OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2006 September 30 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** Implementation of the full-text-search tokenizer that implements |
| 13 ** a Porter stemmer. |
| 14 */ |
| 15 |
| 16 /* |
| 17 ** The code in this file is only compiled if: |
| 18 ** |
| 19 ** * The FTS3 module is being built as an extension |
| 20 ** (in which case SQLITE_CORE is not defined), or |
| 21 ** |
| 22 ** * The FTS3 module is being built into the core of |
| 23 ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). |
| 24 */ |
| 25 #include "fts3Int.h" |
| 26 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) |
| 27 |
| 28 #include <assert.h> |
| 29 #include <stdlib.h> |
| 30 #include <stdio.h> |
| 31 #include <string.h> |
| 32 |
| 33 #include "fts3_tokenizer.h" |
| 34 |
| 35 /* |
| 36 ** Class derived from sqlite3_tokenizer |
| 37 */ |
| 38 typedef struct porter_tokenizer { |
| 39 sqlite3_tokenizer base; /* Base class */ |
| 40 } porter_tokenizer; |
| 41 |
| 42 /* |
| 43 ** Class derived from sqlite3_tokenizer_cursor |
| 44 */ |
| 45 typedef struct porter_tokenizer_cursor { |
| 46 sqlite3_tokenizer_cursor base; |
| 47 const char *zInput; /* input we are tokenizing */ |
| 48 int nInput; /* size of the input */ |
| 49 int iOffset; /* current position in zInput */ |
| 50 int iToken; /* index of next token to be returned */ |
| 51 char *zToken; /* storage for current token */ |
| 52 int nAllocated; /* space allocated to zToken buffer */ |
| 53 } porter_tokenizer_cursor; |
| 54 |
| 55 |
| 56 /* |
| 57 ** Create a new tokenizer instance. |
| 58 */ |
| 59 static int porterCreate( |
| 60 int argc, const char * const *argv, |
| 61 sqlite3_tokenizer **ppTokenizer |
| 62 ){ |
| 63 porter_tokenizer *t; |
| 64 |
| 65 UNUSED_PARAMETER(argc); |
| 66 UNUSED_PARAMETER(argv); |
| 67 |
| 68 t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t)); |
| 69 if( t==NULL ) return SQLITE_NOMEM; |
| 70 memset(t, 0, sizeof(*t)); |
| 71 *ppTokenizer = &t->base; |
| 72 return SQLITE_OK; |
| 73 } |
| 74 |
| 75 /* |
| 76 ** Destroy a tokenizer |
| 77 */ |
| 78 static int porterDestroy(sqlite3_tokenizer *pTokenizer){ |
| 79 sqlite3_free(pTokenizer); |
| 80 return SQLITE_OK; |
| 81 } |
| 82 |
| 83 /* |
| 84 ** Prepare to begin tokenizing a particular string. The input |
| 85 ** string to be tokenized is zInput[0..nInput-1]. A cursor |
| 86 ** used to incrementally tokenize this string is returned in |
| 87 ** *ppCursor. |
| 88 */ |
| 89 static int porterOpen( |
| 90 sqlite3_tokenizer *pTokenizer, /* The tokenizer */ |
| 91 const char *zInput, int nInput, /* String to be tokenized */ |
| 92 sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */ |
| 93 ){ |
| 94 porter_tokenizer_cursor *c; |
| 95 |
| 96 UNUSED_PARAMETER(pTokenizer); |
| 97 |
| 98 c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c)); |
| 99 if( c==NULL ) return SQLITE_NOMEM; |
| 100 |
| 101 c->zInput = zInput; |
| 102 if( zInput==0 ){ |
| 103 c->nInput = 0; |
| 104 }else if( nInput<0 ){ |
| 105 c->nInput = (int)strlen(zInput); |
| 106 }else{ |
| 107 c->nInput = nInput; |
| 108 } |
| 109 c->iOffset = 0; /* start tokenizing at the beginning */ |
| 110 c->iToken = 0; |
| 111 c->zToken = NULL; /* no space allocated, yet. */ |
| 112 c->nAllocated = 0; |
| 113 |
| 114 *ppCursor = &c->base; |
| 115 return SQLITE_OK; |
| 116 } |
| 117 |
| 118 /* |
