OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2001 September 15 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This file contains code for implementations of the r-tree and r*-tree |
| 13 ** algorithms packaged as an SQLite virtual table module. |
| 14 */ |
| 15 |
| 16 /* |
| 17 ** Database Format of R-Tree Tables |
| 18 ** -------------------------------- |
| 19 ** |
| 20 ** The data structure for a single virtual r-tree table is stored in three |
| 21 ** native SQLite tables declared as follows. In each case, the '%' character |
| 22 ** in the table name is replaced with the user-supplied name of the r-tree |
| 23 ** table. |
| 24 ** |
| 25 ** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB) |
| 26 ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER) |
| 27 ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER) |
| 28 ** |
| 29 ** The data for each node of the r-tree structure is stored in the %_node |
| 30 ** table. For each node that is not the root node of the r-tree, there is |
| 31 ** an entry in the %_parent table associating the node with its parent. |
| 32 ** And for each row of data in the table, there is an entry in the %_rowid |
| 33 ** table that maps from the entries rowid to the id of the node that it |
| 34 ** is stored on. |
| 35 ** |
| 36 ** The root node of an r-tree always exists, even if the r-tree table is |
| 37 ** empty. The nodeno of the root node is always 1. All other nodes in the |
| 38 ** table must be the same size as the root node. The content of each node |
| 39 ** is formatted as follows: |
| 40 ** |
| 41 ** 1. If the node is the root node (node 1), then the first 2 bytes |
| 42 ** of the node contain the tree depth as a big-endian integer. |
| 43 ** For non-root nodes, the first 2 bytes are left unused. |
| 44 ** |
| 45 ** 2. The next 2 bytes contain the number of entries currently |
| 46 ** stored in the node. |
| 47 ** |
| 48 ** 3. The remainder of the node contains the node entries. Each entry |
| 49 ** consists of a single 8-byte integer followed by an even number |
| 50 ** of 4-byte coordinates. For leaf nodes the integer is the rowid |
| 51 ** of a record. For internal nodes it is the node number of a |
| 52 ** child page. |
| 53 */ |
| 54 |
| 55 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE) |
| 56 |
| 57 #ifndef SQLITE_CORE |
| 58 #include "sqlite3ext.h" |
| 59 SQLITE_EXTENSION_INIT1 |
| 60 #else |
| 61 #include "sqlite3.h" |
| 62 #endif |
| 63 |
| 64 #include <string.h> |
| 65 #include <assert.h> |
| 66 #include <stdio.h> |
| 67 |
| 68 #ifndef SQLITE_AMALGAMATION |
| 69 #include "sqlite3rtree.h" |
| 70 typedef sqlite3_int64 i64; |
| 71 typedef sqlite3_uint64 u64; |
| 72 typedef unsigned char u8; |
| 73 typedef unsigned short u16; |
| 74 typedef unsigned int u32; |
| 75 #endif |
| 76 |
| 77 /* The following macro is used to suppress compiler warnings. |
| 78 */ |
| 79 #ifndef UNUSED_PARAMETER |
| 80 # define UNUSED_PARAMETER(x) (void)(x) |
| 81 #endif |
| 82 |
| 83 typedef struct Rtree Rtree; |
| 84 typedef struct RtreeCursor RtreeCursor; |
| 85 typedef struct RtreeNode RtreeNode; |
| 86 typedef struct RtreeCell RtreeCell; |
| 87 typedef struct RtreeConstraint RtreeConstraint; |
| 88 typedef struct RtreeMatchArg RtreeMatchArg; |
| 89 typedef struct RtreeGeomCallback RtreeGeomCallback; |
| 90 typedef union RtreeCoord RtreeCoord; |
| 91 typedef struct RtreeSearchPoint RtreeSearchPoint; |
| 92 |
| 93 /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ |
| 94 #define RTREE_MAX_DIMENSIONS 5 |
| 95 |
| 96 /* Size of hash table Rtree.aHash. This hash table is not expected to |
| 97 ** ever contain very many entries, so a fixed number of buckets is |
| 98 ** used. |
| 99 */ |
| 100 #define HASHSIZE 97 |
| 101 |
| 102 /* The xBestIndex method of this virtual table requires an estimate of |
| 103 ** the number of rows in the virtual table to calculate the costs of |
| 104 ** various strategies. If possible, this estimate is loaded from the |
| 105 ** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum). |
| 106 ** Otherwise, if no sqlite_stat1 entry is available, use |
| 107 ** RTREE_DEFAULT_ROWEST. |
| 108 */ |
| 109 #define RTREE_DEFAULT_ROWEST 1048576 |
| 110 #define RTREE_MIN_ROWEST 100 |
| 111 |
| 112 /* |
| 113 ** An rtree virtual-table object. |
| 114 */ |
| 115 struct Rtree { |
| 116 sqlite3_vtab base; /* Base class. Must be first */ |
| 117 sqlite3 *db; /* Host database connection */ |
| 118 int iNodeSize; /* Size in bytes of each node in the node table */ |
| 119 u8 nDim; /* Number of dimensions */ |
| 120 u8 nDim2; /* Twice the number of dimensions */ |
| 121 u8 eCoordType; /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */ |
| 122 u8 nBytesPerCell; /* Bytes consumed per cell */ |
| 123 u8 inWrTrans; /* True if inside write transaction */ |
| 124 int iDepth; /* Current depth of the r-tree structure */ |
| 125 char *zDb; /* Name of database containing r-tree table */ |
| 126 char *zName; /* Name of r-tree table */ |
| 127 u32 nBusy; /* Current number of users of this structure */ |
| 128 i64 nRowEst; /* Estimated number of rows in this table */ |
| 129 u32 nCursor; /* Number of open cursors */ |
| 130 |
| 131 /* List of nodes removed during a CondenseTree operation. List is |
| 132 ** linked together via the pointer normally used for hash chains - |
| 133 ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree |
| 134 ** headed by the node (leaf nodes have RtreeNode.iNode==0). |
| 135 */ |
| 136 RtreeNode *pDeleted; |
| 137 int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */ |
| 138 |
| 139 /* Blob I/O on xxx_node */ |
| 140 sqlite3_blob *pNodeBlob; |
| 141 |
| 142 /* Statements to read/write/delete a record from xxx_node */ |
| 143 sqlite3_stmt *pWriteNode; |
| 144 sqlite3_stmt *pDeleteNode; |
| 145 |
| 146 /* Statements to read/write/delete a record from xxx_rowid */ |
| 147 sqlite3_stmt *pReadRowid; |
| 148 sqlite3_stmt *pWriteRowid; |
| 149 sqlite3_stmt *pDeleteRowid; |
| 150 |
| 151 /* Statements to read/write/delete a record from xxx_parent */ |
| 152 sqlite3_stmt *pReadParent; |
| 153 sqlite3_stmt *pWriteParent; |
| 154 sqlite3_stmt *pDeleteParent; |
| 155 |
| 156 RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ |
| 157 }; |
| 158 |
| 159 /* Possible values for Rtree.eCoordType: */ |
| 160 #define RTREE_COORD_REAL32 0 |
| 161 #define RTREE_COORD_INT32 1 |
| 162 |
| 163 /* |
| 164 ** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will |
| 165 ** only deal with integer coordinates. No floating point operations |
| 166 ** will be done. |
| 167 */ |
| 168 #ifdef SQLITE_RTREE_INT_ONLY |
| 169 typedef sqlite3_int64 RtreeDValue; /* High accuracy coordinate */ |
| 170 typedef int RtreeValue; /* Low accuracy coordinate */ |
| 171 # define RTREE_ZERO 0 |
| 172 #else |
| 173 typedef double RtreeDValue; /* High accuracy coordinate */ |
| 174 typedef float RtreeValue; /* Low accuracy coordinate */ |
| 175 # define RTREE_ZERO 0.0 |
| 176 #endif |
| 177 |
| 178 /* |
| 179 ** When doing a search of an r-tree, instances of the following structure |
| 180 ** record intermediate results from the tree walk. |
| 181 ** |
| 182 ** The id is always a node-id. For iLevel>=1 the id is the node-id of |
| 183 ** the node that the RtreeSearchPoint represents. When iLevel==0, however, |
| 184 ** the id is of the parent node and the cell that RtreeSearchPoint |
| 185 ** represents is the iCell-th entry in the parent node. |
| 186 */ |
| 187 struct RtreeSearchPoint { |
| 188 RtreeDValue rScore; /* The score for this node. Smallest goes first. */ |
| 189 sqlite3_int64 id; /* Node ID */ |
| 190 u8 iLevel; /* 0=entries. 1=leaf node. 2+ for higher */ |
| 191 u8 eWithin; /* PARTLY_WITHIN or FULLY_WITHIN */ |
| 192 u8 iCell; /* Cell index within the node */ |
| 193 }; |
| 194 |
| 195 /* |
| 196 ** The minimum number of cells allowed for a node is a third of the |
| 197 ** maximum. In Gutman's notation: |
| 198 ** |
| 199 ** m = M/3 |
| 200 ** |
| 201 ** If an R*-tree "Reinsert" operation is required, the same number of |
| 202 ** cells are removed from the overfull node and reinserted into the tree. |
| 203 */ |
| 204 #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3) |
| 205 #define RTREE_REINSERT(p) RTREE_MINCELLS(p) |
| 206 #define RTREE_MAXCELLS 51 |
| 207 |
| 208 /* |
| 209 ** The smallest possible node-size is (512-64)==448 bytes. And the largest |
| 210 ** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates). |
| 211 ** Therefore all non-root nodes must contain at least 3 entries. Since |
| 212 ** 2^40 is greater than 2^64, an r-tree structure always has a depth of |
| 213 ** 40 or less. |
| 214 */ |
| 215 #define RTREE_MAX_DEPTH 40 |
| 216 |
| 217 |
| 218 /* |
| 219 ** Number of entries in the cursor RtreeNode cache. The first entry is |
| 220 ** used to cache the RtreeNode for RtreeCursor.sPoint. The remaining |
| 221 ** entries cache the RtreeNode for the first elements of the priority queue. |
| 222 */ |
| 223 #define RTREE_CACHE_SZ 5 |
| 224 |
| 225 /* |
| 226 ** An rtree cursor object. |
| 227 */ |
| 228 struct RtreeCursor { |
| 229 sqlite3_vtab_cursor base; /* Base class. Must be first */ |
| 230 u8 atEOF; /* True if at end of search */ |
| 231 u8 bPoint; /* True if sPoint is valid */ |
| 232 int iStrategy; /* Copy of idxNum search parameter */ |
| 233 int nConstraint; /* Number of entries in aConstraint */ |
| 234 RtreeConstraint *aConstraint; /* Search constraints. */ |
| 235 int nPointAlloc; /* Number of slots allocated for aPoint[] */ |
| 236 int nPoint; /* Number of slots used in aPoint[] */ |
| 237 int mxLevel; /* iLevel value for root of the tree */ |
| 238 RtreeSearchPoint *aPoint; /* Priority queue for search points */ |
| 239 RtreeSearchPoint sPoint; /* Cached next search point */ |
| 240 RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */ |
| 241 u32 anQueue[RTREE_MAX_DEPTH+1]; /* Number of queued entries by iLevel */ |
| 242 }; |
| 243 |
| 244 /* Return the Rtree of a RtreeCursor */ |
| 245 #define RTREE_OF_CURSOR(X) ((Rtree*)((X)->base.pVtab)) |
| 246 |
| 247 /* |
| 248 ** A coordinate can be either a floating point number or a integer. All |
| 249 ** coordinates within a single R-Tree are always of the same time. |
| 250 */ |
| 251 union RtreeCoord { |
| 252 RtreeValue f; /* Floating point value */ |
| 253 int i; /* Integer value */ |
| 254 u32 u; /* Unsigned for byte-order conversions */ |
| 255 }; |
| 256 |
| 257 /* |
| 258 ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord |
| 259 ** formatted as a RtreeDValue (double or int64). This macro assumes that local |
| 260 ** variable pRtree points to the Rtree structure associated with the |
| 261 ** RtreeCoord. |
| 262 */ |
| 263 #ifdef SQLITE_RTREE_INT_ONLY |
| 264 # define DCOORD(coord) ((RtreeDValue)coord.i) |
| 265 #else |
| 266 # define DCOORD(coord) ( \ |
| 267 (pRtree->eCoordType==RTREE_COORD_REAL32) ? \ |
| 268 ((double)coord.f) : \ |
| 269 ((double)coord.i) \ |
| 270 ) |
| 271 #endif |
| 272 |
| 273 /* |
| 274 ** A search constraint. |
| 275 */ |
| 276 struct RtreeConstraint { |
| 277 int iCoord; /* Index of constrained coordinate */ |
| 278 int op; /* Constraining operation */ |
| 279 union { |
| 280 RtreeDValue rValue; /* Constraint value. */ |
| 281 int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*); |
| 282 int (*xQueryFunc)(sqlite3_rtree_query_info*); |
| 283 } u; |
| 284 sqlite3_rtree_query_info *pInfo; /* xGeom and xQueryFunc argument */ |
| 285 }; |
| 286 |
| 287 /* Possible values for RtreeConstraint.op */ |
| 288 #define RTREE_EQ 0x41 /* A */ |
| 289 #define RTREE_LE 0x42 /* B */ |
| 290 #define RTREE_LT 0x43 /* C */ |
| 291 #define RTREE_GE 0x44 /* D */ |
| 292 #define RTREE_GT 0x45 /* E */ |
| 293 #define RTREE_MATCH 0x46 /* F: Old-style sqlite3_rtree_geometry_callback() */ |
| 294 #define RTREE_QUERY 0x47 /* G: New-style sqlite3_rtree_query_callback() */ |
| 295 |
| 296 |
| 297 /* |
| 298 ** An rtree structure node. |
| 299 */ |
| 300 struct RtreeNode { |
| 301 RtreeNode *pParent; /* Parent node */ |
| 302 i64 iNode; /* The node number */ |
| 303 int nRef; /* Number of references to this node */ |
| 304 int isDirty; /* True if the node needs to be written to disk */ |
| 305 u8 *zData; /* Content of the node, as should be on disk */ |
| 306 RtreeNode *pNext; /* Next node in this hash collision chain */ |
| 307 }; |
| 308 |
| 309 /* Return the number of cells in a node */ |
| 310 #define NCELL(pNode) readInt16(&(pNode)->zData[2]) |
| 311 |
| 312 /* |
| 313 ** A single cell from a node, deserialized |
| 314 */ |
| 315 struct RtreeCell { |
| 316 i64 iRowid; /* Node or entry ID */ |
| 317 RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; /* Bounding box coordinates */ |
| 318 }; |
| 319 |
| 320 |
| 321 /* |
| 322 ** This object becomes the sqlite3_user_data() for the SQL functions |
| 323 ** that are created by sqlite3_rtree_geometry_callback() and |
| 324 ** sqlite3_rtree_query_callback() and which appear on the right of MATCH |
| 325 ** operators in order to constrain a search. |
| 326 ** |
| 327 ** xGeom and xQueryFunc are the callback functions. Exactly one of |
| 328 ** xGeom and xQueryFunc fields is non-NULL, depending on whether the |
| 329 ** SQL function was created using sqlite3_rtree_geometry_callback() or |
| 330 ** sqlite3_rtree_query_callback(). |
| 331 ** |
| 332 ** This object is deleted automatically by the destructor mechanism in |
| 333 ** sqlite3_create_function_v2(). |
| 334 */ |
| 335 struct RtreeGeomCallback { |
| 336 int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*); |
| 337 int (*xQueryFunc)(sqlite3_rtree_query_info*); |
| 338 void (*xDestructor)(void*); |
| 339 void *pContext; |
| 340 }; |
| 341 |
| 342 |
| 343 /* |
| 344 ** Value for the first field of every RtreeMatchArg object. The MATCH |
| 345 ** operator tests that the first field of a blob operand matches this |
| 346 ** value to avoid operating on invalid blobs (which could cause a segfault). |
| 347 */ |
| 348 #define RTREE_GEOMETRY_MAGIC 0x891245AB |
| 349 |
| 350 /* |
| 351 ** An instance of this structure (in the form of a BLOB) is returned by |
| 352 ** the SQL functions that sqlite3_rtree_geometry_callback() and |
| 353 ** sqlite3_rtree_query_callback() create, and is read as the right-hand |
| 354 ** operand to the MATCH operator of an R-Tree. |
| 355 */ |
| 356 struct RtreeMatchArg { |
| 357 u32 magic; /* Always RTREE_GEOMETRY_MAGIC */ |
| 358 RtreeGeomCallback cb; /* Info about the callback functions */ |
| 359 int nParam; /* Number of parameters to the SQL function */ |
| 360 sqlite3_value **apSqlParam; /* Original SQL parameter values */ |
| 361 RtreeDValue aParam[1]; /* Values for parameters to the SQL function */ |
| 362 }; |
| 363 |
| 364 #ifndef MAX |
| 365 # define MAX(x,y) ((x) < (y) ? (y) : (x)) |
| 366 #endif |
| 367 #ifndef MIN |
| 368 # define MIN(x,y) ((x) > (y) ? (y) : (x)) |
| 369 #endif |
| 370 |
| 371 /* What version of GCC is being used. 0 means GCC is not being used */ |
| 372 #ifndef GCC_VERSION |
| 373 #if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC) |
| 374 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) |
| 375 #else |
| 376 # define GCC_VERSION 0 |
| 377 #endif |
| 378 #endif |
| 379 |
| 380 /* What version of CLANG is being used. 0 means CLANG is not being used */ |
| 381 #ifndef CLANG_VERSION |
| 382 #if defined(__clang__) && !defined(_WIN32) && !defined(SQLITE_DISABLE_INTRINSIC) |
| 383 # define CLANG_VERSION \ |
| 384 (__clang_major__*1000000+__clang_minor__*1000+__clang_patchlevel__) |
| 385 #else |
| 386 # define CLANG_VERSION 0 |
| 387 #endif |
| 388 #endif |
| 389 |
| 390 /* The testcase() macro should already be defined in the amalgamation. If |
| 391 ** it is not, make it a no-op. |
| 392 */ |
| 393 #ifndef SQLITE_AMALGAMATION |
| 394 # define testcase(X) |
| 395 #endif |
| 396 |
| 397 /* |
| 398 ** Macros to determine whether the machine is big or little endian, |
| 399 ** and whether or not that determination is run-time or compile-time. |
| 400 ** |
| 401 ** For best performance, an attempt is made to guess at the byte-order |
| 402 ** using C-preprocessor macros. If that is unsuccessful, or if |
| 403 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined |
| 404 ** at run-time. |
| 405 */ |
| 406 #ifndef SQLITE_BYTEORDER |
| 407 #if defined(i386) || defined(__i386__) || defined(_M_IX86) || \ |
| 408 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ |
| 409 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ |
| 410 defined(__arm__) |
| 411 # define SQLITE_BYTEORDER 1234 |
| 412 #elif defined(sparc) || defined(__ppc__) |
| 413 # define SQLITE_BYTEORDER 4321 |
| 414 #else |
| 415 # define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */ |
| 416 #endif |
| 417 #endif |
| 418 |
| 419 |
| 420 /* What version of MSVC is being used. 0 means MSVC is not being used */ |
| 421 #ifndef MSVC_VERSION |
| 422 #if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC) |
| 423 # define MSVC_VERSION _MSC_VER |
| 424 #else |
| 425 # define MSVC_VERSION 0 |
| 426 #endif |
| 427 #endif |
