OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2015-08-18 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** |
| 13 ** This file demonstrates how to create a table-valued-function using |
| 14 ** a virtual table. This demo implements the generate_series() function |
| 15 ** which gives similar results to the eponymous function in PostgreSQL. |
| 16 ** Examples: |
| 17 ** |
| 18 ** SELECT * FROM generate_series(0,100,5); |
| 19 ** |
| 20 ** The query above returns integers from 0 through 100 counting by steps |
| 21 ** of 5. |
| 22 ** |
| 23 ** SELECT * FROM generate_series(0,100); |
| 24 ** |
| 25 ** Integers from 0 through 100 with a step size of 1. |
| 26 ** |
| 27 ** SELECT * FROM generate_series(20) LIMIT 10; |
| 28 ** |
| 29 ** Integers 20 through 29. |
| 30 ** |
| 31 ** HOW IT WORKS |
| 32 ** |
| 33 ** The generate_series "function" is really a virtual table with the |
| 34 ** following schema: |
| 35 ** |
| 36 ** CREATE FUNCTION generate_series( |
| 37 ** value, |
| 38 ** start HIDDEN, |
| 39 ** stop HIDDEN, |
| 40 ** step HIDDEN |
| 41 ** ); |
| 42 ** |
| 43 ** Function arguments in queries against this virtual table are translated |
| 44 ** into equality constraints against successive hidden columns. In other |
| 45 ** words, the following pairs of queries are equivalent to each other: |
| 46 ** |
| 47 ** SELECT * FROM generate_series(0,100,5); |
| 48 ** SELECT * FROM generate_series WHERE start=0 AND stop=100 AND step=5; |
| 49 ** |
| 50 ** SELECT * FROM generate_series(0,100); |
| 51 ** SELECT * FROM generate_series WHERE start=0 AND stop=100; |
| 52 ** |
| 53 ** SELECT * FROM generate_series(20) LIMIT 10; |
| 54 ** SELECT * FROM generate_series WHERE start=20 LIMIT 10; |
| 55 ** |
| 56 ** The generate_series virtual table implementation leaves the xCreate method |
| 57 ** set to NULL. This means that it is not possible to do a CREATE VIRTUAL |
| 58 ** TABLE command with "generate_series" as the USING argument. Instead, there |
| 59 ** is a single generate_series virtual table that is always available without |
| 60 ** having to be created first. |
| 61 ** |
| 62 ** The xBestIndex method looks for equality constraints against the hidden |
| 63 ** start, stop, and step columns, and if present, it uses those constraints |
| 64 ** to bound the sequence of generated values. If the equality constraints |
| 65 ** are missing, it uses 0 for start, 4294967295 for stop, and 1 for step. |
| 66 ** xBestIndex returns a small cost when both start and stop are available, |
| 67 ** and a very large cost if either start or stop are unavailable. This |
| 68 ** encourages the query planner to order joins such that the bounds of the |
| 69 ** series are well-defined. |
| 70 */ |
| 71 #include "sqlite3ext.h" |
| 72 SQLITE_EXTENSION_INIT1 |
| 73 #include <assert.h> |
| 74 #include <string.h> |
| 75 |
| 76 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 77 |
| 78 |
| 79 /* series_cursor is a subclass of sqlite3_vtab_cursor which will |
| 80 ** serve as the underlying representation of a cursor that scans |
| 81 ** over rows of the result |
| 82 */ |
| 83 typedef struct series_cursor series_cursor; |
| 84 struct series_cursor { |
| 85 sqlite3_vtab_cursor base; /* Base class - must be first */ |
| 86 int isDesc; /* True to count down rather than up */ |
| 87 sqlite3_int64 iRowid; /* The rowid */ |
| 88 sqlite3_int64 iValue; /* Current value ("value") */ |
| 89 sqlite3_int64 mnValue; /* Mimimum value ("start") */ |
| 90 sqlite3_int64 mxValue; /* Maximum value ("stop") */ |
| 91 sqlite3_int64 iStep; /* Increment ("step") */ |
| 92 }; |
| 93 |
| 94 /* |
| 95 ** The seriesConnect() method is invoked to create a new |