| 119 ** Close a tokenization cursor previously opened by a call to |
| 120 ** porterOpen() above. |
| 121 */ |
| 122 static int porterClose(sqlite3_tokenizer_cursor *pCursor){ |
| 123 porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor; |
| 124 sqlite3_free(c->zToken); |
| 125 sqlite3_free(c); |
| 126 return SQLITE_OK; |
| 127 } |
| 128 /* |
| 129 ** Vowel or consonant |
| 130 */ |
| 131 static const char cType[] = { |
| 132 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, |
| 133 1, 1, 1, 2, 1 |
| 134 }; |
| 135 |
| 136 /* |
| 137 ** isConsonant() and isVowel() determine if their first character in |
| 138 ** the string they point to is a consonant or a vowel, according |
| 139 ** to Porter ruls. |
| 140 ** |
| 141 ** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'. |
| 142 ** 'Y' is a consonant unless it follows another consonant, |
| 143 ** in which case it is a vowel. |
| 144 ** |
| 145 ** In these routine, the letters are in reverse order. So the 'y' rule |
| 146 ** is that 'y' is a consonant unless it is followed by another |
| 147 ** consonent. |
| 148 */ |
| 149 static int isVowel(const char*); |
| 150 static int isConsonant(const char *z){ |
| 151 int j; |
| 152 char x = *z; |
| 153 if( x==0 ) return 0; |
| 154 assert( x>='a' && x<='z' ); |
| 155 j = cType[x-'a']; |
| 156 if( j<2 ) return j; |
| 157 return z[1]==0 || isVowel(z + 1); |
| 158 } |
| 159 static int isVowel(const char *z){ |
| 160 int j; |
| 161 char x = *z; |
| 162 if( x==0 ) return 0; |
| 163 assert( x>='a' && x<='z' ); |
| 164 j = cType[x-'a']; |
| 165 if( j<2 ) return 1-j; |
| 166 return isConsonant(z + 1); |
| 167 } |
| 168 |
| 169 /* |
| 170 ** Let any sequence of one or more vowels be represented by V and let |
| 171 ** C be sequence of one or more consonants. Then every word can be |
| 172 ** represented as: |
| 173 ** |
| 174 ** [C] (VC){m} [V] |
| 175 ** |
| 176 ** In prose: A word is an optional consonant followed by zero or |
| 177 ** vowel-consonant pairs followed by an optional vowel. "m" is the |
| 178 ** number of vowel consonant pairs. This routine computes the value |
| 179 ** of m for the first i bytes of a word. |
| 180 ** |
| 181 ** Return true if the m-value for z is 1 or more. In other words, |
| 182 ** return true if z contains at least one vowel that is followed |
| 183 ** by a consonant. |
| 184 ** |
| 185 ** In this routine z[] is in reverse order. So we are really looking |
| 186 ** for an instance of a consonant followed by a vowel. |
| 187 */ |
| 188 static int m_gt_0(const char *z){ |
| 189 while( isVowel(z) ){ z++; } |
| 190 if( *z==0 ) return 0; |
| 191 while( isConsonant(z) ){ z++; } |
| 192 return *z!=0; |
| 193 } |
| 194 |
| 195 /* Like mgt0 above except we are looking for a value of m which is |
| 196 ** exactly 1 |
| 197 */ |
| 198 static int m_eq_1(const char *z){ |
| 199 while( isVowel(z) ){ z++; } |
| 200 if( *z==0 ) return 0; |
| 201 while( isConsonant(z) ){ z++; } |
| 202 if( *z==0 ) return 0; |
| 203 while( isVowel(z) ){ z++; } |
| 204 if( *z==0 ) return 1; |
| 205 while( isConsonant(z) ){ z++; } |
| 206 return *z==0; |
| 207 } |
| 208 |
| 209 /* Like mgt0 above except we are looking for a value of m>1 instead |
| 210 ** or m>0 |
| 211 */ |
| 212 static int m_gt_1(const char *z){ |
| 213 while( isVowel(z) ){ z++; } |
| 214 if( *z==0 ) return 0; |
| 215 while( isConsonant(z) ){ z++; } |
| 216 if( *z==0 ) return 0; |
