Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1)

Side by Side Diff: third_party/sqlite/sqlite-src-3170000/ext/fts3/fts3.c

Issue 2747283002: [sql] Import reference version of SQLite 3.17.. (Closed)
Patch Set: Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2006 Oct 10
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 ******************************************************************************
12 **
13 ** This is an SQLite module implementing full-text search.
14 */
15
16 /*
17 ** The code in this file is only compiled if:
18 **
19 ** * The FTS3 module is being built as an extension
20 ** (in which case SQLITE_CORE is not defined), or
21 **
22 ** * The FTS3 module is being built into the core of
23 ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
24 */
25
26 /* The full-text index is stored in a series of b+tree (-like)
27 ** structures called segments which map terms to doclists. The
28 ** structures are like b+trees in layout, but are constructed from the
29 ** bottom up in optimal fashion and are not updatable. Since trees
30 ** are built from the bottom up, things will be described from the
31 ** bottom up.
32 **
33 **
34 **** Varints ****
35 ** The basic unit of encoding is a variable-length integer called a
36 ** varint. We encode variable-length integers in little-endian order
37 ** using seven bits * per byte as follows:
38 **
39 ** KEY:
40 ** A = 0xxxxxxx 7 bits of data and one flag bit
41 ** B = 1xxxxxxx 7 bits of data and one flag bit
42 **
43 ** 7 bits - A
44 ** 14 bits - BA
45 ** 21 bits - BBA
46 ** and so on.
47 **
48 ** This is similar in concept to how sqlite encodes "varints" but
49 ** the encoding is not the same. SQLite varints are big-endian
50 ** are are limited to 9 bytes in length whereas FTS3 varints are
51 ** little-endian and can be up to 10 bytes in length (in theory).
52 **
53 ** Example encodings:
54 **
55 ** 1: 0x01
56 ** 127: 0x7f
57 ** 128: 0x81 0x00
58 **
59 **
60 **** Document lists ****
61 ** A doclist (document list) holds a docid-sorted list of hits for a
62 ** given term. Doclists hold docids and associated token positions.
63 ** A docid is the unique integer identifier for a single document.
64 ** A position is the index of a word within the document. The first
65 ** word of the document has a position of 0.
66 **
67 ** FTS3 used to optionally store character offsets using a compile-time
68 ** option. But that functionality is no longer supported.
69 **
70 ** A doclist is stored like this:
71 **
72 ** array {
73 ** varint docid; (delta from previous doclist)
74 ** array { (position list for column 0)
75 ** varint position; (2 more than the delta from previous position)
76 ** }
77 ** array {
78 ** varint POS_COLUMN; (marks start of position list for new column)
79 ** varint column; (index of new column)
80 ** array {
81 ** varint position; (2 more than the delta from previous position)
82 ** }
83 ** }
84 ** varint POS_END; (marks end of positions for this document.
85 ** }
86 **
87 ** Here, array { X } means zero or more occurrences of X, adjacent in
88 ** memory. A "position" is an index of a token in the token stream
89 ** generated by the tokenizer. Note that POS_END and POS_COLUMN occur
90 ** in the same logical place as the position element, and act as sentinals
91 ** ending a position list array. POS_END is 0. POS_COLUMN is 1.
92 ** The positions numbers are not stored literally but rather as two more
93 ** than the difference from the prior position, or the just the position plus
94 ** 2 for the first position. Example:
95 **
96 ** label: A B C D E F G H I J K
97 ** value: 123 5 9 1 1 14 35 0 234 72 0
98 **
99 ** The 123 value is the first docid. For column zero in this document
100 ** there are two matches at positions 3 and 10 (5-2 and 9-2+3). The 1
101 ** at D signals the start of a new column; the 1 at E indicates that the
102 ** new column is column number 1. There are two positions at 12 and 45
103 ** (14-2 and 35-2+12). The 0 at H indicate the end-of-document. The
104 ** 234 at I is the delta to next docid (357). It has one position 70
105 ** (72-2) and then terminates with the 0 at K.
106 **
107 ** A "position-list" is the list of positions for multiple columns for
108 ** a single docid. A "column-list" is the set of positions for a single
109 ** column. Hence, a position-list consists of one or more column-lists,
110 ** a document record consists of a docid followed by a position-list and
111 ** a doclist consists of one or more document records.
112 **
113 ** A bare doclist omits the position information, becoming an
114 ** array of varint-encoded docids.
115 **
116 **** Segment leaf nodes ****
117 ** Segment leaf nodes store terms and doclists, ordered by term. Leaf
118 ** nodes are written using LeafWriter, and read using LeafReader (to
119 ** iterate through a single leaf node's data) and LeavesReader (to
120 ** iterate through a segment's entire leaf layer). Leaf nodes have
121 ** the format:
122 **
123 ** varint iHeight; (height from leaf level, always 0)
124 ** varint nTerm; (length of first term)
125 ** char pTerm[nTerm]; (content of first term)
126 ** varint nDoclist; (length of term's associated doclist)
127 ** char pDoclist[nDoclist]; (content of doclist)
128 ** array {
129 ** (further terms are delta-encoded)
130 ** varint nPrefix; (length of prefix shared with previous term)
131 ** varint nSuffix; (length of unshared suffix)
132 ** char pTermSuffix[nSuffix];(unshared suffix of next term)
133 ** varint nDoclist; (length of term's associated doclist)
134 ** char pDoclist[nDoclist]; (content of doclist)
135 ** }
136 **
137 ** Here, array { X } means zero or more occurrences of X, adjacent in
138 ** memory.
139 **
140 ** Leaf nodes are broken into blocks which are stored contiguously in
141 ** the %_segments table in sorted order. This means that when the end
142 ** of a node is reached, the next term is in the node with the next
143 ** greater node id.
144 **
145 ** New data is spilled to a new leaf node when the current node
146 ** exceeds LEAF_MAX bytes (default 2048). New data which itself is
147 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone
148 ** node (a leaf node with a single term and doclist). The goal of
149 ** these settings is to pack together groups of small doclists while
150 ** making it efficient to directly access large doclists. The
151 ** assumption is that large doclists represent terms which are more
152 ** likely to be query targets.
153 **
154 ** TODO(shess) It may be useful for blocking decisions to be more
155 ** dynamic. For instance, it may make more sense to have a 2.5k leaf
156 ** node rather than splitting into 2k and .5k nodes. My intuition is
157 ** that this might extend through 2x or 4x the pagesize.
158 **
159 **
160 **** Segment interior nodes ****
161 ** Segment interior nodes store blockids for subtree nodes and terms
162 ** to describe what data is stored by the each subtree. Interior
163 ** nodes are written using InteriorWriter, and read using
164 ** InteriorReader. InteriorWriters are created as needed when
165 ** SegmentWriter creates new leaf nodes, or when an interior node
166 ** itself grows too big and must be split. The format of interior
167 ** nodes:
168 **
169 ** varint iHeight; (height from leaf level, always >0)
170 ** varint iBlockid; (block id of node's leftmost subtree)
171 ** optional {
172 ** varint nTerm; (length of first term)
173 ** char pTerm[nTerm]; (content of first term)
174 ** array {
175 ** (further terms are delta-encoded)
176 ** varint nPrefix; (length of shared prefix with previous term)
177 ** varint nSuffix; (length of unshared suffix)
178 ** char pTermSuffix[nSuffix]; (unshared suffix of next term)
179 ** }
180 ** }
181 **
182 ** Here, optional { X } means an optional element, while array { X }
183 ** means zero or more occurrences of X, adjacent in memory.
184 **
185 ** An interior node encodes n terms separating n+1 subtrees. The
186 ** subtree blocks are contiguous, so only the first subtree's blockid
187 ** is encoded. The subtree at iBlockid will contain all terms less
188 ** than the first term encoded (or all terms if no term is encoded).
189 ** Otherwise, for terms greater than or equal to pTerm[i] but less
190 ** than pTerm[i+1], the subtree for that term will be rooted at
191 ** iBlockid+i. Interior nodes only store enough term data to
192 ** distinguish adjacent children (if the rightmost term of the left
193 ** child is "something", and the leftmost term of the right child is
194 ** "wicked", only "w" is stored).
195 **
196 ** New data is spilled to a new interior node at the same height when
197 ** the current node exceeds INTERIOR_MAX bytes (default 2048).
198 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
199 ** interior nodes and making the tree too skinny. The interior nodes
200 ** at a given height are naturally tracked by interior nodes at
201 ** height+1, and so on.
202 **
203 **
204 **** Segment directory ****
205 ** The segment directory in table %_segdir stores meta-information for
206 ** merging and deleting segments, and also the root node of the
207 ** segment's tree.
208 **
209 ** The root node is the top node of the segment's tree after encoding
210 ** the entire segment, restricted to ROOT_MAX bytes (default 1024).
211 ** This could be either a leaf node or an interior node. If the top
212 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments
213 ** and a new root interior node is generated (which should always fit
214 ** within ROOT_MAX because it only needs space for 2 varints, the
215 ** height and the blockid of the previous root).
216 **
217 ** The meta-information in the segment directory is:
218 ** level - segment level (see below)
219 ** idx - index within level
220 ** - (level,idx uniquely identify a segment)
221 ** start_block - first leaf node
222 ** leaves_end_block - last leaf node
223 ** end_block - last block (including interior nodes)
224 ** root - contents of root node
225 **
226 ** If the root node is a leaf node, then start_block,
227 ** leaves_end_block, and end_block are all 0.
228 **
229 **
230 **** Segment merging ****
231 ** To amortize update costs, segments are grouped into levels and
232 ** merged in batches. Each increase in level represents exponentially
233 ** more documents.
234 **
235 ** New documents (actually, document updates) are tokenized and
236 ** written individually (using LeafWriter) to a level 0 segment, with
237 ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
238 ** level 0 segments are merged into a single level 1 segment. Level 1
239 ** is populated like level 0, and eventually MERGE_COUNT level 1
240 ** segments are merged to a single level 2 segment (representing
241 ** MERGE_COUNT^2 updates), and so on.
242 **
243 ** A segment merge traverses all segments at a given level in
244 ** parallel, performing a straightforward sorted merge. Since segment
245 ** leaf nodes are written in to the %_segments table in order, this
246 ** merge traverses the underlying sqlite disk structures efficiently.
247 ** After the merge, all segment blocks from the merged level are
248 ** deleted.
249 **
250 ** MERGE_COUNT controls how often we merge segments. 16 seems to be
251 ** somewhat of a sweet spot for insertion performance. 32 and 64 show
252 ** very similar performance numbers to 16 on insertion, though they're
253 ** a tiny bit slower (perhaps due to more overhead in merge-time
254 ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
255 ** 16, 2 about 66% slower than 16.
256 **
257 ** At query time, high MERGE_COUNT increases the number of segments
258 ** which need to be scanned and merged. For instance, with 100k docs
259 ** inserted:
260 **
261 ** MERGE_COUNT segments
262 ** 16 25
263 ** 8 12
264 ** 4 10
265 ** 2 6
266 **
267 ** This appears to have only a moderate impact on queries for very
268 ** frequent terms (which are somewhat dominated by segment merge
269 ** costs), and infrequent and non-existent terms still seem to be fast
270 ** even with many segments.
271 **
272 ** TODO(shess) That said, it would be nice to have a better query-side
273 ** argument for MERGE_COUNT of 16. Also, it is possible/likely that
274 ** optimizations to things like doclist merging will swing the sweet
275 ** spot around.
276 **
277 **
278 **
279 **** Handling of deletions and updates ****
280 ** Since we're using a segmented structure, with no docid-oriented
281 ** index into the term index, we clearly cannot simply update the term
282 ** index when a document is deleted or updated. For deletions, we
283 ** write an empty doclist (varint(docid) varint(POS_END)), for updates
284 ** we simply write the new doclist. Segment merges overwrite older
285 ** data for a particular docid with newer data, so deletes or updates
286 ** will eventually overtake the earlier data and knock it out. The
287 ** query logic likewise merges doclists so that newer data knocks out
288 ** older data.
289 */
290
291 #include "fts3Int.h"
292 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
293
294 #if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
295 # define SQLITE_CORE 1
296 #endif
297
298 #include <assert.h>
299 #include <stdlib.h>
300 #include <stddef.h>
301 #include <stdio.h>
302 #include <string.h>
303 #include <stdarg.h>
304
305 #include "fts3.h"
306 #ifndef SQLITE_CORE
307 # include "sqlite3ext.h"
308 SQLITE_EXTENSION_INIT1
309 #endif
310
311 static int fts3EvalNext(Fts3Cursor *pCsr);
312 static int fts3EvalStart(Fts3Cursor *pCsr);
313 static int fts3TermSegReaderCursor(
314 Fts3Cursor *, const char *, int, int, Fts3MultiSegReader **);
315
316 #ifndef SQLITE_AMALGAMATION
317 # if defined(SQLITE_DEBUG)
318 int sqlite3Fts3Always(int b) { assert( b ); return b; }
319 int sqlite3Fts3Never(int b) { assert( !b ); return b; }
320 # endif
321 #endif
322
323 /*
324 ** Write a 64-bit variable-length integer to memory starting at p[0].
325 ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes.
326 ** The number of bytes written is returned.
327 */
328 int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){
329 unsigned char *q = (unsigned char *) p;
330 sqlite_uint64 vu = v;
331 do{
332 *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
333 vu >>= 7;
334 }while( vu!=0 );
335 q[-1] &= 0x7f; /* turn off high bit in final byte */
336 assert( q - (unsigned char *)p <= FTS3_VARINT_MAX );
337 return (int) (q - (unsigned char *)p);
338 }
339
340 #define GETVARINT_STEP(v, ptr, shift, mask1, mask2, var, ret) \
341 v = (v & mask1) | ( (*ptr++) << shift ); \
342 if( (v & mask2)==0 ){ var = v; return ret; }
343 #define GETVARINT_INIT(v, ptr, shift, mask1, mask2, var, ret) \
344 v = (*ptr++); \
345 if( (v & mask2)==0 ){ var = v; return ret; }
346
347 /*
348 ** Read a 64-bit variable-length integer from memory starting at p[0].
349 ** Return the number of bytes read, or 0 on error.
350 ** The value is stored in *v.
351 */
352 int sqlite3Fts3GetVarint(const char *p, sqlite_int64 *v){
353 const char *pStart = p;
354 u32 a;
355 u64 b;
356 int shift;
357
358 GETVARINT_INIT(a, p, 0, 0x00, 0x80, *v, 1);
359 GETVARINT_STEP(a, p, 7, 0x7F, 0x4000, *v, 2);
360 GETVARINT_STEP(a, p, 14, 0x3FFF, 0x200000, *v, 3);
361 GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *v, 4);
362 b = (a & 0x0FFFFFFF );
363
364 for(shift=28; shift<=63; shift+=7){
365 u64 c = *p++;
366 b += (c&0x7F) << shift;
367 if( (c & 0x80)==0 ) break;
368 }
369 *v = b;
370 return (int)(p - pStart);
371 }
372
373 /*
374 ** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to a
375 ** 32-bit integer before it is returned.
376 */
377 int sqlite3Fts3GetVarint32(const char *p, int *pi){
378 u32 a;
379
380 #ifndef fts3GetVarint32
381 GETVARINT_INIT(a, p, 0, 0x00, 0x80, *pi, 1);
382 #else
383 a = (*p++);
384 assert( a & 0x80 );
385 #endif
386
387 GETVARINT_STEP(a, p, 7, 0x7F, 0x4000, *pi, 2);
388 GETVARINT_STEP(a, p, 14, 0x3FFF, 0x200000, *pi, 3);
389 GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *pi, 4);
390 a = (a & 0x0FFFFFFF );
391 *pi = (int)(a | ((u32)(*p & 0x0F) << 28));
392 return 5;
393 }
394
395 /*
396 ** Return the number of bytes required to encode v as a varint
397 */
398 int sqlite3Fts3VarintLen(sqlite3_uint64 v){
399 int i = 0;
400 do{
401 i++;
402 v >>= 7;
403 }while( v!=0 );
404 return i;
405 }
406
407 /*
408 ** Convert an SQL-style quoted string into a normal string by removing
409 ** the quote characters. The conversion is done in-place. If the
410 ** input does not begin with a quote character, then this routine
411 ** is a no-op.
412 **
413 ** Examples:
414 **
415 ** "abc" becomes abc
416 ** 'xyz' becomes xyz
417 ** [pqr] becomes pqr
418 ** `mno` becomes mno
419 **
420 */
421 void sqlite3Fts3Dequote(char *z){
422 char quote; /* Quote character (if any ) */
423
424 quote = z[0];
425 if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){
426 int iIn = 1; /* Index of next byte to read from input */
427 int iOut = 0; /* Index of next byte to write to output */
428
429 /* If the first byte was a '[', then the close-quote character is a ']' */
430 if( quote=='[' ) quote = ']';
431
432 while( z[iIn] ){
433 if( z[iIn]==quote ){
434 if( z[iIn+1]!=quote ) break;
435 z[iOut++] = quote;
436 iIn += 2;
437 }else{
438 z[iOut++] = z[iIn++];
439 }
440 }
441 z[iOut] = '\0';
442 }
443 }
444
445 /*
446 ** Read a single varint from the doclist at *pp and advance *pp to point
447 ** to the first byte past the end of the varint. Add the value of the varint
448 ** to *pVal.
449 */
450 static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){
451 sqlite3_int64 iVal;
452 *pp += sqlite3Fts3GetVarint(*pp, &iVal);
453 *pVal += iVal;
454 }
455
456 /*
457 ** When this function is called, *pp points to the first byte following a
458 ** varint that is part of a doclist (or position-list, or any other list
459 ** of varints). This function moves *pp to point to the start of that varint,
460 ** and sets *pVal by the varint value.
461 **
462 ** Argument pStart points to the first byte of the doclist that the
463 ** varint is part of.
464 */
465 static void fts3GetReverseVarint(
466 char **pp,
467 char *pStart,
468 sqlite3_int64 *pVal
469 ){
470 sqlite3_int64 iVal;
471 char *p;
472
473 /* Pointer p now points at the first byte past the varint we are
474 ** interested in. So, unless the doclist is corrupt, the 0x80 bit is
475 ** clear on character p[-1]. */
476 for(p = (*pp)-2; p>=pStart && *p&0x80; p--);
477 p++;
478 *pp = p;
479
480 sqlite3Fts3GetVarint(p, &iVal);
481 *pVal = iVal;
482 }
483
484 /*
485 ** The xDisconnect() virtual table method.
486 */
487 static int fts3DisconnectMethod(sqlite3_vtab *pVtab){
488 Fts3Table *p = (Fts3Table *)pVtab;
489 int i;
490
491 assert( p->nPendingData==0 );
492 assert( p->pSegments==0 );
493
494 /* Free any prepared statements held */
495 sqlite3_finalize(p->pSeekStmt);
496 for(i=0; i<SizeofArray(p->aStmt); i++){
497 sqlite3_finalize(p->aStmt[i]);
498 }
499 sqlite3_free(p->zSegmentsTbl);
500 sqlite3_free(p->zReadExprlist);
501 sqlite3_free(p->zWriteExprlist);
502 sqlite3_free(p->zContentTbl);
503 sqlite3_free(p->zLanguageid);
504
505 /* Invoke the tokenizer destructor to free the tokenizer. */
506 p->pTokenizer->pModule->xDestroy(p->pTokenizer);
507
508 sqlite3_free(p);
509 return SQLITE_OK;
510 }
511
512 /*
513 ** Write an error message into *pzErr
514 */
515 void sqlite3Fts3ErrMsg(char **pzErr, const char *zFormat, ...){
516 va_list ap;
517 sqlite3_free(*pzErr);
518 va_start(ap, zFormat);
519 *pzErr = sqlite3_vmprintf(zFormat, ap);
520 va_end(ap);
521 }
522
523 /*
524 ** Construct one or more SQL statements from the format string given
525 ** and then evaluate those statements. The success code is written
526 ** into *pRc.
527 **
528 ** If *pRc is initially non-zero then this routine is a no-op.
529 */
530 static void fts3DbExec(
531 int *pRc, /* Success code */
532 sqlite3 *db, /* Database in which to run SQL */
533 const char *zFormat, /* Format string for SQL */
534 ... /* Arguments to the format string */
535 ){
536 va_list ap;
537 char *zSql;
538 if( *pRc ) return;
539 va_start(ap, zFormat);
540 zSql = sqlite3_vmprintf(zFormat, ap);
541 va_end(ap);
542 if( zSql==0 ){
543 *pRc = SQLITE_NOMEM;
544 }else{
545 *pRc = sqlite3_exec(db, zSql, 0, 0, 0);
546 sqlite3_free(zSql);
547 }
548 }
549
550 /*
551 ** The xDestroy() virtual table method.
552 */
553 static int fts3DestroyMethod(sqlite3_vtab *pVtab){
554 Fts3Table *p = (Fts3Table *)pVtab;
555 int rc = SQLITE_OK; /* Return code */
556 const char *zDb = p->zDb; /* Name of database (e.g. "main", "temp") */
557 sqlite3 *db = p->db; /* Database handle */
558
559 /* Drop the shadow tables */
560 if( p->zContentTbl==0 ){
561 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_content'", zDb, p->zName);
562 }
563 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segments'", zDb,p->zName);
564 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segdir'", zDb, p->zName);
565 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_docsize'", zDb, p->zName);
566 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_stat'", zDb, p->zName);
567
568 /* If everything has worked, invoke fts3DisconnectMethod() to free the
569 ** memory associated with the Fts3Table structure and return SQLITE_OK.
570 ** Otherwise, return an SQLite error code.
571 */
572 return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc);
573 }
574
575
576 /*
577 ** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table
578 ** passed as the first argument. This is done as part of the xConnect()
579 ** and xCreate() methods.
580 **
581 ** If *pRc is non-zero when this function is called, it is a no-op.
582 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
583 ** before returning.
584 */
585 static void fts3DeclareVtab(int *pRc, Fts3Table *p){
586 if( *pRc==SQLITE_OK ){
587 int i; /* Iterator variable */
588 int rc; /* Return code */
589 char *zSql; /* SQL statement passed to declare_vtab() */
590 char *zCols; /* List of user defined columns */
591 const char *zLanguageid;
592
593 zLanguageid = (p->zLanguageid ? p->zLanguageid : "__langid");
594 sqlite3_vtab_config(p->db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
595
596 /* Create a list of user columns for the virtual table */
597 zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]);
598 for(i=1; zCols && i<p->nColumn; i++){
599 zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]);
600 }
601
602 /* Create the whole "CREATE TABLE" statement to pass to SQLite */
603 zSql = sqlite3_mprintf(
604 "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN, %Q HIDDEN)",
605 zCols, p->zName, zLanguageid
606 );
607 if( !zCols || !zSql ){
608 rc = SQLITE_NOMEM;
609 }else{
610 rc = sqlite3_declare_vtab(p->db, zSql);
611 }
612
613 sqlite3_free(zSql);
614 sqlite3_free(zCols);
615 *pRc = rc;
616 }
617 }
618
619 /*
620 ** Create the %_stat table if it does not already exist.
621 */
622 void sqlite3Fts3CreateStatTable(int *pRc, Fts3Table *p){
623 fts3DbExec(pRc, p->db,
624 "CREATE TABLE IF NOT EXISTS %Q.'%q_stat'"
625 "(id INTEGER PRIMARY KEY, value BLOB);",
626 p->zDb, p->zName
627 );
628 if( (*pRc)==SQLITE_OK ) p->bHasStat = 1;
629 }
630
631 /*
632 ** Create the backing store tables (%_content, %_segments and %_segdir)
633 ** required by the FTS3 table passed as the only argument. This is done
634 ** as part of the vtab xCreate() method.
635 **
636 ** If the p->bHasDocsize boolean is true (indicating that this is an
637 ** FTS4 table, not an FTS3 table) then also create the %_docsize and
638 ** %_stat tables required by FTS4.
639 */
640 static int fts3CreateTables(Fts3Table *p){
641 int rc = SQLITE_OK; /* Return code */
642 int i; /* Iterator variable */
643 sqlite3 *db = p->db; /* The database connection */
644
645 if( p->zContentTbl==0 ){
646 const char *zLanguageid = p->zLanguageid;
647 char *zContentCols; /* Columns of %_content table */
648
649 /* Create a list of user columns for the content table */
650 zContentCols = sqlite3_mprintf("docid INTEGER PRIMARY KEY");
651 for(i=0; zContentCols && i<p->nColumn; i++){
652 char *z = p->azColumn[i];
653 zContentCols = sqlite3_mprintf("%z, 'c%d%q'", zContentCols, i, z);
654 }
655 if( zLanguageid && zContentCols ){
656 zContentCols = sqlite3_mprintf("%z, langid", zContentCols, zLanguageid);
657 }
658 if( zContentCols==0 ) rc = SQLITE_NOMEM;
659
660 /* Create the content table */
661 fts3DbExec(&rc, db,
662 "CREATE TABLE %Q.'%q_content'(%s)",
663 p->zDb, p->zName, zContentCols
664 );
665 sqlite3_free(zContentCols);
666 }
667
668 /* Create other tables */
669 fts3DbExec(&rc, db,
670 "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);",
671 p->zDb, p->zName
672 );
673 fts3DbExec(&rc, db,
674 "CREATE TABLE %Q.'%q_segdir'("
675 "level INTEGER,"
676 "idx INTEGER,"
677 "start_block INTEGER,"
678 "leaves_end_block INTEGER,"
679 "end_block INTEGER,"
680 "root BLOB,"
681 "PRIMARY KEY(level, idx)"
682 ");",
683 p->zDb, p->zName
684 );
685 if( p->bHasDocsize ){
686 fts3DbExec(&rc, db,
687 "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);",
688 p->zDb, p->zName
689 );
690 }
691 assert( p->bHasStat==p->bFts4 );
692 if( p->bHasStat ){
693 sqlite3Fts3CreateStatTable(&rc, p);
694 }
695 return rc;
696 }
697
698 /*
699 ** Store the current database page-size in bytes in p->nPgsz.
700 **
701 ** If *pRc is non-zero when this function is called, it is a no-op.
702 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
703 ** before returning.
704 */
705 static void fts3DatabasePageSize(int *pRc, Fts3Table *p){
706 if( *pRc==SQLITE_OK ){
707 int rc; /* Return code */
708 char *zSql; /* SQL text "PRAGMA %Q.page_size" */
709 sqlite3_stmt *pStmt; /* Compiled "PRAGMA %Q.page_size" statement */
710
711 zSql = sqlite3_mprintf("PRAGMA %Q.page_size", p->zDb);
712 if( !zSql ){
713 rc = SQLITE_NOMEM;
714 }else{
715 rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0);
716 if( rc==SQLITE_OK ){
717 sqlite3_step(pStmt);
718 p->nPgsz = sqlite3_column_int(pStmt, 0);
719 rc = sqlite3_finalize(pStmt);
720 }else if( rc==SQLITE_AUTH ){
721 p->nPgsz = 1024;
722 rc = SQLITE_OK;
723 }
724 }
725 assert( p->nPgsz>0 || rc!=SQLITE_OK );
726 sqlite3_free(zSql);
727 *pRc = rc;
728 }
729 }
730
731 /*
732 ** "Special" FTS4 arguments are column specifications of the following form:
733 **
734 ** <key> = <value>
735 **
736 ** There may not be whitespace surrounding the "=" character. The <value>
737 ** term may be quoted, but the <key> may not.
738 */
739 static int fts3IsSpecialColumn(
740 const char *z,
741 int *pnKey,
742 char **pzValue
743 ){
744 char *zValue;
745 const char *zCsr = z;
746
747 while( *zCsr!='=' ){
748 if( *zCsr=='\0' ) return 0;
749 zCsr++;
750 }
751
752 *pnKey = (int)(zCsr-z);
753 zValue = sqlite3_mprintf("%s", &zCsr[1]);
754 if( zValue ){
755 sqlite3Fts3Dequote(zValue);
756 }
757 *pzValue = zValue;
758 return 1;
759 }
760
761 /*
762 ** Append the output of a printf() style formatting to an existing string.
763 */
764 static void fts3Appendf(
765 int *pRc, /* IN/OUT: Error code */
766 char **pz, /* IN/OUT: Pointer to string buffer */
767 const char *zFormat, /* Printf format string to append */
768 ... /* Arguments for printf format string */
769 ){
770 if( *pRc==SQLITE_OK ){
771 va_list ap;
772 char *z;
773 va_start(ap, zFormat);
774 z = sqlite3_vmprintf(zFormat, ap);
775 va_end(ap);
776 if( z && *pz ){
777 char *z2 = sqlite3_mprintf("%s%s", *pz, z);
778 sqlite3_free(z);
779 z = z2;
780 }
781 if( z==0 ) *pRc = SQLITE_NOMEM;
782 sqlite3_free(*pz);
783 *pz = z;
784 }
785 }
786
787 /*
788 ** Return a copy of input string zInput enclosed in double-quotes (") and
789 ** with all double quote characters escaped. For example:
790 **
791 ** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\""
792 **
793 ** The pointer returned points to memory obtained from sqlite3_malloc(). It
794 ** is the callers responsibility to call sqlite3_free() to release this
795 ** memory.
796 */
797 static char *fts3QuoteId(char const *zInput){
798 int nRet;
799 char *zRet;
800 nRet = 2 + (int)strlen(zInput)*2 + 1;
801 zRet = sqlite3_malloc(nRet);
802 if( zRet ){
803 int i;
804 char *z = zRet;
805 *(z++) = '"';
806 for(i=0; zInput[i]; i++){
807 if( zInput[i]=='"' ) *(z++) = '"';
808 *(z++) = zInput[i];
809 }
810 *(z++) = '"';
811 *(z++) = '\0';
812 }
813 return zRet;
814 }
815
816 /*
817 ** Return a list of comma separated SQL expressions and a FROM clause that
818 ** could be used in a SELECT statement such as the following:
819 **
820 ** SELECT <list of expressions> FROM %_content AS x ...
