OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2008 February 16 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This file implements an object that represents a fixed-length |
| 13 ** bitmap. Bits are numbered starting with 1. |
| 14 ** |
| 15 ** A bitmap is used to record which pages of a database file have been |
| 16 ** journalled during a transaction, or which pages have the "dont-write" |
| 17 ** property. Usually only a few pages are meet either condition. |
| 18 ** So the bitmap is usually sparse and has low cardinality. |
| 19 ** But sometimes (for example when during a DROP of a large table) most |
| 20 ** or all of the pages in a database can get journalled. In those cases, |
| 21 ** the bitmap becomes dense with high cardinality. The algorithm needs |
| 22 ** to handle both cases well. |
| 23 ** |
| 24 ** The size of the bitmap is fixed when the object is created. |
| 25 ** |
| 26 ** All bits are clear when the bitmap is created. Individual bits |
| 27 ** may be set or cleared one at a time. |
| 28 ** |
| 29 ** Test operations are about 100 times more common that set operations. |
| 30 ** Clear operations are exceedingly rare. There are usually between |
| 31 ** 5 and 500 set operations per Bitvec object, though the number of sets can |
| 32 ** sometimes grow into tens of thousands or larger. The size of the |
| 33 ** Bitvec object is the number of pages in the database file at the |
| 34 ** start of a transaction, and is thus usually less than a few thousand, |
| 35 ** but can be as large as 2 billion for a really big database. |
| 36 */ |
| 37 #include "sqliteInt.h" |
| 38 |
| 39 /* Size of the Bitvec structure in bytes. */ |
| 40 #define BITVEC_SZ 512 |
| 41 |
| 42 /* Round the union size down to the nearest pointer boundary, since that's how |
| 43 ** it will be aligned within the Bitvec struct. */ |
| 44 #define BITVEC_USIZE \ |
| 45 (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*)) |
| 46 |
| 47 /* Type of the array "element" for the bitmap representation. |
| 48 ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE. |
| 49 ** Setting this to the "natural word" size of your CPU may improve |
| 50 ** performance. */ |
| 51 #define BITVEC_TELEM u8 |
| 52 /* Size, in bits, of the bitmap element. */ |
| 53 #define BITVEC_SZELEM 8 |
| 54 /* Number of elements in a bitmap array. */ |
| 55 #define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM)) |
| 56 /* Number of bits in the bitmap array. */ |
| 57 #define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM) |
| 58 |
| 59 /* Number of u32 values in hash table. */ |
| 60 #define BITVEC_NINT (BITVEC_USIZE/sizeof(u32)) |
| 61 /* Maximum number of entries in hash table before |
| 62 ** sub-dividing and re-hashing. */ |
| 63 #define BITVEC_MXHASH (BITVEC_NINT/2) |
| 64 /* Hashing function for the aHash representation. |
| 65 ** Empirical testing showed that the *37 multiplier |
| 66 ** (an arbitrary prime)in the hash function provided |
| 67 ** no fewer collisions than the no-op *1. */ |
| 68 #define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT) |
| 69 |
| 70 #define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *)) |
| 71 |
| 72 |
| 73 /* |
| 74 ** A bitmap is an instance of the following structure. |
| 75 ** |
| 76 ** This bitmap records the existence of zero or more bits |
| 77 ** with values between 1 and iSize, inclusive. |
| 78 ** |
| 79 ** There are three possible representations of the bitmap. |
| 80 ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight |
| 81 ** bitmap. The least significant bit is bit 1. |
| 82 ** |
| 83 ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is |
| 84 ** a hash table that will hold up to BITVEC_MXHASH distinct values. |
| 85 ** |
