Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(73)

Side by Side Diff: third_party/sqlite/sqlite-src-3170000/ext/rbu/sqlite3rbu.c

Issue 2747283002: [sql] Import reference version of SQLite 3.17.. (Closed)
Patch Set: Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2014 August 30
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 **
14 ** OVERVIEW
15 **
16 ** The RBU extension requires that the RBU update be packaged as an
17 ** SQLite database. The tables it expects to find are described in
18 ** sqlite3rbu.h. Essentially, for each table xyz in the target database
19 ** that the user wishes to write to, a corresponding data_xyz table is
20 ** created in the RBU database and populated with one row for each row to
21 ** update, insert or delete from the target table.
22 **
23 ** The update proceeds in three stages:
24 **
25 ** 1) The database is updated. The modified database pages are written
26 ** to a *-oal file. A *-oal file is just like a *-wal file, except
27 ** that it is named "<database>-oal" instead of "<database>-wal".
28 ** Because regular SQLite clients do not look for file named
29 ** "<database>-oal", they go on using the original database in
30 ** rollback mode while the *-oal file is being generated.
31 **
32 ** During this stage RBU does not update the database by writing
33 ** directly to the target tables. Instead it creates "imposter"
34 ** tables using the SQLITE_TESTCTRL_IMPOSTER interface that it uses
35 ** to update each b-tree individually. All updates required by each
36 ** b-tree are completed before moving on to the next, and all
37 ** updates are done in sorted key order.
38 **
39 ** 2) The "<database>-oal" file is moved to the equivalent "<database>-wal"
40 ** location using a call to rename(2). Before doing this the RBU
41 ** module takes an EXCLUSIVE lock on the database file, ensuring
42 ** that there are no other active readers.
43 **
44 ** Once the EXCLUSIVE lock is released, any other database readers
45 ** detect the new *-wal file and read the database in wal mode. At
46 ** this point they see the new version of the database - including
47 ** the updates made as part of the RBU update.
48 **
49 ** 3) The new *-wal file is checkpointed. This proceeds in the same way
50 ** as a regular database checkpoint, except that a single frame is
51 ** checkpointed each time sqlite3rbu_step() is called. If the RBU
52 ** handle is closed before the entire *-wal file is checkpointed,
53 ** the checkpoint progress is saved in the RBU database and the
54 ** checkpoint can be resumed by another RBU client at some point in
55 ** the future.
56 **
57 ** POTENTIAL PROBLEMS
58 **
59 ** The rename() call might not be portable. And RBU is not currently
60 ** syncing the directory after renaming the file.
61 **
62 ** When state is saved, any commit to the *-oal file and the commit to
63 ** the RBU update database are not atomic. So if the power fails at the
64 ** wrong moment they might get out of sync. As the main database will be
65 ** committed before the RBU update database this will likely either just
66 ** pass unnoticed, or result in SQLITE_CONSTRAINT errors (due to UNIQUE
67 ** constraint violations).
68 **
69 ** If some client does modify the target database mid RBU update, or some
70 ** other error occurs, the RBU extension will keep throwing errors. It's
71 ** not really clear how to get out of this state. The system could just
72 ** by delete the RBU update database and *-oal file and have the device
73 ** download the update again and start over.
74 **
75 ** At present, for an UPDATE, both the new.* and old.* records are
76 ** collected in the rbu_xyz table. And for both UPDATEs and DELETEs all
77 ** fields are collected. This means we're probably writing a lot more
78 ** data to disk when saving the state of an ongoing update to the RBU
79 ** update database than is strictly necessary.
80 **
81 */
82
83 #include <assert.h>
84 #include <string.h>
85 #include <stdio.h>
86
87 #include "sqlite3.h"
88
89 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RBU)
90 #include "sqlite3rbu.h"
91
92 #if defined(_WIN32_WCE)
93 #include "windows.h"
94 #endif
95
96 /* Maximum number of prepared UPDATE statements held by this module */
97 #define SQLITE_RBU_UPDATE_CACHESIZE 16
98
99 /*
100 ** Swap two objects of type TYPE.
101 */
102 #if !defined(SQLITE_AMALGAMATION)
103 # define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
104 #endif
105
106 /*
107 ** The rbu_state table is used to save the state of a partially applied
108 ** update so that it can be resumed later. The table consists of integer
109 ** keys mapped to values as follows:
110 **
111 ** RBU_STATE_STAGE:
112 ** May be set to integer values 1, 2, 4 or 5. As follows:
113 ** 1: the *-rbu file is currently under construction.
114 ** 2: the *-rbu file has been constructed, but not yet moved
115 ** to the *-wal path.
116 ** 4: the checkpoint is underway.
117 ** 5: the rbu update has been checkpointed.
118 **
119 ** RBU_STATE_TBL:
120 ** Only valid if STAGE==1. The target database name of the table
121 ** currently being written.
122 **
123 ** RBU_STATE_IDX:
124 ** Only valid if STAGE==1. The target database name of the index
125 ** currently being written, or NULL if the main table is currently being
126 ** updated.
127 **
128 ** RBU_STATE_ROW:
129 ** Only valid if STAGE==1. Number of rows already processed for the current
130 ** table/index.
131 **
132 ** RBU_STATE_PROGRESS:
133 ** Trbul number of sqlite3rbu_step() calls made so far as part of this
134 ** rbu update.
135 **
136 ** RBU_STATE_CKPT:
137 ** Valid if STAGE==4. The 64-bit checksum associated with the wal-index
138 ** header created by recovering the *-wal file. This is used to detect
139 ** cases when another client appends frames to the *-wal file in the
140 ** middle of an incremental checkpoint (an incremental checkpoint cannot
141 ** be continued if this happens).
142 **
143 ** RBU_STATE_COOKIE:
144 ** Valid if STAGE==1. The current change-counter cookie value in the
145 ** target db file.
146 **
147 ** RBU_STATE_OALSZ:
148 ** Valid if STAGE==1. The size in bytes of the *-oal file.
149 */
150 #define RBU_STATE_STAGE 1
151 #define RBU_STATE_TBL 2
152 #define RBU_STATE_IDX 3
153 #define RBU_STATE_ROW 4
154 #define RBU_STATE_PROGRESS 5
155 #define RBU_STATE_CKPT 6
156 #define RBU_STATE_COOKIE 7
157 #define RBU_STATE_OALSZ 8
158 #define RBU_STATE_PHASEONESTEP 9
159
160 #define RBU_STAGE_OAL 1
161 #define RBU_STAGE_MOVE 2
162 #define RBU_STAGE_CAPTURE 3
163 #define RBU_STAGE_CKPT 4
164 #define RBU_STAGE_DONE 5
165
166
167 #define RBU_CREATE_STATE \
168 "CREATE TABLE IF NOT EXISTS %s.rbu_state(k INTEGER PRIMARY KEY, v)"
169
170 typedef struct RbuFrame RbuFrame;
171 typedef struct RbuObjIter RbuObjIter;
172 typedef struct RbuState RbuState;
173 typedef struct rbu_vfs rbu_vfs;
174 typedef struct rbu_file rbu_file;
175 typedef struct RbuUpdateStmt RbuUpdateStmt;
176
177 #if !defined(SQLITE_AMALGAMATION)
178 typedef unsigned int u32;
179 typedef unsigned short u16;
180 typedef unsigned char u8;
181 typedef sqlite3_int64 i64;
182 #endif
183
184 /*
185 ** These values must match the values defined in wal.c for the equivalent
186 ** locks. These are not magic numbers as they are part of the SQLite file
187 ** format.
188 */
189 #define WAL_LOCK_WRITE 0
190 #define WAL_LOCK_CKPT 1
191 #define WAL_LOCK_READ0 3
192
193 #define SQLITE_FCNTL_RBUCNT 5149216
194
195 /*
196 ** A structure to store values read from the rbu_state table in memory.
197 */
198 struct RbuState {
199 int eStage;
200 char *zTbl;
201 char *zIdx;
202 i64 iWalCksum;
203 int nRow;
204 i64 nProgress;
205 u32 iCookie;
206 i64 iOalSz;
207 i64 nPhaseOneStep;
208 };
209
210 struct RbuUpdateStmt {
211 char *zMask; /* Copy of update mask used with pUpdate */
212 sqlite3_stmt *pUpdate; /* Last update statement (or NULL) */
213 RbuUpdateStmt *pNext;
214 };
215
216 /*
217 ** An iterator of this type is used to iterate through all objects in
218 ** the target database that require updating. For each such table, the
219 ** iterator visits, in order:
220 **
221 ** * the table itself,
222 ** * each index of the table (zero or more points to visit), and
223 ** * a special "cleanup table" state.
224 **
225 ** abIndexed:
226 ** If the table has no indexes on it, abIndexed is set to NULL. Otherwise,
227 ** it points to an array of flags nTblCol elements in size. The flag is
228 ** set for each column that is either a part of the PK or a part of an
229 ** index. Or clear otherwise.
230 **
231 */
232 struct RbuObjIter {
233 sqlite3_stmt *pTblIter; /* Iterate through tables */
234 sqlite3_stmt *pIdxIter; /* Index iterator */
235 int nTblCol; /* Size of azTblCol[] array */
236 char **azTblCol; /* Array of unquoted target column names */
237 char **azTblType; /* Array of target column types */
238 int *aiSrcOrder; /* src table col -> target table col */
239 u8 *abTblPk; /* Array of flags, set on target PK columns */
240 u8 *abNotNull; /* Array of flags, set on NOT NULL columns */
241 u8 *abIndexed; /* Array of flags, set on indexed & PK cols */
242 int eType; /* Table type - an RBU_PK_XXX value */
243
244 /* Output variables. zTbl==0 implies EOF. */
245 int bCleanup; /* True in "cleanup" state */
246 const char *zTbl; /* Name of target db table */
247 const char *zDataTbl; /* Name of rbu db table (or null) */
248 const char *zIdx; /* Name of target db index (or null) */
249 int iTnum; /* Root page of current object */
250 int iPkTnum; /* If eType==EXTERNAL, root of PK index */
251 int bUnique; /* Current index is unique */
252 int nIndex; /* Number of aux. indexes on table zTbl */
253
254 /* Statements created by rbuObjIterPrepareAll() */
255 int nCol; /* Number of columns in current object */
256 sqlite3_stmt *pSelect; /* Source data */
257 sqlite3_stmt *pInsert; /* Statement for INSERT operations */
258 sqlite3_stmt *pDelete; /* Statement for DELETE ops */
259 sqlite3_stmt *pTmpInsert; /* Insert into rbu_tmp_$zDataTbl */
260
261 /* Last UPDATE used (for PK b-tree updates only), or NULL. */
262 RbuUpdateStmt *pRbuUpdate;
263 };
264
265 /*
266 ** Values for RbuObjIter.eType
267 **
268 ** 0: Table does not exist (error)
269 ** 1: Table has an implicit rowid.
270 ** 2: Table has an explicit IPK column.
271 ** 3: Table has an external PK index.
272 ** 4: Table is WITHOUT ROWID.
273 ** 5: Table is a virtual table.
274 */
275 #define RBU_PK_NOTABLE 0
276 #define RBU_PK_NONE 1
277 #define RBU_PK_IPK 2
278 #define RBU_PK_EXTERNAL 3
279 #define RBU_PK_WITHOUT_ROWID 4
280 #define RBU_PK_VTAB 5
281
282
283 /*
284 ** Within the RBU_STAGE_OAL stage, each call to sqlite3rbu_step() performs
285 ** one of the following operations.
286 */
287 #define RBU_INSERT 1 /* Insert on a main table b-tree */
288 #define RBU_DELETE 2 /* Delete a row from a main table b-tree */
289 #define RBU_REPLACE 3 /* Delete and then insert a row */
290 #define RBU_IDX_DELETE 4 /* Delete a row from an aux. index b-tree */
291 #define RBU_IDX_INSERT 5 /* Insert on an aux. index b-tree */
292
293 #define RBU_UPDATE 6 /* Update a row in a main table b-tree */
294
295 /*
296 ** A single step of an incremental checkpoint - frame iWalFrame of the wal
297 ** file should be copied to page iDbPage of the database file.
298 */
299 struct RbuFrame {
300 u32 iDbPage;
301 u32 iWalFrame;
302 };
303
304 /*
305 ** RBU handle.
306 **
307 ** nPhaseOneStep:
308 ** If the RBU database contains an rbu_count table, this value is set to
309 ** a running estimate of the number of b-tree operations required to
310 ** finish populating the *-oal file. This allows the sqlite3_bp_progress()
311 ** API to calculate the permyriadage progress of populating the *-oal file
312 ** using the formula:
313 **
314 ** permyriadage = (10000 * nProgress) / nPhaseOneStep
315 **
316 ** nPhaseOneStep is initialized to the sum of:
317 **
318 ** nRow * (nIndex + 1)
319 **
320 ** for all source tables in the RBU database, where nRow is the number
321 ** of rows in the source table and nIndex the number of indexes on the
322 ** corresponding target database table.
323 **
324 ** This estimate is accurate if the RBU update consists entirely of
325 ** INSERT operations. However, it is inaccurate if:
326 **
327 ** * the RBU update contains any UPDATE operations. If the PK specified
328 ** for an UPDATE operation does not exist in the target table, then
329 ** no b-tree operations are required on index b-trees. Or if the
330 ** specified PK does exist, then (nIndex*2) such operations are
331 ** required (one delete and one insert on each index b-tree).
332 **
333 ** * the RBU update contains any DELETE operations for which the specified
334 ** PK does not exist. In this case no operations are required on index
335 ** b-trees.
336 **
337 ** * the RBU update contains REPLACE operations. These are similar to
338 ** UPDATE operations.
339 **
340 ** nPhaseOneStep is updated to account for the conditions above during the
341 ** first pass of each source table. The updated nPhaseOneStep value is
342 ** stored in the rbu_state table if the RBU update is suspended.
343 */
344 struct sqlite3rbu {
345 int eStage; /* Value of RBU_STATE_STAGE field */
346 sqlite3 *dbMain; /* target database handle */
347 sqlite3 *dbRbu; /* rbu database handle */
348 char *zTarget; /* Path to target db */
349 char *zRbu; /* Path to rbu db */
350 char *zState; /* Path to state db (or NULL if zRbu) */
351 char zStateDb[5]; /* Db name for state ("stat" or "main") */
352 int rc; /* Value returned by last rbu_step() call */
353 char *zErrmsg; /* Error message if rc!=SQLITE_OK */
354 int nStep; /* Rows processed for current object */
355 int nProgress; /* Rows processed for all objects */
356 RbuObjIter objiter; /* Iterator for skipping through tbl/idx */
357 const char *zVfsName; /* Name of automatically created rbu vfs */
358 rbu_file *pTargetFd; /* File handle open on target db */
359 i64 iOalSz;
360 i64 nPhaseOneStep;
361
362 /* The following state variables are used as part of the incremental
363 ** checkpoint stage (eStage==RBU_STAGE_CKPT). See comments surrounding
364 ** function rbuSetupCheckpoint() for details. */
365 u32 iMaxFrame; /* Largest iWalFrame value in aFrame[] */
366 u32 mLock;
367 int nFrame; /* Entries in aFrame[] array */
368 int nFrameAlloc; /* Allocated size of aFrame[] array */
369 RbuFrame *aFrame;
370 int pgsz;
371 u8 *aBuf;
372 i64 iWalCksum;
373
374 /* Used in RBU vacuum mode only */
375 int nRbu; /* Number of RBU VFS in the stack */
376 rbu_file *pRbuFd; /* Fd for main db of dbRbu */
377 };
378
379 /*
380 ** An rbu VFS is implemented using an instance of this structure.
381 */
382 struct rbu_vfs {
383 sqlite3_vfs base; /* rbu VFS shim methods */
384 sqlite3_vfs *pRealVfs; /* Underlying VFS */
385 sqlite3_mutex *mutex; /* Mutex to protect pMain */
386 rbu_file *pMain; /* Linked list of main db files */
387 };
388
389 /*
390 ** Each file opened by an rbu VFS is represented by an instance of
391 ** the following structure.
392 */
393 struct rbu_file {
394 sqlite3_file base; /* sqlite3_file methods */
395 sqlite3_file *pReal; /* Underlying file handle */
396 rbu_vfs *pRbuVfs; /* Pointer to the rbu_vfs object */
397 sqlite3rbu *pRbu; /* Pointer to rbu object (rbu target only) */
398
399 int openFlags; /* Flags this file was opened with */
400 u32 iCookie; /* Cookie value for main db files */
401 u8 iWriteVer; /* "write-version" value for main db files */
402 u8 bNolock; /* True to fail EXCLUSIVE locks */
403
404 int nShm; /* Number of entries in apShm[] array */
405 char **apShm; /* Array of mmap'd *-shm regions */
406 char *zDel; /* Delete this when closing file */
407
408 const char *zWal; /* Wal filename for this main db file */
409 rbu_file *pWalFd; /* Wal file descriptor for this main db */
410 rbu_file *pMainNext; /* Next MAIN_DB file */
411 };
412
413 /*
414 ** True for an RBU vacuum handle, or false otherwise.
415 */
416 #define rbuIsVacuum(p) ((p)->zTarget==0)
417
418
419 /*************************************************************************
420 ** The following three functions, found below:
421 **
422 ** rbuDeltaGetInt()
423 ** rbuDeltaChecksum()
424 ** rbuDeltaApply()
425 **
426 ** are lifted from the fossil source code (http://fossil-scm.org). They
427 ** are used to implement the scalar SQL function rbu_fossil_delta().
428 */
429
430 /*
431 ** Read bytes from *pz and convert them into a positive integer. When
432 ** finished, leave *pz pointing to the first character past the end of
433 ** the integer. The *pLen parameter holds the length of the string
434 ** in *pz and is decremented once for each character in the integer.
435 */
436 static unsigned int rbuDeltaGetInt(const char **pz, int *pLen){
437 static const signed char zValue[] = {
438 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
439 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
440 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
441 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1,
442 -1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
443 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1, -1, -1, -1, 36,
444 -1, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
445 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, -1, -1, -1, 63, -1,
446 };
447 unsigned int v = 0;
448 int c;
449 unsigned char *z = (unsigned char*)*pz;
450 unsigned char *zStart = z;
451 while( (c = zValue[0x7f&*(z++)])>=0 ){
452 v = (v<<6) + c;
453 }
454 z--;
455 *pLen -= z - zStart;
456 *pz = (char*)z;
457 return v;
458 }
459
460 /*
461 ** Compute a 32-bit checksum on the N-byte buffer. Return the result.
462 */
463 static unsigned int rbuDeltaChecksum(const char *zIn, size_t N){
464 const unsigned char *z = (const unsigned char *)zIn;
465 unsigned sum0 = 0;
466 unsigned sum1 = 0;
467 unsigned sum2 = 0;
468 unsigned sum3 = 0;
469 while(N >= 16){
470 sum0 += ((unsigned)z[0] + z[4] + z[8] + z[12]);
471 sum1 += ((unsigned)z[1] + z[5] + z[9] + z[13]);
472 sum2 += ((unsigned)z[2] + z[6] + z[10]+ z[14]);
473 sum3 += ((unsigned)z[3] + z[7] + z[11]+ z[15]);
474 z += 16;
475 N -= 16;
476 }
477 while(N >= 4){
478 sum0 += z[0];
479 sum1 += z[1];
480 sum2 += z[2];
481 sum3 += z[3];
482 z += 4;
483 N -= 4;
484 }
485 sum3 += (sum2 << 8) + (sum1 << 16) + (sum0 << 24);
486 switch(N){
487 case 3: sum3 += (z[2] << 8);
488 case 2: sum3 += (z[1] << 16);
489 case 1: sum3 += (z[0] << 24);
490 default: ;
491 }
492 return sum3;
493 }
494
495 /*
496 ** Apply a delta.
497 **
498 ** The output buffer should be big enough to hold the whole output
499 ** file and a NUL terminator at the end. The delta_output_size()
500 ** routine will determine this size for you.
501 **
502 ** The delta string should be null-terminated. But the delta string
503 ** may contain embedded NUL characters (if the input and output are
504 ** binary files) so we also have to pass in the length of the delta in
505 ** the lenDelta parameter.
506 **
507 ** This function returns the size of the output file in bytes (excluding
508 ** the final NUL terminator character). Except, if the delta string is
509 ** malformed or intended for use with a source file other than zSrc,
510 ** then this routine returns -1.
511 **
512 ** Refer to the delta_create() documentation above for a description
513 ** of the delta file format.
514 */
515 static int rbuDeltaApply(
516 const char *zSrc, /* The source or pattern file */
517 int lenSrc, /* Length of the source file */
518 const char *zDelta, /* Delta to apply to the pattern */
519 int lenDelta, /* Length of the delta */
520 char *zOut /* Write the output into this preallocated buffer */
521 ){
522 unsigned int limit;
523 unsigned int total = 0;
524 #ifndef FOSSIL_OMIT_DELTA_CKSUM_TEST
525 char *zOrigOut = zOut;
526 #endif
527
528 limit = rbuDeltaGetInt(&zDelta, &lenDelta);
529 if( *zDelta!='\n' ){
530 /* ERROR: size integer not terminated by "\n" */
531 return -1;
532 }
533 zDelta++; lenDelta--;
534 while( *zDelta && lenDelta>0 ){
535 unsigned int cnt, ofst;
536 cnt = rbuDeltaGetInt(&zDelta, &lenDelta);
537 switch( zDelta[0] ){
538 case '@': {
539 zDelta++; lenDelta--;
540 ofst = rbuDeltaGetInt(&zDelta, &lenDelta);
541 if( lenDelta>0 && zDelta[0]!=',' ){
542 /* ERROR: copy command not terminated by ',' */
543 return -1;
544 }
545 zDelta++; lenDelta--;
546 total += cnt;
547 if( total>limit ){
548 /* ERROR: copy exceeds output file size */
549 return -1;
550 }
551 if( (int)(ofst+cnt) > lenSrc ){
552 /* ERROR: copy extends past end of input */
553 return -1;
554 }
555 memcpy(zOut, &zSrc[ofst], cnt);
556 zOut += cnt;
557 break;
558 }
559 case ':': {
560 zDelta++; lenDelta--;
561 total += cnt;
562 if( total>limit ){
563 /* ERROR: insert command gives an output larger than predicted */
564 return -1;
565 }
566 if( (int)cnt>lenDelta ){
567 /* ERROR: insert count exceeds size of delta */
568 return -1;
569 }
570 memcpy(zOut, zDelta, cnt);
571 zOut += cnt;
572 zDelta += cnt;
573 lenDelta -= cnt;
574 break;
575 }
576 case ';': {
577 zDelta++; lenDelta--;
578 zOut[0] = 0;
579 #ifndef FOSSIL_OMIT_DELTA_CKSUM_TEST
580 if( cnt!=rbuDeltaChecksum(zOrigOut, total) ){
581 /* ERROR: bad checksum */
582 return -1;
583 }
584 #endif
585 if( total!=limit ){
586 /* ERROR: generated size does not match predicted size */
587 return -1;
588 }
589 return total;
590 }
591 default: {
592 /* ERROR: unknown delta operator */
593 return -1;
594 }
595 }
596 }
597 /* ERROR: unterminated delta */
598 return -1;
599 }
600
601 static int rbuDeltaOutputSize(const char *zDelta, int lenDelta){
602 int size;
603 size = rbuDeltaGetInt(&zDelta, &lenDelta);
604 if( *zDelta!='\n' ){
605 /* ERROR: size integer not terminated by "\n" */
606 return -1;
607 }
608 return size;
609 }
610
611 /*
612 ** End of code taken from fossil.
613 *************************************************************************/
614
615 /*
616 ** Implementation of SQL scalar function rbu_fossil_delta().
617 **
618 ** This function applies a fossil delta patch to a blob. Exactly two
619 ** arguments must be passed to this function. The first is the blob to
620 ** patch and the second the patch to apply. If no error occurs, this
621 ** function returns the patched blob.
622 */
623 static void rbuFossilDeltaFunc(
624 sqlite3_context *context,
625 int argc,
626 sqlite3_value **argv
627 ){
628 const char *aDelta;
629 int nDelta;
630 const char *aOrig;
631 int nOrig;
632
633 int nOut;
634 int nOut2;
635 char *aOut;
636
637 assert( argc==2 );
638
639 nOrig = sqlite3_value_bytes(argv[0]);
640 aOrig = (const char*)sqlite3_value_blob(argv[0]);
641 nDelta = sqlite3_value_bytes(argv[1]);
642 aDelta = (const char*)sqlite3_value_blob(argv[1]);
643
644 /* Figure out the size of the output */
645 nOut = rbuDeltaOutputSize(aDelta, nDelta);
646 if( nOut<0 ){
647 sqlite3_result_error(context, "corrupt fossil delta", -1);
648 return;
649 }
650
651 aOut = sqlite3_malloc(nOut+1);
652 if( aOut==0 ){
653 sqlite3_result_error_nomem(context);
654 }else{
655 nOut2 = rbuDeltaApply(aOrig, nOrig, aDelta, nDelta, aOut);
656 if( nOut2!=nOut ){
657 sqlite3_result_error(context, "corrupt fossil delta", -1);
658 }else{
659 sqlite3_result_blob(context, aOut, nOut, sqlite3_free);
660 }
661 }
662 }
663
664
665 /*
666 ** Prepare the SQL statement in buffer zSql against database handle db.