821 **
822 ** to return the docid, followed by each column of text data in order
823 ** from left to write. If parameter zFunc is not NULL, then instead of
824 ** being returned directly each column of text data is passed to an SQL
825 ** function named zFunc first. For example, if zFunc is "unzip" and the
826 ** table has the three user-defined columns "a", "b", and "c", the following
827 ** string is returned:
828 **
829 ** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c') FROM %_content AS x"
830 **
831 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
832 ** is the responsibility of the caller to eventually free it.
833 **
834 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
835 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
836 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
837 ** no error occurs, *pRc is left unmodified.
838 */
839 static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){
840 char *zRet = 0;
841 char *zFree = 0;
842 char *zFunction;
843 int i;
844
845 if( p->zContentTbl==0 ){
846 if( !zFunc ){
847 zFunction = "";
848 }else{
849 zFree = zFunction = fts3QuoteId(zFunc);
850 }
851 fts3Appendf(pRc, &zRet, "docid");
852 for(i=0; i<p->nColumn; i++){
853 fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]);
854 }
855 if( p->zLanguageid ){
856 fts3Appendf(pRc, &zRet, ", x.%Q", "langid");
857 }
858 sqlite3_free(zFree);
859 }else{
860 fts3Appendf(pRc, &zRet, "rowid");
861 for(i=0; i<p->nColumn; i++){
862 fts3Appendf(pRc, &zRet, ", x.'%q'", p->azColumn[i]);
863 }
864 if( p->zLanguageid ){
865 fts3Appendf(pRc, &zRet, ", x.%Q", p->zLanguageid);
866 }
867 }
868 fts3Appendf(pRc, &zRet, " FROM '%q'.'%q%s' AS x",
869 p->zDb,
870 (p->zContentTbl ? p->zContentTbl : p->zName),
871 (p->zContentTbl ? "" : "_content")
872 );
873 return zRet;
874 }
875
876 /*
877 ** Return a list of N comma separated question marks, where N is the number
878 ** of columns in the %_content table (one for the docid plus one for each
879 ** user-defined text column).
880 **
881 ** If argument zFunc is not NULL, then all but the first question mark
882 ** is preceded by zFunc and an open bracket, and followed by a closed
883 ** bracket. For example, if zFunc is "zip" and the FTS3 table has three
884 ** user-defined text columns, the following string is returned:
885 **
886 ** "?, zip(?), zip(?), zip(?)"
887 **
888 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
889 ** is the responsibility of the caller to eventually free it.
890 **
891 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
892 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
893 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
894 ** no error occurs, *pRc is left unmodified.
895 */
896 static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){
897 char *zRet = 0;
898 char *zFree = 0;
899 char *zFunction;
900 int i;
901
902 if( !zFunc ){
903 zFunction = "";
904 }else{
905 zFree = zFunction = fts3QuoteId(zFunc);
906 }
907 fts3Appendf(pRc, &zRet, "?");
908 for(i=0; i<p->nColumn; i++){
909 fts3Appendf(pRc, &zRet, ",%s(?)", zFunction);
910 }
911 if( p->zLanguageid ){
912 fts3Appendf(pRc, &zRet, ", ?");
913 }
914 sqlite3_free(zFree);
915 return zRet;
916 }
917
918 /*
919 ** This function interprets the string at (*pp) as a non-negative integer
920 ** value. It reads the integer and sets *pnOut to the value read, then
921 ** sets *pp to point to the byte immediately following the last byte of
922 ** the integer value.
923 **
924 ** Only decimal digits ('0'..'9') may be part of an integer value.
925 **
926 ** If *pp does not being with a decimal digit SQLITE_ERROR is returned and
927 ** the output value undefined. Otherwise SQLITE_OK is returned.
928 **
929 ** This function is used when parsing the "prefix=" FTS4 parameter.
930 */
931 static int fts3GobbleInt(const char **pp, int *pnOut){
932 const int MAX_NPREFIX = 10000000;
933 const char *p; /* Iterator pointer */
934 int nInt = 0; /* Output value */
935
936 for(p=*pp; p[0]>='0' && p[0]<='9'; p++){
937 nInt = nInt * 10 + (p[0] - '0');
938 if( nInt>MAX_NPREFIX ){
939 nInt = 0;
940 break;
941 }
942 }
943 if( p==*pp ) return SQLITE_ERROR;
944 *pnOut = nInt;
945 *pp = p;
946 return SQLITE_OK;
947 }
948
949 /*
950 ** This function is called to allocate an array of Fts3Index structures
951 ** representing the indexes maintained by the current FTS table. FTS tables
952 ** always maintain the main "terms" index, but may also maintain one or
953 ** more "prefix" indexes, depending on the value of the "prefix=" parameter
954 ** (if any) specified as part of the CREATE VIRTUAL TABLE statement.
955 **
956 ** Argument zParam is passed the value of the "prefix=" option if one was
957 ** specified, or NULL otherwise.
958 **
959 ** If no error occurs, SQLITE_OK is returned and *apIndex set to point to
960 ** the allocated array. *pnIndex is set to the number of elements in the
961 ** array. If an error does occur, an SQLite error code is returned.
962 **
963 ** Regardless of whether or not an error is returned, it is the responsibility
964 ** of the caller to call sqlite3_free() on the output array to free it.
965 */
966 static int fts3PrefixParameter(
967 const char *zParam, /* ABC in prefix=ABC parameter to parse */
968 int *pnIndex, /* OUT: size of *apIndex[] array */
969 struct Fts3Index **apIndex /* OUT: Array of indexes for this table */
970 ){
971 struct Fts3Index *aIndex; /* Allocated array */
972 int nIndex = 1; /* Number of entries in array */
973
974 if( zParam && zParam[0] ){
975 const char *p;
976 nIndex++;
977 for(p=zParam; *p; p++){
978 if( *p==',' ) nIndex++;
979 }
980 }
981
982 aIndex = sqlite3_malloc(sizeof(struct Fts3Index) * nIndex);
983 *apIndex = aIndex;
984 if( !aIndex ){
985 return SQLITE_NOMEM;
986 }
987
988 memset(aIndex, 0, sizeof(struct Fts3Index) * nIndex);
989 if( zParam ){
990 const char *p = zParam;
991 int i;
992 for(i=1; i<nIndex; i++){
993 int nPrefix = 0;
994 if( fts3GobbleInt(&p, &nPrefix) ) return SQLITE_ERROR;
995 assert( nPrefix>=0 );
996 if( nPrefix==0 ){
997 nIndex--;
998 i--;
999 }else{
1000 aIndex[i].nPrefix = nPrefix;
1001 }
1002 p++;
1003 }
1004 }
1005
1006 *pnIndex = nIndex;
1007 return SQLITE_OK;
1008 }
1009
1010 /*
1011 ** This function is called when initializing an FTS4 table that uses the
1012 ** content=xxx option. It determines the number of and names of the columns
1013 ** of the new FTS4 table.
1014 **
1015 ** The third argument passed to this function is the value passed to the
1016 ** config=xxx option (i.e. "xxx"). This function queries the database for
1017 ** a table of that name. If found, the output variables are populated
1018 ** as follows:
1019 **
1020 ** *pnCol: Set to the number of columns table xxx has,
1021 **
1022 ** *pnStr: Set to the total amount of space required to store a copy
1023 ** of each columns name, including the nul-terminator.
1024 **
1025 ** *pazCol: Set to point to an array of *pnCol strings. Each string is
1026 ** the name of the corresponding column in table xxx. The array
1027 ** and its contents are allocated using a single allocation. It
1028 ** is the responsibility of the caller to free this allocation
1029 ** by eventually passing the *pazCol value to sqlite3_free().
1030 **
1031 ** If the table cannot be found, an error code is returned and the output
1032 ** variables are undefined. Or, if an OOM is encountered, SQLITE_NOMEM is
1033 ** returned (and the output variables are undefined).
1034 */
1035 static int fts3ContentColumns(
1036 sqlite3 *db, /* Database handle */
1037 const char *zDb, /* Name of db (i.e. "main", "temp" etc.) */
1038 const char *zTbl, /* Name of content table */
1039 const char ***pazCol, /* OUT: Malloc'd array of column names */
1040 int *pnCol, /* OUT: Size of array *pazCol */
1041 int *pnStr, /* OUT: Bytes of string content */
1042 char **pzErr /* OUT: error message */
1043 ){
1044 int rc = SQLITE_OK; /* Return code */
1045 char *zSql; /* "SELECT *" statement on zTbl */
1046 sqlite3_stmt *pStmt = 0; /* Compiled version of zSql */
1047
1048 zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zTbl);
1049 if( !zSql ){
1050 rc = SQLITE_NOMEM;
1051 }else{
1052 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1053 if( rc!=SQLITE_OK ){
1054 sqlite3Fts3ErrMsg(pzErr, "%s", sqlite3_errmsg(db));
1055 }
1056 }
1057 sqlite3_free(zSql);
1058
1059 if( rc==SQLITE_OK ){
1060 const char **azCol; /* Output array */
1061 int nStr = 0; /* Size of all column names (incl. 0x00) */
1062 int nCol; /* Number of table columns */
1063 int i; /* Used to iterate through columns */
1064
1065 /* Loop through the returned columns. Set nStr to the number of bytes of
1066 ** space required to store a copy of each column name, including the
1067 ** nul-terminator byte. */
1068 nCol = sqlite3_column_count(pStmt);
1069 for(i=0; i<nCol; i++){
1070 const char *zCol = sqlite3_column_name(pStmt, i);
1071 nStr += (int)strlen(zCol) + 1;
1072 }
1073
1074 /* Allocate and populate the array to return. */
1075 azCol = (const char **)sqlite3_malloc(sizeof(char *) * nCol + nStr);
1076 if( azCol==0 ){
1077 rc = SQLITE_NOMEM;
1078 }else{
1079 char *p = (char *)&azCol[nCol];
1080 for(i=0; i<nCol; i++){
1081 const char *zCol = sqlite3_column_name(pStmt, i);
1082 int n = (int)strlen(zCol)+1;
1083 memcpy(p, zCol, n);
1084 azCol[i] = p;
1085 p += n;
1086 }
1087 }
1088 sqlite3_finalize(pStmt);
1089
1090 /* Set the output variables. */
1091 *pnCol = nCol;
1092 *pnStr = nStr;
1093 *pazCol = azCol;
1094 }
1095
1096 return rc;
1097 }
1098
1099 /*
1100 ** This function is the implementation of both the xConnect and xCreate
1101 ** methods of the FTS3 virtual table.
1102 **
1103 ** The argv[] array contains the following:
1104 **
1105 ** argv[0] -> module name ("fts3" or "fts4")
1106 ** argv[1] -> database name
1107 ** argv[2] -> table name
1108 ** argv[...] -> "column name" and other module argument fields.
1109 */
1110 static int fts3InitVtab(
1111 int isCreate, /* True for xCreate, false for xConnect */
1112 sqlite3 *db, /* The SQLite database connection */
1113 void *pAux, /* Hash table containing tokenizers */
1114 int argc, /* Number of elements in argv array */
1115 const char * const *argv, /* xCreate/xConnect argument array */
1116 sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
1117 char **pzErr /* Write any error message here */
1118 ){
1119 Fts3Hash *pHash = (Fts3Hash *)pAux;
1120 Fts3Table *p = 0; /* Pointer to allocated vtab */
1121 int rc = SQLITE_OK; /* Return code */
1122 int i; /* Iterator variable */
1123 int nByte; /* Size of allocation used for *p */
1124 int iCol; /* Column index */
1125 int nString = 0; /* Bytes required to hold all column names */
1126 int nCol = 0; /* Number of columns in the FTS table */
1127 char *zCsr; /* Space for holding column names */
1128 int nDb; /* Bytes required to hold database name */
1129 int nName; /* Bytes required to hold table name */
1130 int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */
1131 const char **aCol; /* Array of column names */
1132 sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */
1133
1134 int nIndex = 0; /* Size of aIndex[] array */
1135 struct Fts3Index *aIndex = 0; /* Array of indexes for this table */
1136
1137 /* The results of parsing supported FTS4 key=value options: */
1138 int bNoDocsize = 0; /* True to omit %_docsize table */
1139 int bDescIdx = 0; /* True to store descending indexes */
1140 char *zPrefix = 0; /* Prefix parameter value (or NULL) */
1141 char *zCompress = 0; /* compress=? parameter (or NULL) */
1142 char *zUncompress = 0; /* uncompress=? parameter (or NULL) */
1143 char *zContent = 0; /* content=? parameter (or NULL) */
1144 char *zLanguageid = 0; /* languageid=? parameter (or NULL) */
1145 char **azNotindexed = 0; /* The set of notindexed= columns */
1146 int nNotindexed = 0; /* Size of azNotindexed[] array */
1147
1148 assert( strlen(argv[0])==4 );
1149 assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4)
1150 || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4)
1151 );
1152
1153 nDb = (int)strlen(argv[1]) + 1;
1154 nName = (int)strlen(argv[2]) + 1;
1155
1156 nByte = sizeof(const char *) * (argc-2);
1157 aCol = (const char **)sqlite3_malloc(nByte);
1158 if( aCol ){
1159 memset((void*)aCol, 0, nByte);
1160 azNotindexed = (char **)sqlite3_malloc(nByte);
1161 }
1162 if( azNotindexed ){
1163 memset(azNotindexed, 0, nByte);
1164 }
1165 if( !aCol || !azNotindexed ){
1166 rc = SQLITE_NOMEM;
1167 goto fts3_init_out;
1168 }
1169
1170 /* Loop through all of the arguments passed by the user to the FTS3/4
1171 ** module (i.e. all the column names and special arguments). This loop
1172 ** does the following:
1173 **
1174 ** + Figures out the number of columns the FTSX table will have, and
1175 ** the number of bytes of space that must be allocated to store copies
1176 ** of the column names.
1177 **
1178 ** + If there is a tokenizer specification included in the arguments,
1179 ** initializes the tokenizer pTokenizer.
1180 */
1181 for(i=3; rc==SQLITE_OK && i<argc; i++){
1182 char const *z = argv[i];
1183 int nKey;
1184 char *zVal;
1185
1186 /* Check if this is a tokenizer specification */
1187 if( !pTokenizer
1188 && strlen(z)>8
1189 && 0==sqlite3_strnicmp(z, "tokenize", 8)
1190 && 0==sqlite3Fts3IsIdChar(z[8])
1191 ){
1192 rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr);
1193 }
1194
1195 /* Check if it is an FTS4 special argument. */
1196 else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){
1197 struct Fts4Option {
1198 const char *zOpt;
1199 int nOpt;
1200 } aFts4Opt[] = {
1201 { "matchinfo", 9 }, /* 0 -> MATCHINFO */
1202 { "prefix", 6 }, /* 1 -> PREFIX */
1203 { "compress", 8 }, /* 2 -> COMPRESS */
1204 { "uncompress", 10 }, /* 3 -> UNCOMPRESS */
1205 { "order", 5 }, /* 4 -> ORDER */
1206 { "content", 7 }, /* 5 -> CONTENT */
1207 { "languageid", 10 }, /* 6 -> LANGUAGEID */
1208 { "notindexed", 10 } /* 7 -> NOTINDEXED */
1209 };
1210
1211 int iOpt;
1212 if( !zVal ){
1213 rc = SQLITE_NOMEM;
1214 }else{
1215 for(iOpt=0; iOpt<SizeofArray(aFts4Opt); iOpt++){
1216 struct Fts4Option *pOp = &aFts4Opt[iOpt];
1217 if( nKey==pOp->nOpt && !sqlite3_strnicmp(z, pOp->zOpt, pOp->nOpt) ){
1218 break;
1219 }
1220 }
1221 if( iOpt==SizeofArray(aFts4Opt) ){
1222 sqlite3Fts3ErrMsg(pzErr, "unrecognized parameter: %s", z);
1223 rc = SQLITE_ERROR;
1224 }else{
1225 switch( iOpt ){
1226 case 0: /* MATCHINFO */
1227 if( strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "fts3", 4) ){
1228 sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo: %s", zVal);
1229 rc = SQLITE_ERROR;
1230 }
1231 bNoDocsize = 1;
1232 break;
1233
1234 case 1: /* PREFIX */
1235 sqlite3_free(zPrefix);
1236 zPrefix = zVal;
1237 zVal = 0;
1238 break;
1239
1240 case 2: /* COMPRESS */
1241 sqlite3_free(zCompress);
1242 zCompress = zVal;
1243 zVal = 0;
1244 break;
1245
1246 case 3: /* UNCOMPRESS */
1247 sqlite3_free(zUncompress);
1248 zUncompress = zVal;
1249 zVal = 0;
1250 break;
1251
1252 case 4: /* ORDER */
1253 if( (strlen(zVal)!=3 || sqlite3_strnicmp(zVal, "asc", 3))
1254 && (strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "desc", 4))
1255 ){
1256 sqlite3Fts3ErrMsg(pzErr, "unrecognized order: %s", zVal);
1257 rc = SQLITE_ERROR;
1258 }
1259 bDescIdx = (zVal[0]=='d' || zVal[0]=='D');
1260 break;
1261
1262 case 5: /* CONTENT */
1263 sqlite3_free(zContent);
1264 zContent = zVal;
1265 zVal = 0;
1266 break;
1267
1268 case 6: /* LANGUAGEID */
1269 assert( iOpt==6 );
1270 sqlite3_free(zLanguageid);
1271 zLanguageid = zVal;
1272 zVal = 0;
1273 break;
1274
1275 case 7: /* NOTINDEXED */
1276 azNotindexed[nNotindexed++] = zVal;
1277 zVal = 0;
1278 break;
1279 }
1280 }
1281 sqlite3_free(zVal);
1282 }
1283 }
1284
1285 /* Otherwise, the argument is a column name. */
1286 else {
1287 nString += (int)(strlen(z) + 1);
1288 aCol[nCol++] = z;
1289 }
1290 }
1291
1292 /* If a content=xxx option was specified, the following:
1293 **
1294 ** 1. Ignore any compress= and uncompress= options.
1295 **
1296 ** 2. If no column names were specified as part of the CREATE VIRTUAL
1297 ** TABLE statement, use all columns from the content table.
1298 */
1299 if( rc==SQLITE_OK && zContent ){
1300 sqlite3_free(zCompress);
1301 sqlite3_free(zUncompress);
1302 zCompress = 0;
1303 zUncompress = 0;
1304 if( nCol==0 ){
1305 sqlite3_free((void*)aCol);
1306 aCol = 0;
1307 rc = fts3ContentColumns(db, argv[1], zContent,&aCol,&nCol,&nString,pzErr);
1308
1309 /* If a languageid= option was specified, remove the language id
1310 ** column from the aCol[] array. */
1311 if( rc==SQLITE_OK && zLanguageid ){
1312 int j;
1313 for(j=0; j<nCol; j++){
1314 if( sqlite3_stricmp(zLanguageid, aCol[j])==0 ){
1315 int k;
1316 for(k=j; k<nCol; k++) aCol[k] = aCol[k+1];
1317 nCol--;
1318 break;
1319 }
1320 }
1321 }
1322 }
1323 }
1324 if( rc!=SQLITE_OK ) goto fts3_init_out;
1325
1326 if( nCol==0 ){
1327 assert( nString==0 );
1328 aCol[0] = "content";
1329 nString = 8;
1330 nCol = 1;
1331 }
1332
1333 if( pTokenizer==0 ){
1334 rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr);
1335 if( rc!=SQLITE_OK ) goto fts3_init_out;
1336 }
1337 assert( pTokenizer );
1338
1339 rc = fts3PrefixParameter(zPrefix, &nIndex, &aIndex);
1340 if( rc==SQLITE_ERROR ){
1341 assert( zPrefix );
1342 sqlite3Fts3ErrMsg(pzErr, "error parsing prefix parameter: %s", zPrefix);
1343 }
1344 if( rc!=SQLITE_OK ) goto fts3_init_out;
1345
1346 /* Allocate and populate the Fts3Table structure. */
1347 nByte = sizeof(Fts3Table) + /* Fts3Table */
1348 nCol * sizeof(char *) + /* azColumn */
1349 nIndex * sizeof(struct Fts3Index) + /* aIndex */
1350 nCol * sizeof(u8) + /* abNotindexed */
1351 nName + /* zName */
1352 nDb + /* zDb */
1353 nString; /* Space for azColumn strings */
1354 p = (Fts3Table*)sqlite3_malloc(nByte);
1355 if( p==0 ){
1356 rc = SQLITE_NOMEM;
1357 goto fts3_init_out;
1358 }
1359 memset(p, 0, nByte);
1360 p->db = db;
1361 p->nColumn = nCol;
1362 p->nPendingData = 0;
1363 p->azColumn = (char **)&p[1];
1364 p->pTokenizer = pTokenizer;
1365 p->nMaxPendingData = FTS3_MAX_PENDING_DATA;
1366 p->bHasDocsize = (isFts4 && bNoDocsize==0);
1367 p->bHasStat = (u8)isFts4;
1368 p->bFts4 = (u8)isFts4;
1369 p->bDescIdx = (u8)bDescIdx;
1370 p->nAutoincrmerge = 0xff; /* 0xff means setting unknown */
1371 p->zContentTbl = zContent;
1372 p->zLanguageid = zLanguageid;
1373 zContent = 0;
1374 zLanguageid = 0;
1375 TESTONLY( p->inTransaction = -1 );
1376 TESTONLY( p->mxSavepoint = -1 );
1377
1378 p->aIndex = (struct Fts3Index *)&p->azColumn[nCol];
1379 memcpy(p->aIndex, aIndex, sizeof(struct Fts3Index) * nIndex);
1380 p->nIndex = nIndex;
1381 for(i=0; i<nIndex; i++){
1382 fts3HashInit(&p->aIndex[i].hPending, FTS3_HASH_STRING, 1);
1383 }
1384 p->abNotindexed = (u8 *)&p->aIndex[nIndex];
1385
1386 /* Fill in the zName and zDb fields of the vtab structure. */
1387 zCsr = (char *)&p->abNotindexed[nCol];
1388 p->zName = zCsr;
1389 memcpy(zCsr, argv[2], nName);
1390 zCsr += nName;
1391 p->zDb = zCsr;
1392 memcpy(zCsr, argv[1], nDb);
1393 zCsr += nDb;
1394
1395 /* Fill in the azColumn array */
1396 for(iCol=0; iCol<nCol; iCol++){
1397 char *z;
1398 int n = 0;
1399 z = (char *)sqlite3Fts3NextToken(aCol[iCol], &n);
1400 memcpy(zCsr, z, n);
1401 zCsr[n] = '\0';
1402 sqlite3Fts3Dequote(zCsr);
1403 p->azColumn[iCol] = zCsr;
1404 zCsr += n+1;
1405 assert( zCsr <= &((char *)p)[nByte] );
1406 }
1407
1408 /* Fill in the abNotindexed array */
1409 for(iCol=0; iCol<nCol; iCol++){
1410 int n = (int)strlen(p->azColumn[iCol]);
1411 for(i=0; i<nNotindexed; i++){
1412 char *zNot = azNotindexed[i];
1413 if( zNot && n==(int)strlen(zNot)
1414 && 0==sqlite3_strnicmp(p->azColumn[iCol], zNot, n)
1415 ){
1416 p->abNotindexed[iCol] = 1;
1417 sqlite3_free(zNot);
1418 azNotindexed[i] = 0;
1419 }
1420 }
1421 }
1422 for(i=0; i<nNotindexed; i++){
1423 if( azNotindexed[i] ){
1424 sqlite3Fts3ErrMsg(pzErr, "no such column: %s", azNotindexed[i]);
1425 rc = SQLITE_ERROR;
1426 }
1427 }
1428
1429 if( rc==SQLITE_OK && (zCompress==0)!=(zUncompress==0) ){
1430 char const *zMiss = (zCompress==0 ? "compress" : "uncompress");
1431 rc = SQLITE_ERROR;
1432 sqlite3Fts3ErrMsg(pzErr, "missing %s parameter in fts4 constructor", zMiss);
1433 }
1434 p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc);
1435 p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc);
1436 if( rc!=SQLITE_OK ) goto fts3_init_out;
1437
1438 /* If this is an xCreate call, create the underlying tables in the
1439 ** database. TODO: For xConnect(), it could verify that said tables exist.
1440 */
1441 if( isCreate ){
1442 rc = fts3CreateTables(p);
1443 }
1444
1445 /* Check to see if a legacy fts3 table has been "upgraded" by the
1446 ** addition of a %_stat table so that it can use incremental merge.
1447 */
1448 if( !isFts4 && !isCreate ){
1449 p->bHasStat = 2;
1450 }
1451
1452 /* Figure out the page-size for the database. This is required in order to
1453 ** estimate the cost of loading large doclists from the database. */
1454 fts3DatabasePageSize(&rc, p);
1455 p->nNodeSize = p->nPgsz-35;
1456
1457 /* Declare the table schema to SQLite. */
1458 fts3DeclareVtab(&rc, p);
1459
1460 fts3_init_out:
1461 sqlite3_free(zPrefix);
1462 sqlite3_free(aIndex);
1463 sqlite3_free(zCompress);
1464 sqlite3_free(zUncompress);
1465 sqlite3_free(zContent);
1466 sqlite3_free(zLanguageid);
1467 for(i=0; i<nNotindexed; i++) sqlite3_free(azNotindexed[i]);
1468 sqlite3_free((void *)aCol);
1469 sqlite3_free((void *)azNotindexed);
1470 if( rc!=SQLITE_OK ){
1471 if( p ){
1472 fts3DisconnectMethod((sqlite3_vtab *)p);
1473 }else if( pTokenizer ){
1474 pTokenizer->pModule->xDestroy(pTokenizer);
1475 }
1476 }else{
1477 assert( p->pSegments==0 );
1478 *ppVTab = &p->base;
1479 }
1480 return rc;
1481 }
1482
1483 /*
1484 ** The xConnect() and xCreate() methods for the virtual table. All the
1485 ** work is done in function fts3InitVtab().
1486 */
1487 static int fts3ConnectMethod(
1488 sqlite3 *db, /* Database connection */
1489 void *pAux, /* Pointer to tokenizer hash table */
1490 int argc, /* Number of elements in argv array */
1491 const char * const *argv, /* xCreate/xConnect argument array */
1492 sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
1493 char **pzErr /* OUT: sqlite3_malloc'd error message */
1494 ){
1495 return fts3InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr);
1496 }
1497 static int fts3CreateMethod(
1498 sqlite3 *db, /* Database connection */
1499 void *pAux, /* Pointer to tokenizer hash table */
1500 int argc, /* Number of elements in argv array */
1501 const char * const *argv, /* xCreate/xConnect argument array */
1502 sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
1503 char **pzErr /* OUT: sqlite3_malloc'd error message */
1504 ){
1505 return fts3InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr);
1506 }
1507
1508 /*
1509 ** Set the pIdxInfo->estimatedRows variable to nRow. Unless this
1510 ** extension is currently being used by a version of SQLite too old to
1511 ** support estimatedRows. In that case this function is a no-op.
1512 */
1513 static void fts3SetEstimatedRows(sqlite3_index_info *pIdxInfo, i64 nRow){
1514 #if SQLITE_VERSION_NUMBER>=3008002
1515 if( sqlite3_libversion_number()>=3008002 ){
1516 pIdxInfo->estimatedRows = nRow;
1517 }
1518 #endif
1519 }
1520
1521 /*
1522 ** Set the SQLITE_INDEX_SCAN_UNIQUE flag in pIdxInfo->flags. Unless this
1523 ** extension is currently being used by a version of SQLite too old to
1524 ** support index-info flags. In that case this function is a no-op.
1525 */
1526 static void fts3SetUniqueFlag(sqlite3_index_info *pIdxInfo){
1527 #if SQLITE_VERSION_NUMBER>=3008012
1528 if( sqlite3_libversion_number()>=3008012 ){
1529 pIdxInfo->idxFlags |= SQLITE_INDEX_SCAN_UNIQUE;
1530 }
1531 #endif
1532 }
1533
1534 /*
1535 ** Implementation of the xBestIndex method for FTS3 tables. There
1536 ** are three possible strategies, in order of preference:
1537 **
1538 ** 1. Direct lookup by rowid or docid.
1539 ** 2. Full-text search using a MATCH operator on a non-docid column.
1540 ** 3. Linear scan of %_content table.
1541 */
1542 static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
1543 Fts3Table *p = (Fts3Table *)pVTab;
1544 int i; /* Iterator variable */
1545 int iCons = -1; /* Index of constraint to use */
1546
1547 int iLangidCons = -1; /* Index of langid=x constraint, if present */
1548 int iDocidGe = -1; /* Index of docid>=x constraint, if present */
1549 int iDocidLe = -1; /* Index of docid<=x constraint, if present */
1550 int iIdx;
1551
1552 /* By default use a full table scan. This is an expensive option,
1553 ** so search through the constraints to see if a more efficient
1554 ** strategy is possible.
1555 */
1556 pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
1557 pInfo->estimatedCost = 5000000;
1558 for(i=0; i<pInfo->nConstraint; i++){
1559 int bDocid; /* True if this constraint is on docid */
1560 struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i];
1561 if( pCons->usable==0 ){
1562 if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
1563 /* There exists an unusable MATCH constraint. This means that if
1564 ** the planner does elect to use the results of this call as part
1565 ** of the overall query plan the user will see an "unable to use
1566 ** function MATCH in the requested context" error. To discourage
1567 ** this, return a very high cost here. */
1568 pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
1569 pInfo->estimatedCost = 1e50;
1570 fts3SetEstimatedRows(pInfo, ((sqlite3_int64)1) << 50);
1571 return SQLITE_OK;
1572 }
1573 continue;
1574 }
1575
1576 bDocid = (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1);
1577
1578 /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */
1579 if( iCons<0 && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ && bDocid ){
1580 pInfo->idxNum = FTS3_DOCID_SEARCH;
1581 pInfo->estimatedCost = 1.0;
1582 iCons = i;
1583 }
1584
1585 /* A MATCH constraint. Use a full-text search.