| 428 |
| 429 /* |
| 430 ** Functions to deserialize a 16 bit integer, 32 bit real number and |
| 431 ** 64 bit integer. The deserialized value is returned. |
| 432 */ |
| 433 static int readInt16(u8 *p){ |
| 434 return (p[0]<<8) + p[1]; |
| 435 } |
| 436 static void readCoord(u8 *p, RtreeCoord *pCoord){ |
| 437 assert( ((((char*)p) - (char*)0)&3)==0 ); /* p is always 4-byte aligned */ |
| 438 #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 |
| 439 pCoord->u = _byteswap_ulong(*(u32*)p); |
| 440 #elif SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000) |
| 441 pCoord->u = __builtin_bswap32(*(u32*)p); |
| 442 #elif SQLITE_BYTEORDER==4321 |
| 443 pCoord->u = *(u32*)p; |
| 444 #else |
| 445 pCoord->u = ( |
| 446 (((u32)p[0]) << 24) + |
| 447 (((u32)p[1]) << 16) + |
| 448 (((u32)p[2]) << 8) + |
| 449 (((u32)p[3]) << 0) |
| 450 ); |
| 451 #endif |
| 452 } |
| 453 static i64 readInt64(u8 *p){ |
| 454 #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 |
| 455 u64 x; |
| 456 memcpy(&x, p, 8); |
| 457 return (i64)_byteswap_uint64(x); |
| 458 #elif SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000) |
| 459 u64 x; |
| 460 memcpy(&x, p, 8); |
| 461 return (i64)__builtin_bswap64(x); |
| 462 #elif SQLITE_BYTEORDER==4321 |
| 463 i64 x; |
| 464 memcpy(&x, p, 8); |
| 465 return x; |
| 466 #else |
| 467 return ( |
| 468 (((i64)p[0]) << 56) + |
| 469 (((i64)p[1]) << 48) + |
| 470 (((i64)p[2]) << 40) + |
| 471 (((i64)p[3]) << 32) + |
| 472 (((i64)p[4]) << 24) + |
| 473 (((i64)p[5]) << 16) + |
| 474 (((i64)p[6]) << 8) + |
| 475 (((i64)p[7]) << 0) |
| 476 ); |
| 477 #endif |
| 478 } |
| 479 |
| 480 /* |
| 481 ** Functions to serialize a 16 bit integer, 32 bit real number and |
| 482 ** 64 bit integer. The value returned is the number of bytes written |
| 483 ** to the argument buffer (always 2, 4 and 8 respectively). |
| 484 */ |
| 485 static void writeInt16(u8 *p, int i){ |
| 486 p[0] = (i>> 8)&0xFF; |
| 487 p[1] = (i>> 0)&0xFF; |
| 488 } |
| 489 static int writeCoord(u8 *p, RtreeCoord *pCoord){ |
| 490 u32 i; |
| 491 assert( ((((char*)p) - (char*)0)&3)==0 ); /* p is always 4-byte aligned */ |
| 492 assert( sizeof(RtreeCoord)==4 ); |
| 493 assert( sizeof(u32)==4 ); |
| 494 #if SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000) |
| 495 i = __builtin_bswap32(pCoord->u); |
| 496 memcpy(p, &i, 4); |
| 497 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 |
| 498 i = _byteswap_ulong(pCoord->u); |
| 499 memcpy(p, &i, 4); |
| 500 #elif SQLITE_BYTEORDER==4321 |
| 501 i = pCoord->u; |
| 502 memcpy(p, &i, 4); |
| 503 #else |
| 504 i = pCoord->u; |
| 505 p[0] = (i>>24)&0xFF; |
| 506 p[1] = (i>>16)&0xFF; |
| 507 p[2] = (i>> 8)&0xFF; |
| 508 p[3] = (i>> 0)&0xFF; |
| 509 #endif |
| 510 return 4; |
| 511 } |
| 512 static int writeInt64(u8 *p, i64 i){ |
| 513 #if SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000) |
| 514 i = (i64)__builtin_bswap64((u64)i); |
| 515 memcpy(p, &i, 8); |
| 516 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 |
| 517 i = (i64)_byteswap_uint64((u64)i); |
| 518 memcpy(p, &i, 8); |
| 519 #elif SQLITE_BYTEORDER==4321 |
| 520 memcpy(p, &i, 8); |
| 521 #else |
| 522 p[0] = (i>>56)&0xFF; |
| 523 p[1] = (i>>48)&0xFF; |
| 524 p[2] = (i>>40)&0xFF; |
| 525 p[3] = (i>>32)&0xFF; |
| 526 p[4] = (i>>24)&0xFF; |
| 527 p[5] = (i>>16)&0xFF; |
| 528 p[6] = (i>> 8)&0xFF; |
| 529 p[7] = (i>> 0)&0xFF; |
| 530 #endif |
| 531 return 8; |
| 532 } |
| 533 |
| 534 /* |
| 535 ** Increment the reference count of node p. |
| 536 */ |
| 537 static void nodeReference(RtreeNode *p){ |
| 538 if( p ){ |
| 539 p->nRef++; |
| 540 } |
| 541 } |
| 542 |
| 543 /* |
| 544 ** Clear the content of node p (set all bytes to 0x00). |
| 545 */ |
| 546 static void nodeZero(Rtree *pRtree, RtreeNode *p){ |
| 547 memset(&p->zData[2], 0, pRtree->iNodeSize-2); |
| 548 p->isDirty = 1; |
| 549 } |
| 550 |
| 551 /* |
| 552 ** Given a node number iNode, return the corresponding key to use |
| 553 ** in the Rtree.aHash table. |
| 554 */ |
| 555 static int nodeHash(i64 iNode){ |
| 556 return iNode % HASHSIZE; |
| 557 } |
| 558 |
| 559 /* |
| 560 ** Search the node hash table for node iNode. If found, return a pointer |
| 561 ** to it. Otherwise, return 0. |
| 562 */ |
| 563 static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){ |
| 564 RtreeNode *p; |
| 565 for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext); |
| 566 return p; |
| 567 } |
| 568 |
| 569 /* |
| 570 ** Add node pNode to the node hash table. |
| 571 */ |
| 572 static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){ |
| 573 int iHash; |
| 574 assert( pNode->pNext==0 ); |
| 575 iHash = nodeHash(pNode->iNode); |
| 576 pNode->pNext = pRtree->aHash[iHash]; |
| 577 pRtree->aHash[iHash] = pNode; |
| 578 } |
| 579 |
| 580 /* |
| 581 ** Remove node pNode from the node hash table. |
| 582 */ |
| 583 static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){ |
| 584 RtreeNode **pp; |
| 585 if( pNode->iNode!=0 ){ |
| 586 pp = &pRtree->aHash[nodeHash(pNode->iNode)]; |
| 587 for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); } |
| 588 *pp = pNode->pNext; |
| 589 pNode->pNext = 0; |
| 590 } |
| 591 } |
| 592 |
| 593 /* |
| 594 ** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0), |
| 595 ** indicating that node has not yet been assigned a node number. It is |
| 596 ** assigned a node number when nodeWrite() is called to write the |
| 597 ** node contents out to the database. |
| 598 */ |
| 599 static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){ |
| 600 RtreeNode *pNode; |
| 601 pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize); |
| 602 if( pNode ){ |
| 603 memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize); |
| 604 pNode->zData = (u8 *)&pNode[1]; |
| 605 pNode->nRef = 1; |
| 606 pNode->pParent = pParent; |
| 607 pNode->isDirty = 1; |
| 608 nodeReference(pParent); |
| 609 } |
| 610 return pNode; |
| 611 } |
| 612 |
| 613 /* |
| 614 ** Clear the Rtree.pNodeBlob object |
| 615 */ |
| 616 static void nodeBlobReset(Rtree *pRtree){ |
| 617 if( pRtree->pNodeBlob && pRtree->inWrTrans==0 && pRtree->nCursor==0 ){ |
| 618 sqlite3_blob *pBlob = pRtree->pNodeBlob; |
| 619 pRtree->pNodeBlob = 0; |
| 620 sqlite3_blob_close(pBlob); |
| 621 } |
| 622 } |
| 623 |
| 624 /* |
| 625 ** Obtain a reference to an r-tree node. |
| 626 */ |
| 627 static int nodeAcquire( |
| 628 Rtree *pRtree, /* R-tree structure */ |
| 629 i64 iNode, /* Node number to load */ |
| 630 RtreeNode *pParent, /* Either the parent node or NULL */ |
| 631 RtreeNode **ppNode /* OUT: Acquired node */ |
| 632 ){ |
| 633 int rc = SQLITE_OK; |
| 634 RtreeNode *pNode = 0; |
| 635 |
| 636 /* Check if the requested node is already in the hash table. If so, |
| 637 ** increase its reference count and return it. |
| 638 */ |
| 639 if( (pNode = nodeHashLookup(pRtree, iNode)) ){ |
| 640 assert( !pParent || !pNode->pParent || pNode->pParent==pParent ); |
| 641 if( pParent && !pNode->pParent ){ |
| 642 nodeReference(pParent); |
| 643 pNode->pParent = pParent; |
| 644 } |
| 645 pNode->nRef++; |
| 646 *ppNode = pNode; |
| 647 return SQLITE_OK; |
| 648 } |
| 649 |
| 650 if( pRtree->pNodeBlob ){ |
| 651 sqlite3_blob *pBlob = pRtree->pNodeBlob; |
| 652 pRtree->pNodeBlob = 0; |
| 653 rc = sqlite3_blob_reopen(pBlob, iNode); |
| 654 pRtree->pNodeBlob = pBlob; |
| 655 if( rc ){ |
| 656 nodeBlobReset(pRtree); |
| 657 if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM; |
| 658 } |
| 659 } |
| 660 if( pRtree->pNodeBlob==0 ){ |
| 661 char *zTab = sqlite3_mprintf("%s_node", pRtree->zName); |
| 662 if( zTab==0 ) return SQLITE_NOMEM; |
| 663 rc = sqlite3_blob_open(pRtree->db, pRtree->zDb, zTab, "data", iNode, 0, |
| 664 &pRtree->pNodeBlob); |
| 665 sqlite3_free(zTab); |
| 666 } |
| 667 if( rc ){ |
| 668 nodeBlobReset(pRtree); |
| 669 *ppNode = 0; |
| 670 /* If unable to open an sqlite3_blob on the desired row, that can only |
| 671 ** be because the shadow tables hold erroneous data. */ |
| 672 if( rc==SQLITE_ERROR ) rc = SQLITE_CORRUPT_VTAB; |
| 673 }else if( pRtree->iNodeSize==sqlite3_blob_bytes(pRtree->pNodeBlob) ){ |
| 674 pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize); |
| 675 if( !pNode ){ |
| 676 rc = SQLITE_NOMEM; |
| 677 }else{ |
| 678 pNode->pParent = pParent; |
| 679 pNode->zData = (u8 *)&pNode[1]; |
| 680 pNode->nRef = 1; |
| 681 pNode->iNode = iNode; |
| 682 pNode->isDirty = 0; |
| 683 pNode->pNext = 0; |
| 684 rc = sqlite3_blob_read(pRtree->pNodeBlob, pNode->zData, |
| 685 pRtree->iNodeSize, 0); |
| 686 nodeReference(pParent); |
| 687 } |
| 688 } |
| 689 |
| 690 /* If the root node was just loaded, set pRtree->iDepth to the height |
| 691 ** of the r-tree structure. A height of zero means all data is stored on |
| 692 ** the root node. A height of one means the children of the root node |
| 693 ** are the leaves, and so on. If the depth as specified on the root node |
| 694 ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt. |
| 695 */ |
| 696 if( pNode && iNode==1 ){ |
| 697 pRtree->iDepth = readInt16(pNode->zData); |
| 698 if( pRtree->iDepth>RTREE_MAX_DEPTH ){ |
| 699 rc = SQLITE_CORRUPT_VTAB; |
| 700 } |
| 701 } |
| 702 |
| 703 /* If no error has occurred so far, check if the "number of entries" |
| 704 ** field on the node is too large. If so, set the return code to |
| 705 ** SQLITE_CORRUPT_VTAB. |
| 706 */ |
| 707 if( pNode && rc==SQLITE_OK ){ |
| 708 if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){ |
| 709 rc = SQLITE_CORRUPT_VTAB; |
| 710 } |
| 711 } |
| 712 |
| 713 if( rc==SQLITE_OK ){ |
| 714 if( pNode!=0 ){ |
| 715 nodeHashInsert(pRtree, pNode); |
| 716 }else{ |
| 717 rc = SQLITE_CORRUPT_VTAB; |
| 718 } |
| 719 *ppNode = pNode; |
| 720 }else{ |
| 721 sqlite3_free(pNode); |
| 722 *ppNode = 0; |
| 723 } |
| 724 |
| 725 return rc; |
| 726 } |
| 727 |
| 728 /* |
| 729 ** Overwrite cell iCell of node pNode with the contents of pCell. |
| 730 */ |
| 731 static void nodeOverwriteCell( |
| 732 Rtree *pRtree, /* The overall R-Tree */ |
| 733 RtreeNode *pNode, /* The node into which the cell is to be written */ |
| 734 RtreeCell *pCell, /* The cell to write */ |
| 735 int iCell /* Index into pNode into which pCell is written */ |
| 736 ){ |
| 737 int ii; |
| 738 u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; |
| 739 p += writeInt64(p, pCell->iRowid); |
| 740 for(ii=0; ii<pRtree->nDim2; ii++){ |
| 741 p += writeCoord(p, &pCell->aCoord[ii]); |
| 742 } |
| 743 pNode->isDirty = 1; |
| 744 } |
| 745 |
| 746 /* |
| 747 ** Remove the cell with index iCell from node pNode. |
| 748 */ |
| 749 static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){ |
| 750 u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; |
| 751 u8 *pSrc = &pDst[pRtree->nBytesPerCell]; |
| 752 int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell; |
| 753 memmove(pDst, pSrc, nByte); |
| 754 writeInt16(&pNode->zData[2], NCELL(pNode)-1); |
| 755 pNode->isDirty = 1; |
| 756 } |
| 757 |
| 758 /* |
| 759 ** Insert the contents of cell pCell into node pNode. If the insert |
| 760 ** is successful, return SQLITE_OK. |
| 761 ** |
| 762 ** If there is not enough free space in pNode, return SQLITE_FULL. |
| 763 */ |
| 764 static int nodeInsertCell( |
| 765 Rtree *pRtree, /* The overall R-Tree */ |
| 766 RtreeNode *pNode, /* Write new cell into this node */ |
| 767 RtreeCell *pCell /* The cell to be inserted */ |
| 768 ){ |
| 769 int nCell; /* Current number of cells in pNode */ |
| 770 int nMaxCell; /* Maximum number of cells for pNode */ |
| 771 |
| 772 nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell; |
| 773 nCell = NCELL(pNode); |
| 774 |
| 775 assert( nCell<=nMaxCell ); |
| 776 if( nCell<nMaxCell ){ |
| 777 nodeOverwriteCell(pRtree, pNode, pCell, nCell); |
| 778 writeInt16(&pNode->zData[2], nCell+1); |
| 779 pNode->isDirty = 1; |
| 780 } |
| 781 |
| 782 return (nCell==nMaxCell); |
| 783 } |
| 784 |
| 785 /* |
| 786 ** If the node is dirty, write it out to the database. |
| 787 */ |
| 788 static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){ |
| 789 int rc = SQLITE_OK; |
| 790 if( pNode->isDirty ){ |
| 791 sqlite3_stmt *p = pRtree->pWriteNode; |
| 792 if( pNode->iNode ){ |
| 793 sqlite3_bind_int64(p, 1, pNode->iNode); |
| 794 }else{ |
| 795 sqlite3_bind_null(p, 1); |
| 796 } |
| 797 sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC); |
| 798 sqlite3_step(p); |
| 799 pNode->isDirty = 0; |
| 800 rc = sqlite3_reset(p); |
| 801 if( pNode->iNode==0 && rc==SQLITE_OK ){ |
| 802 pNode->iNode = sqlite3_last_insert_rowid(pRtree->db); |
| 803 nodeHashInsert(pRtree, pNode); |
| 804 } |
| 805 } |
| 806 return rc; |
| 807 } |
| 808 |
| 809 /* |
| 810 ** Release a reference to a node. If the node is dirty and the reference |
| 811 ** count drops to zero, the node data is written to the database. |
| 812 */ |
| 813 static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){ |
| 814 int rc = SQLITE_OK; |
| 815 if( pNode ){ |
| 816 assert( pNode->nRef>0 ); |
| 817 pNode->nRef--; |
| 818 if( pNode->nRef==0 ){ |
| 819 if( pNode->iNode==1 ){ |
| 820 pRtree->iDepth = -1; |
| 821 } |
| 822 if( pNode->pParent ){ |
| 823 rc = nodeRelease(pRtree, pNode->pParent); |
| 824 } |
| 825 if( rc==SQLITE_OK ){ |
| 826 rc = nodeWrite(pRtree, pNode); |
| 827 } |
| 828 nodeHashDelete(pRtree, pNode); |
| 829 sqlite3_free(pNode); |
| 830 } |
| 831 } |
| 832 return rc; |
| 833 } |
| 834 |
| 835 /* |
| 836 ** Return the 64-bit integer value associated with cell iCell of |
| 837 ** node pNode. If pNode is a leaf node, this is a rowid. If it is |
| 838 ** an internal node, then the 64-bit integer is a child page number. |
| 839 */ |
| 840 static i64 nodeGetRowid( |
| 841 Rtree *pRtree, /* The overall R-Tree */ |
| 842 RtreeNode *pNode, /* The node from which to extract the ID */ |
| 843 int iCell /* The cell index from which to extract the ID */ |
| 844 ){ |
| 845 assert( iCell<NCELL(pNode) ); |
| 846 return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]); |
| 847 } |
| 848 |
| 849 /* |
| 850 ** Return coordinate iCoord from cell iCell in node pNode. |
| 851 */ |
| 852 static void nodeGetCoord( |
| 853 Rtree *pRtree, /* The overall R-Tree */ |
| 854 RtreeNode *pNode, /* The node from which to extract a coordinate */ |
| 855 int iCell, /* The index of the cell within the node */ |
| 856 int iCoord, /* Which coordinate to extract */ |
| 857 RtreeCoord *pCoord /* OUT: Space to write result to */ |
| 858 ){ |
| 859 readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord); |
| 860 } |
| 861 |
| 862 /* |
| 863 ** Deserialize cell iCell of node pNode. Populate the structure pointed |
| 864 ** to by pCell with the results. |
| 865 */ |
| 866 static void nodeGetCell( |
| 867 Rtree *pRtree, /* The overall R-Tree */ |
| 868 RtreeNode *pNode, /* The node containing the cell to be read */ |
| 869 int iCell, /* Index of the cell within the node */ |
| 870 RtreeCell *pCell /* OUT: Write the cell contents here */ |
| 871 ){ |
| 872 u8 *pData; |
| 873 RtreeCoord *pCoord; |
| 874 int ii = 0; |
| 875 pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell); |
| 876 pData = pNode->zData + (12 + pRtree->nBytesPerCell*iCell); |
| 877 pCoord = pCell->aCoord; |
| 878 do{ |
| 879 readCoord(pData, &pCoord[ii]); |
| 880 readCoord(pData+4, &pCoord[ii+1]); |
| 881 pData += 8; |
| 882 ii += 2; |
| 883 }while( ii<pRtree->nDim2 ); |
| 884 } |
| 885 |
| 886 |
| 887 /* Forward declaration for the function that does the work of |
| 888 ** the virtual table module xCreate() and xConnect() methods. |
| 889 */ |
| 890 static int rtreeInit( |
| 891 sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int |
| 892 ); |
| 893 |
| 894 /* |
| 895 ** Rtree virtual table module xCreate method. |
| 896 */ |
| 897 static int rtreeCreate( |
| 898 sqlite3 *db, |
| 899 void *pAux, |
| 900 int argc, const char *const*argv, |
| 901 sqlite3_vtab **ppVtab, |
| 902 char **pzErr |
| 903 ){ |
| 904 return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1); |
| 905 } |
| 906 |
| 907 /* |
| 908 ** Rtree virtual table module xConnect method. |
| 909 */ |
| 910 static int rtreeConnect( |
| 911 sqlite3 *db, |
| 912 void *pAux, |
| 913 int argc, const char *const*argv, |
| 914 sqlite3_vtab **ppVtab, |
| 915 char **pzErr |
| 916 ){ |
| 917 return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0); |
| 918 } |
| 919 |
| 920 /* |
| 921 ** Increment the r-tree reference count. |
| 922 */ |
| 923 static void rtreeReference(Rtree *pRtree){ |
| 924 pRtree->nBusy++; |
| 925 } |
| 926 |
| 927 /* |
| 928 ** Decrement the r-tree reference count. When the reference count reaches |
| 929 ** zero the structure is deleted. |
| 930 */ |
| 931 static void rtreeRelease(Rtree *pRtree){ |
| 932 pRtree->nBusy--; |
| 933 if( pRtree->nBusy==0 ){ |
| 934 pRtree->inWrTrans = 0; |
| 935 pRtree->nCursor = 0; |
| 936 nodeBlobReset(pRtree); |
| 937 sqlite3_finalize(pRtree->pWriteNode); |
| 938 sqlite3_finalize(pRtree->pDeleteNode); |
| 939 sqlite3_finalize(pRtree->pReadRowid); |
| 940 sqlite3_finalize(pRtree->pWriteRowid); |
| 941 sqlite3_finalize(pRtree->pDeleteRowid); |