| 86 ** Otherwise, the value i is redirected into one of BITVEC_NPTR |
| 87 ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap |
| 88 ** handles up to iDivisor separate values of i. apSub[0] holds |
| 89 ** values between 1 and iDivisor. apSub[1] holds values between |
| 90 ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between |
| 91 ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized |
| 92 ** to hold deal with values between 1 and iDivisor. |
| 93 */ |
| 94 struct Bitvec { |
| 95 u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */ |
| 96 u32 nSet; /* Number of bits that are set - only valid for aHash |
| 97 ** element. Max is BITVEC_NINT. For BITVEC_SZ of 512, |
| 98 ** this would be 125. */ |
| 99 u32 iDivisor; /* Number of bits handled by each apSub[] entry. */ |
| 100 /* Should >=0 for apSub element. */ |
| 101 /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */ |
| 102 /* For a BITVEC_SZ of 512, this would be 34,359,739. */ |
| 103 union { |
| 104 BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */ |
| 105 u32 aHash[BITVEC_NINT]; /* Hash table representation */ |
| 106 Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */ |
| 107 } u; |
| 108 }; |
| 109 |
| 110 /* |
| 111 ** Create a new bitmap object able to handle bits between 0 and iSize, |
| 112 ** inclusive. Return a pointer to the new object. Return NULL if |
| 113 ** malloc fails. |
| 114 */ |
| 115 Bitvec *sqlite3BitvecCreate(u32 iSize){ |
| 116 Bitvec *p; |
| 117 assert( sizeof(*p)==BITVEC_SZ ); |
| 118 p = sqlite3MallocZero( sizeof(*p) ); |
| 119 if( p ){ |
| 120 p->iSize = iSize; |
| 121 } |
| 122 return p; |
| 123 } |
| 124 |
| 125 /* |
| 126 ** Check to see if the i-th bit is set. Return true or false. |
| 127 ** If p is NULL (if the bitmap has not been created) or if |
| 128 ** i is out of range, then return false. |
| 129 */ |
| 130 int sqlite3BitvecTestNotNull(Bitvec *p, u32 i){ |
| 131 assert( p!=0 ); |
| 132 i--; |
| 133 if( i>=p->iSize ) return 0; |
| 134 while( p->iDivisor ){ |
| 135 u32 bin = i/p->iDivisor; |
| 136 i = i%p->iDivisor; |
| 137 p = p->u.apSub[bin]; |
| 138 if (!p) { |
| 139 return 0; |
| 140 } |
| 141 } |
| 142 if( p->iSize<=BITVEC_NBIT ){ |
| 143 return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0; |
| 144 } else{ |
| 145 u32 h = BITVEC_HASH(i++); |
| 146 while( p->u.aHash[h] ){ |
| 147 if( p->u.aHash[h]==i ) return 1; |
| 148 h = (h+1) % BITVEC_NINT; |
| 149 } |
| 150 return 0; |
| 151 } |
| 152 } |
| 153 int sqlite3BitvecTest(Bitvec *p, u32 i){ |
| 154 return p!=0 && sqlite3BitvecTestNotNull(p,i); |
| 155 } |
| 156 |
| 157 /* |
| 158 ** Set the i-th bit. Return 0 on success and an error code if |
| 159 ** anything goes wrong. |
| 160 ** |
| 161 ** This routine might cause sub-bitmaps to be allocated. Failing |
| 162 ** to get the memory needed to hold the sub-bitmap is the only |
| 163 ** that can go wrong with an insert, assuming p and i are valid. |
| 164 ** |
| 165 ** The calling function must ensure that p is a valid Bitvec object |
| 166 ** and that the value for "i" is within range of the Bitvec object. |
| 167 ** Otherwise the behavior is undefined. |
| 168 */ |
| 169 int sqlite3BitvecSet(Bitvec *p, u32 i){ |
| 170 u32 h; |
| 171 if( p==0 ) return SQLITE_OK; |
| 172 assert( i>0 ); |
| 173 assert( i<=p->iSize ); |
| 174 i--; |
| 175 while((p->iSize > BITVEC_NBIT) && p->iDivisor) { |
| 176 u32 bin = i/p->iDivisor; |
| 177 i = i%p->iDivisor; |
| 178 if( p->u.apSub[bin]==0 ){ |
| 179 p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor ); |
| 180 if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM_BKPT; |
| 181 } |
| 182 p = p->u.apSub[bin]; |
| 183 } |
| 184 if( p->iSize<=BITVEC_NBIT ){ |
| 185 p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1)); |