667 ** If successful, set *ppStmt to point to the new statement and return
668 ** SQLITE_OK.
669 **
670 ** Otherwise, if an error does occur, set *ppStmt to NULL and return
671 ** an SQLite error code. Additionally, set output variable *pzErrmsg to
672 ** point to a buffer containing an error message. It is the responsibility
673 ** of the caller to (eventually) free this buffer using sqlite3_free().
674 */
675 static int prepareAndCollectError(
676 sqlite3 *db,
677 sqlite3_stmt **ppStmt,
678 char **pzErrmsg,
679 const char *zSql
680 ){
681 int rc = sqlite3_prepare_v2(db, zSql, -1, ppStmt, 0);
682 if( rc!=SQLITE_OK ){
683 *pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db));
684 *ppStmt = 0;
685 }
686 return rc;
687 }
688
689 /*
690 ** Reset the SQL statement passed as the first argument. Return a copy
691 ** of the value returned by sqlite3_reset().
692 **
693 ** If an error has occurred, then set *pzErrmsg to point to a buffer
694 ** containing an error message. It is the responsibility of the caller
695 ** to eventually free this buffer using sqlite3_free().
696 */
697 static int resetAndCollectError(sqlite3_stmt *pStmt, char **pzErrmsg){
698 int rc = sqlite3_reset(pStmt);
699 if( rc!=SQLITE_OK ){
700 *pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(sqlite3_db_handle(pStmt)));
701 }
702 return rc;
703 }
704
705 /*
706 ** Unless it is NULL, argument zSql points to a buffer allocated using
707 ** sqlite3_malloc containing an SQL statement. This function prepares the SQL
708 ** statement against database db and frees the buffer. If statement
709 ** compilation is successful, *ppStmt is set to point to the new statement
710 ** handle and SQLITE_OK is returned.
711 **
712 ** Otherwise, if an error occurs, *ppStmt is set to NULL and an error code
713 ** returned. In this case, *pzErrmsg may also be set to point to an error
714 ** message. It is the responsibility of the caller to free this error message
715 ** buffer using sqlite3_free().
716 **
717 ** If argument zSql is NULL, this function assumes that an OOM has occurred.
718 ** In this case SQLITE_NOMEM is returned and *ppStmt set to NULL.
719 */
720 static int prepareFreeAndCollectError(
721 sqlite3 *db,
722 sqlite3_stmt **ppStmt,
723 char **pzErrmsg,
724 char *zSql
725 ){
726 int rc;
727 assert( *pzErrmsg==0 );
728 if( zSql==0 ){
729 rc = SQLITE_NOMEM;
730 *ppStmt = 0;
731 }else{
732 rc = prepareAndCollectError(db, ppStmt, pzErrmsg, zSql);
733 sqlite3_free(zSql);
734 }
735 return rc;
736 }
737
738 /*
739 ** Free the RbuObjIter.azTblCol[] and RbuObjIter.abTblPk[] arrays allocated
740 ** by an earlier call to rbuObjIterCacheTableInfo().
741 */
742 static void rbuObjIterFreeCols(RbuObjIter *pIter){
743 int i;
744 for(i=0; i<pIter->nTblCol; i++){
745 sqlite3_free(pIter->azTblCol[i]);
746 sqlite3_free(pIter->azTblType[i]);
747 }
748 sqlite3_free(pIter->azTblCol);
749 pIter->azTblCol = 0;
750 pIter->azTblType = 0;
751 pIter->aiSrcOrder = 0;
752 pIter->abTblPk = 0;
753 pIter->abNotNull = 0;
754 pIter->nTblCol = 0;
755 pIter->eType = 0; /* Invalid value */
756 }
757
758 /*
759 ** Finalize all statements and free all allocations that are specific to
760 ** the current object (table/index pair).
761 */
762 static void rbuObjIterClearStatements(RbuObjIter *pIter){
763 RbuUpdateStmt *pUp;
764
765 sqlite3_finalize(pIter->pSelect);
766 sqlite3_finalize(pIter->pInsert);
767 sqlite3_finalize(pIter->pDelete);
768 sqlite3_finalize(pIter->pTmpInsert);
769 pUp = pIter->pRbuUpdate;
770 while( pUp ){
771 RbuUpdateStmt *pTmp = pUp->pNext;
772 sqlite3_finalize(pUp->pUpdate);
773 sqlite3_free(pUp);
774 pUp = pTmp;
775 }
776
777 pIter->pSelect = 0;
778 pIter->pInsert = 0;
779 pIter->pDelete = 0;
780 pIter->pRbuUpdate = 0;
781 pIter->pTmpInsert = 0;
782 pIter->nCol = 0;
783 }
784
785 /*
786 ** Clean up any resources allocated as part of the iterator object passed
787 ** as the only argument.
788 */
789 static void rbuObjIterFinalize(RbuObjIter *pIter){
790 rbuObjIterClearStatements(pIter);
791 sqlite3_finalize(pIter->pTblIter);
792 sqlite3_finalize(pIter->pIdxIter);
793 rbuObjIterFreeCols(pIter);
794 memset(pIter, 0, sizeof(RbuObjIter));
795 }
796
797 /*
798 ** Advance the iterator to the next position.
799 **
800 ** If no error occurs, SQLITE_OK is returned and the iterator is left
801 ** pointing to the next entry. Otherwise, an error code and message is
802 ** left in the RBU handle passed as the first argument. A copy of the
803 ** error code is returned.
804 */
805 static int rbuObjIterNext(sqlite3rbu *p, RbuObjIter *pIter){
806 int rc = p->rc;
807 if( rc==SQLITE_OK ){
808
809 /* Free any SQLite statements used while processing the previous object */
810 rbuObjIterClearStatements(pIter);
811 if( pIter->zIdx==0 ){
812 rc = sqlite3_exec(p->dbMain,
813 "DROP TRIGGER IF EXISTS temp.rbu_insert_tr;"
814 "DROP TRIGGER IF EXISTS temp.rbu_update1_tr;"
815 "DROP TRIGGER IF EXISTS temp.rbu_update2_tr;"
816 "DROP TRIGGER IF EXISTS temp.rbu_delete_tr;"
817 , 0, 0, &p->zErrmsg
818 );
819 }
820
821 if( rc==SQLITE_OK ){
822 if( pIter->bCleanup ){
823 rbuObjIterFreeCols(pIter);
824 pIter->bCleanup = 0;
825 rc = sqlite3_step(pIter->pTblIter);
826 if( rc!=SQLITE_ROW ){
827 rc = resetAndCollectError(pIter->pTblIter, &p->zErrmsg);
828 pIter->zTbl = 0;
829 }else{
830 pIter->zTbl = (const char*)sqlite3_column_text(pIter->pTblIter, 0);
831 pIter->zDataTbl = (const char*)sqlite3_column_text(pIter->pTblIter,1);
832 rc = (pIter->zDataTbl && pIter->zTbl) ? SQLITE_OK : SQLITE_NOMEM;
833 }
834 }else{
835 if( pIter->zIdx==0 ){
836 sqlite3_stmt *pIdx = pIter->pIdxIter;
837 rc = sqlite3_bind_text(pIdx, 1, pIter->zTbl, -1, SQLITE_STATIC);
838 }
839 if( rc==SQLITE_OK ){
840 rc = sqlite3_step(pIter->pIdxIter);
841 if( rc!=SQLITE_ROW ){
842 rc = resetAndCollectError(pIter->pIdxIter, &p->zErrmsg);
843 pIter->bCleanup = 1;
844 pIter->zIdx = 0;
845 }else{
846 pIter->zIdx = (const char*)sqlite3_column_text(pIter->pIdxIter, 0);
847 pIter->iTnum = sqlite3_column_int(pIter->pIdxIter, 1);
848 pIter->bUnique = sqlite3_column_int(pIter->pIdxIter, 2);
849 rc = pIter->zIdx ? SQLITE_OK : SQLITE_NOMEM;
850 }
851 }
852 }
853 }
854 }
855
856 if( rc!=SQLITE_OK ){
857 rbuObjIterFinalize(pIter);
858 p->rc = rc;
859 }
860 return rc;
861 }
862
863
864 /*
865 ** The implementation of the rbu_target_name() SQL function. This function
866 ** accepts one or two arguments. The first argument is the name of a table -
867 ** the name of a table in the RBU database. The second, if it is present, is 1
868 ** for a view or 0 for a table.
869 **
870 ** For a non-vacuum RBU handle, if the table name matches the pattern:
871 **
872 ** data[0-9]_<name>
873 **
874 ** where <name> is any sequence of 1 or more characters, <name> is returned.
875 ** Otherwise, if the only argument does not match the above pattern, an SQL
876 ** NULL is returned.
877 **
878 ** "data_t1" -> "t1"
879 ** "data0123_t2" -> "t2"
880 ** "dataAB_t3" -> NULL
881 **
882 ** For an rbu vacuum handle, a copy of the first argument is returned if
883 ** the second argument is either missing or 0 (not a view).
884 */
885 static void rbuTargetNameFunc(
886 sqlite3_context *pCtx,
887 int argc,
888 sqlite3_value **argv
889 ){
890 sqlite3rbu *p = sqlite3_user_data(pCtx);
891 const char *zIn;
892 assert( argc==1 || argc==2 );
893
894 zIn = (const char*)sqlite3_value_text(argv[0]);
895 if( zIn ){
896 if( rbuIsVacuum(p) ){
897 if( argc==1 || 0==sqlite3_value_int(argv[1]) ){
898 sqlite3_result_text(pCtx, zIn, -1, SQLITE_STATIC);
899 }
900 }else{
901 if( strlen(zIn)>4 && memcmp("data", zIn, 4)==0 ){
902 int i;
903 for(i=4; zIn[i]>='0' && zIn[i]<='9'; i++);
904 if( zIn[i]=='_' && zIn[i+1] ){
905 sqlite3_result_text(pCtx, &zIn[i+1], -1, SQLITE_STATIC);
906 }
907 }
908 }
909 }
910 }
911
912 /*
913 ** Initialize the iterator structure passed as the second argument.
914 **
915 ** If no error occurs, SQLITE_OK is returned and the iterator is left
916 ** pointing to the first entry. Otherwise, an error code and message is
917 ** left in the RBU handle passed as the first argument. A copy of the
918 ** error code is returned.
919 */
920 static int rbuObjIterFirst(sqlite3rbu *p, RbuObjIter *pIter){
921 int rc;
922 memset(pIter, 0, sizeof(RbuObjIter));
923
924 rc = prepareFreeAndCollectError(p->dbRbu, &pIter->pTblIter, &p->zErrmsg,
925 sqlite3_mprintf(
926 "SELECT rbu_target_name(name, type='view') AS target, name "
927 "FROM sqlite_master "
928 "WHERE type IN ('table', 'view') AND target IS NOT NULL "
929 " %s "
930 "ORDER BY name"
931 , rbuIsVacuum(p) ? "AND rootpage!=0 AND rootpage IS NOT NULL" : ""));
932
933 if( rc==SQLITE_OK ){
934 rc = prepareAndCollectError(p->dbMain, &pIter->pIdxIter, &p->zErrmsg,
935 "SELECT name, rootpage, sql IS NULL OR substr(8, 6)=='UNIQUE' "
936 " FROM main.sqlite_master "
937 " WHERE type='index' AND tbl_name = ?"
938 );
939 }
940
941 pIter->bCleanup = 1;
942 p->rc = rc;
943 return rbuObjIterNext(p, pIter);
944 }
945
946 /*
947 ** This is a wrapper around "sqlite3_mprintf(zFmt, ...)". If an OOM occurs,
948 ** an error code is stored in the RBU handle passed as the first argument.
949 **
950 ** If an error has already occurred (p->rc is already set to something other
951 ** than SQLITE_OK), then this function returns NULL without modifying the
952 ** stored error code. In this case it still calls sqlite3_free() on any
953 ** printf() parameters associated with %z conversions.
954 */
955 static char *rbuMPrintf(sqlite3rbu *p, const char *zFmt, ...){
956 char *zSql = 0;
957 va_list ap;
958 va_start(ap, zFmt);
959 zSql = sqlite3_vmprintf(zFmt, ap);
960 if( p->rc==SQLITE_OK ){
961 if( zSql==0 ) p->rc = SQLITE_NOMEM;
962 }else{
963 sqlite3_free(zSql);
964 zSql = 0;
965 }
966 va_end(ap);
967 return zSql;
968 }
969
970 /*
971 ** Argument zFmt is a sqlite3_mprintf() style format string. The trailing
972 ** arguments are the usual subsitution values. This function performs
973 ** the printf() style substitutions and executes the result as an SQL
974 ** statement on the RBU handles database.
975 **
976 ** If an error occurs, an error code and error message is stored in the
977 ** RBU handle. If an error has already occurred when this function is
978 ** called, it is a no-op.
979 */
980 static int rbuMPrintfExec(sqlite3rbu *p, sqlite3 *db, const char *zFmt, ...){
981 va_list ap;
982 char *zSql;
983 va_start(ap, zFmt);
984 zSql = sqlite3_vmprintf(zFmt, ap);
985 if( p->rc==SQLITE_OK ){
986 if( zSql==0 ){
987 p->rc = SQLITE_NOMEM;
988 }else{
989 p->rc = sqlite3_exec(db, zSql, 0, 0, &p->zErrmsg);
990 }
991 }
992 sqlite3_free(zSql);
993 va_end(ap);
994 return p->rc;
995 }
996
997 /*
998 ** Attempt to allocate and return a pointer to a zeroed block of nByte
999 ** bytes.
1000 **
1001 ** If an error (i.e. an OOM condition) occurs, return NULL and leave an
1002 ** error code in the rbu handle passed as the first argument. Or, if an
1003 ** error has already occurred when this function is called, return NULL
1004 ** immediately without attempting the allocation or modifying the stored
1005 ** error code.
1006 */
1007 static void *rbuMalloc(sqlite3rbu *p, int nByte){
1008 void *pRet = 0;
1009 if( p->rc==SQLITE_OK ){
1010 assert( nByte>0 );
1011 pRet = sqlite3_malloc64(nByte);
1012 if( pRet==0 ){
1013 p->rc = SQLITE_NOMEM;
1014 }else{
1015 memset(pRet, 0, nByte);
1016 }
1017 }
1018 return pRet;
1019 }
1020
1021
1022 /*
1023 ** Allocate and zero the pIter->azTblCol[] and abTblPk[] arrays so that
1024 ** there is room for at least nCol elements. If an OOM occurs, store an
1025 ** error code in the RBU handle passed as the first argument.
1026 */
1027 static void rbuAllocateIterArrays(sqlite3rbu *p, RbuObjIter *pIter, int nCol){
1028 int nByte = (2*sizeof(char*) + sizeof(int) + 3*sizeof(u8)) * nCol;
1029 char **azNew;
1030
1031 azNew = (char**)rbuMalloc(p, nByte);
1032 if( azNew ){
1033 pIter->azTblCol = azNew;
1034 pIter->azTblType = &azNew[nCol];
1035 pIter->aiSrcOrder = (int*)&pIter->azTblType[nCol];
1036 pIter->abTblPk = (u8*)&pIter->aiSrcOrder[nCol];
1037 pIter->abNotNull = (u8*)&pIter->abTblPk[nCol];
1038 pIter->abIndexed = (u8*)&pIter->abNotNull[nCol];
1039 }
1040 }
1041
1042 /*
1043 ** The first argument must be a nul-terminated string. This function
1044 ** returns a copy of the string in memory obtained from sqlite3_malloc().
1045 ** It is the responsibility of the caller to eventually free this memory
1046 ** using sqlite3_free().
1047 **
1048 ** If an OOM condition is encountered when attempting to allocate memory,
1049 ** output variable (*pRc) is set to SQLITE_NOMEM before returning. Otherwise,
1050 ** if the allocation succeeds, (*pRc) is left unchanged.
1051 */
1052 static char *rbuStrndup(const char *zStr, int *pRc){
1053 char *zRet = 0;
1054
1055 assert( *pRc==SQLITE_OK );
1056 if( zStr ){
1057 size_t nCopy = strlen(zStr) + 1;
1058 zRet = (char*)sqlite3_malloc64(nCopy);
1059 if( zRet ){
1060 memcpy(zRet, zStr, nCopy);
1061 }else{
1062 *pRc = SQLITE_NOMEM;
1063 }
1064 }
1065
1066 return zRet;
1067 }
1068
1069 /*
1070 ** Finalize the statement passed as the second argument.
1071 **
1072 ** If the sqlite3_finalize() call indicates that an error occurs, and the
1073 ** rbu handle error code is not already set, set the error code and error
1074 ** message accordingly.
1075 */
1076 static void rbuFinalize(sqlite3rbu *p, sqlite3_stmt *pStmt){
1077 sqlite3 *db = sqlite3_db_handle(pStmt);
1078 int rc = sqlite3_finalize(pStmt);
1079 if( p->rc==SQLITE_OK && rc!=SQLITE_OK ){
1080 p->rc = rc;
1081 p->zErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db));
1082 }
1083 }
1084
1085 /* Determine the type of a table.
1086 **
1087 ** peType is of type (int*), a pointer to an output parameter of type
1088 ** (int). This call sets the output parameter as follows, depending
1089 ** on the type of the table specified by parameters dbName and zTbl.
1090 **
1091 ** RBU_PK_NOTABLE: No such table.
1092 ** RBU_PK_NONE: Table has an implicit rowid.
1093 ** RBU_PK_IPK: Table has an explicit IPK column.
1094 ** RBU_PK_EXTERNAL: Table has an external PK index.
1095 ** RBU_PK_WITHOUT_ROWID: Table is WITHOUT ROWID.
1096 ** RBU_PK_VTAB: Table is a virtual table.
1097 **
1098 ** Argument *piPk is also of type (int*), and also points to an output
1099 ** parameter. Unless the table has an external primary key index
1100 ** (i.e. unless *peType is set to 3), then *piPk is set to zero. Or,
1101 ** if the table does have an external primary key index, then *piPk
1102 ** is set to the root page number of the primary key index before
1103 ** returning.
1104 **
1105 ** ALGORITHM:
1106 **
1107 ** if( no entry exists in sqlite_master ){
1108 ** return RBU_PK_NOTABLE
1109 ** }else if( sql for the entry starts with "CREATE VIRTUAL" ){
1110 ** return RBU_PK_VTAB
1111 ** }else if( "PRAGMA index_list()" for the table contains a "pk" index ){
1112 ** if( the index that is the pk exists in sqlite_master ){
1113 ** *piPK = rootpage of that index.
1114 ** return RBU_PK_EXTERNAL
1115 ** }else{
1116 ** return RBU_PK_WITHOUT_ROWID
1117 ** }
1118 ** }else if( "PRAGMA table_info()" lists one or more "pk" columns ){
1119 ** return RBU_PK_IPK
1120 ** }else{
1121 ** return RBU_PK_NONE
1122 ** }
1123 */
1124 static void rbuTableType(
1125 sqlite3rbu *p,
1126 const char *zTab,
1127 int *peType,
1128 int *piTnum,
1129 int *piPk
1130 ){
1131 /*
1132 ** 0) SELECT count(*) FROM sqlite_master where name=%Q AND IsVirtual(%Q)
1133 ** 1) PRAGMA index_list = ?
1134 ** 2) SELECT count(*) FROM sqlite_master where name=%Q
1135 ** 3) PRAGMA table_info = ?
1136 */
1137 sqlite3_stmt *aStmt[4] = {0, 0, 0, 0};
1138
1139 *peType = RBU_PK_NOTABLE;
1140 *piPk = 0;
1141
1142 assert( p->rc==SQLITE_OK );
1143 p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[0], &p->zErrmsg,
1144 sqlite3_mprintf(
1145 "SELECT (sql LIKE 'create virtual%%'), rootpage"
1146 " FROM sqlite_master"
1147 " WHERE name=%Q", zTab
1148 ));
1149 if( p->rc!=SQLITE_OK || sqlite3_step(aStmt[0])!=SQLITE_ROW ){
1150 /* Either an error, or no such table. */
1151 goto rbuTableType_end;
1152 }
1153 if( sqlite3_column_int(aStmt[0], 0) ){
1154 *peType = RBU_PK_VTAB; /* virtual table */
1155 goto rbuTableType_end;
1156 }
1157 *piTnum = sqlite3_column_int(aStmt[0], 1);
1158
1159 p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[1], &p->zErrmsg,
1160 sqlite3_mprintf("PRAGMA index_list=%Q",zTab)
1161 );
1162 if( p->rc ) goto rbuTableType_end;
1163 while( sqlite3_step(aStmt[1])==SQLITE_ROW ){
1164 const u8 *zOrig = sqlite3_column_text(aStmt[1], 3);
1165 const u8 *zIdx = sqlite3_column_text(aStmt[1], 1);
1166 if( zOrig && zIdx && zOrig[0]=='p' ){
1167 p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[2], &p->zErrmsg,
1168 sqlite3_mprintf(
1169 "SELECT rootpage FROM sqlite_master WHERE name = %Q", zIdx
1170 ));
1171 if( p->rc==SQLITE_OK ){
1172 if( sqlite3_step(aStmt[2])==SQLITE_ROW ){
1173 *piPk = sqlite3_column_int(aStmt[2], 0);
1174 *peType = RBU_PK_EXTERNAL;
1175 }else{
1176 *peType = RBU_PK_WITHOUT_ROWID;
1177 }
1178 }
1179 goto rbuTableType_end;
1180 }
1181 }
1182
1183 p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[3], &p->zErrmsg,
1184 sqlite3_mprintf("PRAGMA table_info=%Q",zTab)
1185 );
1186 if( p->rc==SQLITE_OK ){
1187 while( sqlite3_step(aStmt[3])==SQLITE_ROW ){
1188 if( sqlite3_column_int(aStmt[3],5)>0 ){
1189 *peType = RBU_PK_IPK; /* explicit IPK column */
1190 goto rbuTableType_end;
1191 }
1192 }
1193 *peType = RBU_PK_NONE;
1194 }
1195
1196 rbuTableType_end: {
1197 unsigned int i;
1198 for(i=0; i<sizeof(aStmt)/sizeof(aStmt[0]); i++){
1199 rbuFinalize(p, aStmt[i]);
1200 }
1201 }
1202 }
1203
1204 /*
1205 ** This is a helper function for rbuObjIterCacheTableInfo(). It populates
1206 ** the pIter->abIndexed[] array.
1207 */
1208 static void rbuObjIterCacheIndexedCols(sqlite3rbu *p, RbuObjIter *pIter){
1209 sqlite3_stmt *pList = 0;
1210 int bIndex = 0;
1211
1212 if( p->rc==SQLITE_OK ){
1213 memcpy(pIter->abIndexed, pIter->abTblPk, sizeof(u8)*pIter->nTblCol);
1214 p->rc = prepareFreeAndCollectError(p->dbMain, &pList, &p->zErrmsg,
1215 sqlite3_mprintf("PRAGMA main.index_list = %Q", pIter->zTbl)
1216 );
1217 }
1218
1219 pIter->nIndex = 0;
1220 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pList) ){
1221 const char *zIdx = (const char*)sqlite3_column_text(pList, 1);
1222 sqlite3_stmt *pXInfo = 0;
1223 if( zIdx==0 ) break;
1224 p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
1225 sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx)
1226 );
1227 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
1228 int iCid = sqlite3_column_int(pXInfo, 1);
1229 if( iCid>=0 ) pIter->abIndexed[iCid] = 1;
1230 }
1231 rbuFinalize(p, pXInfo);
1232 bIndex = 1;
1233 pIter->nIndex++;
1234 }
1235
1236 if( pIter->eType==RBU_PK_WITHOUT_ROWID ){
1237 /* "PRAGMA index_list" includes the main PK b-tree */
1238 pIter->nIndex--;
1239 }
1240
1241 rbuFinalize(p, pList);
1242 if( bIndex==0 ) pIter->abIndexed = 0;
1243 }
1244
1245
1246 /*
1247 ** If they are not already populated, populate the pIter->azTblCol[],
1248 ** pIter->abTblPk[], pIter->nTblCol and pIter->bRowid variables according to
1249 ** the table (not index) that the iterator currently points to.
1250 **
1251 ** Return SQLITE_OK if successful, or an SQLite error code otherwise. If
1252 ** an error does occur, an error code and error message are also left in
1253 ** the RBU handle.