| 217 while( isVowel(z) ){ z++; } |
| 218 if( *z==0 ) return 0; |
| 219 while( isConsonant(z) ){ z++; } |
| 220 return *z!=0; |
| 221 } |
| 222 |
| 223 /* |
| 224 ** Return TRUE if there is a vowel anywhere within z[0..n-1] |
| 225 */ |
| 226 static int hasVowel(const char *z){ |
| 227 while( isConsonant(z) ){ z++; } |
| 228 return *z!=0; |
| 229 } |
| 230 |
| 231 /* |
| 232 ** Return TRUE if the word ends in a double consonant. |
| 233 ** |
| 234 ** The text is reversed here. So we are really looking at |
| 235 ** the first two characters of z[]. |
| 236 */ |
| 237 static int doubleConsonant(const char *z){ |
| 238 return isConsonant(z) && z[0]==z[1]; |
| 239 } |
| 240 |
| 241 /* |
| 242 ** Return TRUE if the word ends with three letters which |
| 243 ** are consonant-vowel-consonent and where the final consonant |
| 244 ** is not 'w', 'x', or 'y'. |
| 245 ** |
| 246 ** The word is reversed here. So we are really checking the |
| 247 ** first three letters and the first one cannot be in [wxy]. |
| 248 */ |
| 249 static int star_oh(const char *z){ |
| 250 return |
| 251 isConsonant(z) && |
| 252 z[0]!='w' && z[0]!='x' && z[0]!='y' && |
| 253 isVowel(z+1) && |
| 254 isConsonant(z+2); |
| 255 } |
| 256 |
| 257 /* |
| 258 ** If the word ends with zFrom and xCond() is true for the stem |
| 259 ** of the word that preceeds the zFrom ending, then change the |
| 260 ** ending to zTo. |
| 261 ** |
| 262 ** The input word *pz and zFrom are both in reverse order. zTo |
| 263 ** is in normal order. |
| 264 ** |
| 265 ** Return TRUE if zFrom matches. Return FALSE if zFrom does not |
| 266 ** match. Not that TRUE is returned even if xCond() fails and |
| 267 ** no substitution occurs. |
| 268 */ |
| 269 static int stem( |
| 270 char **pz, /* The word being stemmed (Reversed) */ |
| 271 const char *zFrom, /* If the ending matches this... (Reversed) */ |
| 272 const char *zTo, /* ... change the ending to this (not reversed) */ |
| 273 int (*xCond)(const char*) /* Condition that must be true */ |
| 274 ){ |
| 275 char *z = *pz; |
| 276 while( *zFrom && *zFrom==*z ){ z++; zFrom++; } |
| 277 if( *zFrom!=0 ) return 0; |
| 278 if( xCond && !xCond(z) ) return 1; |
| 279 while( *zTo ){ |
| 280 *(--z) = *(zTo++); |
| 281 } |
| 282 *pz = z; |
| 283 return 1; |
| 284 } |
| 285 |
| 286 /* |
| 287 ** This is the fallback stemmer used when the porter stemmer is |
| 288 ** inappropriate. The input word is copied into the output with |
| 289 ** US-ASCII case folding. If the input word is too long (more |
| 290 ** than 20 bytes if it contains no digits or more than 6 bytes if |
| 291 ** it contains digits) then word is truncated to 20 or 6 bytes |
| 292 ** by taking 10 or 3 bytes from the beginning and end. |
| 293 */ |
| 294 static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){ |
| 295 int i, mx, j; |
| 296 int hasDigit = 0; |
| 297 for(i=0; i<nIn; i++){ |
| 298 char c = zIn[i]; |
| 299 if( c>='A' && c<='Z' ){ |
| 300 zOut[i] = c - 'A' + 'a'; |
| 301 }else{ |
| 302 if( c>='0' && c<='9' ) hasDigit = 1; |
| 303 zOut[i] = c; |
| 304 } |
| 305 } |
| 306 mx = hasDigit ? 3 : 10; |
| 307 if( nIn>mx*2 ){ |
| 308 for(j=mx, i=nIn-mx; i<nIn; i++, j++){ |
| 309 zOut[j] = zOut[i]; |
| 310 } |
| 311 i = j; |
| 312 } |
| 313 zOut[i] = 0; |
| 314 *pnOut = i; |
| 315 } |
| 316 |
| 317 |
| 318 /* |
| 319 ** Stem the input word zIn[0..nIn-1]. Store the output in zOut. |
