[pCur->iPage] = (u16)idx; |
| 5251 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0); |
| 5252 pCur->curFlags &= ~BTCF_ValidOvfl; |
| 5253 if( rc ){ |
| 5254 sqlite3_free(pCellKey); |
| 5255 goto moveto_finish; |
| 5256 } |
| 5257 c = xRecordCompare(nCell, pCellKey, pIdxKey); |
| 5258 sqlite3_free(pCellKey); |
| 5259 } |
| 5260 assert( |
| 5261 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) |
| 5262 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) |
| 5263 ); |
| 5264 if( c<0 ){ |
| 5265 lwr = idx+1; |
| 5266 }else if( c>0 ){ |
| 5267 upr = idx-1; |
| 5268 }else{ |
| 5269 assert( c==0 ); |
| 5270 *pRes = 0; |
| 5271 rc = SQLITE_OK; |
| 5272 pCur->aiIdx[pCur->iPage] = (u16)idx; |
| 5273 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT; |
| 5274 goto moveto_finish; |
| 5275 } |
| 5276 if( lwr>upr ) break; |
| 5277 assert( lwr+upr>=0 ); |
| 5278 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ |
| 5279 } |
| 5280 } |
| 5281 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); |
| 5282 assert( pPage->isInit ); |
| 5283 if( pPage->leaf ){ |
| 5284 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); |
| 5285 pCur->aiIdx[pCur->iPage] = (u16)idx; |
| 5286 *pRes = c; |
| 5287 rc = SQLITE_OK; |
| 5288 goto moveto_finish; |
| 5289 } |
| 5290 moveto_next_layer: |
| 5291 if( lwr>=pPage->nCell ){ |
| 5292 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| 5293 }else{ |
| 5294 chldPg = get4byte(findCell(pPage, lwr)); |
| 5295 } |
| 5296 pCur->aiIdx[pCur->iPage] = (u16)lwr; |
| 5297 rc = moveToChild(pCur, chldPg); |
| 5298 if( rc ) break; |
| 5299 } |
| 5300 moveto_finish: |
| 5301 pCur->info.nSize = 0; |
| 5302 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); |
| 5303 return rc; |
| 5304 } |
| 5305 |
| 5306 |
| 5307 /* |
| 5308 ** Return TRUE if the cursor is not pointing at an entry of the table. |
| 5309 ** |
| 5310 ** TRUE will be returned after a call to sqlite3BtreeNext() moves |
| 5311 ** past the last entry in the table or sqlite3BtreePrev() moves past |
| 5312 ** the first entry. TRUE is also returned if the table is empty. |
| 5313 */ |
| 5314 int sqlite3BtreeEof(BtCursor *pCur){ |
| 5315 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries |
| 5316 ** have been deleted? This API will need to change to return an error code |
| 5317 ** as well as the boolean result value. |
| 5318 */ |
| 5319 return (CURSOR_VALID!=pCur->eState); |
| 5320 } |
| 5321 |
| 5322 /* |
| 5323 ** Advance the cursor to the next entry in the database. If |
| 5324 ** successful then set *pRes=0. If the cursor |
| 5325 ** was already pointing to the last entry in the database before |
| 5326 ** this routine was called, then set *pRes=1. |
| 5327 ** |
| 5328 ** The main entry point is sqlite3BtreeNext(). That routine is optimized |
| 5329 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx |
| 5330 ** to the next cell on the current page. The (slower) btreeNext() helper |
| 5331 ** routine is called when it is necessary to move to a different page or |
| 5332 ** to restore the cursor. |
| 5333 ** |
| 5334 ** The calling function will set *pRes to 0 or 1. The initial *pRes value |
| 5335 ** will be 1 if the cursor being stepped corresponds to an SQL index and |
| 5336 ** if this routine could have been skipped if that SQL index had been |
| 5337 ** a unique index. Otherwise the caller will have set *pRes to zero. |
| 5338 ** Zero is the common case. The btree implementation is free to use the |
| 5339 ** initial *pRes value as a hint to improve performance, but the current |
| 5340 ** SQLite btree implementation does not. (Note that the comdb2 btree |
| 5341 ** implementation does use this hint, however.) |
| 5342 */ |
| 5343 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){ |
| 5344 int rc; |
| 5345 int idx; |
| 5346 MemPage *pPage; |
| 5347 |
| 5348 assert( cursorOwnsBtShared(pCur) ); |
| 5349 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); |
| 5350 assert( *pRes==0 ); |
| 5351 if( pCur->eState!=CURSOR_VALID ){ |
| 5352 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); |
| 5353 rc = restoreCursorPosition(pCur); |
| 5354 if( rc!=SQLITE_OK ){ |
| 5355 return rc; |
| 5356 } |
| 5357 if( CURSOR_INVALID==pCur->eState ){ |
| 5358 *pRes = 1; |
| 5359 return SQLITE_OK; |
| 5360 } |
| 5361 if( pCur->skipNext ){ |
| 5362 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT ); |
| 5363 pCur->eState = CURSOR_VALID; |
| 5364 if( pCur->skipNext>0 ){ |
| 5365 pCur->skipNext = 0; |
| 5366 return SQLITE_OK; |
| 5367 } |
| 5368 pCur->skipNext = 0; |
| 5369 } |
| 5370 } |
| 5371 |
| 5372 pPage = pCur->apPage[pCur->iPage]; |
| 5373 idx = ++pCur->aiIdx[pCur->iPage]; |
| 5374 assert( pPage->isInit ); |
| 5375 |
| 5376 /* If the database file is corrupt, it is possible for the value of idx |
| 5377 ** to be invalid here. This can only occur if a second cursor modifies |
| 5378 ** the page while cursor pCur is holding a reference to it. Which can |
| 5379 ** only happen if the database is corrupt in such a way as to link the |
| 5380 ** page into more than one b-tree structure. */ |
| 5381 testcase( idx>pPage->nCell ); |
| 5382 |
| 5383 if( idx>=pPage->nCell ){ |
| 5384 if( !pPage->leaf ){ |
| 5385 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); |
| 5386 if( rc ) return rc; |
| 5387 return moveToLeftmost(pCur); |
| 5388 } |
| 5389 do{ |
| 5390 if( pCur->iPage==0 ){ |
| 5391 *pRes = 1; |
| 5392 pCur->eState = CURSOR_INVALID; |
| 5393 return SQLITE_OK; |
| 5394 } |
| 5395 moveToParent(pCur); |
| 5396 pPage = pCur->apPage[pCur->iPage]; |
| 5397 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell ); |
| 5398 if( pPage->intKey ){ |
| 5399 return sqlite3BtreeNext(pCur, pRes); |
| 5400 }else{ |
| 5401 return SQLITE_OK; |
| 5402 } |
| 5403 } |
| 5404 if( pPage->leaf ){ |
| 5405 return SQLITE_OK; |
| 5406 }else{ |
| 5407 return moveToLeftmost(pCur); |
| 5408 } |
| 5409 } |
| 5410 int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ |
| 5411 MemPage *pPage; |
| 5412 assert( cursorOwnsBtShared(pCur) ); |
| 5413 assert( pRes!=0 ); |
| 5414 assert( *pRes==0 || *pRes==1 ); |
| 5415 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); |
| 5416 pCur->info.nSize = 0; |
| 5417 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); |
| 5418 *pRes = 0; |
| 5419 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes); |
| 5420 pPage = pCur->apPage[pCur->iPage]; |
| 5421 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){ |
| 5422 pCur->aiIdx[pCur->iPage]--; |
| 5423 return btreeNext(pCur, pRes); |
| 5424 } |
| 5425 if( pPage->leaf ){ |
| 5426 return SQLITE_OK; |
| 5427 }else{ |
| 5428 return moveToLeftmost(pCur); |
| 5429 } |
| 5430 } |
| 5431 |
| 5432 /* |
| 5433 ** Step the cursor to the back to the previous entry in the database. If |
| 5434 ** successful then set *pRes=0. If the cursor |
| 5435 ** was already pointing to the first entry in the database before |
| 5436 ** this routine was called, then set *pRes=1. |
| 5437 ** |
| 5438 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized |
| 5439 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx |
| 5440 ** to the previous cell on the current page. The (slower) btreePrevious() |
| 5441 ** helper routine is called when it is necessary to move to a different page |
| 5442 ** or to restore the cursor. |
| 5443 ** |
| 5444 ** The calling function will set *pRes to 0 or 1. The initial *pRes value |
| 5445 ** will be 1 if the cursor being stepped corresponds to an SQL index and |
| 5446 ** if this routine could have been skipped if that SQL index had been |
| 5447 ** a unique index. Otherwise the caller will have set *pRes to zero. |
| 5448 ** Zero is the common case. The btree implementation is free to use the |
| 5449 ** initial *pRes value as a hint to improve performance, but the current |
| 5450 ** SQLite btree implementation does not. (Note that the comdb2 btree |
| 5451 ** implementation does use this hint, however.) |
| 5452 */ |
| 5453 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){ |
| 5454 int rc; |
| 5455 MemPage *pPage; |
| 5456 |
| 5457 assert( cursorOwnsBtShared(pCur) ); |
| 5458 assert( pRes!=0 ); |
| 5459 assert( *pRes==0 ); |
| 5460 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); |
| 5461 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); |
| 5462 assert( pCur->info.nSize==0 ); |
| 5463 if( pCur->eState!=CURSOR_VALID ){ |
| 5464 rc = restoreCursorPosition(pCur); |
| 5465 if( rc!=SQLITE_OK ){ |
| 5466 return rc; |
| 5467 } |
| 5468 if( CURSOR_INVALID==pCur->eState ){ |
| 5469 *pRes = 1; |
| 5470 return SQLITE_OK; |
| 5471 } |
| 5472 if( pCur->skipNext ){ |
| 5473 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT ); |
| 5474 pCur->eState = CURSOR_VALID; |
| 5475 if( pCur->skipNext<0 ){ |
| 5476 pCur->skipNext = 0; |
| 5477 return SQLITE_OK; |
| 5478 } |
| 5479 pCur->skipNext = 0; |
| 5480 } |
| 5481 } |
| 5482 |
| 5483 pPage = pCur->apPage[pCur->iPage]; |
| 5484 assert( pPage->isInit ); |
| 5485 if( !pPage->leaf ){ |
| 5486 int idx = pCur->aiIdx[pCur->iPage]; |
| 5487 rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); |
| 5488 if( rc ) return rc; |
| 5489 rc = moveToRightmost(pCur); |
| 5490 }else{ |
| 5491 while( pCur->aiIdx[pCur->iPage]==0 ){ |
| 5492 if( pCur->iPage==0 ){ |
| 5493 pCur->eState = CURSOR_INVALID; |
| 5494 *pRes = 1; |
| 5495 return SQLITE_OK; |
| 5496 } |
| 5497 moveToParent(pCur); |
| 5498 } |
| 5499 assert( pCur->info.nSize==0 ); |
| 5500 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 ); |
| 5501 |
| 5502 pCur->aiIdx[pCur->iPage]--; |
| 5503 pPage = pCur->apPage[pCur->iPage]; |
| 5504 if( pPage->intKey && !pPage->leaf ){ |
| 5505 rc = sqlite3BtreePrevious(pCur, pRes); |
| 5506 }else{ |
| 5507 rc = SQLITE_OK; |
| 5508 } |
| 5509 } |
| 5510 return rc; |
| 5511 } |
| 5512 int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ |
| 5513 assert( cursorOwnsBtShared(pCur) ); |
| 5514 assert( pRes!=0 ); |
| 5515 assert( *pRes==0 || *pRes==1 ); |
| 5516 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); |
| 5517 *pRes = 0; |
| 5518 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); |
| 5519 pCur->info.nSize = 0; |
| 5520 if( pCur->eState!=CURSOR_VALID |
| 5521 || pCur->aiIdx[pCur->iPage]==0 |
| 5522 || pCur->apPage[pCur->iPage]->leaf==0 |
| 5523 ){ |
| 5524 return btreePrevious(pCur, pRes); |
| 5525 } |
| 5526 pCur->aiIdx[pCur->iPage]--; |
| 5527 return SQLITE_OK; |
| 5528 } |
| 5529 |
| 5530 /* |
| 5531 ** Allocate a new page from the database file. |
| 5532 ** |
| 5533 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() |
| 5534 ** has already been called on the new page.) The new page has also |
| 5535 ** been referenced and the calling routine is responsible for calling |
| 5536 ** sqlite3PagerUnref() on the new page when it is done. |
| 5537 ** |
| 5538 ** SQLITE_OK is returned on success. Any other return value indicates |
| 5539 ** an error. *ppPage is set to NULL in the event of an error. |
| 5540 ** |
| 5541 ** If the "nearby" parameter is not 0, then an effort is made to |
| 5542 ** locate a page close to the page number "nearby". This can be used in an |
| 5543 ** attempt to keep related pages close to each other in the database file, |
| 5544 ** which in turn can make database access faster. |
| 5545 ** |
| 5546 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists |
| 5547 ** anywhere on the free-list, then it is guaranteed to be returned. If |
| 5548 ** eMode is BTALLOC_LT then the page returned will be less than or equal |
| 5549 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there |
| 5550 ** are no restrictions on which page is returned. |
| 5551 */ |
| 5552 static int allocateBtreePage( |
| 5553 BtShared *pBt, /* The btree */ |
| 5554 MemPage **ppPage, /* Store pointer to the allocated page here */ |
| 5555 Pgno *pPgno, /* Store the page number here */ |
| 5556 Pgno nearby, /* Search for a page near this one */ |
| 5557 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ |
| 5558 ){ |
| 5559 MemPage *pPage1; |
| 5560 int rc; |
| 5561 u32 n; /* Number of pages on the freelist */ |
| 5562 u32 k; /* Number of leaves on the trunk of the freelist */ |
| 5563 MemPage *pTrunk = 0; |
| 5564 MemPage *pPrevTrunk = 0; |
| 5565 Pgno mxPage; /* Total size of the database file */ |
| 5566 |
| 5567 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 5568 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); |
| 5569 pPage1 = pBt->pPage1; |
| 5570 mxPage = btreePagecount(pBt); |
| 5571 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36 |
| 5572 ** stores stores the total number of pages on the freelist. */ |
| 5573 n = get4byte(&pPage1->aData[36]); |
| 5574 testcase( n==mxPage-1 ); |
| 5575 if( n>=mxPage ){ |
| 5576 return SQLITE_CORRUPT_BKPT; |
| 5577 } |
| 5578 if( n>0 ){ |
| 5579 /* There are pages on the freelist. Reuse one of those pages. */ |
| 5580 Pgno iTrunk; |
| 5581 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ |
| 5582 u32 nSearch = 0; /* Count of the number of search attempts */ |
| 5583 |
| 5584 /* If eMode==BTALLOC_EXACT and a query of the pointer-map |
| 5585 ** shows that the page 'nearby' is somewhere on the free-list, then |
| 5586 ** the entire-list will be searched for that page. |
| 5587 */ |
| 5588 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 5589 if( eMode==BTALLOC_EXACT ){ |
| 5590 if( nearby<=mxPage ){ |
| 5591 u8 eType; |
| 5592 assert( nearby>0 ); |
| 5593 assert( pBt->autoVacuum ); |
| 5594 rc = ptrmapGet(pBt, nearby, &eType, 0); |
| 5595 if( rc ) return rc; |
| 5596 if( eType==PTRMAP_FREEPAGE ){ |
| 5597 searchList = 1; |
| 5598 } |
| 5599 } |
| 5600 }else if( eMode==BTALLOC_LE ){ |
| 5601 searchList = 1; |
| 5602 } |
| 5603 #endif |
| 5604 |
| 5605 /* Decrement the free-list count by 1. Set iTrunk to the index of the |
| 5606 ** first free-list trunk page. iPrevTrunk is initially 1. |
| 5607 */ |
| 5608 rc = sqlite3PagerWrite(pPage1->pDbPage); |
| 5609 if( rc ) return rc; |
| 5610 put4byte(&pPage1->aData[36], n-1); |
| 5611 |
| 5612 /* The code within this loop is run only once if the 'searchList' variable |
| 5613 ** is not true. Otherwise, it runs once for each trunk-page on the |
| 5614 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) |
| 5615 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) |
| 5616 */ |
| 5617 do { |
| 5618 pPrevTrunk = pTrunk; |
| 5619 if( pPrevTrunk ){ |
| 5620 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page |
| 5621 ** is the page number of the next freelist trunk page in the list or |
| 5622 ** zero if this is the last freelist trunk page. */ |
| 5623 iTrunk = get4byte(&pPrevTrunk->aData[0]); |
| 5624 }else{ |
| 5625 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32 |
| 5626 ** stores the page number of the first page of the freelist, or zero if |
| 5627 ** the freelist is empty. */ |
| 5628 iTrunk = get4byte(&pPage1->aData[32]); |
| 5629 } |
| 5630 testcase( iTrunk==mxPage ); |
| 5631 if( iTrunk>mxPage || nSearch++ > n ){ |
| 5632 rc = SQLITE_CORRUPT_BKPT; |
| 5633 }else{ |
| 5634 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0); |
| 5635 } |
| 5636 if( rc ){ |
| 5637 pTrunk = 0; |
| 5638 goto end_allocate_page; |
| 5639 } |
| 5640 assert( pTrunk!=0 ); |
| 5641 assert( pTrunk->aData!=0 ); |
| 5642 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page |
| 5643 ** is the number of leaf page pointers to follow. */ |
| 5644 k = get4byte(&pTrunk->aData[4]); |
| 5645 if( k==0 && !searchList ){ |
| 5646 /* The trunk has no leaves and the list is not being searched. |
| 5647 ** So extract the trunk page itself and use it as the newly |
| 5648 ** allocated page */ |
| 5649 assert( pPrevTrunk==0 ); |
| 5650 rc = sqlite3PagerWrite(pTrunk->pDbPage); |
| 5651 if( rc ){ |
| 5652 goto end_allocate_page; |
| 5653 } |
| 5654 *pPgno = iTrunk; |
| 5655 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); |
| 5656 *ppPage = pTrunk; |
| 5657 pTrunk = 0; |
| 5658 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); |
| 5659 }else if( k>(u32)(pBt->usableSize/4 - 2) ){ |
| 5660 /* Value of k is out of range. Database corruption */ |
| 5661 rc = SQLITE_CORRUPT_BKPT; |
| 5662 goto end_allocate_page; |
| 5663 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 5664 }else if( searchList |
| 5665 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) |
| 5666 ){ |
| 5667 /* The list is being searched and this trunk page is the page |
| 5668 ** to allocate, regardless of whether it has leaves. |
| 5669 */ |
| 5670 *pPgno = iTrunk; |
| 5671 *ppPage = pTrunk; |
| 5672 searchList = 0; |
| 5673 rc = sqlite3PagerWrite(pTrunk->pDbPage); |
| 5674 if( rc ){ |
| 5675 goto end_allocate_page; |
| 5676 } |
| 5677 if( k==0 ){ |
| 5678 if( !pPrevTrunk ){ |
| 5679 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); |
| 5680 }else{ |
| 5681 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); |
| 5682 if( rc!=SQLITE_OK ){ |
| 5683 goto end_allocate_page; |
| 5684 } |
| 5685 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); |
| 5686 } |
| 5687 }else{ |
| 5688 /* The trunk page is required by the caller but it contains |
| 5689 ** pointers to free-list leaves. The first leaf becomes a trunk |
| 5690 ** page in this case. |
| 5691 */ |
| 5692 MemPage *pNewTrunk; |
| 5693 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); |
| 5694 if( iNewTrunk>mxPage ){ |
| 5695 rc = SQLITE_CORRUPT_BKPT; |
| 5696 goto end_allocate_page; |
| 5697 } |
| 5698 testcase( iNewTrunk==mxPage ); |
| 5699 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0); |
| 5700 if( rc!=SQLITE_OK ){ |
| 5701 goto end_allocate_page; |
| 5702 } |
| 5703 rc = sqlite3PagerWrite(pNewTrunk->pDbPage); |
| 5704 if( rc!=SQLITE_OK ){ |
| 5705 releasePage(pNewTrunk); |
| 5706 goto end_allocate_page; |
| 5707 } |
| 5708 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); |
| 5709 put4byte(&pNewTrunk->aData[4], k-1); |
| 5710 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); |
| 5711 releasePage(pNewTrunk); |
| 5712 if( !pPrevTrunk ){ |
| 5713 assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); |
| 5714 put4byte(&pPage1->aData[32], iNewTrunk); |
| 5715 }else{ |
| 5716 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); |
| 5717 if( rc ){ |
| 5718 goto end_allocate_page; |
| 5719 } |
| 5720 put4byte(&pPrevTrunk->aData[0], iNewTrunk); |
| 5721 } |
| 5722 } |
| 5723 pTrunk = 0; |
| 5724 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); |
| 5725 #endif |
| 5726 }else if( k>0 ){ |
| 5727 /* Extract a leaf from the trunk */ |
| 5728 u32 closest; |
| 5729 Pgno iPage; |
| 5730 unsigned char *aData = pTrunk->aData; |
| 5731 if( nearby>0 ){ |
| 5732 u32 i; |
| 5733 closest = 0; |
| 5734 if( eMode==BTALLOC_LE ){ |
| 5735 for(i=0; i<k; i++){ |
| 5736 iPage = get4byte(&aData[8+i*4]); |
| 5737 if( iPage<=nearby ){ |
| 5738 closest = i; |
| 5739 break; |
| 5740 } |
| 5741 } |
| 5742 }else{ |
| 5743 int dist; |
| 5744 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); |
| 5745 for(i=1; i<k; i++){ |
| 5746 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); |
| 5747 if( d2<dist ){ |
| 5748 closest = i; |
| 5749 dist = d2; |
| 5750 } |
| 5751 } |
| 5752 } |
| 5753 }else{ |
| 5754 closest = 0; |
| 5755 } |
| 5756 |
| 5757 iPage = get4byte(&aData[8+closest*4]); |
| 5758 testcase( iPage==mxPage ); |
| 5759 if( iPage>mxPage ){ |
| 5760 rc = SQLITE_CORRUPT_BKPT; |
| 5761 goto end_allocate_page; |
| 5762 } |
| 5763 testcase( iPage==mxPage ); |
| 5764 if( !searchList |
| 5765 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) |
| 5766 ){ |
| 5767 int noContent; |
| 5768 *pPgno = iPage; |
| 5769 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" |
| 5770 ": %d more free pages\n", |
| 5771 *pPgno, closest+1, k, pTrunk->pgno, n-1)); |
| 5772 rc = sqlite3PagerWrite(pTrunk->pDbPage); |
| 5773 if( rc ) goto end_allocate_page; |
| 5774 if( closest<k-1 ){ |
| 5775 memcpy(&aData[8+closest*4], &aData[4+k*4], 4); |
| 5776 } |
| 5777 put4byte(&aData[4], k-1); |
| 5778 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; |
| 5779 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent); |
| 5780 if( rc==SQLITE_OK ){ |
| 5781 rc = sqlite3PagerWrite((*ppPage)->pDbPage); |
| 5782 if( rc!=SQLITE_OK ){ |
| 5783 releasePage(*ppPage); |
| 5784 *ppPage = 0; |
| 5785 } |
| 5786 } |
| 5787 searchList = 0; |
| 5788 } |
| 5789 } |
| 5790 releasePage(pPrevTrunk); |
| 5791 pPrevTrunk = 0; |
| 5792 }while( searchList ); |
| 5793 }else{ |
| 5794 /* There are no pages on the freelist, so append a new page to the |
| 5795 ** database image. |
| 5796 ** |
| 5797 ** Normally, new pages allocated by this block can be requested from the |
| 5798 ** pager layer with the 'no-content' flag set. This prevents the pager |
| 5799 ** from trying to read the pages content from disk. However, if the |
| 5800 ** current transaction has already run one or more incremental-vacuum |
| 5801 ** steps, then the page we are about to allocate may contain content |
| 5802 ** that is required in the event of a rollback. In this case, do |
| 5803 ** not set the no-content flag. This causes the pager to load and journal |
| 5804 ** the current page content before overwriting it. |
| 5805 ** |
| 5806 ** Note that the pager will not actually attempt to load or journal |
| 5807 ** content for any page that really does lie past the end of the database |
| 5808 ** file on disk. So the effects of disabling the no-content optimization |
| 5809 ** here are confined to those pages that lie between the end of the |
| 5810 ** database image and the end of the database file. |
| 5811 */ |
| 5812 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; |
| 5813 |
| 5814 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
| 5815 if( rc ) return rc; |
| 5816 pBt->nPage++; |
| 5817 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; |
| 5818 |
| 5819 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 5820 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ |
| 5821 /* If *pPgno refers to a pointer-map page, allocate two new pages |
| 5822 ** at the end of the file instead of one. The first allocated page |
| 5823 ** becomes a new pointer-map page, the second is used by the caller. |
| 5824 */ |
| 5825 MemPage *pPg = 0; |
| 5826 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); |
| 5827 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); |
| 5828 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent); |
| 5829 if( rc==SQLITE_OK ){ |
| 5830 rc = sqlite3PagerWrite(pPg->pDbPage); |
| 5831 releasePage(pPg); |
| 5832 } |
| 5833 if( rc ) return rc; |
| 5834 pBt->nPage++; |
| 5835 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } |
| 5836 } |
| 5837 #endif |
| 5838 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); |
| 5839 *pPgno = pBt->nPage; |
| 5840 |
| 5841 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); |
| 5842 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent); |