1254 */
1255 static int rbuObjIterCacheTableInfo(sqlite3rbu *p, RbuObjIter *pIter){
1256 if( pIter->azTblCol==0 ){
1257 sqlite3_stmt *pStmt = 0;
1258 int nCol = 0;
1259 int i; /* for() loop iterator variable */
1260 int bRbuRowid = 0; /* If input table has column "rbu_rowid" */
1261 int iOrder = 0;
1262 int iTnum = 0;
1263
1264 /* Figure out the type of table this step will deal with. */
1265 assert( pIter->eType==0 );
1266 rbuTableType(p, pIter->zTbl, &pIter->eType, &iTnum, &pIter->iPkTnum);
1267 if( p->rc==SQLITE_OK && pIter->eType==RBU_PK_NOTABLE ){
1268 p->rc = SQLITE_ERROR;
1269 p->zErrmsg = sqlite3_mprintf("no such table: %s", pIter->zTbl);
1270 }
1271 if( p->rc ) return p->rc;
1272 if( pIter->zIdx==0 ) pIter->iTnum = iTnum;
1273
1274 assert( pIter->eType==RBU_PK_NONE || pIter->eType==RBU_PK_IPK
1275 || pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_WITHOUT_ROWID
1276 || pIter->eType==RBU_PK_VTAB
1277 );
1278
1279 /* Populate the azTblCol[] and nTblCol variables based on the columns
1280 ** of the input table. Ignore any input table columns that begin with
1281 ** "rbu_". */
1282 p->rc = prepareFreeAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg,
1283 sqlite3_mprintf("SELECT * FROM '%q'", pIter->zDataTbl)
1284 );
1285 if( p->rc==SQLITE_OK ){
1286 nCol = sqlite3_column_count(pStmt);
1287 rbuAllocateIterArrays(p, pIter, nCol);
1288 }
1289 for(i=0; p->rc==SQLITE_OK && i<nCol; i++){
1290 const char *zName = (const char*)sqlite3_column_name(pStmt, i);
1291 if( sqlite3_strnicmp("rbu_", zName, 4) ){
1292 char *zCopy = rbuStrndup(zName, &p->rc);
1293 pIter->aiSrcOrder[pIter->nTblCol] = pIter->nTblCol;
1294 pIter->azTblCol[pIter->nTblCol++] = zCopy;
1295 }
1296 else if( 0==sqlite3_stricmp("rbu_rowid", zName) ){
1297 bRbuRowid = 1;
1298 }
1299 }
1300 sqlite3_finalize(pStmt);
1301 pStmt = 0;
1302
1303 if( p->rc==SQLITE_OK
1304 && rbuIsVacuum(p)==0
1305 && bRbuRowid!=(pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE)
1306 ){
1307 p->rc = SQLITE_ERROR;
1308 p->zErrmsg = sqlite3_mprintf(
1309 "table %q %s rbu_rowid column", pIter->zDataTbl,
1310 (bRbuRowid ? "may not have" : "requires")
1311 );
1312 }
1313
1314 /* Check that all non-HIDDEN columns in the destination table are also
1315 ** present in the input table. Populate the abTblPk[], azTblType[] and
1316 ** aiTblOrder[] arrays at the same time. */
1317 if( p->rc==SQLITE_OK ){
1318 p->rc = prepareFreeAndCollectError(p->dbMain, &pStmt, &p->zErrmsg,
1319 sqlite3_mprintf("PRAGMA table_info(%Q)", pIter->zTbl)
1320 );
1321 }
1322 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
1323 const char *zName = (const char*)sqlite3_column_text(pStmt, 1);
1324 if( zName==0 ) break; /* An OOM - finalize() below returns S_NOMEM */
1325 for(i=iOrder; i<pIter->nTblCol; i++){
1326 if( 0==strcmp(zName, pIter->azTblCol[i]) ) break;
1327 }
1328 if( i==pIter->nTblCol ){
1329 p->rc = SQLITE_ERROR;
1330 p->zErrmsg = sqlite3_mprintf("column missing from %q: %s",
1331 pIter->zDataTbl, zName
1332 );
1333 }else{
1334 int iPk = sqlite3_column_int(pStmt, 5);
1335 int bNotNull = sqlite3_column_int(pStmt, 3);
1336 const char *zType = (const char*)sqlite3_column_text(pStmt, 2);
1337
1338 if( i!=iOrder ){
1339 SWAP(int, pIter->aiSrcOrder[i], pIter->aiSrcOrder[iOrder]);
1340 SWAP(char*, pIter->azTblCol[i], pIter->azTblCol[iOrder]);
1341 }
1342
1343 pIter->azTblType[iOrder] = rbuStrndup(zType, &p->rc);
1344 pIter->abTblPk[iOrder] = (iPk!=0);
1345 pIter->abNotNull[iOrder] = (u8)bNotNull || (iPk!=0);
1346 iOrder++;
1347 }
1348 }
1349
1350 rbuFinalize(p, pStmt);
1351 rbuObjIterCacheIndexedCols(p, pIter);
1352 assert( pIter->eType!=RBU_PK_VTAB || pIter->abIndexed==0 );
1353 assert( pIter->eType!=RBU_PK_VTAB || pIter->nIndex==0 );
1354 }
1355
1356 return p->rc;
1357 }
1358
1359 /*
1360 ** This function constructs and returns a pointer to a nul-terminated
1361 ** string containing some SQL clause or list based on one or more of the
1362 ** column names currently stored in the pIter->azTblCol[] array.
1363 */
1364 static char *rbuObjIterGetCollist(
1365 sqlite3rbu *p, /* RBU object */
1366 RbuObjIter *pIter /* Object iterator for column names */
1367 ){
1368 char *zList = 0;
1369 const char *zSep = "";
1370 int i;
1371 for(i=0; i<pIter->nTblCol; i++){
1372 const char *z = pIter->azTblCol[i];
1373 zList = rbuMPrintf(p, "%z%s\"%w\"", zList, zSep, z);
1374 zSep = ", ";
1375 }
1376 return zList;
1377 }
1378
1379 /*
1380 ** This function is used to create a SELECT list (the list of SQL
1381 ** expressions that follows a SELECT keyword) for a SELECT statement
1382 ** used to read from an data_xxx or rbu_tmp_xxx table while updating the
1383 ** index object currently indicated by the iterator object passed as the
1384 ** second argument. A "PRAGMA index_xinfo = <idxname>" statement is used
1385 ** to obtain the required information.
1386 **
1387 ** If the index is of the following form:
1388 **
1389 ** CREATE INDEX i1 ON t1(c, b COLLATE nocase);
1390 **
1391 ** and "t1" is a table with an explicit INTEGER PRIMARY KEY column
1392 ** "ipk", the returned string is:
1393 **
1394 ** "`c` COLLATE 'BINARY', `b` COLLATE 'NOCASE', `ipk` COLLATE 'BINARY'"
1395 **
1396 ** As well as the returned string, three other malloc'd strings are
1397 ** returned via output parameters. As follows:
1398 **
1399 ** pzImposterCols: ...
1400 ** pzImposterPk: ...
1401 ** pzWhere: ...
1402 */
1403 static char *rbuObjIterGetIndexCols(
1404 sqlite3rbu *p, /* RBU object */
1405 RbuObjIter *pIter, /* Object iterator for column names */
1406 char **pzImposterCols, /* OUT: Columns for imposter table */
1407 char **pzImposterPk, /* OUT: Imposter PK clause */
1408 char **pzWhere, /* OUT: WHERE clause */
1409 int *pnBind /* OUT: Trbul number of columns */
1410 ){
1411 int rc = p->rc; /* Error code */
1412 int rc2; /* sqlite3_finalize() return code */
1413 char *zRet = 0; /* String to return */
1414 char *zImpCols = 0; /* String to return via *pzImposterCols */
1415 char *zImpPK = 0; /* String to return via *pzImposterPK */
1416 char *zWhere = 0; /* String to return via *pzWhere */
1417 int nBind = 0; /* Value to return via *pnBind */
1418 const char *zCom = ""; /* Set to ", " later on */
1419 const char *zAnd = ""; /* Set to " AND " later on */
1420 sqlite3_stmt *pXInfo = 0; /* PRAGMA index_xinfo = ? */
1421
1422 if( rc==SQLITE_OK ){
1423 assert( p->zErrmsg==0 );
1424 rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
1425 sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", pIter->zIdx)
1426 );
1427 }
1428
1429 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
1430 int iCid = sqlite3_column_int(pXInfo, 1);
1431 int bDesc = sqlite3_column_int(pXInfo, 3);
1432 const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4);
1433 const char *zCol;
1434 const char *zType;
1435
1436 if( iCid<0 ){
1437 /* An integer primary key. If the table has an explicit IPK, use
1438 ** its name. Otherwise, use "rbu_rowid". */
1439 if( pIter->eType==RBU_PK_IPK ){
1440 int i;
1441 for(i=0; pIter->abTblPk[i]==0; i++);
1442 assert( i<pIter->nTblCol );
1443 zCol = pIter->azTblCol[i];
1444 }else if( rbuIsVacuum(p) ){
1445 zCol = "_rowid_";
1446 }else{
1447 zCol = "rbu_rowid";
1448 }
1449 zType = "INTEGER";
1450 }else{
1451 zCol = pIter->azTblCol[iCid];
1452 zType = pIter->azTblType[iCid];
1453 }
1454
1455 zRet = sqlite3_mprintf("%z%s\"%w\" COLLATE %Q", zRet, zCom, zCol, zCollate);
1456 if( pIter->bUnique==0 || sqlite3_column_int(pXInfo, 5) ){
1457 const char *zOrder = (bDesc ? " DESC" : "");
1458 zImpPK = sqlite3_mprintf("%z%s\"rbu_imp_%d%w\"%s",
1459 zImpPK, zCom, nBind, zCol, zOrder
1460 );
1461 }
1462 zImpCols = sqlite3_mprintf("%z%s\"rbu_imp_%d%w\" %s COLLATE %Q",
1463 zImpCols, zCom, nBind, zCol, zType, zCollate
1464 );
1465 zWhere = sqlite3_mprintf(
1466 "%z%s\"rbu_imp_%d%w\" IS ?", zWhere, zAnd, nBind, zCol
1467 );
1468 if( zRet==0 || zImpPK==0 || zImpCols==0 || zWhere==0 ) rc = SQLITE_NOMEM;
1469 zCom = ", ";
1470 zAnd = " AND ";
1471 nBind++;
1472 }
1473
1474 rc2 = sqlite3_finalize(pXInfo);
1475 if( rc==SQLITE_OK ) rc = rc2;
1476
1477 if( rc!=SQLITE_OK ){
1478 sqlite3_free(zRet);
1479 sqlite3_free(zImpCols);
1480 sqlite3_free(zImpPK);
1481 sqlite3_free(zWhere);
1482 zRet = 0;
1483 zImpCols = 0;
1484 zImpPK = 0;
1485 zWhere = 0;
1486 p->rc = rc;
1487 }
1488
1489 *pzImposterCols = zImpCols;
1490 *pzImposterPk = zImpPK;
1491 *pzWhere = zWhere;
1492 *pnBind = nBind;
1493 return zRet;
1494 }
1495
1496 /*
1497 ** Assuming the current table columns are "a", "b" and "c", and the zObj
1498 ** paramter is passed "old", return a string of the form:
1499 **
1500 ** "old.a, old.b, old.b"
1501 **
1502 ** With the column names escaped.
1503 **
1504 ** For tables with implicit rowids - RBU_PK_EXTERNAL and RBU_PK_NONE, append
1505 ** the text ", old._rowid_" to the returned value.
1506 */
1507 static char *rbuObjIterGetOldlist(
1508 sqlite3rbu *p,
1509 RbuObjIter *pIter,
1510 const char *zObj
1511 ){
1512 char *zList = 0;
1513 if( p->rc==SQLITE_OK && pIter->abIndexed ){
1514 const char *zS = "";
1515 int i;
1516 for(i=0; i<pIter->nTblCol; i++){
1517 if( pIter->abIndexed[i] ){
1518 const char *zCol = pIter->azTblCol[i];
1519 zList = sqlite3_mprintf("%z%s%s.\"%w\"", zList, zS, zObj, zCol);
1520 }else{
1521 zList = sqlite3_mprintf("%z%sNULL", zList, zS);
1522 }
1523 zS = ", ";
1524 if( zList==0 ){
1525 p->rc = SQLITE_NOMEM;
1526 break;
1527 }
1528 }
1529
1530 /* For a table with implicit rowids, append "old._rowid_" to the list. */
1531 if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){
1532 zList = rbuMPrintf(p, "%z, %s._rowid_", zList, zObj);
1533 }
1534 }
1535 return zList;
1536 }
1537
1538 /*
1539 ** Return an expression that can be used in a WHERE clause to match the
1540 ** primary key of the current table. For example, if the table is:
1541 **
1542 ** CREATE TABLE t1(a, b, c, PRIMARY KEY(b, c));
1543 **
1544 ** Return the string:
1545 **
1546 ** "b = ?1 AND c = ?2"
1547 */
1548 static char *rbuObjIterGetWhere(
1549 sqlite3rbu *p,
1550 RbuObjIter *pIter
1551 ){
1552 char *zList = 0;
1553 if( pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE ){
1554 zList = rbuMPrintf(p, "_rowid_ = ?%d", pIter->nTblCol+1);
1555 }else if( pIter->eType==RBU_PK_EXTERNAL ){
1556 const char *zSep = "";
1557 int i;
1558 for(i=0; i<pIter->nTblCol; i++){
1559 if( pIter->abTblPk[i] ){
1560 zList = rbuMPrintf(p, "%z%sc%d=?%d", zList, zSep, i, i+1);
1561 zSep = " AND ";
1562 }
1563 }
1564 zList = rbuMPrintf(p,
1565 "_rowid_ = (SELECT id FROM rbu_imposter2 WHERE %z)", zList
1566 );
1567
1568 }else{
1569 const char *zSep = "";
1570 int i;
1571 for(i=0; i<pIter->nTblCol; i++){
1572 if( pIter->abTblPk[i] ){
1573 const char *zCol = pIter->azTblCol[i];
1574 zList = rbuMPrintf(p, "%z%s\"%w\"=?%d", zList, zSep, zCol, i+1);
1575 zSep = " AND ";
1576 }
1577 }
1578 }
1579 return zList;
1580 }
1581
1582 /*
1583 ** The SELECT statement iterating through the keys for the current object
1584 ** (p->objiter.pSelect) currently points to a valid row. However, there
1585 ** is something wrong with the rbu_control value in the rbu_control value
1586 ** stored in the (p->nCol+1)'th column. Set the error code and error message
1587 ** of the RBU handle to something reflecting this.
1588 */
1589 static void rbuBadControlError(sqlite3rbu *p){
1590 p->rc = SQLITE_ERROR;
1591 p->zErrmsg = sqlite3_mprintf("invalid rbu_control value");
1592 }
1593
1594
1595 /*
1596 ** Return a nul-terminated string containing the comma separated list of
1597 ** assignments that should be included following the "SET" keyword of
1598 ** an UPDATE statement used to update the table object that the iterator
1599 ** passed as the second argument currently points to if the rbu_control
1600 ** column of the data_xxx table entry is set to zMask.
1601 **
1602 ** The memory for the returned string is obtained from sqlite3_malloc().
1603 ** It is the responsibility of the caller to eventually free it using
1604 ** sqlite3_free().
1605 **
1606 ** If an OOM error is encountered when allocating space for the new
1607 ** string, an error code is left in the rbu handle passed as the first
1608 ** argument and NULL is returned. Or, if an error has already occurred
1609 ** when this function is called, NULL is returned immediately, without
1610 ** attempting the allocation or modifying the stored error code.
1611 */
1612 static char *rbuObjIterGetSetlist(
1613 sqlite3rbu *p,
1614 RbuObjIter *pIter,
1615 const char *zMask
1616 ){
1617 char *zList = 0;
1618 if( p->rc==SQLITE_OK ){
1619 int i;
1620
1621 if( (int)strlen(zMask)!=pIter->nTblCol ){
1622 rbuBadControlError(p);
1623 }else{
1624 const char *zSep = "";
1625 for(i=0; i<pIter->nTblCol; i++){
1626 char c = zMask[pIter->aiSrcOrder[i]];
1627 if( c=='x' ){
1628 zList = rbuMPrintf(p, "%z%s\"%w\"=?%d",
1629 zList, zSep, pIter->azTblCol[i], i+1
1630 );
1631 zSep = ", ";
1632 }
1633 else if( c=='d' ){
1634 zList = rbuMPrintf(p, "%z%s\"%w\"=rbu_delta(\"%w\", ?%d)",
1635 zList, zSep, pIter->azTblCol[i], pIter->azTblCol[i], i+1
1636 );
1637 zSep = ", ";
1638 }
1639 else if( c=='f' ){
1640 zList = rbuMPrintf(p, "%z%s\"%w\"=rbu_fossil_delta(\"%w\", ?%d)",
1641 zList, zSep, pIter->azTblCol[i], pIter->azTblCol[i], i+1
1642 );
1643 zSep = ", ";
1644 }
1645 }
1646 }
1647 }
1648 return zList;
1649 }
1650
1651 /*
1652 ** Return a nul-terminated string consisting of nByte comma separated
1653 ** "?" expressions. For example, if nByte is 3, return a pointer to
1654 ** a buffer containing the string "?,?,?".
1655 **
1656 ** The memory for the returned string is obtained from sqlite3_malloc().
1657 ** It is the responsibility of the caller to eventually free it using
1658 ** sqlite3_free().
1659 **
1660 ** If an OOM error is encountered when allocating space for the new
1661 ** string, an error code is left in the rbu handle passed as the first
1662 ** argument and NULL is returned. Or, if an error has already occurred
1663 ** when this function is called, NULL is returned immediately, without
1664 ** attempting the allocation or modifying the stored error code.
1665 */
1666 static char *rbuObjIterGetBindlist(sqlite3rbu *p, int nBind){
1667 char *zRet = 0;
1668 int nByte = nBind*2 + 1;
1669
1670 zRet = (char*)rbuMalloc(p, nByte);
1671 if( zRet ){
1672 int i;
1673 for(i=0; i<nBind; i++){
1674 zRet[i*2] = '?';
1675 zRet[i*2+1] = (i+1==nBind) ? '\0' : ',';
1676 }
1677 }
1678 return zRet;
1679 }
1680
1681 /*
1682 ** The iterator currently points to a table (not index) of type
1683 ** RBU_PK_WITHOUT_ROWID. This function creates the PRIMARY KEY
1684 ** declaration for the corresponding imposter table. For example,
1685 ** if the iterator points to a table created as:
1686 **
1687 ** CREATE TABLE t1(a, b, c, PRIMARY KEY(b, a DESC)) WITHOUT ROWID
1688 **
1689 ** this function returns:
1690 **
1691 ** PRIMARY KEY("b", "a" DESC)
1692 */
1693 static char *rbuWithoutRowidPK(sqlite3rbu *p, RbuObjIter *pIter){
1694 char *z = 0;
1695 assert( pIter->zIdx==0 );
1696 if( p->rc==SQLITE_OK ){
1697 const char *zSep = "PRIMARY KEY(";
1698 sqlite3_stmt *pXList = 0; /* PRAGMA index_list = (pIter->zTbl) */
1699 sqlite3_stmt *pXInfo = 0; /* PRAGMA index_xinfo = <pk-index> */
1700
1701 p->rc = prepareFreeAndCollectError(p->dbMain, &pXList, &p->zErrmsg,
1702 sqlite3_mprintf("PRAGMA main.index_list = %Q", pIter->zTbl)
1703 );
1704 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXList) ){
1705 const char *zOrig = (const char*)sqlite3_column_text(pXList,3);
1706 if( zOrig && strcmp(zOrig, "pk")==0 ){
1707 const char *zIdx = (const char*)sqlite3_column_text(pXList,1);
1708 if( zIdx ){
1709 p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
1710 sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx)
1711 );
1712 }
1713 break;
1714 }
1715 }
1716 rbuFinalize(p, pXList);
1717
1718 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
1719 if( sqlite3_column_int(pXInfo, 5) ){
1720 /* int iCid = sqlite3_column_int(pXInfo, 0); */
1721 const char *zCol = (const char*)sqlite3_column_text(pXInfo, 2);
1722 const char *zDesc = sqlite3_column_int(pXInfo, 3) ? " DESC" : "";
1723 z = rbuMPrintf(p, "%z%s\"%w\"%s", z, zSep, zCol, zDesc);
1724 zSep = ", ";
1725 }
1726 }
1727 z = rbuMPrintf(p, "%z)", z);
1728 rbuFinalize(p, pXInfo);
1729 }
1730 return z;
1731 }
1732
1733 /*
1734 ** This function creates the second imposter table used when writing to
1735 ** a table b-tree where the table has an external primary key. If the
1736 ** iterator passed as the second argument does not currently point to
1737 ** a table (not index) with an external primary key, this function is a
1738 ** no-op.
1739 **
1740 ** Assuming the iterator does point to a table with an external PK, this
1741 ** function creates a WITHOUT ROWID imposter table named "rbu_imposter2"
1742 ** used to access that PK index. For example, if the target table is
1743 ** declared as follows:
1744 **
1745 ** CREATE TABLE t1(a, b TEXT, c REAL, PRIMARY KEY(b, c));
1746 **
1747 ** then the imposter table schema is:
1748 **
1749 ** CREATE TABLE rbu_imposter2(c1 TEXT, c2 REAL, id INTEGER) WITHOUT ROWID;
1750 **
1751 */
1752 static void rbuCreateImposterTable2(sqlite3rbu *p, RbuObjIter *pIter){
1753 if( p->rc==SQLITE_OK && pIter->eType==RBU_PK_EXTERNAL ){
1754 int tnum = pIter->iPkTnum; /* Root page of PK index */
1755 sqlite3_stmt *pQuery = 0; /* SELECT name ... WHERE rootpage = $tnum */
1756 const char *zIdx = 0; /* Name of PK index */
1757 sqlite3_stmt *pXInfo = 0; /* PRAGMA main.index_xinfo = $zIdx */
1758 const char *zComma = "";
1759 char *zCols = 0; /* Used to build up list of table cols */
1760 char *zPk = 0; /* Used to build up table PK declaration */
1761
1762 /* Figure out the name of the primary key index for the current table.
1763 ** This is needed for the argument to "PRAGMA index_xinfo". Set
1764 ** zIdx to point to a nul-terminated string containing this name. */
1765 p->rc = prepareAndCollectError(p->dbMain, &pQuery, &p->zErrmsg,
1766 "SELECT name FROM sqlite_master WHERE rootpage = ?"
1767 );
1768 if( p->rc==SQLITE_OK ){
1769 sqlite3_bind_int(pQuery, 1, tnum);
1770 if( SQLITE_ROW==sqlite3_step(pQuery) ){
1771 zIdx = (const char*)sqlite3_column_text(pQuery, 0);
1772 }
1773 }
1774 if( zIdx ){
1775 p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
1776 sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx)
1777 );
1778 }
1779 rbuFinalize(p, pQuery);
1780
1781 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
1782 int bKey = sqlite3_column_int(pXInfo, 5);
1783 if( bKey ){
1784 int iCid = sqlite3_column_int(pXInfo, 1);
1785 int bDesc = sqlite3_column_int(pXInfo, 3);
1786 const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4);
1787 zCols = rbuMPrintf(p, "%z%sc%d %s COLLATE %s", zCols, zComma,
1788 iCid, pIter->azTblType[iCid], zCollate
1789 );
1790 zPk = rbuMPrintf(p, "%z%sc%d%s", zPk, zComma, iCid, bDesc?" DESC":"");
1791 zComma = ", ";
1792 }
1793 }
1794 zCols = rbuMPrintf(p, "%z, id INTEGER", zCols);
1795 rbuFinalize(p, pXInfo);
1796
1797 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1, tnum);
1798 rbuMPrintfExec(p, p->dbMain,
1799 "CREATE TABLE rbu_imposter2(%z, PRIMARY KEY(%z)) WITHOUT ROWID",
1800 zCols, zPk
1801 );
1802 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0);
1803 }
1804 }
1805
1806 /*
1807 ** If an error has already occurred when this function is called, it
1808 ** immediately returns zero (without doing any work). Or, if an error
1809 ** occurs during the execution of this function, it sets the error code
1810 ** in the sqlite3rbu object indicated by the first argument and returns
1811 ** zero.
1812 **
1813 ** The iterator passed as the second argument is guaranteed to point to
1814 ** a table (not an index) when this function is called. This function
1815 ** attempts to create any imposter table required to write to the main
1816 ** table b-tree of the table before returning. Non-zero is returned if
1817 ** an imposter table are created, or zero otherwise.
1818 **
1819 ** An imposter table is required in all cases except RBU_PK_VTAB. Only
1820 ** virtual tables are written to directly. The imposter table has the
1821 ** same schema as the actual target table (less any UNIQUE constraints).
1822 ** More precisely, the "same schema" means the same columns, types,
1823 ** collation sequences. For tables that do not have an external PRIMARY
1824 ** KEY, it also means the same PRIMARY KEY declaration.