| 320 ** zOut is at least big enough to hold nIn bytes. Write the actual |
| 321 ** size of the output word (exclusive of the '\0' terminator) into *pnOut. |
| 322 ** |
| 323 ** Any upper-case characters in the US-ASCII character set ([A-Z]) |
| 324 ** are converted to lower case. Upper-case UTF characters are |
| 325 ** unchanged. |
| 326 ** |
| 327 ** Words that are longer than about 20 bytes are stemmed by retaining |
| 328 ** a few bytes from the beginning and the end of the word. If the |
| 329 ** word contains digits, 3 bytes are taken from the beginning and |
| 330 ** 3 bytes from the end. For long words without digits, 10 bytes |
| 331 ** are taken from each end. US-ASCII case folding still applies. |
| 332 ** |
| 333 ** If the input word contains not digits but does characters not |
| 334 ** in [a-zA-Z] then no stemming is attempted and this routine just |
| 335 ** copies the input into the input into the output with US-ASCII |
| 336 ** case folding. |
| 337 ** |
| 338 ** Stemming never increases the length of the word. So there is |
| 339 ** no chance of overflowing the zOut buffer. |
| 340 */ |
| 341 static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){ |
| 342 int i, j; |
| 343 char zReverse[28]; |
| 344 char *z, *z2; |
| 345 if( nIn<3 || nIn>=(int)sizeof(zReverse)-7 ){ |
| 346 /* The word is too big or too small for the porter stemmer. |
| 347 ** Fallback to the copy stemmer */ |
| 348 copy_stemmer(zIn, nIn, zOut, pnOut); |
| 349 return; |
| 350 } |
| 351 for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){ |
| 352 char c = zIn[i]; |
| 353 if( c>='A' && c<='Z' ){ |
| 354 zReverse[j] = c + 'a' - 'A'; |
| 355 }else if( c>='a' && c<='z' ){ |
| 356 zReverse[j] = c; |
| 357 }else{ |
| 358 /* The use of a character not in [a-zA-Z] means that we fallback |
| 359 ** to the copy stemmer */ |
| 360 copy_stemmer(zIn, nIn, zOut, pnOut); |
| 361 return; |
| 362 } |
| 363 } |
| 364 memset(&zReverse[sizeof(zReverse)-5], 0, 5); |
| 365 z = &zReverse[j+1]; |
| 366 |
| 367 |
| 368 /* Step 1a */ |
| 369 if( z[0]=='s' ){ |
| 370 if( |
| 371 !stem(&z, "sess", "ss", 0) && |
| 372 !stem(&z, "sei", "i", 0) && |
| 373 !stem(&z, "ss", "ss", 0) |
| 374 ){ |
| 375 z++; |
| 376 } |
| 377 } |
| 378 |
| 379 /* Step 1b */ |
| 380 z2 = z; |
| 381 if( stem(&z, "dee", "ee", m_gt_0) ){ |
| 382 /* Do nothing. The work was all in the test */ |
| 383 }else if( |
| 384 (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel)) |
| 385 && z!=z2 |
| 386 ){ |
| 387 if( stem(&z, "ta", "ate", 0) || |
| 388 stem(&z, "lb", "ble", 0) || |
| 389 stem(&z, "zi", "ize", 0) ){ |
| 390 /* Do nothing. The work was all in the test */ |
| 391 }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){ |
| 392 z++; |
| 393 }else if( m_eq_1(z) && star_oh(z) ){ |
| 394 *(--z) = 'e'; |
| 395 } |
| 396 } |
| 397 |
| 398 /* Step 1c */ |
| 399 if( z[0]=='y' && hasVowel(z+1) ){ |
| 400 z[0] = 'i'; |
| 401 } |
| 402 |
| 403 /* Step 2 */ |
| 404 switch( z[1] ){ |
| 405 case 'a': |
| 406 if( !stem(&z, "lanoita", "ate", m_gt_0) ){ |
| 407 stem(&z, "lanoit", "tion", m_gt_0); |
| 408 } |
| 409 break; |
| 410 case 'c': |
| 411 if( !stem(&z, "icne", "ence", m_gt_0) ){ |
| 412 stem(&z, "icna", "ance", m_gt_0); |
| 413 } |
| 414 break; |
| 415 case 'e': |
| 416 stem(&z, "rezi", "ize", m_gt_0); |
| 417 break; |
| 418 case 'g': |
| 419 stem(&z, "igol", "log", m_gt_0); |
| 420 break; |
| 421 case 'l': |