1586 **
1587 ** If there is more than one MATCH constraint available, use the first
1588 ** one encountered. If there is both a MATCH constraint and a direct
1589 ** rowid/docid lookup, prefer the MATCH strategy. This is done even
1590 ** though the rowid/docid lookup is faster than a MATCH query, selecting
1591 ** it would lead to an "unable to use function MATCH in the requested
1592 ** context" error.
1593 */
1594 if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH
1595 && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn
1596 ){
1597 pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn;
1598 pInfo->estimatedCost = 2.0;
1599 iCons = i;
1600 }
1601
1602 /* Equality constraint on the langid column */
1603 if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ
1604 && pCons->iColumn==p->nColumn + 2
1605 ){
1606 iLangidCons = i;
1607 }
1608
1609 if( bDocid ){
1610 switch( pCons->op ){
1611 case SQLITE_INDEX_CONSTRAINT_GE:
1612 case SQLITE_INDEX_CONSTRAINT_GT:
1613 iDocidGe = i;
1614 break;
1615
1616 case SQLITE_INDEX_CONSTRAINT_LE:
1617 case SQLITE_INDEX_CONSTRAINT_LT:
1618 iDocidLe = i;
1619 break;
1620 }
1621 }
1622 }
1623
1624 /* If using a docid=? or rowid=? strategy, set the UNIQUE flag. */
1625 if( pInfo->idxNum==FTS3_DOCID_SEARCH ) fts3SetUniqueFlag(pInfo);
1626
1627 iIdx = 1;
1628 if( iCons>=0 ){
1629 pInfo->aConstraintUsage[iCons].argvIndex = iIdx++;
1630 pInfo->aConstraintUsage[iCons].omit = 1;
1631 }
1632 if( iLangidCons>=0 ){
1633 pInfo->idxNum |= FTS3_HAVE_LANGID;
1634 pInfo->aConstraintUsage[iLangidCons].argvIndex = iIdx++;
1635 }
1636 if( iDocidGe>=0 ){
1637 pInfo->idxNum |= FTS3_HAVE_DOCID_GE;
1638 pInfo->aConstraintUsage[iDocidGe].argvIndex = iIdx++;
1639 }
1640 if( iDocidLe>=0 ){
1641 pInfo->idxNum |= FTS3_HAVE_DOCID_LE;
1642 pInfo->aConstraintUsage[iDocidLe].argvIndex = iIdx++;
1643 }
1644
1645 /* Regardless of the strategy selected, FTS can deliver rows in rowid (or
1646 ** docid) order. Both ascending and descending are possible.
1647 */
1648 if( pInfo->nOrderBy==1 ){
1649 struct sqlite3_index_orderby *pOrder = &pInfo->aOrderBy[0];
1650 if( pOrder->iColumn<0 || pOrder->iColumn==p->nColumn+1 ){
1651 if( pOrder->desc ){
1652 pInfo->idxStr = "DESC";
1653 }else{
1654 pInfo->idxStr = "ASC";
1655 }
1656 pInfo->orderByConsumed = 1;
1657 }
1658 }
1659
1660 assert( p->pSegments==0 );
1661 return SQLITE_OK;
1662 }
1663
1664 /*
1665 ** Implementation of xOpen method.
1666 */
1667 static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
1668 sqlite3_vtab_cursor *pCsr; /* Allocated cursor */
1669
1670 UNUSED_PARAMETER(pVTab);
1671
1672 /* Allocate a buffer large enough for an Fts3Cursor structure. If the
1673 ** allocation succeeds, zero it and return SQLITE_OK. Otherwise,
1674 ** if the allocation fails, return SQLITE_NOMEM.
1675 */
1676 *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor));
1677 if( !pCsr ){
1678 return SQLITE_NOMEM;
1679 }
1680 memset(pCsr, 0, sizeof(Fts3Cursor));
1681 return SQLITE_OK;
1682 }
1683
1684 /*
1685 ** Finalize the statement handle at pCsr->pStmt.
1686 **
1687 ** Or, if that statement handle is one created by fts3CursorSeekStmt(),
1688 ** and the Fts3Table.pSeekStmt slot is currently NULL, save the statement
1689 ** pointer there instead of finalizing it.
1690 */
1691 static void fts3CursorFinalizeStmt(Fts3Cursor *pCsr){
1692 if( pCsr->bSeekStmt ){
1693 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
1694 if( p->pSeekStmt==0 ){
1695 p->pSeekStmt = pCsr->pStmt;
1696 sqlite3_reset(pCsr->pStmt);
1697 pCsr->pStmt = 0;
1698 }
1699 pCsr->bSeekStmt = 0;
1700 }
1701 sqlite3_finalize(pCsr->pStmt);
1702 }
1703
1704 /*
1705 ** Close the cursor. For additional information see the documentation
1706 ** on the xClose method of the virtual table interface.
1707 */
1708 static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){
1709 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
1710 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
1711 fts3CursorFinalizeStmt(pCsr);
1712 sqlite3Fts3ExprFree(pCsr->pExpr);
1713 sqlite3Fts3FreeDeferredTokens(pCsr);
1714 sqlite3_free(pCsr->aDoclist);
1715 sqlite3Fts3MIBufferFree(pCsr->pMIBuffer);
1716 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
1717 sqlite3_free(pCsr);
1718 return SQLITE_OK;
1719 }
1720
1721 /*
1722 ** If pCsr->pStmt has not been prepared (i.e. if pCsr->pStmt==0), then
1723 ** compose and prepare an SQL statement of the form:
1724 **
1725 ** "SELECT <columns> FROM %_content WHERE rowid = ?"
1726 **
1727 ** (or the equivalent for a content=xxx table) and set pCsr->pStmt to
1728 ** it. If an error occurs, return an SQLite error code.
1729 */
1730 static int fts3CursorSeekStmt(Fts3Cursor *pCsr){
1731 int rc = SQLITE_OK;
1732 if( pCsr->pStmt==0 ){
1733 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
1734 char *zSql;
1735 if( p->pSeekStmt ){
1736 pCsr->pStmt = p->pSeekStmt;
1737 p->pSeekStmt = 0;
1738 }else{
1739 zSql = sqlite3_mprintf("SELECT %s WHERE rowid = ?", p->zReadExprlist);
1740 if( !zSql ) return SQLITE_NOMEM;
1741 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0);
1742 sqlite3_free(zSql);
1743 }
1744 if( rc==SQLITE_OK ) pCsr->bSeekStmt = 1;
1745 }
1746 return rc;
1747 }
1748
1749 /*
1750 ** Position the pCsr->pStmt statement so that it is on the row
1751 ** of the %_content table that contains the last match. Return
1752 ** SQLITE_OK on success.
1753 */
1754 static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){
1755 int rc = SQLITE_OK;
1756 if( pCsr->isRequireSeek ){
1757 rc = fts3CursorSeekStmt(pCsr);
1758 if( rc==SQLITE_OK ){
1759 sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId);
1760 pCsr->isRequireSeek = 0;
1761 if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){
1762 return SQLITE_OK;
1763 }else{
1764 rc = sqlite3_reset(pCsr->pStmt);
1765 if( rc==SQLITE_OK && ((Fts3Table *)pCsr->base.pVtab)->zContentTbl==0 ){
1766 /* If no row was found and no error has occurred, then the %_content
1767 ** table is missing a row that is present in the full-text index.
1768 ** The data structures are corrupt. */
1769 rc = FTS_CORRUPT_VTAB;
1770 pCsr->isEof = 1;
1771 }
1772 }
1773 }
1774 }
1775
1776 if( rc!=SQLITE_OK && pContext ){
1777 sqlite3_result_error_code(pContext, rc);
1778 }
1779 return rc;
1780 }
1781
1782 /*
1783 ** This function is used to process a single interior node when searching
1784 ** a b-tree for a term or term prefix. The node data is passed to this
1785 ** function via the zNode/nNode parameters. The term to search for is
1786 ** passed in zTerm/nTerm.
1787 **
1788 ** If piFirst is not NULL, then this function sets *piFirst to the blockid
1789 ** of the child node that heads the sub-tree that may contain the term.
1790 **
1791 ** If piLast is not NULL, then *piLast is set to the right-most child node
1792 ** that heads a sub-tree that may contain a term for which zTerm/nTerm is
1793 ** a prefix.
1794 **
1795 ** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK.
1796 */
1797 static int fts3ScanInteriorNode(
1798 const char *zTerm, /* Term to select leaves for */
1799 int nTerm, /* Size of term zTerm in bytes */
1800 const char *zNode, /* Buffer containing segment interior node */
1801 int nNode, /* Size of buffer at zNode */
1802 sqlite3_int64 *piFirst, /* OUT: Selected child node */
1803 sqlite3_int64 *piLast /* OUT: Selected child node */
1804 ){
1805 int rc = SQLITE_OK; /* Return code */
1806 const char *zCsr = zNode; /* Cursor to iterate through node */
1807 const char *zEnd = &zCsr[nNode];/* End of interior node buffer */
1808 char *zBuffer = 0; /* Buffer to load terms into */
1809 int nAlloc = 0; /* Size of allocated buffer */
1810 int isFirstTerm = 1; /* True when processing first term on page */
1811 sqlite3_int64 iChild; /* Block id of child node to descend to */
1812
1813 /* Skip over the 'height' varint that occurs at the start of every
1814 ** interior node. Then load the blockid of the left-child of the b-tree
1815 ** node into variable iChild.
1816 **
1817 ** Even if the data structure on disk is corrupted, this (reading two
1818 ** varints from the buffer) does not risk an overread. If zNode is a
1819 ** root node, then the buffer comes from a SELECT statement. SQLite does
1820 ** not make this guarantee explicitly, but in practice there are always
1821 ** either more than 20 bytes of allocated space following the nNode bytes of
1822 ** contents, or two zero bytes. Or, if the node is read from the %_segments
1823 ** table, then there are always 20 bytes of zeroed padding following the
1824 ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details).
1825 */
1826 zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
1827 zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
1828 if( zCsr>zEnd ){
1829 return FTS_CORRUPT_VTAB;
1830 }
1831
1832 while( zCsr<zEnd && (piFirst || piLast) ){
1833 int cmp; /* memcmp() result */
1834 int nSuffix; /* Size of term suffix */
1835 int nPrefix = 0; /* Size of term prefix */
1836 int nBuffer; /* Total term size */
1837
1838 /* Load the next term on the node into zBuffer. Use realloc() to expand
1839 ** the size of zBuffer if required. */
1840 if( !isFirstTerm ){
1841 zCsr += fts3GetVarint32(zCsr, &nPrefix);
1842 }
1843 isFirstTerm = 0;
1844 zCsr += fts3GetVarint32(zCsr, &nSuffix);
1845
1846 if( nPrefix<0 || nSuffix<0 || &zCsr[nSuffix]>zEnd ){
1847 rc = FTS_CORRUPT_VTAB;
1848 goto finish_scan;
1849 }
1850 if( nPrefix+nSuffix>nAlloc ){
1851 char *zNew;
1852 nAlloc = (nPrefix+nSuffix) * 2;
1853 zNew = (char *)sqlite3_realloc(zBuffer, nAlloc);
1854 if( !zNew ){
1855 rc = SQLITE_NOMEM;
1856 goto finish_scan;
1857 }
1858 zBuffer = zNew;
1859 }
1860 assert( zBuffer );
1861 memcpy(&zBuffer[nPrefix], zCsr, nSuffix);
1862 nBuffer = nPrefix + nSuffix;
1863 zCsr += nSuffix;
1864
1865 /* Compare the term we are searching for with the term just loaded from
1866 ** the interior node. If the specified term is greater than or equal
1867 ** to the term from the interior node, then all terms on the sub-tree
1868 ** headed by node iChild are smaller than zTerm. No need to search
1869 ** iChild.
1870 **
1871 ** If the interior node term is larger than the specified term, then
1872 ** the tree headed by iChild may contain the specified term.
1873 */
1874 cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer));
1875 if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){
1876 *piFirst = iChild;
1877 piFirst = 0;
1878 }
1879
1880 if( piLast && cmp<0 ){
1881 *piLast = iChild;
1882 piLast = 0;
1883 }
1884
1885 iChild++;
1886 };
1887
1888 if( piFirst ) *piFirst = iChild;
1889 if( piLast ) *piLast = iChild;
1890
1891 finish_scan:
1892 sqlite3_free(zBuffer);
1893 return rc;
1894 }
1895
1896
1897 /*
1898 ** The buffer pointed to by argument zNode (size nNode bytes) contains an
1899 ** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes)
1900 ** contains a term. This function searches the sub-tree headed by the zNode
1901 ** node for the range of leaf nodes that may contain the specified term
1902 ** or terms for which the specified term is a prefix.
1903 **
1904 ** If piLeaf is not NULL, then *piLeaf is set to the blockid of the
1905 ** left-most leaf node in the tree that may contain the specified term.
1906 ** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the
1907 ** right-most leaf node that may contain a term for which the specified
1908 ** term is a prefix.
1909 **
1910 ** It is possible that the range of returned leaf nodes does not contain
1911 ** the specified term or any terms for which it is a prefix. However, if the
1912 ** segment does contain any such terms, they are stored within the identified
1913 ** range. Because this function only inspects interior segment nodes (and
1914 ** never loads leaf nodes into memory), it is not possible to be sure.
1915 **
1916 ** If an error occurs, an error code other than SQLITE_OK is returned.
1917 */
1918 static int fts3SelectLeaf(
1919 Fts3Table *p, /* Virtual table handle */
1920 const char *zTerm, /* Term to select leaves for */
1921 int nTerm, /* Size of term zTerm in bytes */
1922 const char *zNode, /* Buffer containing segment interior node */
1923 int nNode, /* Size of buffer at zNode */
1924 sqlite3_int64 *piLeaf, /* Selected leaf node */
1925 sqlite3_int64 *piLeaf2 /* Selected leaf node */
1926 ){
1927 int rc = SQLITE_OK; /* Return code */
1928 int iHeight; /* Height of this node in tree */
1929
1930 assert( piLeaf || piLeaf2 );
1931
1932 fts3GetVarint32(zNode, &iHeight);
1933 rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2);
1934 assert( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) );
1935
1936 if( rc==SQLITE_OK && iHeight>1 ){
1937 char *zBlob = 0; /* Blob read from %_segments table */
1938 int nBlob = 0; /* Size of zBlob in bytes */
1939
1940 if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){
1941 rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob, 0);
1942 if( rc==SQLITE_OK ){
1943 rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0);
1944 }
1945 sqlite3_free(zBlob);
1946 piLeaf = 0;
1947 zBlob = 0;
1948 }
1949
1950 if( rc==SQLITE_OK ){
1951 rc = sqlite3Fts3ReadBlock(p, piLeaf?*piLeaf:*piLeaf2, &zBlob, &nBlob, 0);
1952 }
1953 if( rc==SQLITE_OK ){
1954 rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2);
1955 }
1956 sqlite3_free(zBlob);
1957 }
1958
1959 return rc;
1960 }
1961
1962 /*
1963 ** This function is used to create delta-encoded serialized lists of FTS3
1964 ** varints. Each call to this function appends a single varint to a list.
1965 */
1966 static void fts3PutDeltaVarint(
1967 char **pp, /* IN/OUT: Output pointer */
1968 sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */
1969 sqlite3_int64 iVal /* Write this value to the list */
1970 ){
1971 assert( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) );
1972 *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev);
1973 *piPrev = iVal;
1974 }
1975
1976 /*
1977 ** When this function is called, *ppPoslist is assumed to point to the
1978 ** start of a position-list. After it returns, *ppPoslist points to the
1979 ** first byte after the position-list.
1980 **
1981 ** A position list is list of positions (delta encoded) and columns for
1982 ** a single document record of a doclist. So, in other words, this
1983 ** routine advances *ppPoslist so that it points to the next docid in
1984 ** the doclist, or to the first byte past the end of the doclist.
1985 **
1986 ** If pp is not NULL, then the contents of the position list are copied
1987 ** to *pp. *pp is set to point to the first byte past the last byte copied
1988 ** before this function returns.
1989 */
1990 static void fts3PoslistCopy(char **pp, char **ppPoslist){
1991 char *pEnd = *ppPoslist;
1992 char c = 0;
1993
1994 /* The end of a position list is marked by a zero encoded as an FTS3
1995 ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by
1996 ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail
1997 ** of some other, multi-byte, value.
1998 **
1999 ** The following while-loop moves pEnd to point to the first byte that is not
2000 ** immediately preceded by a byte with the 0x80 bit set. Then increments
2001 ** pEnd once more so that it points to the byte immediately following the
2002 ** last byte in the position-list.
2003 */
2004 while( *pEnd | c ){
2005 c = *pEnd++ & 0x80;
2006 testcase( c!=0 && (*pEnd)==0 );
2007 }
2008 pEnd++; /* Advance past the POS_END terminator byte */
2009
2010 if( pp ){
2011 int n = (int)(pEnd - *ppPoslist);
2012 char *p = *pp;
2013 memcpy(p, *ppPoslist, n);
2014 p += n;
2015 *pp = p;
2016 }
2017 *ppPoslist = pEnd;
2018 }
2019
2020 /*
2021 ** When this function is called, *ppPoslist is assumed to point to the
2022 ** start of a column-list. After it returns, *ppPoslist points to the
2023 ** to the terminator (POS_COLUMN or POS_END) byte of the column-list.
2024 **
2025 ** A column-list is list of delta-encoded positions for a single column
2026 ** within a single document within a doclist.
2027 **
2028 ** The column-list is terminated either by a POS_COLUMN varint (1) or
2029 ** a POS_END varint (0). This routine leaves *ppPoslist pointing to
2030 ** the POS_COLUMN or POS_END that terminates the column-list.
2031 **
2032 ** If pp is not NULL, then the contents of the column-list are copied
2033 ** to *pp. *pp is set to point to the first byte past the last byte copied
2034 ** before this function returns. The POS_COLUMN or POS_END terminator
2035 ** is not copied into *pp.
2036 */
2037 static void fts3ColumnlistCopy(char **pp, char **ppPoslist){
2038 char *pEnd = *ppPoslist;
2039 char c = 0;
2040
2041 /* A column-list is terminated by either a 0x01 or 0x00 byte that is
2042 ** not part of a multi-byte varint.
2043 */
2044 while( 0xFE & (*pEnd | c) ){
2045 c = *pEnd++ & 0x80;
2046 testcase( c!=0 && ((*pEnd)&0xfe)==0 );
2047 }
2048 if( pp ){
2049 int n = (int)(pEnd - *ppPoslist);
2050 char *p = *pp;
2051 memcpy(p, *ppPoslist, n);
2052 p += n;
2053 *pp = p;
2054 }
2055 *ppPoslist = pEnd;
2056 }
2057
2058 /*
2059 ** Value used to signify the end of an position-list. This is safe because
2060 ** it is not possible to have a document with 2^31 terms.
2061 */
2062 #define POSITION_LIST_END 0x7fffffff
2063
2064 /*
2065 ** This function is used to help parse position-lists. When this function is
2066 ** called, *pp may point to the start of the next varint in the position-list
2067 ** being parsed, or it may point to 1 byte past the end of the position-list
2068 ** (in which case **pp will be a terminator bytes POS_END (0) or
2069 ** (1)).
2070 **
2071 ** If *pp points past the end of the current position-list, set *pi to
2072 ** POSITION_LIST_END and return. Otherwise, read the next varint from *pp,
2073 ** increment the current value of *pi by the value read, and set *pp to
2074 ** point to the next value before returning.
2075 **
2076 ** Before calling this routine *pi must be initialized to the value of
2077 ** the previous position, or zero if we are reading the first position
2078 ** in the position-list. Because positions are delta-encoded, the value
2079 ** of the previous position is needed in order to compute the value of
2080 ** the next position.
2081 */
2082 static void fts3ReadNextPos(
2083 char **pp, /* IN/OUT: Pointer into position-list buffer */
2084 sqlite3_int64 *pi /* IN/OUT: Value read from position-list */
2085 ){
2086 if( (**pp)&0xFE ){
2087 fts3GetDeltaVarint(pp, pi);
2088 *pi -= 2;
2089 }else{
2090 *pi = POSITION_LIST_END;
2091 }
2092 }
2093
2094 /*
2095 ** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by
2096 ** the value of iCol encoded as a varint to *pp. This will start a new
2097 ** column list.
2098 **
2099 ** Set *pp to point to the byte just after the last byte written before
2100 ** returning (do not modify it if iCol==0). Return the total number of bytes
2101 ** written (0 if iCol==0).
2102 */
2103 static int fts3PutColNumber(char **pp, int iCol){
2104 int n = 0; /* Number of bytes written */
2105 if( iCol ){
2106 char *p = *pp; /* Output pointer */
2107 n = 1 + sqlite3Fts3PutVarint(&p[1], iCol);
2108 *p = 0x01;
2109 *pp = &p[n];
2110 }
2111 return n;
2112 }
2113
2114 /*
2115 ** Compute the union of two position lists. The output written
2116 ** into *pp contains all positions of both *pp1 and *pp2 in sorted
2117 ** order and with any duplicates removed. All pointers are
2118 ** updated appropriately. The caller is responsible for insuring
2119 ** that there is enough space in *pp to hold the complete output.
2120 */
2121 static void fts3PoslistMerge(
2122 char **pp, /* Output buffer */
2123 char **pp1, /* Left input list */
2124 char **pp2 /* Right input list */
2125 ){
2126 char *p = *pp;
2127 char *p1 = *pp1;
2128 char *p2 = *pp2;
2129
2130 while( *p1 || *p2 ){
2131 int iCol1; /* The current column index in pp1 */
2132 int iCol2; /* The current column index in pp2 */
2133
2134 if( *p1==POS_COLUMN ) fts3GetVarint32(&p1[1], &iCol1);
2135 else if( *p1==POS_END ) iCol1 = POSITION_LIST_END;
2136 else iCol1 = 0;
2137
2138 if( *p2==POS_COLUMN ) fts3GetVarint32(&p2[1], &iCol2);
2139 else if( *p2==POS_END ) iCol2 = POSITION_LIST_END;
2140 else iCol2 = 0;
2141
2142 if( iCol1==iCol2 ){
2143 sqlite3_int64 i1 = 0; /* Last position from pp1 */
2144 sqlite3_int64 i2 = 0; /* Last position from pp2 */
2145 sqlite3_int64 iPrev = 0;
2146 int n = fts3PutColNumber(&p, iCol1);
2147 p1 += n;
2148 p2 += n;
2149
2150 /* At this point, both p1 and p2 point to the start of column-lists
2151 ** for the same column (the column with index iCol1 and iCol2).
2152 ** A column-list is a list of non-negative delta-encoded varints, each
2153 ** incremented by 2 before being stored. Each list is terminated by a
2154 ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists
2155 ** and writes the results to buffer p. p is left pointing to the byte
2156 ** after the list written. No terminator (POS_END or POS_COLUMN) is
2157 ** written to the output.
2158 */
2159 fts3GetDeltaVarint(&p1, &i1);
2160 fts3GetDeltaVarint(&p2, &i2);
2161 do {
2162 fts3PutDeltaVarint(&p, &iPrev, (i1<i2) ? i1 : i2);
2163 iPrev -= 2;
2164 if( i1==i2 ){
2165 fts3ReadNextPos(&p1, &i1);
2166 fts3ReadNextPos(&p2, &i2);
2167 }else if( i1<i2 ){
2168 fts3ReadNextPos(&p1, &i1);
2169 }else{
2170 fts3ReadNextPos(&p2, &i2);
2171 }
2172 }while( i1!=POSITION_LIST_END || i2!=POSITION_LIST_END );
2173 }else if( iCol1<iCol2 ){
2174 p1 += fts3PutColNumber(&p, iCol1);
2175 fts3ColumnlistCopy(&p, &p1);
2176 }else{
2177 p2 += fts3PutColNumber(&p, iCol2);
2178 fts3ColumnlistCopy(&p, &p2);
2179 }
2180 }
2181
2182 *p++ = POS_END;
2183 *pp = p;
2184 *pp1 = p1 + 1;
2185 *pp2 = p2 + 1;
2186 }
2187
2188 /*
2189 ** This function is used to merge two position lists into one. When it is
2190 ** called, *pp1 and *pp2 must both point to position lists. A position-list is
2191 ** the part of a doclist that follows each document id. For example, if a row
2192 ** contains:
2193 **
2194 ** 'a b c'|'x y z'|'a b b a'
2195 **
2196 ** Then the position list for this row for token 'b' would consist of:
2197 **
2198 ** 0x02 0x01 0x02 0x03 0x03 0x00
2199 **
2200 ** When this function returns, both *pp1 and *pp2 are left pointing to the
2201 ** byte following the 0x00 terminator of their respective position lists.
2202 **
2203 ** If isSaveLeft is 0, an entry is added to the output position list for
2204 ** each position in *pp2 for which there exists one or more positions in
2205 ** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e.
2206 ** when the *pp1 token appears before the *pp2 token, but not more than nToken
2207 ** slots before it.
2208 **
2209 ** e.g. nToken==1 searches for adjacent positions.
2210 */
2211 static int fts3PoslistPhraseMerge(
2212 char **pp, /* IN/OUT: Preallocated output buffer */
2213 int nToken, /* Maximum difference in token positions */
2214 int isSaveLeft, /* Save the left position */
2215 int isExact, /* If *pp1 is exactly nTokens before *pp2 */
2216 char **pp1, /* IN/OUT: Left input list */
2217 char **pp2 /* IN/OUT: Right input list */
2218 ){
2219 char *p = *pp;
2220 char *p1 = *pp1;
2221 char *p2 = *pp2;
2222 int iCol1 = 0;
2223 int iCol2 = 0;
2224
2225 /* Never set both isSaveLeft and isExact for the same invocation. */
2226 assert( isSaveLeft==0 || isExact==0 );
2227
2228 assert( p!=0 && *p1!=0 && *p2!=0 );
2229 if( *p1==POS_COLUMN ){
2230 p1++;
2231 p1 += fts3GetVarint32(p1, &iCol1);
2232 }
2233 if( *p2==POS_COLUMN ){
2234 p2++;
2235 p2 += fts3GetVarint32(p2, &iCol2);
2236 }
2237
2238 while( 1 ){
2239 if( iCol1==iCol2 ){
2240 char *pSave = p;
2241 sqlite3_int64 iPrev = 0;
2242 sqlite3_int64 iPos1 = 0;
2243 sqlite3_int64 iPos2 = 0;
2244
2245 if( iCol1 ){
2246 *p++ = POS_COLUMN;
2247 p += sqlite3Fts3PutVarint(p, iCol1);
2248 }
2249
2250 assert( *p1!=POS_END && *p1!=POS_COLUMN );
2251 assert( *p2!=POS_END && *p2!=POS_COLUMN );
2252 fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
2253 fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
2254
2255 while( 1 ){
2256 if( iPos2==iPos1+nToken
2257 || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken)
2258 ){
2259 sqlite3_int64 iSave;
2260 iSave = isSaveLeft ? iPos1 : iPos2;
2261 fts3PutDeltaVarint(&p, &iPrev, iSave+2); iPrev -= 2;
2262 pSave = 0;
2263 assert( p );
2264 }
2265 if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){
2266 if( (*p2&0xFE)==0 ) break;
2267 fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
2268 }else{
2269 if( (*p1&0xFE)==0 ) break;
2270 fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
2271 }
2272 }
2273
2274 if( pSave ){
2275 assert( pp && p );
2276 p = pSave;
2277 }
2278
2279 fts3ColumnlistCopy(0, &p1);
2280 fts3ColumnlistCopy(0, &p2);
2281 assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 );
2282 if( 0==*p1 || 0==*p2 ) break;
2283
2284 p1++;
2285 p1 += fts3GetVarint32(p1, &iCol1);
2286 p2++;
2287 p2 += fts3GetVarint32(p2, &iCol2);
2288 }
2289
2290 /* Advance pointer p1 or p2 (whichever corresponds to the smaller of
2291 ** iCol1 and iCol2) so that it points to either the 0x00 that marks the
2292 ** end of the position list, or the 0x01 that precedes the next
2293 ** column-number in the position list.
2294 */
2295 else if( iCol1<iCol2 ){
2296 fts3ColumnlistCopy(0, &p1);
2297 if( 0==*p1 ) break;
2298 p1++;
2299 p1 += fts3GetVarint32(p1, &iCol1);
2300 }else{
2301 fts3ColumnlistCopy(0, &p2);
2302 if( 0==*p2 ) break;
2303 p2++;
2304 p2 += fts3GetVarint32(p2, &iCol2);
2305 }
2306 }
2307
2308 fts3PoslistCopy(0, &p2);
2309 fts3PoslistCopy(0, &p1);
2310 *pp1 = p1;
2311 *pp2 = p2;
2312 if( *pp==p ){
2313 return 0;
2314 }
2315 *p++ = 0x00;
2316 *pp = p;
2317 return 1;
2318 }
2319
2320 /*
2321 ** Merge two position-lists as required by the NEAR operator. The argument
2322 ** position lists correspond to the left and right phrases of an expression
2323 ** like:
2324 **
2325 ** "phrase 1" NEAR "phrase number 2"
2326 **
2327 ** Position list *pp1 corresponds to the left-hand side of the NEAR
2328 ** expression and *pp2 to the right. As usual, the indexes in the position
2329 ** lists are the offsets of the last token in each phrase (tokens "1" and "2"
2330 ** in the example above).
2331 **
2332 ** The output position list - written to *pp - is a copy of *pp2 with those
2333 ** entries that are not sufficiently NEAR entries in *pp1 removed.