| 5843 if( rc ) return rc; |
| 5844 rc = sqlite3PagerWrite((*ppPage)->pDbPage); |
| 5845 if( rc!=SQLITE_OK ){ |
| 5846 releasePage(*ppPage); |
| 5847 *ppPage = 0; |
| 5848 } |
| 5849 TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); |
| 5850 } |
| 5851 |
| 5852 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); |
| 5853 |
| 5854 end_allocate_page: |
| 5855 releasePage(pTrunk); |
| 5856 releasePage(pPrevTrunk); |
| 5857 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 ); |
| 5858 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 ); |
| 5859 return rc; |
| 5860 } |
| 5861 |
| 5862 /* |
| 5863 ** This function is used to add page iPage to the database file free-list. |
| 5864 ** It is assumed that the page is not already a part of the free-list. |
| 5865 ** |
| 5866 ** The value passed as the second argument to this function is optional. |
| 5867 ** If the caller happens to have a pointer to the MemPage object |
| 5868 ** corresponding to page iPage handy, it may pass it as the second value. |
| 5869 ** Otherwise, it may pass NULL. |
| 5870 ** |
| 5871 ** If a pointer to a MemPage object is passed as the second argument, |
| 5872 ** its reference count is not altered by this function. |
| 5873 */ |
| 5874 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ |
| 5875 MemPage *pTrunk = 0; /* Free-list trunk page */ |
| 5876 Pgno iTrunk = 0; /* Page number of free-list trunk page */ |
| 5877 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ |
| 5878 MemPage *pPage; /* Page being freed. May be NULL. */ |
| 5879 int rc; /* Return Code */ |
| 5880 int nFree; /* Initial number of pages on free-list */ |
| 5881 |
| 5882 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 5883 assert( CORRUPT_DB || iPage>1 ); |
| 5884 assert( !pMemPage || pMemPage->pgno==iPage ); |
| 5885 |
| 5886 if( iPage<2 ) return SQLITE_CORRUPT_BKPT; |
| 5887 if( pMemPage ){ |
| 5888 pPage = pMemPage; |
| 5889 sqlite3PagerRef(pPage->pDbPage); |
| 5890 }else{ |
| 5891 pPage = btreePageLookup(pBt, iPage); |
| 5892 } |
| 5893 |
| 5894 /* Increment the free page count on pPage1 */ |
| 5895 rc = sqlite3PagerWrite(pPage1->pDbPage); |
| 5896 if( rc ) goto freepage_out; |
| 5897 nFree = get4byte(&pPage1->aData[36]); |
| 5898 put4byte(&pPage1->aData[36], nFree+1); |
| 5899 |
| 5900 if( pBt->btsFlags & BTS_SECURE_DELETE ){ |
| 5901 /* If the secure_delete option is enabled, then |
| 5902 ** always fully overwrite deleted information with zeros. |
| 5903 */ |
| 5904 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) |
| 5905 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) |
| 5906 ){ |
| 5907 goto freepage_out; |
| 5908 } |
| 5909 memset(pPage->aData, 0, pPage->pBt->pageSize); |
| 5910 } |
| 5911 |
| 5912 /* If the database supports auto-vacuum, write an entry in the pointer-map |
| 5913 ** to indicate that the page is free. |
| 5914 */ |
| 5915 if( ISAUTOVACUUM ){ |
| 5916 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); |
| 5917 if( rc ) goto freepage_out; |
| 5918 } |
| 5919 |
| 5920 /* Now manipulate the actual database free-list structure. There are two |
| 5921 ** possibilities. If the free-list is currently empty, or if the first |
| 5922 ** trunk page in the free-list is full, then this page will become a |
| 5923 ** new free-list trunk page. Otherwise, it will become a leaf of the |
| 5924 ** first trunk page in the current free-list. This block tests if it |
| 5925 ** is possible to add the page as a new free-list leaf. |
| 5926 */ |
| 5927 if( nFree!=0 ){ |
| 5928 u32 nLeaf; /* Initial number of leaf cells on trunk page */ |
| 5929 |
| 5930 iTrunk = get4byte(&pPage1->aData[32]); |
| 5931 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); |
| 5932 if( rc!=SQLITE_OK ){ |
| 5933 goto freepage_out; |
| 5934 } |
| 5935 |
| 5936 nLeaf = get4byte(&pTrunk->aData[4]); |
| 5937 assert( pBt->usableSize>32 ); |
| 5938 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ |
| 5939 rc = SQLITE_CORRUPT_BKPT; |
| 5940 goto freepage_out; |
| 5941 } |
| 5942 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ |
| 5943 /* In this case there is room on the trunk page to insert the page |
| 5944 ** being freed as a new leaf. |
| 5945 ** |
| 5946 ** Note that the trunk page is not really full until it contains |
| 5947 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have |
| 5948 ** coded. But due to a coding error in versions of SQLite prior to |
| 5949 ** 3.6.0, databases with freelist trunk pages holding more than |
| 5950 ** usableSize/4 - 8 entries will be reported as corrupt. In order |
| 5951 ** to maintain backwards compatibility with older versions of SQLite, |
| 5952 ** we will continue to restrict the number of entries to usableSize/4 - 8 |
| 5953 ** for now. At some point in the future (once everyone has upgraded |
| 5954 ** to 3.6.0 or later) we should consider fixing the conditional above |
| 5955 ** to read "usableSize/4-2" instead of "usableSize/4-8". |
| 5956 ** |
| 5957 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still |
| 5958 ** avoid using the last six entries in the freelist trunk page array in |
| 5959 ** order that database files created by newer versions of SQLite can be |
| 5960 ** read by older versions of SQLite. |
| 5961 */ |
| 5962 rc = sqlite3PagerWrite(pTrunk->pDbPage); |
| 5963 if( rc==SQLITE_OK ){ |
| 5964 put4byte(&pTrunk->aData[4], nLeaf+1); |
| 5965 put4byte(&pTrunk->aData[8+nLeaf*4], iPage); |
| 5966 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ |
| 5967 sqlite3PagerDontWrite(pPage->pDbPage); |
| 5968 } |
| 5969 rc = btreeSetHasContent(pBt, iPage); |
| 5970 } |
| 5971 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); |
| 5972 goto freepage_out; |
| 5973 } |
| 5974 } |
| 5975 |
| 5976 /* If control flows to this point, then it was not possible to add the |
| 5977 ** the page being freed as a leaf page of the first trunk in the free-list. |
| 5978 ** Possibly because the free-list is empty, or possibly because the |
| 5979 ** first trunk in the free-list is full. Either way, the page being freed |
| 5980 ** will become the new first trunk page in the free-list. |
| 5981 */ |
| 5982 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ |
| 5983 goto freepage_out; |
| 5984 } |
| 5985 rc = sqlite3PagerWrite(pPage->pDbPage); |
| 5986 if( rc!=SQLITE_OK ){ |
| 5987 goto freepage_out; |
| 5988 } |
| 5989 put4byte(pPage->aData, iTrunk); |
| 5990 put4byte(&pPage->aData[4], 0); |
| 5991 put4byte(&pPage1->aData[32], iPage); |
| 5992 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); |
| 5993 |
| 5994 freepage_out: |
| 5995 if( pPage ){ |
| 5996 pPage->isInit = 0; |
| 5997 } |
| 5998 releasePage(pPage); |
| 5999 releasePage(pTrunk); |
| 6000 return rc; |
| 6001 } |
| 6002 static void freePage(MemPage *pPage, int *pRC){ |
| 6003 if( (*pRC)==SQLITE_OK ){ |
| 6004 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); |
| 6005 } |
| 6006 } |
| 6007 |
| 6008 /* |
| 6009 ** Free any overflow pages associated with the given Cell. Write the |
| 6010 ** local Cell size (the number of bytes on the original page, omitting |
| 6011 ** overflow) into *pnSize. |
| 6012 */ |
| 6013 static int clearCell( |
| 6014 MemPage *pPage, /* The page that contains the Cell */ |
| 6015 unsigned char *pCell, /* First byte of the Cell */ |
| 6016 CellInfo *pInfo /* Size information about the cell */ |
| 6017 ){ |
| 6018 BtShared *pBt = pPage->pBt; |
| 6019 Pgno ovflPgno; |
| 6020 int rc; |
| 6021 int nOvfl; |
| 6022 u32 ovflPageSize; |
| 6023 |
| 6024 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 6025 pPage->xParseCell(pPage, pCell, pInfo); |
| 6026 if( pInfo->nLocal==pInfo->nPayload ){ |
| 6027 return SQLITE_OK; /* No overflow pages. Return without doing anything */ |
| 6028 } |
| 6029 if( pCell+pInfo->nSize-1 > pPage->aData+pPage->maskPage ){ |
| 6030 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */ |
| 6031 } |
| 6032 ovflPgno = get4byte(pCell + pInfo->nSize - 4); |
| 6033 assert( pBt->usableSize > 4 ); |
| 6034 ovflPageSize = pBt->usableSize - 4; |
| 6035 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize; |
| 6036 assert( nOvfl>0 || |
| 6037 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize) |
| 6038 ); |
| 6039 while( nOvfl-- ){ |
| 6040 Pgno iNext = 0; |
| 6041 MemPage *pOvfl = 0; |
| 6042 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ |
| 6043 /* 0 is not a legal page number and page 1 cannot be an |
| 6044 ** overflow page. Therefore if ovflPgno<2 or past the end of the |
| 6045 ** file the database must be corrupt. */ |
| 6046 return SQLITE_CORRUPT_BKPT; |
| 6047 } |
| 6048 if( nOvfl ){ |
| 6049 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); |
| 6050 if( rc ) return rc; |
| 6051 } |
| 6052 |
| 6053 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) |
| 6054 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 |
| 6055 ){ |
| 6056 /* There is no reason any cursor should have an outstanding reference |
| 6057 ** to an overflow page belonging to a cell that is being deleted/updated. |
| 6058 ** So if there exists more than one reference to this page, then it |
| 6059 ** must not really be an overflow page and the database must be corrupt. |
| 6060 ** It is helpful to detect this before calling freePage2(), as |
| 6061 ** freePage2() may zero the page contents if secure-delete mode is |
| 6062 ** enabled. If this 'overflow' page happens to be a page that the |
| 6063 ** caller is iterating through or using in some other way, this |
| 6064 ** can be problematic. |
| 6065 */ |
| 6066 rc = SQLITE_CORRUPT_BKPT; |
| 6067 }else{ |
| 6068 rc = freePage2(pBt, pOvfl, ovflPgno); |
| 6069 } |
| 6070 |
| 6071 if( pOvfl ){ |
| 6072 sqlite3PagerUnref(pOvfl->pDbPage); |
| 6073 } |
| 6074 if( rc ) return rc; |
| 6075 ovflPgno = iNext; |
| 6076 } |
| 6077 return SQLITE_OK; |
| 6078 } |
| 6079 |
| 6080 /* |
| 6081 ** Create the byte sequence used to represent a cell on page pPage |
| 6082 ** and write that byte sequence into pCell[]. Overflow pages are |
| 6083 ** allocated and filled in as necessary. The calling procedure |
| 6084 ** is responsible for making sure sufficient space has been allocated |
| 6085 ** for pCell[]. |
| 6086 ** |
| 6087 ** Note that pCell does not necessary need to point to the pPage->aData |
| 6088 ** area. pCell might point to some temporary storage. The cell will |
| 6089 ** be constructed in this temporary area then copied into pPage->aData |
| 6090 ** later. |
| 6091 */ |
| 6092 static int fillInCell( |
| 6093 MemPage *pPage, /* The page that contains the cell */ |
| 6094 unsigned char *pCell, /* Complete text of the cell */ |
| 6095 const BtreePayload *pX, /* Payload with which to construct the cell */ |
| 6096 int *pnSize /* Write cell size here */ |
| 6097 ){ |
| 6098 int nPayload; |
| 6099 const u8 *pSrc; |
| 6100 int nSrc, n, rc; |
| 6101 int spaceLeft; |
| 6102 MemPage *pOvfl = 0; |
| 6103 MemPage *pToRelease = 0; |
| 6104 unsigned char *pPrior; |
| 6105 unsigned char *pPayload; |
| 6106 BtShared *pBt = pPage->pBt; |
| 6107 Pgno pgnoOvfl = 0; |
| 6108 int nHeader; |
| 6109 |
| 6110 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 6111 |
| 6112 /* pPage is not necessarily writeable since pCell might be auxiliary |
| 6113 ** buffer space that is separate from the pPage buffer area */ |
| 6114 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize] |
| 6115 || sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 6116 |
| 6117 /* Fill in the header. */ |
| 6118 nHeader = pPage->childPtrSize; |
| 6119 if( pPage->intKey ){ |
| 6120 nPayload = pX->nData + pX->nZero; |
| 6121 pSrc = pX->pData; |
| 6122 nSrc = pX->nData; |
| 6123 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */ |
| 6124 nHeader += putVarint32(&pCell[nHeader], nPayload); |
| 6125 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey); |
| 6126 }else{ |
| 6127 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 ); |
| 6128 nSrc = nPayload = (int)pX->nKey; |
| 6129 pSrc = pX->pKey; |
| 6130 nHeader += putVarint32(&pCell[nHeader], nPayload); |
| 6131 } |
| 6132 |
| 6133 /* Fill in the payload */ |
| 6134 if( nPayload<=pPage->maxLocal ){ |
| 6135 n = nHeader + nPayload; |
| 6136 testcase( n==3 ); |
| 6137 testcase( n==4 ); |
| 6138 if( n<4 ) n = 4; |
| 6139 *pnSize = n; |
| 6140 spaceLeft = nPayload; |
| 6141 pPrior = pCell; |
| 6142 }else{ |
| 6143 int mn = pPage->minLocal; |
| 6144 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); |
| 6145 testcase( n==pPage->maxLocal ); |
| 6146 testcase( n==pPage->maxLocal+1 ); |
| 6147 if( n > pPage->maxLocal ) n = mn; |
| 6148 spaceLeft = n; |
| 6149 *pnSize = n + nHeader + 4; |
| 6150 pPrior = &pCell[nHeader+n]; |
| 6151 } |
| 6152 pPayload = &pCell[nHeader]; |
| 6153 |
| 6154 /* At this point variables should be set as follows: |
| 6155 ** |
| 6156 ** nPayload Total payload size in bytes |
| 6157 ** pPayload Begin writing payload here |
| 6158 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, |
| 6159 ** that means content must spill into overflow pages. |
| 6160 ** *pnSize Size of the local cell (not counting overflow pages) |
| 6161 ** pPrior Where to write the pgno of the first overflow page |
| 6162 ** |
| 6163 ** Use a call to btreeParseCellPtr() to verify that the values above |
| 6164 ** were computed correctly. |
| 6165 */ |
| 6166 #if SQLITE_DEBUG |
| 6167 { |
| 6168 CellInfo info; |
| 6169 pPage->xParseCell(pPage, pCell, &info); |
| 6170 assert( nHeader==(int)(info.pPayload - pCell) ); |
| 6171 assert( info.nKey==pX->nKey ); |
| 6172 assert( *pnSize == info.nSize ); |
| 6173 assert( spaceLeft == info.nLocal ); |
| 6174 } |
| 6175 #endif |
| 6176 |
| 6177 /* Write the payload into the local Cell and any extra into overflow pages */ |
| 6178 while( nPayload>0 ){ |
| 6179 if( spaceLeft==0 ){ |
| 6180 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 6181 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ |
| 6182 if( pBt->autoVacuum ){ |
| 6183 do{ |
| 6184 pgnoOvfl++; |
| 6185 } while( |
| 6186 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) |
| 6187 ); |
| 6188 } |
| 6189 #endif |
| 6190 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); |
| 6191 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 6192 /* If the database supports auto-vacuum, and the second or subsequent |
| 6193 ** overflow page is being allocated, add an entry to the pointer-map |
| 6194 ** for that page now. |
| 6195 ** |
| 6196 ** If this is the first overflow page, then write a partial entry |
| 6197 ** to the pointer-map. If we write nothing to this pointer-map slot, |
| 6198 ** then the optimistic overflow chain processing in clearCell() |
| 6199 ** may misinterpret the uninitialized values and delete the |
| 6200 ** wrong pages from the database. |
| 6201 */ |
| 6202 if( pBt->autoVacuum && rc==SQLITE_OK ){ |
| 6203 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); |
| 6204 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); |
| 6205 if( rc ){ |
| 6206 releasePage(pOvfl); |
| 6207 } |
| 6208 } |
| 6209 #endif |
| 6210 if( rc ){ |
| 6211 releasePage(pToRelease); |
| 6212 return rc; |
| 6213 } |
| 6214 |
| 6215 /* If pToRelease is not zero than pPrior points into the data area |
| 6216 ** of pToRelease. Make sure pToRelease is still writeable. */ |
| 6217 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); |
| 6218 |
| 6219 /* If pPrior is part of the data area of pPage, then make sure pPage |
| 6220 ** is still writeable */ |
| 6221 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] |
| 6222 || sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 6223 |
| 6224 put4byte(pPrior, pgnoOvfl); |
| 6225 releasePage(pToRelease); |
| 6226 pToRelease = pOvfl; |
| 6227 pPrior = pOvfl->aData; |
| 6228 put4byte(pPrior, 0); |
| 6229 pPayload = &pOvfl->aData[4]; |
| 6230 spaceLeft = pBt->usableSize - 4; |
| 6231 } |
| 6232 n = nPayload; |
| 6233 if( n>spaceLeft ) n = spaceLeft; |
| 6234 |
| 6235 /* If pToRelease is not zero than pPayload points into the data area |
| 6236 ** of pToRelease. Make sure pToRelease is still writeable. */ |
| 6237 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); |
| 6238 |
| 6239 /* If pPayload is part of the data area of pPage, then make sure pPage |
| 6240 ** is still writeable */ |
| 6241 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] |
| 6242 || sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 6243 |
| 6244 if( nSrc>0 ){ |
| 6245 if( n>nSrc ) n = nSrc; |
| 6246 assert( pSrc ); |
| 6247 memcpy(pPayload, pSrc, n); |
| 6248 }else{ |
| 6249 memset(pPayload, 0, n); |
| 6250 } |
| 6251 nPayload -= n; |
| 6252 pPayload += n; |
| 6253 pSrc += n; |
| 6254 nSrc -= n; |
| 6255 spaceLeft -= n; |
| 6256 } |
| 6257 releasePage(pToRelease); |
| 6258 return SQLITE_OK; |
| 6259 } |
| 6260 |
| 6261 /* |
| 6262 ** Remove the i-th cell from pPage. This routine effects pPage only. |
| 6263 ** The cell content is not freed or deallocated. It is assumed that |
| 6264 ** the cell content has been copied someplace else. This routine just |
| 6265 ** removes the reference to the cell from pPage. |
| 6266 ** |
| 6267 ** "sz" must be the number of bytes in the cell. |
| 6268 */ |
| 6269 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ |
| 6270 u32 pc; /* Offset to cell content of cell being deleted */ |
| 6271 u8 *data; /* pPage->aData */ |
| 6272 u8 *ptr; /* Used to move bytes around within data[] */ |
| 6273 int rc; /* The return code */ |
| 6274 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ |
| 6275 |
| 6276 if( *pRC ) return; |
| 6277 assert( idx>=0 && idx<pPage->nCell ); |
| 6278 assert( CORRUPT_DB || sz==cellSize(pPage, idx) ); |
| 6279 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 6280 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 6281 data = pPage->aData; |
| 6282 ptr = &pPage->aCellIdx[2*idx]; |
| 6283 pc = get2byte(ptr); |
| 6284 hdr = pPage->hdrOffset; |
| 6285 testcase( pc==get2byte(&data[hdr+5]) ); |
| 6286 testcase( pc+sz==pPage->pBt->usableSize ); |
| 6287 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){ |
| 6288 *pRC = SQLITE_CORRUPT_BKPT; |
| 6289 return; |
| 6290 } |
| 6291 rc = freeSpace(pPage, pc, sz); |
| 6292 if( rc ){ |
| 6293 *pRC = rc; |
| 6294 return; |
| 6295 } |
| 6296 pPage->nCell--; |
| 6297 if( pPage->nCell==0 ){ |
| 6298 memset(&data[hdr+1], 0, 4); |
| 6299 data[hdr+7] = 0; |
| 6300 put2byte(&data[hdr+5], pPage->pBt->usableSize); |
| 6301 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset |
| 6302 - pPage->childPtrSize - 8; |
| 6303 }else{ |
| 6304 memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); |
| 6305 put2byte(&data[hdr+3], pPage->nCell); |
| 6306 pPage->nFree += 2; |
| 6307 } |
| 6308 } |
| 6309 |
| 6310 /* |
| 6311 ** Insert a new cell on pPage at cell index "i". pCell points to the |
| 6312 ** content of the cell. |
| 6313 ** |
| 6314 ** If the cell content will fit on the page, then put it there. If it |
| 6315 ** will not fit, then make a copy of the cell content into pTemp if |
| 6316 ** pTemp is not null. Regardless of pTemp, allocate a new entry |
| 6317 ** in pPage->apOvfl[] and make it point to the cell content (either |
| 6318 ** in pTemp or the original pCell) and also record its index. |
| 6319 ** Allocating a new entry in pPage->aCell[] implies that |
| 6320 ** pPage->nOverflow is incremented. |
| 6321 ** |
| 6322 ** *pRC must be SQLITE_OK when this routine is called. |
| 6323 */ |
| 6324 static void insertCell( |
| 6325 MemPage *pPage, /* Page into which we are copying */ |
| 6326 int i, /* New cell becomes the i-th cell of the page */ |
| 6327 u8 *pCell, /* Content of the new cell */ |
| 6328 int sz, /* Bytes of content in pCell */ |
| 6329 u8 *pTemp, /* Temp storage space for pCell, if needed */ |
| 6330 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ |
| 6331 int *pRC /* Read and write return code from here */ |
| 6332 ){ |
| 6333 int idx = 0; /* Where to write new cell content in data[] */ |
| 6334 int j; /* Loop counter */ |
| 6335 u8 *data; /* The content of the whole page */ |
| 6336 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */ |
| 6337 |
| 6338 assert( *pRC==SQLITE_OK ); |
| 6339 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); |
| 6340 assert( MX_CELL(pPage->pBt)<=10921 ); |
| 6341 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); |
| 6342 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); |
| 6343 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); |
| 6344 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 6345 /* The cell should normally be sized correctly. However, when moving a |
| 6346 ** malformed cell from a leaf page to an interior page, if the cell size |
| 6347 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size |
| 6348 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence |
| 6349 ** the term after the || in the following assert(). */ |
| 6350 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) ); |
| 6351 if( pPage->nOverflow || sz+2>pPage->nFree ){ |
| 6352 if( pTemp ){ |
| 6353 memcpy(pTemp, pCell, sz); |
| 6354 pCell = pTemp; |
| 6355 } |
| 6356 if( iChild ){ |
| 6357 put4byte(pCell, iChild); |
| 6358 } |
| 6359 j = pPage->nOverflow++; |
| 6360 /* Comparison against ArraySize-1 since we hold back one extra slot |
| 6361 ** as a contingency. In other words, never need more than 3 overflow |
| 6362 ** slots but 4 are allocated, just to be safe. */ |
| 6363 assert( j < ArraySize(pPage->apOvfl)-1 ); |
| 6364 pPage->apOvfl[j] = pCell; |
| 6365 pPage->aiOvfl[j] = (u16)i; |
| 6366 |
| 6367 /* When multiple overflows occur, they are always sequential and in |
| 6368 ** sorted order. This invariants arise because multiple overflows can |
| 6369 ** only occur when inserting divider cells into the parent page during |
| 6370 ** balancing, and the dividers are adjacent and sorted. |
| 6371 */ |
| 6372 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */ |
| 6373 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */ |
| 6374 }else{ |
| 6375 int rc = sqlite3PagerWrite(pPage->pDbPage); |
| 6376 if( rc!=SQLITE_OK ){ |
| 6377 *pRC = rc; |
| 6378 return; |
| 6379 } |
| 6380 assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
| 6381 data = pPage->aData; |
| 6382 assert( &data[pPage->cellOffset]==pPage->aCellIdx ); |
| 6383 rc = allocateSpace(pPage, sz, &idx); |
| 6384 if( rc ){ *pRC = rc; return; } |
| 6385 /* The allocateSpace() routine guarantees the following properties |
| 6386 ** if it returns successfully */ |
| 6387 assert( idx >= 0 ); |
| 6388 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB ); |
| 6389 assert( idx+sz <= (int)pPage->pBt->usableSize ); |
| 6390 pPage->nFree -= (u16)(2 + sz); |
| 6391 memcpy(&data[idx], pCell, sz); |
| 6392 if( iChild ){ |
| 6393 put4byte(&data[idx], iChild); |
| 6394 } |
| 6395 pIns = pPage->aCellIdx + i*2; |
| 6396 memmove(pIns+2, pIns, 2*(pPage->nCell - i)); |
| 6397 put2byte(pIns, idx); |
| 6398 pPage->nCell++; |
