| Index: src/mips64/code-stubs-mips64.cc
|
| diff --git a/src/mips64/code-stubs-mips64.cc b/src/mips64/code-stubs-mips64.cc
|
| index 645599a03a1d96ae4854eacbe78900e5f1a090c2..1738ef432e9a2d344dd298253295aa45865b3521 100644
|
| --- a/src/mips64/code-stubs-mips64.cc
|
| +++ b/src/mips64/code-stubs-mips64.cc
|
| @@ -1267,183 +1267,10 @@ void JSEntryStub::Generate(MacroAssembler* masm) {
|
| }
|
|
|
| void RegExpExecStub::Generate(MacroAssembler* masm) {
|
| - // Just jump directly to runtime if native RegExp is not selected at compile
|
| - // time or if regexp entry in generated code is turned off runtime switch or
|
| - // at compilation.
|
| #ifdef V8_INTERPRETED_REGEXP
|
| - __ TailCallRuntime(Runtime::kRegExpExec);
|
| + // This case is handled prior to the RegExpExecStub call.
|
| + __ Abort(kUnexpectedRegExpExecCall);
|
| #else // V8_INTERPRETED_REGEXP
|
| -
|
| - // Stack frame on entry.
|
| - // sp[0]: last_match_info (expected JSArray)
|
| - // sp[4]: previous index
|
| - // sp[8]: subject string
|
| - // sp[12]: JSRegExp object
|
| -
|
| - const int kLastMatchInfoOffset = 0 * kPointerSize;
|
| - const int kPreviousIndexOffset = 1 * kPointerSize;
|
| - const int kSubjectOffset = 2 * kPointerSize;
|
| - const int kJSRegExpOffset = 3 * kPointerSize;
|
| -
|
| - Label runtime;
|
| - // Allocation of registers for this function. These are in callee save
|
| - // registers and will be preserved by the call to the native RegExp code, as
|
| - // this code is called using the normal C calling convention. When calling
|
| - // directly from generated code the native RegExp code will not do a GC and
|
| - // therefore the content of these registers are safe to use after the call.
|
| - // MIPS - using s0..s2, since we are not using CEntry Stub.
|
| - Register subject = s0;
|
| - Register regexp_data = s1;
|
| - Register last_match_info_elements = s2;
|
| -
|
| - // Ensure that a RegExp stack is allocated.
|
| - ExternalReference address_of_regexp_stack_memory_address =
|
| - ExternalReference::address_of_regexp_stack_memory_address(
|
| - isolate());
|
| - ExternalReference address_of_regexp_stack_memory_size =
|
| - ExternalReference::address_of_regexp_stack_memory_size(isolate());
|
| - __ li(a0, Operand(address_of_regexp_stack_memory_size));
|
| - __ ld(a0, MemOperand(a0, 0));
|
| - __ Branch(&runtime, eq, a0, Operand(zero_reg));
|
| -
|
| - // Check that the first argument is a JSRegExp object.
|
| - __ ld(a0, MemOperand(sp, kJSRegExpOffset));
|
| - STATIC_ASSERT(kSmiTag == 0);
|
| - __ JumpIfSmi(a0, &runtime);
|
| - __ GetObjectType(a0, a1, a1);
|
| - __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE));
|
| -
|
| - // Check that the RegExp has been compiled (data contains a fixed array).
|
| - __ ld(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset));
|
| - if (FLAG_debug_code) {
|
| - __ SmiTst(regexp_data, a4);
|
| - __ Check(nz,
|
| - kUnexpectedTypeForRegExpDataFixedArrayExpected,
|
| - a4,
|
| - Operand(zero_reg));
|
| - __ GetObjectType(regexp_data, a0, a0);
|
| - __ Check(eq,
|
| - kUnexpectedTypeForRegExpDataFixedArrayExpected,
|
| - a0,
|
| - Operand(FIXED_ARRAY_TYPE));
|
| - }
|
| -
|
| - // regexp_data: RegExp data (FixedArray)
|
| - // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
|
| - __ ld(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
|
| - __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
|
| -
|
| - // regexp_data: RegExp data (FixedArray)
|
| - // Check that the number of captures fit in the static offsets vector buffer.