2334 */
2335 static int fts3PoslistNearMerge(
2336 char **pp, /* Output buffer */
2337 char *aTmp, /* Temporary buffer space */
2338 int nRight, /* Maximum difference in token positions */
2339 int nLeft, /* Maximum difference in token positions */
2340 char **pp1, /* IN/OUT: Left input list */
2341 char **pp2 /* IN/OUT: Right input list */
2342 ){
2343 char *p1 = *pp1;
2344 char *p2 = *pp2;
2345
2346 char *pTmp1 = aTmp;
2347 char *pTmp2;
2348 char *aTmp2;
2349 int res = 1;
2350
2351 fts3PoslistPhraseMerge(&pTmp1, nRight, 0, 0, pp1, pp2);
2352 aTmp2 = pTmp2 = pTmp1;
2353 *pp1 = p1;
2354 *pp2 = p2;
2355 fts3PoslistPhraseMerge(&pTmp2, nLeft, 1, 0, pp2, pp1);
2356 if( pTmp1!=aTmp && pTmp2!=aTmp2 ){
2357 fts3PoslistMerge(pp, &aTmp, &aTmp2);
2358 }else if( pTmp1!=aTmp ){
2359 fts3PoslistCopy(pp, &aTmp);
2360 }else if( pTmp2!=aTmp2 ){
2361 fts3PoslistCopy(pp, &aTmp2);
2362 }else{
2363 res = 0;
2364 }
2365
2366 return res;
2367 }
2368
2369 /*
2370 ** An instance of this function is used to merge together the (potentially
2371 ** large number of) doclists for each term that matches a prefix query.
2372 ** See function fts3TermSelectMerge() for details.
2373 */
2374 typedef struct TermSelect TermSelect;
2375 struct TermSelect {
2376 char *aaOutput[16]; /* Malloc'd output buffers */
2377 int anOutput[16]; /* Size each output buffer in bytes */
2378 };
2379
2380 /*
2381 ** This function is used to read a single varint from a buffer. Parameter
2382 ** pEnd points 1 byte past the end of the buffer. When this function is
2383 ** called, if *pp points to pEnd or greater, then the end of the buffer
2384 ** has been reached. In this case *pp is set to 0 and the function returns.
2385 **
2386 ** If *pp does not point to or past pEnd, then a single varint is read
2387 ** from *pp. *pp is then set to point 1 byte past the end of the read varint.
2388 **
2389 ** If bDescIdx is false, the value read is added to *pVal before returning.
2390 ** If it is true, the value read is subtracted from *pVal before this
2391 ** function returns.
2392 */
2393 static void fts3GetDeltaVarint3(
2394 char **pp, /* IN/OUT: Point to read varint from */
2395 char *pEnd, /* End of buffer */
2396 int bDescIdx, /* True if docids are descending */
2397 sqlite3_int64 *pVal /* IN/OUT: Integer value */
2398 ){
2399 if( *pp>=pEnd ){
2400 *pp = 0;
2401 }else{
2402 sqlite3_int64 iVal;
2403 *pp += sqlite3Fts3GetVarint(*pp, &iVal);
2404 if( bDescIdx ){
2405 *pVal -= iVal;
2406 }else{
2407 *pVal += iVal;
2408 }
2409 }
2410 }
2411
2412 /*
2413 ** This function is used to write a single varint to a buffer. The varint
2414 ** is written to *pp. Before returning, *pp is set to point 1 byte past the
2415 ** end of the value written.
2416 **
2417 ** If *pbFirst is zero when this function is called, the value written to
2418 ** the buffer is that of parameter iVal.
2419 **
2420 ** If *pbFirst is non-zero when this function is called, then the value
2421 ** written is either (iVal-*piPrev) (if bDescIdx is zero) or (*piPrev-iVal)
2422 ** (if bDescIdx is non-zero).
2423 **
2424 ** Before returning, this function always sets *pbFirst to 1 and *piPrev
2425 ** to the value of parameter iVal.
2426 */
2427 static void fts3PutDeltaVarint3(
2428 char **pp, /* IN/OUT: Output pointer */
2429 int bDescIdx, /* True for descending docids */
2430 sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */
2431 int *pbFirst, /* IN/OUT: True after first int written */
2432 sqlite3_int64 iVal /* Write this value to the list */
2433 ){
2434 sqlite3_int64 iWrite;
2435 if( bDescIdx==0 || *pbFirst==0 ){
2436 iWrite = iVal - *piPrev;
2437 }else{
2438 iWrite = *piPrev - iVal;
2439 }
2440 assert( *pbFirst || *piPrev==0 );
2441 assert( *pbFirst==0 || iWrite>0 );
2442 *pp += sqlite3Fts3PutVarint(*pp, iWrite);
2443 *piPrev = iVal;
2444 *pbFirst = 1;
2445 }
2446
2447
2448 /*
2449 ** This macro is used by various functions that merge doclists. The two
2450 ** arguments are 64-bit docid values. If the value of the stack variable
2451 ** bDescDoclist is 0 when this macro is invoked, then it returns (i1-i2).
2452 ** Otherwise, (i2-i1).
2453 **
2454 ** Using this makes it easier to write code that can merge doclists that are
2455 ** sorted in either ascending or descending order.
2456 */
2457 #define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i1-i2))
2458
2459 /*
2460 ** This function does an "OR" merge of two doclists (output contains all
2461 ** positions contained in either argument doclist). If the docids in the
2462 ** input doclists are sorted in ascending order, parameter bDescDoclist
2463 ** should be false. If they are sorted in ascending order, it should be
2464 ** passed a non-zero value.
2465 **
2466 ** If no error occurs, *paOut is set to point at an sqlite3_malloc'd buffer
2467 ** containing the output doclist and SQLITE_OK is returned. In this case
2468 ** *pnOut is set to the number of bytes in the output doclist.
2469 **
2470 ** If an error occurs, an SQLite error code is returned. The output values
2471 ** are undefined in this case.
2472 */
2473 static int fts3DoclistOrMerge(
2474 int bDescDoclist, /* True if arguments are desc */
2475 char *a1, int n1, /* First doclist */
2476 char *a2, int n2, /* Second doclist */
2477 char **paOut, int *pnOut /* OUT: Malloc'd doclist */
2478 ){
2479 sqlite3_int64 i1 = 0;
2480 sqlite3_int64 i2 = 0;
2481 sqlite3_int64 iPrev = 0;
2482 char *pEnd1 = &a1[n1];
2483 char *pEnd2 = &a2[n2];
2484 char *p1 = a1;
2485 char *p2 = a2;
2486 char *p;
2487 char *aOut;
2488 int bFirstOut = 0;
2489
2490 *paOut = 0;
2491 *pnOut = 0;
2492
2493 /* Allocate space for the output. Both the input and output doclists
2494 ** are delta encoded. If they are in ascending order (bDescDoclist==0),
2495 ** then the first docid in each list is simply encoded as a varint. For
2496 ** each subsequent docid, the varint stored is the difference between the
2497 ** current and previous docid (a positive number - since the list is in
2498 ** ascending order).
2499 **
2500 ** The first docid written to the output is therefore encoded using the
2501 ** same number of bytes as it is in whichever of the input lists it is
2502 ** read from. And each subsequent docid read from the same input list
2503 ** consumes either the same or less bytes as it did in the input (since
2504 ** the difference between it and the previous value in the output must
2505 ** be a positive value less than or equal to the delta value read from
2506 ** the input list). The same argument applies to all but the first docid
2507 ** read from the 'other' list. And to the contents of all position lists
2508 ** that will be copied and merged from the input to the output.
2509 **
2510 ** However, if the first docid copied to the output is a negative number,
2511 ** then the encoding of the first docid from the 'other' input list may
2512 ** be larger in the output than it was in the input (since the delta value
2513 ** may be a larger positive integer than the actual docid).
2514 **
2515 ** The space required to store the output is therefore the sum of the
2516 ** sizes of the two inputs, plus enough space for exactly one of the input
2517 ** docids to grow.
2518 **
2519 ** A symetric argument may be made if the doclists are in descending
2520 ** order.
2521 */
2522 aOut = sqlite3_malloc(n1+n2+FTS3_VARINT_MAX-1);
2523 if( !aOut ) return SQLITE_NOMEM;
2524
2525 p = aOut;
2526 fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
2527 fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);
2528 while( p1 || p2 ){
2529 sqlite3_int64 iDiff = DOCID_CMP(i1, i2);
2530
2531 if( p2 && p1 && iDiff==0 ){
2532 fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
2533 fts3PoslistMerge(&p, &p1, &p2);
2534 fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
2535 fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
2536 }else if( !p2 || (p1 && iDiff<0) ){
2537 fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
2538 fts3PoslistCopy(&p, &p1);
2539 fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
2540 }else{
2541 fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i2);
2542 fts3PoslistCopy(&p, &p2);
2543 fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
2544 }
2545 }
2546
2547 *paOut = aOut;
2548 *pnOut = (int)(p-aOut);
2549 assert( *pnOut<=n1+n2+FTS3_VARINT_MAX-1 );
2550 return SQLITE_OK;
2551 }
2552
2553 /*
2554 ** This function does a "phrase" merge of two doclists. In a phrase merge,
2555 ** the output contains a copy of each position from the right-hand input
2556 ** doclist for which there is a position in the left-hand input doclist
2557 ** exactly nDist tokens before it.
2558 **
2559 ** If the docids in the input doclists are sorted in ascending order,
2560 ** parameter bDescDoclist should be false. If they are sorted in ascending
2561 ** order, it should be passed a non-zero value.
2562 **
2563 ** The right-hand input doclist is overwritten by this function.
2564 */
2565 static int fts3DoclistPhraseMerge(
2566 int bDescDoclist, /* True if arguments are desc */
2567 int nDist, /* Distance from left to right (1=adjacent) */
2568 char *aLeft, int nLeft, /* Left doclist */
2569 char **paRight, int *pnRight /* IN/OUT: Right/output doclist */
2570 ){
2571 sqlite3_int64 i1 = 0;
2572 sqlite3_int64 i2 = 0;
2573 sqlite3_int64 iPrev = 0;
2574 char *aRight = *paRight;
2575 char *pEnd1 = &aLeft[nLeft];
2576 char *pEnd2 = &aRight[*pnRight];
2577 char *p1 = aLeft;
2578 char *p2 = aRight;
2579 char *p;
2580 int bFirstOut = 0;
2581 char *aOut;
2582
2583 assert( nDist>0 );
2584 if( bDescDoclist ){
2585 aOut = sqlite3_malloc(*pnRight + FTS3_VARINT_MAX);
2586 if( aOut==0 ) return SQLITE_NOMEM;
2587 }else{
2588 aOut = aRight;
2589 }
2590 p = aOut;
2591
2592 fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
2593 fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);
2594
2595 while( p1 && p2 ){
2596 sqlite3_int64 iDiff = DOCID_CMP(i1, i2);
2597 if( iDiff==0 ){
2598 char *pSave = p;
2599 sqlite3_int64 iPrevSave = iPrev;
2600 int bFirstOutSave = bFirstOut;
2601
2602 fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
2603 if( 0==fts3PoslistPhraseMerge(&p, nDist, 0, 1, &p1, &p2) ){
2604 p = pSave;
2605 iPrev = iPrevSave;
2606 bFirstOut = bFirstOutSave;
2607 }
2608 fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
2609 fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
2610 }else if( iDiff<0 ){
2611 fts3PoslistCopy(0, &p1);
2612 fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
2613 }else{
2614 fts3PoslistCopy(0, &p2);
2615 fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
2616 }
2617 }
2618
2619 *pnRight = (int)(p - aOut);
2620 if( bDescDoclist ){
2621 sqlite3_free(aRight);
2622 *paRight = aOut;
2623 }
2624
2625 return SQLITE_OK;
2626 }
2627
2628 /*
2629 ** Argument pList points to a position list nList bytes in size. This
2630 ** function checks to see if the position list contains any entries for
2631 ** a token in position 0 (of any column). If so, it writes argument iDelta
2632 ** to the output buffer pOut, followed by a position list consisting only
2633 ** of the entries from pList at position 0, and terminated by an 0x00 byte.
2634 ** The value returned is the number of bytes written to pOut (if any).
2635 */
2636 int sqlite3Fts3FirstFilter(
2637 sqlite3_int64 iDelta, /* Varint that may be written to pOut */
2638 char *pList, /* Position list (no 0x00 term) */
2639 int nList, /* Size of pList in bytes */
2640 char *pOut /* Write output here */
2641 ){
2642 int nOut = 0;
2643 int bWritten = 0; /* True once iDelta has been written */
2644 char *p = pList;
2645 char *pEnd = &pList[nList];
2646
2647 if( *p!=0x01 ){
2648 if( *p==0x02 ){
2649 nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
2650 pOut[nOut++] = 0x02;
2651 bWritten = 1;
2652 }
2653 fts3ColumnlistCopy(0, &p);
2654 }
2655
2656 while( p<pEnd && *p==0x01 ){
2657 sqlite3_int64 iCol;
2658 p++;
2659 p += sqlite3Fts3GetVarint(p, &iCol);
2660 if( *p==0x02 ){
2661 if( bWritten==0 ){
2662 nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
2663 bWritten = 1;
2664 }
2665 pOut[nOut++] = 0x01;
2666 nOut += sqlite3Fts3PutVarint(&pOut[nOut], iCol);
2667 pOut[nOut++] = 0x02;
2668 }
2669 fts3ColumnlistCopy(0, &p);
2670 }
2671 if( bWritten ){
2672 pOut[nOut++] = 0x00;
2673 }
2674
2675 return nOut;
2676 }
2677
2678
2679 /*
2680 ** Merge all doclists in the TermSelect.aaOutput[] array into a single
2681 ** doclist stored in TermSelect.aaOutput[0]. If successful, delete all
2682 ** other doclists (except the aaOutput[0] one) and return SQLITE_OK.
2683 **
2684 ** If an OOM error occurs, return SQLITE_NOMEM. In this case it is
2685 ** the responsibility of the caller to free any doclists left in the
2686 ** TermSelect.aaOutput[] array.
2687 */
2688 static int fts3TermSelectFinishMerge(Fts3Table *p, TermSelect *pTS){
2689 char *aOut = 0;
2690 int nOut = 0;
2691 int i;
2692
2693 /* Loop through the doclists in the aaOutput[] array. Merge them all
2694 ** into a single doclist.
2695 */
2696 for(i=0; i<SizeofArray(pTS->aaOutput); i++){
2697 if( pTS->aaOutput[i] ){
2698 if( !aOut ){
2699 aOut = pTS->aaOutput[i];
2700 nOut = pTS->anOutput[i];
2701 pTS->aaOutput[i] = 0;
2702 }else{
2703 int nNew;
2704 char *aNew;
2705
2706 int rc = fts3DoclistOrMerge(p->bDescIdx,
2707 pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, &aNew, &nNew
2708 );
2709 if( rc!=SQLITE_OK ){
2710 sqlite3_free(aOut);
2711 return rc;
2712 }
2713
2714 sqlite3_free(pTS->aaOutput[i]);
2715 sqlite3_free(aOut);
2716 pTS->aaOutput[i] = 0;
2717 aOut = aNew;
2718 nOut = nNew;
2719 }
2720 }
2721 }
2722
2723 pTS->aaOutput[0] = aOut;
2724 pTS->anOutput[0] = nOut;
2725 return SQLITE_OK;
2726 }
2727
2728 /*
2729 ** Merge the doclist aDoclist/nDoclist into the TermSelect object passed
2730 ** as the first argument. The merge is an "OR" merge (see function
2731 ** fts3DoclistOrMerge() for details).
2732 **
2733 ** This function is called with the doclist for each term that matches
2734 ** a queried prefix. It merges all these doclists into one, the doclist
2735 ** for the specified prefix. Since there can be a very large number of
2736 ** doclists to merge, the merging is done pair-wise using the TermSelect
2737 ** object.
2738 **
2739 ** This function returns SQLITE_OK if the merge is successful, or an
2740 ** SQLite error code (SQLITE_NOMEM) if an error occurs.
2741 */
2742 static int fts3TermSelectMerge(
2743 Fts3Table *p, /* FTS table handle */
2744 TermSelect *pTS, /* TermSelect object to merge into */
2745 char *aDoclist, /* Pointer to doclist */
2746 int nDoclist /* Size of aDoclist in bytes */
2747 ){
2748 if( pTS->aaOutput[0]==0 ){
2749 /* If this is the first term selected, copy the doclist to the output
2750 ** buffer using memcpy().
2751 **
2752 ** Add FTS3_VARINT_MAX bytes of unused space to the end of the
2753 ** allocation. This is so as to ensure that the buffer is big enough
2754 ** to hold the current doclist AND'd with any other doclist. If the
2755 ** doclists are stored in order=ASC order, this padding would not be
2756 ** required (since the size of [doclistA AND doclistB] is always less
2757 ** than or equal to the size of [doclistA] in that case). But this is
2758 ** not true for order=DESC. For example, a doclist containing (1, -1)
2759 ** may be smaller than (-1), as in the first example the -1 may be stored
2760 ** as a single-byte delta, whereas in the second it must be stored as a
2761 ** FTS3_VARINT_MAX byte varint.
2762 **
2763 ** Similar padding is added in the fts3DoclistOrMerge() function.
2764 */
2765 pTS->aaOutput[0] = sqlite3_malloc(nDoclist + FTS3_VARINT_MAX + 1);
2766 pTS->anOutput[0] = nDoclist;
2767 if( pTS->aaOutput[0] ){
2768 memcpy(pTS->aaOutput[0], aDoclist, nDoclist);
2769 }else{
2770 return SQLITE_NOMEM;
2771 }
2772 }else{
2773 char *aMerge = aDoclist;
2774 int nMerge = nDoclist;
2775 int iOut;
2776
2777 for(iOut=0; iOut<SizeofArray(pTS->aaOutput); iOut++){
2778 if( pTS->aaOutput[iOut]==0 ){
2779 assert( iOut>0 );
2780 pTS->aaOutput[iOut] = aMerge;
2781 pTS->anOutput[iOut] = nMerge;
2782 break;
2783 }else{
2784 char *aNew;
2785 int nNew;
2786
2787 int rc = fts3DoclistOrMerge(p->bDescIdx, aMerge, nMerge,
2788 pTS->aaOutput[iOut], pTS->anOutput[iOut], &aNew, &nNew
2789 );
2790 if( rc!=SQLITE_OK ){
2791 if( aMerge!=aDoclist ) sqlite3_free(aMerge);
2792 return rc;
2793 }
2794
2795 if( aMerge!=aDoclist ) sqlite3_free(aMerge);
2796 sqlite3_free(pTS->aaOutput[iOut]);
2797 pTS->aaOutput[iOut] = 0;
2798
2799 aMerge = aNew;
2800 nMerge = nNew;
2801 if( (iOut+1)==SizeofArray(pTS->aaOutput) ){
2802 pTS->aaOutput[iOut] = aMerge;
2803 pTS->anOutput[iOut] = nMerge;
2804 }
2805 }
2806 }
2807 }
2808 return SQLITE_OK;
2809 }
2810
2811 /*
2812 ** Append SegReader object pNew to the end of the pCsr->apSegment[] array.
2813 */
2814 static int fts3SegReaderCursorAppend(
2815 Fts3MultiSegReader *pCsr,
2816 Fts3SegReader *pNew
2817 ){
2818 if( (pCsr->nSegment%16)==0 ){
2819 Fts3SegReader **apNew;
2820 int nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*);
2821 apNew = (Fts3SegReader **)sqlite3_realloc(pCsr->apSegment, nByte);
2822 if( !apNew ){
2823 sqlite3Fts3SegReaderFree(pNew);
2824 return SQLITE_NOMEM;
2825 }
2826 pCsr->apSegment = apNew;
2827 }
2828 pCsr->apSegment[pCsr->nSegment++] = pNew;
2829 return SQLITE_OK;
2830 }
2831
2832 /*
2833 ** Add seg-reader objects to the Fts3MultiSegReader object passed as the
2834 ** 8th argument.
2835 **
2836 ** This function returns SQLITE_OK if successful, or an SQLite error code
2837 ** otherwise.
2838 */
2839 static int fts3SegReaderCursor(
2840 Fts3Table *p, /* FTS3 table handle */
2841 int iLangid, /* Language id */
2842 int iIndex, /* Index to search (from 0 to p->nIndex-1) */
2843 int iLevel, /* Level of segments to scan */
2844 const char *zTerm, /* Term to query for */
2845 int nTerm, /* Size of zTerm in bytes */
2846 int isPrefix, /* True for a prefix search */
2847 int isScan, /* True to scan from zTerm to EOF */
2848 Fts3MultiSegReader *pCsr /* Cursor object to populate */
2849 ){
2850 int rc = SQLITE_OK; /* Error code */
2851 sqlite3_stmt *pStmt = 0; /* Statement to iterate through segments */
2852 int rc2; /* Result of sqlite3_reset() */
2853
2854 /* If iLevel is less than 0 and this is not a scan, include a seg-reader
2855 ** for the pending-terms. If this is a scan, then this call must be being
2856 ** made by an fts4aux module, not an FTS table. In this case calling
2857 ** Fts3SegReaderPending might segfault, as the data structures used by
2858 ** fts4aux are not completely populated. So it's easiest to filter these
2859 ** calls out here. */
2860 if( iLevel<0 && p->aIndex ){
2861 Fts3SegReader *pSeg = 0;
2862 rc = sqlite3Fts3SegReaderPending(p, iIndex, zTerm, nTerm, isPrefix||isScan, &pSeg);
2863 if( rc==SQLITE_OK && pSeg ){
2864 rc = fts3SegReaderCursorAppend(pCsr, pSeg);
2865 }
2866 }
2867
2868 if( iLevel!=FTS3_SEGCURSOR_PENDING ){
2869 if( rc==SQLITE_OK ){
2870 rc = sqlite3Fts3AllSegdirs(p, iLangid, iIndex, iLevel, &pStmt);
2871 }
2872
2873 while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
2874 Fts3SegReader *pSeg = 0;
2875
2876 /* Read the values returned by the SELECT into local variables. */
2877 sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1);
2878 sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2);
2879 sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3);
2880 int nRoot = sqlite3_column_bytes(pStmt, 4);
2881 char const *zRoot = sqlite3_column_blob(pStmt, 4);
2882
2883 /* If zTerm is not NULL, and this segment is not stored entirely on its
2884 ** root node, the range of leaves scanned can be reduced. Do this. */
2885 if( iStartBlock && zTerm ){
2886 sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0);
2887 rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi);
2888 if( rc!=SQLITE_OK ) goto finished;
2889 if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock;
2890 }
2891
2892 rc = sqlite3Fts3SegReaderNew(pCsr->nSegment+1,
2893 (isPrefix==0 && isScan==0),
2894 iStartBlock, iLeavesEndBlock,
2895 iEndBlock, zRoot, nRoot, &pSeg
2896 );
2897 if( rc!=SQLITE_OK ) goto finished;
2898 rc = fts3SegReaderCursorAppend(pCsr, pSeg);
2899 }
2900 }
2901
2902 finished:
2903 rc2 = sqlite3_reset(pStmt);
2904 if( rc==SQLITE_DONE ) rc = rc2;
2905
2906 return rc;
2907 }
2908
2909 /*
2910 ** Set up a cursor object for iterating through a full-text index or a
2911 ** single level therein.
2912 */
2913 int sqlite3Fts3SegReaderCursor(
2914 Fts3Table *p, /* FTS3 table handle */
2915 int iLangid, /* Language-id to search */
2916 int iIndex, /* Index to search (from 0 to p->nIndex-1) */
2917 int iLevel, /* Level of segments to scan */
2918 const char *zTerm, /* Term to query for */
2919 int nTerm, /* Size of zTerm in bytes */
2920 int isPrefix, /* True for a prefix search */
2921 int isScan, /* True to scan from zTerm to EOF */
2922 Fts3MultiSegReader *pCsr /* Cursor object to populate */
2923 ){
2924 assert( iIndex>=0 && iIndex<p->nIndex );
2925 assert( iLevel==FTS3_SEGCURSOR_ALL
2926 || iLevel==FTS3_SEGCURSOR_PENDING
2927 || iLevel>=0
2928 );
2929 assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
2930 assert( FTS3_SEGCURSOR_ALL<0 && FTS3_SEGCURSOR_PENDING<0 );
2931 assert( isPrefix==0 || isScan==0 );
2932
2933 memset(pCsr, 0, sizeof(Fts3MultiSegReader));
2934 return fts3SegReaderCursor(
2935 p, iLangid, iIndex, iLevel, zTerm, nTerm, isPrefix, isScan, pCsr
2936 );
2937 }
2938
2939 /*
2940 ** In addition to its current configuration, have the Fts3MultiSegReader
2941 ** passed as the 4th argument also scan the doclist for term zTerm/nTerm.
2942 **
2943 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
2944 */
2945 static int fts3SegReaderCursorAddZero(
2946 Fts3Table *p, /* FTS virtual table handle */
2947 int iLangid,
2948 const char *zTerm, /* Term to scan doclist of */
2949 int nTerm, /* Number of bytes in zTerm */
2950 Fts3MultiSegReader *pCsr /* Fts3MultiSegReader to modify */
2951 ){
2952 return fts3SegReaderCursor(p,
2953 iLangid, 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0,pCsr
2954 );
2955 }
2956
2957 /*
2958 ** Open an Fts3MultiSegReader to scan the doclist for term zTerm/nTerm. Or,
2959 ** if isPrefix is true, to scan the doclist for all terms for which
2960 ** zTerm/nTerm is a prefix. If successful, return SQLITE_OK and write
2961 ** a pointer to the new Fts3MultiSegReader to *ppSegcsr. Otherwise, return
2962 ** an SQLite error code.
2963 **
2964 ** It is the responsibility of the caller to free this object by eventually
2965 ** passing it to fts3SegReaderCursorFree()
2966 **
2967 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
2968 ** Output parameter *ppSegcsr is set to 0 if an error occurs.
2969 */
2970 static int fts3TermSegReaderCursor(
2971 Fts3Cursor *pCsr, /* Virtual table cursor handle */
2972 const char *zTerm, /* Term to query for */
2973 int nTerm, /* Size of zTerm in bytes */
2974 int isPrefix, /* True for a prefix search */
2975 Fts3MultiSegReader **ppSegcsr /* OUT: Allocated seg-reader cursor */
2976 ){
2977 Fts3MultiSegReader *pSegcsr; /* Object to allocate and return */
2978 int rc = SQLITE_NOMEM; /* Return code */
2979
2980 pSegcsr = sqlite3_malloc(sizeof(Fts3MultiSegReader));
2981 if( pSegcsr ){
2982 int i;
2983 int bFound = 0; /* True once an index has been found */
2984 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
2985
2986 if( isPrefix ){
2987 for(i=1; bFound==0 && i<p->nIndex; i++){
2988 if( p->aIndex[i].nPrefix==nTerm ){
2989 bFound = 1;
2990 rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
2991 i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0, pSegcsr
2992 );
2993 pSegcsr->bLookup = 1;
2994 }
2995 }
2996
2997 for(i=1; bFound==0 && i<p->nIndex; i++){
2998 if( p->aIndex[i].nPrefix==nTerm+1 ){
2999 bFound = 1;
3000 rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
3001 i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 1, 0, pSegcsr
3002 );
3003 if( rc==SQLITE_OK ){
3004 rc = fts3SegReaderCursorAddZero(
3005 p, pCsr->iLangid, zTerm, nTerm, pSegcsr
3006 );
3007 }
3008 }
3009 }
3010 }
3011
3012 if( bFound==0 ){
3013 rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
3014 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr
3015 );
3016 pSegcsr->bLookup = !isPrefix;
3017 }
3018 }
3019
3020 *ppSegcsr = pSegcsr;
3021 return rc;
3022 }
3023
3024 /*
3025 ** Free an Fts3MultiSegReader allocated by fts3TermSegReaderCursor().
3026 */
3027 static void fts3SegReaderCursorFree(Fts3MultiSegReader *pSegcsr){
3028 sqlite3Fts3SegReaderFinish(pSegcsr);
3029 sqlite3_free(pSegcsr);
3030 }
3031
3032 /*
3033 ** This function retrieves the doclist for the specified term (or term
3034 ** prefix) from the database.
3035 */
3036 static int fts3TermSelect(
3037 Fts3Table *p, /* Virtual table handle */
3038 Fts3PhraseToken *pTok, /* Token to query for */
3039 int iColumn, /* Column to query (or -ve for all columns) */
3040 int *pnOut, /* OUT: Size of buffer at *ppOut */
3041 char **ppOut /* OUT: Malloced result buffer */
3042 ){
3043 int rc; /* Return code */
3044 Fts3MultiSegReader *pSegcsr; /* Seg-reader cursor for this term */
3045 TermSelect tsc; /* Object for pair-wise doclist merging */
3046 Fts3SegFilter filter; /* Segment term filter configuration */
3047
3048 pSegcsr = pTok->pSegcsr;
3049 memset(&tsc, 0, sizeof(TermSelect));
3050
3051 filter.flags = FTS3_SEGMENT_IGNORE_EMPTY | FTS3_SEGMENT_REQUIRE_POS
3052 | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0)
3053 | (pTok->bFirst ? FTS3_SEGMENT_FIRST : 0)
3054 | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0);
3055 filter.iCol = iColumn;
3056 filter.zTerm = pTok->z;
3057 filter.nTerm = pTok->n;
3058
3059 rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter);
3060 while( SQLITE_OK==rc
3061 && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr))
3062 ){
3063 rc = fts3TermSelectMerge(p, &tsc, pSegcsr->aDoclist, pSegcsr->nDoclist);
3064 }
3065
3066 if( rc==SQLITE_OK ){
3067 rc = fts3TermSelectFinishMerge(p, &tsc);
3068 }
3069 if( rc==SQLITE_OK ){
3070 *ppOut = tsc.aaOutput[0];
3071 *pnOut = tsc.anOutput[0];
3072 }else{
3073 int i;
3074 for(i=0; i<SizeofArray(tsc.aaOutput); i++){
3075 sqlite3_free(tsc.aaOutput[i]);
3076 }
3077 }
3078
3079 fts3SegReaderCursorFree(pSegcsr);
3080 pTok->pSegcsr = 0;
3081 return rc;
3082 }
3083
3084 /*
3085 ** This function counts the total number of docids in the doclist stored
3086 ** in buffer aList[], size nList bytes.
3087 **
3088 ** If the isPoslist argument is true, then it is assumed that the doclist
3089 ** contains a position-list following each docid. Otherwise, it is assumed
3090 ** that the doclist is simply a list of docids stored as delta encoded
3091 ** varints.