| 942 sqlite3_finalize(pRtree->pReadParent); |
| 943 sqlite3_finalize(pRtree->pWriteParent); |
| 944 sqlite3_finalize(pRtree->pDeleteParent); |
| 945 sqlite3_free(pRtree); |
| 946 } |
| 947 } |
| 948 |
| 949 /* |
| 950 ** Rtree virtual table module xDisconnect method. |
| 951 */ |
| 952 static int rtreeDisconnect(sqlite3_vtab *pVtab){ |
| 953 rtreeRelease((Rtree *)pVtab); |
| 954 return SQLITE_OK; |
| 955 } |
| 956 |
| 957 /* |
| 958 ** Rtree virtual table module xDestroy method. |
| 959 */ |
| 960 static int rtreeDestroy(sqlite3_vtab *pVtab){ |
| 961 Rtree *pRtree = (Rtree *)pVtab; |
| 962 int rc; |
| 963 char *zCreate = sqlite3_mprintf( |
| 964 "DROP TABLE '%q'.'%q_node';" |
| 965 "DROP TABLE '%q'.'%q_rowid';" |
| 966 "DROP TABLE '%q'.'%q_parent';", |
| 967 pRtree->zDb, pRtree->zName, |
| 968 pRtree->zDb, pRtree->zName, |
| 969 pRtree->zDb, pRtree->zName |
| 970 ); |
| 971 if( !zCreate ){ |
| 972 rc = SQLITE_NOMEM; |
| 973 }else{ |
| 974 nodeBlobReset(pRtree); |
| 975 rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0); |
| 976 sqlite3_free(zCreate); |
| 977 } |
| 978 if( rc==SQLITE_OK ){ |
| 979 rtreeRelease(pRtree); |
| 980 } |
| 981 |
| 982 return rc; |
| 983 } |
| 984 |
| 985 /* |
| 986 ** Rtree virtual table module xOpen method. |
| 987 */ |
| 988 static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |
| 989 int rc = SQLITE_NOMEM; |
| 990 Rtree *pRtree = (Rtree *)pVTab; |
| 991 RtreeCursor *pCsr; |
| 992 |
| 993 pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor)); |
| 994 if( pCsr ){ |
| 995 memset(pCsr, 0, sizeof(RtreeCursor)); |
| 996 pCsr->base.pVtab = pVTab; |
| 997 rc = SQLITE_OK; |
| 998 pRtree->nCursor++; |
| 999 } |
| 1000 *ppCursor = (sqlite3_vtab_cursor *)pCsr; |
| 1001 |
| 1002 return rc; |
| 1003 } |
| 1004 |
| 1005 |
| 1006 /* |
| 1007 ** Free the RtreeCursor.aConstraint[] array and its contents. |
| 1008 */ |
| 1009 static void freeCursorConstraints(RtreeCursor *pCsr){ |
| 1010 if( pCsr->aConstraint ){ |
| 1011 int i; /* Used to iterate through constraint array */ |
| 1012 for(i=0; i<pCsr->nConstraint; i++){ |
| 1013 sqlite3_rtree_query_info *pInfo = pCsr->aConstraint[i].pInfo; |
| 1014 if( pInfo ){ |
| 1015 if( pInfo->xDelUser ) pInfo->xDelUser(pInfo->pUser); |
| 1016 sqlite3_free(pInfo); |
| 1017 } |
| 1018 } |
| 1019 sqlite3_free(pCsr->aConstraint); |
| 1020 pCsr->aConstraint = 0; |
| 1021 } |
| 1022 } |
| 1023 |
| 1024 /* |
| 1025 ** Rtree virtual table module xClose method. |
| 1026 */ |
| 1027 static int rtreeClose(sqlite3_vtab_cursor *cur){ |
| 1028 Rtree *pRtree = (Rtree *)(cur->pVtab); |
| 1029 int ii; |
| 1030 RtreeCursor *pCsr = (RtreeCursor *)cur; |
| 1031 assert( pRtree->nCursor>0 ); |
| 1032 freeCursorConstraints(pCsr); |
| 1033 sqlite3_free(pCsr->aPoint); |
| 1034 for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]); |
| 1035 sqlite3_free(pCsr); |
| 1036 pRtree->nCursor--; |
| 1037 nodeBlobReset(pRtree); |
| 1038 return SQLITE_OK; |
| 1039 } |
| 1040 |
| 1041 /* |
| 1042 ** Rtree virtual table module xEof method. |
| 1043 ** |
| 1044 ** Return non-zero if the cursor does not currently point to a valid |
| 1045 ** record (i.e if the scan has finished), or zero otherwise. |
| 1046 */ |
| 1047 static int rtreeEof(sqlite3_vtab_cursor *cur){ |
| 1048 RtreeCursor *pCsr = (RtreeCursor *)cur; |
| 1049 return pCsr->atEOF; |
| 1050 } |
| 1051 |
| 1052 /* |
| 1053 ** Convert raw bits from the on-disk RTree record into a coordinate value. |
| 1054 ** The on-disk format is big-endian and needs to be converted for little- |
| 1055 ** endian platforms. The on-disk record stores integer coordinates if |
| 1056 ** eInt is true and it stores 32-bit floating point records if eInt is |
| 1057 ** false. a[] is the four bytes of the on-disk record to be decoded. |
| 1058 ** Store the results in "r". |
| 1059 ** |
| 1060 ** There are five versions of this macro. The last one is generic. The |
| 1061 ** other four are various architectures-specific optimizations. |
| 1062 */ |
| 1063 #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 |
| 1064 #define RTREE_DECODE_COORD(eInt, a, r) { \ |
| 1065 RtreeCoord c; /* Coordinate decoded */ \ |
| 1066 c.u = _byteswap_ulong(*(u32*)a); \ |
| 1067 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ |
| 1068 } |
| 1069 #elif SQLITE_BYTEORDER==1234 && (GCC_VERSION>=4003000 || CLANG_VERSION>=3000000) |
| 1070 #define RTREE_DECODE_COORD(eInt, a, r) { \ |
| 1071 RtreeCoord c; /* Coordinate decoded */ \ |
| 1072 c.u = __builtin_bswap32(*(u32*)a); \ |
| 1073 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ |
| 1074 } |
| 1075 #elif SQLITE_BYTEORDER==1234 |
| 1076 #define RTREE_DECODE_COORD(eInt, a, r) { \ |
| 1077 RtreeCoord c; /* Coordinate decoded */ \ |
| 1078 memcpy(&c.u,a,4); \ |
| 1079 c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)| \ |
| 1080 ((c.u&0xff)<<24)|((c.u&0xff00)<<8); \ |
| 1081 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ |
| 1082 } |
| 1083 #elif SQLITE_BYTEORDER==4321 |
| 1084 #define RTREE_DECODE_COORD(eInt, a, r) { \ |
| 1085 RtreeCoord c; /* Coordinate decoded */ \ |
| 1086 memcpy(&c.u,a,4); \ |
| 1087 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ |
| 1088 } |
| 1089 #else |
| 1090 #define RTREE_DECODE_COORD(eInt, a, r) { \ |
| 1091 RtreeCoord c; /* Coordinate decoded */ \ |
| 1092 c.u = ((u32)a[0]<<24) + ((u32)a[1]<<16) \ |
| 1093 +((u32)a[2]<<8) + a[3]; \ |
| 1094 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ |
| 1095 } |
| 1096 #endif |
| 1097 |
| 1098 /* |
| 1099 ** Check the RTree node or entry given by pCellData and p against the MATCH |
| 1100 ** constraint pConstraint. |
| 1101 */ |
| 1102 static int rtreeCallbackConstraint( |
| 1103 RtreeConstraint *pConstraint, /* The constraint to test */ |
| 1104 int eInt, /* True if RTree holding integer coordinates */ |
| 1105 u8 *pCellData, /* Raw cell content */ |
| 1106 RtreeSearchPoint *pSearch, /* Container of this cell */ |
| 1107 sqlite3_rtree_dbl *prScore, /* OUT: score for the cell */ |
| 1108 int *peWithin /* OUT: visibility of the cell */ |
| 1109 ){ |
| 1110 sqlite3_rtree_query_info *pInfo = pConstraint->pInfo; /* Callback info */ |
| 1111 int nCoord = pInfo->nCoord; /* No. of coordinates */ |
| 1112 int rc; /* Callback return code */ |
| 1113 RtreeCoord c; /* Translator union */ |
| 1114 sqlite3_rtree_dbl aCoord[RTREE_MAX_DIMENSIONS*2]; /* Decoded coordinates */ |
| 1115 |
| 1116 assert( pConstraint->op==RTREE_MATCH || pConstraint->op==RTREE_QUERY ); |
| 1117 assert( nCoord==2 || nCoord==4 || nCoord==6 || nCoord==8 || nCoord==10 ); |
| 1118 |
| 1119 if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){ |
| 1120 pInfo->iRowid = readInt64(pCellData); |
| 1121 } |
| 1122 pCellData += 8; |
| 1123 #ifndef SQLITE_RTREE_INT_ONLY |
| 1124 if( eInt==0 ){ |
| 1125 switch( nCoord ){ |
| 1126 case 10: readCoord(pCellData+36, &c); aCoord[9] = c.f; |
| 1127 readCoord(pCellData+32, &c); aCoord[8] = c.f; |
| 1128 case 8: readCoord(pCellData+28, &c); aCoord[7] = c.f; |
| 1129 readCoord(pCellData+24, &c); aCoord[6] = c.f; |
| 1130 case 6: readCoord(pCellData+20, &c); aCoord[5] = c.f; |
| 1131 readCoord(pCellData+16, &c); aCoord[4] = c.f; |
| 1132 case 4: readCoord(pCellData+12, &c); aCoord[3] = c.f; |
| 1133 readCoord(pCellData+8, &c); aCoord[2] = c.f; |
| 1134 default: readCoord(pCellData+4, &c); aCoord[1] = c.f; |
| 1135 readCoord(pCellData, &c); aCoord[0] = c.f; |
| 1136 } |
| 1137 }else |
| 1138 #endif |
| 1139 { |
| 1140 switch( nCoord ){ |
| 1141 case 10: readCoord(pCellData+36, &c); aCoord[9] = c.i; |
| 1142 readCoord(pCellData+32, &c); aCoord[8] = c.i; |
| 1143 case 8: readCoord(pCellData+28, &c); aCoord[7] = c.i; |
| 1144 readCoord(pCellData+24, &c); aCoord[6] = c.i; |
| 1145 case 6: readCoord(pCellData+20, &c); aCoord[5] = c.i; |
| 1146 readCoord(pCellData+16, &c); aCoord[4] = c.i; |
| 1147 case 4: readCoord(pCellData+12, &c); aCoord[3] = c.i; |
| 1148 readCoord(pCellData+8, &c); aCoord[2] = c.i; |
| 1149 default: readCoord(pCellData+4, &c); aCoord[1] = c.i; |
| 1150 readCoord(pCellData, &c); aCoord[0] = c.i; |
| 1151 } |
| 1152 } |
| 1153 if( pConstraint->op==RTREE_MATCH ){ |
| 1154 int eWithin = 0; |
| 1155 rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo, |
| 1156 nCoord, aCoord, &eWithin); |
| 1157 if( eWithin==0 ) *peWithin = NOT_WITHIN; |
| 1158 *prScore = RTREE_ZERO; |
| 1159 }else{ |
| 1160 pInfo->aCoord = aCoord; |
| 1161 pInfo->iLevel = pSearch->iLevel - 1; |
| 1162 pInfo->rScore = pInfo->rParentScore = pSearch->rScore; |
| 1163 pInfo->eWithin = pInfo->eParentWithin = pSearch->eWithin; |
| 1164 rc = pConstraint->u.xQueryFunc(pInfo); |
| 1165 if( pInfo->eWithin<*peWithin ) *peWithin = pInfo->eWithin; |
| 1166 if( pInfo->rScore<*prScore || *prScore<RTREE_ZERO ){ |
| 1167 *prScore = pInfo->rScore; |
| 1168 } |
| 1169 } |
| 1170 return rc; |
| 1171 } |
| 1172 |
| 1173 /* |
| 1174 ** Check the internal RTree node given by pCellData against constraint p. |
| 1175 ** If this constraint cannot be satisfied by any child within the node, |
| 1176 ** set *peWithin to NOT_WITHIN. |
| 1177 */ |
| 1178 static void rtreeNonleafConstraint( |
| 1179 RtreeConstraint *p, /* The constraint to test */ |
| 1180 int eInt, /* True if RTree holds integer coordinates */ |
| 1181 u8 *pCellData, /* Raw cell content as appears on disk */ |
| 1182 int *peWithin /* Adjust downward, as appropriate */ |
| 1183 ){ |
| 1184 sqlite3_rtree_dbl val; /* Coordinate value convert to a double */ |
| 1185 |
| 1186 /* p->iCoord might point to either a lower or upper bound coordinate |
| 1187 ** in a coordinate pair. But make pCellData point to the lower bound. |
| 1188 */ |
| 1189 pCellData += 8 + 4*(p->iCoord&0xfe); |
| 1190 |
| 1191 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE |
| 1192 || p->op==RTREE_GT || p->op==RTREE_EQ ); |
| 1193 assert( ((((char*)pCellData) - (char*)0)&3)==0 ); /* 4-byte aligned */ |
| 1194 switch( p->op ){ |
| 1195 case RTREE_LE: |
| 1196 case RTREE_LT: |
| 1197 case RTREE_EQ: |
| 1198 RTREE_DECODE_COORD(eInt, pCellData, val); |
| 1199 /* val now holds the lower bound of the coordinate pair */ |
| 1200 if( p->u.rValue>=val ) return; |
| 1201 if( p->op!=RTREE_EQ ) break; /* RTREE_LE and RTREE_LT end here */ |
| 1202 /* Fall through for the RTREE_EQ case */ |
| 1203 |
| 1204 default: /* RTREE_GT or RTREE_GE, or fallthrough of RTREE_EQ */ |
| 1205 pCellData += 4; |
| 1206 RTREE_DECODE_COORD(eInt, pCellData, val); |
| 1207 /* val now holds the upper bound of the coordinate pair */ |
| 1208 if( p->u.rValue<=val ) return; |
| 1209 } |
| 1210 *peWithin = NOT_WITHIN; |
| 1211 } |
| 1212 |
| 1213 /* |
| 1214 ** Check the leaf RTree cell given by pCellData against constraint p. |
| 1215 ** If this constraint is not satisfied, set *peWithin to NOT_WITHIN. |
| 1216 ** If the constraint is satisfied, leave *peWithin unchanged. |
| 1217 ** |
| 1218 ** The constraint is of the form: xN op $val |
| 1219 ** |
| 1220 ** The op is given by p->op. The xN is p->iCoord-th coordinate in |
| 1221 ** pCellData. $val is given by p->u.rValue. |
| 1222 */ |
| 1223 static void rtreeLeafConstraint( |
| 1224 RtreeConstraint *p, /* The constraint to test */ |
| 1225 int eInt, /* True if RTree holds integer coordinates */ |
| 1226 u8 *pCellData, /* Raw cell content as appears on disk */ |
| 1227 int *peWithin /* Adjust downward, as appropriate */ |
| 1228 ){ |
| 1229 RtreeDValue xN; /* Coordinate value converted to a double */ |
| 1230 |
| 1231 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE |
| 1232 || p->op==RTREE_GT || p->op==RTREE_EQ ); |
| 1233 pCellData += 8 + p->iCoord*4; |
| 1234 assert( ((((char*)pCellData) - (char*)0)&3)==0 ); /* 4-byte aligned */ |
| 1235 RTREE_DECODE_COORD(eInt, pCellData, xN); |
| 1236 switch( p->op ){ |
| 1237 case RTREE_LE: if( xN <= p->u.rValue ) return; break; |
| 1238 case RTREE_LT: if( xN < p->u.rValue ) return; break; |
| 1239 case RTREE_GE: if( xN >= p->u.rValue ) return; break; |
| 1240 case RTREE_GT: if( xN > p->u.rValue ) return; break; |
| 1241 default: if( xN == p->u.rValue ) return; break; |
| 1242 } |
| 1243 *peWithin = NOT_WITHIN; |
| 1244 } |
| 1245 |
| 1246 /* |
| 1247 ** One of the cells in node pNode is guaranteed to have a 64-bit |
| 1248 ** integer value equal to iRowid. Return the index of this cell. |
| 1249 */ |
| 1250 static int nodeRowidIndex( |
| 1251 Rtree *pRtree, |
| 1252 RtreeNode *pNode, |
| 1253 i64 iRowid, |
| 1254 int *piIndex |
| 1255 ){ |
| 1256 int ii; |
| 1257 int nCell = NCELL(pNode); |
| 1258 assert( nCell<200 ); |
| 1259 for(ii=0; ii<nCell; ii++){ |
| 1260 if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){ |
| 1261 *piIndex = ii; |
| 1262 return SQLITE_OK; |
| 1263 } |
| 1264 } |
| 1265 return SQLITE_CORRUPT_VTAB; |
| 1266 } |
| 1267 |
| 1268 /* |
| 1269 ** Return the index of the cell containing a pointer to node pNode |
| 1270 ** in its parent. If pNode is the root node, return -1. |
| 1271 */ |
| 1272 static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){ |
| 1273 RtreeNode *pParent = pNode->pParent; |
| 1274 if( pParent ){ |
| 1275 return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex); |
| 1276 } |
| 1277 *piIndex = -1; |
| 1278 return SQLITE_OK; |
| 1279 } |
| 1280 |
| 1281 /* |
| 1282 ** Compare two search points. Return negative, zero, or positive if the first |
| 1283 ** is less than, equal to, or greater than the second. |
| 1284 ** |
| 1285 ** The rScore is the primary key. Smaller rScore values come first. |
| 1286 ** If the rScore is a tie, then use iLevel as the tie breaker with smaller |
| 1287 ** iLevel values coming first. In this way, if rScore is the same for all |
| 1288 ** SearchPoints, then iLevel becomes the deciding factor and the result |
| 1289 ** is a depth-first search, which is the desired default behavior. |
| 1290 */ |
| 1291 static int rtreeSearchPointCompare( |
| 1292 const RtreeSearchPoint *pA, |
| 1293 const RtreeSearchPoint *pB |
| 1294 ){ |
| 1295 if( pA->rScore<pB->rScore ) return -1; |
| 1296 if( pA->rScore>pB->rScore ) return +1; |
| 1297 if( pA->iLevel<pB->iLevel ) return -1; |
| 1298 if( pA->iLevel>pB->iLevel ) return +1; |
| 1299 return 0; |
| 1300 } |
| 1301 |
| 1302 /* |
| 1303 ** Interchange two search points in a cursor. |
| 1304 */ |
| 1305 static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){ |
| 1306 RtreeSearchPoint t = p->aPoint[i]; |
| 1307 assert( i<j ); |
| 1308 p->aPoint[i] = p->aPoint[j]; |
| 1309 p->aPoint[j] = t; |
| 1310 i++; j++; |
| 1311 if( i<RTREE_CACHE_SZ ){ |
| 1312 if( j>=RTREE_CACHE_SZ ){ |
| 1313 nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); |
| 1314 p->aNode[i] = 0; |
| 1315 }else{ |
| 1316 RtreeNode *pTemp = p->aNode[i]; |
| 1317 p->aNode[i] = p->aNode[j]; |
| 1318 p->aNode[j] = pTemp; |
| 1319 } |
| 1320 } |
| 1321 } |
| 1322 |
| 1323 /* |
| 1324 ** Return the search point with the lowest current score. |
| 1325 */ |
| 1326 static RtreeSearchPoint *rtreeSearchPointFirst(RtreeCursor *pCur){ |
| 1327 return pCur->bPoint ? &pCur->sPoint : pCur->nPoint ? pCur->aPoint : 0; |
| 1328 } |
| 1329 |
| 1330 /* |
| 1331 ** Get the RtreeNode for the search point with the lowest score. |
| 1332 */ |
| 1333 static RtreeNode *rtreeNodeOfFirstSearchPoint(RtreeCursor *pCur, int *pRC){ |
| 1334 sqlite3_int64 id; |
| 1335 int ii = 1 - pCur->bPoint; |
| 1336 assert( ii==0 || ii==1 ); |
| 1337 assert( pCur->bPoint || pCur->nPoint ); |
| 1338 if( pCur->aNode[ii]==0 ){ |
| 1339 assert( pRC!=0 ); |
| 1340 id = ii ? pCur->aPoint[0].id : pCur->sPoint.id; |
| 1341 *pRC = nodeAcquire(RTREE_OF_CURSOR(pCur), id, 0, &pCur->aNode[ii]); |
| 1342 } |
| 1343 return pCur->aNode[ii]; |
| 1344 } |
| 1345 |
| 1346 /* |
| 1347 ** Push a new element onto the priority queue |
| 1348 */ |
| 1349 static RtreeSearchPoint *rtreeEnqueue( |
| 1350 RtreeCursor *pCur, /* The cursor */ |
| 1351 RtreeDValue rScore, /* Score for the new search point */ |
| 1352 u8 iLevel /* Level for the new search point */ |
| 1353 ){ |
| 1354 int i, j; |
| 1355 RtreeSearchPoint *pNew; |
| 1356 if( pCur->nPoint>=pCur->nPointAlloc ){ |
| 1357 int nNew = pCur->nPointAlloc*2 + 8; |
| 1358 pNew = sqlite3_realloc(pCur->aPoint, nNew*sizeof(pCur->aPoint[0])); |
| 1359 if( pNew==0 ) return 0; |
| 1360 pCur->aPoint = pNew; |
| 1361 pCur->nPointAlloc = nNew; |
| 1362 } |
| 1363 i = pCur->nPoint++; |
| 1364 pNew = pCur->aPoint + i; |
| 1365 pNew->rScore = rScore; |
| 1366 pNew->iLevel = iLevel; |
| 1367 assert( iLevel<=RTREE_MAX_DEPTH ); |
| 1368 while( i>0 ){ |
| 1369 RtreeSearchPoint *pParent; |
| 1370 j = (i-1)/2; |
| 1371 pParent = pCur->aPoint + j; |
| 1372 if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break; |
| 1373 rtreeSearchPointSwap(pCur, j, i); |
| 1374 i = j; |
| 1375 pNew = pParent; |
| 1376 } |
| 1377 return pNew; |
| 1378 } |
| 1379 |
| 1380 /* |
| 1381 ** Allocate a new RtreeSearchPoint and return a pointer to it. Return |
| 1382 ** NULL if malloc fails. |
| 1383 */ |
| 1384 static RtreeSearchPoint *rtreeSearchPointNew( |
| 1385 RtreeCursor *pCur, /* The cursor */ |
| 1386 RtreeDValue rScore, /* Score for the new search point */ |