|
| - __ ld(a2,
|
| - FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
|
| - // Check (number_of_captures + 1) * 2 <= offsets vector size
|
| - // Or number_of_captures * 2 <= offsets vector size - 2
|
| - // Or number_of_captures <= offsets vector size / 2 - 1
|
| - // Multiplying by 2 comes for free since a2 is smi-tagged.
|
| - STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
|
| - int temp = Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1;
|
| - __ Branch(&runtime, hi, a2, Operand(Smi::FromInt(temp)));
|
| -
|
| - // Reset offset for possibly sliced string.
|
| - __ mov(t0, zero_reg);
|
| - __ ld(subject, MemOperand(sp, kSubjectOffset));
|
| - __ JumpIfSmi(subject, &runtime);
|
| - __ mov(a3, subject); // Make a copy of the original subject string.
|
| -
|
| - // subject: subject string
|
| - // a3: subject string
|
| - // regexp_data: RegExp data (FixedArray)
|
| - // Handle subject string according to its encoding and representation:
|
| - // (1) Sequential string? If yes, go to (4).
|
| - // (2) Sequential or cons? If not, go to (5).
|
| - // (3) Cons string. If the string is flat, replace subject with first string
|
| - // and go to (1). Otherwise bail out to runtime.
|
| - // (4) Sequential string. Load regexp code according to encoding.
|
| - // (E) Carry on.
|
| - /// [...]
|
| -
|
| - // Deferred code at the end of the stub:
|
| - // (5) Long external string? If not, go to (7).
|
| - // (6) External string. Make it, offset-wise, look like a sequential string.
|
| - // Go to (4).
|
| - // (7) Short external string or not a string? If yes, bail out to runtime.
|
| - // (8) Sliced or thin string. Replace subject with parent. Go to (1).
|
| -
|
| - Label check_underlying; // (1)
|
| - Label seq_string; // (4)
|
| - Label not_seq_nor_cons; // (5)
|
| - Label external_string; // (6)
|
| - Label not_long_external; // (7)
|
| -
|
| - __ bind(&check_underlying);
|
| - __ ld(a2, FieldMemOperand(subject, HeapObject::kMapOffset));
|
| - __ lbu(a0, FieldMemOperand(a2, Map::kInstanceTypeOffset));
|
| -
|
| - // (1) Sequential string? If yes, go to (4).
|
| - __ And(a1,
|
| - a0,
|
| - Operand(kIsNotStringMask |
|
| - kStringRepresentationMask |
|
| - kShortExternalStringMask));
|
| - STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
|
| - __ Branch(&seq_string, eq, a1, Operand(zero_reg)); // Go to (4).
|
| -
|
| - // (2) Sequential or cons? If not, go to (5).
|
| - STATIC_ASSERT(kConsStringTag < kExternalStringTag);
|
| - STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
|
| - STATIC_ASSERT(kThinStringTag > kExternalStringTag);
|
| - STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
|
| - STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
|
| - // Go to (5).
|
| - __ Branch(¬_seq_nor_cons, ge, a1, Operand(kExternalStringTag));
|
| -
|
| - // (3) Cons string. Check that it's flat.
|
| - // Replace subject with first string and reload instance type.
|
| - __ ld(a0, FieldMemOperand(subject, ConsString::kSecondOffset));
|
| - __ LoadRoot(a1, Heap::kempty_stringRootIndex);
|
| - __ Branch(&runtime, ne, a0, Operand(a1));
|
| - __ ld(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
|
| - __ jmp(&check_underlying);
|
| -
|
| - // (4) Sequential string. Load regexp code according to encoding.
|
| - __ bind(&seq_string);
|
| - // subject: sequential subject string (or look-alike, external string)
|
| - // a3: original subject string
|
| - // Load previous index and check range before a3 is overwritten. We have to
|
| - // use a3 instead of subject here because subject might have been only made
|
| - // to look like a sequential string when it actually is an external string.
|
| - __ ld(a1, MemOperand(sp, kPreviousIndexOffset));
|
| - __ JumpIfNotSmi(a1, &runtime);
|
| - __ ld(a3, FieldMemOperand(a3, String::kLengthOffset));
|
| - __ Branch(&runtime, ls, a3, Operand(a1));
|
| - __ SmiUntag(a1);
|
| -
|
| - STATIC_ASSERT(kStringEncodingMask == 8);
|
| - STATIC_ASSERT(kOneByteStringTag == 8);
|
| - STATIC_ASSERT(kTwoByteStringTag == 0);
|
| - __ And(a0, a0, Operand(kStringEncodingMask)); // Non-zero for one_byte.
