OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2001 September 22 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This is the implementation of generic hash-tables used in SQLite. |
| 13 ** We've modified it slightly to serve as a standalone hash table |
| 14 ** implementation for the full-text indexing module. |
| 15 */ |
| 16 |
| 17 /* |
| 18 ** The code in this file is only compiled if: |
| 19 ** |
| 20 ** * The FTS2 module is being built as an extension |
| 21 ** (in which case SQLITE_CORE is not defined), or |
| 22 ** |
| 23 ** * The FTS2 module is being built into the core of |
| 24 ** SQLite (in which case SQLITE_ENABLE_FTS2 is defined). |
| 25 */ |
| 26 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) |
| 27 |
| 28 #include <assert.h> |
| 29 #include <stdlib.h> |
| 30 #include <string.h> |
| 31 |
| 32 #include "sqlite3.h" |
| 33 #include "sqlite3ext.h" |
| 34 SQLITE_EXTENSION_INIT3 |
| 35 #include "fts2_hash.h" |
| 36 |
| 37 /* |
| 38 ** Malloc and Free functions |
| 39 */ |
| 40 static void *fts2HashMalloc(int n){ |
| 41 void *p = sqlite3_malloc(n); |
| 42 if( p ){ |
| 43 memset(p, 0, n); |
| 44 } |
| 45 return p; |
| 46 } |
| 47 static void fts2HashFree(void *p){ |
| 48 sqlite3_free(p); |
| 49 } |
| 50 |
| 51 /* Turn bulk memory into a hash table object by initializing the |
| 52 ** fields of the Hash structure. |
| 53 ** |
| 54 ** "pNew" is a pointer to the hash table that is to be initialized. |
| 55 ** keyClass is one of the constants |
| 56 ** FTS2_HASH_BINARY or FTS2_HASH_STRING. The value of keyClass |
| 57 ** determines what kind of key the hash table will use. "copyKey" is |
| 58 ** true if the hash table should make its own private copy of keys and |
| 59 ** false if it should just use the supplied pointer. |
| 60 */ |
| 61 void sqlite3Fts2HashInit(fts2Hash *pNew, int keyClass, int copyKey){ |
| 62 assert( pNew!=0 ); |
| 63 assert( keyClass>=FTS2_HASH_STRING && keyClass<=FTS2_HASH_BINARY ); |
| 64 pNew->keyClass = keyClass; |
| 65 pNew->copyKey = copyKey; |
| 66 pNew->first = 0; |
| 67 pNew->count = 0; |
| 68 pNew->htsize = 0; |
| 69 pNew->ht = 0; |
| 70 } |
| 71 |
| 72 /* Remove all entries from a hash table. Reclaim all memory. |
| 73 ** Call this routine to delete a hash table or to reset a hash table |
| 74 ** to the empty state. |
| 75 */ |
| 76 void sqlite3Fts2HashClear(fts2Hash *pH){ |
| 77 fts2HashElem *elem; /* For looping over all elements of the table */ |
| 78 |
| 79 assert( pH!=0 ); |
| 80 elem = pH->first; |
| 81 pH->first = 0; |
| 82 fts2HashFree(pH->ht); |
| 83 pH->ht = 0; |
| 84 pH->htsize = 0; |
| 85 while( elem ){ |
| 86 fts2HashElem *next_elem = elem->next; |
| 87 if( pH->copyKey && elem->pKey ){ |
| 88 fts2HashFree(elem->pKey); |
| 89 } |
| 90 fts2HashFree(elem); |
| 91 elem = next_elem; |
| 92 } |
| 93 pH->count = 0; |
| 94 } |
| 95 |
| 96 /* |
| 97 ** Hash and comparison functions when the mode is FTS2_HASH_STRING |
| 98 */ |
| 99 static int strHash(const void *pKey, int nKey){ |
| 100 const char *z = (const char *)pKey; |
| 101 int h = 0; |
| 102 if( nKey<=0 ) nKey = (int) strlen(z); |
| 103 while( nKey > 0 ){ |
| 104 h = (h<<3) ^ h ^ *z++; |
| 105 nKey--; |
| 106 } |
| 107 return h & 0x7fffffff; |
| 108 } |