| 1387 u8 iLevel /* Level for the new search point */ |
| 1388 ){ |
| 1389 RtreeSearchPoint *pNew, *pFirst; |
| 1390 pFirst = rtreeSearchPointFirst(pCur); |
| 1391 pCur->anQueue[iLevel]++; |
| 1392 if( pFirst==0 |
| 1393 || pFirst->rScore>rScore |
| 1394 || (pFirst->rScore==rScore && pFirst->iLevel>iLevel) |
| 1395 ){ |
| 1396 if( pCur->bPoint ){ |
| 1397 int ii; |
| 1398 pNew = rtreeEnqueue(pCur, rScore, iLevel); |
| 1399 if( pNew==0 ) return 0; |
| 1400 ii = (int)(pNew - pCur->aPoint) + 1; |
| 1401 if( ii<RTREE_CACHE_SZ ){ |
| 1402 assert( pCur->aNode[ii]==0 ); |
| 1403 pCur->aNode[ii] = pCur->aNode[0]; |
| 1404 }else{ |
| 1405 nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]); |
| 1406 } |
| 1407 pCur->aNode[0] = 0; |
| 1408 *pNew = pCur->sPoint; |
| 1409 } |
| 1410 pCur->sPoint.rScore = rScore; |
| 1411 pCur->sPoint.iLevel = iLevel; |
| 1412 pCur->bPoint = 1; |
| 1413 return &pCur->sPoint; |
| 1414 }else{ |
| 1415 return rtreeEnqueue(pCur, rScore, iLevel); |
| 1416 } |
| 1417 } |
| 1418 |
| 1419 #if 0 |
| 1420 /* Tracing routines for the RtreeSearchPoint queue */ |
| 1421 static void tracePoint(RtreeSearchPoint *p, int idx, RtreeCursor *pCur){ |
| 1422 if( idx<0 ){ printf(" s"); }else{ printf("%2d", idx); } |
| 1423 printf(" %d.%05lld.%02d %g %d", |
| 1424 p->iLevel, p->id, p->iCell, p->rScore, p->eWithin |
| 1425 ); |
| 1426 idx++; |
| 1427 if( idx<RTREE_CACHE_SZ ){ |
| 1428 printf(" %p\n", pCur->aNode[idx]); |
| 1429 }else{ |
| 1430 printf("\n"); |
| 1431 } |
| 1432 } |
| 1433 static void traceQueue(RtreeCursor *pCur, const char *zPrefix){ |
| 1434 int ii; |
| 1435 printf("=== %9s ", zPrefix); |
| 1436 if( pCur->bPoint ){ |
| 1437 tracePoint(&pCur->sPoint, -1, pCur); |
| 1438 } |
| 1439 for(ii=0; ii<pCur->nPoint; ii++){ |
| 1440 if( ii>0 || pCur->bPoint ) printf(" "); |
| 1441 tracePoint(&pCur->aPoint[ii], ii, pCur); |
| 1442 } |
| 1443 } |
| 1444 # define RTREE_QUEUE_TRACE(A,B) traceQueue(A,B) |
| 1445 #else |
| 1446 # define RTREE_QUEUE_TRACE(A,B) /* no-op */ |
| 1447 #endif |
| 1448 |
| 1449 /* Remove the search point with the lowest current score. |
| 1450 */ |
| 1451 static void rtreeSearchPointPop(RtreeCursor *p){ |
| 1452 int i, j, k, n; |
| 1453 i = 1 - p->bPoint; |
| 1454 assert( i==0 || i==1 ); |
| 1455 if( p->aNode[i] ){ |
| 1456 nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); |
| 1457 p->aNode[i] = 0; |
| 1458 } |
| 1459 if( p->bPoint ){ |
| 1460 p->anQueue[p->sPoint.iLevel]--; |
| 1461 p->bPoint = 0; |
| 1462 }else if( p->nPoint ){ |
| 1463 p->anQueue[p->aPoint[0].iLevel]--; |
| 1464 n = --p->nPoint; |
| 1465 p->aPoint[0] = p->aPoint[n]; |
| 1466 if( n<RTREE_CACHE_SZ-1 ){ |
| 1467 p->aNode[1] = p->aNode[n+1]; |
| 1468 p->aNode[n+1] = 0; |
| 1469 } |
| 1470 i = 0; |
| 1471 while( (j = i*2+1)<n ){ |
| 1472 k = j+1; |
| 1473 if( k<n && rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[j])<0 ){ |
| 1474 if( rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[i])<0 ){ |
| 1475 rtreeSearchPointSwap(p, i, k); |
| 1476 i = k; |
| 1477 }else{ |
| 1478 break; |
| 1479 } |
| 1480 }else{ |
| 1481 if( rtreeSearchPointCompare(&p->aPoint[j], &p->aPoint[i])<0 ){ |
| 1482 rtreeSearchPointSwap(p, i, j); |
| 1483 i = j; |
| 1484 }else{ |
| 1485 break; |
| 1486 } |
| 1487 } |
| 1488 } |
| 1489 } |
| 1490 } |
| 1491 |
| 1492 |
| 1493 /* |
| 1494 ** Continue the search on cursor pCur until the front of the queue |
| 1495 ** contains an entry suitable for returning as a result-set row, |
| 1496 ** or until the RtreeSearchPoint queue is empty, indicating that the |
| 1497 ** query has completed. |
| 1498 */ |
| 1499 static int rtreeStepToLeaf(RtreeCursor *pCur){ |
| 1500 RtreeSearchPoint *p; |
| 1501 Rtree *pRtree = RTREE_OF_CURSOR(pCur); |
| 1502 RtreeNode *pNode; |
| 1503 int eWithin; |
| 1504 int rc = SQLITE_OK; |
| 1505 int nCell; |
| 1506 int nConstraint = pCur->nConstraint; |
| 1507 int ii; |
| 1508 int eInt; |
| 1509 RtreeSearchPoint x; |
| 1510 |
| 1511 eInt = pRtree->eCoordType==RTREE_COORD_INT32; |
| 1512 while( (p = rtreeSearchPointFirst(pCur))!=0 && p->iLevel>0 ){ |
| 1513 pNode = rtreeNodeOfFirstSearchPoint(pCur, &rc); |
| 1514 if( rc ) return rc; |
| 1515 nCell = NCELL(pNode); |
| 1516 assert( nCell<200 ); |
| 1517 while( p->iCell<nCell ){ |
| 1518 sqlite3_rtree_dbl rScore = (sqlite3_rtree_dbl)-1; |
| 1519 u8 *pCellData = pNode->zData + (4+pRtree->nBytesPerCell*p->iCell); |
| 1520 eWithin = FULLY_WITHIN; |
| 1521 for(ii=0; ii<nConstraint; ii++){ |
| 1522 RtreeConstraint *pConstraint = pCur->aConstraint + ii; |
| 1523 if( pConstraint->op>=RTREE_MATCH ){ |
| 1524 rc = rtreeCallbackConstraint(pConstraint, eInt, pCellData, p, |
| 1525 &rScore, &eWithin); |
| 1526 if( rc ) return rc; |
| 1527 }else if( p->iLevel==1 ){ |
| 1528 rtreeLeafConstraint(pConstraint, eInt, pCellData, &eWithin); |
| 1529 }else{ |
| 1530 rtreeNonleafConstraint(pConstraint, eInt, pCellData, &eWithin); |
| 1531 } |
| 1532 if( eWithin==NOT_WITHIN ) break; |
| 1533 } |
| 1534 p->iCell++; |
| 1535 if( eWithin==NOT_WITHIN ) continue; |
| 1536 x.iLevel = p->iLevel - 1; |
| 1537 if( x.iLevel ){ |
| 1538 x.id = readInt64(pCellData); |
| 1539 x.iCell = 0; |
| 1540 }else{ |
| 1541 x.id = p->id; |
| 1542 x.iCell = p->iCell - 1; |
| 1543 } |
| 1544 if( p->iCell>=nCell ){ |
| 1545 RTREE_QUEUE_TRACE(pCur, "POP-S:"); |
| 1546 rtreeSearchPointPop(pCur); |
| 1547 } |
| 1548 if( rScore<RTREE_ZERO ) rScore = RTREE_ZERO; |
| 1549 p = rtreeSearchPointNew(pCur, rScore, x.iLevel); |
| 1550 if( p==0 ) return SQLITE_NOMEM; |
| 1551 p->eWithin = (u8)eWithin; |
| 1552 p->id = x.id; |
| 1553 p->iCell = x.iCell; |
| 1554 RTREE_QUEUE_TRACE(pCur, "PUSH-S:"); |
| 1555 break; |
| 1556 } |
| 1557 if( p->iCell>=nCell ){ |
| 1558 RTREE_QUEUE_TRACE(pCur, "POP-Se:"); |
| 1559 rtreeSearchPointPop(pCur); |
| 1560 } |
| 1561 } |
| 1562 pCur->atEOF = p==0; |
| 1563 return SQLITE_OK; |
| 1564 } |
| 1565 |
| 1566 /* |
| 1567 ** Rtree virtual table module xNext method. |
| 1568 */ |
| 1569 static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ |
| 1570 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
| 1571 int rc = SQLITE_OK; |
| 1572 |
| 1573 /* Move to the next entry that matches the configured constraints. */ |
| 1574 RTREE_QUEUE_TRACE(pCsr, "POP-Nx:"); |
| 1575 rtreeSearchPointPop(pCsr); |
| 1576 rc = rtreeStepToLeaf(pCsr); |
| 1577 return rc; |
| 1578 } |
| 1579 |
| 1580 /* |
| 1581 ** Rtree virtual table module xRowid method. |
| 1582 */ |
| 1583 static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){ |
| 1584 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
| 1585 RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); |
| 1586 int rc = SQLITE_OK; |
| 1587 RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); |
| 1588 if( rc==SQLITE_OK && p ){ |
| 1589 *pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell); |
| 1590 } |
| 1591 return rc; |
| 1592 } |
| 1593 |
| 1594 /* |
| 1595 ** Rtree virtual table module xColumn method. |
| 1596 */ |
| 1597 static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ |
| 1598 Rtree *pRtree = (Rtree *)cur->pVtab; |
| 1599 RtreeCursor *pCsr = (RtreeCursor *)cur; |
| 1600 RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); |
| 1601 RtreeCoord c; |
| 1602 int rc = SQLITE_OK; |
| 1603 RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); |
| 1604 |
| 1605 if( rc ) return rc; |
| 1606 if( p==0 ) return SQLITE_OK; |
| 1607 if( i==0 ){ |
| 1608 sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell)); |
| 1609 }else{ |
| 1610 nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c); |
| 1611 #ifndef SQLITE_RTREE_INT_ONLY |
| 1612 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ |
| 1613 sqlite3_result_double(ctx, c.f); |
| 1614 }else |
| 1615 #endif |
| 1616 { |
| 1617 assert( pRtree->eCoordType==RTREE_COORD_INT32 ); |
| 1618 sqlite3_result_int(ctx, c.i); |
| 1619 } |
| 1620 } |
| 1621 return SQLITE_OK; |
| 1622 } |
| 1623 |
| 1624 /* |
| 1625 ** Use nodeAcquire() to obtain the leaf node containing the record with |
| 1626 ** rowid iRowid. If successful, set *ppLeaf to point to the node and |
| 1627 ** return SQLITE_OK. If there is no such record in the table, set |
| 1628 ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf |
| 1629 ** to zero and return an SQLite error code. |
| 1630 */ |
| 1631 static int findLeafNode( |
| 1632 Rtree *pRtree, /* RTree to search */ |
| 1633 i64 iRowid, /* The rowid searching for */ |
| 1634 RtreeNode **ppLeaf, /* Write the node here */ |
| 1635 sqlite3_int64 *piNode /* Write the node-id here */ |
| 1636 ){ |
| 1637 int rc; |
| 1638 *ppLeaf = 0; |
| 1639 sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid); |
| 1640 if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){ |
| 1641 i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0); |
| 1642 if( piNode ) *piNode = iNode; |
| 1643 rc = nodeAcquire(pRtree, iNode, 0, ppLeaf); |
| 1644 sqlite3_reset(pRtree->pReadRowid); |
| 1645 }else{ |
| 1646 rc = sqlite3_reset(pRtree->pReadRowid); |
| 1647 } |
| 1648 return rc; |
| 1649 } |
| 1650 |
| 1651 /* |
| 1652 ** This function is called to configure the RtreeConstraint object passed |
| 1653 ** as the second argument for a MATCH constraint. The value passed as the |
| 1654 ** first argument to this function is the right-hand operand to the MATCH |
| 1655 ** operator. |
| 1656 */ |
| 1657 static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){ |
| 1658 RtreeMatchArg *pBlob; /* BLOB returned by geometry function */ |
| 1659 sqlite3_rtree_query_info *pInfo; /* Callback information */ |
| 1660 int nBlob; /* Size of the geometry function blob */ |
| 1661 int nExpected; /* Expected size of the BLOB */ |
| 1662 |
| 1663 /* Check that value is actually a blob. */ |
| 1664 if( sqlite3_value_type(pValue)!=SQLITE_BLOB ) return SQLITE_ERROR; |
| 1665 |
| 1666 /* Check that the blob is roughly the right size. */ |
| 1667 nBlob = sqlite3_value_bytes(pValue); |
| 1668 if( nBlob<(int)sizeof(RtreeMatchArg) ){ |
| 1669 return SQLITE_ERROR; |
| 1670 } |
| 1671 |
| 1672 pInfo = (sqlite3_rtree_query_info*)sqlite3_malloc( sizeof(*pInfo)+nBlob ); |
| 1673 if( !pInfo ) return SQLITE_NOMEM; |
| 1674 memset(pInfo, 0, sizeof(*pInfo)); |
| 1675 pBlob = (RtreeMatchArg*)&pInfo[1]; |
| 1676 |
| 1677 memcpy(pBlob, sqlite3_value_blob(pValue), nBlob); |
| 1678 nExpected = (int)(sizeof(RtreeMatchArg) + |
| 1679 pBlob->nParam*sizeof(sqlite3_value*) + |
| 1680 (pBlob->nParam-1)*sizeof(RtreeDValue)); |
| 1681 if( pBlob->magic!=RTREE_GEOMETRY_MAGIC || nBlob!=nExpected ){ |
| 1682 sqlite3_free(pInfo); |
| 1683 return SQLITE_ERROR; |
| 1684 } |
| 1685 pInfo->pContext = pBlob->cb.pContext; |
| 1686 pInfo->nParam = pBlob->nParam; |
| 1687 pInfo->aParam = pBlob->aParam; |
| 1688 pInfo->apSqlParam = pBlob->apSqlParam; |
| 1689 |
| 1690 if( pBlob->cb.xGeom ){ |
| 1691 pCons->u.xGeom = pBlob->cb.xGeom; |
| 1692 }else{ |
| 1693 pCons->op = RTREE_QUERY; |
| 1694 pCons->u.xQueryFunc = pBlob->cb.xQueryFunc; |
| 1695 } |
| 1696 pCons->pInfo = pInfo; |
| 1697 return SQLITE_OK; |
| 1698 } |
| 1699 |
| 1700 /* |
| 1701 ** Rtree virtual table module xFilter method. |
| 1702 */ |
| 1703 static int rtreeFilter( |
| 1704 sqlite3_vtab_cursor *pVtabCursor, |
| 1705 int idxNum, const char *idxStr, |
| 1706 int argc, sqlite3_value **argv |
| 1707 ){ |
| 1708 Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; |
| 1709 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
| 1710 RtreeNode *pRoot = 0; |
| 1711 int ii; |
| 1712 int rc = SQLITE_OK; |
| 1713 int iCell = 0; |
| 1714 |
| 1715 rtreeReference(pRtree); |
| 1716 |
| 1717 /* Reset the cursor to the same state as rtreeOpen() leaves it in. */ |
| 1718 freeCursorConstraints(pCsr); |
| 1719 sqlite3_free(pCsr->aPoint); |
| 1720 memset(pCsr, 0, sizeof(RtreeCursor)); |
| 1721 pCsr->base.pVtab = (sqlite3_vtab*)pRtree; |
| 1722 |
| 1723 pCsr->iStrategy = idxNum; |
| 1724 if( idxNum==1 ){ |
| 1725 /* Special case - lookup by rowid. */ |
| 1726 RtreeNode *pLeaf; /* Leaf on which the required cell resides */ |
| 1727 RtreeSearchPoint *p; /* Search point for the leaf */ |
| 1728 i64 iRowid = sqlite3_value_int64(argv[0]); |
| 1729 i64 iNode = 0; |
| 1730 rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode); |
| 1731 if( rc==SQLITE_OK && pLeaf!=0 ){ |
| 1732 p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0); |
| 1733 assert( p!=0 ); /* Always returns pCsr->sPoint */ |
| 1734 pCsr->aNode[0] = pLeaf; |
| 1735 p->id = iNode; |
| 1736 p->eWithin = PARTLY_WITHIN; |
| 1737 rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell); |
| 1738 p->iCell = (u8)iCell; |
| 1739 RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:"); |
| 1740 }else{ |
| 1741 pCsr->atEOF = 1; |
| 1742 } |
| 1743 }else{ |
| 1744 /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array |
| 1745 ** with the configured constraints. |
| 1746 */ |
| 1747 rc = nodeAcquire(pRtree, 1, 0, &pRoot); |
| 1748 if( rc==SQLITE_OK && argc>0 ){ |
| 1749 pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc); |
| 1750 pCsr->nConstraint = argc; |
| 1751 if( !pCsr->aConstraint ){ |
| 1752 rc = SQLITE_NOMEM; |
| 1753 }else{ |
| 1754 memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc); |
| 1755 memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1)); |
| 1756 assert( (idxStr==0 && argc==0) |
| 1757 || (idxStr && (int)strlen(idxStr)==argc*2) ); |
| 1758 for(ii=0; ii<argc; ii++){ |
| 1759 RtreeConstraint *p = &pCsr->aConstraint[ii]; |
| 1760 p->op = idxStr[ii*2]; |
| 1761 p->iCoord = idxStr[ii*2+1]-'0'; |
| 1762 if( p->op>=RTREE_MATCH ){ |
| 1763 /* A MATCH operator. The right-hand-side must be a blob that |
| 1764 ** can be cast into an RtreeMatchArg object. One created using |
| 1765 ** an sqlite3_rtree_geometry_callback() SQL user function. |
| 1766 */ |
| 1767 rc = deserializeGeometry(argv[ii], p); |
| 1768 if( rc!=SQLITE_OK ){ |
| 1769 break; |
| 1770 } |
| 1771 p->pInfo->nCoord = pRtree->nDim2; |
| 1772 p->pInfo->anQueue = pCsr->anQueue; |
| 1773 p->pInfo->mxLevel = pRtree->iDepth + 1; |
| 1774 }else{ |
| 1775 #ifdef SQLITE_RTREE_INT_ONLY |
| 1776 p->u.rValue = sqlite3_value_int64(argv[ii]); |
| 1777 #else |
| 1778 p->u.rValue = sqlite3_value_double(argv[ii]); |
| 1779 #endif |
| 1780 } |
| 1781 } |
| 1782 } |
| 1783 } |
| 1784 if( rc==SQLITE_OK ){ |
| 1785 RtreeSearchPoint *pNew; |
| 1786 pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, (u8)(pRtree->iDepth+1)); |
| 1787 if( pNew==0 ) return SQLITE_NOMEM; |
| 1788 pNew->id = 1; |
| 1789 pNew->iCell = 0; |
| 1790 pNew->eWithin = PARTLY_WITHIN; |
| 1791 assert( pCsr->bPoint==1 ); |
| 1792 pCsr->aNode[0] = pRoot; |
| 1793 pRoot = 0; |
| 1794 RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:"); |
| 1795 rc = rtreeStepToLeaf(pCsr); |
| 1796 } |
| 1797 } |
| 1798 |
| 1799 nodeRelease(pRtree, pRoot); |
| 1800 rtreeRelease(pRtree); |
| 1801 return rc; |
| 1802 } |
| 1803 |
| 1804 /* |
| 1805 ** Rtree virtual table module xBestIndex method. There are three |
| 1806 ** table scan strategies to choose from (in order from most to |
| 1807 ** least desirable): |
| 1808 ** |
| 1809 ** idxNum idxStr Strategy |
| 1810 ** ------------------------------------------------ |
| 1811 ** 1 Unused Direct lookup by rowid. |
| 1812 ** 2 See below R-tree query or full-table scan. |
| 1813 ** ------------------------------------------------ |
| 1814 ** |
| 1815 ** If strategy 1 is used, then idxStr is not meaningful. If strategy |
| 1816 ** 2 is used, idxStr is formatted to contain 2 bytes for each |
| 1817 ** constraint used. The first two bytes of idxStr correspond to |
| 1818 ** the constraint in sqlite3_index_info.aConstraintUsage[] with |
| 1819 ** (argvIndex==1) etc. |
| 1820 ** |
| 1821 ** The first of each pair of bytes in idxStr identifies the constraint |
| 1822 ** operator as follows: |
| 1823 ** |
| 1824 ** Operator Byte Value |
| 1825 ** ---------------------- |
| 1826 ** = 0x41 ('A') |
| 1827 ** <= 0x42 ('B') |
| 1828 ** < 0x43 ('C') |
| 1829 ** >= 0x44 ('D') |
| 1830 ** > 0x45 ('E') |
| 1831 ** MATCH 0x46 ('F') |
| 1832 ** ---------------------- |
| 1833 ** |
| 1834 ** The second of each pair of bytes identifies the coordinate column |
| 1835 ** to which the constraint applies. The leftmost coordinate column |
| 1836 ** is 'a', the second from the left 'b' etc. |
| 1837 */ |
| 1838 static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ |
| 1839 Rtree *pRtree = (Rtree*)tab; |
| 1840 int rc = SQLITE_OK; |
| 1841 int ii; |
| 1842 int bMatch = 0; /* True if there exists a MATCH constraint */ |
| 1843 i64 nRow; /* Estimated rows returned by this scan */ |
| 1844 |
| 1845 int iIdx = 0; |
| 1846 char zIdxStr[RTREE_MAX_DIMENSIONS*8+1]; |
| 1847 memset(zIdxStr, 0, sizeof(zIdxStr)); |
| 1848 |
| 1849 /* Check if there exists a MATCH constraint - even an unusable one. If there |
| 1850 ** is, do not consider the lookup-by-rowid plan as using such a plan would |
| 1851 ** require the VDBE to evaluate the MATCH constraint, which is not currently |
| 1852 ** possible. */ |
| 1853 for(ii=0; ii<pIdxInfo->nConstraint; ii++){ |
| 1854 if( pIdxInfo->aConstraint[ii].op==SQLITE_INDEX_CONSTRAINT_MATCH ){ |