| 96 ** series_vtab that describes the generate_series virtual table. |
| 97 ** |
| 98 ** Think of this routine as the constructor for series_vtab objects. |
| 99 ** |
| 100 ** All this routine needs to do is: |
| 101 ** |
| 102 ** (1) Allocate the series_vtab object and initialize all fields. |
| 103 ** |
| 104 ** (2) Tell SQLite (via the sqlite3_declare_vtab() interface) what the |
| 105 ** result set of queries against generate_series will look like. |
| 106 */ |
| 107 static int seriesConnect( |
| 108 sqlite3 *db, |
| 109 void *pAux, |
| 110 int argc, const char *const*argv, |
| 111 sqlite3_vtab **ppVtab, |
| 112 char **pzErr |
| 113 ){ |
| 114 sqlite3_vtab *pNew; |
| 115 int rc; |
| 116 |
| 117 /* Column numbers */ |
| 118 #define SERIES_COLUMN_VALUE 0 |
| 119 #define SERIES_COLUMN_START 1 |
| 120 #define SERIES_COLUMN_STOP 2 |
| 121 #define SERIES_COLUMN_STEP 3 |
| 122 |
| 123 rc = sqlite3_declare_vtab(db, |
| 124 "CREATE TABLE x(value,start hidden,stop hidden,step hidden)"); |
| 125 if( rc==SQLITE_OK ){ |
| 126 pNew = *ppVtab = sqlite3_malloc( sizeof(*pNew) ); |
| 127 if( pNew==0 ) return SQLITE_NOMEM; |
| 128 memset(pNew, 0, sizeof(*pNew)); |
| 129 } |
| 130 return rc; |
| 131 } |
| 132 |
| 133 /* |
| 134 ** This method is the destructor for series_cursor objects. |
| 135 */ |
| 136 static int seriesDisconnect(sqlite3_vtab *pVtab){ |
| 137 sqlite3_free(pVtab); |
| 138 return SQLITE_OK; |
| 139 } |
| 140 |
| 141 /* |
| 142 ** Constructor for a new series_cursor object. |
| 143 */ |
| 144 static int seriesOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){ |
| 145 series_cursor *pCur; |
| 146 pCur = sqlite3_malloc( sizeof(*pCur) ); |
| 147 if( pCur==0 ) return SQLITE_NOMEM; |
| 148 memset(pCur, 0, sizeof(*pCur)); |
| 149 *ppCursor = &pCur->base; |
| 150 return SQLITE_OK; |
| 151 } |
| 152 |
| 153 /* |
| 154 ** Destructor for a series_cursor. |
| 155 */ |
| 156 static int seriesClose(sqlite3_vtab_cursor *cur){ |
| 157 sqlite3_free(cur); |
| 158 return SQLITE_OK; |
| 159 } |
| 160 |
| 161 |
| 162 /* |
| 163 ** Advance a series_cursor to its next row of output. |
| 164 */ |
| 165 static int seriesNext(sqlite3_vtab_cursor *cur){ |
| 166 series_cursor *pCur = (series_cursor*)cur; |
| 167 if( pCur->isDesc ){ |
| 168 pCur->iValue -= pCur->iStep; |
| 169 }else{ |
| 170 pCur->iValue += pCur->iStep; |
| 171 } |
| 172 pCur->iRowid++; |
| 173 return SQLITE_OK; |
| 174 } |
| 175 |
| 176 /* |
| 177 ** Return values of columns for the row at which the series_cursor |
| 178 ** is currently pointing. |
| 179 */ |
| 180 static int seriesColumn( |
| 181 sqlite3_vtab_cursor *cur, /* The cursor */ |
| 182 sqlite3_context *ctx, /* First argument to sqlite3_result_...() */ |
| 183 int i /* Which column to return */ |
| 184 ){ |
| 185 series_cursor *pCur = (series_cursor*)cur; |
| 186 sqlite3_int64 x = 0; |
| 187 switch( i ){ |
| 188 case SERIES_COLUMN_START: x = pCur->mnValue; break; |
| 189 case SERIES_COLUMN_STOP: x = pCur->mxValue; break; |
| 190 case SERIES_COLUMN_STEP: x = pCur->iStep; break; |
| 191 default: x = pCur->iValue; break; |
| 192 } |
| 193 sqlite3_result_int64(ctx, x); |
| 194 return SQLITE_OK; |
| 195 } |
| 196 |
| 197 /* |
| 198 ** Return the rowid for the current row. In this implementation, the |
| 199 ** rowid is the same as the output value. |
| 200 */ |
| 201 static int seriesRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ |
| 202 series_cursor *pCur = (series_cursor*)cur; |
| 203 *pRowid = pCur->iRowid; |
| 204 return SQLITE_OK; |
| 205 } |
| 206 |
| 207 /* |
| 208 ** Return TRUE if the cursor has been moved off of the last |
| 209 ** row of output. |
| 210 */ |
| 211 static int seriesEof(sqlite3_vtab_cursor *cur){ |