| 422 if( !stem(&z, "ilb", "ble", m_gt_0) |
| 423 && !stem(&z, "illa", "al", m_gt_0) |
| 424 && !stem(&z, "iltne", "ent", m_gt_0) |
| 425 && !stem(&z, "ile", "e", m_gt_0) |
| 426 ){ |
| 427 stem(&z, "ilsuo", "ous", m_gt_0); |
| 428 } |
| 429 break; |
| 430 case 'o': |
| 431 if( !stem(&z, "noitazi", "ize", m_gt_0) |
| 432 && !stem(&z, "noita", "ate", m_gt_0) |
| 433 ){ |
| 434 stem(&z, "rota", "ate", m_gt_0); |
| 435 } |
| 436 break; |
| 437 case 's': |
| 438 if( !stem(&z, "msila", "al", m_gt_0) |
| 439 && !stem(&z, "ssenevi", "ive", m_gt_0) |
| 440 && !stem(&z, "ssenluf", "ful", m_gt_0) |
| 441 ){ |
| 442 stem(&z, "ssensuo", "ous", m_gt_0); |
| 443 } |
| 444 break; |
| 445 case 't': |
| 446 if( !stem(&z, "itila", "al", m_gt_0) |
| 447 && !stem(&z, "itivi", "ive", m_gt_0) |
| 448 ){ |
| 449 stem(&z, "itilib", "ble", m_gt_0); |
| 450 } |
| 451 break; |
| 452 } |
| 453 |
| 454 /* Step 3 */ |
| 455 switch( z[0] ){ |
| 456 case 'e': |
| 457 if( !stem(&z, "etaci", "ic", m_gt_0) |
| 458 && !stem(&z, "evita", "", m_gt_0) |
| 459 ){ |
| 460 stem(&z, "ezila", "al", m_gt_0); |
| 461 } |
| 462 break; |
| 463 case 'i': |
| 464 stem(&z, "itici", "ic", m_gt_0); |
| 465 break; |
| 466 case 'l': |
| 467 if( !stem(&z, "laci", "ic", m_gt_0) ){ |
| 468 stem(&z, "luf", "", m_gt_0); |
| 469 } |
| 470 break; |
| 471 case 's': |
| 472 stem(&z, "ssen", "", m_gt_0); |
| 473 break; |
| 474 } |
| 475 |
| 476 /* Step 4 */ |
| 477 switch( z[1] ){ |
| 478 case 'a': |
| 479 if( z[0]=='l' && m_gt_1(z+2) ){ |
| 480 z += 2; |
| 481 } |
| 482 break; |
| 483 case 'c': |
| 484 if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e') && m_gt_1(z+4) ){ |
| 485 z += 4; |
| 486 } |
| 487 break; |
| 488 case 'e': |
| 489 if( z[0]=='r' && m_gt_1(z+2) ){ |
| 490 z += 2; |
| 491 } |
| 492 break; |
| 493 case 'i': |
| 494 if( z[0]=='c' && m_gt_1(z+2) ){ |
| 495 z += 2; |
| 496 } |
| 497 break; |
| 498 case 'l': |
| 499 if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){ |
| 500 z += 4; |
| 501 } |
| 502 break; |
| 503 case 'n': |
| 504 if( z[0]=='t' ){ |
| 505 if( z[2]=='a' ){ |
| 506 if( m_gt_1(z+3) ){ |
| 507 z += 3; |
| 508 } |
| 509 }else if( z[2]=='e' ){ |
| 510 if( !stem(&z, "tneme", "", m_gt_1) |
| 511 && !stem(&z, "tnem", "", m_gt_1) |
| 512 ){ |
| 513 stem(&z, "tne", "", m_gt_1); |
| 514 } |
| 515 } |
| 516 } |
| 517 break; |
| 518 case 'o': |
| 519 if( z[0]=='u' ){ |
| 520 if( m_gt_1(z+2) ){ |
| 521 z += 2; |
| 522 } |
| 523 }else if( z[3]=='s' || z[3]=='t' ){ |
| 524 stem(&z, "noi", "", m_gt_1); |
| 525 } |
| 526 break; |
| 527 case 's': |
| 528 if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){ |
| 529 z += 3; |
| 530 } |
| 531 break; |
| 532 case 't': |
| 533 if( !stem(&z, "eta", "", m_gt_1) ){ |
| 534 stem(&z, "iti", "", m_gt_1); |
| 535 } |
| 536 break; |
| 537 case 'u': |
| 538 if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){ |
| 539 z += 3; |
| 540 } |
| 541 break; |
| 542 case 'v': |
| 543 case 'z': |
| 544 if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){ |
| 545 z += 3; |
| 546 } |
| 547 break; |
| 548 } |
| 549 |
| 550 /* Step 5a */ |
| 551 if( z[0]=='e' ){ |
| 552 if( m_gt_1(z+1) ){ |
| 553 z++; |
| 554 }else if( m_eq_1(z+1) && !star_oh(z+1) ){ |
| 555 z++; |
| 556 } |
| 557 } |
| 558 |
| 559 /* Step 5b */ |
| 560 if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){ |
| 561 z++; |
| 562 } |
| 563 |
| 564 /* z[] is now the stemmed word in reverse order. Flip it back |