| 1855 bMatch = 1; |
| 1856 } |
| 1857 } |
| 1858 |
| 1859 assert( pIdxInfo->idxStr==0 ); |
| 1860 for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){ |
| 1861 struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; |
| 1862 |
| 1863 if( bMatch==0 && p->usable |
| 1864 && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ |
| 1865 ){ |
| 1866 /* We have an equality constraint on the rowid. Use strategy 1. */ |
| 1867 int jj; |
| 1868 for(jj=0; jj<ii; jj++){ |
| 1869 pIdxInfo->aConstraintUsage[jj].argvIndex = 0; |
| 1870 pIdxInfo->aConstraintUsage[jj].omit = 0; |
| 1871 } |
| 1872 pIdxInfo->idxNum = 1; |
| 1873 pIdxInfo->aConstraintUsage[ii].argvIndex = 1; |
| 1874 pIdxInfo->aConstraintUsage[jj].omit = 1; |
| 1875 |
| 1876 /* This strategy involves a two rowid lookups on an B-Tree structures |
| 1877 ** and then a linear search of an R-Tree node. This should be |
| 1878 ** considered almost as quick as a direct rowid lookup (for which |
| 1879 ** sqlite uses an internal cost of 0.0). It is expected to return |
| 1880 ** a single row. |
| 1881 */ |
| 1882 pIdxInfo->estimatedCost = 30.0; |
| 1883 pIdxInfo->estimatedRows = 1; |
| 1884 return SQLITE_OK; |
| 1885 } |
| 1886 |
| 1887 if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){ |
| 1888 u8 op; |
| 1889 switch( p->op ){ |
| 1890 case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break; |
| 1891 case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break; |
| 1892 case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; |
| 1893 case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break; |
| 1894 case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; |
| 1895 default: |
| 1896 assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH ); |
| 1897 op = RTREE_MATCH; |
| 1898 break; |
| 1899 } |
| 1900 zIdxStr[iIdx++] = op; |
| 1901 zIdxStr[iIdx++] = (char)(p->iColumn - 1 + '0'); |
| 1902 pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); |
| 1903 pIdxInfo->aConstraintUsage[ii].omit = 1; |
| 1904 } |
| 1905 } |
| 1906 |
| 1907 pIdxInfo->idxNum = 2; |
| 1908 pIdxInfo->needToFreeIdxStr = 1; |
| 1909 if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){ |
| 1910 return SQLITE_NOMEM; |
| 1911 } |
| 1912 |
| 1913 nRow = pRtree->nRowEst >> (iIdx/2); |
| 1914 pIdxInfo->estimatedCost = (double)6.0 * (double)nRow; |
| 1915 pIdxInfo->estimatedRows = nRow; |
| 1916 |
| 1917 return rc; |
| 1918 } |
| 1919 |
| 1920 /* |
| 1921 ** Return the N-dimensional volumn of the cell stored in *p. |
| 1922 */ |
| 1923 static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){ |
| 1924 RtreeDValue area = (RtreeDValue)1; |
| 1925 assert( pRtree->nDim>=1 && pRtree->nDim<=5 ); |
| 1926 #ifndef SQLITE_RTREE_INT_ONLY |
| 1927 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ |
| 1928 switch( pRtree->nDim ){ |
| 1929 case 5: area = p->aCoord[9].f - p->aCoord[8].f; |
| 1930 case 4: area *= p->aCoord[7].f - p->aCoord[6].f; |
| 1931 case 3: area *= p->aCoord[5].f - p->aCoord[4].f; |
| 1932 case 2: area *= p->aCoord[3].f - p->aCoord[2].f; |
| 1933 default: area *= p->aCoord[1].f - p->aCoord[0].f; |
| 1934 } |
| 1935 }else |
| 1936 #endif |
| 1937 { |
| 1938 switch( pRtree->nDim ){ |
| 1939 case 5: area = p->aCoord[9].i - p->aCoord[8].i; |
| 1940 case 4: area *= p->aCoord[7].i - p->aCoord[6].i; |
| 1941 case 3: area *= p->aCoord[5].i - p->aCoord[4].i; |
| 1942 case 2: area *= p->aCoord[3].i - p->aCoord[2].i; |
| 1943 default: area *= p->aCoord[1].i - p->aCoord[0].i; |
| 1944 } |
| 1945 } |
| 1946 return area; |
| 1947 } |
| 1948 |
| 1949 /* |
| 1950 ** Return the margin length of cell p. The margin length is the sum |
| 1951 ** of the objects size in each dimension. |
| 1952 */ |
| 1953 static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){ |
| 1954 RtreeDValue margin = 0; |
| 1955 int ii = pRtree->nDim2 - 2; |
| 1956 do{ |
| 1957 margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])); |
| 1958 ii -= 2; |
| 1959 }while( ii>=0 ); |
| 1960 return margin; |
| 1961 } |
| 1962 |
| 1963 /* |
| 1964 ** Store the union of cells p1 and p2 in p1. |
| 1965 */ |
| 1966 static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ |
| 1967 int ii = 0; |
| 1968 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ |
| 1969 do{ |
| 1970 p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f); |
| 1971 p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f); |
| 1972 ii += 2; |
| 1973 }while( ii<pRtree->nDim2 ); |
| 1974 }else{ |
| 1975 do{ |
| 1976 p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i); |
| 1977 p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i); |
| 1978 ii += 2; |
| 1979 }while( ii<pRtree->nDim2 ); |
| 1980 } |
| 1981 } |
| 1982 |
| 1983 /* |
| 1984 ** Return true if the area covered by p2 is a subset of the area covered |
| 1985 ** by p1. False otherwise. |
| 1986 */ |
| 1987 static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ |
| 1988 int ii; |
| 1989 int isInt = (pRtree->eCoordType==RTREE_COORD_INT32); |
| 1990 for(ii=0; ii<pRtree->nDim2; ii+=2){ |
| 1991 RtreeCoord *a1 = &p1->aCoord[ii]; |
| 1992 RtreeCoord *a2 = &p2->aCoord[ii]; |
| 1993 if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f)) |
| 1994 || ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i)) |
| 1995 ){ |
| 1996 return 0; |
| 1997 } |
| 1998 } |
| 1999 return 1; |
| 2000 } |
| 2001 |
| 2002 /* |
| 2003 ** Return the amount cell p would grow by if it were unioned with pCell. |
| 2004 */ |
| 2005 static RtreeDValue cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){ |
| 2006 RtreeDValue area; |
| 2007 RtreeCell cell; |
| 2008 memcpy(&cell, p, sizeof(RtreeCell)); |
| 2009 area = cellArea(pRtree, &cell); |
| 2010 cellUnion(pRtree, &cell, pCell); |
| 2011 return (cellArea(pRtree, &cell)-area); |
| 2012 } |
| 2013 |
| 2014 static RtreeDValue cellOverlap( |
| 2015 Rtree *pRtree, |
| 2016 RtreeCell *p, |
| 2017 RtreeCell *aCell, |
| 2018 int nCell |
| 2019 ){ |
| 2020 int ii; |
| 2021 RtreeDValue overlap = RTREE_ZERO; |
| 2022 for(ii=0; ii<nCell; ii++){ |
| 2023 int jj; |
| 2024 RtreeDValue o = (RtreeDValue)1; |
| 2025 for(jj=0; jj<pRtree->nDim2; jj+=2){ |
| 2026 RtreeDValue x1, x2; |
| 2027 x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj])); |
| 2028 x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1])); |
| 2029 if( x2<x1 ){ |
| 2030 o = (RtreeDValue)0; |
| 2031 break; |
| 2032 }else{ |
| 2033 o = o * (x2-x1); |
| 2034 } |
| 2035 } |
| 2036 overlap += o; |
| 2037 } |
| 2038 return overlap; |
| 2039 } |
| 2040 |
| 2041 |
| 2042 /* |
| 2043 ** This function implements the ChooseLeaf algorithm from Gutman[84]. |
| 2044 ** ChooseSubTree in r*tree terminology. |
| 2045 */ |
| 2046 static int ChooseLeaf( |
| 2047 Rtree *pRtree, /* Rtree table */ |
| 2048 RtreeCell *pCell, /* Cell to insert into rtree */ |
| 2049 int iHeight, /* Height of sub-tree rooted at pCell */ |
| 2050 RtreeNode **ppLeaf /* OUT: Selected leaf page */ |
| 2051 ){ |
| 2052 int rc; |
| 2053 int ii; |
| 2054 RtreeNode *pNode; |
| 2055 rc = nodeAcquire(pRtree, 1, 0, &pNode); |
| 2056 |
| 2057 for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){ |
| 2058 int iCell; |
| 2059 sqlite3_int64 iBest = 0; |
| 2060 |
| 2061 RtreeDValue fMinGrowth = RTREE_ZERO; |
| 2062 RtreeDValue fMinArea = RTREE_ZERO; |
| 2063 |
| 2064 int nCell = NCELL(pNode); |
| 2065 RtreeCell cell; |
| 2066 RtreeNode *pChild; |
| 2067 |
| 2068 RtreeCell *aCell = 0; |
| 2069 |
| 2070 /* Select the child node which will be enlarged the least if pCell |
| 2071 ** is inserted into it. Resolve ties by choosing the entry with |
| 2072 ** the smallest area. |
| 2073 */ |
| 2074 for(iCell=0; iCell<nCell; iCell++){ |
| 2075 int bBest = 0; |
| 2076 RtreeDValue growth; |
| 2077 RtreeDValue area; |
| 2078 nodeGetCell(pRtree, pNode, iCell, &cell); |
| 2079 growth = cellGrowth(pRtree, &cell, pCell); |
| 2080 area = cellArea(pRtree, &cell); |
| 2081 if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){ |
| 2082 bBest = 1; |
| 2083 } |
| 2084 if( bBest ){ |
| 2085 fMinGrowth = growth; |
| 2086 fMinArea = area; |
| 2087 iBest = cell.iRowid; |
| 2088 } |
| 2089 } |
| 2090 |
| 2091 sqlite3_free(aCell); |
| 2092 rc = nodeAcquire(pRtree, iBest, pNode, &pChild); |
| 2093 nodeRelease(pRtree, pNode); |
| 2094 pNode = pChild; |
| 2095 } |
| 2096 |
| 2097 *ppLeaf = pNode; |
| 2098 return rc; |
| 2099 } |
| 2100 |
| 2101 /* |
| 2102 ** A cell with the same content as pCell has just been inserted into |
| 2103 ** the node pNode. This function updates the bounding box cells in |
| 2104 ** all ancestor elements. |
| 2105 */ |
| 2106 static int AdjustTree( |
| 2107 Rtree *pRtree, /* Rtree table */ |
| 2108 RtreeNode *pNode, /* Adjust ancestry of this node. */ |
| 2109 RtreeCell *pCell /* This cell was just inserted */ |
| 2110 ){ |
| 2111 RtreeNode *p = pNode; |
| 2112 while( p->pParent ){ |
| 2113 RtreeNode *pParent = p->pParent; |
| 2114 RtreeCell cell; |
| 2115 int iCell; |
| 2116 |
| 2117 if( nodeParentIndex(pRtree, p, &iCell) ){ |
| 2118 return SQLITE_CORRUPT_VTAB; |
| 2119 } |
| 2120 |
| 2121 nodeGetCell(pRtree, pParent, iCell, &cell); |
| 2122 if( !cellContains(pRtree, &cell, pCell) ){ |
| 2123 cellUnion(pRtree, &cell, pCell); |
| 2124 nodeOverwriteCell(pRtree, pParent, &cell, iCell); |
| 2125 } |
| 2126 |
| 2127 p = pParent; |
| 2128 } |
| 2129 return SQLITE_OK; |
| 2130 } |
| 2131 |
| 2132 /* |
| 2133 ** Write mapping (iRowid->iNode) to the <rtree>_rowid table. |
| 2134 */ |
| 2135 static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){ |
| 2136 sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid); |
| 2137 sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode); |
| 2138 sqlite3_step(pRtree->pWriteRowid); |
| 2139 return sqlite3_reset(pRtree->pWriteRowid); |
| 2140 } |
| 2141 |
| 2142 /* |
| 2143 ** Write mapping (iNode->iPar) to the <rtree>_parent table. |
| 2144 */ |
| 2145 static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){ |
| 2146 sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode); |
| 2147 sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar); |
| 2148 sqlite3_step(pRtree->pWriteParent); |
| 2149 return sqlite3_reset(pRtree->pWriteParent); |
| 2150 } |
| 2151 |
| 2152 static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int); |
| 2153 |
| 2154 |
| 2155 /* |
| 2156 ** Arguments aIdx, aDistance and aSpare all point to arrays of size |
| 2157 ** nIdx. The aIdx array contains the set of integers from 0 to |
| 2158 ** (nIdx-1) in no particular order. This function sorts the values |
| 2159 ** in aIdx according to the indexed values in aDistance. For |
| 2160 ** example, assuming the inputs: |
| 2161 ** |
| 2162 ** aIdx = { 0, 1, 2, 3 } |
| 2163 ** aDistance = { 5.0, 2.0, 7.0, 6.0 } |
| 2164 ** |
| 2165 ** this function sets the aIdx array to contain: |
| 2166 ** |
| 2167 ** aIdx = { 0, 1, 2, 3 } |
| 2168 ** |
| 2169 ** The aSpare array is used as temporary working space by the |
| 2170 ** sorting algorithm. |
| 2171 */ |
| 2172 static void SortByDistance( |
| 2173 int *aIdx, |
| 2174 int nIdx, |
| 2175 RtreeDValue *aDistance, |
| 2176 int *aSpare |
| 2177 ){ |
| 2178 if( nIdx>1 ){ |
| 2179 int iLeft = 0; |
| 2180 int iRight = 0; |
| 2181 |
| 2182 int nLeft = nIdx/2; |
| 2183 int nRight = nIdx-nLeft; |
| 2184 int *aLeft = aIdx; |
| 2185 int *aRight = &aIdx[nLeft]; |
| 2186 |
| 2187 SortByDistance(aLeft, nLeft, aDistance, aSpare); |
| 2188 SortByDistance(aRight, nRight, aDistance, aSpare); |
| 2189 |
| 2190 memcpy(aSpare, aLeft, sizeof(int)*nLeft); |
| 2191 aLeft = aSpare; |
| 2192 |
| 2193 while( iLeft<nLeft || iRight<nRight ){ |
| 2194 if( iLeft==nLeft ){ |
| 2195 aIdx[iLeft+iRight] = aRight[iRight]; |
| 2196 iRight++; |
| 2197 }else if( iRight==nRight ){ |
| 2198 aIdx[iLeft+iRight] = aLeft[iLeft]; |
| 2199 iLeft++; |
| 2200 }else{ |
| 2201 RtreeDValue fLeft = aDistance[aLeft[iLeft]]; |
| 2202 RtreeDValue fRight = aDistance[aRight[iRight]]; |
| 2203 if( fLeft<fRight ){ |
| 2204 aIdx[iLeft+iRight] = aLeft[iLeft]; |
| 2205 iLeft++; |
| 2206 }else{ |
| 2207 aIdx[iLeft+iRight] = aRight[iRight]; |
| 2208 iRight++; |
| 2209 } |
| 2210 } |
| 2211 } |
| 2212 |
| 2213 #if 0 |
| 2214 /* Check that the sort worked */ |
| 2215 { |
| 2216 int jj; |
| 2217 for(jj=1; jj<nIdx; jj++){ |
| 2218 RtreeDValue left = aDistance[aIdx[jj-1]]; |
| 2219 RtreeDValue right = aDistance[aIdx[jj]]; |
| 2220 assert( left<=right ); |
| 2221 } |
| 2222 } |
| 2223 #endif |
| 2224 } |
| 2225 } |
| 2226 |
| 2227 /* |
| 2228 ** Arguments aIdx, aCell and aSpare all point to arrays of size |
| 2229 ** nIdx. The aIdx array contains the set of integers from 0 to |
| 2230 ** (nIdx-1) in no particular order. This function sorts the values |
| 2231 ** in aIdx according to dimension iDim of the cells in aCell. The |
| 2232 ** minimum value of dimension iDim is considered first, the |
| 2233 ** maximum used to break ties. |
| 2234 ** |
| 2235 ** The aSpare array is used as temporary working space by the |
| 2236 ** sorting algorithm. |
| 2237 */ |
| 2238 static void SortByDimension( |
| 2239 Rtree *pRtree, |
| 2240 int *aIdx, |
| 2241 int nIdx, |
| 2242 int iDim, |
| 2243 RtreeCell *aCell, |
| 2244 int *aSpare |
| 2245 ){ |
| 2246 if( nIdx>1 ){ |
| 2247 |
| 2248 int iLeft = 0; |
| 2249 int iRight = 0; |
| 2250 |
| 2251 int nLeft = nIdx/2; |
| 2252 int nRight = nIdx-nLeft; |
| 2253 int *aLeft = aIdx; |
| 2254 int *aRight = &aIdx[nLeft]; |
| 2255 |
| 2256 SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare); |
| 2257 SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare); |
| 2258 |
| 2259 memcpy(aSpare, aLeft, sizeof(int)*nLeft); |
| 2260 aLeft = aSpare; |
| 2261 while( iLeft<nLeft || iRight<nRight ){ |
| 2262 RtreeDValue xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]); |
| 2263 RtreeDValue xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]); |
| 2264 RtreeDValue xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]); |
| 2265 RtreeDValue xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]); |
| 2266 if( (iLeft!=nLeft) && ((iRight==nRight) |
| 2267 || (xleft1<xright1) |
| 2268 || (xleft1==xright1 && xleft2<xright2) |
| 2269 )){ |
| 2270 aIdx[iLeft+iRight] = aLeft[iLeft]; |
| 2271 iLeft++; |
| 2272 }else{ |
| 2273 aIdx[iLeft+iRight] = aRight[iRight]; |
| 2274 iRight++; |
| 2275 } |
| 2276 } |
| 2277 |
| 2278 #if 0 |
| 2279 /* Check that the sort worked */ |
| 2280 { |
| 2281 int jj; |
| 2282 for(jj=1; jj<nIdx; jj++){ |
| 2283 RtreeDValue xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2]; |
| 2284 RtreeDValue xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1]; |
| 2285 RtreeDValue xright1 = aCell[aIdx[jj]].aCoord[iDim*2]; |
| 2286 RtreeDValue xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1]; |
| 2287 assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) ); |
| 2288 } |
| 2289 } |
| 2290 #endif |
| 2291 } |
| 2292 } |
| 2293 |
| 2294 /* |
| 2295 ** Implementation of the R*-tree variant of SplitNode from Beckman[1990]. |
| 2296 */ |
| 2297 static int splitNodeStartree( |
| 2298 Rtree *pRtree, |
| 2299 RtreeCell *aCell, |
| 2300 int nCell, |
| 2301 RtreeNode *pLeft, |
| 2302 RtreeNode *pRight, |
| 2303 RtreeCell *pBboxLeft, |
| 2304 RtreeCell *pBboxRight |
| 2305 ){ |
| 2306 int **aaSorted; |
| 2307 int *aSpare; |
| 2308 int ii; |
| 2309 |
| 2310 int iBestDim = 0; |
| 2311 int iBestSplit = 0; |
| 2312 RtreeDValue fBestMargin = RTREE_ZERO; |
| 2313 |
| 2314 int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int)); |
| 2315 |
| 2316 aaSorted = (int **)sqlite3_malloc(nByte); |
| 2317 if( !aaSorted ){ |
| 2318 return SQLITE_NOMEM; |
| 2319 } |
| 2320 |
| 2321 aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell]; |
| 2322 memset(aaSorted, 0, nByte); |
| 2323 for(ii=0; ii<pRtree->nDim; ii++){ |
| 2324 int jj; |
| 2325 aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell]; |
| 2326 for(jj=0; jj<nCell; jj++){ |
| 2327 aaSorted[ii][jj] = jj; |
| 2328 } |
| 2329 SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare); |
| 2330 } |
| 2331 |
| 2332 for(ii=0; ii<pRtree->nDim; ii++){ |
| 2333 RtreeDValue margin = RTREE_ZERO; |
| 2334 RtreeDValue fBestOverlap = RTREE_ZERO; |
| 2335 RtreeDValue fBestArea = RTREE_ZERO; |
| 2336 int iBestLeft = 0; |
| 2337 int nLeft; |
| 2338 |
| 2339 for( |
| 2340 nLeft=RTREE_MINCELLS(pRtree); |
| 2341 nLeft<=(nCell-RTREE_MINCELLS(pRtree)); |
| 2342 nLeft++ |
| 2343 ){ |
| 2344 RtreeCell left; |
| 2345 RtreeCell right; |
| 2346 int kk; |
| 2347 RtreeDValue overlap; |
| 2348 RtreeDValue area; |
| 2349 |
| 2350 memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell)); |
| 2351 memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell)); |
| 2352 for(kk=1; kk<(nCell-1); kk++){ |
| 2353 if( kk<nLeft ){ |
| 2354 cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]); |
| 2355 }else{ |
| 2356 cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]); |
| 2357 } |
| 2358 } |
| 2359 margin += cellMargin(pRtree, &left); |
| 2360 margin += cellMargin(pRtree, &right); |
| 2361 overlap = cellOverlap(pRtree, &left, &right, 1); |