1825 */
1826 static void rbuCreateImposterTable(sqlite3rbu *p, RbuObjIter *pIter){
1827 if( p->rc==SQLITE_OK && pIter->eType!=RBU_PK_VTAB ){
1828 int tnum = pIter->iTnum;
1829 const char *zComma = "";
1830 char *zSql = 0;
1831 int iCol;
1832 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 1);
1833
1834 for(iCol=0; p->rc==SQLITE_OK && iCol<pIter->nTblCol; iCol++){
1835 const char *zPk = "";
1836 const char *zCol = pIter->azTblCol[iCol];
1837 const char *zColl = 0;
1838
1839 p->rc = sqlite3_table_column_metadata(
1840 p->dbMain, "main", pIter->zTbl, zCol, 0, &zColl, 0, 0, 0
1841 );
1842
1843 if( pIter->eType==RBU_PK_IPK && pIter->abTblPk[iCol] ){
1844 /* If the target table column is an "INTEGER PRIMARY KEY", add
1845 ** "PRIMARY KEY" to the imposter table column declaration. */
1846 zPk = "PRIMARY KEY ";
1847 }
1848 zSql = rbuMPrintf(p, "%z%s\"%w\" %s %sCOLLATE %s%s",
1849 zSql, zComma, zCol, pIter->azTblType[iCol], zPk, zColl,
1850 (pIter->abNotNull[iCol] ? " NOT NULL" : "")
1851 );
1852 zComma = ", ";
1853 }
1854
1855 if( pIter->eType==RBU_PK_WITHOUT_ROWID ){
1856 char *zPk = rbuWithoutRowidPK(p, pIter);
1857 if( zPk ){
1858 zSql = rbuMPrintf(p, "%z, %z", zSql, zPk);
1859 }
1860 }
1861
1862 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1, tnum);
1863 rbuMPrintfExec(p, p->dbMain, "CREATE TABLE \"rbu_imp_%w\"(%z)%s",
1864 pIter->zTbl, zSql,
1865 (pIter->eType==RBU_PK_WITHOUT_ROWID ? " WITHOUT ROWID" : "")
1866 );
1867 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0);
1868 }
1869 }
1870
1871 /*
1872 ** Prepare a statement used to insert rows into the "rbu_tmp_xxx" table.
1873 ** Specifically a statement of the form:
1874 **
1875 ** INSERT INTO rbu_tmp_xxx VALUES(?, ?, ? ...);
1876 **
1877 ** The number of bound variables is equal to the number of columns in
1878 ** the target table, plus one (for the rbu_control column), plus one more
1879 ** (for the rbu_rowid column) if the target table is an implicit IPK or
1880 ** virtual table.
1881 */
1882 static void rbuObjIterPrepareTmpInsert(
1883 sqlite3rbu *p,
1884 RbuObjIter *pIter,
1885 const char *zCollist,
1886 const char *zRbuRowid
1887 ){
1888 int bRbuRowid = (pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE);
1889 char *zBind = rbuObjIterGetBindlist(p, pIter->nTblCol + 1 + bRbuRowid);
1890 if( zBind ){
1891 assert( pIter->pTmpInsert==0 );
1892 p->rc = prepareFreeAndCollectError(
1893 p->dbRbu, &pIter->pTmpInsert, &p->zErrmsg, sqlite3_mprintf(
1894 "INSERT INTO %s.'rbu_tmp_%q'(rbu_control,%s%s) VALUES(%z)",
1895 p->zStateDb, pIter->zDataTbl, zCollist, zRbuRowid, zBind
1896 ));
1897 }
1898 }
1899
1900 static void rbuTmpInsertFunc(
1901 sqlite3_context *pCtx,
1902 int nVal,
1903 sqlite3_value **apVal
1904 ){
1905 sqlite3rbu *p = sqlite3_user_data(pCtx);
1906 int rc = SQLITE_OK;
1907 int i;
1908
1909 assert( sqlite3_value_int(apVal[0])!=0
1910 || p->objiter.eType==RBU_PK_EXTERNAL
1911 || p->objiter.eType==RBU_PK_NONE
1912 );
1913 if( sqlite3_value_int(apVal[0])!=0 ){
1914 p->nPhaseOneStep += p->objiter.nIndex;
1915 }
1916
1917 for(i=0; rc==SQLITE_OK && i<nVal; i++){
1918 rc = sqlite3_bind_value(p->objiter.pTmpInsert, i+1, apVal[i]);
1919 }
1920 if( rc==SQLITE_OK ){
1921 sqlite3_step(p->objiter.pTmpInsert);
1922 rc = sqlite3_reset(p->objiter.pTmpInsert);
1923 }
1924
1925 if( rc!=SQLITE_OK ){
1926 sqlite3_result_error_code(pCtx, rc);
1927 }
1928 }
1929
1930 /*
1931 ** Ensure that the SQLite statement handles required to update the
1932 ** target database object currently indicated by the iterator passed
1933 ** as the second argument are available.
1934 */
1935 static int rbuObjIterPrepareAll(
1936 sqlite3rbu *p,
1937 RbuObjIter *pIter,
1938 int nOffset /* Add "LIMIT -1 OFFSET $nOffset" to SELECT */
1939 ){
1940 assert( pIter->bCleanup==0 );
1941 if( pIter->pSelect==0 && rbuObjIterCacheTableInfo(p, pIter)==SQLITE_OK ){
1942 const int tnum = pIter->iTnum;
1943 char *zCollist = 0; /* List of indexed columns */
1944 char **pz = &p->zErrmsg;
1945 const char *zIdx = pIter->zIdx;
1946 char *zLimit = 0;
1947
1948 if( nOffset ){
1949 zLimit = sqlite3_mprintf(" LIMIT -1 OFFSET %d", nOffset);
1950 if( !zLimit ) p->rc = SQLITE_NOMEM;
1951 }
1952
1953 if( zIdx ){
1954 const char *zTbl = pIter->zTbl;
1955 char *zImposterCols = 0; /* Columns for imposter table */
1956 char *zImposterPK = 0; /* Primary key declaration for imposter */
1957 char *zWhere = 0; /* WHERE clause on PK columns */
1958 char *zBind = 0;
1959 int nBind = 0;
1960
1961 assert( pIter->eType!=RBU_PK_VTAB );
1962 zCollist = rbuObjIterGetIndexCols(
1963 p, pIter, &zImposterCols, &zImposterPK, &zWhere, &nBind
1964 );
1965 zBind = rbuObjIterGetBindlist(p, nBind);
1966
1967 /* Create the imposter table used to write to this index. */
1968 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 1);
1969 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1,tnum);
1970 rbuMPrintfExec(p, p->dbMain,
1971 "CREATE TABLE \"rbu_imp_%w\"( %s, PRIMARY KEY( %s ) ) WITHOUT ROWID",
1972 zTbl, zImposterCols, zImposterPK
1973 );
1974 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0);
1975
1976 /* Create the statement to insert index entries */
1977 pIter->nCol = nBind;
1978 if( p->rc==SQLITE_OK ){
1979 p->rc = prepareFreeAndCollectError(
1980 p->dbMain, &pIter->pInsert, &p->zErrmsg,
1981 sqlite3_mprintf("INSERT INTO \"rbu_imp_%w\" VALUES(%s)", zTbl, zBind)
1982 );
1983 }
1984
1985 /* And to delete index entries */
1986 if( rbuIsVacuum(p)==0 && p->rc==SQLITE_OK ){
1987 p->rc = prepareFreeAndCollectError(
1988 p->dbMain, &pIter->pDelete, &p->zErrmsg,
1989 sqlite3_mprintf("DELETE FROM \"rbu_imp_%w\" WHERE %s", zTbl, zWhere)
1990 );
1991 }
1992
1993 /* Create the SELECT statement to read keys in sorted order */
1994 if( p->rc==SQLITE_OK ){
1995 char *zSql;
1996 if( rbuIsVacuum(p) ){
1997 zSql = sqlite3_mprintf(
1998 "SELECT %s, 0 AS rbu_control FROM '%q' ORDER BY %s%s",
1999 zCollist,
2000 pIter->zDataTbl,
2001 zCollist, zLimit
2002 );
2003 }else
2004
2005 if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){
2006 zSql = sqlite3_mprintf(
2007 "SELECT %s, rbu_control FROM %s.'rbu_tmp_%q' ORDER BY %s%s",
2008 zCollist, p->zStateDb, pIter->zDataTbl,
2009 zCollist, zLimit
2010 );
2011 }else{
2012 zSql = sqlite3_mprintf(
2013 "SELECT %s, rbu_control FROM %s.'rbu_tmp_%q' "
2014 "UNION ALL "
2015 "SELECT %s, rbu_control FROM '%q' "
2016 "WHERE typeof(rbu_control)='integer' AND rbu_control!=1 "
2017 "ORDER BY %s%s",
2018 zCollist, p->zStateDb, pIter->zDataTbl,
2019 zCollist, pIter->zDataTbl,
2020 zCollist, zLimit
2021 );
2022 }
2023 p->rc = prepareFreeAndCollectError(p->dbRbu, &pIter->pSelect, pz, zSql);
2024 }
2025
2026 sqlite3_free(zImposterCols);
2027 sqlite3_free(zImposterPK);
2028 sqlite3_free(zWhere);
2029 sqlite3_free(zBind);
2030 }else{
2031 int bRbuRowid = (pIter->eType==RBU_PK_VTAB)
2032 ||(pIter->eType==RBU_PK_NONE)
2033 ||(pIter->eType==RBU_PK_EXTERNAL && rbuIsVacuum(p));
2034 const char *zTbl = pIter->zTbl; /* Table this step applies to */
2035 const char *zWrite; /* Imposter table name */
2036
2037 char *zBindings = rbuObjIterGetBindlist(p, pIter->nTblCol + bRbuRowid);
2038 char *zWhere = rbuObjIterGetWhere(p, pIter);
2039 char *zOldlist = rbuObjIterGetOldlist(p, pIter, "old");
2040 char *zNewlist = rbuObjIterGetOldlist(p, pIter, "new");
2041
2042 zCollist = rbuObjIterGetCollist(p, pIter);
2043 pIter->nCol = pIter->nTblCol;
2044
2045 /* Create the imposter table or tables (if required). */
2046 rbuCreateImposterTable(p, pIter);
2047 rbuCreateImposterTable2(p, pIter);
2048 zWrite = (pIter->eType==RBU_PK_VTAB ? "" : "rbu_imp_");
2049
2050 /* Create the INSERT statement to write to the target PK b-tree */
2051 if( p->rc==SQLITE_OK ){
2052 p->rc = prepareFreeAndCollectError(p->dbMain, &pIter->pInsert, pz,
2053 sqlite3_mprintf(
2054 "INSERT INTO \"%s%w\"(%s%s) VALUES(%s)",
2055 zWrite, zTbl, zCollist, (bRbuRowid ? ", _rowid_" : ""), zBindings
2056 )
2057 );
2058 }
2059
2060 /* Create the DELETE statement to write to the target PK b-tree.
2061 ** Because it only performs INSERT operations, this is not required for
2062 ** an rbu vacuum handle. */
2063 if( rbuIsVacuum(p)==0 && p->rc==SQLITE_OK ){
2064 p->rc = prepareFreeAndCollectError(p->dbMain, &pIter->pDelete, pz,
2065 sqlite3_mprintf(
2066 "DELETE FROM \"%s%w\" WHERE %s", zWrite, zTbl, zWhere
2067 )
2068 );
2069 }
2070
2071 if( rbuIsVacuum(p)==0 && pIter->abIndexed ){
2072 const char *zRbuRowid = "";
2073 if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){
2074 zRbuRowid = ", rbu_rowid";
2075 }
2076
2077 /* Create the rbu_tmp_xxx table and the triggers to populate it. */
2078 rbuMPrintfExec(p, p->dbRbu,
2079 "CREATE TABLE IF NOT EXISTS %s.'rbu_tmp_%q' AS "
2080 "SELECT *%s FROM '%q' WHERE 0;"
2081 , p->zStateDb, pIter->zDataTbl
2082 , (pIter->eType==RBU_PK_EXTERNAL ? ", 0 AS rbu_rowid" : "")
2083 , pIter->zDataTbl
2084 );
2085
2086 rbuMPrintfExec(p, p->dbMain,
2087 "CREATE TEMP TRIGGER rbu_delete_tr BEFORE DELETE ON \"%s%w\" "
2088 "BEGIN "
2089 " SELECT rbu_tmp_insert(3, %s);"
2090 "END;"
2091
2092 "CREATE TEMP TRIGGER rbu_update1_tr BEFORE UPDATE ON \"%s%w\" "
2093 "BEGIN "
2094 " SELECT rbu_tmp_insert(3, %s);"
2095 "END;"
2096
2097 "CREATE TEMP TRIGGER rbu_update2_tr AFTER UPDATE ON \"%s%w\" "
2098 "BEGIN "
2099 " SELECT rbu_tmp_insert(4, %s);"
2100 "END;",
2101 zWrite, zTbl, zOldlist,
2102 zWrite, zTbl, zOldlist,
2103 zWrite, zTbl, zNewlist
2104 );
2105
2106 if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){
2107 rbuMPrintfExec(p, p->dbMain,
2108 "CREATE TEMP TRIGGER rbu_insert_tr AFTER INSERT ON \"%s%w\" "
2109 "BEGIN "
2110 " SELECT rbu_tmp_insert(0, %s);"
2111 "END;",
2112 zWrite, zTbl, zNewlist
2113 );
2114 }
2115
2116 rbuObjIterPrepareTmpInsert(p, pIter, zCollist, zRbuRowid);
2117 }
2118
2119 /* Create the SELECT statement to read keys from data_xxx */
2120 if( p->rc==SQLITE_OK ){
2121 const char *zRbuRowid = "";
2122 if( bRbuRowid ){
2123 zRbuRowid = rbuIsVacuum(p) ? ",_rowid_ " : ",rbu_rowid";
2124 }
2125 p->rc = prepareFreeAndCollectError(p->dbRbu, &pIter->pSelect, pz,
2126 sqlite3_mprintf(
2127 "SELECT %s,%s rbu_control%s FROM '%q'%s",
2128 zCollist,
2129 (rbuIsVacuum(p) ? "0 AS " : ""),
2130 zRbuRowid,
2131 pIter->zDataTbl, zLimit
2132 )
2133 );
2134 }
2135
2136 sqlite3_free(zWhere);
2137 sqlite3_free(zOldlist);
2138 sqlite3_free(zNewlist);
2139 sqlite3_free(zBindings);
2140 }
2141 sqlite3_free(zCollist);
2142 sqlite3_free(zLimit);
2143 }
2144
2145 return p->rc;
2146 }
2147
2148 /*
2149 ** Set output variable *ppStmt to point to an UPDATE statement that may
2150 ** be used to update the imposter table for the main table b-tree of the
2151 ** table object that pIter currently points to, assuming that the
2152 ** rbu_control column of the data_xyz table contains zMask.
2153 **
2154 ** If the zMask string does not specify any columns to update, then this
2155 ** is not an error. Output variable *ppStmt is set to NULL in this case.
2156 */
2157 static int rbuGetUpdateStmt(
2158 sqlite3rbu *p, /* RBU handle */
2159 RbuObjIter *pIter, /* Object iterator */
2160 const char *zMask, /* rbu_control value ('x.x.') */
2161 sqlite3_stmt **ppStmt /* OUT: UPDATE statement handle */
2162 ){
2163 RbuUpdateStmt **pp;
2164 RbuUpdateStmt *pUp = 0;
2165 int nUp = 0;
2166
2167 /* In case an error occurs */
2168 *ppStmt = 0;
2169
2170 /* Search for an existing statement. If one is found, shift it to the front
2171 ** of the LRU queue and return immediately. Otherwise, leave nUp pointing
2172 ** to the number of statements currently in the cache and pUp to the
2173 ** last object in the list. */
2174 for(pp=&pIter->pRbuUpdate; *pp; pp=&((*pp)->pNext)){
2175 pUp = *pp;
2176 if( strcmp(pUp->zMask, zMask)==0 ){
2177 *pp = pUp->pNext;
2178 pUp->pNext = pIter->pRbuUpdate;
2179 pIter->pRbuUpdate = pUp;
2180 *ppStmt = pUp->pUpdate;
2181 return SQLITE_OK;
2182 }
2183 nUp++;
2184 }
2185 assert( pUp==0 || pUp->pNext==0 );
2186
2187 if( nUp>=SQLITE_RBU_UPDATE_CACHESIZE ){
2188 for(pp=&pIter->pRbuUpdate; *pp!=pUp; pp=&((*pp)->pNext));
2189 *pp = 0;
2190 sqlite3_finalize(pUp->pUpdate);
2191 pUp->pUpdate = 0;
2192 }else{
2193 pUp = (RbuUpdateStmt*)rbuMalloc(p, sizeof(RbuUpdateStmt)+pIter->nTblCol+1);
2194 }
2195
2196 if( pUp ){
2197 char *zWhere = rbuObjIterGetWhere(p, pIter);
2198 char *zSet = rbuObjIterGetSetlist(p, pIter, zMask);
2199 char *zUpdate = 0;
2200
2201 pUp->zMask = (char*)&pUp[1];
2202 memcpy(pUp->zMask, zMask, pIter->nTblCol);
2203 pUp->pNext = pIter->pRbuUpdate;
2204 pIter->pRbuUpdate = pUp;
2205
2206 if( zSet ){
2207 const char *zPrefix = "";
2208
2209 if( pIter->eType!=RBU_PK_VTAB ) zPrefix = "rbu_imp_";
2210 zUpdate = sqlite3_mprintf("UPDATE \"%s%w\" SET %s WHERE %s",
2211 zPrefix, pIter->zTbl, zSet, zWhere
2212 );
2213 p->rc = prepareFreeAndCollectError(
2214 p->dbMain, &pUp->pUpdate, &p->zErrmsg, zUpdate
2215 );
2216 *ppStmt = pUp->pUpdate;
2217 }
2218 sqlite3_free(zWhere);
2219 sqlite3_free(zSet);
2220 }
2221
2222 return p->rc;
2223 }
2224
2225 static sqlite3 *rbuOpenDbhandle(
2226 sqlite3rbu *p,
2227 const char *zName,
2228 int bUseVfs
2229 ){
2230 sqlite3 *db = 0;
2231 if( p->rc==SQLITE_OK ){
2232 const int flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_URI;
2233 p->rc = sqlite3_open_v2(zName, &db, flags, bUseVfs ? p->zVfsName : 0);
2234 if( p->rc ){
2235 p->zErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db));
2236 sqlite3_close(db);
2237 db = 0;
2238 }
2239 }
2240 return db;
2241 }
2242
2243 /*
2244 ** Free an RbuState object allocated by rbuLoadState().
2245 */
2246 static void rbuFreeState(RbuState *p){
2247 if( p ){
2248 sqlite3_free(p->zTbl);
2249 sqlite3_free(p->zIdx);
2250 sqlite3_free(p);
2251 }
2252 }
2253
2254 /*
2255 ** Allocate an RbuState object and load the contents of the rbu_state
2256 ** table into it. Return a pointer to the new object. It is the
2257 ** responsibility of the caller to eventually free the object using
2258 ** sqlite3_free().
2259 **
2260 ** If an error occurs, leave an error code and message in the rbu handle
2261 ** and return NULL.
2262 */
2263 static RbuState *rbuLoadState(sqlite3rbu *p){
2264 RbuState *pRet = 0;
2265 sqlite3_stmt *pStmt = 0;
2266 int rc;
2267 int rc2;
2268
2269 pRet = (RbuState*)rbuMalloc(p, sizeof(RbuState));
2270 if( pRet==0 ) return 0;
2271
2272 rc = prepareFreeAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg,
2273 sqlite3_mprintf("SELECT k, v FROM %s.rbu_state", p->zStateDb)
2274 );
2275 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
2276 switch( sqlite3_column_int(pStmt, 0) ){
2277 case RBU_STATE_STAGE:
2278 pRet->eStage = sqlite3_column_int(pStmt, 1);
2279 if( pRet->eStage!=RBU_STAGE_OAL
2280 && pRet->eStage!=RBU_STAGE_MOVE
2281 && pRet->eStage!=RBU_STAGE_CKPT
2282 ){
2283 p->rc = SQLITE_CORRUPT;
2284 }
2285 break;
2286
2287 case RBU_STATE_TBL:
2288 pRet->zTbl = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc);
2289 break;
2290
2291 case RBU_STATE_IDX:
2292 pRet->zIdx = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc);
2293 break;
2294
2295 case RBU_STATE_ROW:
2296 pRet->nRow = sqlite3_column_int(pStmt, 1);
2297 break;
2298
2299 case RBU_STATE_PROGRESS:
2300 pRet->nProgress = sqlite3_column_int64(pStmt, 1);
2301 break;
2302
2303 case RBU_STATE_CKPT:
2304 pRet->iWalCksum = sqlite3_column_int64(pStmt, 1);
2305 break;
2306
2307 case RBU_STATE_COOKIE:
2308 pRet->iCookie = (u32)sqlite3_column_int64(pStmt, 1);
2309 break;
2310
2311 case RBU_STATE_OALSZ:
2312 pRet->iOalSz = (u32)sqlite3_column_int64(pStmt, 1);
2313 break;
2314
2315 case RBU_STATE_PHASEONESTEP:
2316 pRet->nPhaseOneStep = sqlite3_column_int64(pStmt, 1);
2317 break;
2318
2319 default:
2320 rc = SQLITE_CORRUPT;
2321 break;
2322 }
2323 }
2324 rc2 = sqlite3_finalize(pStmt);
2325 if( rc==SQLITE_OK ) rc = rc2;
2326
2327 p->rc = rc;
2328 return pRet;
2329 }
2330
2331
2332 /*
2333 ** Open the database handle and attach the RBU database as "rbu". If an
2334 ** error occurs, leave an error code and message in the RBU handle.
2335 */
2336 static void rbuOpenDatabase(sqlite3rbu *p, int *pbRetry){
2337 assert( p->rc || (p->dbMain==0 && p->dbRbu==0) );
2338 assert( p->rc || rbuIsVacuum(p) || p->zTarget!=0 );
2339
2340 /* Open the RBU database */
2341 p->dbRbu = rbuOpenDbhandle(p, p->zRbu, 1);
2342
2343 if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){
2344 sqlite3_file_control(p->dbRbu, "main", SQLITE_FCNTL_RBUCNT, (void*)p);
2345 if( p->zState==0 ){
2346 const char *zFile = sqlite3_db_filename(p->dbRbu, "main");
2347 p->zState = rbuMPrintf(p, "file://%s-vacuum?modeof=%s", zFile, zFile);
2348 }
2349 }
2350
2351 /* If using separate RBU and state databases, attach the state database to
2352 ** the RBU db handle now. */
2353 if( p->zState ){
2354 rbuMPrintfExec(p, p->dbRbu, "ATTACH %Q AS stat", p->zState);
2355 memcpy(p->zStateDb, "stat", 4);
2356 }else{
2357 memcpy(p->zStateDb, "main", 4);
2358 }
2359
2360 #if 0
2361 if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){
2362 p->rc = sqlite3_exec(p->dbRbu, "BEGIN", 0, 0, 0);
2363 }
2364 #endif
2365
2366 /* If it has not already been created, create the rbu_state table */
2367 rbuMPrintfExec(p, p->dbRbu, RBU_CREATE_STATE, p->zStateDb);
2368
2369 #if 0
2370 if( rbuIsVacuum(p) ){
2371 if( p->rc==SQLITE_OK ){
2372 int rc2;
2373 int bOk = 0;
2374 sqlite3_stmt *pCnt = 0;
2375 p->rc = prepareAndCollectError(p->dbRbu, &pCnt, &p->zErrmsg,
2376 "SELECT count(*) FROM stat.sqlite_master"
2377 );
2378 if( p->rc==SQLITE_OK
2379 && sqlite3_step(pCnt)==SQLITE_ROW
2380 && 1==sqlite3_column_int(pCnt, 0)
2381 ){
2382 bOk = 1;
2383 }
2384 rc2 = sqlite3_finalize(pCnt);
2385 if( p->rc==SQLITE_OK ) p->rc = rc2;
2386
2387 if( p->rc==SQLITE_OK && bOk==0 ){
2388 p->rc = SQLITE_ERROR;
2389 p->zErrmsg = sqlite3_mprintf("invalid state database");
2390 }
2391
2392 if( p->rc==SQLITE_OK ){
2393 p->rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, 0);
2394 }
2395 }
2396 }
2397 #endif
2398
2399 if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){
2400 int bOpen = 0;
2401 int rc;
2402 p->nRbu = 0;
2403 p->pRbuFd = 0;
2404 rc = sqlite3_file_control(p->dbRbu, "main", SQLITE_FCNTL_RBUCNT, (void*)p);
2405 if( rc!=SQLITE_NOTFOUND ) p->rc = rc;
2406 if( p->eStage>=RBU_STAGE_MOVE ){
2407 bOpen = 1;
2408 }else{
2409 RbuState *pState = rbuLoadState(p);
2410 if( pState ){
2411 bOpen = (pState->eStage>=RBU_STAGE_MOVE);
2412 rbuFreeState(pState);
2413 }
2414 }
2415 if( bOpen ) p->dbMain = rbuOpenDbhandle(p, p->zRbu, p->nRbu<=1);
2416 }
2417
2418 p->eStage = 0;
2419 if( p->rc==SQLITE_OK && p->dbMain==0 ){
2420 if( !rbuIsVacuum(p) ){
2421 p->dbMain = rbuOpenDbhandle(p, p->zTarget, 1);
2422 }else if( p->pRbuFd->pWalFd ){
2423 if( pbRetry ){
2424 p->pRbuFd->bNolock = 0;
2425 sqlite3_close(p->dbRbu);
2426 sqlite3_close(p->dbMain);
2427 p->dbMain = 0;
2428 p->dbRbu = 0;
2429 *pbRetry = 1;
2430 return;
2431 }
2432 p->rc = SQLITE_ERROR;
2433 p->zErrmsg = sqlite3_mprintf("cannot vacuum wal mode database");
2434 }else{
2435 char *zTarget;
2436 char *zExtra = 0;
2437 if( strlen(p->zRbu)>=5 && 0==memcmp("file:", p->zRbu, 5) ){
2438 zExtra = &p->zRbu[5];
2439 while( *zExtra ){
2440 if( *zExtra++=='?' ) break;
2441 }
2442 if( *zExtra=='\0' ) zExtra = 0;
2443 }
2444
2445 zTarget = sqlite3_mprintf("file:%s-vacuum?rbu_memory=1%s%s",
2446 sqlite3_db_filename(p->dbRbu, "main"),
2447 (zExtra==0 ? "" : "&"), (zExtra==0 ? "" : zExtra)
2448 );
2449
2450 if( zTarget==0 ){
2451 p->rc = SQLITE_NOMEM;
2452 return;
2453 }
2454 p->dbMain = rbuOpenDbhandle(p, zTarget, p->nRbu<=1);
2455 sqlite3_free(zTarget);
2456 }
2457 }
2458
2459 if( p->rc==SQLITE_OK ){
2460 p->rc = sqlite3_create_function(p->dbMain,
2461 "rbu_tmp_insert", -1, SQLITE_UTF8, (void*)p, rbuTmpInsertFunc, 0, 0
2462 );
2463 }
2464
2465 if( p->rc==SQLITE_OK ){
2466 p->rc = sqlite3_create_function(p->dbMain,
2467 "rbu_fossil_delta", 2, SQLITE_UTF8, 0, rbuFossilDeltaFunc, 0, 0
2468 );
2469 }
2470
2471 if( p->rc==SQLITE_OK ){
2472 p->rc = sqlite3_create_function(p->dbRbu,
2473 "rbu_target_name", -1, SQLITE_UTF8, (void*)p, rbuTargetNameFunc, 0, 0
2474 );
2475 }
2476
2477 if( p->rc==SQLITE_OK ){
2478 p->rc = sqlite3_file_control(p->dbMain, "main", SQLITE_FCNTL_RBU, (void*)p);
2479 }
2480 rbuMPrintfExec(p, p->dbMain, "SELECT * FROM sqlite_master");
2481
2482 /* Mark the database file just opened as an RBU target database. If
2483 ** this call returns SQLITE_NOTFOUND, then the RBU vfs is not in use.