| 186 return SQLITE_OK; |
| 187 } |
| 188 h = BITVEC_HASH(i++); |
| 189 /* if there wasn't a hash collision, and this doesn't */ |
| 190 /* completely fill the hash, then just add it without */ |
| 191 /* worring about sub-dividing and re-hashing. */ |
| 192 if( !p->u.aHash[h] ){ |
| 193 if (p->nSet<(BITVEC_NINT-1)) { |
| 194 goto bitvec_set_end; |
| 195 } else { |
| 196 goto bitvec_set_rehash; |
| 197 } |
| 198 } |
| 199 /* there was a collision, check to see if it's already */ |
| 200 /* in hash, if not, try to find a spot for it */ |
| 201 do { |
| 202 if( p->u.aHash[h]==i ) return SQLITE_OK; |
| 203 h++; |
| 204 if( h>=BITVEC_NINT ) h = 0; |
| 205 } while( p->u.aHash[h] ); |
| 206 /* we didn't find it in the hash. h points to the first */ |
| 207 /* available free spot. check to see if this is going to */ |
| 208 /* make our hash too "full". */ |
| 209 bitvec_set_rehash: |
| 210 if( p->nSet>=BITVEC_MXHASH ){ |
| 211 unsigned int j; |
| 212 int rc; |
| 213 u32 *aiValues = sqlite3StackAllocRaw(0, sizeof(p->u.aHash)); |
| 214 if( aiValues==0 ){ |
| 215 return SQLITE_NOMEM_BKPT; |
| 216 }else{ |
| 217 memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); |
| 218 memset(p->u.apSub, 0, sizeof(p->u.apSub)); |
| 219 p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR; |
| 220 rc = sqlite3BitvecSet(p, i); |
| 221 for(j=0; j<BITVEC_NINT; j++){ |
| 222 if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]); |
| 223 } |
| 224 sqlite3StackFree(0, aiValues); |
| 225 return rc; |
| 226 } |
| 227 } |
| 228 bitvec_set_end: |
| 229 p->nSet++; |
| 230 p->u.aHash[h] = i; |
| 231 return SQLITE_OK; |
| 232 } |
| 233 |
| 234 /* |
| 235 ** Clear the i-th bit. |
| 236 ** |
| 237 ** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage |
| 238 ** that BitvecClear can use to rebuilt its hash table. |
| 239 */ |
| 240 void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){ |
| 241 if( p==0 ) return; |
| 242 assert( i>0 ); |
| 243 i--; |
| 244 while( p->iDivisor ){ |
| 245 u32 bin = i/p->iDivisor; |
| 246 i = i%p->iDivisor; |
| 247 p = p->u.apSub[bin]; |
| 248 if (!p) { |
| 249 return; |
| 250 } |
| 251 } |
| 252 if( p->iSize<=BITVEC_NBIT ){ |
| 253 p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1))); |
| 254 }else{ |
| 255 unsigned int j; |
| 256 u32 *aiValues = pBuf; |
| 257 memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); |
| 258 memset(p->u.aHash, 0, sizeof(p->u.aHash)); |
| 259 p->nSet = 0; |
| 260 for(j=0; j<BITVEC_NINT; j++){ |
| 261 if( aiValues[j] && aiValues[j]!=(i+1) ){ |
| 262 u32 h = BITVEC_HASH(aiValues[j]-1); |
| 263 p->nSet++; |
| 264 while( p->u.aHash[h] ){ |
| 265 h++; |
| 266 if( h>=BITVEC_NINT ) h = 0; |
| 267 } |
| 268 p->u.aHash[h] = aiValues[j]; |
| 269 } |
| 270 } |
| 271 } |
| 272 } |
| 273 |
| 274 /* |
| 275 ** Destroy a bitmap object. Reclaim all memory used. |
| 276 */ |
| 277 void sqlite3BitvecDestroy(Bitvec *p){ |
| 278 if( p==0 ) return; |
| 279 if( p->iDivisor ){ |
| 280 unsigned int i; |
| 281 for(i=0; i<BITVEC_NPTR; i++){ |
| 282 sqlite3BitvecDestroy(p->u.apSub[i]); |
| 283 } |
| 284 } |
| 285 sqlite3_free(p); |
| 286 } |
| 287 |
| 288 /* |
| 289 ** Return the value of the iSize parameter specified when Bitvec *p |
| 290 ** was created. |
| 291 */ |
| 292 u32 sqlite3BitvecSize(Bitvec *p){ |
| 293 return p->iSize; |
| 294 } |
| 295 |
| 296 #ifndef SQLITE_UNTESTABLE |
| 297 /* |
| 298 ** Let V[] be an array of unsigned characters sufficient to hold |
| 299 ** up to N bits. Let I be an integer between 0 and N. 0<=I<N. |
| 300 ** Then the following macros can be used to set, clear, or test |
| 301 ** individual bits within V. |
| 302 */ |
| 303 #define SETBIT(V,I) V[I>>3] |= (1<<(I&7)) |
| 304 #define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7)) |