| 6399 /* increment the cell count */ |
| 6400 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++; |
| 6401 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell ); |
| 6402 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 6403 if( pPage->pBt->autoVacuum ){ |
| 6404 /* The cell may contain a pointer to an overflow page. If so, write |
| 6405 ** the entry for the overflow page into the pointer map. |
| 6406 */ |
| 6407 ptrmapPutOvflPtr(pPage, pCell, pRC); |
| 6408 } |
| 6409 #endif |
| 6410 } |
| 6411 } |
| 6412 |
| 6413 /* |
| 6414 ** A CellArray object contains a cache of pointers and sizes for a |
| 6415 ** consecutive sequence of cells that might be held on multiple pages. |
| 6416 */ |
| 6417 typedef struct CellArray CellArray; |
| 6418 struct CellArray { |
| 6419 int nCell; /* Number of cells in apCell[] */ |
| 6420 MemPage *pRef; /* Reference page */ |
| 6421 u8 **apCell; /* All cells begin balanced */ |
| 6422 u16 *szCell; /* Local size of all cells in apCell[] */ |
| 6423 }; |
| 6424 |
| 6425 /* |
| 6426 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been |
| 6427 ** computed. |
| 6428 */ |
| 6429 static void populateCellCache(CellArray *p, int idx, int N){ |
| 6430 assert( idx>=0 && idx+N<=p->nCell ); |
| 6431 while( N>0 ){ |
| 6432 assert( p->apCell[idx]!=0 ); |
| 6433 if( p->szCell[idx]==0 ){ |
| 6434 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]); |
| 6435 }else{ |
| 6436 assert( CORRUPT_DB || |
| 6437 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) ); |
| 6438 } |
| 6439 idx++; |
| 6440 N--; |
| 6441 } |
| 6442 } |
| 6443 |
| 6444 /* |
| 6445 ** Return the size of the Nth element of the cell array |
| 6446 */ |
| 6447 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){ |
| 6448 assert( N>=0 && N<p->nCell ); |
| 6449 assert( p->szCell[N]==0 ); |
| 6450 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]); |
| 6451 return p->szCell[N]; |
| 6452 } |
| 6453 static u16 cachedCellSize(CellArray *p, int N){ |
| 6454 assert( N>=0 && N<p->nCell ); |
| 6455 if( p->szCell[N] ) return p->szCell[N]; |
| 6456 return computeCellSize(p, N); |
| 6457 } |
| 6458 |
| 6459 /* |
| 6460 ** Array apCell[] contains pointers to nCell b-tree page cells. The |
| 6461 ** szCell[] array contains the size in bytes of each cell. This function |
| 6462 ** replaces the current contents of page pPg with the contents of the cell |
| 6463 ** array. |
| 6464 ** |
| 6465 ** Some of the cells in apCell[] may currently be stored in pPg. This |
| 6466 ** function works around problems caused by this by making a copy of any |
| 6467 ** such cells before overwriting the page data. |
| 6468 ** |
| 6469 ** The MemPage.nFree field is invalidated by this function. It is the |
| 6470 ** responsibility of the caller to set it correctly. |
| 6471 */ |
| 6472 static int rebuildPage( |
| 6473 MemPage *pPg, /* Edit this page */ |
| 6474 int nCell, /* Final number of cells on page */ |
| 6475 u8 **apCell, /* Array of cells */ |
| 6476 u16 *szCell /* Array of cell sizes */ |
| 6477 ){ |
| 6478 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */ |
| 6479 u8 * const aData = pPg->aData; /* Pointer to data for pPg */ |
| 6480 const int usableSize = pPg->pBt->usableSize; |
| 6481 u8 * const pEnd = &aData[usableSize]; |
| 6482 int i; |
| 6483 u8 *pCellptr = pPg->aCellIdx; |
| 6484 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); |
| 6485 u8 *pData; |
| 6486 |
| 6487 i = get2byte(&aData[hdr+5]); |
| 6488 memcpy(&pTmp[i], &aData[i], usableSize - i); |
| 6489 |
| 6490 pData = pEnd; |
| 6491 for(i=0; i<nCell; i++){ |
| 6492 u8 *pCell = apCell[i]; |
| 6493 if( SQLITE_WITHIN(pCell,aData,pEnd) ){ |
| 6494 pCell = &pTmp[pCell - aData]; |
| 6495 } |
| 6496 pData -= szCell[i]; |
| 6497 put2byte(pCellptr, (pData - aData)); |
| 6498 pCellptr += 2; |
| 6499 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT; |
| 6500 memcpy(pData, pCell, szCell[i]); |
| 6501 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB ); |
| 6502 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) ); |
| 6503 } |
| 6504 |
| 6505 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */ |
| 6506 pPg->nCell = nCell; |
| 6507 pPg->nOverflow = 0; |
| 6508 |
| 6509 put2byte(&aData[hdr+1], 0); |
| 6510 put2byte(&aData[hdr+3], pPg->nCell); |
| 6511 put2byte(&aData[hdr+5], pData - aData); |
| 6512 aData[hdr+7] = 0x00; |
| 6513 return SQLITE_OK; |
| 6514 } |
| 6515 |
| 6516 /* |
| 6517 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell |
| 6518 ** contains the size in bytes of each such cell. This function attempts to |
| 6519 ** add the cells stored in the array to page pPg. If it cannot (because |
| 6520 ** the page needs to be defragmented before the cells will fit), non-zero |
| 6521 ** is returned. Otherwise, if the cells are added successfully, zero is |
| 6522 ** returned. |
| 6523 ** |
| 6524 ** Argument pCellptr points to the first entry in the cell-pointer array |
| 6525 ** (part of page pPg) to populate. After cell apCell[0] is written to the |
| 6526 ** page body, a 16-bit offset is written to pCellptr. And so on, for each |
| 6527 ** cell in the array. It is the responsibility of the caller to ensure |
| 6528 ** that it is safe to overwrite this part of the cell-pointer array. |
| 6529 ** |
| 6530 ** When this function is called, *ppData points to the start of the |
| 6531 ** content area on page pPg. If the size of the content area is extended, |
| 6532 ** *ppData is updated to point to the new start of the content area |
| 6533 ** before returning. |
| 6534 ** |
| 6535 ** Finally, argument pBegin points to the byte immediately following the |
| 6536 ** end of the space required by this page for the cell-pointer area (for |
| 6537 ** all cells - not just those inserted by the current call). If the content |
| 6538 ** area must be extended to before this point in order to accomodate all |
| 6539 ** cells in apCell[], then the cells do not fit and non-zero is returned. |
| 6540 */ |
| 6541 static int pageInsertArray( |
| 6542 MemPage *pPg, /* Page to add cells to */ |
| 6543 u8 *pBegin, /* End of cell-pointer array */ |
| 6544 u8 **ppData, /* IN/OUT: Page content -area pointer */ |
| 6545 u8 *pCellptr, /* Pointer to cell-pointer area */ |
| 6546 int iFirst, /* Index of first cell to add */ |
| 6547 int nCell, /* Number of cells to add to pPg */ |
| 6548 CellArray *pCArray /* Array of cells */ |
| 6549 ){ |
| 6550 int i; |
| 6551 u8 *aData = pPg->aData; |
| 6552 u8 *pData = *ppData; |
| 6553 int iEnd = iFirst + nCell; |
| 6554 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */ |
| 6555 for(i=iFirst; i<iEnd; i++){ |
| 6556 int sz, rc; |
| 6557 u8 *pSlot; |
| 6558 sz = cachedCellSize(pCArray, i); |
| 6559 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){ |
| 6560 if( (pData - pBegin)<sz ) return 1; |
| 6561 pData -= sz; |
| 6562 pSlot = pData; |
| 6563 } |
| 6564 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed |
| 6565 ** database. But they might for a corrupt database. Hence use memmove() |
| 6566 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */ |
| 6567 assert( (pSlot+sz)<=pCArray->apCell[i] |
| 6568 || pSlot>=(pCArray->apCell[i]+sz) |
| 6569 || CORRUPT_DB ); |
| 6570 memmove(pSlot, pCArray->apCell[i], sz); |
| 6571 put2byte(pCellptr, (pSlot - aData)); |
| 6572 pCellptr += 2; |
| 6573 } |
| 6574 *ppData = pData; |
| 6575 return 0; |
| 6576 } |
| 6577 |
| 6578 /* |
| 6579 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell |
| 6580 ** contains the size in bytes of each such cell. This function adds the |
| 6581 ** space associated with each cell in the array that is currently stored |
| 6582 ** within the body of pPg to the pPg free-list. The cell-pointers and other |
| 6583 ** fields of the page are not updated. |
| 6584 ** |
| 6585 ** This function returns the total number of cells added to the free-list. |
| 6586 */ |
| 6587 static int pageFreeArray( |
| 6588 MemPage *pPg, /* Page to edit */ |
| 6589 int iFirst, /* First cell to delete */ |
| 6590 int nCell, /* Cells to delete */ |
| 6591 CellArray *pCArray /* Array of cells */ |
| 6592 ){ |
| 6593 u8 * const aData = pPg->aData; |
| 6594 u8 * const pEnd = &aData[pPg->pBt->usableSize]; |
| 6595 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize]; |
| 6596 int nRet = 0; |
| 6597 int i; |
| 6598 int iEnd = iFirst + nCell; |
| 6599 u8 *pFree = 0; |
| 6600 int szFree = 0; |
| 6601 |
| 6602 for(i=iFirst; i<iEnd; i++){ |
| 6603 u8 *pCell = pCArray->apCell[i]; |
| 6604 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){ |
| 6605 int sz; |
| 6606 /* No need to use cachedCellSize() here. The sizes of all cells that |
| 6607 ** are to be freed have already been computing while deciding which |
| 6608 ** cells need freeing */ |
| 6609 sz = pCArray->szCell[i]; assert( sz>0 ); |
| 6610 if( pFree!=(pCell + sz) ){ |
| 6611 if( pFree ){ |
| 6612 assert( pFree>aData && (pFree - aData)<65536 ); |
| 6613 freeSpace(pPg, (u16)(pFree - aData), szFree); |
| 6614 } |
| 6615 pFree = pCell; |
| 6616 szFree = sz; |
| 6617 if( pFree+sz>pEnd ) return 0; |
| 6618 }else{ |
| 6619 pFree = pCell; |
| 6620 szFree += sz; |
| 6621 } |
| 6622 nRet++; |
| 6623 } |
| 6624 } |
| 6625 if( pFree ){ |
| 6626 assert( pFree>aData && (pFree - aData)<65536 ); |
| 6627 freeSpace(pPg, (u16)(pFree - aData), szFree); |
| 6628 } |
| 6629 return nRet; |
| 6630 } |
| 6631 |
| 6632 /* |
| 6633 ** apCell[] and szCell[] contains pointers to and sizes of all cells in the |
| 6634 ** pages being balanced. The current page, pPg, has pPg->nCell cells starting |
| 6635 ** with apCell[iOld]. After balancing, this page should hold nNew cells |
| 6636 ** starting at apCell[iNew]. |
| 6637 ** |
| 6638 ** This routine makes the necessary adjustments to pPg so that it contains |
| 6639 ** the correct cells after being balanced. |
| 6640 ** |
| 6641 ** The pPg->nFree field is invalid when this function returns. It is the |
| 6642 ** responsibility of the caller to set it correctly. |
| 6643 */ |
| 6644 static int editPage( |
| 6645 MemPage *pPg, /* Edit this page */ |
| 6646 int iOld, /* Index of first cell currently on page */ |
| 6647 int iNew, /* Index of new first cell on page */ |
| 6648 int nNew, /* Final number of cells on page */ |
| 6649 CellArray *pCArray /* Array of cells and sizes */ |
| 6650 ){ |
| 6651 u8 * const aData = pPg->aData; |
| 6652 const int hdr = pPg->hdrOffset; |
| 6653 u8 *pBegin = &pPg->aCellIdx[nNew * 2]; |
| 6654 int nCell = pPg->nCell; /* Cells stored on pPg */ |
| 6655 u8 *pData; |
| 6656 u8 *pCellptr; |
| 6657 int i; |
| 6658 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow; |
| 6659 int iNewEnd = iNew + nNew; |
| 6660 |
| 6661 #ifdef SQLITE_DEBUG |
| 6662 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager); |
| 6663 memcpy(pTmp, aData, pPg->pBt->usableSize); |
| 6664 #endif |
| 6665 |
| 6666 /* Remove cells from the start and end of the page */ |
| 6667 if( iOld<iNew ){ |
| 6668 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray); |
| 6669 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2); |
| 6670 nCell -= nShift; |
| 6671 } |
| 6672 if( iNewEnd < iOldEnd ){ |
| 6673 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray); |
| 6674 } |
| 6675 |
| 6676 pData = &aData[get2byteNotZero(&aData[hdr+5])]; |
| 6677 if( pData<pBegin ) goto editpage_fail; |
| 6678 |
| 6679 /* Add cells to the start of the page */ |
| 6680 if( iNew<iOld ){ |
| 6681 int nAdd = MIN(nNew,iOld-iNew); |
| 6682 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB ); |
| 6683 pCellptr = pPg->aCellIdx; |
| 6684 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2); |
| 6685 if( pageInsertArray( |
| 6686 pPg, pBegin, &pData, pCellptr, |
| 6687 iNew, nAdd, pCArray |
| 6688 ) ) goto editpage_fail; |
| 6689 nCell += nAdd; |
| 6690 } |
| 6691 |
| 6692 /* Add any overflow cells */ |
| 6693 for(i=0; i<pPg->nOverflow; i++){ |
| 6694 int iCell = (iOld + pPg->aiOvfl[i]) - iNew; |
| 6695 if( iCell>=0 && iCell<nNew ){ |
| 6696 pCellptr = &pPg->aCellIdx[iCell * 2]; |
| 6697 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2); |
| 6698 nCell++; |
| 6699 if( pageInsertArray( |
| 6700 pPg, pBegin, &pData, pCellptr, |
| 6701 iCell+iNew, 1, pCArray |
| 6702 ) ) goto editpage_fail; |
| 6703 } |
| 6704 } |
| 6705 |
| 6706 /* Append cells to the end of the page */ |
| 6707 pCellptr = &pPg->aCellIdx[nCell*2]; |
| 6708 if( pageInsertArray( |
| 6709 pPg, pBegin, &pData, pCellptr, |
| 6710 iNew+nCell, nNew-nCell, pCArray |
| 6711 ) ) goto editpage_fail; |
| 6712 |
| 6713 pPg->nCell = nNew; |
| 6714 pPg->nOverflow = 0; |
| 6715 |
| 6716 put2byte(&aData[hdr+3], pPg->nCell); |
| 6717 put2byte(&aData[hdr+5], pData - aData); |
| 6718 |
| 6719 #ifdef SQLITE_DEBUG |
| 6720 for(i=0; i<nNew && !CORRUPT_DB; i++){ |
| 6721 u8 *pCell = pCArray->apCell[i+iNew]; |
| 6722 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]); |
| 6723 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){ |
| 6724 pCell = &pTmp[pCell - aData]; |
| 6725 } |
| 6726 assert( 0==memcmp(pCell, &aData[iOff], |
| 6727 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) ); |
| 6728 } |
| 6729 #endif |
| 6730 |
| 6731 return SQLITE_OK; |
| 6732 editpage_fail: |
| 6733 /* Unable to edit this page. Rebuild it from scratch instead. */ |
| 6734 populateCellCache(pCArray, iNew, nNew); |
| 6735 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]); |
| 6736 } |
| 6737 |
| 6738 /* |
| 6739 ** The following parameters determine how many adjacent pages get involved |
| 6740 ** in a balancing operation. NN is the number of neighbors on either side |
| 6741 ** of the page that participate in the balancing operation. NB is the |
| 6742 ** total number of pages that participate, including the target page and |
| 6743 ** NN neighbors on either side. |
| 6744 ** |
| 6745 ** The minimum value of NN is 1 (of course). Increasing NN above 1 |
| 6746 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance |
| 6747 ** in exchange for a larger degradation in INSERT and UPDATE performance. |
| 6748 ** The value of NN appears to give the best results overall. |
| 6749 */ |
| 6750 #define NN 1 /* Number of neighbors on either side of pPage */ |
| 6751 #define NB (NN*2+1) /* Total pages involved in the balance */ |
| 6752 |
| 6753 |
| 6754 #ifndef SQLITE_OMIT_QUICKBALANCE |
| 6755 /* |
| 6756 ** This version of balance() handles the common special case where |
| 6757 ** a new entry is being inserted on the extreme right-end of the |
| 6758 ** tree, in other words, when the new entry will become the largest |
| 6759 ** entry in the tree. |
| 6760 ** |
| 6761 ** Instead of trying to balance the 3 right-most leaf pages, just add |
| 6762 ** a new page to the right-hand side and put the one new entry in |
| 6763 ** that page. This leaves the right side of the tree somewhat |
| 6764 ** unbalanced. But odds are that we will be inserting new entries |
| 6765 ** at the end soon afterwards so the nearly empty page will quickly |
| 6766 ** fill up. On average. |
| 6767 ** |
| 6768 ** pPage is the leaf page which is the right-most page in the tree. |
| 6769 ** pParent is its parent. pPage must have a single overflow entry |
| 6770 ** which is also the right-most entry on the page. |
| 6771 ** |
| 6772 ** The pSpace buffer is used to store a temporary copy of the divider |
| 6773 ** cell that will be inserted into pParent. Such a cell consists of a 4 |
| 6774 ** byte page number followed by a variable length integer. In other |
| 6775 ** words, at most 13 bytes. Hence the pSpace buffer must be at |
| 6776 ** least 13 bytes in size. |
| 6777 */ |
| 6778 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ |
| 6779 BtShared *const pBt = pPage->pBt; /* B-Tree Database */ |
| 6780 MemPage *pNew; /* Newly allocated page */ |
| 6781 int rc; /* Return Code */ |
| 6782 Pgno pgnoNew; /* Page number of pNew */ |
| 6783 |
| 6784 assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
| 6785 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
| 6786 assert( pPage->nOverflow==1 ); |
| 6787 |
| 6788 /* This error condition is now caught prior to reaching this function */ |
| 6789 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT; |
| 6790 |
| 6791 /* Allocate a new page. This page will become the right-sibling of |
| 6792 ** pPage. Make the parent page writable, so that the new divider cell |
| 6793 ** may be inserted. If both these operations are successful, proceed. |
| 6794 */ |
| 6795 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); |
| 6796 |
| 6797 if( rc==SQLITE_OK ){ |
| 6798 |
| 6799 u8 *pOut = &pSpace[4]; |
| 6800 u8 *pCell = pPage->apOvfl[0]; |
| 6801 u16 szCell = pPage->xCellSize(pPage, pCell); |
| 6802 u8 *pStop; |
| 6803 |
| 6804 assert( sqlite3PagerIswriteable(pNew->pDbPage) ); |
| 6805 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); |
| 6806 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); |
| 6807 rc = rebuildPage(pNew, 1, &pCell, &szCell); |
| 6808 if( NEVER(rc) ) return rc; |
| 6809 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell; |
| 6810 |
| 6811 /* If this is an auto-vacuum database, update the pointer map |
| 6812 ** with entries for the new page, and any pointer from the |
| 6813 ** cell on the page to an overflow page. If either of these |
| 6814 ** operations fails, the return code is set, but the contents |
| 6815 ** of the parent page are still manipulated by thh code below. |
| 6816 ** That is Ok, at this point the parent page is guaranteed to |
| 6817 ** be marked as dirty. Returning an error code will cause a |
| 6818 ** rollback, undoing any changes made to the parent page. |
| 6819 */ |
| 6820 if( ISAUTOVACUUM ){ |
| 6821 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); |
| 6822 if( szCell>pNew->minLocal ){ |
| 6823 ptrmapPutOvflPtr(pNew, pCell, &rc); |
| 6824 } |
| 6825 } |
| 6826 |
| 6827 /* Create a divider cell to insert into pParent. The divider cell |
| 6828 ** consists of a 4-byte page number (the page number of pPage) and |
| 6829 ** a variable length key value (which must be the same value as the |
| 6830 ** largest key on pPage). |
| 6831 ** |
| 6832 ** To find the largest key value on pPage, first find the right-most |
| 6833 ** cell on pPage. The first two fields of this cell are the |
| 6834 ** record-length (a variable length integer at most 32-bits in size) |
| 6835 ** and the key value (a variable length integer, may have any value). |
| 6836 ** The first of the while(...) loops below skips over the record-length |
| 6837 ** field. The second while(...) loop copies the key value from the |
| 6838 ** cell on pPage into the pSpace buffer. |
| 6839 */ |
| 6840 pCell = findCell(pPage, pPage->nCell-1); |
| 6841 pStop = &pCell[9]; |
| 6842 while( (*(pCell++)&0x80) && pCell<pStop ); |
| 6843 pStop = &pCell[9]; |
| 6844 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); |
| 6845 |
| 6846 /* Insert the new divider cell into pParent. */ |
| 6847 if( rc==SQLITE_OK ){ |
| 6848 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), |
| 6849 0, pPage->pgno, &rc); |
| 6850 } |
| 6851 |
| 6852 /* Set the right-child pointer of pParent to point to the new page. */ |
| 6853 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); |
| 6854 |
| 6855 /* Release the reference to the new page. */ |
| 6856 releasePage(pNew); |
| 6857 } |
| 6858 |
| 6859 return rc; |
| 6860 } |
| 6861 #endif /* SQLITE_OMIT_QUICKBALANCE */ |
| 6862 |
| 6863 #if 0 |
| 6864 /* |
| 6865 ** This function does not contribute anything to the operation of SQLite. |
| 6866 ** it is sometimes activated temporarily while debugging code responsible |
| 6867 ** for setting pointer-map entries. |
| 6868 */ |
| 6869 static int ptrmapCheckPages(MemPage **apPage, int nPage){ |
| 6870 int i, j; |
| 6871 for(i=0; i<nPage; i++){ |
| 6872 Pgno n; |
| 6873 u8 e; |
| 6874 MemPage *pPage = apPage[i]; |
| 6875 BtShared *pBt = pPage->pBt; |
| 6876 assert( pPage->isInit ); |
| 6877 |
| 6878 for(j=0; j<pPage->nCell; j++){ |
| 6879 CellInfo info; |
| 6880 u8 *z; |
| 6881 |
| 6882 z = findCell(pPage, j); |
| 6883 pPage->xParseCell(pPage, z, &info); |
| 6884 if( info.nLocal<info.nPayload ){ |
| 6885 Pgno ovfl = get4byte(&z[info.nSize-4]); |
| 6886 ptrmapGet(pBt, ovfl, &e, &n); |
| 6887 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); |
| 6888 } |
| 6889 if( !pPage->leaf ){ |
| 6890 Pgno child = get4byte(z); |
| 6891 ptrmapGet(pBt, child, &e, &n); |
| 6892 assert( n==pPage->pgno && e==PTRMAP_BTREE ); |
| 6893 } |
| 6894 } |
| 6895 if( !pPage->leaf ){ |
| 6896 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
| 6897 ptrmapGet(pBt, child, &e, &n); |
| 6898 assert( n==pPage->pgno && e==PTRMAP_BTREE ); |
| 6899 } |
| 6900 } |
| 6901 return 1; |
| 6902 } |
| 6903 #endif |
| 6904 |
| 6905 /* |
| 6906 ** This function is used to copy the contents of the b-tree node stored |
| 6907 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then |
| 6908 ** the pointer-map entries for each child page are updated so that the |
| 6909 ** parent page stored in the pointer map is page pTo. If pFrom contained |
| 6910 ** any cells with overflow page pointers, then the corresponding pointer |
| 6911 ** map entries are also updated so that the parent page is page pTo. |
| 6912 ** |
| 6913 ** If pFrom is currently carrying any overflow cells (entries in the |
| 6914 ** MemPage.apOvfl[] array), they are not copied to pTo. |
| 6915 ** |
| 6916 ** Before returning, page pTo is reinitialized using btreeInitPage(). |
| 6917 ** |
| 6918 ** The performance of this function is not critical. It is only used by |
| 6919 ** the balance_shallower() and balance_deeper() procedures, neither of |
| 6920 ** which are called often under normal circumstances. |
| 6921 */ |
| 6922 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ |
| 6923 if( (*pRC)==SQLITE_OK ){ |
| 6924 BtShared * const pBt = pFrom->pBt; |
| 6925 u8 * const aFrom = pFrom->aData; |
| 6926 u8 * const aTo = pTo->aData; |
| 6927 int const iFromHdr = pFrom->hdrOffset; |
| 6928 int const iToHdr = ((pTo->pgno==1) ? 100 : 0); |
| 6929 int rc; |
| 6930 int iData; |
| 6931 |
| 6932 |
| 6933 assert( pFrom->isInit ); |
| 6934 assert( pFrom->nFree>=iToHdr ); |
| 6935 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); |
| 6936 |
| 6937 /* Copy the b-tree node content from page pFrom to page pTo. */ |
| 6938 iData = get2byte(&aFrom[iFromHdr+5]); |
| 6939 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); |
| 6940 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); |
| 6941 |
| 6942 /* Reinitialize page pTo so that the contents of the MemPage structure |
| 6943 ** match the new data. The initialization of pTo can actually fail under |
| 6944 ** fairly obscure circumstances, even though it is a copy of initialized |
| 6945 ** page pFrom. |
| 6946 */ |
| 6947 pTo->isInit = 0; |
| 6948 rc = btreeInitPage(pTo); |
| 6949 if( rc!=SQLITE_OK ){ |
| 6950 *pRC = rc; |
| 6951 return; |
| 6952 } |
| 6953 |