2484 ** This is an error. */
2485 if( p->rc==SQLITE_OK ){
2486 p->rc = sqlite3_file_control(p->dbMain, "main", SQLITE_FCNTL_RBU, (void*)p);
2487 }
2488
2489 if( p->rc==SQLITE_NOTFOUND ){
2490 p->rc = SQLITE_ERROR;
2491 p->zErrmsg = sqlite3_mprintf("rbu vfs not found");
2492 }
2493 }
2494
2495 /*
2496 ** This routine is a copy of the sqlite3FileSuffix3() routine from the core.
2497 ** It is a no-op unless SQLITE_ENABLE_8_3_NAMES is defined.
2498 **
2499 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
2500 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
2501 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
2502 ** three characters, then shorten the suffix on z[] to be the last three
2503 ** characters of the original suffix.
2504 **
2505 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
2506 ** do the suffix shortening regardless of URI parameter.
2507 **
2508 ** Examples:
2509 **
2510 ** test.db-journal => test.nal
2511 ** test.db-wal => test.wal
2512 ** test.db-shm => test.shm
2513 ** test.db-mj7f3319fa => test.9fa
2514 */
2515 static void rbuFileSuffix3(const char *zBase, char *z){
2516 #ifdef SQLITE_ENABLE_8_3_NAMES
2517 #if SQLITE_ENABLE_8_3_NAMES<2
2518 if( sqlite3_uri_boolean(zBase, "8_3_names", 0) )
2519 #endif
2520 {
2521 int i, sz;
2522 sz = (int)strlen(z)&0xffffff;
2523 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
2524 if( z[i]=='.' && sz>i+4 ) memmove(&z[i+1], &z[sz-3], 4);
2525 }
2526 #endif
2527 }
2528
2529 /*
2530 ** Return the current wal-index header checksum for the target database
2531 ** as a 64-bit integer.
2532 **
2533 ** The checksum is store in the first page of xShmMap memory as an 8-byte
2534 ** blob starting at byte offset 40.
2535 */
2536 static i64 rbuShmChecksum(sqlite3rbu *p){
2537 i64 iRet = 0;
2538 if( p->rc==SQLITE_OK ){
2539 sqlite3_file *pDb = p->pTargetFd->pReal;
2540 u32 volatile *ptr;
2541 p->rc = pDb->pMethods->xShmMap(pDb, 0, 32*1024, 0, (void volatile**)&ptr);
2542 if( p->rc==SQLITE_OK ){
2543 iRet = ((i64)ptr[10] << 32) + ptr[11];
2544 }
2545 }
2546 return iRet;
2547 }
2548
2549 /*
2550 ** This function is called as part of initializing or reinitializing an
2551 ** incremental checkpoint.
2552 **
2553 ** It populates the sqlite3rbu.aFrame[] array with the set of
2554 ** (wal frame -> db page) copy operations required to checkpoint the
2555 ** current wal file, and obtains the set of shm locks required to safely
2556 ** perform the copy operations directly on the file-system.
2557 **
2558 ** If argument pState is not NULL, then the incremental checkpoint is
2559 ** being resumed. In this case, if the checksum of the wal-index-header
2560 ** following recovery is not the same as the checksum saved in the RbuState
2561 ** object, then the rbu handle is set to DONE state. This occurs if some
2562 ** other client appends a transaction to the wal file in the middle of
2563 ** an incremental checkpoint.
2564 */
2565 static void rbuSetupCheckpoint(sqlite3rbu *p, RbuState *pState){
2566
2567 /* If pState is NULL, then the wal file may not have been opened and
2568 ** recovered. Running a read-statement here to ensure that doing so
2569 ** does not interfere with the "capture" process below. */
2570 if( pState==0 ){
2571 p->eStage = 0;
2572 if( p->rc==SQLITE_OK ){
2573 p->rc = sqlite3_exec(p->dbMain, "SELECT * FROM sqlite_master", 0, 0, 0);
2574 }
2575 }
2576
2577 /* Assuming no error has occurred, run a "restart" checkpoint with the
2578 ** sqlite3rbu.eStage variable set to CAPTURE. This turns on the following
2579 ** special behaviour in the rbu VFS:
2580 **
2581 ** * If the exclusive shm WRITER or READ0 lock cannot be obtained,
2582 ** the checkpoint fails with SQLITE_BUSY (normally SQLite would
2583 ** proceed with running a passive checkpoint instead of failing).
2584 **
2585 ** * Attempts to read from the *-wal file or write to the database file
2586 ** do not perform any IO. Instead, the frame/page combinations that
2587 ** would be read/written are recorded in the sqlite3rbu.aFrame[]
2588 ** array.
2589 **
2590 ** * Calls to xShmLock(UNLOCK) to release the exclusive shm WRITER,
2591 ** READ0 and CHECKPOINT locks taken as part of the checkpoint are
2592 ** no-ops. These locks will not be released until the connection
2593 ** is closed.
2594 **
2595 ** * Attempting to xSync() the database file causes an SQLITE_INTERNAL
2596 ** error.
2597 **
2598 ** As a result, unless an error (i.e. OOM or SQLITE_BUSY) occurs, the
2599 ** checkpoint below fails with SQLITE_INTERNAL, and leaves the aFrame[]
2600 ** array populated with a set of (frame -> page) mappings. Because the
2601 ** WRITER, CHECKPOINT and READ0 locks are still held, it is safe to copy
2602 ** data from the wal file into the database file according to the
2603 ** contents of aFrame[].
2604 */
2605 if( p->rc==SQLITE_OK ){
2606 int rc2;
2607 p->eStage = RBU_STAGE_CAPTURE;
2608 rc2 = sqlite3_exec(p->dbMain, "PRAGMA main.wal_checkpoint=restart", 0, 0,0);
2609 if( rc2!=SQLITE_INTERNAL ) p->rc = rc2;
2610 }
2611
2612 if( p->rc==SQLITE_OK && p->nFrame>0 ){
2613 p->eStage = RBU_STAGE_CKPT;
2614 p->nStep = (pState ? pState->nRow : 0);
2615 p->aBuf = rbuMalloc(p, p->pgsz);
2616 p->iWalCksum = rbuShmChecksum(p);
2617 }
2618
2619 if( p->rc==SQLITE_OK ){
2620 if( p->nFrame==0 || (pState && pState->iWalCksum!=p->iWalCksum) ){
2621 p->rc = SQLITE_DONE;
2622 p->eStage = RBU_STAGE_DONE;
2623 }
2624 }
2625 }
2626
2627 /*
2628 ** Called when iAmt bytes are read from offset iOff of the wal file while
2629 ** the rbu object is in capture mode. Record the frame number of the frame
2630 ** being read in the aFrame[] array.
2631 */
2632 static int rbuCaptureWalRead(sqlite3rbu *pRbu, i64 iOff, int iAmt){
2633 const u32 mReq = (1<<WAL_LOCK_WRITE)|(1<<WAL_LOCK_CKPT)|(1<<WAL_LOCK_READ0);
2634 u32 iFrame;
2635
2636 if( pRbu->mLock!=mReq ){
2637 pRbu->rc = SQLITE_BUSY;
2638 return SQLITE_INTERNAL;
2639 }
2640
2641 pRbu->pgsz = iAmt;
2642 if( pRbu->nFrame==pRbu->nFrameAlloc ){
2643 int nNew = (pRbu->nFrameAlloc ? pRbu->nFrameAlloc : 64) * 2;
2644 RbuFrame *aNew;
2645 aNew = (RbuFrame*)sqlite3_realloc64(pRbu->aFrame, nNew * sizeof(RbuFrame));
2646 if( aNew==0 ) return SQLITE_NOMEM;
2647 pRbu->aFrame = aNew;
2648 pRbu->nFrameAlloc = nNew;
2649 }
2650
2651 iFrame = (u32)((iOff-32) / (i64)(iAmt+24)) + 1;
2652 if( pRbu->iMaxFrame<iFrame ) pRbu->iMaxFrame = iFrame;
2653 pRbu->aFrame[pRbu->nFrame].iWalFrame = iFrame;
2654 pRbu->aFrame[pRbu->nFrame].iDbPage = 0;
2655 pRbu->nFrame++;
2656 return SQLITE_OK;
2657 }
2658
2659 /*
2660 ** Called when a page of data is written to offset iOff of the database
2661 ** file while the rbu handle is in capture mode. Record the page number
2662 ** of the page being written in the aFrame[] array.
2663 */
2664 static int rbuCaptureDbWrite(sqlite3rbu *pRbu, i64 iOff){
2665 pRbu->aFrame[pRbu->nFrame-1].iDbPage = (u32)(iOff / pRbu->pgsz) + 1;
2666 return SQLITE_OK;
2667 }
2668
2669 /*
2670 ** This is called as part of an incremental checkpoint operation. Copy
2671 ** a single frame of data from the wal file into the database file, as
2672 ** indicated by the RbuFrame object.
2673 */
2674 static void rbuCheckpointFrame(sqlite3rbu *p, RbuFrame *pFrame){
2675 sqlite3_file *pWal = p->pTargetFd->pWalFd->pReal;
2676 sqlite3_file *pDb = p->pTargetFd->pReal;
2677 i64 iOff;
2678
2679 assert( p->rc==SQLITE_OK );
2680 iOff = (i64)(pFrame->iWalFrame-1) * (p->pgsz + 24) + 32 + 24;
2681 p->rc = pWal->pMethods->xRead(pWal, p->aBuf, p->pgsz, iOff);
2682 if( p->rc ) return;
2683
2684 iOff = (i64)(pFrame->iDbPage-1) * p->pgsz;
2685 p->rc = pDb->pMethods->xWrite(pDb, p->aBuf, p->pgsz, iOff);
2686 }
2687
2688
2689 /*
2690 ** Take an EXCLUSIVE lock on the database file.
2691 */
2692 static void rbuLockDatabase(sqlite3rbu *p){
2693 sqlite3_file *pReal = p->pTargetFd->pReal;
2694 assert( p->rc==SQLITE_OK );
2695 p->rc = pReal->pMethods->xLock(pReal, SQLITE_LOCK_SHARED);
2696 if( p->rc==SQLITE_OK ){
2697 p->rc = pReal->pMethods->xLock(pReal, SQLITE_LOCK_EXCLUSIVE);
2698 }
2699 }
2700
2701 #if defined(_WIN32_WCE)
2702 static LPWSTR rbuWinUtf8ToUnicode(const char *zFilename){
2703 int nChar;
2704 LPWSTR zWideFilename;
2705
2706 nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0);
2707 if( nChar==0 ){
2708 return 0;
2709 }
2710 zWideFilename = sqlite3_malloc64( nChar*sizeof(zWideFilename[0]) );
2711 if( zWideFilename==0 ){
2712 return 0;
2713 }
2714 memset(zWideFilename, 0, nChar*sizeof(zWideFilename[0]));
2715 nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename,
2716 nChar);
2717 if( nChar==0 ){
2718 sqlite3_free(zWideFilename);
2719 zWideFilename = 0;
2720 }
2721 return zWideFilename;
2722 }
2723 #endif
2724
2725 /*
2726 ** The RBU handle is currently in RBU_STAGE_OAL state, with a SHARED lock
2727 ** on the database file. This proc moves the *-oal file to the *-wal path,
2728 ** then reopens the database file (this time in vanilla, non-oal, WAL mode).
2729 ** If an error occurs, leave an error code and error message in the rbu
2730 ** handle.
2731 */
2732 static void rbuMoveOalFile(sqlite3rbu *p){
2733 const char *zBase = sqlite3_db_filename(p->dbMain, "main");
2734 const char *zMove = zBase;
2735 char *zOal;
2736 char *zWal;
2737
2738 if( rbuIsVacuum(p) ){
2739 zMove = sqlite3_db_filename(p->dbRbu, "main");
2740 }
2741 zOal = sqlite3_mprintf("%s-oal", zMove);
2742 zWal = sqlite3_mprintf("%s-wal", zMove);
2743
2744 assert( p->eStage==RBU_STAGE_MOVE );
2745 assert( p->rc==SQLITE_OK && p->zErrmsg==0 );
2746 if( zWal==0 || zOal==0 ){
2747 p->rc = SQLITE_NOMEM;
2748 }else{
2749 /* Move the *-oal file to *-wal. At this point connection p->db is
2750 ** holding a SHARED lock on the target database file (because it is
2751 ** in WAL mode). So no other connection may be writing the db.
2752 **
2753 ** In order to ensure that there are no database readers, an EXCLUSIVE
2754 ** lock is obtained here before the *-oal is moved to *-wal.
2755 */
2756 rbuLockDatabase(p);
2757 if( p->rc==SQLITE_OK ){
2758 rbuFileSuffix3(zBase, zWal);
2759 rbuFileSuffix3(zBase, zOal);
2760
2761 /* Re-open the databases. */
2762 rbuObjIterFinalize(&p->objiter);
2763 sqlite3_close(p->dbRbu);
2764 sqlite3_close(p->dbMain);
2765 p->dbMain = 0;
2766 p->dbRbu = 0;
2767
2768 #if defined(_WIN32_WCE)
2769 {
2770 LPWSTR zWideOal;
2771 LPWSTR zWideWal;
2772
2773 zWideOal = rbuWinUtf8ToUnicode(zOal);
2774 if( zWideOal ){
2775 zWideWal = rbuWinUtf8ToUnicode(zWal);
2776 if( zWideWal ){
2777 if( MoveFileW(zWideOal, zWideWal) ){
2778 p->rc = SQLITE_OK;
2779 }else{
2780 p->rc = SQLITE_IOERR;
2781 }
2782 sqlite3_free(zWideWal);
2783 }else{
2784 p->rc = SQLITE_IOERR_NOMEM;
2785 }
2786 sqlite3_free(zWideOal);
2787 }else{
2788 p->rc = SQLITE_IOERR_NOMEM;
2789 }
2790 }
2791 #else
2792 p->rc = rename(zOal, zWal) ? SQLITE_IOERR : SQLITE_OK;
2793 #endif
2794
2795 if( p->rc==SQLITE_OK ){
2796 rbuOpenDatabase(p, 0);
2797 rbuSetupCheckpoint(p, 0);
2798 }
2799 }
2800 }
2801
2802 sqlite3_free(zWal);
2803 sqlite3_free(zOal);
2804 }
2805
2806 /*
2807 ** The SELECT statement iterating through the keys for the current object
2808 ** (p->objiter.pSelect) currently points to a valid row. This function
2809 ** determines the type of operation requested by this row and returns
2810 ** one of the following values to indicate the result:
2811 **
2812 ** * RBU_INSERT
2813 ** * RBU_DELETE
2814 ** * RBU_IDX_DELETE
2815 ** * RBU_UPDATE
2816 **
2817 ** If RBU_UPDATE is returned, then output variable *pzMask is set to
2818 ** point to the text value indicating the columns to update.
2819 **
2820 ** If the rbu_control field contains an invalid value, an error code and
2821 ** message are left in the RBU handle and zero returned.
2822 */
2823 static int rbuStepType(sqlite3rbu *p, const char **pzMask){
2824 int iCol = p->objiter.nCol; /* Index of rbu_control column */
2825 int res = 0; /* Return value */
2826
2827 switch( sqlite3_column_type(p->objiter.pSelect, iCol) ){
2828 case SQLITE_INTEGER: {
2829 int iVal = sqlite3_column_int(p->objiter.pSelect, iCol);
2830 switch( iVal ){
2831 case 0: res = RBU_INSERT; break;
2832 case 1: res = RBU_DELETE; break;
2833 case 2: res = RBU_REPLACE; break;
2834 case 3: res = RBU_IDX_DELETE; break;
2835 case 4: res = RBU_IDX_INSERT; break;
2836 }
2837 break;
2838 }
2839
2840 case SQLITE_TEXT: {
2841 const unsigned char *z = sqlite3_column_text(p->objiter.pSelect, iCol);
2842 if( z==0 ){
2843 p->rc = SQLITE_NOMEM;
2844 }else{
2845 *pzMask = (const char*)z;
2846 }
2847 res = RBU_UPDATE;
2848
2849 break;
2850 }
2851
2852 default:
2853 break;
2854 }
2855
2856 if( res==0 ){
2857 rbuBadControlError(p);
2858 }
2859 return res;
2860 }
2861
2862 #ifdef SQLITE_DEBUG
2863 /*
2864 ** Assert that column iCol of statement pStmt is named zName.
2865 */
2866 static void assertColumnName(sqlite3_stmt *pStmt, int iCol, const char *zName){
2867 const char *zCol = sqlite3_column_name(pStmt, iCol);
2868 assert( 0==sqlite3_stricmp(zName, zCol) );
2869 }
2870 #else
2871 # define assertColumnName(x,y,z)
2872 #endif
2873
2874 /*
2875 ** Argument eType must be one of RBU_INSERT, RBU_DELETE, RBU_IDX_INSERT or
2876 ** RBU_IDX_DELETE. This function performs the work of a single
2877 ** sqlite3rbu_step() call for the type of operation specified by eType.
2878 */
2879 static void rbuStepOneOp(sqlite3rbu *p, int eType){
2880 RbuObjIter *pIter = &p->objiter;
2881 sqlite3_value *pVal;
2882 sqlite3_stmt *pWriter;
2883 int i;
2884
2885 assert( p->rc==SQLITE_OK );
2886 assert( eType!=RBU_DELETE || pIter->zIdx==0 );
2887 assert( eType==RBU_DELETE || eType==RBU_IDX_DELETE
2888 || eType==RBU_INSERT || eType==RBU_IDX_INSERT
2889 );
2890
2891 /* If this is a delete, decrement nPhaseOneStep by nIndex. If the DELETE
2892 ** statement below does actually delete a row, nPhaseOneStep will be
2893 ** incremented by the same amount when SQL function rbu_tmp_insert()
2894 ** is invoked by the trigger. */
2895 if( eType==RBU_DELETE ){
2896 p->nPhaseOneStep -= p->objiter.nIndex;
2897 }
2898
2899 if( eType==RBU_IDX_DELETE || eType==RBU_DELETE ){
2900 pWriter = pIter->pDelete;
2901 }else{
2902 pWriter = pIter->pInsert;
2903 }
2904
2905 for(i=0; i<pIter->nCol; i++){
2906 /* If this is an INSERT into a table b-tree and the table has an
2907 ** explicit INTEGER PRIMARY KEY, check that this is not an attempt
2908 ** to write a NULL into the IPK column. That is not permitted. */
2909 if( eType==RBU_INSERT
2910 && pIter->zIdx==0 && pIter->eType==RBU_PK_IPK && pIter->abTblPk[i]
2911 && sqlite3_column_type(pIter->pSelect, i)==SQLITE_NULL
2912 ){
2913 p->rc = SQLITE_MISMATCH;
2914 p->zErrmsg = sqlite3_mprintf("datatype mismatch");
2915 return;
2916 }
2917
2918 if( eType==RBU_DELETE && pIter->abTblPk[i]==0 ){
2919 continue;
2920 }
2921
2922 pVal = sqlite3_column_value(pIter->pSelect, i);
2923 p->rc = sqlite3_bind_value(pWriter, i+1, pVal);
2924 if( p->rc ) return;
2925 }
2926 if( pIter->zIdx==0 ){
2927 if( pIter->eType==RBU_PK_VTAB
2928 || pIter->eType==RBU_PK_NONE
2929 || (pIter->eType==RBU_PK_EXTERNAL && rbuIsVacuum(p))
2930 ){
2931 /* For a virtual table, or a table with no primary key, the
2932 ** SELECT statement is:
2933 **
2934 ** SELECT <cols>, rbu_control, rbu_rowid FROM ....
2935 **
2936 ** Hence column_value(pIter->nCol+1).
2937 */
2938 assertColumnName(pIter->pSelect, pIter->nCol+1,
2939 rbuIsVacuum(p) ? "rowid" : "rbu_rowid"
2940 );
2941 pVal = sqlite3_column_value(pIter->pSelect, pIter->nCol+1);
2942 p->rc = sqlite3_bind_value(pWriter, pIter->nCol+1, pVal);
2943 }
2944 }
2945 if( p->rc==SQLITE_OK ){
2946 sqlite3_step(pWriter);
2947 p->rc = resetAndCollectError(pWriter, &p->zErrmsg);
2948 }
2949 }
2950
2951 /*
2952 ** This function does the work for an sqlite3rbu_step() call.
2953 **
2954 ** The object-iterator (p->objiter) currently points to a valid object,
2955 ** and the input cursor (p->objiter.pSelect) currently points to a valid
2956 ** input row. Perform whatever processing is required and return.
2957 **
2958 ** If no error occurs, SQLITE_OK is returned. Otherwise, an error code
2959 ** and message is left in the RBU handle and a copy of the error code
2960 ** returned.
2961 */
2962 static int rbuStep(sqlite3rbu *p){
2963 RbuObjIter *pIter = &p->objiter;
2964 const char *zMask = 0;
2965 int eType = rbuStepType(p, &zMask);
2966
2967 if( eType ){
2968 assert( eType==RBU_INSERT || eType==RBU_DELETE
2969 || eType==RBU_REPLACE || eType==RBU_IDX_DELETE
2970 || eType==RBU_IDX_INSERT || eType==RBU_UPDATE
2971 );
2972 assert( eType!=RBU_UPDATE || pIter->zIdx==0 );
2973
2974 if( pIter->zIdx==0 && (eType==RBU_IDX_DELETE || eType==RBU_IDX_INSERT) ){
2975 rbuBadControlError(p);
2976 }
2977 else if( eType==RBU_REPLACE ){
2978 if( pIter->zIdx==0 ){
2979 p->nPhaseOneStep += p->objiter.nIndex;
2980 rbuStepOneOp(p, RBU_DELETE);
2981 }
2982 if( p->rc==SQLITE_OK ) rbuStepOneOp(p, RBU_INSERT);
2983 }
2984 else if( eType!=RBU_UPDATE ){
2985 rbuStepOneOp(p, eType);
2986 }
2987 else{
2988 sqlite3_value *pVal;
2989 sqlite3_stmt *pUpdate = 0;
2990 assert( eType==RBU_UPDATE );
2991 p->nPhaseOneStep -= p->objiter.nIndex;
2992 rbuGetUpdateStmt(p, pIter, zMask, &pUpdate);
2993 if( pUpdate ){
2994 int i;
2995 for(i=0; p->rc==SQLITE_OK && i<pIter->nCol; i++){
2996 char c = zMask[pIter->aiSrcOrder[i]];
2997 pVal = sqlite3_column_value(pIter->pSelect, i);
2998 if( pIter->abTblPk[i] || c!='.' ){
2999 p->rc = sqlite3_bind_value(pUpdate, i+1, pVal);
3000 }
3001 }
3002 if( p->rc==SQLITE_OK
3003 && (pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE)
3004 ){
3005 /* Bind the rbu_rowid value to column _rowid_ */
3006 assertColumnName(pIter->pSelect, pIter->nCol+1, "rbu_rowid");
3007 pVal = sqlite3_column_value(pIter->pSelect, pIter->nCol+1);
3008 p->rc = sqlite3_bind_value(pUpdate, pIter->nCol+1, pVal);
3009 }
3010 if( p->rc==SQLITE_OK ){
3011 sqlite3_step(pUpdate);
3012 p->rc = resetAndCollectError(pUpdate, &p->zErrmsg);
3013 }
3014 }
3015 }
3016 }
3017 return p->rc;
3018 }
3019
3020 /*
3021 ** Increment the schema cookie of the main database opened by p->dbMain.