| 305 #define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0 |
| 306 |
| 307 /* |
| 308 ** This routine runs an extensive test of the Bitvec code. |
| 309 ** |
| 310 ** The input is an array of integers that acts as a program |
| 311 ** to test the Bitvec. The integers are opcodes followed |
| 312 ** by 0, 1, or 3 operands, depending on the opcode. Another |
| 313 ** opcode follows immediately after the last operand. |
| 314 ** |
| 315 ** There are 6 opcodes numbered from 0 through 5. 0 is the |
| 316 ** "halt" opcode and causes the test to end. |
| 317 ** |
| 318 ** 0 Halt and return the number of errors |
| 319 ** 1 N S X Set N bits beginning with S and incrementing by X |
| 320 ** 2 N S X Clear N bits beginning with S and incrementing by X |
| 321 ** 3 N Set N randomly chosen bits |
| 322 ** 4 N Clear N randomly chosen bits |
| 323 ** 5 N S X Set N bits from S increment X in array only, not in bitvec |
| 324 ** |
| 325 ** The opcodes 1 through 4 perform set and clear operations are performed |
| 326 ** on both a Bitvec object and on a linear array of bits obtained from malloc. |
| 327 ** Opcode 5 works on the linear array only, not on the Bitvec. |
| 328 ** Opcode 5 is used to deliberately induce a fault in order to |
| 329 ** confirm that error detection works. |
| 330 ** |
| 331 ** At the conclusion of the test the linear array is compared |
| 332 ** against the Bitvec object. If there are any differences, |
| 333 ** an error is returned. If they are the same, zero is returned. |
| 334 ** |
| 335 ** If a memory allocation error occurs, return -1. |
| 336 */ |
| 337 int sqlite3BitvecBuiltinTest(int sz, int *aOp){ |
| 338 Bitvec *pBitvec = 0; |
| 339 unsigned char *pV = 0; |
| 340 int rc = -1; |
| 341 int i, nx, pc, op; |
| 342 void *pTmpSpace; |
| 343 |
| 344 /* Allocate the Bitvec to be tested and a linear array of |
| 345 ** bits to act as the reference */ |
| 346 pBitvec = sqlite3BitvecCreate( sz ); |
| 347 pV = sqlite3MallocZero( (sz+7)/8 + 1 ); |
| 348 pTmpSpace = sqlite3_malloc64(BITVEC_SZ); |
| 349 if( pBitvec==0 || pV==0 || pTmpSpace==0 ) goto bitvec_end; |
| 350 |
| 351 /* NULL pBitvec tests */ |
| 352 sqlite3BitvecSet(0, 1); |
| 353 sqlite3BitvecClear(0, 1, pTmpSpace); |
| 354 |
| 355 /* Run the program */ |
| 356 pc = 0; |
| 357 while( (op = aOp[pc])!=0 ){ |
| 358 switch( op ){ |
| 359 case 1: |
| 360 case 2: |
| 361 case 5: { |
| 362 nx = 4; |
| 363 i = aOp[pc+2] - 1; |
| 364 aOp[pc+2] += aOp[pc+3]; |
| 365 break; |
| 366 } |
| 367 case 3: |
| 368 case 4: |
| 369 default: { |
| 370 nx = 2; |
| 371 sqlite3_randomness(sizeof(i), &i); |
| 372 break; |
| 373 } |
| 374 } |
| 375 if( (--aOp[pc+1]) > 0 ) nx = 0; |
| 376 pc += nx; |
| 377 i = (i & 0x7fffffff)%sz; |
| 378 if( (op & 1)!=0 ){ |
| 379 SETBIT(pV, (i+1)); |
| 380 if( op!=5 ){ |
| 381 if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end; |
| 382 } |
| 383 }else{ |
| 384 CLEARBIT(pV, (i+1)); |
| 385 sqlite3BitvecClear(pBitvec, i+1, pTmpSpace); |
| 386 } |
| 387 } |
| 388 |
| 389 /* Test to make sure the linear array exactly matches the |
| 390 ** Bitvec object. Start with the assumption that they do |
| 391 ** match (rc==0). Change rc to non-zero if a discrepancy |
| 392 ** is found. |
| 393 */ |
| 394 rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1) |
| 395 + sqlite3BitvecTest(pBitvec, 0) |
| 396 + (sqlite3BitvecSize(pBitvec) - sz); |
| 397 for(i=1; i<=sz; i++){ |
| 398 if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){ |
| 399 rc = i; |
| 400 break; |
| 401 } |
| 402 } |
| 403 |
| 404 /* Free allocated structure */ |
| 405 bitvec_end: |
| 406 sqlite3_free(pTmpSpace); |
| 407 sqlite3_free(pV); |
| 408 sqlite3BitvecDestroy(pBitvec); |
| 409 return rc; |
| 410 } |
| 411 #endif /* SQLITE_UNTESTABLE */ |
OLD | NEW |