| 6954 /* If this is an auto-vacuum database, update the pointer-map entries |
| 6955 ** for any b-tree or overflow pages that pTo now contains the pointers to. |
| 6956 */ |
| 6957 if( ISAUTOVACUUM ){ |
| 6958 *pRC = setChildPtrmaps(pTo); |
| 6959 } |
| 6960 } |
| 6961 } |
| 6962 |
| 6963 /* |
| 6964 ** This routine redistributes cells on the iParentIdx'th child of pParent |
| 6965 ** (hereafter "the page") and up to 2 siblings so that all pages have about the |
| 6966 ** same amount of free space. Usually a single sibling on either side of the |
| 6967 ** page are used in the balancing, though both siblings might come from one |
| 6968 ** side if the page is the first or last child of its parent. If the page |
| 6969 ** has fewer than 2 siblings (something which can only happen if the page |
| 6970 ** is a root page or a child of a root page) then all available siblings |
| 6971 ** participate in the balancing. |
| 6972 ** |
| 6973 ** The number of siblings of the page might be increased or decreased by |
| 6974 ** one or two in an effort to keep pages nearly full but not over full. |
| 6975 ** |
| 6976 ** Note that when this routine is called, some of the cells on the page |
| 6977 ** might not actually be stored in MemPage.aData[]. This can happen |
| 6978 ** if the page is overfull. This routine ensures that all cells allocated |
| 6979 ** to the page and its siblings fit into MemPage.aData[] before returning. |
| 6980 ** |
| 6981 ** In the course of balancing the page and its siblings, cells may be |
| 6982 ** inserted into or removed from the parent page (pParent). Doing so |
| 6983 ** may cause the parent page to become overfull or underfull. If this |
| 6984 ** happens, it is the responsibility of the caller to invoke the correct |
| 6985 ** balancing routine to fix this problem (see the balance() routine). |
| 6986 ** |
| 6987 ** If this routine fails for any reason, it might leave the database |
| 6988 ** in a corrupted state. So if this routine fails, the database should |
| 6989 ** be rolled back. |
| 6990 ** |
| 6991 ** The third argument to this function, aOvflSpace, is a pointer to a |
| 6992 ** buffer big enough to hold one page. If while inserting cells into the parent |
| 6993 ** page (pParent) the parent page becomes overfull, this buffer is |
| 6994 ** used to store the parent's overflow cells. Because this function inserts |
| 6995 ** a maximum of four divider cells into the parent page, and the maximum |
| 6996 ** size of a cell stored within an internal node is always less than 1/4 |
| 6997 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large |
| 6998 ** enough for all overflow cells. |
| 6999 ** |
| 7000 ** If aOvflSpace is set to a null pointer, this function returns |
| 7001 ** SQLITE_NOMEM. |
| 7002 */ |
| 7003 static int balance_nonroot( |
| 7004 MemPage *pParent, /* Parent page of siblings being balanced */ |
| 7005 int iParentIdx, /* Index of "the page" in pParent */ |
| 7006 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ |
| 7007 int isRoot, /* True if pParent is a root-page */ |
| 7008 int bBulk /* True if this call is part of a bulk load */ |
| 7009 ){ |
| 7010 BtShared *pBt; /* The whole database */ |
| 7011 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ |
| 7012 int nNew = 0; /* Number of pages in apNew[] */ |
| 7013 int nOld; /* Number of pages in apOld[] */ |
| 7014 int i, j, k; /* Loop counters */ |
| 7015 int nxDiv; /* Next divider slot in pParent->aCell[] */ |
| 7016 int rc = SQLITE_OK; /* The return code */ |
| 7017 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ |
| 7018 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ |
| 7019 int usableSpace; /* Bytes in pPage beyond the header */ |
| 7020 int pageFlags; /* Value of pPage->aData[0] */ |
| 7021 int iSpace1 = 0; /* First unused byte of aSpace1[] */ |
| 7022 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ |
| 7023 int szScratch; /* Size of scratch memory requested */ |
| 7024 MemPage *apOld[NB]; /* pPage and up to two siblings */ |
| 7025 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ |
| 7026 u8 *pRight; /* Location in parent of right-sibling pointer */ |
| 7027 u8 *apDiv[NB-1]; /* Divider cells in pParent */ |
| 7028 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */ |
| 7029 int cntOld[NB+2]; /* Old index in b.apCell[] */ |
| 7030 int szNew[NB+2]; /* Combined size of cells placed on i-th page */ |
| 7031 u8 *aSpace1; /* Space for copies of dividers cells */ |
| 7032 Pgno pgno; /* Temp var to store a page number in */ |
| 7033 u8 abDone[NB+2]; /* True after i'th new page is populated */ |
| 7034 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */ |
| 7035 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */ |
| 7036 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */ |
| 7037 CellArray b; /* Parsed information on cells being balanced */ |
| 7038 |
| 7039 memset(abDone, 0, sizeof(abDone)); |
| 7040 b.nCell = 0; |
| 7041 b.apCell = 0; |
| 7042 pBt = pParent->pBt; |
| 7043 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 7044 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
| 7045 |
| 7046 #if 0 |
| 7047 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); |
| 7048 #endif |
| 7049 |
| 7050 /* At this point pParent may have at most one overflow cell. And if |
| 7051 ** this overflow cell is present, it must be the cell with |
| 7052 ** index iParentIdx. This scenario comes about when this function |
| 7053 ** is called (indirectly) from sqlite3BtreeDelete(). |
| 7054 */ |
| 7055 assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); |
| 7056 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); |
| 7057 |
| 7058 if( !aOvflSpace ){ |
| 7059 return SQLITE_NOMEM_BKPT; |
| 7060 } |
| 7061 |
| 7062 /* Find the sibling pages to balance. Also locate the cells in pParent |
| 7063 ** that divide the siblings. An attempt is made to find NN siblings on |
| 7064 ** either side of pPage. More siblings are taken from one side, however, |
| 7065 ** if there are fewer than NN siblings on the other side. If pParent |
| 7066 ** has NB or fewer children then all children of pParent are taken. |
| 7067 ** |
| 7068 ** This loop also drops the divider cells from the parent page. This |
| 7069 ** way, the remainder of the function does not have to deal with any |
| 7070 ** overflow cells in the parent page, since if any existed they will |
| 7071 ** have already been removed. |
| 7072 */ |
| 7073 i = pParent->nOverflow + pParent->nCell; |
| 7074 if( i<2 ){ |
| 7075 nxDiv = 0; |
| 7076 }else{ |
| 7077 assert( bBulk==0 || bBulk==1 ); |
| 7078 if( iParentIdx==0 ){ |
| 7079 nxDiv = 0; |
| 7080 }else if( iParentIdx==i ){ |
| 7081 nxDiv = i-2+bBulk; |
| 7082 }else{ |
| 7083 nxDiv = iParentIdx-1; |
| 7084 } |
| 7085 i = 2-bBulk; |
| 7086 } |
| 7087 nOld = i+1; |
| 7088 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ |
| 7089 pRight = &pParent->aData[pParent->hdrOffset+8]; |
| 7090 }else{ |
| 7091 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); |
| 7092 } |
| 7093 pgno = get4byte(pRight); |
| 7094 while( 1 ){ |
| 7095 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0); |
| 7096 if( rc ){ |
| 7097 memset(apOld, 0, (i+1)*sizeof(MemPage*)); |
| 7098 goto balance_cleanup; |
| 7099 } |
| 7100 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow; |
| 7101 if( (i--)==0 ) break; |
| 7102 |
| 7103 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){ |
| 7104 apDiv[i] = pParent->apOvfl[0]; |
| 7105 pgno = get4byte(apDiv[i]); |
| 7106 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); |
| 7107 pParent->nOverflow = 0; |
| 7108 }else{ |
| 7109 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); |
| 7110 pgno = get4byte(apDiv[i]); |
| 7111 szNew[i] = pParent->xCellSize(pParent, apDiv[i]); |
| 7112 |
| 7113 /* Drop the cell from the parent page. apDiv[i] still points to |
| 7114 ** the cell within the parent, even though it has been dropped. |
| 7115 ** This is safe because dropping a cell only overwrites the first |
| 7116 ** four bytes of it, and this function does not need the first |
| 7117 ** four bytes of the divider cell. So the pointer is safe to use |
| 7118 ** later on. |
| 7119 ** |
| 7120 ** But not if we are in secure-delete mode. In secure-delete mode, |
| 7121 ** the dropCell() routine will overwrite the entire cell with zeroes. |
| 7122 ** In this case, temporarily copy the cell into the aOvflSpace[] |
| 7123 ** buffer. It will be copied out again as soon as the aSpace[] buffer |
| 7124 ** is allocated. */ |
| 7125 if( pBt->btsFlags & BTS_SECURE_DELETE ){ |
| 7126 int iOff; |
| 7127 |
| 7128 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); |
| 7129 if( (iOff+szNew[i])>(int)pBt->usableSize ){ |
| 7130 rc = SQLITE_CORRUPT_BKPT; |
| 7131 memset(apOld, 0, (i+1)*sizeof(MemPage*)); |
| 7132 goto balance_cleanup; |
| 7133 }else{ |
| 7134 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); |
| 7135 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; |
| 7136 } |
| 7137 } |
| 7138 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); |
| 7139 } |
| 7140 } |
| 7141 |
| 7142 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte |
| 7143 ** alignment */ |
| 7144 nMaxCells = (nMaxCells + 3)&~3; |
| 7145 |
| 7146 /* |
| 7147 ** Allocate space for memory structures |
| 7148 */ |
| 7149 szScratch = |
| 7150 nMaxCells*sizeof(u8*) /* b.apCell */ |
| 7151 + nMaxCells*sizeof(u16) /* b.szCell */ |
| 7152 + pBt->pageSize; /* aSpace1 */ |
| 7153 |
| 7154 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer |
| 7155 ** that is more than 6 times the database page size. */ |
| 7156 assert( szScratch<=6*(int)pBt->pageSize ); |
| 7157 b.apCell = sqlite3ScratchMalloc( szScratch ); |
| 7158 if( b.apCell==0 ){ |
| 7159 rc = SQLITE_NOMEM_BKPT; |
| 7160 goto balance_cleanup; |
| 7161 } |
| 7162 b.szCell = (u16*)&b.apCell[nMaxCells]; |
| 7163 aSpace1 = (u8*)&b.szCell[nMaxCells]; |
| 7164 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); |
| 7165 |
| 7166 /* |
| 7167 ** Load pointers to all cells on sibling pages and the divider cells |
| 7168 ** into the local b.apCell[] array. Make copies of the divider cells |
| 7169 ** into space obtained from aSpace1[]. The divider cells have already |
| 7170 ** been removed from pParent. |
| 7171 ** |
| 7172 ** If the siblings are on leaf pages, then the child pointers of the |
| 7173 ** divider cells are stripped from the cells before they are copied |
| 7174 ** into aSpace1[]. In this way, all cells in b.apCell[] are without |
| 7175 ** child pointers. If siblings are not leaves, then all cell in |
| 7176 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[] |
| 7177 ** are alike. |
| 7178 ** |
| 7179 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. |
| 7180 ** leafData: 1 if pPage holds key+data and pParent holds only keys. |
| 7181 */ |
| 7182 b.pRef = apOld[0]; |
| 7183 leafCorrection = b.pRef->leaf*4; |
| 7184 leafData = b.pRef->intKeyLeaf; |
| 7185 for(i=0; i<nOld; i++){ |
| 7186 MemPage *pOld = apOld[i]; |
| 7187 int limit = pOld->nCell; |
| 7188 u8 *aData = pOld->aData; |
| 7189 u16 maskPage = pOld->maskPage; |
| 7190 u8 *piCell = aData + pOld->cellOffset; |
| 7191 u8 *piEnd; |
| 7192 |
| 7193 /* Verify that all sibling pages are of the same "type" (table-leaf, |
| 7194 ** table-interior, index-leaf, or index-interior). |
| 7195 */ |
| 7196 if( pOld->aData[0]!=apOld[0]->aData[0] ){ |
| 7197 rc = SQLITE_CORRUPT_BKPT; |
| 7198 goto balance_cleanup; |
| 7199 } |
| 7200 |
| 7201 /* Load b.apCell[] with pointers to all cells in pOld. If pOld |
| 7202 ** constains overflow cells, include them in the b.apCell[] array |
| 7203 ** in the correct spot. |
| 7204 ** |
| 7205 ** Note that when there are multiple overflow cells, it is always the |
| 7206 ** case that they are sequential and adjacent. This invariant arises |
| 7207 ** because multiple overflows can only occurs when inserting divider |
| 7208 ** cells into a parent on a prior balance, and divider cells are always |
| 7209 ** adjacent and are inserted in order. There is an assert() tagged |
| 7210 ** with "NOTE 1" in the overflow cell insertion loop to prove this |
| 7211 ** invariant. |
| 7212 ** |
| 7213 ** This must be done in advance. Once the balance starts, the cell |
| 7214 ** offset section of the btree page will be overwritten and we will no |
| 7215 ** long be able to find the cells if a pointer to each cell is not saved |
| 7216 ** first. |
| 7217 */ |
| 7218 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow)); |
| 7219 if( pOld->nOverflow>0 ){ |
| 7220 limit = pOld->aiOvfl[0]; |
| 7221 for(j=0; j<limit; j++){ |
| 7222 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); |
| 7223 piCell += 2; |
| 7224 b.nCell++; |
| 7225 } |
| 7226 for(k=0; k<pOld->nOverflow; k++){ |
| 7227 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */ |
| 7228 b.apCell[b.nCell] = pOld->apOvfl[k]; |
| 7229 b.nCell++; |
| 7230 } |
| 7231 } |
| 7232 piEnd = aData + pOld->cellOffset + 2*pOld->nCell; |
| 7233 while( piCell<piEnd ){ |
| 7234 assert( b.nCell<nMaxCells ); |
| 7235 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell)); |
| 7236 piCell += 2; |
| 7237 b.nCell++; |
| 7238 } |
| 7239 |
| 7240 cntOld[i] = b.nCell; |
| 7241 if( i<nOld-1 && !leafData){ |
| 7242 u16 sz = (u16)szNew[i]; |
| 7243 u8 *pTemp; |
| 7244 assert( b.nCell<nMaxCells ); |
| 7245 b.szCell[b.nCell] = sz; |
| 7246 pTemp = &aSpace1[iSpace1]; |
| 7247 iSpace1 += sz; |
| 7248 assert( sz<=pBt->maxLocal+23 ); |
| 7249 assert( iSpace1 <= (int)pBt->pageSize ); |
| 7250 memcpy(pTemp, apDiv[i], sz); |
| 7251 b.apCell[b.nCell] = pTemp+leafCorrection; |
| 7252 assert( leafCorrection==0 || leafCorrection==4 ); |
| 7253 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection; |
| 7254 if( !pOld->leaf ){ |
| 7255 assert( leafCorrection==0 ); |
| 7256 assert( pOld->hdrOffset==0 ); |
| 7257 /* The right pointer of the child page pOld becomes the left |
| 7258 ** pointer of the divider cell */ |
| 7259 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4); |
| 7260 }else{ |
| 7261 assert( leafCorrection==4 ); |
| 7262 while( b.szCell[b.nCell]<4 ){ |
| 7263 /* Do not allow any cells smaller than 4 bytes. If a smaller cell |
| 7264 ** does exist, pad it with 0x00 bytes. */ |
| 7265 assert( b.szCell[b.nCell]==3 || CORRUPT_DB ); |
| 7266 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB ); |
| 7267 aSpace1[iSpace1++] = 0x00; |
| 7268 b.szCell[b.nCell]++; |
| 7269 } |
| 7270 } |
| 7271 b.nCell++; |
| 7272 } |
| 7273 } |
| 7274 |
| 7275 /* |
| 7276 ** Figure out the number of pages needed to hold all b.nCell cells. |
| 7277 ** Store this number in "k". Also compute szNew[] which is the total |
| 7278 ** size of all cells on the i-th page and cntNew[] which is the index |
| 7279 ** in b.apCell[] of the cell that divides page i from page i+1. |
| 7280 ** cntNew[k] should equal b.nCell. |
| 7281 ** |
| 7282 ** Values computed by this block: |
| 7283 ** |
| 7284 ** k: The total number of sibling pages |
| 7285 ** szNew[i]: Spaced used on the i-th sibling page. |
| 7286 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to |
| 7287 ** the right of the i-th sibling page. |
| 7288 ** usableSpace: Number of bytes of space available on each sibling. |
| 7289 ** |
| 7290 */ |
| 7291 usableSpace = pBt->usableSize - 12 + leafCorrection; |
| 7292 for(i=0; i<nOld; i++){ |
| 7293 MemPage *p = apOld[i]; |
| 7294 szNew[i] = usableSpace - p->nFree; |
| 7295 for(j=0; j<p->nOverflow; j++){ |
| 7296 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]); |
| 7297 } |
| 7298 cntNew[i] = cntOld[i]; |
| 7299 } |
| 7300 k = nOld; |
| 7301 for(i=0; i<k; i++){ |
| 7302 int sz; |
| 7303 while( szNew[i]>usableSpace ){ |
| 7304 if( i+1>=k ){ |
| 7305 k = i+2; |
| 7306 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } |
| 7307 szNew[k-1] = 0; |
| 7308 cntNew[k-1] = b.nCell; |
| 7309 } |
| 7310 sz = 2 + cachedCellSize(&b, cntNew[i]-1); |
| 7311 szNew[i] -= sz; |
| 7312 if( !leafData ){ |
| 7313 if( cntNew[i]<b.nCell ){ |
| 7314 sz = 2 + cachedCellSize(&b, cntNew[i]); |
| 7315 }else{ |
| 7316 sz = 0; |
| 7317 } |
| 7318 } |
| 7319 szNew[i+1] += sz; |
| 7320 cntNew[i]--; |
| 7321 } |
| 7322 while( cntNew[i]<b.nCell ){ |
| 7323 sz = 2 + cachedCellSize(&b, cntNew[i]); |
| 7324 if( szNew[i]+sz>usableSpace ) break; |
| 7325 szNew[i] += sz; |
| 7326 cntNew[i]++; |
| 7327 if( !leafData ){ |
| 7328 if( cntNew[i]<b.nCell ){ |
| 7329 sz = 2 + cachedCellSize(&b, cntNew[i]); |
| 7330 }else{ |
| 7331 sz = 0; |
| 7332 } |
| 7333 } |
| 7334 szNew[i+1] -= sz; |
| 7335 } |
| 7336 if( cntNew[i]>=b.nCell ){ |
| 7337 k = i+1; |
| 7338 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){ |
| 7339 rc = SQLITE_CORRUPT_BKPT; |
| 7340 goto balance_cleanup; |
| 7341 } |
| 7342 } |
| 7343 |
| 7344 /* |
| 7345 ** The packing computed by the previous block is biased toward the siblings |
| 7346 ** on the left side (siblings with smaller keys). The left siblings are |
| 7347 ** always nearly full, while the right-most sibling might be nearly empty. |
| 7348 ** The next block of code attempts to adjust the packing of siblings to |
| 7349 ** get a better balance. |
| 7350 ** |
| 7351 ** This adjustment is more than an optimization. The packing above might |
| 7352 ** be so out of balance as to be illegal. For example, the right-most |
| 7353 ** sibling might be completely empty. This adjustment is not optional. |
| 7354 */ |
| 7355 for(i=k-1; i>0; i--){ |
| 7356 int szRight = szNew[i]; /* Size of sibling on the right */ |
| 7357 int szLeft = szNew[i-1]; /* Size of sibling on the left */ |
| 7358 int r; /* Index of right-most cell in left sibling */ |
| 7359 int d; /* Index of first cell to the left of right sibling */ |
| 7360 |
| 7361 r = cntNew[i-1] - 1; |
| 7362 d = r + 1 - leafData; |
| 7363 (void)cachedCellSize(&b, d); |
| 7364 do{ |
| 7365 assert( d<nMaxCells ); |
| 7366 assert( r<nMaxCells ); |
| 7367 (void)cachedCellSize(&b, r); |
| 7368 if( szRight!=0 |
| 7369 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){ |
| 7370 break; |
| 7371 } |
| 7372 szRight += b.szCell[d] + 2; |
| 7373 szLeft -= b.szCell[r] + 2; |
| 7374 cntNew[i-1] = r; |
| 7375 r--; |
| 7376 d--; |
| 7377 }while( r>=0 ); |
| 7378 szNew[i] = szRight; |
| 7379 szNew[i-1] = szLeft; |
| 7380 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){ |
| 7381 rc = SQLITE_CORRUPT_BKPT; |
| 7382 goto balance_cleanup; |
| 7383 } |
| 7384 } |
| 7385 |
| 7386 /* Sanity check: For a non-corrupt database file one of the follwing |
| 7387 ** must be true: |
| 7388 ** (1) We found one or more cells (cntNew[0])>0), or |
| 7389 ** (2) pPage is a virtual root page. A virtual root page is when |
| 7390 ** the real root page is page 1 and we are the only child of |
| 7391 ** that page. |
| 7392 */ |
| 7393 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB); |
| 7394 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n", |
| 7395 apOld[0]->pgno, apOld[0]->nCell, |
| 7396 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0, |
| 7397 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0 |
| 7398 )); |
| 7399 |
| 7400 /* |
| 7401 ** Allocate k new pages. Reuse old pages where possible. |
| 7402 */ |
| 7403 pageFlags = apOld[0]->aData[0]; |
| 7404 for(i=0; i<k; i++){ |
| 7405 MemPage *pNew; |
| 7406 if( i<nOld ){ |
| 7407 pNew = apNew[i] = apOld[i]; |
| 7408 apOld[i] = 0; |
| 7409 rc = sqlite3PagerWrite(pNew->pDbPage); |
| 7410 nNew++; |
| 7411 if( rc ) goto balance_cleanup; |
| 7412 }else{ |
| 7413 assert( i>0 ); |
| 7414 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); |
| 7415 if( rc ) goto balance_cleanup; |
| 7416 zeroPage(pNew, pageFlags); |
| 7417 apNew[i] = pNew; |
| 7418 nNew++; |
| 7419 cntOld[i] = b.nCell; |
| 7420 |
| 7421 /* Set the pointer-map entry for the new sibling page. */ |
| 7422 if( ISAUTOVACUUM ){ |
| 7423 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); |
| 7424 if( rc!=SQLITE_OK ){ |
| 7425 goto balance_cleanup; |
| 7426 } |
| 7427 } |
| 7428 } |
| 7429 } |
| 7430 |
| 7431 /* |
| 7432 ** Reassign page numbers so that the new pages are in ascending order. |
| 7433 ** This helps to keep entries in the disk file in order so that a scan |
| 7434 ** of the table is closer to a linear scan through the file. That in turn |
| 7435 ** helps the operating system to deliver pages from the disk more rapidly. |
| 7436 ** |
| 7437 ** An O(n^2) insertion sort algorithm is used, but since n is never more |
| 7438 ** than (NB+2) (a small constant), that should not be a problem. |
| 7439 ** |
| 7440 ** When NB==3, this one optimization makes the database about 25% faster |
| 7441 ** for large insertions and deletions. |
| 7442 */ |
| 7443 for(i=0; i<nNew; i++){ |
| 7444 aPgOrder[i] = aPgno[i] = apNew[i]->pgno; |
| 7445 aPgFlags[i] = apNew[i]->pDbPage->flags; |
| 7446 for(j=0; j<i; j++){ |
| 7447 if( aPgno[j]==aPgno[i] ){ |
| 7448 /* This branch is taken if the set of sibling pages somehow contains |
| 7449 ** duplicate entries. This can happen if the database is corrupt. |
| 7450 ** It would be simpler to detect this as part of the loop below, but |
| 7451 ** we do the detection here in order to avoid populating the pager |
| 7452 ** cache with two separate objects associated with the same |
| 7453 ** page number. */ |
| 7454 assert( CORRUPT_DB ); |
| 7455 rc = SQLITE_CORRUPT_BKPT; |
| 7456 goto balance_cleanup; |
| 7457 } |
| 7458 } |
| 7459 } |
| 7460 for(i=0; i<nNew; i++){ |
| 7461 int iBest = 0; /* aPgno[] index of page number to use */ |
| 7462 for(j=1; j<nNew; j++){ |
| 7463 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j; |
| 7464 } |
| 7465 pgno = aPgOrder[iBest]; |
| 7466 aPgOrder[iBest] = 0xffffffff; |
| 7467 if( iBest!=i ){ |
| 7468 if( iBest>i ){ |
| 7469 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0); |
| 7470 } |
| 7471 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]); |
| 7472 apNew[i]->pgno = pgno; |
| 7473 } |
| 7474 } |
| 7475 |
| 7476 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) " |
| 7477 "%d(%d nc=%d) %d(%d nc=%d)\n", |
| 7478 apNew[0]->pgno, szNew[0], cntNew[0], |
| 7479 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, |
| 7480 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0, |
| 7481 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, |
| 7482 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0, |
| 7483 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, |
| 7484 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0, |
| 7485 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0, |
| 7486 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0 |
| 7487 )); |
| 7488 |
| 7489 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
| 7490 put4byte(pRight, apNew[nNew-1]->pgno); |
| 7491 |
| 7492 /* If the sibling pages are not leaves, ensure that the right-child pointer |
| 7493 ** of the right-most new sibling page is set to the value that was |