3022 **
3023 ** Or, if this is an RBU vacuum, set the schema cookie of the main db
3024 ** opened by p->dbMain to one more than the schema cookie of the main
3025 ** db opened by p->dbRbu.
3026 */
3027 static void rbuIncrSchemaCookie(sqlite3rbu *p){
3028 if( p->rc==SQLITE_OK ){
3029 sqlite3 *dbread = (rbuIsVacuum(p) ? p->dbRbu : p->dbMain);
3030 int iCookie = 1000000;
3031 sqlite3_stmt *pStmt;
3032
3033 p->rc = prepareAndCollectError(dbread, &pStmt, &p->zErrmsg,
3034 "PRAGMA schema_version"
3035 );
3036 if( p->rc==SQLITE_OK ){
3037 /* Coverage: it may be that this sqlite3_step() cannot fail. There
3038 ** is already a transaction open, so the prepared statement cannot
3039 ** throw an SQLITE_SCHEMA exception. The only database page the
3040 ** statement reads is page 1, which is guaranteed to be in the cache.
3041 ** And no memory allocations are required. */
3042 if( SQLITE_ROW==sqlite3_step(pStmt) ){
3043 iCookie = sqlite3_column_int(pStmt, 0);
3044 }
3045 rbuFinalize(p, pStmt);
3046 }
3047 if( p->rc==SQLITE_OK ){
3048 rbuMPrintfExec(p, p->dbMain, "PRAGMA schema_version = %d", iCookie+1);
3049 }
3050 }
3051 }
3052
3053 /*
3054 ** Update the contents of the rbu_state table within the rbu database. The
3055 ** value stored in the RBU_STATE_STAGE column is eStage. All other values
3056 ** are determined by inspecting the rbu handle passed as the first argument.
3057 */
3058 static void rbuSaveState(sqlite3rbu *p, int eStage){
3059 if( p->rc==SQLITE_OK || p->rc==SQLITE_DONE ){
3060 sqlite3_stmt *pInsert = 0;
3061 rbu_file *pFd = (rbuIsVacuum(p) ? p->pRbuFd : p->pTargetFd);
3062 int rc;
3063
3064 assert( p->zErrmsg==0 );
3065 rc = prepareFreeAndCollectError(p->dbRbu, &pInsert, &p->zErrmsg,
3066 sqlite3_mprintf(
3067 "INSERT OR REPLACE INTO %s.rbu_state(k, v) VALUES "
3068 "(%d, %d), "
3069 "(%d, %Q), "
3070 "(%d, %Q), "
3071 "(%d, %d), "
3072 "(%d, %d), "
3073 "(%d, %lld), "
3074 "(%d, %lld), "
3075 "(%d, %lld), "
3076 "(%d, %lld) ",
3077 p->zStateDb,
3078 RBU_STATE_STAGE, eStage,
3079 RBU_STATE_TBL, p->objiter.zTbl,
3080 RBU_STATE_IDX, p->objiter.zIdx,
3081 RBU_STATE_ROW, p->nStep,
3082 RBU_STATE_PROGRESS, p->nProgress,
3083 RBU_STATE_CKPT, p->iWalCksum,
3084 RBU_STATE_COOKIE, (i64)pFd->iCookie,
3085 RBU_STATE_OALSZ, p->iOalSz,
3086 RBU_STATE_PHASEONESTEP, p->nPhaseOneStep
3087 )
3088 );
3089 assert( pInsert==0 || rc==SQLITE_OK );
3090
3091 if( rc==SQLITE_OK ){
3092 sqlite3_step(pInsert);
3093 rc = sqlite3_finalize(pInsert);
3094 }
3095 if( rc!=SQLITE_OK ) p->rc = rc;
3096 }
3097 }
3098
3099
3100 /*
3101 ** The second argument passed to this function is the name of a PRAGMA
3102 ** setting - "page_size", "auto_vacuum", "user_version" or "application_id".
3103 ** This function executes the following on sqlite3rbu.dbRbu:
3104 **
3105 ** "PRAGMA main.$zPragma"
3106 **
3107 ** where $zPragma is the string passed as the second argument, then
3108 ** on sqlite3rbu.dbMain:
3109 **
3110 ** "PRAGMA main.$zPragma = $val"
3111 **
3112 ** where $val is the value returned by the first PRAGMA invocation.
3113 **
3114 ** In short, it copies the value of the specified PRAGMA setting from
3115 ** dbRbu to dbMain.
3116 */
3117 static void rbuCopyPragma(sqlite3rbu *p, const char *zPragma){
3118 if( p->rc==SQLITE_OK ){
3119 sqlite3_stmt *pPragma = 0;
3120 p->rc = prepareFreeAndCollectError(p->dbRbu, &pPragma, &p->zErrmsg,
3121 sqlite3_mprintf("PRAGMA main.%s", zPragma)
3122 );
3123 if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pPragma) ){
3124 p->rc = rbuMPrintfExec(p, p->dbMain, "PRAGMA main.%s = %d",
3125 zPragma, sqlite3_column_int(pPragma, 0)
3126 );
3127 }
3128 rbuFinalize(p, pPragma);
3129 }
3130 }
3131
3132 /*
3133 ** The RBU handle passed as the only argument has just been opened and
3134 ** the state database is empty. If this RBU handle was opened for an
3135 ** RBU vacuum operation, create the schema in the target db.
3136 */
3137 static void rbuCreateTargetSchema(sqlite3rbu *p){
3138 sqlite3_stmt *pSql = 0;
3139 sqlite3_stmt *pInsert = 0;
3140
3141 assert( rbuIsVacuum(p) );
3142 p->rc = sqlite3_exec(p->dbMain, "PRAGMA writable_schema=1", 0,0, &p->zErrmsg);
3143 if( p->rc==SQLITE_OK ){
3144 p->rc = prepareAndCollectError(p->dbRbu, &pSql, &p->zErrmsg,
3145 "SELECT sql FROM sqlite_master WHERE sql!='' AND rootpage!=0"
3146 " AND name!='sqlite_sequence' "
3147 " ORDER BY type DESC"
3148 );
3149 }
3150
3151 while( p->rc==SQLITE_OK && sqlite3_step(pSql)==SQLITE_ROW ){
3152 const char *zSql = (const char*)sqlite3_column_text(pSql, 0);
3153 p->rc = sqlite3_exec(p->dbMain, zSql, 0, 0, &p->zErrmsg);
3154 }
3155 rbuFinalize(p, pSql);
3156 if( p->rc!=SQLITE_OK ) return;
3157
3158 if( p->rc==SQLITE_OK ){
3159 p->rc = prepareAndCollectError(p->dbRbu, &pSql, &p->zErrmsg,
3160 "SELECT * FROM sqlite_master WHERE rootpage=0 OR rootpage IS NULL"
3161 );
3162 }
3163
3164 if( p->rc==SQLITE_OK ){
3165 p->rc = prepareAndCollectError(p->dbMain, &pInsert, &p->zErrmsg,
3166 "INSERT INTO sqlite_master VALUES(?,?,?,?,?)"
3167 );
3168 }
3169
3170 while( p->rc==SQLITE_OK && sqlite3_step(pSql)==SQLITE_ROW ){
3171 int i;
3172 for(i=0; i<5; i++){
3173 sqlite3_bind_value(pInsert, i+1, sqlite3_column_value(pSql, i));
3174 }
3175 sqlite3_step(pInsert);
3176 p->rc = sqlite3_reset(pInsert);
3177 }
3178 if( p->rc==SQLITE_OK ){
3179 p->rc = sqlite3_exec(p->dbMain, "PRAGMA writable_schema=0",0,0,&p->zErrmsg);
3180 }
3181
3182 rbuFinalize(p, pSql);
3183 rbuFinalize(p, pInsert);
3184 }
3185
3186 /*
3187 ** Step the RBU object.
3188 */
3189 int sqlite3rbu_step(sqlite3rbu *p){
3190 if( p ){
3191 switch( p->eStage ){
3192 case RBU_STAGE_OAL: {
3193 RbuObjIter *pIter = &p->objiter;
3194
3195 /* If this is an RBU vacuum operation and the state table was empty
3196 ** when this handle was opened, create the target database schema. */
3197 if( rbuIsVacuum(p) && p->nProgress==0 && p->rc==SQLITE_OK ){
3198 rbuCreateTargetSchema(p);
3199 rbuCopyPragma(p, "user_version");
3200 rbuCopyPragma(p, "application_id");
3201 }
3202
3203 while( p->rc==SQLITE_OK && pIter->zTbl ){
3204
3205 if( pIter->bCleanup ){
3206 /* Clean up the rbu_tmp_xxx table for the previous table. It
3207 ** cannot be dropped as there are currently active SQL statements.
3208 ** But the contents can be deleted. */
3209 if( rbuIsVacuum(p)==0 && pIter->abIndexed ){
3210 rbuMPrintfExec(p, p->dbRbu,
3211 "DELETE FROM %s.'rbu_tmp_%q'", p->zStateDb, pIter->zDataTbl
3212 );
3213 }
3214 }else{
3215 rbuObjIterPrepareAll(p, pIter, 0);
3216
3217 /* Advance to the next row to process. */
3218 if( p->rc==SQLITE_OK ){
3219 int rc = sqlite3_step(pIter->pSelect);
3220 if( rc==SQLITE_ROW ){
3221 p->nProgress++;
3222 p->nStep++;
3223 return rbuStep(p);
3224 }
3225 p->rc = sqlite3_reset(pIter->pSelect);
3226 p->nStep = 0;
3227 }
3228 }
3229
3230 rbuObjIterNext(p, pIter);
3231 }
3232
3233 if( p->rc==SQLITE_OK ){
3234 assert( pIter->zTbl==0 );
3235 rbuSaveState(p, RBU_STAGE_MOVE);
3236 rbuIncrSchemaCookie(p);
3237 if( p->rc==SQLITE_OK ){
3238 p->rc = sqlite3_exec(p->dbMain, "COMMIT", 0, 0, &p->zErrmsg);
3239 }
3240 if( p->rc==SQLITE_OK ){
3241 p->rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, &p->zErrmsg);
3242 }
3243 p->eStage = RBU_STAGE_MOVE;
3244 }
3245 break;
3246 }
3247
3248 case RBU_STAGE_MOVE: {
3249 if( p->rc==SQLITE_OK ){
3250 rbuMoveOalFile(p);
3251 p->nProgress++;
3252 }
3253 break;
3254 }
3255
3256 case RBU_STAGE_CKPT: {
3257 if( p->rc==SQLITE_OK ){
3258 if( p->nStep>=p->nFrame ){
3259 sqlite3_file *pDb = p->pTargetFd->pReal;
3260
3261 /* Sync the db file */
3262 p->rc = pDb->pMethods->xSync(pDb, SQLITE_SYNC_NORMAL);
3263
3264 /* Update nBackfill */
3265 if( p->rc==SQLITE_OK ){
3266 void volatile *ptr;
3267 p->rc = pDb->pMethods->xShmMap(pDb, 0, 32*1024, 0, &ptr);
3268 if( p->rc==SQLITE_OK ){
3269 ((u32 volatile*)ptr)[24] = p->iMaxFrame;
3270 }
3271 }
3272
3273 if( p->rc==SQLITE_OK ){
3274 p->eStage = RBU_STAGE_DONE;
3275 p->rc = SQLITE_DONE;
3276 }
3277 }else{
3278 RbuFrame *pFrame = &p->aFrame[p->nStep];
3279 rbuCheckpointFrame(p, pFrame);
3280 p->nStep++;
3281 }
3282 p->nProgress++;
3283 }
3284 break;
3285 }
3286
3287 default:
3288 break;
3289 }
3290 return p->rc;
3291 }else{
3292 return SQLITE_NOMEM;
3293 }
3294 }
3295
3296 /*
3297 ** Compare strings z1 and z2, returning 0 if they are identical, or non-zero
3298 ** otherwise. Either or both argument may be NULL. Two NULL values are
3299 ** considered equal, and NULL is considered distinct from all other values.
3300 */
3301 static int rbuStrCompare(const char *z1, const char *z2){
3302 if( z1==0 && z2==0 ) return 0;
3303 if( z1==0 || z2==0 ) return 1;
3304 return (sqlite3_stricmp(z1, z2)!=0);
3305 }
3306
3307 /*
3308 ** This function is called as part of sqlite3rbu_open() when initializing
3309 ** an rbu handle in OAL stage. If the rbu update has not started (i.e.
3310 ** the rbu_state table was empty) it is a no-op. Otherwise, it arranges
3311 ** things so that the next call to sqlite3rbu_step() continues on from
3312 ** where the previous rbu handle left off.
3313 **
3314 ** If an error occurs, an error code and error message are left in the
3315 ** rbu handle passed as the first argument.
3316 */
3317 static void rbuSetupOal(sqlite3rbu *p, RbuState *pState){
3318 assert( p->rc==SQLITE_OK );
3319 if( pState->zTbl ){
3320 RbuObjIter *pIter = &p->objiter;
3321 int rc = SQLITE_OK;
3322
3323 while( rc==SQLITE_OK && pIter->zTbl && (pIter->bCleanup
3324 || rbuStrCompare(pIter->zIdx, pState->zIdx)
3325 || rbuStrCompare(pIter->zTbl, pState->zTbl)
3326 )){
3327 rc = rbuObjIterNext(p, pIter);
3328 }
3329
3330 if( rc==SQLITE_OK && !pIter->zTbl ){
3331 rc = SQLITE_ERROR;
3332 p->zErrmsg = sqlite3_mprintf("rbu_state mismatch error");
3333 }
3334
3335 if( rc==SQLITE_OK ){
3336 p->nStep = pState->nRow;
3337 rc = rbuObjIterPrepareAll(p, &p->objiter, p->nStep);
3338 }
3339
3340 p->rc = rc;
3341 }
3342 }
3343
3344 /*
3345 ** If there is a "*-oal" file in the file-system corresponding to the
3346 ** target database in the file-system, delete it. If an error occurs,
3347 ** leave an error code and error message in the rbu handle.
3348 */
3349 static void rbuDeleteOalFile(sqlite3rbu *p){
3350 char *zOal = rbuMPrintf(p, "%s-oal", p->zTarget);
3351 if( zOal ){
3352 sqlite3_vfs *pVfs = sqlite3_vfs_find(0);
3353 assert( pVfs && p->rc==SQLITE_OK && p->zErrmsg==0 );
3354 pVfs->xDelete(pVfs, zOal, 0);
3355 sqlite3_free(zOal);
3356 }
3357 }
3358
3359 /*
3360 ** Allocate a private rbu VFS for the rbu handle passed as the only
3361 ** argument. This VFS will be used unless the call to sqlite3rbu_open()
3362 ** specified a URI with a vfs=? option in place of a target database
3363 ** file name.
3364 */
3365 static void rbuCreateVfs(sqlite3rbu *p){
3366 int rnd;
3367 char zRnd[64];
3368
3369 assert( p->rc==SQLITE_OK );
3370 sqlite3_randomness(sizeof(int), (void*)&rnd);
3371 sqlite3_snprintf(sizeof(zRnd), zRnd, "rbu_vfs_%d", rnd);
3372 p->rc = sqlite3rbu_create_vfs(zRnd, 0);
3373 if( p->rc==SQLITE_OK ){
3374 sqlite3_vfs *pVfs = sqlite3_vfs_find(zRnd);
3375 assert( pVfs );
3376 p->zVfsName = pVfs->zName;
3377 }
3378 }
3379
3380 /*
3381 ** Destroy the private VFS created for the rbu handle passed as the only
3382 ** argument by an earlier call to rbuCreateVfs().
3383 */
3384 static void rbuDeleteVfs(sqlite3rbu *p){
3385 if( p->zVfsName ){
3386 sqlite3rbu_destroy_vfs(p->zVfsName);
3387 p->zVfsName = 0;
3388 }
3389 }
3390
3391 /*
3392 ** This user-defined SQL function is invoked with a single argument - the
3393 ** name of a table expected to appear in the target database. It returns
3394 ** the number of auxilliary indexes on the table.
3395 */
3396 static void rbuIndexCntFunc(
3397 sqlite3_context *pCtx,
3398 int nVal,
3399 sqlite3_value **apVal
3400 ){
3401 sqlite3rbu *p = (sqlite3rbu*)sqlite3_user_data(pCtx);
3402 sqlite3_stmt *pStmt = 0;
3403 char *zErrmsg = 0;
3404 int rc;
3405
3406 assert( nVal==1 );
3407
3408 rc = prepareFreeAndCollectError(p->dbMain, &pStmt, &zErrmsg,
3409 sqlite3_mprintf("SELECT count(*) FROM sqlite_master "
3410 "WHERE type='index' AND tbl_name = %Q", sqlite3_value_text(apVal[0]))
3411 );
3412 if( rc!=SQLITE_OK ){
3413 sqlite3_result_error(pCtx, zErrmsg, -1);
3414 }else{
3415 int nIndex = 0;
3416 if( SQLITE_ROW==sqlite3_step(pStmt) ){
3417 nIndex = sqlite3_column_int(pStmt, 0);
3418 }
3419 rc = sqlite3_finalize(pStmt);
3420 if( rc==SQLITE_OK ){
3421 sqlite3_result_int(pCtx, nIndex);
3422 }else{
3423 sqlite3_result_error(pCtx, sqlite3_errmsg(p->dbMain), -1);
3424 }
3425 }
3426
3427 sqlite3_free(zErrmsg);
3428 }
3429
3430 /*
3431 ** If the RBU database contains the rbu_count table, use it to initialize
3432 ** the sqlite3rbu.nPhaseOneStep variable. The schema of the rbu_count table
3433 ** is assumed to contain the same columns as:
3434 **
3435 ** CREATE TABLE rbu_count(tbl TEXT PRIMARY KEY, cnt INTEGER) WITHOUT ROWID;
3436 **
3437 ** There should be one row in the table for each data_xxx table in the
3438 ** database. The 'tbl' column should contain the name of a data_xxx table,
3439 ** and the cnt column the number of rows it contains.
3440 **
3441 ** sqlite3rbu.nPhaseOneStep is initialized to the sum of (1 + nIndex) * cnt
3442 ** for all rows in the rbu_count table, where nIndex is the number of
3443 ** indexes on the corresponding target database table.
3444 */
3445 static void rbuInitPhaseOneSteps(sqlite3rbu *p){
3446 if( p->rc==SQLITE_OK ){
3447 sqlite3_stmt *pStmt = 0;
3448 int bExists = 0; /* True if rbu_count exists */
3449
3450 p->nPhaseOneStep = -1;
3451
3452 p->rc = sqlite3_create_function(p->dbRbu,
3453 "rbu_index_cnt", 1, SQLITE_UTF8, (void*)p, rbuIndexCntFunc, 0, 0
3454 );
3455
3456 /* Check for the rbu_count table. If it does not exist, or if an error
3457 ** occurs, nPhaseOneStep will be left set to -1. */
3458 if( p->rc==SQLITE_OK ){
3459 p->rc = prepareAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg,
3460 "SELECT 1 FROM sqlite_master WHERE tbl_name = 'rbu_count'"
3461 );
3462 }
3463 if( p->rc==SQLITE_OK ){
3464 if( SQLITE_ROW==sqlite3_step(pStmt) ){
3465 bExists = 1;
3466 }
3467 p->rc = sqlite3_finalize(pStmt);
3468 }
3469
3470 if( p->rc==SQLITE_OK && bExists ){
3471 p->rc = prepareAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg,
3472 "SELECT sum(cnt * (1 + rbu_index_cnt(rbu_target_name(tbl))))"
3473 "FROM rbu_count"
3474 );
3475 if( p->rc==SQLITE_OK ){
3476 if( SQLITE_ROW==sqlite3_step(pStmt) ){
3477 p->nPhaseOneStep = sqlite3_column_int64(pStmt, 0);
3478 }
3479 p->rc = sqlite3_finalize(pStmt);
3480 }
3481 }
3482 }
3483 }
3484
3485
3486 static sqlite3rbu *openRbuHandle(
3487 const char *zTarget,
3488 const char *zRbu,
3489 const char *zState
3490 ){
3491 sqlite3rbu *p;
3492 size_t nTarget = zTarget ? strlen(zTarget) : 0;
3493 size_t nRbu = strlen(zRbu);
3494 size_t nByte = sizeof(sqlite3rbu) + nTarget+1 + nRbu+1;
3495
3496 p = (sqlite3rbu*)sqlite3_malloc64(nByte);
3497 if( p ){
3498 RbuState *pState = 0;
3499
3500 /* Create the custom VFS. */
3501 memset(p, 0, sizeof(sqlite3rbu));
3502 rbuCreateVfs(p);
3503
3504 /* Open the target, RBU and state databases */
3505 if( p->rc==SQLITE_OK ){
3506 char *pCsr = (char*)&p[1];
3507 int bRetry = 0;
3508 if( zTarget ){
3509 p->zTarget = pCsr;
3510 memcpy(p->zTarget, zTarget, nTarget+1);
3511 pCsr += nTarget+1;
3512 }
3513 p->zRbu = pCsr;
3514 memcpy(p->zRbu, zRbu, nRbu+1);
3515 pCsr += nRbu+1;
3516 if( zState ){
3517 p->zState = rbuMPrintf(p, "%s", zState);
3518 }
3519
3520 /* If the first attempt to open the database file fails and the bRetry
3521 ** flag it set, this means that the db was not opened because it seemed
3522 ** to be a wal-mode db. But, this may have happened due to an earlier
3523 ** RBU vacuum operation leaving an old wal file in the directory.
3524 ** If this is the case, it will have been checkpointed and deleted
3525 ** when the handle was closed and a second attempt to open the
3526 ** database may succeed. */
3527 rbuOpenDatabase(p, &bRetry);
3528 if( bRetry ){
3529 rbuOpenDatabase(p, 0);
3530 }
3531 }
3532
3533 if( p->rc==SQLITE_OK ){
3534 pState = rbuLoadState(p);
3535 assert( pState || p->rc!=SQLITE_OK );
3536 if( p->rc==SQLITE_OK ){
3537
3538 if( pState->eStage==0 ){
3539 rbuDeleteOalFile(p);
3540 rbuInitPhaseOneSteps(p);
3541 p->eStage = RBU_STAGE_OAL;
3542 }else{
3543 p->eStage = pState->eStage;
3544 p->nPhaseOneStep = pState->nPhaseOneStep;
3545 }
3546 p->nProgress = pState->nProgress;
3547 p->iOalSz = pState->iOalSz;
3548 }
3549 }
3550 assert( p->rc!=SQLITE_OK || p->eStage!=0 );
3551
3552 if( p->rc==SQLITE_OK && p->pTargetFd->pWalFd ){
3553 if( p->eStage==RBU_STAGE_OAL ){
3554 p->rc = SQLITE_ERROR;
3555 p->zErrmsg = sqlite3_mprintf("cannot update wal mode database");
3556 }else if( p->eStage==RBU_STAGE_MOVE ){
3557 p->eStage = RBU_STAGE_CKPT;
3558 p->nStep = 0;
3559 }
3560 }
3561
3562 if( p->rc==SQLITE_OK
3563 && (p->eStage==RBU_STAGE_OAL || p->eStage==RBU_STAGE_MOVE)
3564 && pState->eStage!=0
3565 ){
3566 rbu_file *pFd = (rbuIsVacuum(p) ? p->pRbuFd : p->pTargetFd);
3567 if( pFd->iCookie!=pState->iCookie ){
3568 /* At this point (pTargetFd->iCookie) contains the value of the
3569 ** change-counter cookie (the thing that gets incremented when a
3570 ** transaction is committed in rollback mode) currently stored on
3571 ** page 1 of the database file. */
3572 p->rc = SQLITE_BUSY;
3573 p->zErrmsg = sqlite3_mprintf("database modified during rbu %s",
3574 (rbuIsVacuum(p) ? "vacuum" : "update")
3575 );
3576 }
3577 }
3578
3579 if( p->rc==SQLITE_OK ){
3580 if( p->eStage==RBU_STAGE_OAL ){
3581 sqlite3 *db = p->dbMain;
3582 p->rc = sqlite3_exec(p->dbRbu, "BEGIN", 0, 0, &p->zErrmsg);
3583
3584 /* Point the object iterator at the first object */
3585 if( p->rc==SQLITE_OK ){
3586 p->rc = rbuObjIterFirst(p, &p->objiter);
3587 }
3588
3589 /* If the RBU database contains no data_xxx tables, declare the RBU
3590 ** update finished. */
3591 if( p->rc==SQLITE_OK && p->objiter.zTbl==0 ){
3592 p->rc = SQLITE_DONE;
3593 p->eStage = RBU_STAGE_DONE;
3594 }else{
3595 if( p->rc==SQLITE_OK && pState->eStage==0 && rbuIsVacuum(p) ){
3596 rbuCopyPragma(p, "page_size");
3597 rbuCopyPragma(p, "auto_vacuum");
3598 }
3599
3600 /* Open transactions both databases. The *-oal file is opened or
3601 ** created at this point. */
3602 if( p->rc==SQLITE_OK ){
3603 p->rc = sqlite3_exec(db, "BEGIN IMMEDIATE", 0, 0, &p->zErrmsg);
3604 }
3605
3606 /* Check if the main database is a zipvfs db. If it is, set the upper
3607 ** level pager to use "journal_mode=off". This prevents it from
3608 ** generating a large journal using a temp file. */
3609 if( p->rc==SQLITE_OK ){
3610 int frc = sqlite3_file_control(db, "main", SQLITE_FCNTL_ZIPVFS, 0);
3611 if( frc==SQLITE_OK ){
3612 p->rc = sqlite3_exec(
3613 db, "PRAGMA journal_mode=off",0,0,&p->zErrmsg);
3614 }
3615 }
3616
3617 if( p->rc==SQLITE_OK ){
3618 rbuSetupOal(p, pState);
3619 }
3620 }
3621 }else if( p->eStage==RBU_STAGE_MOVE ){
3622 /* no-op */
3623 }else if( p->eStage==RBU_STAGE_CKPT ){
3624 rbuSetupCheckpoint(p, pState);
3625 }else if( p->eStage==RBU_STAGE_DONE ){
3626 p->rc = SQLITE_DONE;
3627 }else{
3628 p->rc = SQLITE_CORRUPT;
3629 }
3630 }
3631
3632 rbuFreeState(pState);
3633 }
3634
3635 return p;
3636 }
3637
3638 /*
3639 ** Allocate and return an RBU handle with all fields zeroed except for the
3640 ** error code, which is set to SQLITE_MISUSE.
