OLD | NEW |
| (Empty) |
1 // Copyright 2017 the V8 project authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 // PLEASE READ BEFORE CHANGING THIS FILE! | |
6 // | |
7 // This file implements the out of bounds signal handler for | |
8 // WebAssembly. Signal handlers are notoriously difficult to get | |
9 // right, and getting it wrong can lead to security | |
10 // vulnerabilities. In order to minimize this risk, here are some | |
11 // rules to follow. | |
12 // | |
13 // 1. Do not introduce any new external dependencies. This file needs | |
14 // to be self contained so it is easy to audit everything that a | |
15 // signal handler might do. | |
16 // | |
17 // 2. Any changes must be reviewed by someone from the crash reporting | |
18 // or security team. See OWNERS for suggested reviewers. | |
19 // | |
20 // For more information, see https://goo.gl/yMeyUY. | |
21 // | |
22 // This file contains most of the code that actually runs in a signal handler | |
23 // context. Some additional code is used both inside and outside the signal | |
24 // handler. This code can be found in handler-shared.cc. | |
25 | |
26 #include <signal.h> | |
27 #include <stddef.h> | |
28 #include <stdlib.h> | |
29 | |
30 #include "src/trap-handler/trap-handler-internal.h" | |
31 #include "src/trap-handler/trap-handler.h" | |
32 | |
33 namespace v8 { | |
34 namespace internal { | |
35 namespace trap_handler { | |
36 | |
37 namespace { | |
38 | |
39 bool IsKernelGeneratedSignal(siginfo_t* info) { | |
40 return info->si_code > 0 && info->si_code != SI_USER && | |
41 info->si_code != SI_QUEUE && info->si_code != SI_TIMER && | |
42 info->si_code != SI_ASYNCIO && info->si_code != SI_MESGQ; | |
43 } | |
44 | |
45 #if V8_TRAP_HANDLER_SUPPORTED | |
46 class SigUnmaskStack { | |
47 public: | |
48 explicit SigUnmaskStack(sigset_t sigs) { | |
49 // TODO(eholk): consider using linux-syscall-support for calling this | |
50 // syscall. | |
51 pthread_sigmask(SIG_UNBLOCK, &sigs, &old_mask_); | |
52 } | |
53 | |
54 ~SigUnmaskStack() { pthread_sigmask(SIG_SETMASK, &old_mask_, nullptr); } | |
55 | |
56 private: | |
57 sigset_t old_mask_; | |
58 | |
59 // We'd normally use DISALLOW_COPY_AND_ASSIGN, but we're avoiding a dependency | |
60 // on base/macros.h | |
61 SigUnmaskStack(const SigUnmaskStack&) = delete; | |
62 void operator=(const SigUnmaskStack&) = delete; | |
63 }; | |
64 #endif | |
65 } // namespace | |
66 | |
67 #if V8_TRAP_HANDLER_SUPPORTED && V8_OS_LINUX | |
68 bool TryHandleSignal(int signum, siginfo_t* info, ucontext_t* context) { | |
69 // Bail out early in case we got called for the wrong kind of signal. | |
70 if (signum != SIGSEGV) { | |
71 return false; | |
72 } | |
73 | |
74 // Make sure the signal was generated by the kernel and not some other source. | |
75 if (!IsKernelGeneratedSignal(info)) { | |
76 return false; | |
77 } | |
78 | |
79 // Ensure the faulting thread was actually running Wasm code. | |
80 if (!IsThreadInWasm()) { | |
81 return false; | |
82 } | |
83 | |
84 // Clear g_thread_in_wasm_code, primarily to protect against nested faults. | |
85 g_thread_in_wasm_code = false; | |
86 | |
87 // Begin signal mask scope. We need to be sure to restore the signal mask | |
88 // before we restore the g_thread_in_wasm_code flag. | |
89 { | |
90 // Unmask the signal so that if this signal handler crashes, the crash will | |
91 // be handled by the crash reporter. Otherwise, the process might be killed | |
92 // with the crash going unreported. | |
93 sigset_t sigs; | |
94 // Fortunately, sigemptyset and sigaddset are async-signal-safe according to | |
95 // the POSIX standard. | |
96 sigemptyset(&sigs); | |
97 sigaddset(&sigs, SIGSEGV); | |
98 SigUnmaskStack unmask(sigs); | |
99 | |
100 uintptr_t fault_addr = context->uc_mcontext.gregs[REG_RIP]; | |
101 | |
102 // TODO(eholk): broad code range check | |
103 | |
104 // Taking locks in a signal handler is risky because a fault in the signal | |
105 // handler could lead to a deadlock when attempting to acquire the lock | |
106 // again. We guard against this case with g_thread_in_wasm_code. The lock | |
107 // may only be taken when not executing Wasm code (an assert in | |
108 // MetadataLock's constructor ensures this). This signal handler will bail | |
109 // out before trying to take the lock if g_thread_in_wasm_code is not set. | |
110 MetadataLock lock_holder; | |
111 | |
112 for (size_t i = 0; i < gNumCodeObjects; ++i) { | |
113 const CodeProtectionInfo* data = gCodeObjects[i].code_info; | |
114 if (data == nullptr) { | |
115 continue; | |
116 } | |
117 const uintptr_t base = reinterpret_cast<uintptr_t>(data->base); | |
118 | |
119 if (fault_addr >= base && fault_addr < base + data->size) { | |
120 // Hurray, we found the code object. Check for protected addresses. | |
121 const ptrdiff_t offset = fault_addr - base; | |
122 | |
123 for (unsigned i = 0; i < data->num_protected_instructions; ++i) { | |
124 if (data->instructions[i].instr_offset == offset) { | |
125 // Hurray again, we found the actual instruction. Tell the caller to | |
126 // return to the landing pad. | |
127 context->uc_mcontext.gregs[REG_RIP] = | |
128 data->instructions[i].landing_offset + base; | |
129 return true; | |
130 } | |
131 } | |
132 } | |
133 } | |
134 } // end signal mask scope | |
135 | |
136 // If we get here, it's not a recoverable wasm fault, so we go to the next | |
137 // handler. | |
138 g_thread_in_wasm_code = true; | |
139 return false; | |
140 } | |
141 #endif // V8_TRAP_HANDLER_SUPPORTED && V8_OS_LINUX | |
142 | |
143 #if V8_TRAP_HANDLER_SUPPORTED | |
144 void HandleSignal(int signum, siginfo_t* info, void* context) { | |
145 ucontext_t* uc = reinterpret_cast<ucontext_t*>(context); | |
146 | |
147 if (!TryHandleSignal(signum, info, uc)) { | |
148 // Since V8 didn't handle this signal, we want to re-raise the same signal. | |
149 // For kernel-generated SEGV signals, we do this by restoring the default | |
150 // SEGV handler and then returning. The fault will happen again and the | |
151 // usual SEGV handling will happen. | |
152 // | |
153 // We handle user-generated signals by calling raise() instead. This is for | |
154 // completeness. We should never actually see one of these, but just in | |
155 // case, we do the right thing. | |
156 struct sigaction action; | |
157 action.sa_handler = SIG_DFL; | |
158 sigemptyset(&action.sa_mask); | |
159 action.sa_flags = 0; | |
160 sigaction(signum, &action, nullptr); | |
161 if (!IsKernelGeneratedSignal(info)) { | |
162 raise(signum); | |
163 } | |
164 } | |
165 // TryHandleSignal modifies context to change where we return to. | |
166 } | |
167 #endif | |
168 } // namespace trap_handler | |
169 } // namespace internal | |
170 } // namespace v8 | |
OLD | NEW |