| 2362 area = cellArea(pRtree, &left) + cellArea(pRtree, &right); |
| 2363 if( (nLeft==RTREE_MINCELLS(pRtree)) |
| 2364 || (overlap<fBestOverlap) |
| 2365 || (overlap==fBestOverlap && area<fBestArea) |
| 2366 ){ |
| 2367 iBestLeft = nLeft; |
| 2368 fBestOverlap = overlap; |
| 2369 fBestArea = area; |
| 2370 } |
| 2371 } |
| 2372 |
| 2373 if( ii==0 || margin<fBestMargin ){ |
| 2374 iBestDim = ii; |
| 2375 fBestMargin = margin; |
| 2376 iBestSplit = iBestLeft; |
| 2377 } |
| 2378 } |
| 2379 |
| 2380 memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell)); |
| 2381 memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell)); |
| 2382 for(ii=0; ii<nCell; ii++){ |
| 2383 RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight; |
| 2384 RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight; |
| 2385 RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]]; |
| 2386 nodeInsertCell(pRtree, pTarget, pCell); |
| 2387 cellUnion(pRtree, pBbox, pCell); |
| 2388 } |
| 2389 |
| 2390 sqlite3_free(aaSorted); |
| 2391 return SQLITE_OK; |
| 2392 } |
| 2393 |
| 2394 |
| 2395 static int updateMapping( |
| 2396 Rtree *pRtree, |
| 2397 i64 iRowid, |
| 2398 RtreeNode *pNode, |
| 2399 int iHeight |
| 2400 ){ |
| 2401 int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64); |
| 2402 xSetMapping = ((iHeight==0)?rowidWrite:parentWrite); |
| 2403 if( iHeight>0 ){ |
| 2404 RtreeNode *pChild = nodeHashLookup(pRtree, iRowid); |
| 2405 if( pChild ){ |
| 2406 nodeRelease(pRtree, pChild->pParent); |
| 2407 nodeReference(pNode); |
| 2408 pChild->pParent = pNode; |
| 2409 } |
| 2410 } |
| 2411 return xSetMapping(pRtree, iRowid, pNode->iNode); |
| 2412 } |
| 2413 |
| 2414 static int SplitNode( |
| 2415 Rtree *pRtree, |
| 2416 RtreeNode *pNode, |
| 2417 RtreeCell *pCell, |
| 2418 int iHeight |
| 2419 ){ |
| 2420 int i; |
| 2421 int newCellIsRight = 0; |
| 2422 |
| 2423 int rc = SQLITE_OK; |
| 2424 int nCell = NCELL(pNode); |
| 2425 RtreeCell *aCell; |
| 2426 int *aiUsed; |
| 2427 |
| 2428 RtreeNode *pLeft = 0; |
| 2429 RtreeNode *pRight = 0; |
| 2430 |
| 2431 RtreeCell leftbbox; |
| 2432 RtreeCell rightbbox; |
| 2433 |
| 2434 /* Allocate an array and populate it with a copy of pCell and |
| 2435 ** all cells from node pLeft. Then zero the original node. |
| 2436 */ |
| 2437 aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1)); |
| 2438 if( !aCell ){ |
| 2439 rc = SQLITE_NOMEM; |
| 2440 goto splitnode_out; |
| 2441 } |
| 2442 aiUsed = (int *)&aCell[nCell+1]; |
| 2443 memset(aiUsed, 0, sizeof(int)*(nCell+1)); |
| 2444 for(i=0; i<nCell; i++){ |
| 2445 nodeGetCell(pRtree, pNode, i, &aCell[i]); |
| 2446 } |
| 2447 nodeZero(pRtree, pNode); |
| 2448 memcpy(&aCell[nCell], pCell, sizeof(RtreeCell)); |
| 2449 nCell++; |
| 2450 |
| 2451 if( pNode->iNode==1 ){ |
| 2452 pRight = nodeNew(pRtree, pNode); |
| 2453 pLeft = nodeNew(pRtree, pNode); |
| 2454 pRtree->iDepth++; |
| 2455 pNode->isDirty = 1; |
| 2456 writeInt16(pNode->zData, pRtree->iDepth); |
| 2457 }else{ |
| 2458 pLeft = pNode; |
| 2459 pRight = nodeNew(pRtree, pLeft->pParent); |
| 2460 nodeReference(pLeft); |
| 2461 } |
| 2462 |
| 2463 if( !pLeft || !pRight ){ |
| 2464 rc = SQLITE_NOMEM; |
| 2465 goto splitnode_out; |
| 2466 } |
| 2467 |
| 2468 memset(pLeft->zData, 0, pRtree->iNodeSize); |
| 2469 memset(pRight->zData, 0, pRtree->iNodeSize); |
| 2470 |
| 2471 rc = splitNodeStartree(pRtree, aCell, nCell, pLeft, pRight, |
| 2472 &leftbbox, &rightbbox); |
| 2473 if( rc!=SQLITE_OK ){ |
| 2474 goto splitnode_out; |
| 2475 } |
| 2476 |
| 2477 /* Ensure both child nodes have node numbers assigned to them by calling |
| 2478 ** nodeWrite(). Node pRight always needs a node number, as it was created |
| 2479 ** by nodeNew() above. But node pLeft sometimes already has a node number. |
| 2480 ** In this case avoid the all to nodeWrite(). |
| 2481 */ |
| 2482 if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight)) |
| 2483 || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft))) |
| 2484 ){ |
| 2485 goto splitnode_out; |
| 2486 } |
| 2487 |
| 2488 rightbbox.iRowid = pRight->iNode; |
| 2489 leftbbox.iRowid = pLeft->iNode; |
| 2490 |
| 2491 if( pNode->iNode==1 ){ |
| 2492 rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1); |
| 2493 if( rc!=SQLITE_OK ){ |
| 2494 goto splitnode_out; |
| 2495 } |
| 2496 }else{ |
| 2497 RtreeNode *pParent = pLeft->pParent; |
| 2498 int iCell; |
| 2499 rc = nodeParentIndex(pRtree, pLeft, &iCell); |
| 2500 if( rc==SQLITE_OK ){ |
| 2501 nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell); |
| 2502 rc = AdjustTree(pRtree, pParent, &leftbbox); |
| 2503 } |
| 2504 if( rc!=SQLITE_OK ){ |
| 2505 goto splitnode_out; |
| 2506 } |
| 2507 } |
| 2508 if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){ |
| 2509 goto splitnode_out; |
| 2510 } |
| 2511 |
| 2512 for(i=0; i<NCELL(pRight); i++){ |
| 2513 i64 iRowid = nodeGetRowid(pRtree, pRight, i); |
| 2514 rc = updateMapping(pRtree, iRowid, pRight, iHeight); |
| 2515 if( iRowid==pCell->iRowid ){ |
| 2516 newCellIsRight = 1; |
| 2517 } |
| 2518 if( rc!=SQLITE_OK ){ |
| 2519 goto splitnode_out; |
| 2520 } |
| 2521 } |
| 2522 if( pNode->iNode==1 ){ |
| 2523 for(i=0; i<NCELL(pLeft); i++){ |
| 2524 i64 iRowid = nodeGetRowid(pRtree, pLeft, i); |
| 2525 rc = updateMapping(pRtree, iRowid, pLeft, iHeight); |
| 2526 if( rc!=SQLITE_OK ){ |
| 2527 goto splitnode_out; |
| 2528 } |
| 2529 } |
| 2530 }else if( newCellIsRight==0 ){ |
| 2531 rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight); |
| 2532 } |
| 2533 |
| 2534 if( rc==SQLITE_OK ){ |
| 2535 rc = nodeRelease(pRtree, pRight); |
| 2536 pRight = 0; |
| 2537 } |
| 2538 if( rc==SQLITE_OK ){ |
| 2539 rc = nodeRelease(pRtree, pLeft); |
| 2540 pLeft = 0; |
| 2541 } |
| 2542 |
| 2543 splitnode_out: |
| 2544 nodeRelease(pRtree, pRight); |
| 2545 nodeRelease(pRtree, pLeft); |
| 2546 sqlite3_free(aCell); |
| 2547 return rc; |
| 2548 } |
| 2549 |
| 2550 /* |
| 2551 ** If node pLeaf is not the root of the r-tree and its pParent pointer is |
| 2552 ** still NULL, load all ancestor nodes of pLeaf into memory and populate |
| 2553 ** the pLeaf->pParent chain all the way up to the root node. |
| 2554 ** |
| 2555 ** This operation is required when a row is deleted (or updated - an update |
| 2556 ** is implemented as a delete followed by an insert). SQLite provides the |
| 2557 ** rowid of the row to delete, which can be used to find the leaf on which |
| 2558 ** the entry resides (argument pLeaf). Once the leaf is located, this |
| 2559 ** function is called to determine its ancestry. |
| 2560 */ |
| 2561 static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){ |
| 2562 int rc = SQLITE_OK; |
| 2563 RtreeNode *pChild = pLeaf; |
| 2564 while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){ |
| 2565 int rc2 = SQLITE_OK; /* sqlite3_reset() return code */ |
| 2566 sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode); |
| 2567 rc = sqlite3_step(pRtree->pReadParent); |
| 2568 if( rc==SQLITE_ROW ){ |
| 2569 RtreeNode *pTest; /* Used to test for reference loops */ |
| 2570 i64 iNode; /* Node number of parent node */ |
| 2571 |
| 2572 /* Before setting pChild->pParent, test that we are not creating a |
| 2573 ** loop of references (as we would if, say, pChild==pParent). We don't |
| 2574 ** want to do this as it leads to a memory leak when trying to delete |
| 2575 ** the referenced counted node structures. |
| 2576 */ |
| 2577 iNode = sqlite3_column_int64(pRtree->pReadParent, 0); |
| 2578 for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent); |
| 2579 if( !pTest ){ |
| 2580 rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent); |
| 2581 } |
| 2582 } |
| 2583 rc = sqlite3_reset(pRtree->pReadParent); |
| 2584 if( rc==SQLITE_OK ) rc = rc2; |
| 2585 if( rc==SQLITE_OK && !pChild->pParent ) rc = SQLITE_CORRUPT_VTAB; |
| 2586 pChild = pChild->pParent; |
| 2587 } |
| 2588 return rc; |
| 2589 } |
| 2590 |
| 2591 static int deleteCell(Rtree *, RtreeNode *, int, int); |
| 2592 |
| 2593 static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){ |
| 2594 int rc; |
| 2595 int rc2; |
| 2596 RtreeNode *pParent = 0; |
| 2597 int iCell; |
| 2598 |
| 2599 assert( pNode->nRef==1 ); |
| 2600 |
| 2601 /* Remove the entry in the parent cell. */ |
| 2602 rc = nodeParentIndex(pRtree, pNode, &iCell); |
| 2603 if( rc==SQLITE_OK ){ |
| 2604 pParent = pNode->pParent; |
| 2605 pNode->pParent = 0; |
| 2606 rc = deleteCell(pRtree, pParent, iCell, iHeight+1); |
| 2607 } |
| 2608 rc2 = nodeRelease(pRtree, pParent); |
| 2609 if( rc==SQLITE_OK ){ |
| 2610 rc = rc2; |
| 2611 } |
| 2612 if( rc!=SQLITE_OK ){ |
| 2613 return rc; |
| 2614 } |
| 2615 |
| 2616 /* Remove the xxx_node entry. */ |
| 2617 sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode); |
| 2618 sqlite3_step(pRtree->pDeleteNode); |
| 2619 if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){ |
| 2620 return rc; |
| 2621 } |
| 2622 |
| 2623 /* Remove the xxx_parent entry. */ |
| 2624 sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode); |
| 2625 sqlite3_step(pRtree->pDeleteParent); |
| 2626 if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){ |
| 2627 return rc; |
| 2628 } |
| 2629 |
| 2630 /* Remove the node from the in-memory hash table and link it into |
| 2631 ** the Rtree.pDeleted list. Its contents will be re-inserted later on. |
| 2632 */ |
| 2633 nodeHashDelete(pRtree, pNode); |
| 2634 pNode->iNode = iHeight; |
| 2635 pNode->pNext = pRtree->pDeleted; |
| 2636 pNode->nRef++; |
| 2637 pRtree->pDeleted = pNode; |
| 2638 |
| 2639 return SQLITE_OK; |
| 2640 } |
| 2641 |
| 2642 static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){ |
| 2643 RtreeNode *pParent = pNode->pParent; |
| 2644 int rc = SQLITE_OK; |
| 2645 if( pParent ){ |
| 2646 int ii; |
| 2647 int nCell = NCELL(pNode); |
| 2648 RtreeCell box; /* Bounding box for pNode */ |
| 2649 nodeGetCell(pRtree, pNode, 0, &box); |
| 2650 for(ii=1; ii<nCell; ii++){ |
| 2651 RtreeCell cell; |
| 2652 nodeGetCell(pRtree, pNode, ii, &cell); |
| 2653 cellUnion(pRtree, &box, &cell); |
| 2654 } |
| 2655 box.iRowid = pNode->iNode; |
| 2656 rc = nodeParentIndex(pRtree, pNode, &ii); |
| 2657 if( rc==SQLITE_OK ){ |
| 2658 nodeOverwriteCell(pRtree, pParent, &box, ii); |
| 2659 rc = fixBoundingBox(pRtree, pParent); |
| 2660 } |
| 2661 } |
| 2662 return rc; |
| 2663 } |
| 2664 |
| 2665 /* |
| 2666 ** Delete the cell at index iCell of node pNode. After removing the |
| 2667 ** cell, adjust the r-tree data structure if required. |
| 2668 */ |
| 2669 static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){ |
| 2670 RtreeNode *pParent; |
| 2671 int rc; |
| 2672 |
| 2673 if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){ |
| 2674 return rc; |
| 2675 } |
| 2676 |
| 2677 /* Remove the cell from the node. This call just moves bytes around |
| 2678 ** the in-memory node image, so it cannot fail. |
| 2679 */ |
| 2680 nodeDeleteCell(pRtree, pNode, iCell); |
| 2681 |
| 2682 /* If the node is not the tree root and now has less than the minimum |
| 2683 ** number of cells, remove it from the tree. Otherwise, update the |
| 2684 ** cell in the parent node so that it tightly contains the updated |
| 2685 ** node. |
| 2686 */ |
| 2687 pParent = pNode->pParent; |
| 2688 assert( pParent || pNode->iNode==1 ); |
| 2689 if( pParent ){ |
| 2690 if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){ |
| 2691 rc = removeNode(pRtree, pNode, iHeight); |
| 2692 }else{ |
| 2693 rc = fixBoundingBox(pRtree, pNode); |
| 2694 } |
| 2695 } |
| 2696 |
| 2697 return rc; |
| 2698 } |
| 2699 |
| 2700 static int Reinsert( |
| 2701 Rtree *pRtree, |
| 2702 RtreeNode *pNode, |
| 2703 RtreeCell *pCell, |
| 2704 int iHeight |
| 2705 ){ |
| 2706 int *aOrder; |
| 2707 int *aSpare; |
| 2708 RtreeCell *aCell; |
| 2709 RtreeDValue *aDistance; |
| 2710 int nCell; |
| 2711 RtreeDValue aCenterCoord[RTREE_MAX_DIMENSIONS]; |
| 2712 int iDim; |
| 2713 int ii; |
| 2714 int rc = SQLITE_OK; |
| 2715 int n; |
| 2716 |
| 2717 memset(aCenterCoord, 0, sizeof(RtreeDValue)*RTREE_MAX_DIMENSIONS); |
| 2718 |
| 2719 nCell = NCELL(pNode)+1; |
| 2720 n = (nCell+1)&(~1); |
| 2721 |
| 2722 /* Allocate the buffers used by this operation. The allocation is |
| 2723 ** relinquished before this function returns. |
| 2724 */ |
| 2725 aCell = (RtreeCell *)sqlite3_malloc(n * ( |
| 2726 sizeof(RtreeCell) + /* aCell array */ |
| 2727 sizeof(int) + /* aOrder array */ |
| 2728 sizeof(int) + /* aSpare array */ |
| 2729 sizeof(RtreeDValue) /* aDistance array */ |
| 2730 )); |
| 2731 if( !aCell ){ |
| 2732 return SQLITE_NOMEM; |
| 2733 } |
| 2734 aOrder = (int *)&aCell[n]; |
| 2735 aSpare = (int *)&aOrder[n]; |
| 2736 aDistance = (RtreeDValue *)&aSpare[n]; |
| 2737 |
| 2738 for(ii=0; ii<nCell; ii++){ |
| 2739 if( ii==(nCell-1) ){ |
| 2740 memcpy(&aCell[ii], pCell, sizeof(RtreeCell)); |
| 2741 }else{ |
| 2742 nodeGetCell(pRtree, pNode, ii, &aCell[ii]); |
| 2743 } |
| 2744 aOrder[ii] = ii; |
| 2745 for(iDim=0; iDim<pRtree->nDim; iDim++){ |
| 2746 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]); |
| 2747 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]); |
| 2748 } |
| 2749 } |
| 2750 for(iDim=0; iDim<pRtree->nDim; iDim++){ |
| 2751 aCenterCoord[iDim] = (aCenterCoord[iDim]/(nCell*(RtreeDValue)2)); |
| 2752 } |
| 2753 |
| 2754 for(ii=0; ii<nCell; ii++){ |
| 2755 aDistance[ii] = RTREE_ZERO; |
| 2756 for(iDim=0; iDim<pRtree->nDim; iDim++){ |
| 2757 RtreeDValue coord = (DCOORD(aCell[ii].aCoord[iDim*2+1]) - |
| 2758 DCOORD(aCell[ii].aCoord[iDim*2])); |
| 2759 aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]); |
| 2760 } |
| 2761 } |
| 2762 |
| 2763 SortByDistance(aOrder, nCell, aDistance, aSpare); |
| 2764 nodeZero(pRtree, pNode); |
| 2765 |
| 2766 for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){ |
| 2767 RtreeCell *p = &aCell[aOrder[ii]]; |
| 2768 nodeInsertCell(pRtree, pNode, p); |
| 2769 if( p->iRowid==pCell->iRowid ){ |
| 2770 if( iHeight==0 ){ |
| 2771 rc = rowidWrite(pRtree, p->iRowid, pNode->iNode); |
| 2772 }else{ |
| 2773 rc = parentWrite(pRtree, p->iRowid, pNode->iNode); |
| 2774 } |
| 2775 } |
| 2776 } |
| 2777 if( rc==SQLITE_OK ){ |
| 2778 rc = fixBoundingBox(pRtree, pNode); |
| 2779 } |
| 2780 for(; rc==SQLITE_OK && ii<nCell; ii++){ |
| 2781 /* Find a node to store this cell in. pNode->iNode currently contains |
| 2782 ** the height of the sub-tree headed by the cell. |
| 2783 */ |
| 2784 RtreeNode *pInsert; |
| 2785 RtreeCell *p = &aCell[aOrder[ii]]; |
| 2786 rc = ChooseLeaf(pRtree, p, iHeight, &pInsert); |
| 2787 if( rc==SQLITE_OK ){ |
| 2788 int rc2; |
| 2789 rc = rtreeInsertCell(pRtree, pInsert, p, iHeight); |
| 2790 rc2 = nodeRelease(pRtree, pInsert); |
| 2791 if( rc==SQLITE_OK ){ |
| 2792 rc = rc2; |
| 2793 } |
| 2794 } |
| 2795 } |
| 2796 |
| 2797 sqlite3_free(aCell); |
| 2798 return rc; |
| 2799 } |
| 2800 |
| 2801 /* |
| 2802 ** Insert cell pCell into node pNode. Node pNode is the head of a |
| 2803 ** subtree iHeight high (leaf nodes have iHeight==0). |
| 2804 */ |
| 2805 static int rtreeInsertCell( |
| 2806 Rtree *pRtree, |
| 2807 RtreeNode *pNode, |
| 2808 RtreeCell *pCell, |
| 2809 int iHeight |
| 2810 ){ |
| 2811 int rc = SQLITE_OK; |
| 2812 if( iHeight>0 ){ |
| 2813 RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid); |
| 2814 if( pChild ){ |
| 2815 nodeRelease(pRtree, pChild->pParent); |
| 2816 nodeReference(pNode); |
| 2817 pChild->pParent = pNode; |
| 2818 } |
| 2819 } |
| 2820 if( nodeInsertCell(pRtree, pNode, pCell) ){ |
| 2821 if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){ |
| 2822 rc = SplitNode(pRtree, pNode, pCell, iHeight); |
| 2823 }else{ |
| 2824 pRtree->iReinsertHeight = iHeight; |
| 2825 rc = Reinsert(pRtree, pNode, pCell, iHeight); |
| 2826 } |
| 2827 }else{ |
| 2828 rc = AdjustTree(pRtree, pNode, pCell); |
| 2829 if( rc==SQLITE_OK ){ |
| 2830 if( iHeight==0 ){ |
| 2831 rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode); |
| 2832 }else{ |
| 2833 rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode); |
| 2834 } |
| 2835 } |
| 2836 } |
| 2837 return rc; |
| 2838 } |
| 2839 |
| 2840 static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){ |
| 2841 int ii; |
| 2842 int rc = SQLITE_OK; |
| 2843 int nCell = NCELL(pNode); |
| 2844 |
| 2845 for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){ |
| 2846 RtreeNode *pInsert; |
| 2847 RtreeCell cell; |
| 2848 nodeGetCell(pRtree, pNode, ii, &cell); |
| 2849 |
| 2850 /* Find a node to store this cell in. pNode->iNode currently contains |
| 2851 ** the height of the sub-tree headed by the cell. |
| 2852 */ |
| 2853 rc = ChooseLeaf(pRtree, &cell, (int)pNode->iNode, &pInsert); |
| 2854 if( rc==SQLITE_OK ){ |
| 2855 int rc2; |
| 2856 rc = rtreeInsertCell(pRtree, pInsert, &cell, (int)pNode->iNode); |
| 2857 rc2 = nodeRelease(pRtree, pInsert); |
| 2858 if( rc==SQLITE_OK ){ |
| 2859 rc = rc2; |
| 2860 } |
| 2861 } |
| 2862 } |
| 2863 return rc; |
| 2864 } |
| 2865 |
| 2866 /* |
| 2867 ** Select a currently unused rowid for a new r-tree record. |
| 2868 */ |
| 2869 static int newRowid(Rtree *pRtree, i64 *piRowid){ |
| 2870 int rc; |