| 109 static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){ |
| 110 if( n1!=n2 ) return 1; |
| 111 return strncmp((const char*)pKey1,(const char*)pKey2,n1); |
| 112 } |
| 113 |
| 114 /* |
| 115 ** Hash and comparison functions when the mode is FTS2_HASH_BINARY |
| 116 */ |
| 117 static int binHash(const void *pKey, int nKey){ |
| 118 int h = 0; |
| 119 const char *z = (const char *)pKey; |
| 120 while( nKey-- > 0 ){ |
| 121 h = (h<<3) ^ h ^ *(z++); |
| 122 } |
| 123 return h & 0x7fffffff; |
| 124 } |
| 125 static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){ |
| 126 if( n1!=n2 ) return 1; |
| 127 return memcmp(pKey1,pKey2,n1); |
| 128 } |
| 129 |
| 130 /* |
| 131 ** Return a pointer to the appropriate hash function given the key class. |
| 132 ** |
| 133 ** The C syntax in this function definition may be unfamilar to some |
| 134 ** programmers, so we provide the following additional explanation: |
| 135 ** |
| 136 ** The name of the function is "hashFunction". The function takes a |
| 137 ** single parameter "keyClass". The return value of hashFunction() |
| 138 ** is a pointer to another function. Specifically, the return value |
| 139 ** of hashFunction() is a pointer to a function that takes two parameters |
| 140 ** with types "const void*" and "int" and returns an "int". |
| 141 */ |
| 142 static int (*hashFunction(int keyClass))(const void*,int){ |
| 143 if( keyClass==FTS2_HASH_STRING ){ |
| 144 return &strHash; |
| 145 }else{ |
| 146 assert( keyClass==FTS2_HASH_BINARY ); |
| 147 return &binHash; |
| 148 } |
| 149 } |
| 150 |
| 151 /* |
| 152 ** Return a pointer to the appropriate hash function given the key class. |
| 153 ** |
| 154 ** For help in interpreted the obscure C code in the function definition, |
| 155 ** see the header comment on the previous function. |
| 156 */ |
| 157 static int (*compareFunction(int keyClass))(const void*,int,const void*,int){ |
| 158 if( keyClass==FTS2_HASH_STRING ){ |
| 159 return &strCompare; |
| 160 }else{ |
| 161 assert( keyClass==FTS2_HASH_BINARY ); |
| 162 return &binCompare; |
| 163 } |
| 164 } |
| 165 |
| 166 /* Link an element into the hash table |
| 167 */ |
| 168 static void insertElement( |
| 169 fts2Hash *pH, /* The complete hash table */ |
| 170 struct _fts2ht *pEntry, /* The entry into which pNew is inserted */ |
| 171 fts2HashElem *pNew /* The element to be inserted */ |
| 172 ){ |
| 173 fts2HashElem *pHead; /* First element already in pEntry */ |
| 174 pHead = pEntry->chain; |
| 175 if( pHead ){ |
| 176 pNew->next = pHead; |
| 177 pNew->prev = pHead->prev; |
| 178 if( pHead->prev ){ pHead->prev->next = pNew; } |
| 179 else { pH->first = pNew; } |
| 180 pHead->prev = pNew; |
| 181 }else{ |
| 182 pNew->next = pH->first; |
| 183 if( pH->first ){ pH->first->prev = pNew; } |
| 184 pNew->prev = 0; |
| 185 pH->first = pNew; |
| 186 } |
| 187 pEntry->count++; |
| 188 pEntry->chain = pNew; |
| 189 } |
| 190 |
| 191 |
| 192 /* Resize the hash table so that it cantains "new_size" buckets. |
| 193 ** "new_size" must be a power of 2. The hash table might fail |
| 194 ** to resize if sqliteMalloc() fails. |
| 195 */ |
| 196 static void rehash(fts2Hash *pH, int new_size){ |
| 197 struct _fts2ht *new_ht; /* The new hash table */ |