| 565 ** around into forward order and return. |
| 566 */ |
| 567 *pnOut = i = (int)strlen(z); |
| 568 zOut[i] = 0; |
| 569 while( *z ){ |
| 570 zOut[--i] = *(z++); |
| 571 } |
| 572 } |
| 573 |
| 574 /* |
| 575 ** Characters that can be part of a token. We assume any character |
| 576 ** whose value is greater than 0x80 (any UTF character) can be |
| 577 ** part of a token. In other words, delimiters all must have |
| 578 ** values of 0x7f or lower. |
| 579 */ |
| 580 static const char porterIdChar[] = { |
| 581 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ |
| 582 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ |
| 583 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ |
| 584 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ |
| 585 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ |
| 586 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ |
| 587 }; |
| 588 #define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30])) |
| 589 |
| 590 /* |
| 591 ** Extract the next token from a tokenization cursor. The cursor must |
| 592 ** have been opened by a prior call to porterOpen(). |
| 593 */ |
| 594 static int porterNext( |
| 595 sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by porterOpen */ |
| 596 const char **pzToken, /* OUT: *pzToken is the token text */ |
| 597 int *pnBytes, /* OUT: Number of bytes in token */ |
| 598 int *piStartOffset, /* OUT: Starting offset of token */ |
| 599 int *piEndOffset, /* OUT: Ending offset of token */ |
| 600 int *piPosition /* OUT: Position integer of token */ |
| 601 ){ |
| 602 porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor; |
| 603 const char *z = c->zInput; |
| 604 |
| 605 while( c->iOffset<c->nInput ){ |
| 606 int iStartOffset, ch; |
| 607 |
| 608 /* Scan past delimiter characters */ |
| 609 while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){ |
| 610 c->iOffset++; |
| 611 } |
| 612 |
| 613 /* Count non-delimiter characters. */ |
| 614 iStartOffset = c->iOffset; |
| 615 while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){ |
| 616 c->iOffset++; |
| 617 } |
| 618 |
| 619 if( c->iOffset>iStartOffset ){ |
| 620 int n = c->iOffset-iStartOffset; |
| 621 if( n>c->nAllocated ){ |
| 622 char *pNew; |
| 623 c->nAllocated = n+20; |
| 624 pNew = sqlite3_realloc(c->zToken, c->nAllocated); |
| 625 if( !pNew ) return SQLITE_NOMEM; |
| 626 c->zToken = pNew; |
| 627 } |
| 628 porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes); |
| 629 *pzToken = c->zToken; |
| 630 *piStartOffset = iStartOffset; |
| 631 *piEndOffset = c->iOffset; |
| 632 *piPosition = c->iToken++; |
| 633 return SQLITE_OK; |
| 634 } |
| 635 } |
| 636 return SQLITE_DONE; |
| 637 } |
| 638 |
| 639 /* |
| 640 ** The set of routines that implement the porter-stemmer tokenizer |
| 641 */ |
| 642 static const sqlite3_tokenizer_module porterTokenizerModule = { |
| 643 0, |
| 644 porterCreate, |
| 645 porterDestroy, |
| 646 porterOpen, |
| 647 porterClose, |
| 648 porterNext, |
| 649 0 |
| 650 }; |
| 651 |
| 652 /* |
| 653 ** Allocate a new porter tokenizer. Return a pointer to the new |
| 654 ** tokenizer in *ppModule |
| 655 */ |
| 656 void sqlite3Fts3PorterTokenizerModule( |
| 657 sqlite3_tokenizer_module const**ppModule |
| 658 ){ |
| 659 *ppModule = &porterTokenizerModule; |
| 660 } |
| 661 |
| 662 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ |
OLD | NEW |