3641 */
3642 static sqlite3rbu *rbuMisuseError(void){
3643 sqlite3rbu *pRet;
3644 pRet = sqlite3_malloc64(sizeof(sqlite3rbu));
3645 if( pRet ){
3646 memset(pRet, 0, sizeof(sqlite3rbu));
3647 pRet->rc = SQLITE_MISUSE;
3648 }
3649 return pRet;
3650 }
3651
3652 /*
3653 ** Open and return a new RBU handle.
3654 */
3655 sqlite3rbu *sqlite3rbu_open(
3656 const char *zTarget,
3657 const char *zRbu,
3658 const char *zState
3659 ){
3660 if( zTarget==0 || zRbu==0 ){ return rbuMisuseError(); }
3661 /* TODO: Check that zTarget and zRbu are non-NULL */
3662 return openRbuHandle(zTarget, zRbu, zState);
3663 }
3664
3665 /*
3666 ** Open a handle to begin or resume an RBU VACUUM operation.
3667 */
3668 sqlite3rbu *sqlite3rbu_vacuum(
3669 const char *zTarget,
3670 const char *zState
3671 ){
3672 if( zTarget==0 ){ return rbuMisuseError(); }
3673 /* TODO: Check that both arguments are non-NULL */
3674 return openRbuHandle(0, zTarget, zState);
3675 }
3676
3677 /*
3678 ** Return the database handle used by pRbu.
3679 */
3680 sqlite3 *sqlite3rbu_db(sqlite3rbu *pRbu, int bRbu){
3681 sqlite3 *db = 0;
3682 if( pRbu ){
3683 db = (bRbu ? pRbu->dbRbu : pRbu->dbMain);
3684 }
3685 return db;
3686 }
3687
3688
3689 /*
3690 ** If the error code currently stored in the RBU handle is SQLITE_CONSTRAINT,
3691 ** then edit any error message string so as to remove all occurrences of
3692 ** the pattern "rbu_imp_[0-9]*".
3693 */
3694 static void rbuEditErrmsg(sqlite3rbu *p){
3695 if( p->rc==SQLITE_CONSTRAINT && p->zErrmsg ){
3696 unsigned int i;
3697 size_t nErrmsg = strlen(p->zErrmsg);
3698 for(i=0; i<(nErrmsg-8); i++){
3699 if( memcmp(&p->zErrmsg[i], "rbu_imp_", 8)==0 ){
3700 int nDel = 8;
3701 while( p->zErrmsg[i+nDel]>='0' && p->zErrmsg[i+nDel]<='9' ) nDel++;
3702 memmove(&p->zErrmsg[i], &p->zErrmsg[i+nDel], nErrmsg + 1 - i - nDel);
3703 nErrmsg -= nDel;
3704 }
3705 }
3706 }
3707 }
3708
3709 /*
3710 ** Close the RBU handle.
3711 */
3712 int sqlite3rbu_close(sqlite3rbu *p, char **pzErrmsg){
3713 int rc;
3714 if( p ){
3715
3716 /* Commit the transaction to the *-oal file. */
3717 if( p->rc==SQLITE_OK && p->eStage==RBU_STAGE_OAL ){
3718 p->rc = sqlite3_exec(p->dbMain, "COMMIT", 0, 0, &p->zErrmsg);
3719 }
3720
3721 rbuSaveState(p, p->eStage);
3722
3723 if( p->rc==SQLITE_OK && p->eStage==RBU_STAGE_OAL ){
3724 p->rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, &p->zErrmsg);
3725 }
3726
3727 /* Close any open statement handles. */
3728 rbuObjIterFinalize(&p->objiter);
3729
3730 /* If this is an RBU vacuum handle and the vacuum has either finished
3731 ** successfully or encountered an error, delete the contents of the
3732 ** state table. This causes the next call to sqlite3rbu_vacuum()
3733 ** specifying the current target and state databases to start a new
3734 ** vacuum from scratch. */
3735 if( rbuIsVacuum(p) && p->rc!=SQLITE_OK && p->dbRbu ){
3736 int rc2 = sqlite3_exec(p->dbRbu, "DELETE FROM stat.rbu_state", 0, 0, 0);
3737 if( p->rc==SQLITE_DONE && rc2!=SQLITE_OK ) p->rc = rc2;
3738 }
3739
3740 /* Close the open database handle and VFS object. */
3741 sqlite3_close(p->dbRbu);
3742 sqlite3_close(p->dbMain);
3743 rbuDeleteVfs(p);
3744 sqlite3_free(p->aBuf);
3745 sqlite3_free(p->aFrame);
3746
3747 rbuEditErrmsg(p);
3748 rc = p->rc;
3749 *pzErrmsg = p->zErrmsg;
3750 sqlite3_free(p->zState);
3751 sqlite3_free(p);
3752 }else{
3753 rc = SQLITE_NOMEM;
3754 *pzErrmsg = 0;
3755 }
3756 return rc;
3757 }
3758
3759 /*
3760 ** Return the total number of key-value operations (inserts, deletes or
3761 ** updates) that have been performed on the target database since the
3762 ** current RBU update was started.
3763 */
3764 sqlite3_int64 sqlite3rbu_progress(sqlite3rbu *pRbu){
3765 return pRbu->nProgress;
3766 }
3767
3768 /*
3769 ** Return permyriadage progress indications for the two main stages of
3770 ** an RBU update.
3771 */
3772 void sqlite3rbu_bp_progress(sqlite3rbu *p, int *pnOne, int *pnTwo){
3773 const int MAX_PROGRESS = 10000;
3774 switch( p->eStage ){
3775 case RBU_STAGE_OAL:
3776 if( p->nPhaseOneStep>0 ){
3777 *pnOne = (int)(MAX_PROGRESS * (i64)p->nProgress/(i64)p->nPhaseOneStep);
3778 }else{
3779 *pnOne = -1;
3780 }
3781 *pnTwo = 0;
3782 break;
3783
3784 case RBU_STAGE_MOVE:
3785 *pnOne = MAX_PROGRESS;
3786 *pnTwo = 0;
3787 break;
3788
3789 case RBU_STAGE_CKPT:
3790 *pnOne = MAX_PROGRESS;
3791 *pnTwo = (int)(MAX_PROGRESS * (i64)p->nStep / (i64)p->nFrame);
3792 break;
3793
3794 case RBU_STAGE_DONE:
3795 *pnOne = MAX_PROGRESS;
3796 *pnTwo = MAX_PROGRESS;
3797 break;
3798
3799 default:
3800 assert( 0 );
3801 }
3802 }
3803
3804 /*
3805 ** Return the current state of the RBU vacuum or update operation.
3806 */
3807 int sqlite3rbu_state(sqlite3rbu *p){
3808 int aRes[] = {
3809 0, SQLITE_RBU_STATE_OAL, SQLITE_RBU_STATE_MOVE,
3810 0, SQLITE_RBU_STATE_CHECKPOINT, SQLITE_RBU_STATE_DONE
3811 };
3812
3813 assert( RBU_STAGE_OAL==1 );
3814 assert( RBU_STAGE_MOVE==2 );
3815 assert( RBU_STAGE_CKPT==4 );
3816 assert( RBU_STAGE_DONE==5 );
3817 assert( aRes[RBU_STAGE_OAL]==SQLITE_RBU_STATE_OAL );
3818 assert( aRes[RBU_STAGE_MOVE]==SQLITE_RBU_STATE_MOVE );
3819 assert( aRes[RBU_STAGE_CKPT]==SQLITE_RBU_STATE_CHECKPOINT );
3820 assert( aRes[RBU_STAGE_DONE]==SQLITE_RBU_STATE_DONE );
3821
3822 if( p->rc!=SQLITE_OK && p->rc!=SQLITE_DONE ){
3823 return SQLITE_RBU_STATE_ERROR;
3824 }else{
3825 assert( p->rc!=SQLITE_DONE || p->eStage==RBU_STAGE_DONE );
3826 assert( p->eStage==RBU_STAGE_OAL
3827 || p->eStage==RBU_STAGE_MOVE
3828 || p->eStage==RBU_STAGE_CKPT
3829 || p->eStage==RBU_STAGE_DONE
3830 );
3831 return aRes[p->eStage];
3832 }
3833 }
3834
3835 int sqlite3rbu_savestate(sqlite3rbu *p){
3836 int rc = p->rc;
3837 if( rc==SQLITE_DONE ) return SQLITE_OK;
3838
3839 assert( p->eStage>=RBU_STAGE_OAL && p->eStage<=RBU_STAGE_DONE );
3840 if( p->eStage==RBU_STAGE_OAL ){
3841 assert( rc!=SQLITE_DONE );
3842 if( rc==SQLITE_OK ) rc = sqlite3_exec(p->dbMain, "COMMIT", 0, 0, 0);
3843 }
3844
3845 p->rc = rc;
3846 rbuSaveState(p, p->eStage);
3847 rc = p->rc;
3848
3849 if( p->eStage==RBU_STAGE_OAL ){
3850 assert( rc!=SQLITE_DONE );
3851 if( rc==SQLITE_OK ) rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, 0);
3852 if( rc==SQLITE_OK ) rc = sqlite3_exec(p->dbRbu, "BEGIN IMMEDIATE", 0, 0, 0);
3853 if( rc==SQLITE_OK ) rc = sqlite3_exec(p->dbMain, "BEGIN IMMEDIATE", 0, 0,0);
3854 }
3855
3856 p->rc = rc;
3857 return rc;
3858 }
3859
3860 /**************************************************************************
3861 ** Beginning of RBU VFS shim methods. The VFS shim modifies the behaviour
3862 ** of a standard VFS in the following ways:
3863 **
3864 ** 1. Whenever the first page of a main database file is read or
3865 ** written, the value of the change-counter cookie is stored in
3866 ** rbu_file.iCookie. Similarly, the value of the "write-version"
3867 ** database header field is stored in rbu_file.iWriteVer. This ensures
3868 ** that the values are always trustworthy within an open transaction.
3869 **
3870 ** 2. Whenever an SQLITE_OPEN_WAL file is opened, the (rbu_file.pWalFd)
3871 ** member variable of the associated database file descriptor is set
3872 ** to point to the new file. A mutex protected linked list of all main
3873 ** db fds opened using a particular RBU VFS is maintained at
3874 ** rbu_vfs.pMain to facilitate this.
3875 **
3876 ** 3. Using a new file-control "SQLITE_FCNTL_RBU", a main db rbu_file
3877 ** object can be marked as the target database of an RBU update. This
3878 ** turns on the following extra special behaviour:
3879 **
3880 ** 3a. If xAccess() is called to check if there exists a *-wal file
3881 ** associated with an RBU target database currently in RBU_STAGE_OAL
3882 ** stage (preparing the *-oal file), the following special handling
3883 ** applies:
3884 **
3885 ** * if the *-wal file does exist, return SQLITE_CANTOPEN. An RBU
3886 ** target database may not be in wal mode already.
3887 **
3888 ** * if the *-wal file does not exist, set the output parameter to
3889 ** non-zero (to tell SQLite that it does exist) anyway.
3890 **
3891 ** Then, when xOpen() is called to open the *-wal file associated with
3892 ** the RBU target in RBU_STAGE_OAL stage, instead of opening the *-wal
3893 ** file, the rbu vfs opens the corresponding *-oal file instead.
3894 **
3895 ** 3b. The *-shm pages returned by xShmMap() for a target db file in
3896 ** RBU_STAGE_OAL mode are actually stored in heap memory. This is to
3897 ** avoid creating a *-shm file on disk. Additionally, xShmLock() calls
3898 ** are no-ops on target database files in RBU_STAGE_OAL mode. This is
3899 ** because assert() statements in some VFS implementations fail if
3900 ** xShmLock() is called before xShmMap().
3901 **
3902 ** 3c. If an EXCLUSIVE lock is attempted on a target database file in any
3903 ** mode except RBU_STAGE_DONE (all work completed and checkpointed), it
3904 ** fails with an SQLITE_BUSY error. This is to stop RBU connections
3905 ** from automatically checkpointing a *-wal (or *-oal) file from within
3906 ** sqlite3_close().
3907 **
3908 ** 3d. In RBU_STAGE_CAPTURE mode, all xRead() calls on the wal file, and
3909 ** all xWrite() calls on the target database file perform no IO.
3910 ** Instead the frame and page numbers that would be read and written
3911 ** are recorded. Additionally, successful attempts to obtain exclusive
3912 ** xShmLock() WRITER, CHECKPOINTER and READ0 locks on the target
3913 ** database file are recorded. xShmLock() calls to unlock the same
3914 ** locks are no-ops (so that once obtained, these locks are never
3915 ** relinquished). Finally, calls to xSync() on the target database
3916 ** file fail with SQLITE_INTERNAL errors.
3917 */
3918
3919 static void rbuUnlockShm(rbu_file *p){
3920 if( p->pRbu ){
3921 int (*xShmLock)(sqlite3_file*,int,int,int) = p->pReal->pMethods->xShmLock;
3922 int i;
3923 for(i=0; i<SQLITE_SHM_NLOCK;i++){
3924 if( (1<<i) & p->pRbu->mLock ){
3925 xShmLock(p->pReal, i, 1, SQLITE_SHM_UNLOCK|SQLITE_SHM_EXCLUSIVE);
3926 }
3927 }
3928 p->pRbu->mLock = 0;
3929 }
3930 }
3931
3932 /*
3933 ** Close an rbu file.
3934 */
3935 static int rbuVfsClose(sqlite3_file *pFile){
3936 rbu_file *p = (rbu_file*)pFile;
3937 int rc;
3938 int i;
3939
3940 /* Free the contents of the apShm[] array. And the array itself. */
3941 for(i=0; i<p->nShm; i++){
3942 sqlite3_free(p->apShm[i]);
3943 }
3944 sqlite3_free(p->apShm);
3945 p->apShm = 0;
3946 sqlite3_free(p->zDel);
3947
3948 if( p->openFlags & SQLITE_OPEN_MAIN_DB ){
3949 rbu_file **pp;
3950 sqlite3_mutex_enter(p->pRbuVfs->mutex);
3951 for(pp=&p->pRbuVfs->pMain; *pp!=p; pp=&((*pp)->pMainNext));
3952 *pp = p->pMainNext;
3953 sqlite3_mutex_leave(p->pRbuVfs->mutex);
3954 rbuUnlockShm(p);
3955 p->pReal->pMethods->xShmUnmap(p->pReal, 0);
3956 }
3957
3958 /* Close the underlying file handle */
3959 rc = p->pReal->pMethods->xClose(p->pReal);
3960 return rc;
3961 }
3962
3963
3964 /*
3965 ** Read and return an unsigned 32-bit big-endian integer from the buffer
3966 ** passed as the only argument.
3967 */
3968 static u32 rbuGetU32(u8 *aBuf){
3969 return ((u32)aBuf[0] << 24)
3970 + ((u32)aBuf[1] << 16)
3971 + ((u32)aBuf[2] << 8)
3972 + ((u32)aBuf[3]);
3973 }
3974
3975 /*
3976 ** Write an unsigned 32-bit value in big-endian format to the supplied
3977 ** buffer.
3978 */
3979 static void rbuPutU32(u8 *aBuf, u32 iVal){
3980 aBuf[0] = (iVal >> 24) & 0xFF;
3981 aBuf[1] = (iVal >> 16) & 0xFF;
3982 aBuf[2] = (iVal >> 8) & 0xFF;
3983 aBuf[3] = (iVal >> 0) & 0xFF;
3984 }
3985
3986 static void rbuPutU16(u8 *aBuf, u16 iVal){
3987 aBuf[0] = (iVal >> 8) & 0xFF;
3988 aBuf[1] = (iVal >> 0) & 0xFF;
3989 }
3990
3991 /*
3992 ** Read data from an rbuVfs-file.
3993 */
3994 static int rbuVfsRead(
3995 sqlite3_file *pFile,
3996 void *zBuf,
3997 int iAmt,
3998 sqlite_int64 iOfst
3999 ){
4000 rbu_file *p = (rbu_file*)pFile;
4001 sqlite3rbu *pRbu = p->pRbu;
4002 int rc;
4003
4004 if( pRbu && pRbu->eStage==RBU_STAGE_CAPTURE ){
4005 assert( p->openFlags & SQLITE_OPEN_WAL );
4006 rc = rbuCaptureWalRead(p->pRbu, iOfst, iAmt);
4007 }else{
4008 if( pRbu && pRbu->eStage==RBU_STAGE_OAL
4009 && (p->openFlags & SQLITE_OPEN_WAL)
4010 && iOfst>=pRbu->iOalSz
4011 ){
4012 rc = SQLITE_OK;
4013 memset(zBuf, 0, iAmt);
4014 }else{
4015 rc = p->pReal->pMethods->xRead(p->pReal, zBuf, iAmt, iOfst);
4016 #if 1
4017 /* If this is being called to read the first page of the target
4018 ** database as part of an rbu vacuum operation, synthesize the
4019 ** contents of the first page if it does not yet exist. Otherwise,
4020 ** SQLite will not check for a *-wal file. */
4021 if( pRbu && rbuIsVacuum(pRbu)
4022 && rc==SQLITE_IOERR_SHORT_READ && iOfst==0
4023 && (p->openFlags & SQLITE_OPEN_MAIN_DB)
4024 && pRbu->rc==SQLITE_OK
4025 ){
4026 sqlite3_file *pFd = (sqlite3_file*)pRbu->pRbuFd;
4027 rc = pFd->pMethods->xRead(pFd, zBuf, iAmt, iOfst);
4028 if( rc==SQLITE_OK ){
4029 u8 *aBuf = (u8*)zBuf;
4030 u32 iRoot = rbuGetU32(&aBuf[52]) ? 1 : 0;
4031 rbuPutU32(&aBuf[52], iRoot); /* largest root page number */
4032 rbuPutU32(&aBuf[36], 0); /* number of free pages */
4033 rbuPutU32(&aBuf[32], 0); /* first page on free list trunk */
4034 rbuPutU32(&aBuf[28], 1); /* size of db file in pages */
4035 rbuPutU32(&aBuf[24], pRbu->pRbuFd->iCookie+1); /* Change counter */
4036
4037 if( iAmt>100 ){
4038 memset(&aBuf[100], 0, iAmt-100);
4039 rbuPutU16(&aBuf[105], iAmt & 0xFFFF);
4040 aBuf[100] = 0x0D;
4041 }
4042 }
4043 }
4044 #endif
4045 }
4046 if( rc==SQLITE_OK && iOfst==0 && (p->openFlags & SQLITE_OPEN_MAIN_DB) ){
4047 /* These look like magic numbers. But they are stable, as they are part
4048 ** of the definition of the SQLite file format, which may not change. */
4049 u8 *pBuf = (u8*)zBuf;
4050 p->iCookie = rbuGetU32(&pBuf[24]);
4051 p->iWriteVer = pBuf[19];
4052 }
4053 }
4054 return rc;
4055 }
4056
4057 /*
4058 ** Write data to an rbuVfs-file.
4059 */
4060 static int rbuVfsWrite(
4061 sqlite3_file *pFile,
4062 const void *zBuf,
4063 int iAmt,
4064 sqlite_int64 iOfst
4065 ){
4066 rbu_file *p = (rbu_file*)pFile;
4067 sqlite3rbu *pRbu = p->pRbu;
4068 int rc;
4069
4070 if( pRbu && pRbu->eStage==RBU_STAGE_CAPTURE ){
4071 assert( p->openFlags & SQLITE_OPEN_MAIN_DB );
4072 rc = rbuCaptureDbWrite(p->pRbu, iOfst);
4073 }else{
4074 if( pRbu && pRbu->eStage==RBU_STAGE_OAL
4075 && (p->openFlags & SQLITE_OPEN_WAL)
4076 && iOfst>=pRbu->iOalSz
4077 ){
4078 pRbu->iOalSz = iAmt + iOfst;
4079 }
4080 rc = p->pReal->pMethods->xWrite(p->pReal, zBuf, iAmt, iOfst);
4081 if( rc==SQLITE_OK && iOfst==0 && (p->openFlags & SQLITE_OPEN_MAIN_DB) ){
4082 /* These look like magic numbers. But they are stable, as they are part
4083 ** of the definition of the SQLite file format, which may not change. */
4084 u8 *pBuf = (u8*)zBuf;
4085 p->iCookie = rbuGetU32(&pBuf[24]);
4086 p->iWriteVer = pBuf[19];
4087 }
4088 }
4089 return rc;
4090 }
4091
4092 /*
4093 ** Truncate an rbuVfs-file.
4094 */
4095 static int rbuVfsTruncate(sqlite3_file *pFile, sqlite_int64 size){
4096 rbu_file *p = (rbu_file*)pFile;
4097 return p->pReal->pMethods->xTruncate(p->pReal, size);
4098 }
4099
4100 /*
4101 ** Sync an rbuVfs-file.
4102 */
4103 static int rbuVfsSync(sqlite3_file *pFile, int flags){
4104 rbu_file *p = (rbu_file *)pFile;
4105 if( p->pRbu && p->pRbu->eStage==RBU_STAGE_CAPTURE ){
4106 if( p->openFlags & SQLITE_OPEN_MAIN_DB ){
4107 return SQLITE_INTERNAL;
4108 }
4109 return SQLITE_OK;
4110 }
4111 return p->pReal->pMethods->xSync(p->pReal, flags);
4112 }
4113
4114 /*
4115 ** Return the current file-size of an rbuVfs-file.
4116 */
4117 static int rbuVfsFileSize(sqlite3_file *pFile, sqlite_int64 *pSize){
4118 rbu_file *p = (rbu_file *)pFile;
4119 int rc;
4120 rc = p->pReal->pMethods->xFileSize(p->pReal, pSize);
4121
4122 /* If this is an RBU vacuum operation and this is the target database,
4123 ** pretend that it has at least one page. Otherwise, SQLite will not
4124 ** check for the existance of a *-wal file. rbuVfsRead() contains
4125 ** similar logic. */
4126 if( rc==SQLITE_OK && *pSize==0
4127 && p->pRbu && rbuIsVacuum(p->pRbu)
4128 && (p->openFlags & SQLITE_OPEN_MAIN_DB)
4129 ){
4130 *pSize = 1024;
4131 }
4132 return rc;
4133 }
4134
4135 /*
4136 ** Lock an rbuVfs-file.
4137 */
4138 static int rbuVfsLock(sqlite3_file *pFile, int eLock){
4139 rbu_file *p = (rbu_file*)pFile;
4140 sqlite3rbu *pRbu = p->pRbu;
4141 int rc = SQLITE_OK;
4142
4143 assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
4144 if( eLock==SQLITE_LOCK_EXCLUSIVE
4145 && (p->bNolock || (pRbu && pRbu->eStage!=RBU_STAGE_DONE))
4146 ){
4147 /* Do not allow EXCLUSIVE locks. Preventing SQLite from taking this
4148 ** prevents it from checkpointing the database from sqlite3_close(). */
4149 rc = SQLITE_BUSY;
4150 }else{
4151 rc = p->pReal->pMethods->xLock(p->pReal, eLock);
4152 }
4153
4154 return rc;
4155 }
4156
4157 /*
4158 ** Unlock an rbuVfs-file.