3092 */
3093 static int fts3DoclistCountDocids(char *aList, int nList){
3094 int nDoc = 0; /* Return value */
3095 if( aList ){
3096 char *aEnd = &aList[nList]; /* Pointer to one byte after EOF */
3097 char *p = aList; /* Cursor */
3098 while( p<aEnd ){
3099 nDoc++;
3100 while( (*p++)&0x80 ); /* Skip docid varint */
3101 fts3PoslistCopy(0, &p); /* Skip over position list */
3102 }
3103 }
3104
3105 return nDoc;
3106 }
3107
3108 /*
3109 ** Advance the cursor to the next row in the %_content table that
3110 ** matches the search criteria. For a MATCH search, this will be
3111 ** the next row that matches. For a full-table scan, this will be
3112 ** simply the next row in the %_content table. For a docid lookup,
3113 ** this routine simply sets the EOF flag.
3114 **
3115 ** Return SQLITE_OK if nothing goes wrong. SQLITE_OK is returned
3116 ** even if we reach end-of-file. The fts3EofMethod() will be called
3117 ** subsequently to determine whether or not an EOF was hit.
3118 */
3119 static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){
3120 int rc;
3121 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
3122 if( pCsr->eSearch==FTS3_DOCID_SEARCH || pCsr->eSearch==FTS3_FULLSCAN_SEARCH ){
3123 if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){
3124 pCsr->isEof = 1;
3125 rc = sqlite3_reset(pCsr->pStmt);
3126 }else{
3127 pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0);
3128 rc = SQLITE_OK;
3129 }
3130 }else{
3131 rc = fts3EvalNext((Fts3Cursor *)pCursor);
3132 }
3133 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
3134 return rc;
3135 }
3136
3137 /*
3138 ** The following are copied from sqliteInt.h.
3139 **
3140 ** Constants for the largest and smallest possible 64-bit signed integers.
3141 ** These macros are designed to work correctly on both 32-bit and 64-bit
3142 ** compilers.
3143 */
3144 #ifndef SQLITE_AMALGAMATION
3145 # define LARGEST_INT64 (0xffffffff|(((sqlite3_int64)0x7fffffff)<<32))
3146 # define SMALLEST_INT64 (((sqlite3_int64)-1) - LARGEST_INT64)
3147 #endif
3148
3149 /*
3150 ** If the numeric type of argument pVal is "integer", then return it
3151 ** converted to a 64-bit signed integer. Otherwise, return a copy of
3152 ** the second parameter, iDefault.
3153 */
3154 static sqlite3_int64 fts3DocidRange(sqlite3_value *pVal, i64 iDefault){
3155 if( pVal ){
3156 int eType = sqlite3_value_numeric_type(pVal);
3157 if( eType==SQLITE_INTEGER ){
3158 return sqlite3_value_int64(pVal);
3159 }
3160 }
3161 return iDefault;
3162 }
3163
3164 /*
3165 ** This is the xFilter interface for the virtual table. See
3166 ** the virtual table xFilter method documentation for additional
3167 ** information.
3168 **
3169 ** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against
3170 ** the %_content table.
3171 **
3172 ** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry
3173 ** in the %_content table.
3174 **
3175 ** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index. The
3176 ** column on the left-hand side of the MATCH operator is column
3177 ** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed. argv[0] is the right-hand
3178 ** side of the MATCH operator.
3179 */
3180 static int fts3FilterMethod(
3181 sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
3182 int idxNum, /* Strategy index */
3183 const char *idxStr, /* Unused */
3184 int nVal, /* Number of elements in apVal */
3185 sqlite3_value **apVal /* Arguments for the indexing scheme */
3186 ){
3187 int rc = SQLITE_OK;
3188 char *zSql; /* SQL statement used to access %_content */
3189 int eSearch;
3190 Fts3Table *p = (Fts3Table *)pCursor->pVtab;
3191 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
3192
3193 sqlite3_value *pCons = 0; /* The MATCH or rowid constraint, if any */
3194 sqlite3_value *pLangid = 0; /* The "langid = ?" constraint, if any */
3195 sqlite3_value *pDocidGe = 0; /* The "docid >= ?" constraint, if any */
3196 sqlite3_value *pDocidLe = 0; /* The "docid <= ?" constraint, if any */
3197 int iIdx;
3198
3199 UNUSED_PARAMETER(idxStr);
3200 UNUSED_PARAMETER(nVal);
3201
3202 eSearch = (idxNum & 0x0000FFFF);
3203 assert( eSearch>=0 && eSearch<=(FTS3_FULLTEXT_SEARCH+p->nColumn) );
3204 assert( p->pSegments==0 );
3205
3206 /* Collect arguments into local variables */
3207 iIdx = 0;
3208 if( eSearch!=FTS3_FULLSCAN_SEARCH ) pCons = apVal[iIdx++];
3209 if( idxNum & FTS3_HAVE_LANGID ) pLangid = apVal[iIdx++];
3210 if( idxNum & FTS3_HAVE_DOCID_GE ) pDocidGe = apVal[iIdx++];
3211 if( idxNum & FTS3_HAVE_DOCID_LE ) pDocidLe = apVal[iIdx++];
3212 assert( iIdx==nVal );
3213
3214 /* In case the cursor has been used before, clear it now. */
3215 fts3CursorFinalizeStmt(pCsr);
3216 sqlite3_free(pCsr->aDoclist);
3217 sqlite3Fts3MIBufferFree(pCsr->pMIBuffer);
3218 sqlite3Fts3ExprFree(pCsr->pExpr);
3219 memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));
3220
3221 /* Set the lower and upper bounds on docids to return */
3222 pCsr->iMinDocid = fts3DocidRange(pDocidGe, SMALLEST_INT64);
3223 pCsr->iMaxDocid = fts3DocidRange(pDocidLe, LARGEST_INT64);
3224
3225 if( idxStr ){
3226 pCsr->bDesc = (idxStr[0]=='D');
3227 }else{
3228 pCsr->bDesc = p->bDescIdx;
3229 }
3230 pCsr->eSearch = (i16)eSearch;
3231
3232 if( eSearch!=FTS3_DOCID_SEARCH && eSearch!=FTS3_FULLSCAN_SEARCH ){
3233 int iCol = eSearch-FTS3_FULLTEXT_SEARCH;
3234 const char *zQuery = (const char *)sqlite3_value_text(pCons);
3235
3236 if( zQuery==0 && sqlite3_value_type(pCons)!=SQLITE_NULL ){
3237 return SQLITE_NOMEM;
3238 }
3239
3240 pCsr->iLangid = 0;
3241 if( pLangid ) pCsr->iLangid = sqlite3_value_int(pLangid);
3242
3243 assert( p->base.zErrMsg==0 );
3244 rc = sqlite3Fts3ExprParse(p->pTokenizer, pCsr->iLangid,
3245 p->azColumn, p->bFts4, p->nColumn, iCol, zQuery, -1, &pCsr->pExpr,
3246 &p->base.zErrMsg
3247 );
3248 if( rc!=SQLITE_OK ){
3249 return rc;
3250 }
3251
3252 rc = fts3EvalStart(pCsr);
3253 sqlite3Fts3SegmentsClose(p);
3254 if( rc!=SQLITE_OK ) return rc;
3255 pCsr->pNextId = pCsr->aDoclist;
3256 pCsr->iPrevId = 0;
3257 }
3258
3259 /* Compile a SELECT statement for this cursor. For a full-table-scan, the
3260 ** statement loops through all rows of the %_content table. For a
3261 ** full-text query or docid lookup, the statement retrieves a single
3262 ** row by docid.
3263 */
3264 if( eSearch==FTS3_FULLSCAN_SEARCH ){
3265 if( pDocidGe || pDocidLe ){
3266 zSql = sqlite3_mprintf(
3267 "SELECT %s WHERE rowid BETWEEN %lld AND %lld ORDER BY rowid %s",
3268 p->zReadExprlist, pCsr->iMinDocid, pCsr->iMaxDocid,
3269 (pCsr->bDesc ? "DESC" : "ASC")
3270 );
3271 }else{
3272 zSql = sqlite3_mprintf("SELECT %s ORDER BY rowid %s",
3273 p->zReadExprlist, (pCsr->bDesc ? "DESC" : "ASC")
3274 );
3275 }
3276 if( zSql ){
3277 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0);
3278 sqlite3_free(zSql);
3279 }else{
3280 rc = SQLITE_NOMEM;
3281 }
3282 }else if( eSearch==FTS3_DOCID_SEARCH ){
3283 rc = fts3CursorSeekStmt(pCsr);
3284 if( rc==SQLITE_OK ){
3285 rc = sqlite3_bind_value(pCsr->pStmt, 1, pCons);
3286 }
3287 }
3288 if( rc!=SQLITE_OK ) return rc;
3289
3290 return fts3NextMethod(pCursor);
3291 }
3292
3293 /*
3294 ** This is the xEof method of the virtual table. SQLite calls this
3295 ** routine to find out if it has reached the end of a result set.
3296 */
3297 static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){
3298 return ((Fts3Cursor *)pCursor)->isEof;
3299 }
3300
3301 /*
3302 ** This is the xRowid method. The SQLite core calls this routine to
3303 ** retrieve the rowid for the current row of the result set. fts3
3304 ** exposes %_content.docid as the rowid for the virtual table. The
3305 ** rowid should be written to *pRowid.
3306 */
3307 static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
3308 Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
3309 *pRowid = pCsr->iPrevId;
3310 return SQLITE_OK;
3311 }
3312
3313 /*
3314 ** This is the xColumn method, called by SQLite to request a value from
3315 ** the row that the supplied cursor currently points to.
3316 **
3317 ** If:
3318 **
3319 ** (iCol < p->nColumn) -> The value of the iCol'th user column.
3320 ** (iCol == p->nColumn) -> Magic column with the same name as the table.
3321 ** (iCol == p->nColumn+1) -> Docid column
3322 ** (iCol == p->nColumn+2) -> Langid column
3323 */
3324 static int fts3ColumnMethod(
3325 sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
3326 sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */
3327 int iCol /* Index of column to read value from */
3328 ){
3329 int rc = SQLITE_OK; /* Return Code */
3330 Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
3331 Fts3Table *p = (Fts3Table *)pCursor->pVtab;
3332
3333 /* The column value supplied by SQLite must be in range. */
3334 assert( iCol>=0 && iCol<=p->nColumn+2 );
3335
3336 if( iCol==p->nColumn+1 ){
3337 /* This call is a request for the "docid" column. Since "docid" is an
3338 ** alias for "rowid", use the xRowid() method to obtain the value.
3339 */
3340 sqlite3_result_int64(pCtx, pCsr->iPrevId);
3341 }else if( iCol==p->nColumn ){
3342 /* The extra column whose name is the same as the table.
3343 ** Return a blob which is a pointer to the cursor. */
3344 sqlite3_result_blob(pCtx, &pCsr, sizeof(pCsr), SQLITE_TRANSIENT);
3345 }else if( iCol==p->nColumn+2 && pCsr->pExpr ){
3346 sqlite3_result_int64(pCtx, pCsr->iLangid);
3347 }else{
3348 /* The requested column is either a user column (one that contains
3349 ** indexed data), or the language-id column. */
3350 rc = fts3CursorSeek(0, pCsr);
3351
3352 if( rc==SQLITE_OK ){
3353 if( iCol==p->nColumn+2 ){
3354 int iLangid = 0;
3355 if( p->zLanguageid ){
3356 iLangid = sqlite3_column_int(pCsr->pStmt, p->nColumn+1);
3357 }
3358 sqlite3_result_int(pCtx, iLangid);
3359 }else if( sqlite3_data_count(pCsr->pStmt)>(iCol+1) ){
3360 sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1));
3361 }
3362 }
3363 }
3364
3365 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
3366 return rc;
3367 }
3368
3369 /*
3370 ** This function is the implementation of the xUpdate callback used by
3371 ** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
3372 ** inserted, updated or deleted.
3373 */
3374 static int fts3UpdateMethod(
3375 sqlite3_vtab *pVtab, /* Virtual table handle */
3376 int nArg, /* Size of argument array */
3377 sqlite3_value **apVal, /* Array of arguments */
3378 sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
3379 ){
3380 return sqlite3Fts3UpdateMethod(pVtab, nArg, apVal, pRowid);
3381 }
3382
3383 /*
3384 ** Implementation of xSync() method. Flush the contents of the pending-terms
3385 ** hash-table to the database.
3386 */
3387 static int fts3SyncMethod(sqlite3_vtab *pVtab){
3388
3389 /* Following an incremental-merge operation, assuming that the input
3390 ** segments are not completely consumed (the usual case), they are updated
3391 ** in place to remove the entries that have already been merged. This
3392 ** involves updating the leaf block that contains the smallest unmerged
3393 ** entry and each block (if any) between the leaf and the root node. So
3394 ** if the height of the input segment b-trees is N, and input segments
3395 ** are merged eight at a time, updating the input segments at the end
3396 ** of an incremental-merge requires writing (8*(1+N)) blocks. N is usually
3397 ** small - often between 0 and 2. So the overhead of the incremental
3398 ** merge is somewhere between 8 and 24 blocks. To avoid this overhead
3399 ** dwarfing the actual productive work accomplished, the incremental merge
3400 ** is only attempted if it will write at least 64 leaf blocks. Hence
3401 ** nMinMerge.
3402 **
3403 ** Of course, updating the input segments also involves deleting a bunch
3404 ** of blocks from the segments table. But this is not considered overhead
3405 ** as it would also be required by a crisis-merge that used the same input
3406 ** segments.
3407 */
3408 const u32 nMinMerge = 64; /* Minimum amount of incr-merge work to do */
3409
3410 Fts3Table *p = (Fts3Table*)pVtab;
3411 int rc = sqlite3Fts3PendingTermsFlush(p);
3412
3413 if( rc==SQLITE_OK
3414 && p->nLeafAdd>(nMinMerge/16)
3415 && p->nAutoincrmerge && p->nAutoincrmerge!=0xff
3416 ){
3417 int mxLevel = 0; /* Maximum relative level value in db */
3418 int A; /* Incr-merge parameter A */
3419
3420 rc = sqlite3Fts3MaxLevel(p, &mxLevel);
3421 assert( rc==SQLITE_OK || mxLevel==0 );
3422 A = p->nLeafAdd * mxLevel;
3423 A += (A/2);
3424 if( A>(int)nMinMerge ) rc = sqlite3Fts3Incrmerge(p, A, p->nAutoincrmerge);
3425 }
3426 sqlite3Fts3SegmentsClose(p);
3427 return rc;
3428 }
3429
3430 /*
3431 ** If it is currently unknown whether or not the FTS table has an %_stat
3432 ** table (if p->bHasStat==2), attempt to determine this (set p->bHasStat
3433 ** to 0 or 1). Return SQLITE_OK if successful, or an SQLite error code
3434 ** if an error occurs.
3435 */
3436 static int fts3SetHasStat(Fts3Table *p){
3437 int rc = SQLITE_OK;
3438 if( p->bHasStat==2 ){
3439 const char *zFmt ="SELECT 1 FROM %Q.sqlite_master WHERE tbl_name='%q_stat'";
3440 char *zSql = sqlite3_mprintf(zFmt, p->zDb, p->zName);
3441 if( zSql ){
3442 sqlite3_stmt *pStmt = 0;
3443 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
3444 if( rc==SQLITE_OK ){
3445 int bHasStat = (sqlite3_step(pStmt)==SQLITE_ROW);
3446 rc = sqlite3_finalize(pStmt);
3447 if( rc==SQLITE_OK ) p->bHasStat = (u8)bHasStat;
3448 }
3449 sqlite3_free(zSql);
3450 }else{
3451 rc = SQLITE_NOMEM;
3452 }
3453 }
3454 return rc;
3455 }
3456
3457 /*
3458 ** Implementation of xBegin() method.
3459 */
3460 static int fts3BeginMethod(sqlite3_vtab *pVtab){
3461 Fts3Table *p = (Fts3Table*)pVtab;
3462 UNUSED_PARAMETER(pVtab);
3463 assert( p->pSegments==0 );
3464 assert( p->nPendingData==0 );
3465 assert( p->inTransaction!=1 );
3466 TESTONLY( p->inTransaction = 1 );
3467 TESTONLY( p->mxSavepoint = -1; );
3468 p->nLeafAdd = 0;
3469 return fts3SetHasStat(p);
3470 }
3471
3472 /*
3473 ** Implementation of xCommit() method. This is a no-op. The contents of
3474 ** the pending-terms hash-table have already been flushed into the database
3475 ** by fts3SyncMethod().
3476 */
3477 static int fts3CommitMethod(sqlite3_vtab *pVtab){
3478 TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
3479 UNUSED_PARAMETER(pVtab);
3480 assert( p->nPendingData==0 );
3481 assert( p->inTransaction!=0 );
3482 assert( p->pSegments==0 );
3483 TESTONLY( p->inTransaction = 0 );
3484 TESTONLY( p->mxSavepoint = -1; );
3485 return SQLITE_OK;
3486 }
3487
3488 /*
3489 ** Implementation of xRollback(). Discard the contents of the pending-terms
3490 ** hash-table. Any changes made to the database are reverted by SQLite.
3491 */
3492 static int fts3RollbackMethod(sqlite3_vtab *pVtab){
3493 Fts3Table *p = (Fts3Table*)pVtab;
3494 sqlite3Fts3PendingTermsClear(p);
3495 assert( p->inTransaction!=0 );
3496 TESTONLY( p->inTransaction = 0 );
3497 TESTONLY( p->mxSavepoint = -1; );
3498 return SQLITE_OK;
3499 }
3500
3501 /*
3502 ** When called, *ppPoslist must point to the byte immediately following the
3503 ** end of a position-list. i.e. ( (*ppPoslist)[-1]==POS_END ). This function
3504 ** moves *ppPoslist so that it instead points to the first byte of the
3505 ** same position list.
3506 */
3507 static void fts3ReversePoslist(char *pStart, char **ppPoslist){
3508 char *p = &(*ppPoslist)[-2];
3509 char c = 0;
3510
3511 /* Skip backwards passed any trailing 0x00 bytes added by NearTrim() */
3512 while( p>pStart && (c=*p--)==0 );
3513
3514 /* Search backwards for a varint with value zero (the end of the previous
3515 ** poslist). This is an 0x00 byte preceded by some byte that does not
3516 ** have the 0x80 bit set. */
3517 while( p>pStart && (*p & 0x80) | c ){
3518 c = *p--;
3519 }
3520 assert( p==pStart || c==0 );
3521
3522 /* At this point p points to that preceding byte without the 0x80 bit
3523 ** set. So to find the start of the poslist, skip forward 2 bytes then
3524 ** over a varint.
3525 **
3526 ** Normally. The other case is that p==pStart and the poslist to return
3527 ** is the first in the doclist. In this case do not skip forward 2 bytes.
3528 ** The second part of the if condition (c==0 && *ppPoslist>&p[2])
3529 ** is required for cases where the first byte of a doclist and the
3530 ** doclist is empty. For example, if the first docid is 10, a doclist
3531 ** that begins with:
3532 **
3533 ** 0x0A 0x00 <next docid delta varint>
3534 */
3535 if( p>pStart || (c==0 && *ppPoslist>&p[2]) ){ p = &p[2]; }
3536 while( *p++&0x80 );
3537 *ppPoslist = p;
3538 }
3539
3540 /*
3541 ** Helper function used by the implementation of the overloaded snippet(),
3542 ** offsets() and optimize() SQL functions.
3543 **
3544 ** If the value passed as the third argument is a blob of size
3545 ** sizeof(Fts3Cursor*), then the blob contents are copied to the
3546 ** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error
3547 ** message is written to context pContext and SQLITE_ERROR returned. The
3548 ** string passed via zFunc is used as part of the error message.
3549 */
3550 static int fts3FunctionArg(
3551 sqlite3_context *pContext, /* SQL function call context */
3552 const char *zFunc, /* Function name */
3553 sqlite3_value *pVal, /* argv[0] passed to function */
3554 Fts3Cursor **ppCsr /* OUT: Store cursor handle here */
3555 ){
3556 Fts3Cursor *pRet;
3557 if( sqlite3_value_type(pVal)!=SQLITE_BLOB
3558 || sqlite3_value_bytes(pVal)!=sizeof(Fts3Cursor *)
3559 ){
3560 char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc);
3561 sqlite3_result_error(pContext, zErr, -1);
3562 sqlite3_free(zErr);
3563 return SQLITE_ERROR;
3564 }
3565 memcpy(&pRet, sqlite3_value_blob(pVal), sizeof(Fts3Cursor *));
3566 *ppCsr = pRet;
3567 return SQLITE_OK;
3568 }
3569
3570 /*
3571 ** Implementation of the snippet() function for FTS3
3572 */
3573 static void fts3SnippetFunc(
3574 sqlite3_context *pContext, /* SQLite function call context */
3575 int nVal, /* Size of apVal[] array */
3576 sqlite3_value **apVal /* Array of arguments */
3577 ){
3578 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
3579 const char *zStart = "<b>";
3580 const char *zEnd = "</b>";
3581 const char *zEllipsis = "<b>...</b>";
3582 int iCol = -1;
3583 int nToken = 15; /* Default number of tokens in snippet */
3584
3585 /* There must be at least one argument passed to this function (otherwise
3586 ** the non-overloaded version would have been called instead of this one).
3587 */
3588 assert( nVal>=1 );
3589
3590 if( nVal>6 ){
3591 sqlite3_result_error(pContext,
3592 "wrong number of arguments to function snippet()", -1);
3593 return;
3594 }
3595 if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return;
3596
3597 switch( nVal ){
3598 case 6: nToken = sqlite3_value_int(apVal[5]);
3599 case 5: iCol = sqlite3_value_int(apVal[4]);
3600 case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]);
3601 case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]);
3602 case 2: zStart = (const char*)sqlite3_value_text(apVal[1]);
3603 }
3604 if( !zEllipsis || !zEnd || !zStart ){
3605 sqlite3_result_error_nomem(pContext);
3606 }else if( nToken==0 ){
3607 sqlite3_result_text(pContext, "", -1, SQLITE_STATIC);
3608 }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
3609 sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken);
3610 }
3611 }
3612
3613 /*
3614 ** Implementation of the offsets() function for FTS3
3615 */
3616 static void fts3OffsetsFunc(
3617 sqlite3_context *pContext, /* SQLite function call context */
3618 int nVal, /* Size of argument array */
3619 sqlite3_value **apVal /* Array of arguments */
3620 ){
3621 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
3622
3623 UNUSED_PARAMETER(nVal);
3624
3625 assert( nVal==1 );
3626 if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return;
3627 assert( pCsr );
3628 if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
3629 sqlite3Fts3Offsets(pContext, pCsr);
3630 }
3631 }
3632
3633 /*
3634 ** Implementation of the special optimize() function for FTS3. This
3635 ** function merges all segments in the database to a single segment.
3636 ** Example usage is:
3637 **
3638 ** SELECT optimize(t) FROM t LIMIT 1;
3639 **
3640 ** where 't' is the name of an FTS3 table.
3641 */
3642 static void fts3OptimizeFunc(
3643 sqlite3_context *pContext, /* SQLite function call context */
3644 int nVal, /* Size of argument array */
3645 sqlite3_value **apVal /* Array of arguments */
3646 ){
3647 int rc; /* Return code */
3648 Fts3Table *p; /* Virtual table handle */
3649 Fts3Cursor *pCursor; /* Cursor handle passed through apVal[0] */
3650
3651 UNUSED_PARAMETER(nVal);
3652
3653 assert( nVal==1 );
3654 if( fts3FunctionArg(pContext, "optimize", apVal[0], &pCursor) ) return;
3655 p = (Fts3Table *)pCursor->base.pVtab;
3656 assert( p );
3657
3658 rc = sqlite3Fts3Optimize(p);
3659
3660 switch( rc ){
3661 case SQLITE_OK:
3662 sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
3663 break;
3664 case SQLITE_DONE:
3665 sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC);
3666 break;
3667 default:
3668 sqlite3_result_error_code(pContext, rc);
3669 break;
3670 }
3671 }
3672
3673 /*
3674 ** Implementation of the matchinfo() function for FTS3
3675 */
3676 static void fts3MatchinfoFunc(
3677 sqlite3_context *pContext, /* SQLite function call context */
3678 int nVal, /* Size of argument array */
3679 sqlite3_value **apVal /* Array of arguments */
3680 ){
3681 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
3682 assert( nVal==1 || nVal==2 );
3683 if( SQLITE_OK==fts3FunctionArg(pContext, "matchinfo", apVal[0], &pCsr) ){
3684 const char *zArg = 0;
3685 if( nVal>1 ){
3686 zArg = (const char *)sqlite3_value_text(apVal[1]);
3687 }
3688 sqlite3Fts3Matchinfo(pContext, pCsr, zArg);
3689 }
3690 }
3691
3692 /*
3693 ** This routine implements the xFindFunction method for the FTS3
3694 ** virtual table.
3695 */
3696 static int fts3FindFunctionMethod(
3697 sqlite3_vtab *pVtab, /* Virtual table handle */
3698 int nArg, /* Number of SQL function arguments */
3699 const char *zName, /* Name of SQL function */
3700 void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
3701 void **ppArg /* Unused */
3702 ){
3703 struct Overloaded {
3704 const char *zName;
3705 void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
3706 } aOverload[] = {
3707 { "snippet", fts3SnippetFunc },
3708 { "offsets", fts3OffsetsFunc },
3709 { "optimize", fts3OptimizeFunc },
3710 { "matchinfo", fts3MatchinfoFunc },
3711 };
3712 int i; /* Iterator variable */
3713
3714 UNUSED_PARAMETER(pVtab);
3715 UNUSED_PARAMETER(nArg);
3716 UNUSED_PARAMETER(ppArg);
3717
3718 for(i=0; i<SizeofArray(aOverload); i++){
3719 if( strcmp(zName, aOverload[i].zName)==0 ){
3720 *pxFunc = aOverload[i].xFunc;
3721 return 1;
3722 }
3723 }
3724
3725 /* No function of the specified name was found. Return 0. */
3726 return 0;
3727 }
3728
3729 /*
3730 ** Implementation of FTS3 xRename method. Rename an fts3 table.
3731 */
3732 static int fts3RenameMethod(
3733 sqlite3_vtab *pVtab, /* Virtual table handle */
3734 const char *zName /* New name of table */
3735 ){
3736 Fts3Table *p = (Fts3Table *)pVtab;
3737 sqlite3 *db = p->db; /* Database connection */
3738 int rc; /* Return Code */
3739
3740 /* At this point it must be known if the %_stat table exists or not.
3741 ** So bHasStat may not be 2. */
3742 rc = fts3SetHasStat(p);
3743
3744 /* As it happens, the pending terms table is always empty here. This is
3745 ** because an "ALTER TABLE RENAME TABLE" statement inside a transaction
3746 ** always opens a savepoint transaction. And the xSavepoint() method
3747 ** flushes the pending terms table. But leave the (no-op) call to
3748 ** PendingTermsFlush() in in case that changes.
3749 */
3750 assert( p->nPendingData==0 );
3751 if( rc==SQLITE_OK ){
3752 rc = sqlite3Fts3PendingTermsFlush(p);
3753 }
3754
3755 if( p->zContentTbl==0 ){
3756 fts3DbExec(&rc, db,
3757 "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';",
3758 p->zDb, p->zName, zName
3759 );
3760 }
3761
3762 if( p->bHasDocsize ){
3763 fts3DbExec(&rc, db,
3764 "ALTER TABLE %Q.'%q_docsize' RENAME TO '%q_docsize';",
3765 p->zDb, p->zName, zName
3766 );
3767 }
3768 if( p->bHasStat ){
3769 fts3DbExec(&rc, db,
3770 "ALTER TABLE %Q.'%q_stat' RENAME TO '%q_stat';",
3771 p->zDb, p->zName, zName
3772 );
3773 }
3774 fts3DbExec(&rc, db,
3775 "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';",
3776 p->zDb, p->zName, zName
3777 );
3778 fts3DbExec(&rc, db,
3779 "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';",
3780 p->zDb, p->zName, zName
3781 );
3782 return rc;
3783 }
3784
3785 /*
3786 ** The xSavepoint() method.
3787 **
3788 ** Flush the contents of the pending-terms table to disk.
3789 */
3790 static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
3791 int rc = SQLITE_OK;
3792 UNUSED_PARAMETER(iSavepoint);
3793 assert( ((Fts3Table *)pVtab)->inTransaction );
3794 assert( ((Fts3Table *)pVtab)->mxSavepoint < iSavepoint );
3795 TESTONLY( ((Fts3Table *)pVtab)->mxSavepoint = iSavepoint );
3796 if( ((Fts3Table *)pVtab)->bIgnoreSavepoint==0 ){
3797 rc = fts3SyncMethod(pVtab);
3798 }
3799 return rc;
3800 }
3801
3802 /*
3803 ** The xRelease() method.
3804 **
3805 ** This is a no-op.
3806 */
3807 static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
3808 TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
3809 UNUSED_PARAMETER(iSavepoint);
3810 UNUSED_PARAMETER(pVtab);
3811 assert( p->inTransaction );
3812 assert( p->mxSavepoint >= iSavepoint );
3813 TESTONLY( p->mxSavepoint = iSavepoint-1 );
3814 return SQLITE_OK;
3815 }
3816
3817 /*
3818 ** The xRollbackTo() method.
3819 **
3820 ** Discard the contents of the pending terms table.