| 7494 ** originally in the same field of the right-most old sibling page. */ |
| 7495 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){ |
| 7496 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1]; |
| 7497 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4); |
| 7498 } |
| 7499 |
| 7500 /* Make any required updates to pointer map entries associated with |
| 7501 ** cells stored on sibling pages following the balance operation. Pointer |
| 7502 ** map entries associated with divider cells are set by the insertCell() |
| 7503 ** routine. The associated pointer map entries are: |
| 7504 ** |
| 7505 ** a) if the cell contains a reference to an overflow chain, the |
| 7506 ** entry associated with the first page in the overflow chain, and |
| 7507 ** |
| 7508 ** b) if the sibling pages are not leaves, the child page associated |
| 7509 ** with the cell. |
| 7510 ** |
| 7511 ** If the sibling pages are not leaves, then the pointer map entry |
| 7512 ** associated with the right-child of each sibling may also need to be |
| 7513 ** updated. This happens below, after the sibling pages have been |
| 7514 ** populated, not here. |
| 7515 */ |
| 7516 if( ISAUTOVACUUM ){ |
| 7517 MemPage *pNew = apNew[0]; |
| 7518 u8 *aOld = pNew->aData; |
| 7519 int cntOldNext = pNew->nCell + pNew->nOverflow; |
| 7520 int usableSize = pBt->usableSize; |
| 7521 int iNew = 0; |
| 7522 int iOld = 0; |
| 7523 |
| 7524 for(i=0; i<b.nCell; i++){ |
| 7525 u8 *pCell = b.apCell[i]; |
| 7526 if( i==cntOldNext ){ |
| 7527 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld]; |
| 7528 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData; |
| 7529 aOld = pOld->aData; |
| 7530 } |
| 7531 if( i==cntNew[iNew] ){ |
| 7532 pNew = apNew[++iNew]; |
| 7533 if( !leafData ) continue; |
| 7534 } |
| 7535 |
| 7536 /* Cell pCell is destined for new sibling page pNew. Originally, it |
| 7537 ** was either part of sibling page iOld (possibly an overflow cell), |
| 7538 ** or else the divider cell to the left of sibling page iOld. So, |
| 7539 ** if sibling page iOld had the same page number as pNew, and if |
| 7540 ** pCell really was a part of sibling page iOld (not a divider or |
| 7541 ** overflow cell), we can skip updating the pointer map entries. */ |
| 7542 if( iOld>=nNew |
| 7543 || pNew->pgno!=aPgno[iOld] |
| 7544 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize]) |
| 7545 ){ |
| 7546 if( !leafCorrection ){ |
| 7547 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc); |
| 7548 } |
| 7549 if( cachedCellSize(&b,i)>pNew->minLocal ){ |
| 7550 ptrmapPutOvflPtr(pNew, pCell, &rc); |
| 7551 } |
| 7552 if( rc ) goto balance_cleanup; |
| 7553 } |
| 7554 } |
| 7555 } |
| 7556 |
| 7557 /* Insert new divider cells into pParent. */ |
| 7558 for(i=0; i<nNew-1; i++){ |
| 7559 u8 *pCell; |
| 7560 u8 *pTemp; |
| 7561 int sz; |
| 7562 MemPage *pNew = apNew[i]; |
| 7563 j = cntNew[i]; |
| 7564 |
| 7565 assert( j<nMaxCells ); |
| 7566 assert( b.apCell[j]!=0 ); |
| 7567 pCell = b.apCell[j]; |
| 7568 sz = b.szCell[j] + leafCorrection; |
| 7569 pTemp = &aOvflSpace[iOvflSpace]; |
| 7570 if( !pNew->leaf ){ |
| 7571 memcpy(&pNew->aData[8], pCell, 4); |
| 7572 }else if( leafData ){ |
| 7573 /* If the tree is a leaf-data tree, and the siblings are leaves, |
| 7574 ** then there is no divider cell in b.apCell[]. Instead, the divider |
| 7575 ** cell consists of the integer key for the right-most cell of |
| 7576 ** the sibling-page assembled above only. |
| 7577 */ |
| 7578 CellInfo info; |
| 7579 j--; |
| 7580 pNew->xParseCell(pNew, b.apCell[j], &info); |
| 7581 pCell = pTemp; |
| 7582 sz = 4 + putVarint(&pCell[4], info.nKey); |
| 7583 pTemp = 0; |
| 7584 }else{ |
| 7585 pCell -= 4; |
| 7586 /* Obscure case for non-leaf-data trees: If the cell at pCell was |
| 7587 ** previously stored on a leaf node, and its reported size was 4 |
| 7588 ** bytes, then it may actually be smaller than this |
| 7589 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of |
| 7590 ** any cell). But it is important to pass the correct size to |
| 7591 ** insertCell(), so reparse the cell now. |
| 7592 ** |
| 7593 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)" |
| 7594 ** and WITHOUT ROWID tables with exactly one column which is the |
| 7595 ** primary key. |
| 7596 */ |
| 7597 if( b.szCell[j]==4 ){ |
| 7598 assert(leafCorrection==4); |
| 7599 sz = pParent->xCellSize(pParent, pCell); |
| 7600 } |
| 7601 } |
| 7602 iOvflSpace += sz; |
| 7603 assert( sz<=pBt->maxLocal+23 ); |
| 7604 assert( iOvflSpace <= (int)pBt->pageSize ); |
| 7605 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc); |
| 7606 if( rc!=SQLITE_OK ) goto balance_cleanup; |
| 7607 assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
| 7608 } |
| 7609 |
| 7610 /* Now update the actual sibling pages. The order in which they are updated |
| 7611 ** is important, as this code needs to avoid disrupting any page from which |
| 7612 ** cells may still to be read. In practice, this means: |
| 7613 ** |
| 7614 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1]) |
| 7615 ** then it is not safe to update page apNew[iPg] until after |
| 7616 ** the left-hand sibling apNew[iPg-1] has been updated. |
| 7617 ** |
| 7618 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1]) |
| 7619 ** then it is not safe to update page apNew[iPg] until after |
| 7620 ** the right-hand sibling apNew[iPg+1] has been updated. |
| 7621 ** |
| 7622 ** If neither of the above apply, the page is safe to update. |
| 7623 ** |
| 7624 ** The iPg value in the following loop starts at nNew-1 goes down |
| 7625 ** to 0, then back up to nNew-1 again, thus making two passes over |
| 7626 ** the pages. On the initial downward pass, only condition (1) above |
| 7627 ** needs to be tested because (2) will always be true from the previous |
| 7628 ** step. On the upward pass, both conditions are always true, so the |
| 7629 ** upwards pass simply processes pages that were missed on the downward |
| 7630 ** pass. |
| 7631 */ |
| 7632 for(i=1-nNew; i<nNew; i++){ |
| 7633 int iPg = i<0 ? -i : i; |
| 7634 assert( iPg>=0 && iPg<nNew ); |
| 7635 if( abDone[iPg] ) continue; /* Skip pages already processed */ |
| 7636 if( i>=0 /* On the upwards pass, or... */ |
| 7637 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */ |
| 7638 ){ |
| 7639 int iNew; |
| 7640 int iOld; |
| 7641 int nNewCell; |
| 7642 |
| 7643 /* Verify condition (1): If cells are moving left, update iPg |
| 7644 ** only after iPg-1 has already been updated. */ |
| 7645 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] ); |
| 7646 |
| 7647 /* Verify condition (2): If cells are moving right, update iPg |
| 7648 ** only after iPg+1 has already been updated. */ |
| 7649 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] ); |
| 7650 |
| 7651 if( iPg==0 ){ |
| 7652 iNew = iOld = 0; |
| 7653 nNewCell = cntNew[0]; |
| 7654 }else{ |
| 7655 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell; |
| 7656 iNew = cntNew[iPg-1] + !leafData; |
| 7657 nNewCell = cntNew[iPg] - iNew; |
| 7658 } |
| 7659 |
| 7660 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b); |
| 7661 if( rc ) goto balance_cleanup; |
| 7662 abDone[iPg]++; |
| 7663 apNew[iPg]->nFree = usableSpace-szNew[iPg]; |
| 7664 assert( apNew[iPg]->nOverflow==0 ); |
| 7665 assert( apNew[iPg]->nCell==nNewCell ); |
| 7666 } |
| 7667 } |
| 7668 |
| 7669 /* All pages have been processed exactly once */ |
| 7670 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 ); |
| 7671 |
| 7672 assert( nOld>0 ); |
| 7673 assert( nNew>0 ); |
| 7674 |
| 7675 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ |
| 7676 /* The root page of the b-tree now contains no cells. The only sibling |
| 7677 ** page is the right-child of the parent. Copy the contents of the |
| 7678 ** child page into the parent, decreasing the overall height of the |
| 7679 ** b-tree structure by one. This is described as the "balance-shallower" |
| 7680 ** sub-algorithm in some documentation. |
| 7681 ** |
| 7682 ** If this is an auto-vacuum database, the call to copyNodeContent() |
| 7683 ** sets all pointer-map entries corresponding to database image pages |
| 7684 ** for which the pointer is stored within the content being copied. |
| 7685 ** |
| 7686 ** It is critical that the child page be defragmented before being |
| 7687 ** copied into the parent, because if the parent is page 1 then it will |
| 7688 ** by smaller than the child due to the database header, and so all the |
| 7689 ** free space needs to be up front. |
| 7690 */ |
| 7691 assert( nNew==1 || CORRUPT_DB ); |
| 7692 rc = defragmentPage(apNew[0]); |
| 7693 testcase( rc!=SQLITE_OK ); |
| 7694 assert( apNew[0]->nFree == |
| 7695 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2) |
| 7696 || rc!=SQLITE_OK |
| 7697 ); |
| 7698 copyNodeContent(apNew[0], pParent, &rc); |
| 7699 freePage(apNew[0], &rc); |
| 7700 }else if( ISAUTOVACUUM && !leafCorrection ){ |
| 7701 /* Fix the pointer map entries associated with the right-child of each |
| 7702 ** sibling page. All other pointer map entries have already been taken |
| 7703 ** care of. */ |
| 7704 for(i=0; i<nNew; i++){ |
| 7705 u32 key = get4byte(&apNew[i]->aData[8]); |
| 7706 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); |
| 7707 } |
| 7708 } |
| 7709 |
| 7710 assert( pParent->isInit ); |
| 7711 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", |
| 7712 nOld, nNew, b.nCell)); |
| 7713 |
| 7714 /* Free any old pages that were not reused as new pages. |
| 7715 */ |
| 7716 for(i=nNew; i<nOld; i++){ |
| 7717 freePage(apOld[i], &rc); |
| 7718 } |
| 7719 |
| 7720 #if 0 |
| 7721 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){ |
| 7722 /* The ptrmapCheckPages() contains assert() statements that verify that |
| 7723 ** all pointer map pages are set correctly. This is helpful while |
| 7724 ** debugging. This is usually disabled because a corrupt database may |
| 7725 ** cause an assert() statement to fail. */ |
| 7726 ptrmapCheckPages(apNew, nNew); |
| 7727 ptrmapCheckPages(&pParent, 1); |
| 7728 } |
| 7729 #endif |
| 7730 |
| 7731 /* |
| 7732 ** Cleanup before returning. |
| 7733 */ |
| 7734 balance_cleanup: |
| 7735 sqlite3ScratchFree(b.apCell); |
| 7736 for(i=0; i<nOld; i++){ |
| 7737 releasePage(apOld[i]); |
| 7738 } |
| 7739 for(i=0; i<nNew; i++){ |
| 7740 releasePage(apNew[i]); |
| 7741 } |
| 7742 |
| 7743 return rc; |
| 7744 } |
| 7745 |
| 7746 |
| 7747 /* |
| 7748 ** This function is called when the root page of a b-tree structure is |
| 7749 ** overfull (has one or more overflow pages). |
| 7750 ** |
| 7751 ** A new child page is allocated and the contents of the current root |
| 7752 ** page, including overflow cells, are copied into the child. The root |
| 7753 ** page is then overwritten to make it an empty page with the right-child |
| 7754 ** pointer pointing to the new page. |
| 7755 ** |
| 7756 ** Before returning, all pointer-map entries corresponding to pages |
| 7757 ** that the new child-page now contains pointers to are updated. The |
| 7758 ** entry corresponding to the new right-child pointer of the root |
| 7759 ** page is also updated. |
| 7760 ** |
| 7761 ** If successful, *ppChild is set to contain a reference to the child |
| 7762 ** page and SQLITE_OK is returned. In this case the caller is required |
| 7763 ** to call releasePage() on *ppChild exactly once. If an error occurs, |
| 7764 ** an error code is returned and *ppChild is set to 0. |
| 7765 */ |
| 7766 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ |
| 7767 int rc; /* Return value from subprocedures */ |
| 7768 MemPage *pChild = 0; /* Pointer to a new child page */ |
| 7769 Pgno pgnoChild = 0; /* Page number of the new child page */ |
| 7770 BtShared *pBt = pRoot->pBt; /* The BTree */ |
| 7771 |
| 7772 assert( pRoot->nOverflow>0 ); |
| 7773 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 7774 |
| 7775 /* Make pRoot, the root page of the b-tree, writable. Allocate a new |
| 7776 ** page that will become the new right-child of pPage. Copy the contents |
| 7777 ** of the node stored on pRoot into the new child page. |
| 7778 */ |
| 7779 rc = sqlite3PagerWrite(pRoot->pDbPage); |
| 7780 if( rc==SQLITE_OK ){ |
| 7781 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); |
| 7782 copyNodeContent(pRoot, pChild, &rc); |
| 7783 if( ISAUTOVACUUM ){ |
| 7784 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); |
| 7785 } |
| 7786 } |
| 7787 if( rc ){ |
| 7788 *ppChild = 0; |
| 7789 releasePage(pChild); |
| 7790 return rc; |
| 7791 } |
| 7792 assert( sqlite3PagerIswriteable(pChild->pDbPage) ); |
| 7793 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); |
| 7794 assert( pChild->nCell==pRoot->nCell ); |
| 7795 |
| 7796 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); |
| 7797 |
| 7798 /* Copy the overflow cells from pRoot to pChild */ |
| 7799 memcpy(pChild->aiOvfl, pRoot->aiOvfl, |
| 7800 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); |
| 7801 memcpy(pChild->apOvfl, pRoot->apOvfl, |
| 7802 pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); |
| 7803 pChild->nOverflow = pRoot->nOverflow; |
| 7804 |
| 7805 /* Zero the contents of pRoot. Then install pChild as the right-child. */ |
| 7806 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); |
| 7807 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); |
| 7808 |
| 7809 *ppChild = pChild; |
| 7810 return SQLITE_OK; |
| 7811 } |
| 7812 |
| 7813 /* |
| 7814 ** The page that pCur currently points to has just been modified in |
| 7815 ** some way. This function figures out if this modification means the |
| 7816 ** tree needs to be balanced, and if so calls the appropriate balancing |
| 7817 ** routine. Balancing routines are: |
| 7818 ** |
| 7819 ** balance_quick() |
| 7820 ** balance_deeper() |
| 7821 ** balance_nonroot() |
| 7822 */ |
| 7823 static int balance(BtCursor *pCur){ |
| 7824 int rc = SQLITE_OK; |
| 7825 const int nMin = pCur->pBt->usableSize * 2 / 3; |
| 7826 u8 aBalanceQuickSpace[13]; |
| 7827 u8 *pFree = 0; |
| 7828 |
| 7829 VVA_ONLY( int balance_quick_called = 0 ); |
| 7830 VVA_ONLY( int balance_deeper_called = 0 ); |
| 7831 |
| 7832 do { |
| 7833 int iPage = pCur->iPage; |
| 7834 MemPage *pPage = pCur->apPage[iPage]; |
| 7835 |
| 7836 if( iPage==0 ){ |
| 7837 if( pPage->nOverflow ){ |
| 7838 /* The root page of the b-tree is overfull. In this case call the |
| 7839 ** balance_deeper() function to create a new child for the root-page |
| 7840 ** and copy the current contents of the root-page to it. The |
| 7841 ** next iteration of the do-loop will balance the child page. |
| 7842 */ |
| 7843 assert( balance_deeper_called==0 ); |
| 7844 VVA_ONLY( balance_deeper_called++ ); |
| 7845 rc = balance_deeper(pPage, &pCur->apPage[1]); |
| 7846 if( rc==SQLITE_OK ){ |
| 7847 pCur->iPage = 1; |
| 7848 pCur->aiIdx[0] = 0; |
| 7849 pCur->aiIdx[1] = 0; |
| 7850 assert( pCur->apPage[1]->nOverflow ); |
| 7851 } |
| 7852 }else{ |
| 7853 break; |
| 7854 } |
| 7855 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){ |
| 7856 break; |
| 7857 }else{ |
| 7858 MemPage * const pParent = pCur->apPage[iPage-1]; |
| 7859 int const iIdx = pCur->aiIdx[iPage-1]; |
| 7860 |
| 7861 rc = sqlite3PagerWrite(pParent->pDbPage); |
| 7862 if( rc==SQLITE_OK ){ |
| 7863 #ifndef SQLITE_OMIT_QUICKBALANCE |
| 7864 if( pPage->intKeyLeaf |
| 7865 && pPage->nOverflow==1 |
| 7866 && pPage->aiOvfl[0]==pPage->nCell |
| 7867 && pParent->pgno!=1 |
| 7868 && pParent->nCell==iIdx |
| 7869 ){ |
| 7870 /* Call balance_quick() to create a new sibling of pPage on which |
| 7871 ** to store the overflow cell. balance_quick() inserts a new cell |
| 7872 ** into pParent, which may cause pParent overflow. If this |
| 7873 ** happens, the next iteration of the do-loop will balance pParent |
| 7874 ** use either balance_nonroot() or balance_deeper(). Until this |
| 7875 ** happens, the overflow cell is stored in the aBalanceQuickSpace[] |
| 7876 ** buffer. |
| 7877 ** |
| 7878 ** The purpose of the following assert() is to check that only a |
| 7879 ** single call to balance_quick() is made for each call to this |
| 7880 ** function. If this were not verified, a subtle bug involving reuse |
| 7881 ** of the aBalanceQuickSpace[] might sneak in. |
| 7882 */ |
| 7883 assert( balance_quick_called==0 ); |
| 7884 VVA_ONLY( balance_quick_called++ ); |
| 7885 rc = balance_quick(pParent, pPage, aBalanceQuickSpace); |
| 7886 }else |
| 7887 #endif |
| 7888 { |
| 7889 /* In this case, call balance_nonroot() to redistribute cells |
| 7890 ** between pPage and up to 2 of its sibling pages. This involves |
| 7891 ** modifying the contents of pParent, which may cause pParent to |
| 7892 ** become overfull or underfull. The next iteration of the do-loop |
| 7893 ** will balance the parent page to correct this. |
| 7894 ** |
| 7895 ** If the parent page becomes overfull, the overflow cell or cells |
| 7896 ** are stored in the pSpace buffer allocated immediately below. |
| 7897 ** A subsequent iteration of the do-loop will deal with this by |
| 7898 ** calling balance_nonroot() (balance_deeper() may be called first, |
| 7899 ** but it doesn't deal with overflow cells - just moves them to a |
| 7900 ** different page). Once this subsequent call to balance_nonroot() |
| 7901 ** has completed, it is safe to release the pSpace buffer used by |
| 7902 ** the previous call, as the overflow cell data will have been |
| 7903 ** copied either into the body of a database page or into the new |
| 7904 ** pSpace buffer passed to the latter call to balance_nonroot(). |
| 7905 */ |
| 7906 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); |
| 7907 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, |
| 7908 pCur->hints&BTREE_BULKLOAD); |
| 7909 if( pFree ){ |
| 7910 /* If pFree is not NULL, it points to the pSpace buffer used |
| 7911 ** by a previous call to balance_nonroot(). Its contents are |
| 7912 ** now stored either on real database pages or within the |
| 7913 ** new pSpace buffer, so it may be safely freed here. */ |
| 7914 sqlite3PageFree(pFree); |
| 7915 } |
| 7916 |
| 7917 /* The pSpace buffer will be freed after the next call to |
| 7918 ** balance_nonroot(), or just before this function returns, whichever |
| 7919 ** comes first. */ |
| 7920 pFree = pSpace; |
| 7921 } |
| 7922 } |
| 7923 |
| 7924 pPage->nOverflow = 0; |
| 7925 |
| 7926 /* The next iteration of the do-loop balances the parent page. */ |
| 7927 releasePage(pPage); |
| 7928 pCur->iPage--; |
| 7929 assert( pCur->iPage>=0 ); |
| 7930 } |
| 7931 }while( rc==SQLITE_OK ); |
| 7932 |
| 7933 if( pFree ){ |
| 7934 sqlite3PageFree(pFree); |
| 7935 } |
| 7936 return rc; |
| 7937 } |
| 7938 |
| 7939 |
| 7940 /* |
| 7941 ** Insert a new record into the BTree. The content of the new record |
| 7942 ** is described by the pX object. The pCur cursor is used only to |
| 7943 ** define what table the record should be inserted into, and is left |
| 7944 ** pointing at a random location. |
| 7945 ** |
| 7946 ** For a table btree (used for rowid tables), only the pX.nKey value of |
| 7947 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the |
| 7948 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields |
| 7949 ** hold the content of the row. |
| 7950 ** |
| 7951 ** For an index btree (used for indexes and WITHOUT ROWID tables), the |
| 7952 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The |
| 7953 ** pX.pData,nData,nZero fields must be zero. |
| 7954 ** |
| 7955 ** If the seekResult parameter is non-zero, then a successful call to |
| 7956 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already |
| 7957 ** been performed. In other words, if seekResult!=0 then the cursor |
| 7958 ** is currently pointing to a cell that will be adjacent to the cell |
| 7959 ** to be inserted. If seekResult<0 then pCur points to a cell that is |
| 7960 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell |
| 7961 ** that is larger than (pKey,nKey). |
| 7962 ** |
| 7963 ** If seekResult==0, that means pCur is pointing at some unknown location. |
| 7964 ** In that case, this routine must seek the cursor to the correct insertion |
| 7965 ** point for (pKey,nKey) before doing the insertion. For index btrees, |
| 7966 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked |
| 7967 ** key values and pX->aMem can be used instead of pX->pKey to avoid having |
| 7968 ** to decode the key. |
| 7969 */ |
| 7970 int sqlite3BtreeInsert( |
| 7971 BtCursor *pCur, /* Insert data into the table of this cursor */ |
| 7972 const BtreePayload *pX, /* Content of the row to be inserted */ |
| 7973 int flags, /* True if this is likely an append */ |
| 7974 int seekResult /* Result of prior MovetoUnpacked() call */ |
| 7975 ){ |
| 7976 int rc; |
| 7977 int loc = seekResult; /* -1: before desired location +1: after */ |
| 7978 int szNew = 0; |
| 7979 int idx; |
| 7980 MemPage *pPage; |
| 7981 Btree *p = pCur->pBtree; |
| 7982 BtShared *pBt = p->pBt; |
| 7983 unsigned char *oldCell; |
| 7984 unsigned char *newCell = 0; |
| 7985 |
| 7986 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags ); |
| 7987 |
| 7988 if( pCur->eState==CURSOR_FAULT ){ |
| 7989 assert( pCur->skipNext!=SQLITE_OK ); |
| 7990 return pCur->skipNext; |
| 7991 } |
| 7992 |
| 7993 assert( cursorOwnsBtShared(pCur) ); |
| 7994 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 |
| 7995 && pBt->inTransaction==TRANS_WRITE |
| 7996 && (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
| 7997 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); |
| 7998 |
| 7999 /* Assert that the caller has been consistent. If this cursor was opened |
| 8000 ** expecting an index b-tree, then the caller should be inserting blob |
| 8001 ** keys with no associated data. If the cursor was opened expecting an |
| 8002 ** intkey table, the caller should be inserting integer keys with a |
| 8003 ** blob of associated data. */ |
| 8004 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) ); |
| 8005 |
| 8006 /* Save the positions of any other cursors open on this table. |
| 8007 ** |
| 8008 ** In some cases, the call to btreeMoveto() below is a no-op. For |
| 8009 ** example, when inserting data into a table with auto-generated integer |
| 8010 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the |
| 8011 ** integer key to use. It then calls this function to actually insert the |
| 8012 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes |
| 8013 ** that the cursor is already where it needs to be and returns without |
| 8014 ** doing any work. To avoid thwarting these optimizations, it is important |
| 8015 ** not to clear the cursor here. |
| 8016 */ |
| 8017 if( pCur->curFlags & BTCF_Multiple ){ |
| 8018 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); |
| 8019 if( rc ) return rc; |
| 8020 } |
| 8021 |
| 8022 if( pCur->pKeyInfo==0 ){ |
| 8023 assert( pX->pKey==0 ); |
| 8024 /* If this is an insert into a table b-tree, invalidate any incrblob |