| 2871 sqlite3_bind_null(pRtree->pWriteRowid, 1); |
| 2872 sqlite3_bind_null(pRtree->pWriteRowid, 2); |
| 2873 sqlite3_step(pRtree->pWriteRowid); |
| 2874 rc = sqlite3_reset(pRtree->pWriteRowid); |
| 2875 *piRowid = sqlite3_last_insert_rowid(pRtree->db); |
| 2876 return rc; |
| 2877 } |
| 2878 |
| 2879 /* |
| 2880 ** Remove the entry with rowid=iDelete from the r-tree structure. |
| 2881 */ |
| 2882 static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){ |
| 2883 int rc; /* Return code */ |
| 2884 RtreeNode *pLeaf = 0; /* Leaf node containing record iDelete */ |
| 2885 int iCell; /* Index of iDelete cell in pLeaf */ |
| 2886 RtreeNode *pRoot; /* Root node of rtree structure */ |
| 2887 |
| 2888 |
| 2889 /* Obtain a reference to the root node to initialize Rtree.iDepth */ |
| 2890 rc = nodeAcquire(pRtree, 1, 0, &pRoot); |
| 2891 |
| 2892 /* Obtain a reference to the leaf node that contains the entry |
| 2893 ** about to be deleted. |
| 2894 */ |
| 2895 if( rc==SQLITE_OK ){ |
| 2896 rc = findLeafNode(pRtree, iDelete, &pLeaf, 0); |
| 2897 } |
| 2898 |
| 2899 /* Delete the cell in question from the leaf node. */ |
| 2900 if( rc==SQLITE_OK ){ |
| 2901 int rc2; |
| 2902 rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell); |
| 2903 if( rc==SQLITE_OK ){ |
| 2904 rc = deleteCell(pRtree, pLeaf, iCell, 0); |
| 2905 } |
| 2906 rc2 = nodeRelease(pRtree, pLeaf); |
| 2907 if( rc==SQLITE_OK ){ |
| 2908 rc = rc2; |
| 2909 } |
| 2910 } |
| 2911 |
| 2912 /* Delete the corresponding entry in the <rtree>_rowid table. */ |
| 2913 if( rc==SQLITE_OK ){ |
| 2914 sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete); |
| 2915 sqlite3_step(pRtree->pDeleteRowid); |
| 2916 rc = sqlite3_reset(pRtree->pDeleteRowid); |
| 2917 } |
| 2918 |
| 2919 /* Check if the root node now has exactly one child. If so, remove |
| 2920 ** it, schedule the contents of the child for reinsertion and |
| 2921 ** reduce the tree height by one. |
| 2922 ** |
| 2923 ** This is equivalent to copying the contents of the child into |
| 2924 ** the root node (the operation that Gutman's paper says to perform |
| 2925 ** in this scenario). |
| 2926 */ |
| 2927 if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){ |
| 2928 int rc2; |
| 2929 RtreeNode *pChild; |
| 2930 i64 iChild = nodeGetRowid(pRtree, pRoot, 0); |
| 2931 rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); |
| 2932 if( rc==SQLITE_OK ){ |
| 2933 rc = removeNode(pRtree, pChild, pRtree->iDepth-1); |
| 2934 } |
| 2935 rc2 = nodeRelease(pRtree, pChild); |
| 2936 if( rc==SQLITE_OK ) rc = rc2; |
| 2937 if( rc==SQLITE_OK ){ |
| 2938 pRtree->iDepth--; |
| 2939 writeInt16(pRoot->zData, pRtree->iDepth); |
| 2940 pRoot->isDirty = 1; |
| 2941 } |
| 2942 } |
| 2943 |
| 2944 /* Re-insert the contents of any underfull nodes removed from the tree. */ |
| 2945 for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){ |
| 2946 if( rc==SQLITE_OK ){ |
| 2947 rc = reinsertNodeContent(pRtree, pLeaf); |
| 2948 } |
| 2949 pRtree->pDeleted = pLeaf->pNext; |
| 2950 sqlite3_free(pLeaf); |
| 2951 } |
| 2952 |
| 2953 /* Release the reference to the root node. */ |
| 2954 if( rc==SQLITE_OK ){ |
| 2955 rc = nodeRelease(pRtree, pRoot); |
| 2956 }else{ |
| 2957 nodeRelease(pRtree, pRoot); |
| 2958 } |
| 2959 |
| 2960 return rc; |
| 2961 } |
| 2962 |
| 2963 /* |
| 2964 ** Rounding constants for float->double conversion. |
| 2965 */ |
| 2966 #define RNDTOWARDS (1.0 - 1.0/8388608.0) /* Round towards zero */ |
| 2967 #define RNDAWAY (1.0 + 1.0/8388608.0) /* Round away from zero */ |
| 2968 |
| 2969 #if !defined(SQLITE_RTREE_INT_ONLY) |
| 2970 /* |
| 2971 ** Convert an sqlite3_value into an RtreeValue (presumably a float) |
| 2972 ** while taking care to round toward negative or positive, respectively. |
| 2973 */ |
| 2974 static RtreeValue rtreeValueDown(sqlite3_value *v){ |
| 2975 double d = sqlite3_value_double(v); |
| 2976 float f = (float)d; |
| 2977 if( f>d ){ |
| 2978 f = (float)(d*(d<0 ? RNDAWAY : RNDTOWARDS)); |
| 2979 } |
| 2980 return f; |
| 2981 } |
| 2982 static RtreeValue rtreeValueUp(sqlite3_value *v){ |
| 2983 double d = sqlite3_value_double(v); |
| 2984 float f = (float)d; |
| 2985 if( f<d ){ |
| 2986 f = (float)(d*(d<0 ? RNDTOWARDS : RNDAWAY)); |
| 2987 } |
| 2988 return f; |
| 2989 } |
| 2990 #endif /* !defined(SQLITE_RTREE_INT_ONLY) */ |
| 2991 |
| 2992 /* |
| 2993 ** A constraint has failed while inserting a row into an rtree table. |
| 2994 ** Assuming no OOM error occurs, this function sets the error message |
| 2995 ** (at pRtree->base.zErrMsg) to an appropriate value and returns |
| 2996 ** SQLITE_CONSTRAINT. |
| 2997 ** |
| 2998 ** Parameter iCol is the index of the leftmost column involved in the |
| 2999 ** constraint failure. If it is 0, then the constraint that failed is |
| 3000 ** the unique constraint on the id column. Otherwise, it is the rtree |
| 3001 ** (c1<=c2) constraint on columns iCol and iCol+1 that has failed. |
| 3002 ** |
| 3003 ** If an OOM occurs, SQLITE_NOMEM is returned instead of SQLITE_CONSTRAINT. |
| 3004 */ |
| 3005 static int rtreeConstraintError(Rtree *pRtree, int iCol){ |
| 3006 sqlite3_stmt *pStmt = 0; |
| 3007 char *zSql; |
| 3008 int rc; |
| 3009 |
| 3010 assert( iCol==0 || iCol%2 ); |
| 3011 zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", pRtree->zDb, pRtree->zName); |
| 3012 if( zSql ){ |
| 3013 rc = sqlite3_prepare_v2(pRtree->db, zSql, -1, &pStmt, 0); |
| 3014 }else{ |
| 3015 rc = SQLITE_NOMEM; |
| 3016 } |
| 3017 sqlite3_free(zSql); |
| 3018 |
| 3019 if( rc==SQLITE_OK ){ |
| 3020 if( iCol==0 ){ |
| 3021 const char *zCol = sqlite3_column_name(pStmt, 0); |
| 3022 pRtree->base.zErrMsg = sqlite3_mprintf( |
| 3023 "UNIQUE constraint failed: %s.%s", pRtree->zName, zCol |
| 3024 ); |
| 3025 }else{ |
| 3026 const char *zCol1 = sqlite3_column_name(pStmt, iCol); |
| 3027 const char *zCol2 = sqlite3_column_name(pStmt, iCol+1); |
| 3028 pRtree->base.zErrMsg = sqlite3_mprintf( |
| 3029 "rtree constraint failed: %s.(%s<=%s)", pRtree->zName, zCol1, zCol2 |
| 3030 ); |
| 3031 } |
| 3032 } |
| 3033 |
| 3034 sqlite3_finalize(pStmt); |
| 3035 return (rc==SQLITE_OK ? SQLITE_CONSTRAINT : rc); |
| 3036 } |
| 3037 |
| 3038 |
| 3039 |
| 3040 /* |
| 3041 ** The xUpdate method for rtree module virtual tables. |
| 3042 */ |
| 3043 static int rtreeUpdate( |
| 3044 sqlite3_vtab *pVtab, |
| 3045 int nData, |
| 3046 sqlite3_value **azData, |
| 3047 sqlite_int64 *pRowid |
| 3048 ){ |
| 3049 Rtree *pRtree = (Rtree *)pVtab; |
| 3050 int rc = SQLITE_OK; |
| 3051 RtreeCell cell; /* New cell to insert if nData>1 */ |
| 3052 int bHaveRowid = 0; /* Set to 1 after new rowid is determined */ |
| 3053 |
| 3054 rtreeReference(pRtree); |
| 3055 assert(nData>=1); |
| 3056 |
| 3057 cell.iRowid = 0; /* Used only to suppress a compiler warning */ |
| 3058 |
| 3059 /* Constraint handling. A write operation on an r-tree table may return |
| 3060 ** SQLITE_CONSTRAINT for two reasons: |
| 3061 ** |
| 3062 ** 1. A duplicate rowid value, or |
| 3063 ** 2. The supplied data violates the "x2>=x1" constraint. |
| 3064 ** |
| 3065 ** In the first case, if the conflict-handling mode is REPLACE, then |
| 3066 ** the conflicting row can be removed before proceeding. In the second |
| 3067 ** case, SQLITE_CONSTRAINT must be returned regardless of the |
| 3068 ** conflict-handling mode specified by the user. |
| 3069 */ |
| 3070 if( nData>1 ){ |
| 3071 int ii; |
| 3072 |
| 3073 /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. |
| 3074 ** |
| 3075 ** NB: nData can only be less than nDim*2+3 if the rtree is mis-declared |
| 3076 ** with "column" that are interpreted as table constraints. |
| 3077 ** Example: CREATE VIRTUAL TABLE bad USING rtree(x,y,CHECK(y>5)); |
| 3078 ** This problem was discovered after years of use, so we silently ignore |
| 3079 ** these kinds of misdeclared tables to avoid breaking any legacy. |
| 3080 */ |
| 3081 assert( nData<=(pRtree->nDim2 + 3) ); |
| 3082 |
| 3083 #ifndef SQLITE_RTREE_INT_ONLY |
| 3084 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ |
| 3085 for(ii=0; ii<nData-4; ii+=2){ |
| 3086 cell.aCoord[ii].f = rtreeValueDown(azData[ii+3]); |
| 3087 cell.aCoord[ii+1].f = rtreeValueUp(azData[ii+4]); |
| 3088 if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){ |
| 3089 rc = rtreeConstraintError(pRtree, ii+1); |
| 3090 goto constraint; |
| 3091 } |
| 3092 } |
| 3093 }else |
| 3094 #endif |
| 3095 { |
| 3096 for(ii=0; ii<nData-4; ii+=2){ |
| 3097 cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]); |
| 3098 cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]); |
| 3099 if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){ |
| 3100 rc = rtreeConstraintError(pRtree, ii+1); |
| 3101 goto constraint; |
| 3102 } |
| 3103 } |
| 3104 } |
| 3105 |
| 3106 /* If a rowid value was supplied, check if it is already present in |
| 3107 ** the table. If so, the constraint has failed. */ |
| 3108 if( sqlite3_value_type(azData[2])!=SQLITE_NULL ){ |
| 3109 cell.iRowid = sqlite3_value_int64(azData[2]); |
| 3110 if( sqlite3_value_type(azData[0])==SQLITE_NULL |
| 3111 || sqlite3_value_int64(azData[0])!=cell.iRowid |
| 3112 ){ |
| 3113 int steprc; |
| 3114 sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid); |
| 3115 steprc = sqlite3_step(pRtree->pReadRowid); |
| 3116 rc = sqlite3_reset(pRtree->pReadRowid); |
| 3117 if( SQLITE_ROW==steprc ){ |
| 3118 if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){ |
| 3119 rc = rtreeDeleteRowid(pRtree, cell.iRowid); |
| 3120 }else{ |
| 3121 rc = rtreeConstraintError(pRtree, 0); |
| 3122 goto constraint; |
| 3123 } |
| 3124 } |
| 3125 } |
| 3126 bHaveRowid = 1; |
| 3127 } |
| 3128 } |
| 3129 |
| 3130 /* If azData[0] is not an SQL NULL value, it is the rowid of a |
| 3131 ** record to delete from the r-tree table. The following block does |
| 3132 ** just that. |
| 3133 */ |
| 3134 if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){ |
| 3135 rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(azData[0])); |
| 3136 } |
| 3137 |
| 3138 /* If the azData[] array contains more than one element, elements |
| 3139 ** (azData[2]..azData[argc-1]) contain a new record to insert into |
| 3140 ** the r-tree structure. |
| 3141 */ |
| 3142 if( rc==SQLITE_OK && nData>1 ){ |
| 3143 /* Insert the new record into the r-tree */ |
| 3144 RtreeNode *pLeaf = 0; |
| 3145 |
| 3146 /* Figure out the rowid of the new row. */ |
| 3147 if( bHaveRowid==0 ){ |
| 3148 rc = newRowid(pRtree, &cell.iRowid); |
| 3149 } |
| 3150 *pRowid = cell.iRowid; |
| 3151 |
| 3152 if( rc==SQLITE_OK ){ |
| 3153 rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf); |
| 3154 } |
| 3155 if( rc==SQLITE_OK ){ |
| 3156 int rc2; |
| 3157 pRtree->iReinsertHeight = -1; |
| 3158 rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0); |
| 3159 rc2 = nodeRelease(pRtree, pLeaf); |
| 3160 if( rc==SQLITE_OK ){ |
| 3161 rc = rc2; |
| 3162 } |
| 3163 } |
| 3164 } |
| 3165 |
| 3166 constraint: |
| 3167 rtreeRelease(pRtree); |
| 3168 return rc; |
| 3169 } |
| 3170 |
| 3171 /* |
| 3172 ** Called when a transaction starts. |
| 3173 */ |
| 3174 static int rtreeBeginTransaction(sqlite3_vtab *pVtab){ |
| 3175 Rtree *pRtree = (Rtree *)pVtab; |
| 3176 assert( pRtree->inWrTrans==0 ); |
| 3177 pRtree->inWrTrans++; |
| 3178 return SQLITE_OK; |
| 3179 } |
| 3180 |
| 3181 /* |
| 3182 ** Called when a transaction completes (either by COMMIT or ROLLBACK). |
| 3183 ** The sqlite3_blob object should be released at this point. |
| 3184 */ |
| 3185 static int rtreeEndTransaction(sqlite3_vtab *pVtab){ |
| 3186 Rtree *pRtree = (Rtree *)pVtab; |
| 3187 pRtree->inWrTrans = 0; |
| 3188 nodeBlobReset(pRtree); |
| 3189 return SQLITE_OK; |
| 3190 } |
| 3191 |
| 3192 /* |
| 3193 ** The xRename method for rtree module virtual tables. |
| 3194 */ |
| 3195 static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){ |
| 3196 Rtree *pRtree = (Rtree *)pVtab; |
| 3197 int rc = SQLITE_NOMEM; |
| 3198 char *zSql = sqlite3_mprintf( |
| 3199 "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";" |
| 3200 "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";" |
| 3201 "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";" |
| 3202 , pRtree->zDb, pRtree->zName, zNewName |
| 3203 , pRtree->zDb, pRtree->zName, zNewName |
| 3204 , pRtree->zDb, pRtree->zName, zNewName |
| 3205 ); |
| 3206 if( zSql ){ |
| 3207 rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0); |
| 3208 sqlite3_free(zSql); |
| 3209 } |
| 3210 return rc; |
| 3211 } |
| 3212 |
| 3213 |
| 3214 /* |
| 3215 ** This function populates the pRtree->nRowEst variable with an estimate |
| 3216 ** of the number of rows in the virtual table. If possible, this is based |
| 3217 ** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST. |
| 3218 */ |
| 3219 static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){ |
| 3220 const char *zFmt = "SELECT stat FROM %Q.sqlite_stat1 WHERE tbl = '%q_rowid'"; |
| 3221 char *zSql; |
| 3222 sqlite3_stmt *p; |
| 3223 int rc; |
| 3224 i64 nRow = 0; |
| 3225 |
| 3226 rc = sqlite3_table_column_metadata( |
| 3227 db, pRtree->zDb, "sqlite_stat1",0,0,0,0,0,0 |
| 3228 ); |
| 3229 if( rc!=SQLITE_OK ){ |
| 3230 pRtree->nRowEst = RTREE_DEFAULT_ROWEST; |
| 3231 return rc==SQLITE_ERROR ? SQLITE_OK : rc; |
| 3232 } |
| 3233 zSql = sqlite3_mprintf(zFmt, pRtree->zDb, pRtree->zName); |
| 3234 if( zSql==0 ){ |
| 3235 rc = SQLITE_NOMEM; |
| 3236 }else{ |
| 3237 rc = sqlite3_prepare_v2(db, zSql, -1, &p, 0); |
| 3238 if( rc==SQLITE_OK ){ |
| 3239 if( sqlite3_step(p)==SQLITE_ROW ) nRow = sqlite3_column_int64(p, 0); |
| 3240 rc = sqlite3_finalize(p); |
| 3241 }else if( rc!=SQLITE_NOMEM ){ |
| 3242 rc = SQLITE_OK; |
| 3243 } |
| 3244 |
| 3245 if( rc==SQLITE_OK ){ |
| 3246 if( nRow==0 ){ |
| 3247 pRtree->nRowEst = RTREE_DEFAULT_ROWEST; |
| 3248 }else{ |
| 3249 pRtree->nRowEst = MAX(nRow, RTREE_MIN_ROWEST); |
| 3250 } |
| 3251 } |
| 3252 sqlite3_free(zSql); |
| 3253 } |
| 3254 |
| 3255 return rc; |
| 3256 } |
| 3257 |
| 3258 static sqlite3_module rtreeModule = { |
| 3259 0, /* iVersion */ |
| 3260 rtreeCreate, /* xCreate - create a table */ |
| 3261 rtreeConnect, /* xConnect - connect to an existing table */ |
| 3262 rtreeBestIndex, /* xBestIndex - Determine search strategy */ |
| 3263 rtreeDisconnect, /* xDisconnect - Disconnect from a table */ |
| 3264 rtreeDestroy, /* xDestroy - Drop a table */ |
| 3265 rtreeOpen, /* xOpen - open a cursor */ |
| 3266 rtreeClose, /* xClose - close a cursor */ |
| 3267 rtreeFilter, /* xFilter - configure scan constraints */ |
| 3268 rtreeNext, /* xNext - advance a cursor */ |
| 3269 rtreeEof, /* xEof */ |
| 3270 rtreeColumn, /* xColumn - read data */ |
| 3271 rtreeRowid, /* xRowid - read data */ |
| 3272 rtreeUpdate, /* xUpdate - write data */ |
| 3273 rtreeBeginTransaction, /* xBegin - begin transaction */ |
| 3274 rtreeEndTransaction, /* xSync - sync transaction */ |
| 3275 rtreeEndTransaction, /* xCommit - commit transaction */ |
| 3276 rtreeEndTransaction, /* xRollback - rollback transaction */ |
| 3277 0, /* xFindFunction - function overloading */ |
| 3278 rtreeRename, /* xRename - rename the table */ |
| 3279 0, /* xSavepoint */ |
| 3280 0, /* xRelease */ |
| 3281 0, /* xRollbackTo */ |
| 3282 }; |
| 3283 |
| 3284 static int rtreeSqlInit( |
| 3285 Rtree *pRtree, |
| 3286 sqlite3 *db, |
| 3287 const char *zDb, |
| 3288 const char *zPrefix, |
| 3289 int isCreate |
| 3290 ){ |
| 3291 int rc = SQLITE_OK; |
| 3292 |
| 3293 #define N_STATEMENT 8 |
| 3294 static const char *azSql[N_STATEMENT] = { |
| 3295 /* Write the xxx_node table */ |
| 3296 "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)", |
| 3297 "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1", |
| 3298 |
| 3299 /* Read and write the xxx_rowid table */ |
| 3300 "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1", |
| 3301 "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)", |
| 3302 "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1", |
| 3303 |
| 3304 /* Read and write the xxx_parent table */ |
| 3305 "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = :1", |
| 3306 "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(:1, :2)", |
| 3307 "DELETE FROM '%q'.'%q_parent' WHERE nodeno = :1" |
| 3308 }; |
| 3309 sqlite3_stmt **appStmt[N_STATEMENT]; |
| 3310 int i; |
| 3311 |
| 3312 pRtree->db = db; |
| 3313 |
| 3314 if( isCreate ){ |
| 3315 char *zCreate = sqlite3_mprintf( |
| 3316 "CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY, data BLOB);" |
| 3317 "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY, nodeno INTEGER);" |
| 3318 "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY," |
| 3319 " parentnode INTEGER);" |
| 3320 "INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))", |
| 3321 zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize |
| 3322 ); |
| 3323 if( !zCreate ){ |
| 3324 return SQLITE_NOMEM; |
| 3325 } |
| 3326 rc = sqlite3_exec(db, zCreate, 0, 0, 0); |
| 3327 sqlite3_free(zCreate); |
| 3328 if( rc!=SQLITE_OK ){ |
| 3329 return rc; |
| 3330 } |
| 3331 } |
| 3332 |
| 3333 appStmt[0] = &pRtree->pWriteNode; |