| 212 series_cursor *pCur = (series_cursor*)cur; |
| 213 if( pCur->isDesc ){ |
| 214 return pCur->iValue < pCur->mnValue; |
| 215 }else{ |
| 216 return pCur->iValue > pCur->mxValue; |
| 217 } |
| 218 } |
| 219 |
| 220 /* True to cause run-time checking of the start=, stop=, and/or step= |
| 221 ** parameters. The only reason to do this is for testing the |
| 222 ** constraint checking logic for virtual tables in the SQLite core. |
| 223 */ |
| 224 #ifndef SQLITE_SERIES_CONSTRAINT_VERIFY |
| 225 # define SQLITE_SERIES_CONSTRAINT_VERIFY 0 |
| 226 #endif |
| 227 |
| 228 /* |
| 229 ** This method is called to "rewind" the series_cursor object back |
| 230 ** to the first row of output. This method is always called at least |
| 231 ** once prior to any call to seriesColumn() or seriesRowid() or |
| 232 ** seriesEof(). |
| 233 ** |
| 234 ** The query plan selected by seriesBestIndex is passed in the idxNum |
| 235 ** parameter. (idxStr is not used in this implementation.) idxNum |
| 236 ** is a bitmask showing which constraints are available: |
| 237 ** |
| 238 ** 1: start=VALUE |
| 239 ** 2: stop=VALUE |
| 240 ** 4: step=VALUE |
| 241 ** |
| 242 ** Also, if bit 8 is set, that means that the series should be output |
| 243 ** in descending order rather than in ascending order. |
| 244 ** |
| 245 ** This routine should initialize the cursor and position it so that it |
| 246 ** is pointing at the first row, or pointing off the end of the table |
| 247 ** (so that seriesEof() will return true) if the table is empty. |
| 248 */ |
| 249 static int seriesFilter( |
| 250 sqlite3_vtab_cursor *pVtabCursor, |
| 251 int idxNum, const char *idxStr, |
| 252 int argc, sqlite3_value **argv |
| 253 ){ |
| 254 series_cursor *pCur = (series_cursor *)pVtabCursor; |
| 255 int i = 0; |
| 256 if( idxNum & 1 ){ |
| 257 pCur->mnValue = sqlite3_value_int64(argv[i++]); |
| 258 }else{ |
| 259 pCur->mnValue = 0; |
| 260 } |
| 261 if( idxNum & 2 ){ |
| 262 pCur->mxValue = sqlite3_value_int64(argv[i++]); |
| 263 }else{ |
| 264 pCur->mxValue = 0xffffffff; |
| 265 } |
| 266 if( idxNum & 4 ){ |
| 267 pCur->iStep = sqlite3_value_int64(argv[i++]); |
| 268 if( pCur->iStep<1 ) pCur->iStep = 1; |
| 269 }else{ |
| 270 pCur->iStep = 1; |
| 271 } |
| 272 if( idxNum & 8 ){ |
| 273 pCur->isDesc = 1; |
| 274 pCur->iValue = pCur->mxValue; |
| 275 if( pCur->iStep>0 ){ |
| 276 pCur->iValue -= (pCur->mxValue - pCur->mnValue)%pCur->iStep; |
| 277 } |
| 278 }else{ |
| 279 pCur->isDesc = 0; |
| 280 pCur->iValue = pCur->mnValue; |
| 281 } |
| 282 pCur->iRowid = 1; |
| 283 return SQLITE_OK; |
| 284 } |
| 285 |
| 286 /* |
| 287 ** SQLite will invoke this method one or more times while planning a query |
| 288 ** that uses the generate_series virtual table. This routine needs to create |
| 289 ** a query plan for each invocation and compute an estimated cost for that |
| 290 ** plan. |
| 291 ** |
| 292 ** In this implementation idxNum is used to represent the |
| 293 ** query plan. idxStr is unused. |
| 294 ** |
| 295 ** The query plan is represented by bits in idxNum: |
| 296 ** |
| 297 ** (1) start = $value -- constraint exists |
| 298 ** (2) stop = $value -- constraint exists |
| 299 ** (4) step = $value -- constraint exists |
| 300 ** (8) output in descending order |
| 301 */ |
| 302 static int seriesBestIndex( |
| 303 sqlite3_vtab *tab, |
| 304 sqlite3_index_info *pIdxInfo |
| 305 ){ |
| 306 int i; /* Loop over constraints */ |
| 307 int idxNum = 0; /* The query plan bitmask */ |
| 308 int startIdx = -1; /* Index of the start= constraint, or -1 if none */ |
| 309 int stopIdx = -1; /* Index of the stop= constraint, or -1 if none */ |
| 310 int stepIdx = -1; /* Index of the step= constraint, or -1 if none */ |