| 198 fts2HashElem *elem, *next_elem; /* For looping over existing elements */ |
| 199 int (*xHash)(const void*,int); /* The hash function */ |
| 200 |
| 201 assert( (new_size & (new_size-1))==0 ); |
| 202 new_ht = (struct _fts2ht *)fts2HashMalloc( new_size*sizeof(struct _fts2ht) ); |
| 203 if( new_ht==0 ) return; |
| 204 fts2HashFree(pH->ht); |
| 205 pH->ht = new_ht; |
| 206 pH->htsize = new_size; |
| 207 xHash = hashFunction(pH->keyClass); |
| 208 for(elem=pH->first, pH->first=0; elem; elem = next_elem){ |
| 209 int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1); |
| 210 next_elem = elem->next; |
| 211 insertElement(pH, &new_ht[h], elem); |
| 212 } |
| 213 } |
| 214 |
| 215 /* This function (for internal use only) locates an element in an |
| 216 ** hash table that matches the given key. The hash for this key has |
| 217 ** already been computed and is passed as the 4th parameter. |
| 218 */ |
| 219 static fts2HashElem *findElementGivenHash( |
| 220 const fts2Hash *pH, /* The pH to be searched */ |
| 221 const void *pKey, /* The key we are searching for */ |
| 222 int nKey, |
| 223 int h /* The hash for this key. */ |
| 224 ){ |
| 225 fts2HashElem *elem; /* Used to loop thru the element list */ |
| 226 int count; /* Number of elements left to test */ |
| 227 int (*xCompare)(const void*,int,const void*,int); /* comparison function */ |
| 228 |
| 229 if( pH->ht ){ |
| 230 struct _fts2ht *pEntry = &pH->ht[h]; |
| 231 elem = pEntry->chain; |
| 232 count = pEntry->count; |
| 233 xCompare = compareFunction(pH->keyClass); |
| 234 while( count-- && elem ){ |
| 235 if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){ |
| 236 return elem; |
| 237 } |
| 238 elem = elem->next; |
| 239 } |
| 240 } |
| 241 return 0; |
| 242 } |
| 243 |
| 244 /* Remove a single entry from the hash table given a pointer to that |
| 245 ** element and a hash on the element's key. |
| 246 */ |
| 247 static void removeElementGivenHash( |
| 248 fts2Hash *pH, /* The pH containing "elem" */ |
| 249 fts2HashElem* elem, /* The element to be removed from the pH */ |
| 250 int h /* Hash value for the element */ |
| 251 ){ |
| 252 struct _fts2ht *pEntry; |
| 253 if( elem->prev ){ |
| 254 elem->prev->next = elem->next; |
| 255 }else{ |
| 256 pH->first = elem->next; |
| 257 } |
| 258 if( elem->next ){ |
| 259 elem->next->prev = elem->prev; |
| 260 } |
| 261 pEntry = &pH->ht[h]; |
| 262 if( pEntry->chain==elem ){ |
| 263 pEntry->chain = elem->next; |
| 264 } |
| 265 pEntry->count--; |
| 266 if( pEntry->count<=0 ){ |
| 267 pEntry->chain = 0; |
| 268 } |
| 269 if( pH->copyKey && elem->pKey ){ |
| 270 fts2HashFree(elem->pKey); |
| 271 } |
| 272 fts2HashFree( elem ); |
| 273 pH->count--; |
| 274 if( pH->count<=0 ){ |
| 275 assert( pH->first==0 ); |
| 276 assert( pH->count==0 ); |
| 277 fts2HashClear(pH); |
| 278 } |
| 279 } |
| 280 |
| 281 /* Attempt to locate an element of the hash table pH with a key |
| 282 ** that matches pKey,nKey. Return the data for this element if it is |
| 283 ** found, or NULL if there is no match. |
| 284 */ |
| 285 void *sqlite3Fts2HashFind(const fts2Hash *pH, const void *pKey, int nKey){ |
| 286 int h; /* A hash on key */ |
| 287 fts2HashElem *elem; /* The element that matches key */ |