3821 */
3822 static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){
3823 Fts3Table *p = (Fts3Table*)pVtab;
3824 UNUSED_PARAMETER(iSavepoint);
3825 assert( p->inTransaction );
3826 assert( p->mxSavepoint >= iSavepoint );
3827 TESTONLY( p->mxSavepoint = iSavepoint );
3828 sqlite3Fts3PendingTermsClear(p);
3829 return SQLITE_OK;
3830 }
3831
3832 static const sqlite3_module fts3Module = {
3833 /* iVersion */ 2,
3834 /* xCreate */ fts3CreateMethod,
3835 /* xConnect */ fts3ConnectMethod,
3836 /* xBestIndex */ fts3BestIndexMethod,
3837 /* xDisconnect */ fts3DisconnectMethod,
3838 /* xDestroy */ fts3DestroyMethod,
3839 /* xOpen */ fts3OpenMethod,
3840 /* xClose */ fts3CloseMethod,
3841 /* xFilter */ fts3FilterMethod,
3842 /* xNext */ fts3NextMethod,
3843 /* xEof */ fts3EofMethod,
3844 /* xColumn */ fts3ColumnMethod,
3845 /* xRowid */ fts3RowidMethod,
3846 /* xUpdate */ fts3UpdateMethod,
3847 /* xBegin */ fts3BeginMethod,
3848 /* xSync */ fts3SyncMethod,
3849 /* xCommit */ fts3CommitMethod,
3850 /* xRollback */ fts3RollbackMethod,
3851 /* xFindFunction */ fts3FindFunctionMethod,
3852 /* xRename */ fts3RenameMethod,
3853 /* xSavepoint */ fts3SavepointMethod,
3854 /* xRelease */ fts3ReleaseMethod,
3855 /* xRollbackTo */ fts3RollbackToMethod,
3856 };
3857
3858 /*
3859 ** This function is registered as the module destructor (called when an
3860 ** FTS3 enabled database connection is closed). It frees the memory
3861 ** allocated for the tokenizer hash table.
3862 */
3863 static void hashDestroy(void *p){
3864 Fts3Hash *pHash = (Fts3Hash *)p;
3865 sqlite3Fts3HashClear(pHash);
3866 sqlite3_free(pHash);
3867 }
3868
3869 /*
3870 ** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are
3871 ** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c
3872 ** respectively. The following three forward declarations are for functions
3873 ** declared in these files used to retrieve the respective implementations.
3874 **
3875 ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
3876 ** to by the argument to point to the "simple" tokenizer implementation.
3877 ** And so on.
3878 */
3879 void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
3880 void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
3881 #ifndef SQLITE_DISABLE_FTS3_UNICODE
3882 void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const**ppModule);
3883 #endif
3884 #ifdef SQLITE_ENABLE_ICU
3885 void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
3886 #endif
3887
3888 /*
3889 ** Initialize the fts3 extension. If this extension is built as part
3890 ** of the sqlite library, then this function is called directly by
3891 ** SQLite. If fts3 is built as a dynamically loadable extension, this
3892 ** function is called by the sqlite3_extension_init() entry point.
3893 */
3894 int sqlite3Fts3Init(sqlite3 *db){
3895 int rc = SQLITE_OK;
3896 Fts3Hash *pHash = 0;
3897 const sqlite3_tokenizer_module *pSimple = 0;
3898 const sqlite3_tokenizer_module *pPorter = 0;
3899 #ifndef SQLITE_DISABLE_FTS3_UNICODE
3900 const sqlite3_tokenizer_module *pUnicode = 0;
3901 #endif
3902
3903 #ifdef SQLITE_ENABLE_ICU
3904 const sqlite3_tokenizer_module *pIcu = 0;
3905 sqlite3Fts3IcuTokenizerModule(&pIcu);
3906 #endif
3907
3908 #ifndef SQLITE_DISABLE_FTS3_UNICODE
3909 sqlite3Fts3UnicodeTokenizer(&pUnicode);
3910 #endif
3911
3912 #ifdef SQLITE_TEST
3913 rc = sqlite3Fts3InitTerm(db);
3914 if( rc!=SQLITE_OK ) return rc;
3915 #endif
3916
3917 rc = sqlite3Fts3InitAux(db);
3918 if( rc!=SQLITE_OK ) return rc;
3919
3920 sqlite3Fts3SimpleTokenizerModule(&pSimple);
3921 sqlite3Fts3PorterTokenizerModule(&pPorter);
3922
3923 /* Allocate and initialize the hash-table used to store tokenizers. */
3924 pHash = sqlite3_malloc(sizeof(Fts3Hash));
3925 if( !pHash ){
3926 rc = SQLITE_NOMEM;
3927 }else{
3928 sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
3929 }
3930
3931 /* Load the built-in tokenizers into the hash table */
3932 if( rc==SQLITE_OK ){
3933 if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
3934 || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter)
3935
3936 #ifndef SQLITE_DISABLE_FTS3_UNICODE
3937 || sqlite3Fts3HashInsert(pHash, "unicode61", 10, (void *)pUnicode)
3938 #endif
3939 #ifdef SQLITE_ENABLE_ICU
3940 || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))
3941 #endif
3942 ){
3943 rc = SQLITE_NOMEM;
3944 }
3945 }
3946
3947 #ifdef SQLITE_TEST
3948 if( rc==SQLITE_OK ){
3949 rc = sqlite3Fts3ExprInitTestInterface(db);
3950 }
3951 #endif
3952
3953 /* Create the virtual table wrapper around the hash-table and overload
3954 ** the two scalar functions. If this is successful, register the
3955 ** module with sqlite.
3956 */
3957 if( SQLITE_OK==rc
3958 && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
3959 && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
3960 && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1))
3961 && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1))
3962 && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 2))
3963 && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1))
3964 ){
3965 rc = sqlite3_create_module_v2(
3966 db, "fts3", &fts3Module, (void *)pHash, hashDestroy
3967 );
3968 if( rc==SQLITE_OK ){
3969 rc = sqlite3_create_module_v2(
3970 db, "fts4", &fts3Module, (void *)pHash, 0
3971 );
3972 }
3973 if( rc==SQLITE_OK ){
3974 rc = sqlite3Fts3InitTok(db, (void *)pHash);
3975 }
3976 return rc;
3977 }
3978
3979
3980 /* An error has occurred. Delete the hash table and return the error code. */
3981 assert( rc!=SQLITE_OK );
3982 if( pHash ){
3983 sqlite3Fts3HashClear(pHash);
3984 sqlite3_free(pHash);
3985 }
3986 return rc;
3987 }
3988
3989 /*
3990 ** Allocate an Fts3MultiSegReader for each token in the expression headed
3991 ** by pExpr.
3992 **
3993 ** An Fts3SegReader object is a cursor that can seek or scan a range of
3994 ** entries within a single segment b-tree. An Fts3MultiSegReader uses multiple
3995 ** Fts3SegReader objects internally to provide an interface to seek or scan
3996 ** within the union of all segments of a b-tree. Hence the name.
3997 **
3998 ** If the allocated Fts3MultiSegReader just seeks to a single entry in a
3999 ** segment b-tree (if the term is not a prefix or it is a prefix for which
4000 ** there exists prefix b-tree of the right length) then it may be traversed
4001 ** and merged incrementally. Otherwise, it has to be merged into an in-memory
4002 ** doclist and then traversed.
4003 */
4004 static void fts3EvalAllocateReaders(
4005 Fts3Cursor *pCsr, /* FTS cursor handle */
4006 Fts3Expr *pExpr, /* Allocate readers for this expression */
4007 int *pnToken, /* OUT: Total number of tokens in phrase. */
4008 int *pnOr, /* OUT: Total number of OR nodes in expr. */
4009 int *pRc /* IN/OUT: Error code */
4010 ){
4011 if( pExpr && SQLITE_OK==*pRc ){
4012 if( pExpr->eType==FTSQUERY_PHRASE ){
4013 int i;
4014 int nToken = pExpr->pPhrase->nToken;
4015 *pnToken += nToken;
4016 for(i=0; i<nToken; i++){
4017 Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i];
4018 int rc = fts3TermSegReaderCursor(pCsr,
4019 pToken->z, pToken->n, pToken->isPrefix, &pToken->pSegcsr
4020 );
4021 if( rc!=SQLITE_OK ){
4022 *pRc = rc;
4023 return;
4024 }
4025 }
4026 assert( pExpr->pPhrase->iDoclistToken==0 );
4027 pExpr->pPhrase->iDoclistToken = -1;
4028 }else{
4029 *pnOr += (pExpr->eType==FTSQUERY_OR);
4030 fts3EvalAllocateReaders(pCsr, pExpr->pLeft, pnToken, pnOr, pRc);
4031 fts3EvalAllocateReaders(pCsr, pExpr->pRight, pnToken, pnOr, pRc);
4032 }
4033 }
4034 }
4035
4036 /*
4037 ** Arguments pList/nList contain the doclist for token iToken of phrase p.
4038 ** It is merged into the main doclist stored in p->doclist.aAll/nAll.
4039 **
4040 ** This function assumes that pList points to a buffer allocated using
4041 ** sqlite3_malloc(). This function takes responsibility for eventually
4042 ** freeing the buffer.
4043 **
4044 ** SQLITE_OK is returned if successful, or SQLITE_NOMEM if an error occurs.
4045 */
4046 static int fts3EvalPhraseMergeToken(
4047 Fts3Table *pTab, /* FTS Table pointer */
4048 Fts3Phrase *p, /* Phrase to merge pList/nList into */
4049 int iToken, /* Token pList/nList corresponds to */
4050 char *pList, /* Pointer to doclist */
4051 int nList /* Number of bytes in pList */
4052 ){
4053 int rc = SQLITE_OK;
4054 assert( iToken!=p->iDoclistToken );
4055
4056 if( pList==0 ){
4057 sqlite3_free(p->doclist.aAll);
4058 p->doclist.aAll = 0;
4059 p->doclist.nAll = 0;
4060 }
4061
4062 else if( p->iDoclistToken<0 ){
4063 p->doclist.aAll = pList;
4064 p->doclist.nAll = nList;
4065 }
4066
4067 else if( p->doclist.aAll==0 ){
4068 sqlite3_free(pList);
4069 }
4070
4071 else {
4072 char *pLeft;
4073 char *pRight;
4074 int nLeft;
4075 int nRight;
4076 int nDiff;
4077
4078 if( p->iDoclistToken<iToken ){
4079 pLeft = p->doclist.aAll;
4080 nLeft = p->doclist.nAll;
4081 pRight = pList;
4082 nRight = nList;
4083 nDiff = iToken - p->iDoclistToken;
4084 }else{
4085 pRight = p->doclist.aAll;
4086 nRight = p->doclist.nAll;
4087 pLeft = pList;
4088 nLeft = nList;
4089 nDiff = p->iDoclistToken - iToken;
4090 }
4091
4092 rc = fts3DoclistPhraseMerge(
4093 pTab->bDescIdx, nDiff, pLeft, nLeft, &pRight, &nRight
4094 );
4095 sqlite3_free(pLeft);
4096 p->doclist.aAll = pRight;
4097 p->doclist.nAll = nRight;
4098 }
4099
4100 if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken;
4101 return rc;
4102 }
4103
4104 /*
4105 ** Load the doclist for phrase p into p->doclist.aAll/nAll. The loaded doclist
4106 ** does not take deferred tokens into account.
4107 **
4108 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
4109 */
4110 static int fts3EvalPhraseLoad(
4111 Fts3Cursor *pCsr, /* FTS Cursor handle */
4112 Fts3Phrase *p /* Phrase object */
4113 ){
4114 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
4115 int iToken;
4116 int rc = SQLITE_OK;
4117
4118 for(iToken=0; rc==SQLITE_OK && iToken<p->nToken; iToken++){
4119 Fts3PhraseToken *pToken = &p->aToken[iToken];
4120 assert( pToken->pDeferred==0 || pToken->pSegcsr==0 );
4121
4122 if( pToken->pSegcsr ){
4123 int nThis = 0;
4124 char *pThis = 0;
4125 rc = fts3TermSelect(pTab, pToken, p->iColumn, &nThis, &pThis);
4126 if( rc==SQLITE_OK ){
4127 rc = fts3EvalPhraseMergeToken(pTab, p, iToken, pThis, nThis);
4128 }
4129 }
4130 assert( pToken->pSegcsr==0 );
4131 }
4132
4133 return rc;
4134 }
4135
4136 /*
4137 ** This function is called on each phrase after the position lists for
4138 ** any deferred tokens have been loaded into memory. It updates the phrases
4139 ** current position list to include only those positions that are really
4140 ** instances of the phrase (after considering deferred tokens). If this
4141 ** means that the phrase does not appear in the current row, doclist.pList
4142 ** and doclist.nList are both zeroed.
4143 **
4144 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
4145 */
4146 static int fts3EvalDeferredPhrase(Fts3Cursor *pCsr, Fts3Phrase *pPhrase){
4147 int iToken; /* Used to iterate through phrase tokens */
4148 char *aPoslist = 0; /* Position list for deferred tokens */
4149 int nPoslist = 0; /* Number of bytes in aPoslist */
4150 int iPrev = -1; /* Token number of previous deferred token */
4151
4152 assert( pPhrase->doclist.bFreeList==0 );
4153
4154 for(iToken=0; iToken<pPhrase->nToken; iToken++){
4155 Fts3PhraseToken *pToken = &pPhrase->aToken[iToken];
4156 Fts3DeferredToken *pDeferred = pToken->pDeferred;
4157
4158 if( pDeferred ){
4159 char *pList;
4160 int nList;
4161 int rc = sqlite3Fts3DeferredTokenList(pDeferred, &pList, &nList);
4162 if( rc!=SQLITE_OK ) return rc;
4163
4164 if( pList==0 ){
4165 sqlite3_free(aPoslist);
4166 pPhrase->doclist.pList = 0;
4167 pPhrase->doclist.nList = 0;
4168 return SQLITE_OK;
4169
4170 }else if( aPoslist==0 ){
4171 aPoslist = pList;
4172 nPoslist = nList;
4173
4174 }else{
4175 char *aOut = pList;
4176 char *p1 = aPoslist;
4177 char *p2 = aOut;
4178
4179 assert( iPrev>=0 );
4180 fts3PoslistPhraseMerge(&aOut, iToken-iPrev, 0, 1, &p1, &p2);
4181 sqlite3_free(aPoslist);
4182 aPoslist = pList;
4183 nPoslist = (int)(aOut - aPoslist);
4184 if( nPoslist==0 ){
4185 sqlite3_free(aPoslist);
4186 pPhrase->doclist.pList = 0;
4187 pPhrase->doclist.nList = 0;
4188 return SQLITE_OK;
4189 }
4190 }
4191 iPrev = iToken;
4192 }
4193 }
4194
4195 if( iPrev>=0 ){
4196 int nMaxUndeferred = pPhrase->iDoclistToken;
4197 if( nMaxUndeferred<0 ){
4198 pPhrase->doclist.pList = aPoslist;
4199 pPhrase->doclist.nList = nPoslist;
4200 pPhrase->doclist.iDocid = pCsr->iPrevId;
4201 pPhrase->doclist.bFreeList = 1;
4202 }else{
4203 int nDistance;
4204 char *p1;
4205 char *p2;
4206 char *aOut;
4207
4208 if( nMaxUndeferred>iPrev ){
4209 p1 = aPoslist;
4210 p2 = pPhrase->doclist.pList;
4211 nDistance = nMaxUndeferred - iPrev;
4212 }else{
4213 p1 = pPhrase->doclist.pList;
4214 p2 = aPoslist;
4215 nDistance = iPrev - nMaxUndeferred;
4216 }
4217
4218 aOut = (char *)sqlite3_malloc(nPoslist+8);
4219 if( !aOut ){
4220 sqlite3_free(aPoslist);
4221 return SQLITE_NOMEM;
4222 }
4223
4224 pPhrase->doclist.pList = aOut;
4225 if( fts3PoslistPhraseMerge(&aOut, nDistance, 0, 1, &p1, &p2) ){
4226 pPhrase->doclist.bFreeList = 1;
4227 pPhrase->doclist.nList = (int)(aOut - pPhrase->doclist.pList);
4228 }else{
4229 sqlite3_free(aOut);
4230 pPhrase->doclist.pList = 0;
4231 pPhrase->doclist.nList = 0;
4232 }
4233 sqlite3_free(aPoslist);
4234 }
4235 }
4236
4237 return SQLITE_OK;
4238 }
4239
4240 /*
4241 ** Maximum number of tokens a phrase may have to be considered for the
4242 ** incremental doclists strategy.
4243 */
4244 #define MAX_INCR_PHRASE_TOKENS 4
4245
4246 /*
4247 ** This function is called for each Fts3Phrase in a full-text query
4248 ** expression to initialize the mechanism for returning rows. Once this
4249 ** function has been called successfully on an Fts3Phrase, it may be
4250 ** used with fts3EvalPhraseNext() to iterate through the matching docids.
4251 **
4252 ** If parameter bOptOk is true, then the phrase may (or may not) use the
4253 ** incremental loading strategy. Otherwise, the entire doclist is loaded into
4254 ** memory within this call.
4255 **
4256 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
4257 */
4258 static int fts3EvalPhraseStart(Fts3Cursor *pCsr, int bOptOk, Fts3Phrase *p){
4259 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
4260 int rc = SQLITE_OK; /* Error code */
4261 int i;
4262
4263 /* Determine if doclists may be loaded from disk incrementally. This is
4264 ** possible if the bOptOk argument is true, the FTS doclists will be
4265 ** scanned in forward order, and the phrase consists of
4266 ** MAX_INCR_PHRASE_TOKENS or fewer tokens, none of which are are "^first"
4267 ** tokens or prefix tokens that cannot use a prefix-index. */
4268 int bHaveIncr = 0;
4269 int bIncrOk = (bOptOk
4270 && pCsr->bDesc==pTab->bDescIdx
4271 && p->nToken<=MAX_INCR_PHRASE_TOKENS && p->nToken>0
4272 #ifdef SQLITE_TEST
4273 && pTab->bNoIncrDoclist==0
4274 #endif
4275 );
4276 for(i=0; bIncrOk==1 && i<p->nToken; i++){
4277 Fts3PhraseToken *pToken = &p->aToken[i];
4278 if( pToken->bFirst || (pToken->pSegcsr!=0 && !pToken->pSegcsr->bLookup) ){
4279 bIncrOk = 0;
4280 }
4281 if( pToken->pSegcsr ) bHaveIncr = 1;
4282 }
4283
4284 if( bIncrOk && bHaveIncr ){
4285 /* Use the incremental approach. */
4286 int iCol = (p->iColumn >= pTab->nColumn ? -1 : p->iColumn);
4287 for(i=0; rc==SQLITE_OK && i<p->nToken; i++){
4288 Fts3PhraseToken *pToken = &p->aToken[i];
4289 Fts3MultiSegReader *pSegcsr = pToken->pSegcsr;
4290 if( pSegcsr ){
4291 rc = sqlite3Fts3MsrIncrStart(pTab, pSegcsr, iCol, pToken->z, pToken->n);
4292 }
4293 }
4294 p->bIncr = 1;
4295 }else{
4296 /* Load the full doclist for the phrase into memory. */
4297 rc = fts3EvalPhraseLoad(pCsr, p);
4298 p->bIncr = 0;
4299 }
4300
4301 assert( rc!=SQLITE_OK || p->nToken<1 || p->aToken[0].pSegcsr==0 || p->bIncr );
4302 return rc;
4303 }
4304
4305 /*
4306 ** This function is used to iterate backwards (from the end to start)
4307 ** through doclists. It is used by this module to iterate through phrase
4308 ** doclists in reverse and by the fts3_write.c module to iterate through
4309 ** pending-terms lists when writing to databases with "order=desc".
4310 **
4311 ** The doclist may be sorted in ascending (parameter bDescIdx==0) or
4312 ** descending (parameter bDescIdx==1) order of docid. Regardless, this
4313 ** function iterates from the end of the doclist to the beginning.
4314 */
4315 void sqlite3Fts3DoclistPrev(
4316 int bDescIdx, /* True if the doclist is desc */
4317 char *aDoclist, /* Pointer to entire doclist */
4318 int nDoclist, /* Length of aDoclist in bytes */
4319 char **ppIter, /* IN/OUT: Iterator pointer */
4320 sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */
4321 int *pnList, /* OUT: List length pointer */
4322 u8 *pbEof /* OUT: End-of-file flag */
4323 ){
4324 char *p = *ppIter;
4325
4326 assert( nDoclist>0 );
4327 assert( *pbEof==0 );
4328 assert( p || *piDocid==0 );
4329 assert( !p || (p>aDoclist && p<&aDoclist[nDoclist]) );
4330
4331 if( p==0 ){
4332 sqlite3_int64 iDocid = 0;
4333 char *pNext = 0;
4334 char *pDocid = aDoclist;
4335 char *pEnd = &aDoclist[nDoclist];
4336 int iMul = 1;
4337
4338 while( pDocid<pEnd ){
4339 sqlite3_int64 iDelta;
4340 pDocid += sqlite3Fts3GetVarint(pDocid, &iDelta);
4341 iDocid += (iMul * iDelta);
4342 pNext = pDocid;
4343 fts3PoslistCopy(0, &pDocid);
4344 while( pDocid<pEnd && *pDocid==0 ) pDocid++;
4345 iMul = (bDescIdx ? -1 : 1);
4346 }
4347
4348 *pnList = (int)(pEnd - pNext);
4349 *ppIter = pNext;
4350 *piDocid = iDocid;
4351 }else{
4352 int iMul = (bDescIdx ? -1 : 1);
4353 sqlite3_int64 iDelta;
4354 fts3GetReverseVarint(&p, aDoclist, &iDelta);
4355 *piDocid -= (iMul * iDelta);
4356
4357 if( p==aDoclist ){
4358 *pbEof = 1;
4359 }else{
4360 char *pSave = p;
4361 fts3ReversePoslist(aDoclist, &p);
4362 *pnList = (int)(pSave - p);
4363 }
4364 *ppIter = p;
4365 }
4366 }
4367
4368 /*
4369 ** Iterate forwards through a doclist.
4370 */
4371 void sqlite3Fts3DoclistNext(
4372 int bDescIdx, /* True if the doclist is desc */
4373 char *aDoclist, /* Pointer to entire doclist */
4374 int nDoclist, /* Length of aDoclist in bytes */
4375 char **ppIter, /* IN/OUT: Iterator pointer */
4376 sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */
4377 u8 *pbEof /* OUT: End-of-file flag */
4378 ){
4379 char *p = *ppIter;
4380
4381 assert( nDoclist>0 );
4382 assert( *pbEof==0 );
4383 assert( p || *piDocid==0 );
4384 assert( !p || (p>=aDoclist && p<=&aDoclist[nDoclist]) );
4385
4386 if( p==0 ){
4387 p = aDoclist;
4388 p += sqlite3Fts3GetVarint(p, piDocid);
4389 }else{
4390 fts3PoslistCopy(0, &p);
4391 while( p<&aDoclist[nDoclist] && *p==0 ) p++;
4392 if( p>=&aDoclist[nDoclist] ){
4393 *pbEof = 1;
4394 }else{
4395 sqlite3_int64 iVar;
4396 p += sqlite3Fts3GetVarint(p, &iVar);
4397 *piDocid += ((bDescIdx ? -1 : 1) * iVar);
4398 }
4399 }
4400
4401 *ppIter = p;
4402 }
4403
4404 /*
4405 ** Advance the iterator pDL to the next entry in pDL->aAll/nAll. Set *pbEof
4406 ** to true if EOF is reached.
4407 */
4408 static void fts3EvalDlPhraseNext(
4409 Fts3Table *pTab,
4410 Fts3Doclist *pDL,
4411 u8 *pbEof
4412 ){
4413 char *pIter; /* Used to iterate through aAll */
4414 char *pEnd = &pDL->aAll[pDL->nAll]; /* 1 byte past end of aAll */
4415
4416 if( pDL->pNextDocid ){
4417 pIter = pDL->pNextDocid;
4418 }else{
4419 pIter = pDL->aAll;
4420 }
4421
4422 if( pIter>=pEnd ){
4423 /* We have already reached the end of this doclist. EOF. */
4424 *pbEof = 1;
4425 }else{
4426 sqlite3_int64 iDelta;
4427 pIter += sqlite3Fts3GetVarint(pIter, &iDelta);
4428 if( pTab->bDescIdx==0 || pDL->pNextDocid==0 ){
4429 pDL->iDocid += iDelta;
4430 }else{
4431 pDL->iDocid -= iDelta;
4432 }
4433 pDL->pList = pIter;
4434 fts3PoslistCopy(0, &pIter);
4435 pDL->nList = (int)(pIter - pDL->pList);
4436
4437 /* pIter now points just past the 0x00 that terminates the position-
4438 ** list for document pDL->iDocid. However, if this position-list was
4439 ** edited in place by fts3EvalNearTrim(), then pIter may not actually
4440 ** point to the start of the next docid value. The following line deals
4441 ** with this case by advancing pIter past the zero-padding added by
4442 ** fts3EvalNearTrim(). */
4443 while( pIter<pEnd && *pIter==0 ) pIter++;
4444
4445 pDL->pNextDocid = pIter;
4446 assert( pIter>=&pDL->aAll[pDL->nAll] || *pIter );
4447 *pbEof = 0;
4448 }
4449 }
4450
4451 /*
4452 ** Helper type used by fts3EvalIncrPhraseNext() and incrPhraseTokenNext().
4453 */
4454 typedef struct TokenDoclist TokenDoclist;
4455 struct TokenDoclist {
4456 int bIgnore;
4457 sqlite3_int64 iDocid;
4458 char *pList;
4459 int nList;
4460 };
4461
4462 /*
4463 ** Token pToken is an incrementally loaded token that is part of a
4464 ** multi-token phrase. Advance it to the next matching document in the
4465 ** database and populate output variable *p with the details of the new
4466 ** entry. Or, if the iterator has reached EOF, set *pbEof to true.
4467 **
4468 ** If an error occurs, return an SQLite error code. Otherwise, return
4469 ** SQLITE_OK.
4470 */
4471 static int incrPhraseTokenNext(
4472 Fts3Table *pTab, /* Virtual table handle */
4473 Fts3Phrase *pPhrase, /* Phrase to advance token of */
4474 int iToken, /* Specific token to advance */
4475 TokenDoclist *p, /* OUT: Docid and doclist for new entry */
4476 u8 *pbEof /* OUT: True if iterator is at EOF */
4477 ){
4478 int rc = SQLITE_OK;
4479
4480 if( pPhrase->iDoclistToken==iToken ){
4481 assert( p->bIgnore==0 );
4482 assert( pPhrase->aToken[iToken].pSegcsr==0 );
4483 fts3EvalDlPhraseNext(pTab, &pPhrase->doclist, pbEof);
4484 p->pList = pPhrase->doclist.pList;
4485 p->nList = pPhrase->doclist.nList;
4486 p->iDocid = pPhrase->doclist.iDocid;
4487 }else{
4488 Fts3PhraseToken *pToken = &pPhrase->aToken[iToken];
4489 assert( pToken->pDeferred==0 );
4490 assert( pToken->pSegcsr || pPhrase->iDoclistToken>=0 );
4491 if( pToken->pSegcsr ){
4492 assert( p->bIgnore==0 );
4493 rc = sqlite3Fts3MsrIncrNext(
4494 pTab, pToken->pSegcsr, &p->iDocid, &p->pList, &p->nList
4495 );
4496 if( p->pList==0 ) *pbEof = 1;
4497 }else{
4498 p->bIgnore = 1;
4499 }
4500 }
4501
4502 return rc;
4503 }
4504
4505
4506 /*
4507 ** The phrase iterator passed as the second argument:
4508 **
4509 ** * features at least one token that uses an incremental doclist, and
4510 **
4511 ** * does not contain any deferred tokens.
4512 **
4513 ** Advance it to the next matching documnent in the database and populate
4514 ** the Fts3Doclist.pList and nList fields.
4515 **
4516 ** If there is no "next" entry and no error occurs, then *pbEof is set to
4517 ** 1 before returning. Otherwise, if no error occurs and the iterator is
4518 ** successfully advanced, *pbEof is set to 0.
4519 **
4520 ** If an error occurs, return an SQLite error code. Otherwise, return
4521 ** SQLITE_OK.
4522 */
4523 static int fts3EvalIncrPhraseNext(
4524 Fts3Cursor *pCsr, /* FTS Cursor handle */
4525 Fts3Phrase *p, /* Phrase object to advance to next docid */
4526 u8 *pbEof /* OUT: Set to 1 if EOF */
4527 ){
4528 int rc = SQLITE_OK;
4529 Fts3Doclist *pDL = &p->doclist;
4530 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
4531 u8 bEof = 0;
4532
4533 /* This is only called if it is guaranteed that the phrase has at least
4534 ** one incremental token. In which case the bIncr flag is set. */
4535 assert( p->bIncr==1 );
4536
4537 if( p->nToken==1 && p->bIncr ){
4538 rc = sqlite3Fts3MsrIncrNext(pTab, p->aToken[0].pSegcsr,
4539 &pDL->iDocid, &pDL->pList, &pDL->nList
4540 );
4541 if( pDL->pList==0 ) bEof = 1;
4542 }else{
4543 int bDescDoclist = pCsr->bDesc;
4544 struct TokenDoclist a[MAX_INCR_PHRASE_TOKENS];
4545
4546 memset(a, 0, sizeof(a));
4547 assert( p->nToken<=MAX_INCR_PHRASE_TOKENS );
4548 assert( p->iDoclistToken<MAX_INCR_PHRASE_TOKENS );
4549
4550 while( bEof==0 ){
4551 int bMaxSet = 0;
4552 sqlite3_int64 iMax = 0; /* Largest docid for all iterators */
4553 int i; /* Used to iterate through tokens */
4554
4555 /* Advance the iterator for each token in the phrase once. */
4556 for(i=0; rc==SQLITE_OK && i<p->nToken && bEof==0; i++){
4557 rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof);
4558 if( a[i].bIgnore==0 && (bMaxSet==0 || DOCID_CMP(iMax, a[i].iDocid)<0) ){
4559 iMax = a[i].iDocid;
4560 bMaxSet = 1;
4561 }
4562 }
4563 assert( rc!=SQLITE_OK || (p->nToken>=1 && a[p->nToken-1].bIgnore==0) );
4564 assert( rc!=SQLITE_OK || bMaxSet );
4565
4566 /* Keep advancing iterators until they all point to the same document */
4567 for(i=0; i<p->nToken; i++){
4568 while( rc==SQLITE_OK && bEof==0
4569 && a[i].bIgnore==0 && DOCID_CMP(a[i].iDocid, iMax)<0
4570 ){
4571 rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof);
4572 if( DOCID_CMP(a[i].iDocid, iMax)>0 ){
4573 iMax = a[i].iDocid;
4574 i = 0;
4575 }
4576 }
4577 }
4578
4579 /* Check if the current entries really are a phrase match */
4580 if( bEof==0 ){
4581 int nList = 0;
4582 int nByte = a[p->nToken-1].nList;
4583 char *aDoclist = sqlite3_malloc(nByte+1);
4584 if( !aDoclist ) return SQLITE_NOMEM;
4585 memcpy(aDoclist, a[p->nToken-1].pList, nByte+1);
4586
4587 for(i=0; i<(p->nToken-1); i++){
4588 if( a[i].bIgnore==0 ){
4589 char *pL = a[i].pList;
4590 char *pR = aDoclist;
4591 char *pOut = aDoclist;
4592 int nDist = p->nToken-1-i;
4593 int res = fts3PoslistPhraseMerge(&pOut, nDist, 0, 1, &pL, &pR);
4594 if( res==0 ) break;
4595 nList = (int)(pOut - aDoclist);
4596 }
4597 }
4598 if( i==(p->nToken-1) ){
4599 pDL->iDocid = iMax;
4600 pDL->pList = aDoclist;
4601 pDL->nList = nList;
4602 pDL->bFreeList = 1;
4603 break;
4604 }
4605 sqlite3_free(aDoclist);
4606 }
4607 }
4608 }
4609
4610 *pbEof = bEof;
4611 return rc;
4612 }
4613
4614 /*
4615 ** Attempt to move the phrase iterator to point to the next matching docid.