4159 */
4160 static int rbuVfsUnlock(sqlite3_file *pFile, int eLock){
4161 rbu_file *p = (rbu_file *)pFile;
4162 return p->pReal->pMethods->xUnlock(p->pReal, eLock);
4163 }
4164
4165 /*
4166 ** Check if another file-handle holds a RESERVED lock on an rbuVfs-file.
4167 */
4168 static int rbuVfsCheckReservedLock(sqlite3_file *pFile, int *pResOut){
4169 rbu_file *p = (rbu_file *)pFile;
4170 return p->pReal->pMethods->xCheckReservedLock(p->pReal, pResOut);
4171 }
4172
4173 /*
4174 ** File control method. For custom operations on an rbuVfs-file.
4175 */
4176 static int rbuVfsFileControl(sqlite3_file *pFile, int op, void *pArg){
4177 rbu_file *p = (rbu_file *)pFile;
4178 int (*xControl)(sqlite3_file*,int,void*) = p->pReal->pMethods->xFileControl;
4179 int rc;
4180
4181 assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB)
4182 || p->openFlags & (SQLITE_OPEN_TRANSIENT_DB|SQLITE_OPEN_TEMP_JOURNAL)
4183 );
4184 if( op==SQLITE_FCNTL_RBU ){
4185 sqlite3rbu *pRbu = (sqlite3rbu*)pArg;
4186
4187 /* First try to find another RBU vfs lower down in the vfs stack. If
4188 ** one is found, this vfs will operate in pass-through mode. The lower
4189 ** level vfs will do the special RBU handling. */
4190 rc = xControl(p->pReal, op, pArg);
4191
4192 if( rc==SQLITE_NOTFOUND ){
4193 /* Now search for a zipvfs instance lower down in the VFS stack. If
4194 ** one is found, this is an error. */
4195 void *dummy = 0;
4196 rc = xControl(p->pReal, SQLITE_FCNTL_ZIPVFS, &dummy);
4197 if( rc==SQLITE_OK ){
4198 rc = SQLITE_ERROR;
4199 pRbu->zErrmsg = sqlite3_mprintf("rbu/zipvfs setup error");
4200 }else if( rc==SQLITE_NOTFOUND ){
4201 pRbu->pTargetFd = p;
4202 p->pRbu = pRbu;
4203 if( p->pWalFd ) p->pWalFd->pRbu = pRbu;
4204 rc = SQLITE_OK;
4205 }
4206 }
4207 return rc;
4208 }
4209 else if( op==SQLITE_FCNTL_RBUCNT ){
4210 sqlite3rbu *pRbu = (sqlite3rbu*)pArg;
4211 pRbu->nRbu++;
4212 pRbu->pRbuFd = p;
4213 p->bNolock = 1;
4214 }
4215
4216 rc = xControl(p->pReal, op, pArg);
4217 if( rc==SQLITE_OK && op==SQLITE_FCNTL_VFSNAME ){
4218 rbu_vfs *pRbuVfs = p->pRbuVfs;
4219 char *zIn = *(char**)pArg;
4220 char *zOut = sqlite3_mprintf("rbu(%s)/%z", pRbuVfs->base.zName, zIn);
4221 *(char**)pArg = zOut;
4222 if( zOut==0 ) rc = SQLITE_NOMEM;
4223 }
4224
4225 return rc;
4226 }
4227
4228 /*
4229 ** Return the sector-size in bytes for an rbuVfs-file.
4230 */
4231 static int rbuVfsSectorSize(sqlite3_file *pFile){
4232 rbu_file *p = (rbu_file *)pFile;
4233 return p->pReal->pMethods->xSectorSize(p->pReal);
4234 }
4235
4236 /*
4237 ** Return the device characteristic flags supported by an rbuVfs-file.
4238 */
4239 static int rbuVfsDeviceCharacteristics(sqlite3_file *pFile){
4240 rbu_file *p = (rbu_file *)pFile;
4241 return p->pReal->pMethods->xDeviceCharacteristics(p->pReal);
4242 }
4243
4244 /*
4245 ** Take or release a shared-memory lock.
4246 */
4247 static int rbuVfsShmLock(sqlite3_file *pFile, int ofst, int n, int flags){
4248 rbu_file *p = (rbu_file*)pFile;
4249 sqlite3rbu *pRbu = p->pRbu;
4250 int rc = SQLITE_OK;
4251
4252 #ifdef SQLITE_AMALGAMATION
4253 assert( WAL_CKPT_LOCK==1 );
4254 #endif
4255
4256 assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
4257 if( pRbu && (pRbu->eStage==RBU_STAGE_OAL || pRbu->eStage==RBU_STAGE_MOVE) ){
4258 /* Magic number 1 is the WAL_CKPT_LOCK lock. Preventing SQLite from
4259 ** taking this lock also prevents any checkpoints from occurring.
4260 ** todo: really, it's not clear why this might occur, as
4261 ** wal_autocheckpoint ought to be turned off. */
4262 if( ofst==WAL_LOCK_CKPT && n==1 ) rc = SQLITE_BUSY;
4263 }else{
4264 int bCapture = 0;
4265 if( n==1 && (flags & SQLITE_SHM_EXCLUSIVE)
4266 && pRbu && pRbu->eStage==RBU_STAGE_CAPTURE
4267 && (ofst==WAL_LOCK_WRITE || ofst==WAL_LOCK_CKPT || ofst==WAL_LOCK_READ0)
4268 ){
4269 bCapture = 1;
4270 }
4271
4272 if( bCapture==0 || 0==(flags & SQLITE_SHM_UNLOCK) ){
4273 rc = p->pReal->pMethods->xShmLock(p->pReal, ofst, n, flags);
4274 if( bCapture && rc==SQLITE_OK ){
4275 pRbu->mLock |= (1 << ofst);
4276 }
4277 }
4278 }
4279
4280 return rc;
4281 }
4282
4283 /*
4284 ** Obtain a pointer to a mapping of a single 32KiB page of the *-shm file.
4285 */
4286 static int rbuVfsShmMap(
4287 sqlite3_file *pFile,
4288 int iRegion,
4289 int szRegion,
4290 int isWrite,
4291 void volatile **pp
4292 ){
4293 rbu_file *p = (rbu_file*)pFile;
4294 int rc = SQLITE_OK;
4295 int eStage = (p->pRbu ? p->pRbu->eStage : 0);
4296
4297 /* If not in RBU_STAGE_OAL, allow this call to pass through. Or, if this
4298 ** rbu is in the RBU_STAGE_OAL state, use heap memory for *-shm space
4299 ** instead of a file on disk. */
4300 assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
4301 if( eStage==RBU_STAGE_OAL || eStage==RBU_STAGE_MOVE ){
4302 if( iRegion<=p->nShm ){
4303 int nByte = (iRegion+1) * sizeof(char*);
4304 char **apNew = (char**)sqlite3_realloc64(p->apShm, nByte);
4305 if( apNew==0 ){
4306 rc = SQLITE_NOMEM;
4307 }else{
4308 memset(&apNew[p->nShm], 0, sizeof(char*) * (1 + iRegion - p->nShm));
4309 p->apShm = apNew;
4310 p->nShm = iRegion+1;
4311 }
4312 }
4313
4314 if( rc==SQLITE_OK && p->apShm[iRegion]==0 ){
4315 char *pNew = (char*)sqlite3_malloc64(szRegion);
4316 if( pNew==0 ){
4317 rc = SQLITE_NOMEM;
4318 }else{
4319 memset(pNew, 0, szRegion);
4320 p->apShm[iRegion] = pNew;
4321 }
4322 }
4323
4324 if( rc==SQLITE_OK ){
4325 *pp = p->apShm[iRegion];
4326 }else{
4327 *pp = 0;
4328 }
4329 }else{
4330 assert( p->apShm==0 );
4331 rc = p->pReal->pMethods->xShmMap(p->pReal, iRegion, szRegion, isWrite, pp);
4332 }
4333
4334 return rc;
4335 }
4336
4337 /*
4338 ** Memory barrier.
4339 */
4340 static void rbuVfsShmBarrier(sqlite3_file *pFile){
4341 rbu_file *p = (rbu_file *)pFile;
4342 p->pReal->pMethods->xShmBarrier(p->pReal);
4343 }
4344
4345 /*
4346 ** The xShmUnmap method.
4347 */
4348 static int rbuVfsShmUnmap(sqlite3_file *pFile, int delFlag){
4349 rbu_file *p = (rbu_file*)pFile;
4350 int rc = SQLITE_OK;
4351 int eStage = (p->pRbu ? p->pRbu->eStage : 0);
4352
4353 assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
4354 if( eStage==RBU_STAGE_OAL || eStage==RBU_STAGE_MOVE ){
4355 /* no-op */
4356 }else{
4357 /* Release the checkpointer and writer locks */
4358 rbuUnlockShm(p);
4359 rc = p->pReal->pMethods->xShmUnmap(p->pReal, delFlag);
4360 }
4361 return rc;
4362 }
4363
4364 /*
4365 ** Given that zWal points to a buffer containing a wal file name passed to
4366 ** either the xOpen() or xAccess() VFS method, return a pointer to the
4367 ** file-handle opened by the same database connection on the corresponding
4368 ** database file.
4369 */
4370 static rbu_file *rbuFindMaindb(rbu_vfs *pRbuVfs, const char *zWal){
4371 rbu_file *pDb;
4372 sqlite3_mutex_enter(pRbuVfs->mutex);
4373 for(pDb=pRbuVfs->pMain; pDb && pDb->zWal!=zWal; pDb=pDb->pMainNext){}
4374 sqlite3_mutex_leave(pRbuVfs->mutex);
4375 return pDb;
4376 }
4377
4378 /*
4379 ** A main database named zName has just been opened. The following
4380 ** function returns a pointer to a buffer owned by SQLite that contains
4381 ** the name of the *-wal file this db connection will use. SQLite
4382 ** happens to pass a pointer to this buffer when using xAccess()
4383 ** or xOpen() to operate on the *-wal file.
4384 */
4385 static const char *rbuMainToWal(const char *zName, int flags){
4386 int n = (int)strlen(zName);
4387 const char *z = &zName[n];
4388 if( flags & SQLITE_OPEN_URI ){
4389 int odd = 0;
4390 while( 1 ){
4391 if( z[0]==0 ){
4392 odd = 1 - odd;
4393 if( odd && z[1]==0 ) break;
4394 }
4395 z++;
4396 }
4397 z += 2;
4398 }else{
4399 while( *z==0 ) z++;
4400 }
4401 z += (n + 8 + 1);
4402 return z;
4403 }
4404
4405 /*
4406 ** Open an rbu file handle.
4407 */
4408 static int rbuVfsOpen(
4409 sqlite3_vfs *pVfs,
4410 const char *zName,
4411 sqlite3_file *pFile,
4412 int flags,
4413 int *pOutFlags
4414 ){
4415 static sqlite3_io_methods rbuvfs_io_methods = {
4416 2, /* iVersion */
4417 rbuVfsClose, /* xClose */
4418 rbuVfsRead, /* xRead */
4419 rbuVfsWrite, /* xWrite */
4420 rbuVfsTruncate, /* xTruncate */
4421 rbuVfsSync, /* xSync */
4422 rbuVfsFileSize, /* xFileSize */
4423 rbuVfsLock, /* xLock */
4424 rbuVfsUnlock, /* xUnlock */
4425 rbuVfsCheckReservedLock, /* xCheckReservedLock */
4426 rbuVfsFileControl, /* xFileControl */
4427 rbuVfsSectorSize, /* xSectorSize */
4428 rbuVfsDeviceCharacteristics, /* xDeviceCharacteristics */
4429 rbuVfsShmMap, /* xShmMap */
4430 rbuVfsShmLock, /* xShmLock */
4431 rbuVfsShmBarrier, /* xShmBarrier */
4432 rbuVfsShmUnmap, /* xShmUnmap */
4433 0, 0 /* xFetch, xUnfetch */
4434 };
4435 rbu_vfs *pRbuVfs = (rbu_vfs*)pVfs;
4436 sqlite3_vfs *pRealVfs = pRbuVfs->pRealVfs;
4437 rbu_file *pFd = (rbu_file *)pFile;
4438 int rc = SQLITE_OK;
4439 const char *zOpen = zName;
4440 int oflags = flags;
4441
4442 memset(pFd, 0, sizeof(rbu_file));
4443 pFd->pReal = (sqlite3_file*)&pFd[1];
4444 pFd->pRbuVfs = pRbuVfs;
4445 pFd->openFlags = flags;
4446 if( zName ){
4447 if( flags & SQLITE_OPEN_MAIN_DB ){
4448 /* A main database has just been opened. The following block sets
4449 ** (pFd->zWal) to point to a buffer owned by SQLite that contains
4450 ** the name of the *-wal file this db connection will use. SQLite
4451 ** happens to pass a pointer to this buffer when using xAccess()
4452 ** or xOpen() to operate on the *-wal file. */
4453 pFd->zWal = rbuMainToWal(zName, flags);
4454 }
4455 else if( flags & SQLITE_OPEN_WAL ){
4456 rbu_file *pDb = rbuFindMaindb(pRbuVfs, zName);
4457 if( pDb ){
4458 if( pDb->pRbu && pDb->pRbu->eStage==RBU_STAGE_OAL ){
4459 /* This call is to open a *-wal file. Intead, open the *-oal. This
4460 ** code ensures that the string passed to xOpen() is terminated by a
4461 ** pair of '\0' bytes in case the VFS attempts to extract a URI
4462 ** parameter from it. */
4463 const char *zBase = zName;
4464 size_t nCopy;
4465 char *zCopy;
4466 if( rbuIsVacuum(pDb->pRbu) ){
4467 zBase = sqlite3_db_filename(pDb->pRbu->dbRbu, "main");
4468 zBase = rbuMainToWal(zBase, SQLITE_OPEN_URI);
4469 }
4470 nCopy = strlen(zBase);
4471 zCopy = sqlite3_malloc64(nCopy+2);
4472 if( zCopy ){
4473 memcpy(zCopy, zBase, nCopy);
4474 zCopy[nCopy-3] = 'o';
4475 zCopy[nCopy] = '\0';
4476 zCopy[nCopy+1] = '\0';
4477 zOpen = (const char*)(pFd->zDel = zCopy);
4478 }else{
4479 rc = SQLITE_NOMEM;
4480 }
4481 pFd->pRbu = pDb->pRbu;
4482 }
4483 pDb->pWalFd = pFd;
4484 }
4485 }
4486 }
4487
4488 if( oflags & SQLITE_OPEN_MAIN_DB
4489 && sqlite3_uri_boolean(zName, "rbu_memory", 0)
4490 ){
4491 assert( oflags & SQLITE_OPEN_MAIN_DB );
4492 oflags = SQLITE_OPEN_TEMP_DB | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
4493 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
4494 zOpen = 0;
4495 }
4496
4497 if( rc==SQLITE_OK ){
4498 rc = pRealVfs->xOpen(pRealVfs, zOpen, pFd->pReal, oflags, pOutFlags);
4499 }
4500 if( pFd->pReal->pMethods ){
4501 /* The xOpen() operation has succeeded. Set the sqlite3_file.pMethods
4502 ** pointer and, if the file is a main database file, link it into the
4503 ** mutex protected linked list of all such files. */
4504 pFile->pMethods = &rbuvfs_io_methods;
4505 if( flags & SQLITE_OPEN_MAIN_DB ){
4506 sqlite3_mutex_enter(pRbuVfs->mutex);
4507 pFd->pMainNext = pRbuVfs->pMain;
4508 pRbuVfs->pMain = pFd;
4509 sqlite3_mutex_leave(pRbuVfs->mutex);
4510 }
4511 }else{
4512 sqlite3_free(pFd->zDel);
4513 }
4514
4515 return rc;
4516 }
4517
4518 /*
4519 ** Delete the file located at zPath.
4520 */
4521 static int rbuVfsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
4522 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
4523 return pRealVfs->xDelete(pRealVfs, zPath, dirSync);
4524 }
4525
4526 /*
4527 ** Test for access permissions. Return true if the requested permission
4528 ** is available, or false otherwise.
4529 */
4530 static int rbuVfsAccess(
4531 sqlite3_vfs *pVfs,
4532 const char *zPath,
4533 int flags,
4534 int *pResOut
4535 ){
4536 rbu_vfs *pRbuVfs = (rbu_vfs*)pVfs;
4537 sqlite3_vfs *pRealVfs = pRbuVfs->pRealVfs;
4538 int rc;
4539
4540 rc = pRealVfs->xAccess(pRealVfs, zPath, flags, pResOut);
4541
4542 /* If this call is to check if a *-wal file associated with an RBU target
4543 ** database connection exists, and the RBU update is in RBU_STAGE_OAL,
4544 ** the following special handling is activated:
4545 **
4546 ** a) if the *-wal file does exist, return SQLITE_CANTOPEN. This
4547 ** ensures that the RBU extension never tries to update a database
4548 ** in wal mode, even if the first page of the database file has
4549 ** been damaged.
4550 **
4551 ** b) if the *-wal file does not exist, claim that it does anyway,
4552 ** causing SQLite to call xOpen() to open it. This call will also
4553 ** be intercepted (see the rbuVfsOpen() function) and the *-oal
4554 ** file opened instead.
4555 */
4556 if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){
4557 rbu_file *pDb = rbuFindMaindb(pRbuVfs, zPath);
4558 if( pDb && pDb->pRbu && pDb->pRbu->eStage==RBU_STAGE_OAL ){
4559 if( *pResOut ){
4560 rc = SQLITE_CANTOPEN;
4561 }else{
4562 *pResOut = 1;
4563 }
4564 }
4565 }
4566
4567 return rc;
4568 }
4569
4570 /*
4571 ** Populate buffer zOut with the full canonical pathname corresponding
4572 ** to the pathname in zPath. zOut is guaranteed to point to a buffer
4573 ** of at least (DEVSYM_MAX_PATHNAME+1) bytes.
4574 */
4575 static int rbuVfsFullPathname(
4576 sqlite3_vfs *pVfs,
4577 const char *zPath,
4578 int nOut,
4579 char *zOut
4580 ){
4581 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
4582 return pRealVfs->xFullPathname(pRealVfs, zPath, nOut, zOut);
4583 }
4584
4585 #ifndef SQLITE_OMIT_LOAD_EXTENSION
4586 /*
4587 ** Open the dynamic library located at zPath and return a handle.
4588 */
4589 static void *rbuVfsDlOpen(sqlite3_vfs *pVfs, const char *zPath){
4590 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
4591 return pRealVfs->xDlOpen(pRealVfs, zPath);
4592 }
4593
4594 /*
4595 ** Populate the buffer zErrMsg (size nByte bytes) with a human readable
4596 ** utf-8 string describing the most recent error encountered associated
4597 ** with dynamic libraries.
4598 */
4599 static void rbuVfsDlError(sqlite3_vfs *pVfs, int nByte, char *zErrMsg){
4600 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
4601 pRealVfs->xDlError(pRealVfs, nByte, zErrMsg);
4602 }
4603
4604 /*
4605 ** Return a pointer to the symbol zSymbol in the dynamic library pHandle.
4606 */
4607 static void (*rbuVfsDlSym(
4608 sqlite3_vfs *pVfs,
4609 void *pArg,
4610 const char *zSym
4611 ))(void){
4612 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
4613 return pRealVfs->xDlSym(pRealVfs, pArg, zSym);
4614 }
4615
4616 /*
4617 ** Close the dynamic library handle pHandle.
4618 */
4619 static void rbuVfsDlClose(sqlite3_vfs *pVfs, void *pHandle){
4620 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
4621 pRealVfs->xDlClose(pRealVfs, pHandle);
4622 }
4623 #endif /* SQLITE_OMIT_LOAD_EXTENSION */
4624
4625 /*
4626 ** Populate the buffer pointed to by zBufOut with nByte bytes of
4627 ** random data.
4628 */
4629 static int rbuVfsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
4630 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
4631 return pRealVfs->xRandomness(pRealVfs, nByte, zBufOut);
4632 }
4633
4634 /*
4635 ** Sleep for nMicro microseconds. Return the number of microseconds
4636 ** actually slept.
4637 */
4638 static int rbuVfsSleep(sqlite3_vfs *pVfs, int nMicro){
4639 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
4640 return pRealVfs->xSleep(pRealVfs, nMicro);
4641 }
4642
4643 /*
4644 ** Return the current time as a Julian Day number in *pTimeOut.
4645 */
4646 static int rbuVfsCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){
4647 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
4648 return pRealVfs->xCurrentTime(pRealVfs, pTimeOut);
4649 }
4650
4651 /*
4652 ** No-op.
4653 */
4654 static int rbuVfsGetLastError(sqlite3_vfs *pVfs, int a, char *b){
4655 return 0;
4656 }
4657
4658 /*
4659 ** Deregister and destroy an RBU vfs created by an earlier call to
4660 ** sqlite3rbu_create_vfs().
4661 */
4662 void sqlite3rbu_destroy_vfs(const char *zName){
4663 sqlite3_vfs *pVfs = sqlite3_vfs_find(zName);
4664 if( pVfs && pVfs->xOpen==rbuVfsOpen ){
4665 sqlite3_mutex_free(((rbu_vfs*)pVfs)->mutex);
4666 sqlite3_vfs_unregister(pVfs);
4667 sqlite3_free(pVfs);
4668 }
4669 }
4670
4671 /*
4672 ** Create an RBU VFS named zName that accesses the underlying file-system
4673 ** via existing VFS zParent. The new object is registered as a non-default
4674 ** VFS with SQLite before returning.
4675 */
4676 int sqlite3rbu_create_vfs(const char *zName, const char *zParent){
4677
4678 /* Template for VFS */
4679 static sqlite3_vfs vfs_template = {
4680 1, /* iVersion */
4681 0, /* szOsFile */
4682 0, /* mxPathname */
4683 0, /* pNext */
4684 0, /* zName */
4685 0, /* pAppData */
4686 rbuVfsOpen, /* xOpen */
4687 rbuVfsDelete, /* xDelete */
4688 rbuVfsAccess, /* xAccess */
4689 rbuVfsFullPathname, /* xFullPathname */
4690
4691 #ifndef SQLITE_OMIT_LOAD_EXTENSION
4692 rbuVfsDlOpen, /* xDlOpen */
4693 rbuVfsDlError, /* xDlError */
4694 rbuVfsDlSym, /* xDlSym */
4695 rbuVfsDlClose, /* xDlClose */
4696 #else
4697 0, 0, 0, 0,
4698 #endif
4699
4700 rbuVfsRandomness, /* xRandomness */
4701 rbuVfsSleep, /* xSleep */
4702 rbuVfsCurrentTime, /* xCurrentTime */
4703 rbuVfsGetLastError, /* xGetLastError */
4704 0, /* xCurrentTimeInt64 (version 2) */
4705 0, 0, 0 /* Unimplemented version 3 methods */
4706 };
4707
4708 rbu_vfs *pNew = 0; /* Newly allocated VFS */
4709 int rc = SQLITE_OK;
4710 size_t nName;
4711 size_t nByte;
4712
4713 nName = strlen(zName);
4714 nByte = sizeof(rbu_vfs) + nName + 1;
4715 pNew = (rbu_vfs*)sqlite3_malloc64(nByte);
4716 if( pNew==0 ){
4717 rc = SQLITE_NOMEM;
4718 }else{
4719 sqlite3_vfs *pParent; /* Parent VFS */
4720 memset(pNew, 0, nByte);
4721 pParent = sqlite3_vfs_find(zParent);
4722 if( pParent==0 ){
4723 rc = SQLITE_NOTFOUND;
4724 }else{
4725 char *zSpace;
4726 memcpy(&pNew->base, &vfs_template, sizeof(sqlite3_vfs));
4727 pNew->base.mxPathname = pParent->mxPathname;
4728 pNew->base.szOsFile = sizeof(rbu_file) + pParent->szOsFile;
4729 pNew->pRealVfs = pParent;
4730 pNew->base.zName = (const char*)(zSpace = (char*)&pNew[1]);
4731 memcpy(zSpace, zName, nName);
4732
4733 /* Allocate the mutex and register the new VFS (not as the default) */
4734 pNew->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_RECURSIVE);
4735 if( pNew->mutex==0 ){
4736 rc = SQLITE_NOMEM;
4737 }else{
4738 rc = sqlite3_vfs_register(&pNew->base, 0);
4739 }
4740 }
4741
4742 if( rc!=SQLITE_OK ){
4743 sqlite3_mutex_free(pNew->mutex);
4744 sqlite3_free(pNew);
4745 }
4746 }
4747
4748 return rc;
4749 }
4750
4751
4752 /**************************************************************************/
4753
4754 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RBU) */
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3170000/ext/rbu/sqlite3rbu.h ('k') | third_party/sqlite/sqlite-src-3170000/ext/rbu/test_rbu.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698