| 8025 ** cursors open on the row being replaced */ |
| 8026 invalidateIncrblobCursors(p, pX->nKey, 0); |
| 8027 |
| 8028 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing |
| 8029 ** to a row with the same key as the new entry being inserted. */ |
| 8030 assert( (flags & BTREE_SAVEPOSITION)==0 || |
| 8031 ((pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey) ); |
| 8032 |
| 8033 /* If the cursor is currently on the last row and we are appending a |
| 8034 ** new row onto the end, set the "loc" to avoid an unnecessary |
| 8035 ** btreeMoveto() call */ |
| 8036 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){ |
| 8037 loc = 0; |
| 8038 }else if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey>0 |
| 8039 && pCur->info.nKey==pX->nKey-1 ){ |
| 8040 loc = -1; |
| 8041 }else if( loc==0 ){ |
| 8042 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc); |
| 8043 if( rc ) return rc; |
| 8044 } |
| 8045 }else if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){ |
| 8046 if( pX->nMem ){ |
| 8047 UnpackedRecord r; |
| 8048 r.pKeyInfo = pCur->pKeyInfo; |
| 8049 r.aMem = pX->aMem; |
| 8050 r.nField = pX->nMem; |
| 8051 r.default_rc = 0; |
| 8052 r.errCode = 0; |
| 8053 r.r1 = 0; |
| 8054 r.r2 = 0; |
| 8055 r.eqSeen = 0; |
| 8056 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc); |
| 8057 }else{ |
| 8058 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc); |
| 8059 } |
| 8060 if( rc ) return rc; |
| 8061 } |
| 8062 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) ); |
| 8063 |
| 8064 pPage = pCur->apPage[pCur->iPage]; |
| 8065 assert( pPage->intKey || pX->nKey>=0 ); |
| 8066 assert( pPage->leaf || !pPage->intKey ); |
| 8067 |
| 8068 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", |
| 8069 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno, |
| 8070 loc==0 ? "overwrite" : "new entry")); |
| 8071 assert( pPage->isInit ); |
| 8072 newCell = pBt->pTmpSpace; |
| 8073 assert( newCell!=0 ); |
| 8074 rc = fillInCell(pPage, newCell, pX, &szNew); |
| 8075 if( rc ) goto end_insert; |
| 8076 assert( szNew==pPage->xCellSize(pPage, newCell) ); |
| 8077 assert( szNew <= MX_CELL_SIZE(pBt) ); |
| 8078 idx = pCur->aiIdx[pCur->iPage]; |
| 8079 if( loc==0 ){ |
| 8080 CellInfo info; |
| 8081 assert( idx<pPage->nCell ); |
| 8082 rc = sqlite3PagerWrite(pPage->pDbPage); |
| 8083 if( rc ){ |
| 8084 goto end_insert; |
| 8085 } |
| 8086 oldCell = findCell(pPage, idx); |
| 8087 if( !pPage->leaf ){ |
| 8088 memcpy(newCell, oldCell, 4); |
| 8089 } |
| 8090 rc = clearCell(pPage, oldCell, &info); |
| 8091 if( info.nSize==szNew && info.nLocal==info.nPayload ){ |
| 8092 /* Overwrite the old cell with the new if they are the same size. |
| 8093 ** We could also try to do this if the old cell is smaller, then add |
| 8094 ** the leftover space to the free list. But experiments show that |
| 8095 ** doing that is no faster then skipping this optimization and just |
| 8096 ** calling dropCell() and insertCell(). */ |
| 8097 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */ |
| 8098 if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT; |
| 8099 memcpy(oldCell, newCell, szNew); |
| 8100 return SQLITE_OK; |
| 8101 } |
| 8102 dropCell(pPage, idx, info.nSize, &rc); |
| 8103 if( rc ) goto end_insert; |
| 8104 }else if( loc<0 && pPage->nCell>0 ){ |
| 8105 assert( pPage->leaf ); |
| 8106 idx = ++pCur->aiIdx[pCur->iPage]; |
| 8107 }else{ |
| 8108 assert( pPage->leaf ); |
| 8109 } |
| 8110 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); |
| 8111 assert( pPage->nOverflow==0 || rc==SQLITE_OK ); |
| 8112 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); |
| 8113 |
| 8114 /* If no error has occurred and pPage has an overflow cell, call balance() |
| 8115 ** to redistribute the cells within the tree. Since balance() may move |
| 8116 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey |
| 8117 ** variables. |
| 8118 ** |
| 8119 ** Previous versions of SQLite called moveToRoot() to move the cursor |
| 8120 ** back to the root page as balance() used to invalidate the contents |
| 8121 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, |
| 8122 ** set the cursor state to "invalid". This makes common insert operations |
| 8123 ** slightly faster. |
| 8124 ** |
| 8125 ** There is a subtle but important optimization here too. When inserting |
| 8126 ** multiple records into an intkey b-tree using a single cursor (as can |
| 8127 ** happen while processing an "INSERT INTO ... SELECT" statement), it |
| 8128 ** is advantageous to leave the cursor pointing to the last entry in |
| 8129 ** the b-tree if possible. If the cursor is left pointing to the last |
| 8130 ** entry in the table, and the next row inserted has an integer key |
| 8131 ** larger than the largest existing key, it is possible to insert the |
| 8132 ** row without seeking the cursor. This can be a big performance boost. |
| 8133 */ |
| 8134 pCur->info.nSize = 0; |
| 8135 if( pPage->nOverflow ){ |
| 8136 assert( rc==SQLITE_OK ); |
| 8137 pCur->curFlags &= ~(BTCF_ValidNKey); |
| 8138 rc = balance(pCur); |
| 8139 |
| 8140 /* Must make sure nOverflow is reset to zero even if the balance() |
| 8141 ** fails. Internal data structure corruption will result otherwise. |
| 8142 ** Also, set the cursor state to invalid. This stops saveCursorPosition() |
| 8143 ** from trying to save the current position of the cursor. */ |
| 8144 pCur->apPage[pCur->iPage]->nOverflow = 0; |
| 8145 pCur->eState = CURSOR_INVALID; |
| 8146 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){ |
| 8147 rc = moveToRoot(pCur); |
| 8148 if( pCur->pKeyInfo ){ |
| 8149 assert( pCur->pKey==0 ); |
| 8150 pCur->pKey = sqlite3Malloc( pX->nKey ); |
| 8151 if( pCur->pKey==0 ){ |
| 8152 rc = SQLITE_NOMEM; |
| 8153 }else{ |
| 8154 memcpy(pCur->pKey, pX->pKey, pX->nKey); |
| 8155 } |
| 8156 } |
| 8157 pCur->eState = CURSOR_REQUIRESEEK; |
| 8158 pCur->nKey = pX->nKey; |
| 8159 } |
| 8160 } |
| 8161 assert( pCur->apPage[pCur->iPage]->nOverflow==0 ); |
| 8162 |
| 8163 end_insert: |
| 8164 return rc; |
| 8165 } |
| 8166 |
| 8167 /* |
| 8168 ** Delete the entry that the cursor is pointing to. |
| 8169 ** |
| 8170 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then |
| 8171 ** the cursor is left pointing at an arbitrary location after the delete. |
| 8172 ** But if that bit is set, then the cursor is left in a state such that |
| 8173 ** the next call to BtreeNext() or BtreePrev() moves it to the same row |
| 8174 ** as it would have been on if the call to BtreeDelete() had been omitted. |
| 8175 ** |
| 8176 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes |
| 8177 ** associated with a single table entry and its indexes. Only one of those |
| 8178 ** deletes is considered the "primary" delete. The primary delete occurs |
| 8179 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete |
| 8180 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag. |
| 8181 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation, |
| 8182 ** but which might be used by alternative storage engines. |
| 8183 */ |
| 8184 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){ |
| 8185 Btree *p = pCur->pBtree; |
| 8186 BtShared *pBt = p->pBt; |
| 8187 int rc; /* Return code */ |
| 8188 MemPage *pPage; /* Page to delete cell from */ |
| 8189 unsigned char *pCell; /* Pointer to cell to delete */ |
| 8190 int iCellIdx; /* Index of cell to delete */ |
| 8191 int iCellDepth; /* Depth of node containing pCell */ |
| 8192 CellInfo info; /* Size of the cell being deleted */ |
| 8193 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */ |
| 8194 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */ |
| 8195 |
| 8196 assert( cursorOwnsBtShared(pCur) ); |
| 8197 assert( pBt->inTransaction==TRANS_WRITE ); |
| 8198 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
| 8199 assert( pCur->curFlags & BTCF_WriteFlag ); |
| 8200 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); |
| 8201 assert( !hasReadConflicts(p, pCur->pgnoRoot) ); |
| 8202 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); |
| 8203 assert( pCur->eState==CURSOR_VALID ); |
| 8204 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 ); |
| 8205 |
| 8206 iCellDepth = pCur->iPage; |
| 8207 iCellIdx = pCur->aiIdx[iCellDepth]; |
| 8208 pPage = pCur->apPage[iCellDepth]; |
| 8209 pCell = findCell(pPage, iCellIdx); |
| 8210 |
| 8211 /* If the bPreserve flag is set to true, then the cursor position must |
| 8212 ** be preserved following this delete operation. If the current delete |
| 8213 ** will cause a b-tree rebalance, then this is done by saving the cursor |
| 8214 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before |
| 8215 ** returning. |
| 8216 ** |
| 8217 ** Or, if the current delete will not cause a rebalance, then the cursor |
| 8218 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately |
| 8219 ** before or after the deleted entry. In this case set bSkipnext to true. */ |
| 8220 if( bPreserve ){ |
| 8221 if( !pPage->leaf |
| 8222 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3) |
| 8223 ){ |
| 8224 /* A b-tree rebalance will be required after deleting this entry. |
| 8225 ** Save the cursor key. */ |
| 8226 rc = saveCursorKey(pCur); |
| 8227 if( rc ) return rc; |
| 8228 }else{ |
| 8229 bSkipnext = 1; |
| 8230 } |
| 8231 } |
| 8232 |
| 8233 /* If the page containing the entry to delete is not a leaf page, move |
| 8234 ** the cursor to the largest entry in the tree that is smaller than |
| 8235 ** the entry being deleted. This cell will replace the cell being deleted |
| 8236 ** from the internal node. The 'previous' entry is used for this instead |
| 8237 ** of the 'next' entry, as the previous entry is always a part of the |
| 8238 ** sub-tree headed by the child page of the cell being deleted. This makes |
| 8239 ** balancing the tree following the delete operation easier. */ |
| 8240 if( !pPage->leaf ){ |
| 8241 int notUsed = 0; |
| 8242 rc = sqlite3BtreePrevious(pCur, ¬Used); |
| 8243 if( rc ) return rc; |
| 8244 } |
| 8245 |
| 8246 /* Save the positions of any other cursors open on this table before |
| 8247 ** making any modifications. */ |
| 8248 if( pCur->curFlags & BTCF_Multiple ){ |
| 8249 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); |
| 8250 if( rc ) return rc; |
| 8251 } |
| 8252 |
| 8253 /* If this is a delete operation to remove a row from a table b-tree, |
| 8254 ** invalidate any incrblob cursors open on the row being deleted. */ |
| 8255 if( pCur->pKeyInfo==0 ){ |
| 8256 invalidateIncrblobCursors(p, pCur->info.nKey, 0); |
| 8257 } |
| 8258 |
| 8259 /* Make the page containing the entry to be deleted writable. Then free any |
| 8260 ** overflow pages associated with the entry and finally remove the cell |
| 8261 ** itself from within the page. */ |
| 8262 rc = sqlite3PagerWrite(pPage->pDbPage); |
| 8263 if( rc ) return rc; |
| 8264 rc = clearCell(pPage, pCell, &info); |
| 8265 dropCell(pPage, iCellIdx, info.nSize, &rc); |
| 8266 if( rc ) return rc; |
| 8267 |
| 8268 /* If the cell deleted was not located on a leaf page, then the cursor |
| 8269 ** is currently pointing to the largest entry in the sub-tree headed |
| 8270 ** by the child-page of the cell that was just deleted from an internal |
| 8271 ** node. The cell from the leaf node needs to be moved to the internal |
| 8272 ** node to replace the deleted cell. */ |
| 8273 if( !pPage->leaf ){ |
| 8274 MemPage *pLeaf = pCur->apPage[pCur->iPage]; |
| 8275 int nCell; |
| 8276 Pgno n = pCur->apPage[iCellDepth+1]->pgno; |
| 8277 unsigned char *pTmp; |
| 8278 |
| 8279 pCell = findCell(pLeaf, pLeaf->nCell-1); |
| 8280 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT; |
| 8281 nCell = pLeaf->xCellSize(pLeaf, pCell); |
| 8282 assert( MX_CELL_SIZE(pBt) >= nCell ); |
| 8283 pTmp = pBt->pTmpSpace; |
| 8284 assert( pTmp!=0 ); |
| 8285 rc = sqlite3PagerWrite(pLeaf->pDbPage); |
| 8286 if( rc==SQLITE_OK ){ |
| 8287 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); |
| 8288 } |
| 8289 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); |
| 8290 if( rc ) return rc; |
| 8291 } |
| 8292 |
| 8293 /* Balance the tree. If the entry deleted was located on a leaf page, |
| 8294 ** then the cursor still points to that page. In this case the first |
| 8295 ** call to balance() repairs the tree, and the if(...) condition is |
| 8296 ** never true. |
| 8297 ** |
| 8298 ** Otherwise, if the entry deleted was on an internal node page, then |
| 8299 ** pCur is pointing to the leaf page from which a cell was removed to |
| 8300 ** replace the cell deleted from the internal node. This is slightly |
| 8301 ** tricky as the leaf node may be underfull, and the internal node may |
| 8302 ** be either under or overfull. In this case run the balancing algorithm |
| 8303 ** on the leaf node first. If the balance proceeds far enough up the |
| 8304 ** tree that we can be sure that any problem in the internal node has |
| 8305 ** been corrected, so be it. Otherwise, after balancing the leaf node, |
| 8306 ** walk the cursor up the tree to the internal node and balance it as |
| 8307 ** well. */ |
| 8308 rc = balance(pCur); |
| 8309 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ |
| 8310 while( pCur->iPage>iCellDepth ){ |
| 8311 releasePage(pCur->apPage[pCur->iPage--]); |
| 8312 } |
| 8313 rc = balance(pCur); |
| 8314 } |
| 8315 |
| 8316 if( rc==SQLITE_OK ){ |
| 8317 if( bSkipnext ){ |
| 8318 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) ); |
| 8319 assert( pPage==pCur->apPage[pCur->iPage] || CORRUPT_DB ); |
| 8320 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell ); |
| 8321 pCur->eState = CURSOR_SKIPNEXT; |
| 8322 if( iCellIdx>=pPage->nCell ){ |
| 8323 pCur->skipNext = -1; |
| 8324 pCur->aiIdx[iCellDepth] = pPage->nCell-1; |
| 8325 }else{ |
| 8326 pCur->skipNext = 1; |
| 8327 } |
| 8328 }else{ |
| 8329 rc = moveToRoot(pCur); |
| 8330 if( bPreserve ){ |
| 8331 pCur->eState = CURSOR_REQUIRESEEK; |
| 8332 } |
| 8333 } |
| 8334 } |
| 8335 return rc; |
| 8336 } |
| 8337 |
| 8338 /* |
| 8339 ** Create a new BTree table. Write into *piTable the page |
| 8340 ** number for the root page of the new table. |
| 8341 ** |
| 8342 ** The type of type is determined by the flags parameter. Only the |
| 8343 ** following values of flags are currently in use. Other values for |
| 8344 ** flags might not work: |
| 8345 ** |
| 8346 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys |
| 8347 ** BTREE_ZERODATA Used for SQL indices |
| 8348 */ |
| 8349 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){ |
| 8350 BtShared *pBt = p->pBt; |
| 8351 MemPage *pRoot; |
| 8352 Pgno pgnoRoot; |
| 8353 int rc; |
| 8354 int ptfFlags; /* Page-type flage for the root page of new table */ |
| 8355 |
| 8356 assert( sqlite3BtreeHoldsMutex(p) ); |
| 8357 assert( pBt->inTransaction==TRANS_WRITE ); |
| 8358 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
| 8359 |
| 8360 #ifdef SQLITE_OMIT_AUTOVACUUM |
| 8361 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); |
| 8362 if( rc ){ |
| 8363 return rc; |
| 8364 } |
| 8365 #else |
| 8366 if( pBt->autoVacuum ){ |
| 8367 Pgno pgnoMove; /* Move a page here to make room for the root-page */ |
| 8368 MemPage *pPageMove; /* The page to move to. */ |
| 8369 |
| 8370 /* Creating a new table may probably require moving an existing database |
| 8371 ** to make room for the new tables root page. In case this page turns |
| 8372 ** out to be an overflow page, delete all overflow page-map caches |
| 8373 ** held by open cursors. |
| 8374 */ |
| 8375 invalidateAllOverflowCache(pBt); |
| 8376 |
| 8377 /* Read the value of meta[3] from the database to determine where the |
| 8378 ** root page of the new table should go. meta[3] is the largest root-page |
| 8379 ** created so far, so the new root-page is (meta[3]+1). |
| 8380 */ |
| 8381 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); |
| 8382 pgnoRoot++; |
| 8383 |
| 8384 /* The new root-page may not be allocated on a pointer-map page, or the |
| 8385 ** PENDING_BYTE page. |
| 8386 */ |
| 8387 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || |
| 8388 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ |
| 8389 pgnoRoot++; |
| 8390 } |
| 8391 assert( pgnoRoot>=3 || CORRUPT_DB ); |
| 8392 testcase( pgnoRoot<3 ); |
| 8393 |
| 8394 /* Allocate a page. The page that currently resides at pgnoRoot will |
| 8395 ** be moved to the allocated page (unless the allocated page happens |
| 8396 ** to reside at pgnoRoot). |
| 8397 */ |
| 8398 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); |
| 8399 if( rc!=SQLITE_OK ){ |
| 8400 return rc; |
| 8401 } |
| 8402 |
| 8403 if( pgnoMove!=pgnoRoot ){ |
| 8404 /* pgnoRoot is the page that will be used for the root-page of |
| 8405 ** the new table (assuming an error did not occur). But we were |
| 8406 ** allocated pgnoMove. If required (i.e. if it was not allocated |
| 8407 ** by extending the file), the current page at position pgnoMove |
| 8408 ** is already journaled. |
| 8409 */ |
| 8410 u8 eType = 0; |
| 8411 Pgno iPtrPage = 0; |
| 8412 |
| 8413 /* Save the positions of any open cursors. This is required in |
| 8414 ** case they are holding a reference to an xFetch reference |
| 8415 ** corresponding to page pgnoRoot. */ |
| 8416 rc = saveAllCursors(pBt, 0, 0); |
| 8417 releasePage(pPageMove); |
| 8418 if( rc!=SQLITE_OK ){ |
| 8419 return rc; |
| 8420 } |
| 8421 |
| 8422 /* Move the page currently at pgnoRoot to pgnoMove. */ |
| 8423 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); |
| 8424 if( rc!=SQLITE_OK ){ |
| 8425 return rc; |
| 8426 } |
| 8427 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); |
| 8428 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ |
| 8429 rc = SQLITE_CORRUPT_BKPT; |
| 8430 } |
| 8431 if( rc!=SQLITE_OK ){ |
| 8432 releasePage(pRoot); |
| 8433 return rc; |
| 8434 } |
| 8435 assert( eType!=PTRMAP_ROOTPAGE ); |
| 8436 assert( eType!=PTRMAP_FREEPAGE ); |
| 8437 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); |
| 8438 releasePage(pRoot); |
| 8439 |
| 8440 /* Obtain the page at pgnoRoot */ |
| 8441 if( rc!=SQLITE_OK ){ |
| 8442 return rc; |
| 8443 } |
| 8444 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); |
| 8445 if( rc!=SQLITE_OK ){ |
| 8446 return rc; |
| 8447 } |
| 8448 rc = sqlite3PagerWrite(pRoot->pDbPage); |
| 8449 if( rc!=SQLITE_OK ){ |
| 8450 releasePage(pRoot); |
| 8451 return rc; |
| 8452 } |
| 8453 }else{ |
| 8454 pRoot = pPageMove; |
| 8455 } |
| 8456 |
| 8457 /* Update the pointer-map and meta-data with the new root-page number. */ |
| 8458 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); |
| 8459 if( rc ){ |
| 8460 releasePage(pRoot); |
| 8461 return rc; |
| 8462 } |
| 8463 |
| 8464 /* When the new root page was allocated, page 1 was made writable in |
| 8465 ** order either to increase the database filesize, or to decrement the |
| 8466 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. |
| 8467 */ |
| 8468 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); |
| 8469 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); |
| 8470 if( NEVER(rc) ){ |
| 8471 releasePage(pRoot); |
| 8472 return rc; |
| 8473 } |
| 8474 |
| 8475 }else{ |
| 8476 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); |
| 8477 if( rc ) return rc; |
| 8478 } |
| 8479 #endif |
| 8480 assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); |
| 8481 if( createTabFlags & BTREE_INTKEY ){ |
| 8482 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; |
| 8483 }else{ |
| 8484 ptfFlags = PTF_ZERODATA | PTF_LEAF; |
| 8485 } |
| 8486 zeroPage(pRoot, ptfFlags); |
| 8487 sqlite3PagerUnref(pRoot->pDbPage); |
| 8488 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); |
| 8489 *piTable = (int)pgnoRoot; |
| 8490 return SQLITE_OK; |
| 8491 } |
| 8492 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){ |
| 8493 int rc; |
| 8494 sqlite3BtreeEnter(p); |
| 8495 rc = btreeCreateTable(p, piTable, flags); |
| 8496 sqlite3BtreeLeave(p); |
| 8497 return rc; |
| 8498 } |
| 8499 |
| 8500 /* |
| 8501 ** Erase the given database page and all its children. Return |
| 8502 ** the page to the freelist. |
| 8503 */ |
| 8504 static int clearDatabasePage( |
| 8505 BtShared *pBt, /* The BTree that contains the table */ |
| 8506 Pgno pgno, /* Page number to clear */ |
| 8507 int freePageFlag, /* Deallocate page if true */ |
| 8508 int *pnChange /* Add number of Cells freed to this counter */ |
| 8509 ){ |
| 8510 MemPage *pPage; |
| 8511 int rc; |
| 8512 unsigned char *pCell; |
| 8513 int i; |
| 8514 int hdr; |
| 8515 CellInfo info; |
| 8516 |
| 8517 assert( sqlite3_mutex_held(pBt->mutex) ); |
| 8518 if( pgno>btreePagecount(pBt) ){ |
| 8519 return SQLITE_CORRUPT_BKPT; |
| 8520 } |
| 8521 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0); |
| 8522 if( rc ) return rc; |
| 8523 if( pPage->bBusy ){ |
| 8524 rc = SQLITE_CORRUPT_BKPT; |
| 8525 goto cleardatabasepage_out; |
| 8526 } |
| 8527 pPage->bBusy = 1; |
| 8528 hdr = pPage->hdrOffset; |
| 8529 for(i=0; i<pPage->nCell; i++){ |
| 8530 pCell = findCell(pPage, i); |
| 8531 if( !pPage->leaf ){ |
| 8532 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); |
| 8533 if( rc ) goto cleardatabasepage_out; |
| 8534 } |
| 8535 rc = clearCell(pPage, pCell, &info); |
| 8536 if( rc ) goto cleardatabasepage_out; |
| 8537 } |
| 8538 if( !pPage->leaf ){ |
| 8539 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); |
| 8540 if( rc ) goto cleardatabasepage_out; |
| 8541 }else if( pnChange ){ |
| 8542 assert( pPage->intKey || CORRUPT_DB ); |
| 8543 testcase( !pPage->intKey ); |
| 8544 *pnChange += pPage->nCell; |
| 8545 } |
| 8546 if( freePageFlag ){ |
| 8547 freePage(pPage, &rc); |
| 8548 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ |
| 8549 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); |
| 8550 } |
| 8551 |
| 8552 cleardatabasepage_out: |
| 8553 pPage->bBusy = 0; |
| 8554 releasePage(pPage); |
| 8555 return rc; |
| 8556 } |
| 8557 |
| 8558 /* |
| 8559 ** Delete all information from a single table in the database. iTable is |
| 8560 ** the page number of the root of the table. After this routine returns, |
| 8561 ** the root page is empty, but still exists. |
| 8562 ** |
| 8563 ** This routine will fail with SQLITE_LOCKED if there are any open |
| 8564 ** read cursors on the table. Open write cursors are moved to the |
| 8565 ** root of the table. |
| 8566 ** |
| 8567 ** If pnChange is not NULL, then table iTable must be an intkey table. The |
| 8568 ** integer value pointed to by pnChange is incremented by the number of |
| 8569 ** entries in the table. |
| 8570 */ |
| 8571 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){ |
| 8572 int rc; |
| 8573 BtShared *pBt = p->pBt; |
| 8574 sqlite3BtreeEnter(p); |
| 8575 assert( p->inTrans==TRANS_WRITE ); |
| 8576 |
| 8577 rc = saveAllCursors(pBt, (Pgno)iTable, 0); |
| 8578 |
| 8579 if( SQLITE_OK==rc ){ |