4616 ** If an error occurs, return an SQLite error code. Otherwise, return
4617 ** SQLITE_OK.
4618 **
4619 ** If there is no "next" entry and no error occurs, then *pbEof is set to
4620 ** 1 before returning. Otherwise, if no error occurs and the iterator is
4621 ** successfully advanced, *pbEof is set to 0.
4622 */
4623 static int fts3EvalPhraseNext(
4624 Fts3Cursor *pCsr, /* FTS Cursor handle */
4625 Fts3Phrase *p, /* Phrase object to advance to next docid */
4626 u8 *pbEof /* OUT: Set to 1 if EOF */
4627 ){
4628 int rc = SQLITE_OK;
4629 Fts3Doclist *pDL = &p->doclist;
4630 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
4631
4632 if( p->bIncr ){
4633 rc = fts3EvalIncrPhraseNext(pCsr, p, pbEof);
4634 }else if( pCsr->bDesc!=pTab->bDescIdx && pDL->nAll ){
4635 sqlite3Fts3DoclistPrev(pTab->bDescIdx, pDL->aAll, pDL->nAll,
4636 &pDL->pNextDocid, &pDL->iDocid, &pDL->nList, pbEof
4637 );
4638 pDL->pList = pDL->pNextDocid;
4639 }else{
4640 fts3EvalDlPhraseNext(pTab, pDL, pbEof);
4641 }
4642
4643 return rc;
4644 }
4645
4646 /*
4647 **
4648 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
4649 ** Otherwise, fts3EvalPhraseStart() is called on all phrases within the
4650 ** expression. Also the Fts3Expr.bDeferred variable is set to true for any
4651 ** expressions for which all descendent tokens are deferred.
4652 **
4653 ** If parameter bOptOk is zero, then it is guaranteed that the
4654 ** Fts3Phrase.doclist.aAll/nAll variables contain the entire doclist for
4655 ** each phrase in the expression (subject to deferred token processing).
4656 ** Or, if bOptOk is non-zero, then one or more tokens within the expression
4657 ** may be loaded incrementally, meaning doclist.aAll/nAll is not available.
4658 **
4659 ** If an error occurs within this function, *pRc is set to an SQLite error
4660 ** code before returning.
4661 */
4662 static void fts3EvalStartReaders(
4663 Fts3Cursor *pCsr, /* FTS Cursor handle */
4664 Fts3Expr *pExpr, /* Expression to initialize phrases in */
4665 int *pRc /* IN/OUT: Error code */
4666 ){
4667 if( pExpr && SQLITE_OK==*pRc ){
4668 if( pExpr->eType==FTSQUERY_PHRASE ){
4669 int nToken = pExpr->pPhrase->nToken;
4670 if( nToken ){
4671 int i;
4672 for(i=0; i<nToken; i++){
4673 if( pExpr->pPhrase->aToken[i].pDeferred==0 ) break;
4674 }
4675 pExpr->bDeferred = (i==nToken);
4676 }
4677 *pRc = fts3EvalPhraseStart(pCsr, 1, pExpr->pPhrase);
4678 }else{
4679 fts3EvalStartReaders(pCsr, pExpr->pLeft, pRc);
4680 fts3EvalStartReaders(pCsr, pExpr->pRight, pRc);
4681 pExpr->bDeferred = (pExpr->pLeft->bDeferred && pExpr->pRight->bDeferred);
4682 }
4683 }
4684 }
4685
4686 /*
4687 ** An array of the following structures is assembled as part of the process
4688 ** of selecting tokens to defer before the query starts executing (as part
4689 ** of the xFilter() method). There is one element in the array for each
4690 ** token in the FTS expression.
4691 **
4692 ** Tokens are divided into AND/NEAR clusters. All tokens in a cluster belong
4693 ** to phrases that are connected only by AND and NEAR operators (not OR or
4694 ** NOT). When determining tokens to defer, each AND/NEAR cluster is considered
4695 ** separately. The root of a tokens AND/NEAR cluster is stored in
4696 ** Fts3TokenAndCost.pRoot.
4697 */
4698 typedef struct Fts3TokenAndCost Fts3TokenAndCost;
4699 struct Fts3TokenAndCost {
4700 Fts3Phrase *pPhrase; /* The phrase the token belongs to */
4701 int iToken; /* Position of token in phrase */
4702 Fts3PhraseToken *pToken; /* The token itself */
4703 Fts3Expr *pRoot; /* Root of NEAR/AND cluster */
4704 int nOvfl; /* Number of overflow pages to load doclist */
4705 int iCol; /* The column the token must match */
4706 };
4707
4708 /*
4709 ** This function is used to populate an allocated Fts3TokenAndCost array.
4710 **
4711 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
4712 ** Otherwise, if an error occurs during execution, *pRc is set to an
4713 ** SQLite error code.
4714 */
4715 static void fts3EvalTokenCosts(
4716 Fts3Cursor *pCsr, /* FTS Cursor handle */
4717 Fts3Expr *pRoot, /* Root of current AND/NEAR cluster */
4718 Fts3Expr *pExpr, /* Expression to consider */
4719 Fts3TokenAndCost **ppTC, /* Write new entries to *(*ppTC)++ */
4720 Fts3Expr ***ppOr, /* Write new OR root to *(*ppOr)++ */
4721 int *pRc /* IN/OUT: Error code */
4722 ){
4723 if( *pRc==SQLITE_OK ){
4724 if( pExpr->eType==FTSQUERY_PHRASE ){
4725 Fts3Phrase *pPhrase = pExpr->pPhrase;
4726 int i;
4727 for(i=0; *pRc==SQLITE_OK && i<pPhrase->nToken; i++){
4728 Fts3TokenAndCost *pTC = (*ppTC)++;
4729 pTC->pPhrase = pPhrase;
4730 pTC->iToken = i;
4731 pTC->pRoot = pRoot;
4732 pTC->pToken = &pPhrase->aToken[i];
4733 pTC->iCol = pPhrase->iColumn;
4734 *pRc = sqlite3Fts3MsrOvfl(pCsr, pTC->pToken->pSegcsr, &pTC->nOvfl);
4735 }
4736 }else if( pExpr->eType!=FTSQUERY_NOT ){
4737 assert( pExpr->eType==FTSQUERY_OR
4738 || pExpr->eType==FTSQUERY_AND
4739 || pExpr->eType==FTSQUERY_NEAR
4740 );
4741 assert( pExpr->pLeft && pExpr->pRight );
4742 if( pExpr->eType==FTSQUERY_OR ){
4743 pRoot = pExpr->pLeft;
4744 **ppOr = pRoot;
4745 (*ppOr)++;
4746 }
4747 fts3EvalTokenCosts(pCsr, pRoot, pExpr->pLeft, ppTC, ppOr, pRc);
4748 if( pExpr->eType==FTSQUERY_OR ){
4749 pRoot = pExpr->pRight;
4750 **ppOr = pRoot;
4751 (*ppOr)++;
4752 }
4753 fts3EvalTokenCosts(pCsr, pRoot, pExpr->pRight, ppTC, ppOr, pRc);
4754 }
4755 }
4756 }
4757
4758 /*
4759 ** Determine the average document (row) size in pages. If successful,
4760 ** write this value to *pnPage and return SQLITE_OK. Otherwise, return
4761 ** an SQLite error code.
4762 **
4763 ** The average document size in pages is calculated by first calculating
4764 ** determining the average size in bytes, B. If B is less than the amount
4765 ** of data that will fit on a single leaf page of an intkey table in
4766 ** this database, then the average docsize is 1. Otherwise, it is 1 plus
4767 ** the number of overflow pages consumed by a record B bytes in size.
4768 */
4769 static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){
4770 if( pCsr->nRowAvg==0 ){
4771 /* The average document size, which is required to calculate the cost
4772 ** of each doclist, has not yet been determined. Read the required
4773 ** data from the %_stat table to calculate it.
4774 **
4775 ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3
4776 ** varints, where nCol is the number of columns in the FTS3 table.
4777 ** The first varint is the number of documents currently stored in
4778 ** the table. The following nCol varints contain the total amount of
4779 ** data stored in all rows of each column of the table, from left
4780 ** to right.
4781 */
4782 int rc;
4783 Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
4784 sqlite3_stmt *pStmt;
4785 sqlite3_int64 nDoc = 0;
4786 sqlite3_int64 nByte = 0;
4787 const char *pEnd;
4788 const char *a;
4789
4790 rc = sqlite3Fts3SelectDoctotal(p, &pStmt);
4791 if( rc!=SQLITE_OK ) return rc;
4792 a = sqlite3_column_blob(pStmt, 0);
4793 assert( a );
4794
4795 pEnd = &a[sqlite3_column_bytes(pStmt, 0)];
4796 a += sqlite3Fts3GetVarint(a, &nDoc);
4797 while( a<pEnd ){
4798 a += sqlite3Fts3GetVarint(a, &nByte);
4799 }
4800 if( nDoc==0 || nByte==0 ){
4801 sqlite3_reset(pStmt);
4802 return FTS_CORRUPT_VTAB;
4803 }
4804
4805 pCsr->nDoc = nDoc;
4806 pCsr->nRowAvg = (int)(((nByte / nDoc) + p->nPgsz) / p->nPgsz);
4807 assert( pCsr->nRowAvg>0 );
4808 rc = sqlite3_reset(pStmt);
4809 if( rc!=SQLITE_OK ) return rc;
4810 }
4811
4812 *pnPage = pCsr->nRowAvg;
4813 return SQLITE_OK;
4814 }
4815
4816 /*
4817 ** This function is called to select the tokens (if any) that will be
4818 ** deferred. The array aTC[] has already been populated when this is
4819 ** called.
4820 **
4821 ** This function is called once for each AND/NEAR cluster in the
4822 ** expression. Each invocation determines which tokens to defer within
4823 ** the cluster with root node pRoot. See comments above the definition
4824 ** of struct Fts3TokenAndCost for more details.
4825 **
4826 ** If no error occurs, SQLITE_OK is returned and sqlite3Fts3DeferToken()
4827 ** called on each token to defer. Otherwise, an SQLite error code is
4828 ** returned.
4829 */
4830 static int fts3EvalSelectDeferred(
4831 Fts3Cursor *pCsr, /* FTS Cursor handle */
4832 Fts3Expr *pRoot, /* Consider tokens with this root node */
4833 Fts3TokenAndCost *aTC, /* Array of expression tokens and costs */
4834 int nTC /* Number of entries in aTC[] */
4835 ){
4836 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
4837 int nDocSize = 0; /* Number of pages per doc loaded */
4838 int rc = SQLITE_OK; /* Return code */
4839 int ii; /* Iterator variable for various purposes */
4840 int nOvfl = 0; /* Total overflow pages used by doclists */
4841 int nToken = 0; /* Total number of tokens in cluster */
4842
4843 int nMinEst = 0; /* The minimum count for any phrase so far. */
4844 int nLoad4 = 1; /* (Phrases that will be loaded)^4. */
4845
4846 /* Tokens are never deferred for FTS tables created using the content=xxx
4847 ** option. The reason being that it is not guaranteed that the content
4848 ** table actually contains the same data as the index. To prevent this from
4849 ** causing any problems, the deferred token optimization is completely
4850 ** disabled for content=xxx tables. */
4851 if( pTab->zContentTbl ){
4852 return SQLITE_OK;
4853 }
4854
4855 /* Count the tokens in this AND/NEAR cluster. If none of the doclists
4856 ** associated with the tokens spill onto overflow pages, or if there is
4857 ** only 1 token, exit early. No tokens to defer in this case. */
4858 for(ii=0; ii<nTC; ii++){
4859 if( aTC[ii].pRoot==pRoot ){
4860 nOvfl += aTC[ii].nOvfl;
4861 nToken++;
4862 }
4863 }
4864 if( nOvfl==0 || nToken<2 ) return SQLITE_OK;
4865
4866 /* Obtain the average docsize (in pages). */
4867 rc = fts3EvalAverageDocsize(pCsr, &nDocSize);
4868 assert( rc!=SQLITE_OK || nDocSize>0 );
4869
4870
4871 /* Iterate through all tokens in this AND/NEAR cluster, in ascending order
4872 ** of the number of overflow pages that will be loaded by the pager layer
4873 ** to retrieve the entire doclist for the token from the full-text index.
4874 ** Load the doclists for tokens that are either:
4875 **
4876 ** a. The cheapest token in the entire query (i.e. the one visited by the
4877 ** first iteration of this loop), or
4878 **
4879 ** b. Part of a multi-token phrase.
4880 **
4881 ** After each token doclist is loaded, merge it with the others from the
4882 ** same phrase and count the number of documents that the merged doclist
4883 ** contains. Set variable "nMinEst" to the smallest number of documents in
4884 ** any phrase doclist for which 1 or more token doclists have been loaded.
4885 ** Let nOther be the number of other phrases for which it is certain that
4886 ** one or more tokens will not be deferred.
4887 **
4888 ** Then, for each token, defer it if loading the doclist would result in
4889 ** loading N or more overflow pages into memory, where N is computed as:
4890 **
4891 ** (nMinEst + 4^nOther - 1) / (4^nOther)
4892 */
4893 for(ii=0; ii<nToken && rc==SQLITE_OK; ii++){
4894 int iTC; /* Used to iterate through aTC[] array. */
4895 Fts3TokenAndCost *pTC = 0; /* Set to cheapest remaining token. */
4896
4897 /* Set pTC to point to the cheapest remaining token. */
4898 for(iTC=0; iTC<nTC; iTC++){
4899 if( aTC[iTC].pToken && aTC[iTC].pRoot==pRoot
4900 && (!pTC || aTC[iTC].nOvfl<pTC->nOvfl)
4901 ){
4902 pTC = &aTC[iTC];
4903 }
4904 }
4905 assert( pTC );
4906
4907 if( ii && pTC->nOvfl>=((nMinEst+(nLoad4/4)-1)/(nLoad4/4))*nDocSize ){
4908 /* The number of overflow pages to load for this (and therefore all
4909 ** subsequent) tokens is greater than the estimated number of pages
4910 ** that will be loaded if all subsequent tokens are deferred.
4911 */
4912 Fts3PhraseToken *pToken = pTC->pToken;
4913 rc = sqlite3Fts3DeferToken(pCsr, pToken, pTC->iCol);
4914 fts3SegReaderCursorFree(pToken->pSegcsr);
4915 pToken->pSegcsr = 0;
4916 }else{
4917 /* Set nLoad4 to the value of (4^nOther) for the next iteration of the
4918 ** for-loop. Except, limit the value to 2^24 to prevent it from
4919 ** overflowing the 32-bit integer it is stored in. */
4920 if( ii<12 ) nLoad4 = nLoad4*4;
4921
4922 if( ii==0 || (pTC->pPhrase->nToken>1 && ii!=nToken-1) ){
4923 /* Either this is the cheapest token in the entire query, or it is
4924 ** part of a multi-token phrase. Either way, the entire doclist will
4925 ** (eventually) be loaded into memory. It may as well be now. */
4926 Fts3PhraseToken *pToken = pTC->pToken;
4927 int nList = 0;
4928 char *pList = 0;
4929 rc = fts3TermSelect(pTab, pToken, pTC->iCol, &nList, &pList);
4930 assert( rc==SQLITE_OK || pList==0 );
4931 if( rc==SQLITE_OK ){
4932 rc = fts3EvalPhraseMergeToken(
4933 pTab, pTC->pPhrase, pTC->iToken,pList,nList
4934 );
4935 }
4936 if( rc==SQLITE_OK ){
4937 int nCount;
4938 nCount = fts3DoclistCountDocids(
4939 pTC->pPhrase->doclist.aAll, pTC->pPhrase->doclist.nAll
4940 );
4941 if( ii==0 || nCount<nMinEst ) nMinEst = nCount;
4942 }
4943 }
4944 }
4945 pTC->pToken = 0;
4946 }
4947
4948 return rc;
4949 }
4950
4951 /*
4952 ** This function is called from within the xFilter method. It initializes
4953 ** the full-text query currently stored in pCsr->pExpr. To iterate through
4954 ** the results of a query, the caller does:
4955 **
4956 ** fts3EvalStart(pCsr);
4957 ** while( 1 ){
4958 ** fts3EvalNext(pCsr);
4959 ** if( pCsr->bEof ) break;
4960 ** ... return row pCsr->iPrevId to the caller ...
4961 ** }
4962 */
4963 static int fts3EvalStart(Fts3Cursor *pCsr){
4964 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
4965 int rc = SQLITE_OK;
4966 int nToken = 0;
4967 int nOr = 0;
4968
4969 /* Allocate a MultiSegReader for each token in the expression. */
4970 fts3EvalAllocateReaders(pCsr, pCsr->pExpr, &nToken, &nOr, &rc);
4971
4972 /* Determine which, if any, tokens in the expression should be deferred. */
4973 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
4974 if( rc==SQLITE_OK && nToken>1 && pTab->bFts4 ){
4975 Fts3TokenAndCost *aTC;
4976 Fts3Expr **apOr;
4977 aTC = (Fts3TokenAndCost *)sqlite3_malloc(
4978 sizeof(Fts3TokenAndCost) * nToken
4979 + sizeof(Fts3Expr *) * nOr * 2
4980 );
4981 apOr = (Fts3Expr **)&aTC[nToken];
4982
4983 if( !aTC ){
4984 rc = SQLITE_NOMEM;
4985 }else{
4986 int ii;
4987 Fts3TokenAndCost *pTC = aTC;
4988 Fts3Expr **ppOr = apOr;
4989
4990 fts3EvalTokenCosts(pCsr, 0, pCsr->pExpr, &pTC, &ppOr, &rc);
4991 nToken = (int)(pTC-aTC);
4992 nOr = (int)(ppOr-apOr);
4993
4994 if( rc==SQLITE_OK ){
4995 rc = fts3EvalSelectDeferred(pCsr, 0, aTC, nToken);
4996 for(ii=0; rc==SQLITE_OK && ii<nOr; ii++){
4997 rc = fts3EvalSelectDeferred(pCsr, apOr[ii], aTC, nToken);
4998 }
4999 }
5000
5001 sqlite3_free(aTC);
5002 }
5003 }
5004 #endif
5005
5006 fts3EvalStartReaders(pCsr, pCsr->pExpr, &rc);
5007 return rc;
5008 }
5009
5010 /*
5011 ** Invalidate the current position list for phrase pPhrase.
5012 */
5013 static void fts3EvalInvalidatePoslist(Fts3Phrase *pPhrase){
5014 if( pPhrase->doclist.bFreeList ){
5015 sqlite3_free(pPhrase->doclist.pList);
5016 }
5017 pPhrase->doclist.pList = 0;
5018 pPhrase->doclist.nList = 0;
5019 pPhrase->doclist.bFreeList = 0;
5020 }
5021
5022 /*
5023 ** This function is called to edit the position list associated with
5024 ** the phrase object passed as the fifth argument according to a NEAR
5025 ** condition. For example:
5026 **
5027 ** abc NEAR/5 "def ghi"
5028 **
5029 ** Parameter nNear is passed the NEAR distance of the expression (5 in
5030 ** the example above). When this function is called, *paPoslist points to
5031 ** the position list, and *pnToken is the number of phrase tokens in, the
5032 ** phrase on the other side of the NEAR operator to pPhrase. For example,
5033 ** if pPhrase refers to the "def ghi" phrase, then *paPoslist points to
5034 ** the position list associated with phrase "abc".
5035 **
5036 ** All positions in the pPhrase position list that are not sufficiently
5037 ** close to a position in the *paPoslist position list are removed. If this
5038 ** leaves 0 positions, zero is returned. Otherwise, non-zero.
5039 **
5040 ** Before returning, *paPoslist is set to point to the position lsit
5041 ** associated with pPhrase. And *pnToken is set to the number of tokens in
5042 ** pPhrase.
5043 */
5044 static int fts3EvalNearTrim(
5045 int nNear, /* NEAR distance. As in "NEAR/nNear". */
5046 char *aTmp, /* Temporary space to use */
5047 char **paPoslist, /* IN/OUT: Position list */
5048 int *pnToken, /* IN/OUT: Tokens in phrase of *paPoslist */
5049 Fts3Phrase *pPhrase /* The phrase object to trim the doclist of */
5050 ){
5051 int nParam1 = nNear + pPhrase->nToken;
5052 int nParam2 = nNear + *pnToken;
5053 int nNew;
5054 char *p2;
5055 char *pOut;
5056 int res;
5057
5058 assert( pPhrase->doclist.pList );
5059
5060 p2 = pOut = pPhrase->doclist.pList;
5061 res = fts3PoslistNearMerge(
5062 &pOut, aTmp, nParam1, nParam2, paPoslist, &p2
5063 );
5064 if( res ){
5065 nNew = (int)(pOut - pPhrase->doclist.pList) - 1;
5066 assert( pPhrase->doclist.pList[nNew]=='\0' );
5067 assert( nNew<=pPhrase->doclist.nList && nNew>0 );
5068 memset(&pPhrase->doclist.pList[nNew], 0, pPhrase->doclist.nList - nNew);
5069 pPhrase->doclist.nList = nNew;
5070 *paPoslist = pPhrase->doclist.pList;
5071 *pnToken = pPhrase->nToken;
5072 }
5073
5074 return res;
5075 }
5076
5077 /*
5078 ** This function is a no-op if *pRc is other than SQLITE_OK when it is called.
5079 ** Otherwise, it advances the expression passed as the second argument to
5080 ** point to the next matching row in the database. Expressions iterate through
5081 ** matching rows in docid order. Ascending order if Fts3Cursor.bDesc is zero,
5082 ** or descending if it is non-zero.
5083 **
5084 ** If an error occurs, *pRc is set to an SQLite error code. Otherwise, if
5085 ** successful, the following variables in pExpr are set:
5086 **
5087 ** Fts3Expr.bEof (non-zero if EOF - there is no next row)
5088 ** Fts3Expr.iDocid (valid if bEof==0. The docid of the next row)
5089 **
5090 ** If the expression is of type FTSQUERY_PHRASE, and the expression is not
5091 ** at EOF, then the following variables are populated with the position list
5092 ** for the phrase for the visited row:
5093 **
5094 ** FTs3Expr.pPhrase->doclist.nList (length of pList in bytes)
5095 ** FTs3Expr.pPhrase->doclist.pList (pointer to position list)
5096 **
5097 ** It says above that this function advances the expression to the next
5098 ** matching row. This is usually true, but there are the following exceptions:
5099 **
5100 ** 1. Deferred tokens are not taken into account. If a phrase consists
5101 ** entirely of deferred tokens, it is assumed to match every row in
5102 ** the db. In this case the position-list is not populated at all.
5103 **
5104 ** Or, if a phrase contains one or more deferred tokens and one or
5105 ** more non-deferred tokens, then the expression is advanced to the
5106 ** next possible match, considering only non-deferred tokens. In other
5107 ** words, if the phrase is "A B C", and "B" is deferred, the expression
5108 ** is advanced to the next row that contains an instance of "A * C",
5109 ** where "*" may match any single token. The position list in this case
5110 ** is populated as for "A * C" before returning.
5111 **
5112 ** 2. NEAR is treated as AND. If the expression is "x NEAR y", it is
5113 ** advanced to point to the next row that matches "x AND y".
5114 **
5115 ** See sqlite3Fts3EvalTestDeferred() for details on testing if a row is
5116 ** really a match, taking into account deferred tokens and NEAR operators.
5117 */
5118 static void fts3EvalNextRow(
5119 Fts3Cursor *pCsr, /* FTS Cursor handle */
5120 Fts3Expr *pExpr, /* Expr. to advance to next matching row */
5121 int *pRc /* IN/OUT: Error code */
5122 ){
5123 if( *pRc==SQLITE_OK ){
5124 int bDescDoclist = pCsr->bDesc; /* Used by DOCID_CMP() macro */
5125 assert( pExpr->bEof==0 );
5126 pExpr->bStart = 1;
5127
5128 switch( pExpr->eType ){
5129 case FTSQUERY_NEAR:
5130 case FTSQUERY_AND: {
5131 Fts3Expr *pLeft = pExpr->pLeft;
5132 Fts3Expr *pRight = pExpr->pRight;
5133 assert( !pLeft->bDeferred || !pRight->bDeferred );
5134
5135 if( pLeft->bDeferred ){
5136 /* LHS is entirely deferred. So we assume it matches every row.
5137 ** Advance the RHS iterator to find the next row visited. */
5138 fts3EvalNextRow(pCsr, pRight, pRc);
5139 pExpr->iDocid = pRight->iDocid;
5140 pExpr->bEof = pRight->bEof;
5141 }else if( pRight->bDeferred ){
5142 /* RHS is entirely deferred. So we assume it matches every row.
5143 ** Advance the LHS iterator to find the next row visited. */
5144 fts3EvalNextRow(pCsr, pLeft, pRc);
5145 pExpr->iDocid = pLeft->iDocid;
5146 pExpr->bEof = pLeft->bEof;
5147 }else{
5148 /* Neither the RHS or LHS are deferred. */
5149 fts3EvalNextRow(pCsr, pLeft, pRc);
5150 fts3EvalNextRow(pCsr, pRight, pRc);
5151 while( !pLeft->bEof && !pRight->bEof && *pRc==SQLITE_OK ){
5152 sqlite3_int64 iDiff = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
5153 if( iDiff==0 ) break;
5154 if( iDiff<0 ){
5155 fts3EvalNextRow(pCsr, pLeft, pRc);
5156 }else{
5157 fts3EvalNextRow(pCsr, pRight, pRc);
5158 }
5159 }
5160 pExpr->iDocid = pLeft->iDocid;
5161 pExpr->bEof = (pLeft->bEof || pRight->bEof);
5162 if( pExpr->eType==FTSQUERY_NEAR && pExpr->bEof ){
5163 if( pRight->pPhrase && pRight->pPhrase->doclist.aAll ){
5164 Fts3Doclist *pDl = &pRight->pPhrase->doclist;
5165 while( *pRc==SQLITE_OK && pRight->bEof==0 ){
5166 memset(pDl->pList, 0, pDl->nList);
5167 fts3EvalNextRow(pCsr, pRight, pRc);
5168 }
5169 }
5170 if( pLeft->pPhrase && pLeft->pPhrase->doclist.aAll ){
5171 Fts3Doclist *pDl = &pLeft->pPhrase->doclist;
5172 while( *pRc==SQLITE_OK && pLeft->bEof==0 ){
5173 memset(pDl->pList, 0, pDl->nList);
5174 fts3EvalNextRow(pCsr, pLeft, pRc);
5175 }
5176 }
5177 }
5178 }
5179 break;
5180 }
5181
5182 case FTSQUERY_OR: {
5183 Fts3Expr *pLeft = pExpr->pLeft;
5184 Fts3Expr *pRight = pExpr->pRight;
5185 sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
5186
5187 assert( pLeft->bStart || pLeft->iDocid==pRight->iDocid );
5188 assert( pRight->bStart || pLeft->iDocid==pRight->iDocid );
5189
5190 if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
5191 fts3EvalNextRow(pCsr, pLeft, pRc);
5192 }else if( pLeft->bEof || (pRight->bEof==0 && iCmp>0) ){
5193 fts3EvalNextRow(pCsr, pRight, pRc);
5194 }else{
5195 fts3EvalNextRow(pCsr, pLeft, pRc);
5196 fts3EvalNextRow(pCsr, pRight, pRc);
5197 }
5198
5199 pExpr->bEof = (pLeft->bEof && pRight->bEof);
5200 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
5201 if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
5202 pExpr->iDocid = pLeft->iDocid;
5203 }else{
5204 pExpr->iDocid = pRight->iDocid;
5205 }
5206
5207 break;
5208 }
5209
5210 case FTSQUERY_NOT: {
5211 Fts3Expr *pLeft = pExpr->pLeft;
5212 Fts3Expr *pRight = pExpr->pRight;
5213
5214 if( pRight->bStart==0 ){
5215 fts3EvalNextRow(pCsr, pRight, pRc);
5216 assert( *pRc!=SQLITE_OK || pRight->bStart );
5217 }
5218
5219 fts3EvalNextRow(pCsr, pLeft, pRc);
5220 if( pLeft->bEof==0 ){
5221 while( !*pRc
5222 && !pRight->bEof
5223 && DOCID_CMP(pLeft->iDocid, pRight->iDocid)>0
5224 ){
5225 fts3EvalNextRow(pCsr, pRight, pRc);
5226 }
5227 }
5228 pExpr->iDocid = pLeft->iDocid;
5229 pExpr->bEof = pLeft->bEof;
5230 break;
5231 }
5232
5233 default: {
5234 Fts3Phrase *pPhrase = pExpr->pPhrase;
5235 fts3EvalInvalidatePoslist(pPhrase);
5236 *pRc = fts3EvalPhraseNext(pCsr, pPhrase, &pExpr->bEof);
5237 pExpr->iDocid = pPhrase->doclist.iDocid;
5238 break;
5239 }
5240 }
5241 }
5242 }
5243
5244 /*
5245 ** If *pRc is not SQLITE_OK, or if pExpr is not the root node of a NEAR
5246 ** cluster, then this function returns 1 immediately.