| 288 int (*xHash)(const void*,int); /* The hash function */ |
| 289 |
| 290 if( pH==0 || pH->ht==0 ) return 0; |
| 291 xHash = hashFunction(pH->keyClass); |
| 292 assert( xHash!=0 ); |
| 293 h = (*xHash)(pKey,nKey); |
| 294 assert( (pH->htsize & (pH->htsize-1))==0 ); |
| 295 elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1)); |
| 296 return elem ? elem->data : 0; |
| 297 } |
| 298 |
| 299 /* Insert an element into the hash table pH. The key is pKey,nKey |
| 300 ** and the data is "data". |
| 301 ** |
| 302 ** If no element exists with a matching key, then a new |
| 303 ** element is created. A copy of the key is made if the copyKey |
| 304 ** flag is set. NULL is returned. |
| 305 ** |
| 306 ** If another element already exists with the same key, then the |
| 307 ** new data replaces the old data and the old data is returned. |
| 308 ** The key is not copied in this instance. If a malloc fails, then |
| 309 ** the new data is returned and the hash table is unchanged. |
| 310 ** |
| 311 ** If the "data" parameter to this function is NULL, then the |
| 312 ** element corresponding to "key" is removed from the hash table. |
| 313 */ |
| 314 void *sqlite3Fts2HashInsert( |
| 315 fts2Hash *pH, /* The hash table to insert into */ |
| 316 const void *pKey, /* The key */ |
| 317 int nKey, /* Number of bytes in the key */ |
| 318 void *data /* The data */ |
| 319 ){ |
| 320 int hraw; /* Raw hash value of the key */ |
| 321 int h; /* the hash of the key modulo hash table size */ |
| 322 fts2HashElem *elem; /* Used to loop thru the element list */ |
| 323 fts2HashElem *new_elem; /* New element added to the pH */ |
| 324 int (*xHash)(const void*,int); /* The hash function */ |
| 325 |
| 326 assert( pH!=0 ); |
| 327 xHash = hashFunction(pH->keyClass); |
| 328 assert( xHash!=0 ); |
| 329 hraw = (*xHash)(pKey, nKey); |
| 330 assert( (pH->htsize & (pH->htsize-1))==0 ); |
| 331 h = hraw & (pH->htsize-1); |
| 332 elem = findElementGivenHash(pH,pKey,nKey,h); |
| 333 if( elem ){ |
| 334 void *old_data = elem->data; |
| 335 if( data==0 ){ |
| 336 removeElementGivenHash(pH,elem,h); |
| 337 }else{ |
| 338 elem->data = data; |
| 339 } |
| 340 return old_data; |
| 341 } |
| 342 if( data==0 ) return 0; |
| 343 new_elem = (fts2HashElem*)fts2HashMalloc( sizeof(fts2HashElem) ); |
| 344 if( new_elem==0 ) return data; |
| 345 if( pH->copyKey && pKey!=0 ){ |
| 346 new_elem->pKey = fts2HashMalloc( nKey ); |
| 347 if( new_elem->pKey==0 ){ |
| 348 fts2HashFree(new_elem); |
| 349 return data; |
| 350 } |
| 351 memcpy((void*)new_elem->pKey, pKey, nKey); |
| 352 }else{ |
| 353 new_elem->pKey = (void*)pKey; |
| 354 } |
| 355 new_elem->nKey = nKey; |
| 356 pH->count++; |
| 357 if( pH->htsize==0 ){ |
| 358 rehash(pH,8); |
| 359 if( pH->htsize==0 ){ |
| 360 pH->count = 0; |
| 361 fts2HashFree(new_elem); |
| 362 return data; |
| 363 } |
| 364 } |
| 365 if( pH->count > pH->htsize ){ |
| 366 rehash(pH,pH->htsize*2); |
| 367 } |
| 368 assert( pH->htsize>0 ); |
| 369 assert( (pH->htsize & (pH->htsize-1))==0 ); |
| 370 h = hraw & (pH->htsize-1); |
| 371 insertElement(pH, &pH->ht[h], new_elem); |
| 372 new_elem->data = data; |
| 373 return 0; |
| 374 } |
| 375 |
| 376 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */ |
OLD | NEW |