| 311 int nArg = 0; /* Number of arguments that seriesFilter() expects */ |
| 312 |
| 313 const struct sqlite3_index_constraint *pConstraint; |
| 314 pConstraint = pIdxInfo->aConstraint; |
| 315 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ |
| 316 if( pConstraint->usable==0 ) continue; |
| 317 if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue; |
| 318 switch( pConstraint->iColumn ){ |
| 319 case SERIES_COLUMN_START: |
| 320 startIdx = i; |
| 321 idxNum |= 1; |
| 322 break; |
| 323 case SERIES_COLUMN_STOP: |
| 324 stopIdx = i; |
| 325 idxNum |= 2; |
| 326 break; |
| 327 case SERIES_COLUMN_STEP: |
| 328 stepIdx = i; |
| 329 idxNum |= 4; |
| 330 break; |
| 331 } |
| 332 } |
| 333 if( startIdx>=0 ){ |
| 334 pIdxInfo->aConstraintUsage[startIdx].argvIndex = ++nArg; |
| 335 pIdxInfo->aConstraintUsage[startIdx].omit= !SQLITE_SERIES_CONSTRAINT_VERIFY; |
| 336 } |
| 337 if( stopIdx>=0 ){ |
| 338 pIdxInfo->aConstraintUsage[stopIdx].argvIndex = ++nArg; |
| 339 pIdxInfo->aConstraintUsage[stopIdx].omit = !SQLITE_SERIES_CONSTRAINT_VERIFY; |
| 340 } |
| 341 if( stepIdx>=0 ){ |
| 342 pIdxInfo->aConstraintUsage[stepIdx].argvIndex = ++nArg; |
| 343 pIdxInfo->aConstraintUsage[stepIdx].omit = !SQLITE_SERIES_CONSTRAINT_VERIFY; |
| 344 } |
| 345 if( (idxNum & 3)==3 ){ |
| 346 /* Both start= and stop= boundaries are available. This is the |
| 347 ** the preferred case */ |
| 348 pIdxInfo->estimatedCost = (double)(2 - ((idxNum&4)!=0)); |
| 349 pIdxInfo->estimatedRows = 1000; |
| 350 if( pIdxInfo->nOrderBy==1 ){ |
| 351 if( pIdxInfo->aOrderBy[0].desc ) idxNum |= 8; |
| 352 pIdxInfo->orderByConsumed = 1; |
| 353 } |
| 354 }else{ |
| 355 /* If either boundary is missing, we have to generate a huge span |
| 356 ** of numbers. Make this case very expensive so that the query |
| 357 ** planner will work hard to avoid it. */ |
| 358 pIdxInfo->estimatedCost = (double)2147483647; |
| 359 pIdxInfo->estimatedRows = 2147483647; |
| 360 } |
| 361 pIdxInfo->idxNum = idxNum; |
| 362 return SQLITE_OK; |
| 363 } |
| 364 |
| 365 /* |
| 366 ** This following structure defines all the methods for the |
| 367 ** generate_series virtual table. |
| 368 */ |
| 369 static sqlite3_module seriesModule = { |
| 370 0, /* iVersion */ |
| 371 0, /* xCreate */ |
| 372 seriesConnect, /* xConnect */ |
| 373 seriesBestIndex, /* xBestIndex */ |
| 374 seriesDisconnect, /* xDisconnect */ |
| 375 0, /* xDestroy */ |
| 376 seriesOpen, /* xOpen - open a cursor */ |
| 377 seriesClose, /* xClose - close a cursor */ |
| 378 seriesFilter, /* xFilter - configure scan constraints */ |
| 379 seriesNext, /* xNext - advance a cursor */ |
| 380 seriesEof, /* xEof - check for end of scan */ |
| 381 seriesColumn, /* xColumn - read data */ |
| 382 seriesRowid, /* xRowid - read data */ |
| 383 0, /* xUpdate */ |
| 384 0, /* xBegin */ |
| 385 0, /* xSync */ |
| 386 0, /* xCommit */ |
| 387 0, /* xRollback */ |
| 388 0, /* xFindMethod */ |
| 389 0, /* xRename */ |
| 390 }; |
| 391 |
| 392 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 393 |
| 394 #ifdef _WIN32 |
| 395 __declspec(dllexport) |
| 396 #endif |
| 397 int sqlite3_series_init( |
| 398 sqlite3 *db, |
| 399 char **pzErrMsg, |
| 400 const sqlite3_api_routines *pApi |
| 401 ){ |
| 402 int rc = SQLITE_OK; |
| 403 SQLITE_EXTENSION_INIT2(pApi); |
| 404 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 405 if( sqlite3_libversion_number()<3008012 ){ |
| 406 *pzErrMsg = sqlite3_mprintf( |
| 407 "generate_series() requires SQLite 3.8.12 or later"); |
| 408 return SQLITE_ERROR; |
| 409 } |
| 410 rc = sqlite3_create_module(db, "generate_series", &seriesModule, 0); |
| 411 #endif |
| 412 return rc; |
| 413 } |
OLD | NEW |