5247 **
5248 ** Otherwise, it checks if the current row really does match the NEAR
5249 ** expression, using the data currently stored in the position lists
5250 ** (Fts3Expr->pPhrase.doclist.pList/nList) for each phrase in the expression.
5251 **
5252 ** If the current row is a match, the position list associated with each
5253 ** phrase in the NEAR expression is edited in place to contain only those
5254 ** phrase instances sufficiently close to their peers to satisfy all NEAR
5255 ** constraints. In this case it returns 1. If the NEAR expression does not
5256 ** match the current row, 0 is returned. The position lists may or may not
5257 ** be edited if 0 is returned.
5258 */
5259 static int fts3EvalNearTest(Fts3Expr *pExpr, int *pRc){
5260 int res = 1;
5261
5262 /* The following block runs if pExpr is the root of a NEAR query.
5263 ** For example, the query:
5264 **
5265 ** "w" NEAR "x" NEAR "y" NEAR "z"
5266 **
5267 ** which is represented in tree form as:
5268 **
5269 ** |
5270 ** +--NEAR--+ <-- root of NEAR query
5271 ** | |
5272 ** +--NEAR--+ "z"
5273 ** | |
5274 ** +--NEAR--+ "y"
5275 ** | |
5276 ** "w" "x"
5277 **
5278 ** The right-hand child of a NEAR node is always a phrase. The
5279 ** left-hand child may be either a phrase or a NEAR node. There are
5280 ** no exceptions to this - it's the way the parser in fts3_expr.c works.
5281 */
5282 if( *pRc==SQLITE_OK
5283 && pExpr->eType==FTSQUERY_NEAR
5284 && pExpr->bEof==0
5285 && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
5286 ){
5287 Fts3Expr *p;
5288 int nTmp = 0; /* Bytes of temp space */
5289 char *aTmp; /* Temp space for PoslistNearMerge() */
5290
5291 /* Allocate temporary working space. */
5292 for(p=pExpr; p->pLeft; p=p->pLeft){
5293 nTmp += p->pRight->pPhrase->doclist.nList;
5294 }
5295 nTmp += p->pPhrase->doclist.nList;
5296 if( nTmp==0 ){
5297 res = 0;
5298 }else{
5299 aTmp = sqlite3_malloc(nTmp*2);
5300 if( !aTmp ){
5301 *pRc = SQLITE_NOMEM;
5302 res = 0;
5303 }else{
5304 char *aPoslist = p->pPhrase->doclist.pList;
5305 int nToken = p->pPhrase->nToken;
5306
5307 for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){
5308 Fts3Phrase *pPhrase = p->pRight->pPhrase;
5309 int nNear = p->nNear;
5310 res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
5311 }
5312
5313 aPoslist = pExpr->pRight->pPhrase->doclist.pList;
5314 nToken = pExpr->pRight->pPhrase->nToken;
5315 for(p=pExpr->pLeft; p && res; p=p->pLeft){
5316 int nNear;
5317 Fts3Phrase *pPhrase;
5318 assert( p->pParent && p->pParent->pLeft==p );
5319 nNear = p->pParent->nNear;
5320 pPhrase = (
5321 p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase
5322 );
5323 res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
5324 }
5325 }
5326
5327 sqlite3_free(aTmp);
5328 }
5329 }
5330
5331 return res;
5332 }
5333
5334 /*
5335 ** This function is a helper function for sqlite3Fts3EvalTestDeferred().
5336 ** Assuming no error occurs or has occurred, It returns non-zero if the
5337 ** expression passed as the second argument matches the row that pCsr
5338 ** currently points to, or zero if it does not.
5339 **
5340 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
5341 ** If an error occurs during execution of this function, *pRc is set to
5342 ** the appropriate SQLite error code. In this case the returned value is
5343 ** undefined.
5344 */
5345 static int fts3EvalTestExpr(
5346 Fts3Cursor *pCsr, /* FTS cursor handle */
5347 Fts3Expr *pExpr, /* Expr to test. May or may not be root. */
5348 int *pRc /* IN/OUT: Error code */
5349 ){
5350 int bHit = 1; /* Return value */
5351 if( *pRc==SQLITE_OK ){
5352 switch( pExpr->eType ){
5353 case FTSQUERY_NEAR:
5354 case FTSQUERY_AND:
5355 bHit = (
5356 fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc)
5357 && fts3EvalTestExpr(pCsr, pExpr->pRight, pRc)
5358 && fts3EvalNearTest(pExpr, pRc)
5359 );
5360
5361 /* If the NEAR expression does not match any rows, zero the doclist for
5362 ** all phrases involved in the NEAR. This is because the snippet(),
5363 ** offsets() and matchinfo() functions are not supposed to recognize
5364 ** any instances of phrases that are part of unmatched NEAR queries.
5365 ** For example if this expression:
5366 **
5367 ** ... MATCH 'a OR (b NEAR c)'
5368 **
5369 ** is matched against a row containing:
5370 **
5371 ** 'a b d e'
5372 **
5373 ** then any snippet() should ony highlight the "a" term, not the "b"
5374 ** (as "b" is part of a non-matching NEAR clause).
5375 */
5376 if( bHit==0
5377 && pExpr->eType==FTSQUERY_NEAR
5378 && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
5379 ){
5380 Fts3Expr *p;
5381 for(p=pExpr; p->pPhrase==0; p=p->pLeft){
5382 if( p->pRight->iDocid==pCsr->iPrevId ){
5383 fts3EvalInvalidatePoslist(p->pRight->pPhrase);
5384 }
5385 }
5386 if( p->iDocid==pCsr->iPrevId ){
5387 fts3EvalInvalidatePoslist(p->pPhrase);
5388 }
5389 }
5390
5391 break;
5392
5393 case FTSQUERY_OR: {
5394 int bHit1 = fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc);
5395 int bHit2 = fts3EvalTestExpr(pCsr, pExpr->pRight, pRc);
5396 bHit = bHit1 || bHit2;
5397 break;
5398 }
5399
5400 case FTSQUERY_NOT:
5401 bHit = (
5402 fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc)
5403 && !fts3EvalTestExpr(pCsr, pExpr->pRight, pRc)
5404 );
5405 break;
5406
5407 default: {
5408 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
5409 if( pCsr->pDeferred
5410 && (pExpr->iDocid==pCsr->iPrevId || pExpr->bDeferred)
5411 ){
5412 Fts3Phrase *pPhrase = pExpr->pPhrase;
5413 assert( pExpr->bDeferred || pPhrase->doclist.bFreeList==0 );
5414 if( pExpr->bDeferred ){
5415 fts3EvalInvalidatePoslist(pPhrase);
5416 }
5417 *pRc = fts3EvalDeferredPhrase(pCsr, pPhrase);
5418 bHit = (pPhrase->doclist.pList!=0);
5419 pExpr->iDocid = pCsr->iPrevId;
5420 }else
5421 #endif
5422 {
5423 bHit = (pExpr->bEof==0 && pExpr->iDocid==pCsr->iPrevId);
5424 }
5425 break;
5426 }
5427 }
5428 }
5429 return bHit;
5430 }
5431
5432 /*
5433 ** This function is called as the second part of each xNext operation when
5434 ** iterating through the results of a full-text query. At this point the
5435 ** cursor points to a row that matches the query expression, with the
5436 ** following caveats:
5437 **
5438 ** * Up until this point, "NEAR" operators in the expression have been
5439 ** treated as "AND".
5440 **
5441 ** * Deferred tokens have not yet been considered.
5442 **
5443 ** If *pRc is not SQLITE_OK when this function is called, it immediately
5444 ** returns 0. Otherwise, it tests whether or not after considering NEAR
5445 ** operators and deferred tokens the current row is still a match for the
5446 ** expression. It returns 1 if both of the following are true:
5447 **
5448 ** 1. *pRc is SQLITE_OK when this function returns, and
5449 **
5450 ** 2. After scanning the current FTS table row for the deferred tokens,
5451 ** it is determined that the row does *not* match the query.
5452 **
5453 ** Or, if no error occurs and it seems the current row does match the FTS
5454 ** query, return 0.
5455 */
5456 int sqlite3Fts3EvalTestDeferred(Fts3Cursor *pCsr, int *pRc){
5457 int rc = *pRc;
5458 int bMiss = 0;
5459 if( rc==SQLITE_OK ){
5460
5461 /* If there are one or more deferred tokens, load the current row into
5462 ** memory and scan it to determine the position list for each deferred
5463 ** token. Then, see if this row is really a match, considering deferred
5464 ** tokens and NEAR operators (neither of which were taken into account
5465 ** earlier, by fts3EvalNextRow()).
5466 */
5467 if( pCsr->pDeferred ){
5468 rc = fts3CursorSeek(0, pCsr);
5469 if( rc==SQLITE_OK ){
5470 rc = sqlite3Fts3CacheDeferredDoclists(pCsr);
5471 }
5472 }
5473 bMiss = (0==fts3EvalTestExpr(pCsr, pCsr->pExpr, &rc));
5474
5475 /* Free the position-lists accumulated for each deferred token above. */
5476 sqlite3Fts3FreeDeferredDoclists(pCsr);
5477 *pRc = rc;
5478 }
5479 return (rc==SQLITE_OK && bMiss);
5480 }
5481
5482 /*
5483 ** Advance to the next document that matches the FTS expression in
5484 ** Fts3Cursor.pExpr.
5485 */
5486 static int fts3EvalNext(Fts3Cursor *pCsr){
5487 int rc = SQLITE_OK; /* Return Code */
5488 Fts3Expr *pExpr = pCsr->pExpr;
5489 assert( pCsr->isEof==0 );
5490 if( pExpr==0 ){
5491 pCsr->isEof = 1;
5492 }else{
5493 do {
5494 if( pCsr->isRequireSeek==0 ){
5495 sqlite3_reset(pCsr->pStmt);
5496 }
5497 assert( sqlite3_data_count(pCsr->pStmt)==0 );
5498 fts3EvalNextRow(pCsr, pExpr, &rc);
5499 pCsr->isEof = pExpr->bEof;
5500 pCsr->isRequireSeek = 1;
5501 pCsr->isMatchinfoNeeded = 1;
5502 pCsr->iPrevId = pExpr->iDocid;
5503 }while( pCsr->isEof==0 && sqlite3Fts3EvalTestDeferred(pCsr, &rc) );
5504 }
5505
5506 /* Check if the cursor is past the end of the docid range specified
5507 ** by Fts3Cursor.iMinDocid/iMaxDocid. If so, set the EOF flag. */
5508 if( rc==SQLITE_OK && (
5509 (pCsr->bDesc==0 && pCsr->iPrevId>pCsr->iMaxDocid)
5510 || (pCsr->bDesc!=0 && pCsr->iPrevId<pCsr->iMinDocid)
5511 )){
5512 pCsr->isEof = 1;
5513 }
5514
5515 return rc;
5516 }
5517
5518 /*
5519 ** Restart interation for expression pExpr so that the next call to
5520 ** fts3EvalNext() visits the first row. Do not allow incremental
5521 ** loading or merging of phrase doclists for this iteration.
5522 **
5523 ** If *pRc is other than SQLITE_OK when this function is called, it is
5524 ** a no-op. If an error occurs within this function, *pRc is set to an
5525 ** SQLite error code before returning.
5526 */
5527 static void fts3EvalRestart(
5528 Fts3Cursor *pCsr,
5529 Fts3Expr *pExpr,
5530 int *pRc
5531 ){
5532 if( pExpr && *pRc==SQLITE_OK ){
5533 Fts3Phrase *pPhrase = pExpr->pPhrase;
5534
5535 if( pPhrase ){
5536 fts3EvalInvalidatePoslist(pPhrase);
5537 if( pPhrase->bIncr ){
5538 int i;
5539 for(i=0; i<pPhrase->nToken; i++){
5540 Fts3PhraseToken *pToken = &pPhrase->aToken[i];
5541 assert( pToken->pDeferred==0 );
5542 if( pToken->pSegcsr ){
5543 sqlite3Fts3MsrIncrRestart(pToken->pSegcsr);
5544 }
5545 }
5546 *pRc = fts3EvalPhraseStart(pCsr, 0, pPhrase);
5547 }
5548 pPhrase->doclist.pNextDocid = 0;
5549 pPhrase->doclist.iDocid = 0;
5550 pPhrase->pOrPoslist = 0;
5551 }
5552
5553 pExpr->iDocid = 0;
5554 pExpr->bEof = 0;
5555 pExpr->bStart = 0;
5556
5557 fts3EvalRestart(pCsr, pExpr->pLeft, pRc);
5558 fts3EvalRestart(pCsr, pExpr->pRight, pRc);
5559 }
5560 }
5561
5562 /*
5563 ** After allocating the Fts3Expr.aMI[] array for each phrase in the
5564 ** expression rooted at pExpr, the cursor iterates through all rows matched
5565 ** by pExpr, calling this function for each row. This function increments
5566 ** the values in Fts3Expr.aMI[] according to the position-list currently
5567 ** found in Fts3Expr.pPhrase->doclist.pList for each of the phrase
5568 ** expression nodes.
5569 */
5570 static void fts3EvalUpdateCounts(Fts3Expr *pExpr){
5571 if( pExpr ){
5572 Fts3Phrase *pPhrase = pExpr->pPhrase;
5573 if( pPhrase && pPhrase->doclist.pList ){
5574 int iCol = 0;
5575 char *p = pPhrase->doclist.pList;
5576
5577 assert( *p );
5578 while( 1 ){
5579 u8 c = 0;
5580 int iCnt = 0;
5581 while( 0xFE & (*p | c) ){
5582 if( (c&0x80)==0 ) iCnt++;
5583 c = *p++ & 0x80;
5584 }
5585
5586 /* aMI[iCol*3 + 1] = Number of occurrences
5587 ** aMI[iCol*3 + 2] = Number of rows containing at least one instance
5588 */
5589 pExpr->aMI[iCol*3 + 1] += iCnt;
5590 pExpr->aMI[iCol*3 + 2] += (iCnt>0);
5591 if( *p==0x00 ) break;
5592 p++;
5593 p += fts3GetVarint32(p, &iCol);
5594 }
5595 }
5596
5597 fts3EvalUpdateCounts(pExpr->pLeft);
5598 fts3EvalUpdateCounts(pExpr->pRight);
5599 }
5600 }
5601
5602 /*
5603 ** Expression pExpr must be of type FTSQUERY_PHRASE.
5604 **
5605 ** If it is not already allocated and populated, this function allocates and
5606 ** populates the Fts3Expr.aMI[] array for expression pExpr. If pExpr is part
5607 ** of a NEAR expression, then it also allocates and populates the same array
5608 ** for all other phrases that are part of the NEAR expression.
5609 **
5610 ** SQLITE_OK is returned if the aMI[] array is successfully allocated and
5611 ** populated. Otherwise, if an error occurs, an SQLite error code is returned.
5612 */
5613 static int fts3EvalGatherStats(
5614 Fts3Cursor *pCsr, /* Cursor object */
5615 Fts3Expr *pExpr /* FTSQUERY_PHRASE expression */
5616 ){
5617 int rc = SQLITE_OK; /* Return code */
5618
5619 assert( pExpr->eType==FTSQUERY_PHRASE );
5620 if( pExpr->aMI==0 ){
5621 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
5622 Fts3Expr *pRoot; /* Root of NEAR expression */
5623 Fts3Expr *p; /* Iterator used for several purposes */
5624
5625 sqlite3_int64 iPrevId = pCsr->iPrevId;
5626 sqlite3_int64 iDocid;
5627 u8 bEof;
5628
5629 /* Find the root of the NEAR expression */
5630 pRoot = pExpr;
5631 while( pRoot->pParent && pRoot->pParent->eType==FTSQUERY_NEAR ){
5632 pRoot = pRoot->pParent;
5633 }
5634 iDocid = pRoot->iDocid;
5635 bEof = pRoot->bEof;
5636 assert( pRoot->bStart );
5637
5638 /* Allocate space for the aMSI[] array of each FTSQUERY_PHRASE node */
5639 for(p=pRoot; p; p=p->pLeft){
5640 Fts3Expr *pE = (p->eType==FTSQUERY_PHRASE?p:p->pRight);
5641 assert( pE->aMI==0 );
5642 pE->aMI = (u32 *)sqlite3_malloc(pTab->nColumn * 3 * sizeof(u32));
5643 if( !pE->aMI ) return SQLITE_NOMEM;
5644 memset(pE->aMI, 0, pTab->nColumn * 3 * sizeof(u32));
5645 }
5646
5647 fts3EvalRestart(pCsr, pRoot, &rc);
5648
5649 while( pCsr->isEof==0 && rc==SQLITE_OK ){
5650
5651 do {
5652 /* Ensure the %_content statement is reset. */
5653 if( pCsr->isRequireSeek==0 ) sqlite3_reset(pCsr->pStmt);
5654 assert( sqlite3_data_count(pCsr->pStmt)==0 );
5655
5656 /* Advance to the next document */
5657 fts3EvalNextRow(pCsr, pRoot, &rc);
5658 pCsr->isEof = pRoot->bEof;
5659 pCsr->isRequireSeek = 1;
5660 pCsr->isMatchinfoNeeded = 1;
5661 pCsr->iPrevId = pRoot->iDocid;
5662 }while( pCsr->isEof==0
5663 && pRoot->eType==FTSQUERY_NEAR
5664 && sqlite3Fts3EvalTestDeferred(pCsr, &rc)
5665 );
5666
5667 if( rc==SQLITE_OK && pCsr->isEof==0 ){
5668 fts3EvalUpdateCounts(pRoot);
5669 }
5670 }
5671
5672 pCsr->isEof = 0;
5673 pCsr->iPrevId = iPrevId;
5674
5675 if( bEof ){
5676 pRoot->bEof = bEof;
5677 }else{
5678 /* Caution: pRoot may iterate through docids in ascending or descending
5679 ** order. For this reason, even though it seems more defensive, the
5680 ** do loop can not be written:
5681 **
5682 ** do {...} while( pRoot->iDocid<iDocid && rc==SQLITE_OK );
5683 */
5684 fts3EvalRestart(pCsr, pRoot, &rc);
5685 do {
5686 fts3EvalNextRow(pCsr, pRoot, &rc);
5687 assert( pRoot->bEof==0 );
5688 }while( pRoot->iDocid!=iDocid && rc==SQLITE_OK );
5689 }
5690 }
5691 return rc;
5692 }
5693
5694 /*
5695 ** This function is used by the matchinfo() module to query a phrase
5696 ** expression node for the following information:
5697 **
5698 ** 1. The total number of occurrences of the phrase in each column of
5699 ** the FTS table (considering all rows), and
5700 **
5701 ** 2. For each column, the number of rows in the table for which the
5702 ** column contains at least one instance of the phrase.
5703 **
5704 ** If no error occurs, SQLITE_OK is returned and the values for each column
5705 ** written into the array aiOut as follows:
5706 **
5707 ** aiOut[iCol*3 + 1] = Number of occurrences
5708 ** aiOut[iCol*3 + 2] = Number of rows containing at least one instance
5709 **
5710 ** Caveats:
5711 **
5712 ** * If a phrase consists entirely of deferred tokens, then all output
5713 ** values are set to the number of documents in the table. In other
5714 ** words we assume that very common tokens occur exactly once in each
5715 ** column of each row of the table.
5716 **
5717 ** * If a phrase contains some deferred tokens (and some non-deferred
5718 ** tokens), count the potential occurrence identified by considering
5719 ** the non-deferred tokens instead of actual phrase occurrences.
5720 **
5721 ** * If the phrase is part of a NEAR expression, then only phrase instances
5722 ** that meet the NEAR constraint are included in the counts.
5723 */
5724 int sqlite3Fts3EvalPhraseStats(
5725 Fts3Cursor *pCsr, /* FTS cursor handle */
5726 Fts3Expr *pExpr, /* Phrase expression */
5727 u32 *aiOut /* Array to write results into (see above) */
5728 ){
5729 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
5730 int rc = SQLITE_OK;
5731 int iCol;
5732
5733 if( pExpr->bDeferred && pExpr->pParent->eType!=FTSQUERY_NEAR ){
5734 assert( pCsr->nDoc>0 );
5735 for(iCol=0; iCol<pTab->nColumn; iCol++){
5736 aiOut[iCol*3 + 1] = (u32)pCsr->nDoc;
5737 aiOut[iCol*3 + 2] = (u32)pCsr->nDoc;
5738 }
5739 }else{
5740 rc = fts3EvalGatherStats(pCsr, pExpr);
5741 if( rc==SQLITE_OK ){
5742 assert( pExpr->aMI );
5743 for(iCol=0; iCol<pTab->nColumn; iCol++){
5744 aiOut[iCol*3 + 1] = pExpr->aMI[iCol*3 + 1];
5745 aiOut[iCol*3 + 2] = pExpr->aMI[iCol*3 + 2];
5746 }
5747 }
5748 }
5749
5750 return rc;
5751 }
5752
5753 /*
5754 ** The expression pExpr passed as the second argument to this function
5755 ** must be of type FTSQUERY_PHRASE.
5756 **
5757 ** The returned value is either NULL or a pointer to a buffer containing
5758 ** a position-list indicating the occurrences of the phrase in column iCol
5759 ** of the current row.
5760 **
5761 ** More specifically, the returned buffer contains 1 varint for each
5762 ** occurrence of the phrase in the column, stored using the normal (delta+2)
5763 ** compression and is terminated by either an 0x01 or 0x00 byte. For example,
5764 ** if the requested column contains "a b X c d X X" and the position-list
5765 ** for 'X' is requested, the buffer returned may contain:
5766 **
5767 ** 0x04 0x05 0x03 0x01 or 0x04 0x05 0x03 0x00
5768 **
5769 ** This function works regardless of whether or not the phrase is deferred,
5770 ** incremental, or neither.
5771 */
5772 int sqlite3Fts3EvalPhrasePoslist(
5773 Fts3Cursor *pCsr, /* FTS3 cursor object */
5774 Fts3Expr *pExpr, /* Phrase to return doclist for */
5775 int iCol, /* Column to return position list for */
5776 char **ppOut /* OUT: Pointer to position list */
5777 ){
5778 Fts3Phrase *pPhrase = pExpr->pPhrase;
5779 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
5780 char *pIter;
5781 int iThis;
5782 sqlite3_int64 iDocid;
5783
5784 /* If this phrase is applies specifically to some column other than
5785 ** column iCol, return a NULL pointer. */
5786 *ppOut = 0;
5787 assert( iCol>=0 && iCol<pTab->nColumn );
5788 if( (pPhrase->iColumn<pTab->nColumn && pPhrase->iColumn!=iCol) ){
5789 return SQLITE_OK;
5790 }
5791
5792 iDocid = pExpr->iDocid;
5793 pIter = pPhrase->doclist.pList;
5794 if( iDocid!=pCsr->iPrevId || pExpr->bEof ){
5795 int rc = SQLITE_OK;
5796 int bDescDoclist = pTab->bDescIdx; /* For DOCID_CMP macro */
5797 int bOr = 0;
5798 u8 bTreeEof = 0;
5799 Fts3Expr *p; /* Used to iterate from pExpr to root */
5800 Fts3Expr *pNear; /* Most senior NEAR ancestor (or pExpr) */
5801 int bMatch;
5802
5803 /* Check if this phrase descends from an OR expression node. If not,
5804 ** return NULL. Otherwise, the entry that corresponds to docid
5805 ** pCsr->iPrevId may lie earlier in the doclist buffer. Or, if the
5806 ** tree that the node is part of has been marked as EOF, but the node
5807 ** itself is not EOF, then it may point to an earlier entry. */
5808 pNear = pExpr;
5809 for(p=pExpr->pParent; p; p=p->pParent){
5810 if( p->eType==FTSQUERY_OR ) bOr = 1;
5811 if( p->eType==FTSQUERY_NEAR ) pNear = p;
5812 if( p->bEof ) bTreeEof = 1;
5813 }
5814 if( bOr==0 ) return SQLITE_OK;
5815
5816 /* This is the descendent of an OR node. In this case we cannot use
5817 ** an incremental phrase. Load the entire doclist for the phrase
5818 ** into memory in this case. */
5819 if( pPhrase->bIncr ){
5820 int bEofSave = pNear->bEof;
5821 fts3EvalRestart(pCsr, pNear, &rc);
5822 while( rc==SQLITE_OK && !pNear->bEof ){
5823 fts3EvalNextRow(pCsr, pNear, &rc);
5824 if( bEofSave==0 && pNear->iDocid==iDocid ) break;
5825 }
5826 assert( rc!=SQLITE_OK || pPhrase->bIncr==0 );
5827 }
5828 if( bTreeEof ){
5829 while( rc==SQLITE_OK && !pNear->bEof ){
5830 fts3EvalNextRow(pCsr, pNear, &rc);
5831 }
5832 }
5833 if( rc!=SQLITE_OK ) return rc;
5834
5835 bMatch = 1;
5836 for(p=pNear; p; p=p->pLeft){
5837 u8 bEof = 0;
5838 Fts3Expr *pTest = p;
5839 Fts3Phrase *pPh;
5840 assert( pTest->eType==FTSQUERY_NEAR || pTest->eType==FTSQUERY_PHRASE );
5841 if( pTest->eType==FTSQUERY_NEAR ) pTest = pTest->pRight;
5842 assert( pTest->eType==FTSQUERY_PHRASE );
5843 pPh = pTest->pPhrase;
5844
5845 pIter = pPh->pOrPoslist;
5846 iDocid = pPh->iOrDocid;
5847 if( pCsr->bDesc==bDescDoclist ){
5848 bEof = !pPh->doclist.nAll ||
5849 (pIter >= (pPh->doclist.aAll + pPh->doclist.nAll));
5850 while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)<0 ) && bEof==0 ){
5851 sqlite3Fts3DoclistNext(
5852 bDescDoclist, pPh->doclist.aAll, pPh->doclist.nAll,
5853 &pIter, &iDocid, &bEof
5854 );
5855 }
5856 }else{
5857 bEof = !pPh->doclist.nAll || (pIter && pIter<=pPh->doclist.aAll);
5858 while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)>0 ) && bEof==0 ){
5859 int dummy;
5860 sqlite3Fts3DoclistPrev(
5861 bDescDoclist, pPh->doclist.aAll, pPh->doclist.nAll,
5862 &pIter, &iDocid, &dummy, &bEof
5863 );
5864 }
5865 }
5866 pPh->pOrPoslist = pIter;
5867 pPh->iOrDocid = iDocid;
5868 if( bEof || iDocid!=pCsr->iPrevId ) bMatch = 0;
5869 }
5870
5871 if( bMatch ){
5872 pIter = pPhrase->pOrPoslist;
5873 }else{
5874 pIter = 0;
5875 }
5876 }
5877 if( pIter==0 ) return SQLITE_OK;
5878
5879 if( *pIter==0x01 ){
5880 pIter++;
5881 pIter += fts3GetVarint32(pIter, &iThis);
5882 }else{
5883 iThis = 0;
5884 }
5885 while( iThis<iCol ){
5886 fts3ColumnlistCopy(0, &pIter);
5887 if( *pIter==0x00 ) return SQLITE_OK;
5888 pIter++;
5889 pIter += fts3GetVarint32(pIter, &iThis);
5890 }
5891 if( *pIter==0x00 ){
5892 pIter = 0;
5893 }
5894
5895 *ppOut = ((iCol==iThis)?pIter:0);
5896 return SQLITE_OK;
5897 }
5898
5899 /*
5900 ** Free all components of the Fts3Phrase structure that were allocated by
5901 ** the eval module. Specifically, this means to free:
5902 **
5903 ** * the contents of pPhrase->doclist, and
5904 ** * any Fts3MultiSegReader objects held by phrase tokens.
5905 */
5906 void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *pPhrase){
5907 if( pPhrase ){
5908 int i;
5909 sqlite3_free(pPhrase->doclist.aAll);
5910 fts3EvalInvalidatePoslist(pPhrase);
5911 memset(&pPhrase->doclist, 0, sizeof(Fts3Doclist));
5912 for(i=0; i<pPhrase->nToken; i++){
5913 fts3SegReaderCursorFree(pPhrase->aToken[i].pSegcsr);
5914 pPhrase->aToken[i].pSegcsr = 0;
5915 }
5916 }
5917 }
5918
5919
5920 /*
5921 ** Return SQLITE_CORRUPT_VTAB.
5922 */
5923 #ifdef SQLITE_DEBUG
5924 int sqlite3Fts3Corrupt(){
5925 return SQLITE_CORRUPT_VTAB;
5926 }
5927 #endif
5928
5929 #if !SQLITE_CORE
5930 /*
5931 ** Initialize API pointer table, if required.
5932 */
5933 #ifdef _WIN32
5934 __declspec(dllexport)
5935 #endif
5936 int sqlite3_fts3_init(
5937 sqlite3 *db,
5938 char **pzErrMsg,
5939 const sqlite3_api_routines *pApi
5940 ){
5941 SQLITE_EXTENSION_INIT2(pApi)
5942 return sqlite3Fts3Init(db);
5943 }
5944 #endif
5945
5946 #endif
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3170000/ext/fts3/fts3.h ('k') | third_party/sqlite/sqlite-src-3170000/ext/fts3/fts3Int.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698