| 8580 /* Invalidate all incrblob cursors open on table iTable (assuming iTable |
| 8581 ** is the root of a table b-tree - if it is not, the following call is |
| 8582 ** a no-op). */ |
| 8583 invalidateIncrblobCursors(p, 0, 1); |
| 8584 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); |
| 8585 } |
| 8586 sqlite3BtreeLeave(p); |
| 8587 return rc; |
| 8588 } |
| 8589 |
| 8590 /* |
| 8591 ** Delete all information from the single table that pCur is open on. |
| 8592 ** |
| 8593 ** This routine only work for pCur on an ephemeral table. |
| 8594 */ |
| 8595 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ |
| 8596 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); |
| 8597 } |
| 8598 |
| 8599 /* |
| 8600 ** Erase all information in a table and add the root of the table to |
| 8601 ** the freelist. Except, the root of the principle table (the one on |
| 8602 ** page 1) is never added to the freelist. |
| 8603 ** |
| 8604 ** This routine will fail with SQLITE_LOCKED if there are any open |
| 8605 ** cursors on the table. |
| 8606 ** |
| 8607 ** If AUTOVACUUM is enabled and the page at iTable is not the last |
| 8608 ** root page in the database file, then the last root page |
| 8609 ** in the database file is moved into the slot formerly occupied by |
| 8610 ** iTable and that last slot formerly occupied by the last root page |
| 8611 ** is added to the freelist instead of iTable. In this say, all |
| 8612 ** root pages are kept at the beginning of the database file, which |
| 8613 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the |
| 8614 ** page number that used to be the last root page in the file before |
| 8615 ** the move. If no page gets moved, *piMoved is set to 0. |
| 8616 ** The last root page is recorded in meta[3] and the value of |
| 8617 ** meta[3] is updated by this procedure. |
| 8618 */ |
| 8619 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ |
| 8620 int rc; |
| 8621 MemPage *pPage = 0; |
| 8622 BtShared *pBt = p->pBt; |
| 8623 |
| 8624 assert( sqlite3BtreeHoldsMutex(p) ); |
| 8625 assert( p->inTrans==TRANS_WRITE ); |
| 8626 assert( iTable>=2 ); |
| 8627 |
| 8628 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); |
| 8629 if( rc ) return rc; |
| 8630 rc = sqlite3BtreeClearTable(p, iTable, 0); |
| 8631 if( rc ){ |
| 8632 releasePage(pPage); |
| 8633 return rc; |
| 8634 } |
| 8635 |
| 8636 *piMoved = 0; |
| 8637 |
| 8638 #ifdef SQLITE_OMIT_AUTOVACUUM |
| 8639 freePage(pPage, &rc); |
| 8640 releasePage(pPage); |
| 8641 #else |
| 8642 if( pBt->autoVacuum ){ |
| 8643 Pgno maxRootPgno; |
| 8644 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); |
| 8645 |
| 8646 if( iTable==maxRootPgno ){ |
| 8647 /* If the table being dropped is the table with the largest root-page |
| 8648 ** number in the database, put the root page on the free list. |
| 8649 */ |
| 8650 freePage(pPage, &rc); |
| 8651 releasePage(pPage); |
| 8652 if( rc!=SQLITE_OK ){ |
| 8653 return rc; |
| 8654 } |
| 8655 }else{ |
| 8656 /* The table being dropped does not have the largest root-page |
| 8657 ** number in the database. So move the page that does into the |
| 8658 ** gap left by the deleted root-page. |
| 8659 */ |
| 8660 MemPage *pMove; |
| 8661 releasePage(pPage); |
| 8662 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); |
| 8663 if( rc!=SQLITE_OK ){ |
| 8664 return rc; |
| 8665 } |
| 8666 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); |
| 8667 releasePage(pMove); |
| 8668 if( rc!=SQLITE_OK ){ |
| 8669 return rc; |
| 8670 } |
| 8671 pMove = 0; |
| 8672 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); |
| 8673 freePage(pMove, &rc); |
| 8674 releasePage(pMove); |
| 8675 if( rc!=SQLITE_OK ){ |
| 8676 return rc; |
| 8677 } |
| 8678 *piMoved = maxRootPgno; |
| 8679 } |
| 8680 |
| 8681 /* Set the new 'max-root-page' value in the database header. This |
| 8682 ** is the old value less one, less one more if that happens to |
| 8683 ** be a root-page number, less one again if that is the |
| 8684 ** PENDING_BYTE_PAGE. |
| 8685 */ |
| 8686 maxRootPgno--; |
| 8687 while( maxRootPgno==PENDING_BYTE_PAGE(pBt) |
| 8688 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ |
| 8689 maxRootPgno--; |
| 8690 } |
| 8691 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); |
| 8692 |
| 8693 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); |
| 8694 }else{ |
| 8695 freePage(pPage, &rc); |
| 8696 releasePage(pPage); |
| 8697 } |
| 8698 #endif |
| 8699 return rc; |
| 8700 } |
| 8701 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ |
| 8702 int rc; |
| 8703 sqlite3BtreeEnter(p); |
| 8704 rc = btreeDropTable(p, iTable, piMoved); |
| 8705 sqlite3BtreeLeave(p); |
| 8706 return rc; |
| 8707 } |
| 8708 |
| 8709 |
| 8710 /* |
| 8711 ** This function may only be called if the b-tree connection already |
| 8712 ** has a read or write transaction open on the database. |
| 8713 ** |
| 8714 ** Read the meta-information out of a database file. Meta[0] |
| 8715 ** is the number of free pages currently in the database. Meta[1] |
| 8716 ** through meta[15] are available for use by higher layers. Meta[0] |
| 8717 ** is read-only, the others are read/write. |
| 8718 ** |
| 8719 ** The schema layer numbers meta values differently. At the schema |
| 8720 ** layer (and the SetCookie and ReadCookie opcodes) the number of |
| 8721 ** free pages is not visible. So Cookie[0] is the same as Meta[1]. |
| 8722 ** |
| 8723 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead |
| 8724 ** of reading the value out of the header, it instead loads the "DataVersion" |
| 8725 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the |
| 8726 ** database file. It is a number computed by the pager. But its access |
| 8727 ** pattern is the same as header meta values, and so it is convenient to |
| 8728 ** read it from this routine. |
| 8729 */ |
| 8730 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ |
| 8731 BtShared *pBt = p->pBt; |
| 8732 |
| 8733 sqlite3BtreeEnter(p); |
| 8734 assert( p->inTrans>TRANS_NONE ); |
| 8735 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) ); |
| 8736 assert( pBt->pPage1 ); |
| 8737 assert( idx>=0 && idx<=15 ); |
| 8738 |
| 8739 if( idx==BTREE_DATA_VERSION ){ |
| 8740 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion; |
| 8741 }else{ |
| 8742 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); |
| 8743 } |
| 8744 |
| 8745 /* If auto-vacuum is disabled in this build and this is an auto-vacuum |
| 8746 ** database, mark the database as read-only. */ |
| 8747 #ifdef SQLITE_OMIT_AUTOVACUUM |
| 8748 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ |
| 8749 pBt->btsFlags |= BTS_READ_ONLY; |
| 8750 } |
| 8751 #endif |
| 8752 |
| 8753 sqlite3BtreeLeave(p); |
| 8754 } |
| 8755 |
| 8756 /* |
| 8757 ** Write meta-information back into the database. Meta[0] is |
| 8758 ** read-only and may not be written. |
| 8759 */ |
| 8760 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ |
| 8761 BtShared *pBt = p->pBt; |
| 8762 unsigned char *pP1; |
| 8763 int rc; |
| 8764 assert( idx>=1 && idx<=15 ); |
| 8765 sqlite3BtreeEnter(p); |
| 8766 assert( p->inTrans==TRANS_WRITE ); |
| 8767 assert( pBt->pPage1!=0 ); |
| 8768 pP1 = pBt->pPage1->aData; |
| 8769 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
| 8770 if( rc==SQLITE_OK ){ |
| 8771 put4byte(&pP1[36 + idx*4], iMeta); |
| 8772 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 8773 if( idx==BTREE_INCR_VACUUM ){ |
| 8774 assert( pBt->autoVacuum || iMeta==0 ); |
| 8775 assert( iMeta==0 || iMeta==1 ); |
| 8776 pBt->incrVacuum = (u8)iMeta; |
| 8777 } |
| 8778 #endif |
| 8779 } |
| 8780 sqlite3BtreeLeave(p); |
| 8781 return rc; |
| 8782 } |
| 8783 |
| 8784 #ifndef SQLITE_OMIT_BTREECOUNT |
| 8785 /* |
| 8786 ** The first argument, pCur, is a cursor opened on some b-tree. Count the |
| 8787 ** number of entries in the b-tree and write the result to *pnEntry. |
| 8788 ** |
| 8789 ** SQLITE_OK is returned if the operation is successfully executed. |
| 8790 ** Otherwise, if an error is encountered (i.e. an IO error or database |
| 8791 ** corruption) an SQLite error code is returned. |
| 8792 */ |
| 8793 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){ |
| 8794 i64 nEntry = 0; /* Value to return in *pnEntry */ |
| 8795 int rc; /* Return code */ |
| 8796 |
| 8797 if( pCur->pgnoRoot==0 ){ |
| 8798 *pnEntry = 0; |
| 8799 return SQLITE_OK; |
| 8800 } |
| 8801 rc = moveToRoot(pCur); |
| 8802 |
| 8803 /* Unless an error occurs, the following loop runs one iteration for each |
| 8804 ** page in the B-Tree structure (not including overflow pages). |
| 8805 */ |
| 8806 while( rc==SQLITE_OK ){ |
| 8807 int iIdx; /* Index of child node in parent */ |
| 8808 MemPage *pPage; /* Current page of the b-tree */ |
| 8809 |
| 8810 /* If this is a leaf page or the tree is not an int-key tree, then |
| 8811 ** this page contains countable entries. Increment the entry counter |
| 8812 ** accordingly. |
| 8813 */ |
| 8814 pPage = pCur->apPage[pCur->iPage]; |
| 8815 if( pPage->leaf || !pPage->intKey ){ |
| 8816 nEntry += pPage->nCell; |
| 8817 } |
| 8818 |
| 8819 /* pPage is a leaf node. This loop navigates the cursor so that it |
| 8820 ** points to the first interior cell that it points to the parent of |
| 8821 ** the next page in the tree that has not yet been visited. The |
| 8822 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell |
| 8823 ** of the page, or to the number of cells in the page if the next page |
| 8824 ** to visit is the right-child of its parent. |
| 8825 ** |
| 8826 ** If all pages in the tree have been visited, return SQLITE_OK to the |
| 8827 ** caller. |
| 8828 */ |
| 8829 if( pPage->leaf ){ |
| 8830 do { |
| 8831 if( pCur->iPage==0 ){ |
| 8832 /* All pages of the b-tree have been visited. Return successfully. */ |
| 8833 *pnEntry = nEntry; |
| 8834 return moveToRoot(pCur); |
| 8835 } |
| 8836 moveToParent(pCur); |
| 8837 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell ); |
| 8838 |
| 8839 pCur->aiIdx[pCur->iPage]++; |
| 8840 pPage = pCur->apPage[pCur->iPage]; |
| 8841 } |
| 8842 |
| 8843 /* Descend to the child node of the cell that the cursor currently |
| 8844 ** points at. This is the right-child if (iIdx==pPage->nCell). |
| 8845 */ |
| 8846 iIdx = pCur->aiIdx[pCur->iPage]; |
| 8847 if( iIdx==pPage->nCell ){ |
| 8848 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); |
| 8849 }else{ |
| 8850 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); |
| 8851 } |
| 8852 } |
| 8853 |
| 8854 /* An error has occurred. Return an error code. */ |
| 8855 return rc; |
| 8856 } |
| 8857 #endif |
| 8858 |
| 8859 /* |
| 8860 ** Return the pager associated with a BTree. This routine is used for |
| 8861 ** testing and debugging only. |
| 8862 */ |
| 8863 Pager *sqlite3BtreePager(Btree *p){ |
| 8864 return p->pBt->pPager; |
| 8865 } |
| 8866 |
| 8867 #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| 8868 /* |
| 8869 ** Append a message to the error message string. |
| 8870 */ |
| 8871 static void checkAppendMsg( |
| 8872 IntegrityCk *pCheck, |
| 8873 const char *zFormat, |
| 8874 ... |
| 8875 ){ |
| 8876 va_list ap; |
| 8877 if( !pCheck->mxErr ) return; |
| 8878 pCheck->mxErr--; |
| 8879 pCheck->nErr++; |
| 8880 va_start(ap, zFormat); |
| 8881 if( pCheck->errMsg.nChar ){ |
| 8882 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1); |
| 8883 } |
| 8884 if( pCheck->zPfx ){ |
| 8885 sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2); |
| 8886 } |
| 8887 sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap); |
| 8888 va_end(ap); |
| 8889 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){ |
| 8890 pCheck->mallocFailed = 1; |
| 8891 } |
| 8892 } |
| 8893 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| 8894 |
| 8895 #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| 8896 |
| 8897 /* |
| 8898 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that |
| 8899 ** corresponds to page iPg is already set. |
| 8900 */ |
| 8901 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ |
| 8902 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); |
| 8903 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); |
| 8904 } |
| 8905 |
| 8906 /* |
| 8907 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. |
| 8908 */ |
| 8909 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ |
| 8910 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); |
| 8911 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); |
| 8912 } |
| 8913 |
| 8914 |
| 8915 /* |
| 8916 ** Add 1 to the reference count for page iPage. If this is the second |
| 8917 ** reference to the page, add an error message to pCheck->zErrMsg. |
| 8918 ** Return 1 if there are 2 or more references to the page and 0 if |
| 8919 ** if this is the first reference to the page. |
| 8920 ** |
| 8921 ** Also check that the page number is in bounds. |
| 8922 */ |
| 8923 static int checkRef(IntegrityCk *pCheck, Pgno iPage){ |
| 8924 if( iPage==0 ) return 1; |
| 8925 if( iPage>pCheck->nPage ){ |
| 8926 checkAppendMsg(pCheck, "invalid page number %d", iPage); |
| 8927 return 1; |
| 8928 } |
| 8929 if( getPageReferenced(pCheck, iPage) ){ |
| 8930 checkAppendMsg(pCheck, "2nd reference to page %d", iPage); |
| 8931 return 1; |
| 8932 } |
| 8933 setPageReferenced(pCheck, iPage); |
| 8934 return 0; |
| 8935 } |
| 8936 |
| 8937 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 8938 /* |
| 8939 ** Check that the entry in the pointer-map for page iChild maps to |
| 8940 ** page iParent, pointer type ptrType. If not, append an error message |
| 8941 ** to pCheck. |
| 8942 */ |
| 8943 static void checkPtrmap( |
| 8944 IntegrityCk *pCheck, /* Integrity check context */ |
| 8945 Pgno iChild, /* Child page number */ |
| 8946 u8 eType, /* Expected pointer map type */ |
| 8947 Pgno iParent /* Expected pointer map parent page number */ |
| 8948 ){ |
| 8949 int rc; |
| 8950 u8 ePtrmapType; |
| 8951 Pgno iPtrmapParent; |
| 8952 |
| 8953 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); |
| 8954 if( rc!=SQLITE_OK ){ |
| 8955 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1; |
| 8956 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); |
| 8957 return; |
| 8958 } |
| 8959 |
| 8960 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ |
| 8961 checkAppendMsg(pCheck, |
| 8962 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", |
| 8963 iChild, eType, iParent, ePtrmapType, iPtrmapParent); |
| 8964 } |
| 8965 } |
| 8966 #endif |
| 8967 |
| 8968 /* |
| 8969 ** Check the integrity of the freelist or of an overflow page list. |
| 8970 ** Verify that the number of pages on the list is N. |
| 8971 */ |
| 8972 static void checkList( |
| 8973 IntegrityCk *pCheck, /* Integrity checking context */ |
| 8974 int isFreeList, /* True for a freelist. False for overflow page list */ |
| 8975 int iPage, /* Page number for first page in the list */ |
| 8976 int N /* Expected number of pages in the list */ |
| 8977 ){ |
| 8978 int i; |
| 8979 int expected = N; |
| 8980 int iFirst = iPage; |
| 8981 while( N-- > 0 && pCheck->mxErr ){ |
| 8982 DbPage *pOvflPage; |
| 8983 unsigned char *pOvflData; |
| 8984 if( iPage<1 ){ |
| 8985 checkAppendMsg(pCheck, |
| 8986 "%d of %d pages missing from overflow list starting at %d", |
| 8987 N+1, expected, iFirst); |
| 8988 break; |
| 8989 } |
| 8990 if( checkRef(pCheck, iPage) ) break; |
| 8991 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){ |
| 8992 checkAppendMsg(pCheck, "failed to get page %d", iPage); |
| 8993 break; |
| 8994 } |
| 8995 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); |
| 8996 if( isFreeList ){ |
| 8997 int n = get4byte(&pOvflData[4]); |
| 8998 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 8999 if( pCheck->pBt->autoVacuum ){ |
| 9000 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); |
| 9001 } |
| 9002 #endif |
| 9003 if( n>(int)pCheck->pBt->usableSize/4-2 ){ |
| 9004 checkAppendMsg(pCheck, |
| 9005 "freelist leaf count too big on page %d", iPage); |
| 9006 N--; |
| 9007 }else{ |
| 9008 for(i=0; i<n; i++){ |
| 9009 Pgno iFreePage = get4byte(&pOvflData[8+i*4]); |
| 9010 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 9011 if( pCheck->pBt->autoVacuum ){ |
| 9012 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); |
| 9013 } |
| 9014 #endif |
| 9015 checkRef(pCheck, iFreePage); |
| 9016 } |
| 9017 N -= n; |
| 9018 } |
| 9019 } |
| 9020 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 9021 else{ |
| 9022 /* If this database supports auto-vacuum and iPage is not the last |
| 9023 ** page in this overflow list, check that the pointer-map entry for |
| 9024 ** the following page matches iPage. |
| 9025 */ |
| 9026 if( pCheck->pBt->autoVacuum && N>0 ){ |
| 9027 i = get4byte(pOvflData); |
| 9028 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); |
| 9029 } |
| 9030 } |
| 9031 #endif |
| 9032 iPage = get4byte(pOvflData); |
| 9033 sqlite3PagerUnref(pOvflPage); |
| 9034 |
| 9035 if( isFreeList && N<(iPage!=0) ){ |
| 9036 checkAppendMsg(pCheck, "free-page count in header is too small"); |
| 9037 } |
| 9038 } |
| 9039 } |
| 9040 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| 9041 |
| 9042 /* |
| 9043 ** An implementation of a min-heap. |
| 9044 ** |
| 9045 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the |
| 9046 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2] |
| 9047 ** and aHeap[N*2+1]. |
| 9048 ** |
| 9049 ** The heap property is this: Every node is less than or equal to both |
| 9050 ** of its daughter nodes. A consequence of the heap property is that the |
| 9051 ** root node aHeap[1] is always the minimum value currently in the heap. |
| 9052 ** |
| 9053 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto |
| 9054 ** the heap, preserving the heap property. The btreeHeapPull() routine |
| 9055 ** removes the root element from the heap (the minimum value in the heap) |
| 9056 ** and then moves other nodes around as necessary to preserve the heap |
| 9057 ** property. |
| 9058 ** |
| 9059 ** This heap is used for cell overlap and coverage testing. Each u32 |
| 9060 ** entry represents the span of a cell or freeblock on a btree page. |
| 9061 ** The upper 16 bits are the index of the first byte of a range and the |
| 9062 ** lower 16 bits are the index of the last byte of that range. |
| 9063 */ |
| 9064 static void btreeHeapInsert(u32 *aHeap, u32 x){ |
| 9065 u32 j, i = ++aHeap[0]; |
| 9066 aHeap[i] = x; |
| 9067 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){ |
| 9068 x = aHeap[j]; |
| 9069 aHeap[j] = aHeap[i]; |
| 9070 aHeap[i] = x; |
| 9071 i = j; |
| 9072 } |
| 9073 } |
| 9074 static int btreeHeapPull(u32 *aHeap, u32 *pOut){ |
| 9075 u32 j, i, x; |
| 9076 if( (x = aHeap[0])==0 ) return 0; |
| 9077 *pOut = aHeap[1]; |
| 9078 aHeap[1] = aHeap[x]; |
| 9079 aHeap[x] = 0xffffffff; |
| 9080 aHeap[0]--; |
| 9081 i = 1; |
| 9082 while( (j = i*2)<=aHeap[0] ){ |
| 9083 if( aHeap[j]>aHeap[j+1] ) j++; |
| 9084 if( aHeap[i]<aHeap[j] ) break; |
| 9085 x = aHeap[i]; |
| 9086 aHeap[i] = aHeap[j]; |
| 9087 aHeap[j] = x; |
| 9088 i = j; |
| 9089 } |
| 9090 return 1; |
| 9091 } |
| 9092 |
| 9093 #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| 9094 /* |
| 9095 ** Do various sanity checks on a single page of a tree. Return |
| 9096 ** the tree depth. Root pages return 0. Parents of root pages |
| 9097 ** return 1, and so forth. |
| 9098 ** |
| 9099 ** These checks are done: |
| 9100 ** |
| 9101 ** 1. Make sure that cells and freeblocks do not overlap |
| 9102 ** but combine to completely cover the page. |
| 9103 ** 2. Make sure integer cell keys are in order. |
| 9104 ** 3. Check the integrity of overflow pages. |
| 9105 ** 4. Recursively call checkTreePage on all children. |
| 9106 ** 5. Verify that the depth of all children is the same. |
| 9107 */ |
| 9108 static int checkTreePage( |
| 9109 IntegrityCk *pCheck, /* Context for the sanity check */ |
| 9110 int iPage, /* Page number of the page to check */ |
| 9111 i64 *piMinKey, /* Write minimum integer primary key here */ |
| 9112 i64 maxKey /* Error if integer primary key greater than this */ |
| 9113 ){ |
| 9114 MemPage *pPage = 0; /* The page being analyzed */ |
| 9115 int i; /* Loop counter */ |
| 9116 int rc; /* Result code from subroutine call */ |
| 9117 int depth = -1, d2; /* Depth of a subtree */ |
| 9118 int pgno; /* Page number */ |
| 9119 int nFrag; /* Number of fragmented bytes on the page */ |
| 9120 int hdr; /* Offset to the page header */ |
| 9121 int cellStart; /* Offset to the start of the cell pointer array */ |
| 9122 int nCell; /* Number of cells */ |
| 9123 int doCoverageCheck = 1; /* True if cell coverage checking should be done */ |
| 9124 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey |
| 9125 ** False if IPK must be strictly less than maxKey */ |
| 9126 u8 *data; /* Page content */ |
| 9127 u8 *pCell; /* Cell content */ |
| 9128 u8 *pCellIdx; /* Next element of the cell pointer array */ |
| 9129 BtShared *pBt; /* The BtShared object that owns pPage */ |
| 9130 u32 pc; /* Address of a cell */ |
| 9131 u32 usableSize; /* Usable size of the page */ |
| 9132 u32 contentOffset; /* Offset to the start of the cell content area */ |
| 9133 u32 *heap = 0; /* Min-heap used for checking cell coverage */ |
| 9134 u32 x, prev = 0; /* Next and previous entry on the min-heap */ |
| 9135 const char *saved_zPfx = pCheck->zPfx; |
| 9136 int saved_v1 = pCheck->v1; |
| 9137 int saved_v2 = pCheck->v2; |
| 9138 u8 savedIsInit = 0; |
| 9139 |
| 9140 /* Check that the page exists |
| 9141 */ |
| 9142 pBt = pCheck->pBt; |
| 9143 usableSize = pBt->usableSize; |
| 9144 if( iPage==0 ) return 0; |
| 9145 if( checkRef(pCheck, iPage) ) return 0; |
| 9146 pCheck->zPfx = "Page %d: "; |
| 9147 pCheck->v1 = iPage; |
| 9148 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){ |
| 9149 checkAppendMsg(pCheck, |
| 9150 "unable to get the page. error code=%d", rc); |
| 9151 goto end_of_check; |
| 9152 } |
| 9153 |
| 9154 /* Clear MemPage.isInit to make sure the corruption detection code in |
| 9155 ** btreeInitPage() is executed. */ |
| 9156 savedIsInit = pPage->isInit; |
| 9157 pPage->isInit = 0; |
| 9158 if( (rc = btreeInitPage(pPage))!=0 ){ |
| 9159 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ |
| 9160 checkAppendMsg(pCheck, |
| 9161 "btreeInitPage() returns error code %d", rc); |
| 9162 goto end_of_check; |
| 9163 } |
| 9164 data = pPage->aData; |
| 9165 hdr = pPage->hdrOffset; |
| 9166 |
| 9167 /* Set up for cell analysis */ |
| 9168 pCheck->zPfx = "On tree page %d cell %d: "; |
| 9169 contentOffset = get2byteNotZero(&data[hdr+5]); |
| 9170 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ |
| 9171 |
| 9172 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the |
| 9173 ** number of cells on the page. */ |
| 9174 nCell = get2byte(&data[hdr+3]); |
| 9175 assert( pPage->nCell==nCell ); |
| 9176 |
| 9177 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page |