| 3334 appStmt[1] = &pRtree->pDeleteNode; |
| 3335 appStmt[2] = &pRtree->pReadRowid; |
| 3336 appStmt[3] = &pRtree->pWriteRowid; |
| 3337 appStmt[4] = &pRtree->pDeleteRowid; |
| 3338 appStmt[5] = &pRtree->pReadParent; |
| 3339 appStmt[6] = &pRtree->pWriteParent; |
| 3340 appStmt[7] = &pRtree->pDeleteParent; |
| 3341 |
| 3342 rc = rtreeQueryStat1(db, pRtree); |
| 3343 for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){ |
| 3344 char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix); |
| 3345 if( zSql ){ |
| 3346 rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0); |
| 3347 }else{ |
| 3348 rc = SQLITE_NOMEM; |
| 3349 } |
| 3350 sqlite3_free(zSql); |
| 3351 } |
| 3352 |
| 3353 return rc; |
| 3354 } |
| 3355 |
| 3356 /* |
| 3357 ** The second argument to this function contains the text of an SQL statement |
| 3358 ** that returns a single integer value. The statement is compiled and executed |
| 3359 ** using database connection db. If successful, the integer value returned |
| 3360 ** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error |
| 3361 ** code is returned and the value of *piVal after returning is not defined. |
| 3362 */ |
| 3363 static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){ |
| 3364 int rc = SQLITE_NOMEM; |
| 3365 if( zSql ){ |
| 3366 sqlite3_stmt *pStmt = 0; |
| 3367 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); |
| 3368 if( rc==SQLITE_OK ){ |
| 3369 if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 3370 *piVal = sqlite3_column_int(pStmt, 0); |
| 3371 } |
| 3372 rc = sqlite3_finalize(pStmt); |
| 3373 } |
| 3374 } |
| 3375 return rc; |
| 3376 } |
| 3377 |
| 3378 /* |
| 3379 ** This function is called from within the xConnect() or xCreate() method to |
| 3380 ** determine the node-size used by the rtree table being created or connected |
| 3381 ** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned. |
| 3382 ** Otherwise, an SQLite error code is returned. |
| 3383 ** |
| 3384 ** If this function is being called as part of an xConnect(), then the rtree |
| 3385 ** table already exists. In this case the node-size is determined by inspecting |
| 3386 ** the root node of the tree. |
| 3387 ** |
| 3388 ** Otherwise, for an xCreate(), use 64 bytes less than the database page-size. |
| 3389 ** This ensures that each node is stored on a single database page. If the |
| 3390 ** database page-size is so large that more than RTREE_MAXCELLS entries |
| 3391 ** would fit in a single node, use a smaller node-size. |
| 3392 */ |
| 3393 static int getNodeSize( |
| 3394 sqlite3 *db, /* Database handle */ |
| 3395 Rtree *pRtree, /* Rtree handle */ |
| 3396 int isCreate, /* True for xCreate, false for xConnect */ |
| 3397 char **pzErr /* OUT: Error message, if any */ |
| 3398 ){ |
| 3399 int rc; |
| 3400 char *zSql; |
| 3401 if( isCreate ){ |
| 3402 int iPageSize = 0; |
| 3403 zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb); |
| 3404 rc = getIntFromStmt(db, zSql, &iPageSize); |
| 3405 if( rc==SQLITE_OK ){ |
| 3406 pRtree->iNodeSize = iPageSize-64; |
| 3407 if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){ |
| 3408 pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS; |
| 3409 } |
| 3410 }else{ |
| 3411 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); |
| 3412 } |
| 3413 }else{ |
| 3414 zSql = sqlite3_mprintf( |
| 3415 "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1", |
| 3416 pRtree->zDb, pRtree->zName |
| 3417 ); |
| 3418 rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize); |
| 3419 if( rc!=SQLITE_OK ){ |
| 3420 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); |
| 3421 } |
| 3422 } |
| 3423 |
| 3424 sqlite3_free(zSql); |
| 3425 return rc; |
| 3426 } |
| 3427 |
| 3428 /* |
| 3429 ** This function is the implementation of both the xConnect and xCreate |
| 3430 ** methods of the r-tree virtual table. |
| 3431 ** |
| 3432 ** argv[0] -> module name |
| 3433 ** argv[1] -> database name |
| 3434 ** argv[2] -> table name |
| 3435 ** argv[...] -> column names... |
| 3436 */ |
| 3437 static int rtreeInit( |
| 3438 sqlite3 *db, /* Database connection */ |
| 3439 void *pAux, /* One of the RTREE_COORD_* constants */ |
| 3440 int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */ |
| 3441 sqlite3_vtab **ppVtab, /* OUT: New virtual table */ |
| 3442 char **pzErr, /* OUT: Error message, if any */ |
| 3443 int isCreate /* True for xCreate, false for xConnect */ |
| 3444 ){ |
| 3445 int rc = SQLITE_OK; |
| 3446 Rtree *pRtree; |
| 3447 int nDb; /* Length of string argv[1] */ |
| 3448 int nName; /* Length of string argv[2] */ |
| 3449 int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32); |
| 3450 |
| 3451 const char *aErrMsg[] = { |
| 3452 0, /* 0 */ |
| 3453 "Wrong number of columns for an rtree table", /* 1 */ |
| 3454 "Too few columns for an rtree table", /* 2 */ |
| 3455 "Too many columns for an rtree table" /* 3 */ |
| 3456 }; |
| 3457 |
| 3458 int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2; |
| 3459 if( aErrMsg[iErr] ){ |
| 3460 *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]); |
| 3461 return SQLITE_ERROR; |
| 3462 } |
| 3463 |
| 3464 sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1); |
| 3465 |
| 3466 /* Allocate the sqlite3_vtab structure */ |
| 3467 nDb = (int)strlen(argv[1]); |
| 3468 nName = (int)strlen(argv[2]); |
| 3469 pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2); |
| 3470 if( !pRtree ){ |
| 3471 return SQLITE_NOMEM; |
| 3472 } |
| 3473 memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2); |
| 3474 pRtree->nBusy = 1; |
| 3475 pRtree->base.pModule = &rtreeModule; |
| 3476 pRtree->zDb = (char *)&pRtree[1]; |
| 3477 pRtree->zName = &pRtree->zDb[nDb+1]; |
| 3478 pRtree->nDim = (u8)((argc-4)/2); |
| 3479 pRtree->nDim2 = pRtree->nDim*2; |
| 3480 pRtree->nBytesPerCell = 8 + pRtree->nDim2*4; |
| 3481 pRtree->eCoordType = (u8)eCoordType; |
| 3482 memcpy(pRtree->zDb, argv[1], nDb); |
| 3483 memcpy(pRtree->zName, argv[2], nName); |
| 3484 |
| 3485 /* Figure out the node size to use. */ |
| 3486 rc = getNodeSize(db, pRtree, isCreate, pzErr); |
| 3487 |
| 3488 /* Create/Connect to the underlying relational database schema. If |
| 3489 ** that is successful, call sqlite3_declare_vtab() to configure |
| 3490 ** the r-tree table schema. |
| 3491 */ |
| 3492 if( rc==SQLITE_OK ){ |
| 3493 if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){ |
| 3494 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); |
| 3495 }else{ |
| 3496 char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]); |
| 3497 char *zTmp; |
| 3498 int ii; |
| 3499 for(ii=4; zSql && ii<argc; ii++){ |
| 3500 zTmp = zSql; |
| 3501 zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]); |
| 3502 sqlite3_free(zTmp); |
| 3503 } |
| 3504 if( zSql ){ |
| 3505 zTmp = zSql; |
| 3506 zSql = sqlite3_mprintf("%s);", zTmp); |
| 3507 sqlite3_free(zTmp); |
| 3508 } |
| 3509 if( !zSql ){ |
| 3510 rc = SQLITE_NOMEM; |
| 3511 }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){ |
| 3512 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); |
| 3513 } |
| 3514 sqlite3_free(zSql); |
| 3515 } |
| 3516 } |
| 3517 |
| 3518 if( rc==SQLITE_OK ){ |
| 3519 *ppVtab = (sqlite3_vtab *)pRtree; |
| 3520 }else{ |
| 3521 assert( *ppVtab==0 ); |
| 3522 assert( pRtree->nBusy==1 ); |
| 3523 rtreeRelease(pRtree); |
| 3524 } |
| 3525 return rc; |
| 3526 } |
| 3527 |
| 3528 |
| 3529 /* |
| 3530 ** Implementation of a scalar function that decodes r-tree nodes to |
| 3531 ** human readable strings. This can be used for debugging and analysis. |
| 3532 ** |
| 3533 ** The scalar function takes two arguments: (1) the number of dimensions |
| 3534 ** to the rtree (between 1 and 5, inclusive) and (2) a blob of data containing |
| 3535 ** an r-tree node. For a two-dimensional r-tree structure called "rt", to |
| 3536 ** deserialize all nodes, a statement like: |
| 3537 ** |
| 3538 ** SELECT rtreenode(2, data) FROM rt_node; |
| 3539 ** |
| 3540 ** The human readable string takes the form of a Tcl list with one |
| 3541 ** entry for each cell in the r-tree node. Each entry is itself a |
| 3542 ** list, containing the 8-byte rowid/pageno followed by the |
| 3543 ** <num-dimension>*2 coordinates. |
| 3544 */ |
| 3545 static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ |
| 3546 char *zText = 0; |
| 3547 RtreeNode node; |
| 3548 Rtree tree; |
| 3549 int ii; |
| 3550 |
| 3551 UNUSED_PARAMETER(nArg); |
| 3552 memset(&node, 0, sizeof(RtreeNode)); |
| 3553 memset(&tree, 0, sizeof(Rtree)); |
| 3554 tree.nDim = (u8)sqlite3_value_int(apArg[0]); |
| 3555 tree.nDim2 = tree.nDim*2; |
| 3556 tree.nBytesPerCell = 8 + 8 * tree.nDim; |
| 3557 node.zData = (u8 *)sqlite3_value_blob(apArg[1]); |
| 3558 |
| 3559 for(ii=0; ii<NCELL(&node); ii++){ |
| 3560 char zCell[512]; |
| 3561 int nCell = 0; |
| 3562 RtreeCell cell; |
| 3563 int jj; |
| 3564 |
| 3565 nodeGetCell(&tree, &node, ii, &cell); |
| 3566 sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid); |
| 3567 nCell = (int)strlen(zCell); |
| 3568 for(jj=0; jj<tree.nDim2; jj++){ |
| 3569 #ifndef SQLITE_RTREE_INT_ONLY |
| 3570 sqlite3_snprintf(512-nCell,&zCell[nCell], " %g", |
| 3571 (double)cell.aCoord[jj].f); |
| 3572 #else |
| 3573 sqlite3_snprintf(512-nCell,&zCell[nCell], " %d", |
| 3574 cell.aCoord[jj].i); |
| 3575 #endif |
| 3576 nCell = (int)strlen(zCell); |
| 3577 } |
| 3578 |
| 3579 if( zText ){ |
| 3580 char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell); |
| 3581 sqlite3_free(zText); |
| 3582 zText = zTextNew; |
| 3583 }else{ |
| 3584 zText = sqlite3_mprintf("{%s}", zCell); |
| 3585 } |
| 3586 } |
| 3587 |
| 3588 sqlite3_result_text(ctx, zText, -1, sqlite3_free); |
| 3589 } |
| 3590 |
| 3591 /* This routine implements an SQL function that returns the "depth" parameter |
| 3592 ** from the front of a blob that is an r-tree node. For example: |
| 3593 ** |
| 3594 ** SELECT rtreedepth(data) FROM rt_node WHERE nodeno=1; |
| 3595 ** |
| 3596 ** The depth value is 0 for all nodes other than the root node, and the root |
| 3597 ** node always has nodeno=1, so the example above is the primary use for this |
| 3598 ** routine. This routine is intended for testing and analysis only. |
| 3599 */ |
| 3600 static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ |
| 3601 UNUSED_PARAMETER(nArg); |
| 3602 if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB |
| 3603 || sqlite3_value_bytes(apArg[0])<2 |
| 3604 ){ |
| 3605 sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1); |
| 3606 }else{ |
| 3607 u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]); |
| 3608 sqlite3_result_int(ctx, readInt16(zBlob)); |
| 3609 } |
| 3610 } |
| 3611 |
| 3612 /* |
| 3613 ** Register the r-tree module with database handle db. This creates the |
| 3614 ** virtual table module "rtree" and the debugging/analysis scalar |
| 3615 ** function "rtreenode". |
| 3616 */ |
| 3617 int sqlite3RtreeInit(sqlite3 *db){ |
| 3618 const int utf8 = SQLITE_UTF8; |
| 3619 int rc; |
| 3620 |
| 3621 rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0); |
| 3622 if( rc==SQLITE_OK ){ |
| 3623 rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0); |
| 3624 } |
| 3625 if( rc==SQLITE_OK ){ |
| 3626 #ifdef SQLITE_RTREE_INT_ONLY |
| 3627 void *c = (void *)RTREE_COORD_INT32; |
| 3628 #else |
| 3629 void *c = (void *)RTREE_COORD_REAL32; |
| 3630 #endif |
| 3631 rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0); |
| 3632 } |
| 3633 if( rc==SQLITE_OK ){ |
| 3634 void *c = (void *)RTREE_COORD_INT32; |
| 3635 rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0); |
| 3636 } |
| 3637 |
| 3638 return rc; |
| 3639 } |
| 3640 |
| 3641 /* |
| 3642 ** This routine deletes the RtreeGeomCallback object that was attached |
| 3643 ** one of the SQL functions create by sqlite3_rtree_geometry_callback() |
| 3644 ** or sqlite3_rtree_query_callback(). In other words, this routine is the |
| 3645 ** destructor for an RtreeGeomCallback objecct. This routine is called when |
| 3646 ** the corresponding SQL function is deleted. |
| 3647 */ |
| 3648 static void rtreeFreeCallback(void *p){ |
| 3649 RtreeGeomCallback *pInfo = (RtreeGeomCallback*)p; |
| 3650 if( pInfo->xDestructor ) pInfo->xDestructor(pInfo->pContext); |
| 3651 sqlite3_free(p); |
| 3652 } |
| 3653 |
| 3654 /* |
| 3655 ** This routine frees the BLOB that is returned by geomCallback(). |
| 3656 */ |
| 3657 static void rtreeMatchArgFree(void *pArg){ |
| 3658 int i; |
| 3659 RtreeMatchArg *p = (RtreeMatchArg*)pArg; |
| 3660 for(i=0; i<p->nParam; i++){ |
| 3661 sqlite3_value_free(p->apSqlParam[i]); |
| 3662 } |
| 3663 sqlite3_free(p); |
| 3664 } |
| 3665 |
| 3666 /* |
| 3667 ** Each call to sqlite3_rtree_geometry_callback() or |
| 3668 ** sqlite3_rtree_query_callback() creates an ordinary SQLite |
| 3669 ** scalar function that is implemented by this routine. |
| 3670 ** |
| 3671 ** All this function does is construct an RtreeMatchArg object that |
| 3672 ** contains the geometry-checking callback routines and a list of |
| 3673 ** parameters to this function, then return that RtreeMatchArg object |
| 3674 ** as a BLOB. |
| 3675 ** |
| 3676 ** The R-Tree MATCH operator will read the returned BLOB, deserialize |
| 3677 ** the RtreeMatchArg object, and use the RtreeMatchArg object to figure |
| 3678 ** out which elements of the R-Tree should be returned by the query. |
| 3679 */ |
| 3680 static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){ |
| 3681 RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx); |
| 3682 RtreeMatchArg *pBlob; |
| 3683 int nBlob; |
| 3684 int memErr = 0; |
| 3685 |
| 3686 nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue) |
| 3687 + nArg*sizeof(sqlite3_value*); |
| 3688 pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob); |
| 3689 if( !pBlob ){ |
| 3690 sqlite3_result_error_nomem(ctx); |
| 3691 }else{ |
| 3692 int i; |
| 3693 pBlob->magic = RTREE_GEOMETRY_MAGIC; |
| 3694 pBlob->cb = pGeomCtx[0]; |
| 3695 pBlob->apSqlParam = (sqlite3_value**)&pBlob->aParam[nArg]; |
| 3696 pBlob->nParam = nArg; |
| 3697 for(i=0; i<nArg; i++){ |
| 3698 pBlob->apSqlParam[i] = sqlite3_value_dup(aArg[i]); |
| 3699 if( pBlob->apSqlParam[i]==0 ) memErr = 1; |
| 3700 #ifdef SQLITE_RTREE_INT_ONLY |
| 3701 pBlob->aParam[i] = sqlite3_value_int64(aArg[i]); |
| 3702 #else |
| 3703 pBlob->aParam[i] = sqlite3_value_double(aArg[i]); |
| 3704 #endif |
| 3705 } |
| 3706 if( memErr ){ |
| 3707 sqlite3_result_error_nomem(ctx); |
| 3708 rtreeMatchArgFree(pBlob); |
| 3709 }else{ |
| 3710 sqlite3_result_blob(ctx, pBlob, nBlob, rtreeMatchArgFree); |
| 3711 } |
| 3712 } |
| 3713 } |
| 3714 |
| 3715 /* |
| 3716 ** Register a new geometry function for use with the r-tree MATCH operator. |
| 3717 */ |
| 3718 int sqlite3_rtree_geometry_callback( |
| 3719 sqlite3 *db, /* Register SQL function on this connection */ |
| 3720 const char *zGeom, /* Name of the new SQL function */ |
| 3721 int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*), /* Callback */ |
| 3722 void *pContext /* Extra data associated with the callback */ |
| 3723 ){ |
| 3724 RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ |
| 3725 |
| 3726 /* Allocate and populate the context object. */ |
| 3727 pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); |
| 3728 if( !pGeomCtx ) return SQLITE_NOMEM; |
| 3729 pGeomCtx->xGeom = xGeom; |
| 3730 pGeomCtx->xQueryFunc = 0; |
| 3731 pGeomCtx->xDestructor = 0; |
| 3732 pGeomCtx->pContext = pContext; |
| 3733 return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, |
| 3734 (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback |
| 3735 ); |
| 3736 } |
| 3737 |
| 3738 /* |
| 3739 ** Register a new 2nd-generation geometry function for use with the |
| 3740 ** r-tree MATCH operator. |
| 3741 */ |
| 3742 int sqlite3_rtree_query_callback( |
| 3743 sqlite3 *db, /* Register SQL function on this connection */ |
| 3744 const char *zQueryFunc, /* Name of new SQL function */ |
| 3745 int (*xQueryFunc)(sqlite3_rtree_query_info*), /* Callback */ |
| 3746 void *pContext, /* Extra data passed into the callback */ |
| 3747 void (*xDestructor)(void*) /* Destructor for the extra data */ |
| 3748 ){ |
| 3749 RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ |
| 3750 |
| 3751 /* Allocate and populate the context object. */ |
| 3752 pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); |
| 3753 if( !pGeomCtx ) return SQLITE_NOMEM; |
| 3754 pGeomCtx->xGeom = 0; |
| 3755 pGeomCtx->xQueryFunc = xQueryFunc; |
| 3756 pGeomCtx->xDestructor = xDestructor; |
| 3757 pGeomCtx->pContext = pContext; |
| 3758 return sqlite3_create_function_v2(db, zQueryFunc, -1, SQLITE_ANY, |
| 3759 (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback |
| 3760 ); |
| 3761 } |
| 3762 |
| 3763 #if !SQLITE_CORE |
| 3764 #ifdef _WIN32 |
| 3765 __declspec(dllexport) |
| 3766 #endif |
| 3767 int sqlite3_rtree_init( |
| 3768 sqlite3 *db, |
| 3769 char **pzErrMsg, |
| 3770 const sqlite3_api_routines *pApi |
| 3771 ){ |
| 3772 SQLITE_EXTENSION_INIT2(pApi) |
| 3773 return sqlite3RtreeInit(db); |
| 3774 } |
| 3775 #endif |
| 3776 |
| 3777 #endif |
OLD | NEW |