| 9178 ** immediately follows the b-tree page header. */ |
| 9179 cellStart = hdr + 12 - 4*pPage->leaf; |
| 9180 assert( pPage->aCellIdx==&data[cellStart] ); |
| 9181 pCellIdx = &data[cellStart + 2*(nCell-1)]; |
| 9182 |
| 9183 if( !pPage->leaf ){ |
| 9184 /* Analyze the right-child page of internal pages */ |
| 9185 pgno = get4byte(&data[hdr+8]); |
| 9186 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 9187 if( pBt->autoVacuum ){ |
| 9188 pCheck->zPfx = "On page %d at right child: "; |
| 9189 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); |
| 9190 } |
| 9191 #endif |
| 9192 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey); |
| 9193 keyCanBeEqual = 0; |
| 9194 }else{ |
| 9195 /* For leaf pages, the coverage check will occur in the same loop |
| 9196 ** as the other cell checks, so initialize the heap. */ |
| 9197 heap = pCheck->heap; |
| 9198 heap[0] = 0; |
| 9199 } |
| 9200 |
| 9201 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte |
| 9202 ** integer offsets to the cell contents. */ |
| 9203 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){ |
| 9204 CellInfo info; |
| 9205 |
| 9206 /* Check cell size */ |
| 9207 pCheck->v2 = i; |
| 9208 assert( pCellIdx==&data[cellStart + i*2] ); |
| 9209 pc = get2byteAligned(pCellIdx); |
| 9210 pCellIdx -= 2; |
| 9211 if( pc<contentOffset || pc>usableSize-4 ){ |
| 9212 checkAppendMsg(pCheck, "Offset %d out of range %d..%d", |
| 9213 pc, contentOffset, usableSize-4); |
| 9214 doCoverageCheck = 0; |
| 9215 continue; |
| 9216 } |
| 9217 pCell = &data[pc]; |
| 9218 pPage->xParseCell(pPage, pCell, &info); |
| 9219 if( pc+info.nSize>usableSize ){ |
| 9220 checkAppendMsg(pCheck, "Extends off end of page"); |
| 9221 doCoverageCheck = 0; |
| 9222 continue; |
| 9223 } |
| 9224 |
| 9225 /* Check for integer primary key out of range */ |
| 9226 if( pPage->intKey ){ |
| 9227 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){ |
| 9228 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey); |
| 9229 } |
| 9230 maxKey = info.nKey; |
| 9231 } |
| 9232 |
| 9233 /* Check the content overflow list */ |
| 9234 if( info.nPayload>info.nLocal ){ |
| 9235 int nPage; /* Number of pages on the overflow chain */ |
| 9236 Pgno pgnoOvfl; /* First page of the overflow chain */ |
| 9237 assert( pc + info.nSize - 4 <= usableSize ); |
| 9238 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4); |
| 9239 pgnoOvfl = get4byte(&pCell[info.nSize - 4]); |
| 9240 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 9241 if( pBt->autoVacuum ){ |
| 9242 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); |
| 9243 } |
| 9244 #endif |
| 9245 checkList(pCheck, 0, pgnoOvfl, nPage); |
| 9246 } |
| 9247 |
| 9248 if( !pPage->leaf ){ |
| 9249 /* Check sanity of left child page for internal pages */ |
| 9250 pgno = get4byte(pCell); |
| 9251 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 9252 if( pBt->autoVacuum ){ |
| 9253 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); |
| 9254 } |
| 9255 #endif |
| 9256 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey); |
| 9257 keyCanBeEqual = 0; |
| 9258 if( d2!=depth ){ |
| 9259 checkAppendMsg(pCheck, "Child page depth differs"); |
| 9260 depth = d2; |
| 9261 } |
| 9262 }else{ |
| 9263 /* Populate the coverage-checking heap for leaf pages */ |
| 9264 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1)); |
| 9265 } |
| 9266 } |
| 9267 *piMinKey = maxKey; |
| 9268 |
| 9269 /* Check for complete coverage of the page |
| 9270 */ |
| 9271 pCheck->zPfx = 0; |
| 9272 if( doCoverageCheck && pCheck->mxErr>0 ){ |
| 9273 /* For leaf pages, the min-heap has already been initialized and the |
| 9274 ** cells have already been inserted. But for internal pages, that has |
| 9275 ** not yet been done, so do it now */ |
| 9276 if( !pPage->leaf ){ |
| 9277 heap = pCheck->heap; |
| 9278 heap[0] = 0; |
| 9279 for(i=nCell-1; i>=0; i--){ |
| 9280 u32 size; |
| 9281 pc = get2byteAligned(&data[cellStart+i*2]); |
| 9282 size = pPage->xCellSize(pPage, &data[pc]); |
| 9283 btreeHeapInsert(heap, (pc<<16)|(pc+size-1)); |
| 9284 } |
| 9285 } |
| 9286 /* Add the freeblocks to the min-heap |
| 9287 ** |
| 9288 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header |
| 9289 ** is the offset of the first freeblock, or zero if there are no |
| 9290 ** freeblocks on the page. |
| 9291 */ |
| 9292 i = get2byte(&data[hdr+1]); |
| 9293 while( i>0 ){ |
| 9294 int size, j; |
| 9295 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */ |
| 9296 size = get2byte(&data[i+2]); |
| 9297 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */ |
| 9298 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1)); |
| 9299 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a |
| 9300 ** big-endian integer which is the offset in the b-tree page of the next |
| 9301 ** freeblock in the chain, or zero if the freeblock is the last on the |
| 9302 ** chain. */ |
| 9303 j = get2byte(&data[i]); |
| 9304 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of |
| 9305 ** increasing offset. */ |
| 9306 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */ |
| 9307 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */ |
| 9308 i = j; |
| 9309 } |
| 9310 /* Analyze the min-heap looking for overlap between cells and/or |
| 9311 ** freeblocks, and counting the number of untracked bytes in nFrag. |
| 9312 ** |
| 9313 ** Each min-heap entry is of the form: (start_address<<16)|end_address. |
| 9314 ** There is an implied first entry the covers the page header, the cell |
| 9315 ** pointer index, and the gap between the cell pointer index and the start |
| 9316 ** of cell content. |
| 9317 ** |
| 9318 ** The loop below pulls entries from the min-heap in order and compares |
| 9319 ** the start_address against the previous end_address. If there is an |
| 9320 ** overlap, that means bytes are used multiple times. If there is a gap, |
| 9321 ** that gap is added to the fragmentation count. |
| 9322 */ |
| 9323 nFrag = 0; |
| 9324 prev = contentOffset - 1; /* Implied first min-heap entry */ |
| 9325 while( btreeHeapPull(heap,&x) ){ |
| 9326 if( (prev&0xffff)>=(x>>16) ){ |
| 9327 checkAppendMsg(pCheck, |
| 9328 "Multiple uses for byte %u of page %d", x>>16, iPage); |
| 9329 break; |
| 9330 }else{ |
| 9331 nFrag += (x>>16) - (prev&0xffff) - 1; |
| 9332 prev = x; |
| 9333 } |
| 9334 } |
| 9335 nFrag += usableSize - (prev&0xffff) - 1; |
| 9336 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments |
| 9337 ** is stored in the fifth field of the b-tree page header. |
| 9338 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the |
| 9339 ** number of fragmented free bytes within the cell content area. |
| 9340 */ |
| 9341 if( heap[0]==0 && nFrag!=data[hdr+7] ){ |
| 9342 checkAppendMsg(pCheck, |
| 9343 "Fragmentation of %d bytes reported as %d on page %d", |
| 9344 nFrag, data[hdr+7], iPage); |
| 9345 } |
| 9346 } |
| 9347 |
| 9348 end_of_check: |
| 9349 if( !doCoverageCheck ) pPage->isInit = savedIsInit; |
| 9350 releasePage(pPage); |
| 9351 pCheck->zPfx = saved_zPfx; |
| 9352 pCheck->v1 = saved_v1; |
| 9353 pCheck->v2 = saved_v2; |
| 9354 return depth+1; |
| 9355 } |
| 9356 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| 9357 |
| 9358 #ifndef SQLITE_OMIT_INTEGRITY_CHECK |
| 9359 /* |
| 9360 ** This routine does a complete check of the given BTree file. aRoot[] is |
| 9361 ** an array of pages numbers were each page number is the root page of |
| 9362 ** a table. nRoot is the number of entries in aRoot. |
| 9363 ** |
| 9364 ** A read-only or read-write transaction must be opened before calling |
| 9365 ** this function. |
| 9366 ** |
| 9367 ** Write the number of error seen in *pnErr. Except for some memory |
| 9368 ** allocation errors, an error message held in memory obtained from |
| 9369 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is |
| 9370 ** returned. If a memory allocation error occurs, NULL is returned. |
| 9371 */ |
| 9372 char *sqlite3BtreeIntegrityCheck( |
| 9373 Btree *p, /* The btree to be checked */ |
| 9374 int *aRoot, /* An array of root pages numbers for individual trees */ |
| 9375 int nRoot, /* Number of entries in aRoot[] */ |
| 9376 int mxErr, /* Stop reporting errors after this many */ |
| 9377 int *pnErr /* Write number of errors seen to this variable */ |
| 9378 ){ |
| 9379 Pgno i; |
| 9380 IntegrityCk sCheck; |
| 9381 BtShared *pBt = p->pBt; |
| 9382 int savedDbFlags = pBt->db->flags; |
| 9383 char zErr[100]; |
| 9384 VVA_ONLY( int nRef ); |
| 9385 |
| 9386 sqlite3BtreeEnter(p); |
| 9387 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); |
| 9388 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) ); |
| 9389 assert( nRef>=0 ); |
| 9390 sCheck.pBt = pBt; |
| 9391 sCheck.pPager = pBt->pPager; |
| 9392 sCheck.nPage = btreePagecount(sCheck.pBt); |
| 9393 sCheck.mxErr = mxErr; |
| 9394 sCheck.nErr = 0; |
| 9395 sCheck.mallocFailed = 0; |
| 9396 sCheck.zPfx = 0; |
| 9397 sCheck.v1 = 0; |
| 9398 sCheck.v2 = 0; |
| 9399 sCheck.aPgRef = 0; |
| 9400 sCheck.heap = 0; |
| 9401 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); |
| 9402 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL; |
| 9403 if( sCheck.nPage==0 ){ |
| 9404 goto integrity_ck_cleanup; |
| 9405 } |
| 9406 |
| 9407 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); |
| 9408 if( !sCheck.aPgRef ){ |
| 9409 sCheck.mallocFailed = 1; |
| 9410 goto integrity_ck_cleanup; |
| 9411 } |
| 9412 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize ); |
| 9413 if( sCheck.heap==0 ){ |
| 9414 sCheck.mallocFailed = 1; |
| 9415 goto integrity_ck_cleanup; |
| 9416 } |
| 9417 |
| 9418 i = PENDING_BYTE_PAGE(pBt); |
| 9419 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); |
| 9420 |
| 9421 /* Check the integrity of the freelist |
| 9422 */ |
| 9423 sCheck.zPfx = "Main freelist: "; |
| 9424 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), |
| 9425 get4byte(&pBt->pPage1->aData[36])); |
| 9426 sCheck.zPfx = 0; |
| 9427 |
| 9428 /* Check all the tables. |
| 9429 */ |
| 9430 testcase( pBt->db->flags & SQLITE_CellSizeCk ); |
| 9431 pBt->db->flags &= ~SQLITE_CellSizeCk; |
| 9432 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ |
| 9433 i64 notUsed; |
| 9434 if( aRoot[i]==0 ) continue; |
| 9435 #ifndef SQLITE_OMIT_AUTOVACUUM |
| 9436 if( pBt->autoVacuum && aRoot[i]>1 ){ |
| 9437 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); |
| 9438 } |
| 9439 #endif |
| 9440 checkTreePage(&sCheck, aRoot[i], ¬Used, LARGEST_INT64); |
| 9441 } |
| 9442 pBt->db->flags = savedDbFlags; |
| 9443 |
| 9444 /* Make sure every page in the file is referenced |
| 9445 */ |
| 9446 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ |
| 9447 #ifdef SQLITE_OMIT_AUTOVACUUM |
| 9448 if( getPageReferenced(&sCheck, i)==0 ){ |
| 9449 checkAppendMsg(&sCheck, "Page %d is never used", i); |
| 9450 } |
| 9451 #else |
| 9452 /* If the database supports auto-vacuum, make sure no tables contain |
| 9453 ** references to pointer-map pages. |
| 9454 */ |
| 9455 if( getPageReferenced(&sCheck, i)==0 && |
| 9456 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ |
| 9457 checkAppendMsg(&sCheck, "Page %d is never used", i); |
| 9458 } |
| 9459 if( getPageReferenced(&sCheck, i)!=0 && |
| 9460 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ |
| 9461 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); |
| 9462 } |
| 9463 #endif |
| 9464 } |
| 9465 |
| 9466 /* Clean up and report errors. |
| 9467 */ |
| 9468 integrity_ck_cleanup: |
| 9469 sqlite3PageFree(sCheck.heap); |
| 9470 sqlite3_free(sCheck.aPgRef); |
| 9471 if( sCheck.mallocFailed ){ |
| 9472 sqlite3StrAccumReset(&sCheck.errMsg); |
| 9473 sCheck.nErr++; |
| 9474 } |
| 9475 *pnErr = sCheck.nErr; |
| 9476 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg); |
| 9477 /* Make sure this analysis did not leave any unref() pages. */ |
| 9478 assert( nRef==sqlite3PagerRefcount(pBt->pPager) ); |
| 9479 sqlite3BtreeLeave(p); |
| 9480 return sqlite3StrAccumFinish(&sCheck.errMsg); |
| 9481 } |
| 9482 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
| 9483 |
| 9484 /* |
| 9485 ** Return the full pathname of the underlying database file. Return |
| 9486 ** an empty string if the database is in-memory or a TEMP database. |
| 9487 ** |
| 9488 ** The pager filename is invariant as long as the pager is |
| 9489 ** open so it is safe to access without the BtShared mutex. |
| 9490 */ |
| 9491 const char *sqlite3BtreeGetFilename(Btree *p){ |
| 9492 assert( p->pBt->pPager!=0 ); |
| 9493 return sqlite3PagerFilename(p->pBt->pPager, 1); |
| 9494 } |
| 9495 |
| 9496 /* |
| 9497 ** Return the pathname of the journal file for this database. The return |
| 9498 ** value of this routine is the same regardless of whether the journal file |
| 9499 ** has been created or not. |
| 9500 ** |
| 9501 ** The pager journal filename is invariant as long as the pager is |
| 9502 ** open so it is safe to access without the BtShared mutex. |
| 9503 */ |
| 9504 const char *sqlite3BtreeGetJournalname(Btree *p){ |
| 9505 assert( p->pBt->pPager!=0 ); |
| 9506 return sqlite3PagerJournalname(p->pBt->pPager); |
| 9507 } |
| 9508 |
| 9509 /* |
| 9510 ** Return non-zero if a transaction is active. |
| 9511 */ |
| 9512 int sqlite3BtreeIsInTrans(Btree *p){ |
| 9513 assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); |
| 9514 return (p && (p->inTrans==TRANS_WRITE)); |
| 9515 } |
| 9516 |
| 9517 #ifndef SQLITE_OMIT_WAL |
| 9518 /* |
| 9519 ** Run a checkpoint on the Btree passed as the first argument. |
| 9520 ** |
| 9521 ** Return SQLITE_LOCKED if this or any other connection has an open |
| 9522 ** transaction on the shared-cache the argument Btree is connected to. |
| 9523 ** |
| 9524 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. |
| 9525 */ |
| 9526 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ |
| 9527 int rc = SQLITE_OK; |
| 9528 if( p ){ |
| 9529 BtShared *pBt = p->pBt; |
| 9530 sqlite3BtreeEnter(p); |
| 9531 if( pBt->inTransaction!=TRANS_NONE ){ |
| 9532 rc = SQLITE_LOCKED; |
| 9533 }else{ |
| 9534 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt); |
| 9535 } |
| 9536 sqlite3BtreeLeave(p); |
| 9537 } |
| 9538 return rc; |
| 9539 } |
| 9540 #endif |
| 9541 |
| 9542 /* |
| 9543 ** Return non-zero if a read (or write) transaction is active. |
| 9544 */ |
| 9545 int sqlite3BtreeIsInReadTrans(Btree *p){ |
| 9546 assert( p ); |
| 9547 assert( sqlite3_mutex_held(p->db->mutex) ); |
| 9548 return p->inTrans!=TRANS_NONE; |
| 9549 } |
| 9550 |
| 9551 int sqlite3BtreeIsInBackup(Btree *p){ |
| 9552 assert( p ); |
| 9553 assert( sqlite3_mutex_held(p->db->mutex) ); |
| 9554 return p->nBackup!=0; |
| 9555 } |
| 9556 |
| 9557 /* |
| 9558 ** This function returns a pointer to a blob of memory associated with |
| 9559 ** a single shared-btree. The memory is used by client code for its own |
| 9560 ** purposes (for example, to store a high-level schema associated with |
| 9561 ** the shared-btree). The btree layer manages reference counting issues. |
| 9562 ** |
| 9563 ** The first time this is called on a shared-btree, nBytes bytes of memory |
| 9564 ** are allocated, zeroed, and returned to the caller. For each subsequent |
| 9565 ** call the nBytes parameter is ignored and a pointer to the same blob |
| 9566 ** of memory returned. |
| 9567 ** |
| 9568 ** If the nBytes parameter is 0 and the blob of memory has not yet been |
| 9569 ** allocated, a null pointer is returned. If the blob has already been |
| 9570 ** allocated, it is returned as normal. |
| 9571 ** |
| 9572 ** Just before the shared-btree is closed, the function passed as the |
| 9573 ** xFree argument when the memory allocation was made is invoked on the |
| 9574 ** blob of allocated memory. The xFree function should not call sqlite3_free() |
| 9575 ** on the memory, the btree layer does that. |
| 9576 */ |
| 9577 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ |
| 9578 BtShared *pBt = p->pBt; |
| 9579 sqlite3BtreeEnter(p); |
| 9580 if( !pBt->pSchema && nBytes ){ |
| 9581 pBt->pSchema = sqlite3DbMallocZero(0, nBytes); |
| 9582 pBt->xFreeSchema = xFree; |
| 9583 } |
| 9584 sqlite3BtreeLeave(p); |
| 9585 return pBt->pSchema; |
| 9586 } |
| 9587 |
| 9588 /* |
| 9589 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared |
| 9590 ** btree as the argument handle holds an exclusive lock on the |
| 9591 ** sqlite_master table. Otherwise SQLITE_OK. |
| 9592 */ |
| 9593 int sqlite3BtreeSchemaLocked(Btree *p){ |
| 9594 int rc; |
| 9595 assert( sqlite3_mutex_held(p->db->mutex) ); |
| 9596 sqlite3BtreeEnter(p); |
| 9597 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); |
| 9598 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); |
| 9599 sqlite3BtreeLeave(p); |
| 9600 return rc; |
| 9601 } |
| 9602 |
| 9603 |
| 9604 #ifndef SQLITE_OMIT_SHARED_CACHE |
| 9605 /* |
| 9606 ** Obtain a lock on the table whose root page is iTab. The |
| 9607 ** lock is a write lock if isWritelock is true or a read lock |
| 9608 ** if it is false. |
| 9609 */ |
| 9610 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ |
| 9611 int rc = SQLITE_OK; |
| 9612 assert( p->inTrans!=TRANS_NONE ); |
| 9613 if( p->sharable ){ |
| 9614 u8 lockType = READ_LOCK + isWriteLock; |
| 9615 assert( READ_LOCK+1==WRITE_LOCK ); |
| 9616 assert( isWriteLock==0 || isWriteLock==1 ); |
| 9617 |
| 9618 sqlite3BtreeEnter(p); |
| 9619 rc = querySharedCacheTableLock(p, iTab, lockType); |
| 9620 if( rc==SQLITE_OK ){ |
| 9621 rc = setSharedCacheTableLock(p, iTab, lockType); |
| 9622 } |
| 9623 sqlite3BtreeLeave(p); |
| 9624 } |
| 9625 return rc; |
| 9626 } |
| 9627 #endif |
| 9628 |
| 9629 #ifndef SQLITE_OMIT_INCRBLOB |
| 9630 /* |
| 9631 ** Argument pCsr must be a cursor opened for writing on an |
| 9632 ** INTKEY table currently pointing at a valid table entry. |
| 9633 ** This function modifies the data stored as part of that entry. |
| 9634 ** |
| 9635 ** Only the data content may only be modified, it is not possible to |
| 9636 ** change the length of the data stored. If this function is called with |
| 9637 ** parameters that attempt to write past the end of the existing data, |
| 9638 ** no modifications are made and SQLITE_CORRUPT is returned. |
| 9639 */ |
| 9640 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ |
| 9641 int rc; |
| 9642 assert( cursorOwnsBtShared(pCsr) ); |
| 9643 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); |
| 9644 assert( pCsr->curFlags & BTCF_Incrblob ); |
| 9645 |
| 9646 rc = restoreCursorPosition(pCsr); |
| 9647 if( rc!=SQLITE_OK ){ |
| 9648 return rc; |
| 9649 } |
| 9650 assert( pCsr->eState!=CURSOR_REQUIRESEEK ); |
| 9651 if( pCsr->eState!=CURSOR_VALID ){ |
| 9652 return SQLITE_ABORT; |
| 9653 } |
| 9654 |
| 9655 /* Save the positions of all other cursors open on this table. This is |
| 9656 ** required in case any of them are holding references to an xFetch |
| 9657 ** version of the b-tree page modified by the accessPayload call below. |
| 9658 ** |
| 9659 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() |
| 9660 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence |
| 9661 ** saveAllCursors can only return SQLITE_OK. |
| 9662 */ |
| 9663 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); |
| 9664 assert( rc==SQLITE_OK ); |
| 9665 |
| 9666 /* Check some assumptions: |
| 9667 ** (a) the cursor is open for writing, |
| 9668 ** (b) there is a read/write transaction open, |
| 9669 ** (c) the connection holds a write-lock on the table (if required), |
| 9670 ** (d) there are no conflicting read-locks, and |
| 9671 ** (e) the cursor points at a valid row of an intKey table. |
| 9672 */ |
| 9673 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ |
| 9674 return SQLITE_READONLY; |
| 9675 } |
| 9676 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 |
| 9677 && pCsr->pBt->inTransaction==TRANS_WRITE ); |
| 9678 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); |
| 9679 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); |
| 9680 assert( pCsr->apPage[pCsr->iPage]->intKey ); |
| 9681 |
| 9682 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); |
| 9683 } |
| 9684 |
| 9685 /* |
| 9686 ** Mark this cursor as an incremental blob cursor. |
| 9687 */ |
| 9688 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ |
| 9689 pCur->curFlags |= BTCF_Incrblob; |
| 9690 pCur->pBtree->hasIncrblobCur = 1; |
| 9691 } |
| 9692 #endif |
| 9693 |
| 9694 /* |
| 9695 ** Set both the "read version" (single byte at byte offset 18) and |
| 9696 ** "write version" (single byte at byte offset 19) fields in the database |
| 9697 ** header to iVersion. |
| 9698 */ |
| 9699 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ |
| 9700 BtShared *pBt = pBtree->pBt; |
| 9701 int rc; /* Return code */ |
| 9702 |
| 9703 assert( iVersion==1 || iVersion==2 ); |
| 9704 |
| 9705 /* If setting the version fields to 1, do not automatically open the |
| 9706 ** WAL connection, even if the version fields are currently set to 2. |
| 9707 */ |
| 9708 pBt->btsFlags &= ~BTS_NO_WAL; |
| 9709 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; |
| 9710 |
| 9711 rc = sqlite3BtreeBeginTrans(pBtree, 0); |
| 9712 if( rc==SQLITE_OK ){ |
| 9713 u8 *aData = pBt->pPage1->aData; |
| 9714 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ |
| 9715 rc = sqlite3BtreeBeginTrans(pBtree, 2); |
| 9716 if( rc==SQLITE_OK ){ |
| 9717 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
| 9718 if( rc==SQLITE_OK ){ |
| 9719 aData[18] = (u8)iVersion; |
| 9720 aData[19] = (u8)iVersion; |
| 9721 } |
| 9722 } |
| 9723 } |
| 9724 } |
| 9725 |
| 9726 pBt->btsFlags &= ~BTS_NO_WAL; |
| 9727 return rc; |
| 9728 } |
| 9729 |
| 9730 /* |
| 9731 ** Return true if the cursor has a hint specified. This routine is |
| 9732 ** only used from within assert() statements |
| 9733 */ |
| 9734 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){ |
| 9735 return (pCsr->hints & mask)!=0; |
| 9736 } |
| 9737 |
| 9738 /* |
| 9739 ** Return true if the given Btree is read-only. |
| 9740 */ |
| 9741 int sqlite3BtreeIsReadonly(Btree *p){ |
| 9742 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; |
| 9743 } |
| 9744 |
| 9745 /* |
| 9746 ** Return the size of the header added to each page by this module. |
| 9747 */ |
| 9748 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); } |
| 9749 |
| 9750 #if !defined(SQLITE_OMIT_SHARED_CACHE) |
| 9751 /* |
| 9752 ** Return true if the Btree passed as the only argument is sharable. |
| 9753 */ |
| 9754 int sqlite3BtreeSharable(Btree *p){ |
| 9755 return p->sharable; |
| 9756 } |
| 9757 |
| 9758 /* |
| 9759 ** Return the number of connections to the BtShared object accessed by |
| 9760 ** the Btree handle passed as the only argument. For private caches |
| 9761 ** this is always 1. For shared caches it may be 1 or greater. |
| 9762 */ |
| 9763 int sqlite3BtreeConnectionCount(Btree *p){ |
| 9764 testcase( p->sharable ); |
| 9765 return p->pBt->nRef; |
| 9766 } |
| 9767 #endif |
OLD | NEW |