|
| - __ ld(t9, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
|
| - __ dsra(a3, a0, 3); // a3 is 1 for one_byte, 0 for UC16 (used below).
|
| - __ ld(a5, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
|
| - __ Movz(t9, a5, a0); // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset.
|
| -
|
| - // (E) Carry on. String handling is done.
|
| - // t9: irregexp code
|
| - // Check that the irregexp code has been generated for the actual string
|
| - // encoding. If it has, the field contains a code object otherwise it contains
|
| - // a smi (code flushing support).
|
| - __ JumpIfSmi(t9, &runtime);
|
| -
|
| - // a1: previous index
|
| - // a3: encoding of subject string (1 if one_byte, 0 if two_byte);
|
| - // t9: code
|
| - // subject: Subject string
|
| - // regexp_data: RegExp data (FixedArray)
|
| - // All checks done. Now push arguments for native regexp code.
|
| - __ IncrementCounter(isolate()->counters()->regexp_entry_native(),
|
| - 1, a0, a2);
|
| -
|
| // Isolates: note we add an additional parameter here (isolate pointer).
|
| const int kRegExpExecuteArguments = 9;
|
| const int kParameterRegisters = 8;
|
| @@ -1468,18 +1295,22 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
| // [sp + 0] - saved ra
|
|
|
| // Argument 9: Pass current isolate address.
|
| - __ li(a0, Operand(ExternalReference::isolate_address(isolate())));
|
| - __ sd(a0, MemOperand(sp, 1 * kPointerSize));
|
| + __ li(t1, Operand(ExternalReference::isolate_address(isolate())));
|
| + __ sd(t1, MemOperand(sp, 1 * kPointerSize));
|
|
|
| // Argument 8: Indicate that this is a direct call from JavaScript.
|
| __ li(a7, Operand(1));
|
|
|
| // Argument 7: Start (high end) of backtracking stack memory area.
|
| - __ li(a0, Operand(address_of_regexp_stack_memory_address));
|
| - __ ld(a0, MemOperand(a0, 0));
|
| - __ li(a2, Operand(address_of_regexp_stack_memory_size));
|
| - __ ld(a2, MemOperand(a2, 0));
|
| - __ daddu(a6, a0, a2);
|
| + ExternalReference address_of_regexp_stack_memory_address =
|
| + ExternalReference::address_of_regexp_stack_memory_address(isolate());
|
| + ExternalReference address_of_regexp_stack_memory_size =
|
| + ExternalReference::address_of_regexp_stack_memory_size(isolate());
|
| + __ li(t1, Operand(address_of_regexp_stack_memory_address));
|
| + __ ld(t1, MemOperand(t1, 0));
|
| + __ li(t2, Operand(address_of_regexp_stack_memory_size));
|
| + __ ld(t2, MemOperand(t2, 0));
|
| + __ daddu(a6, t1, t2);
|
|
|
| // Argument 6: Set the number of capture registers to zero to force global
|
| // regexps to behave as non-global. This does not affect non-global regexps.
|
| @@ -1490,198 +1321,28 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
|
| a4,
|
| Operand(ExternalReference::address_of_static_offsets_vector(isolate())));
|
|
|
| - // For arguments 4 and 3 get string length, calculate start of string data
|
| - // and calculate the shift of the index (0 for one_byte and 1 for two byte).
|
| - __ Daddu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
|
| - __ Xor(a3, a3, Operand(1)); // 1 for 2-byte str, 0 for 1-byte.
|
| - // Load the length from the original subject string from the previous stack
|
| - // frame. Therefore we have to use fp, which points exactly to two pointer
|
| - // sizes below the previous sp. (Because creating a new stack frame pushes
|
| - // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
|
| - __ ld(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
|
| - // If slice offset is not 0, load the length from the original sliced string.
|
| // Argument 4, a3: End of string data
|
| // Argument 3, a2: Start of string data
|
| - // Prepare start and end index of the input.
|
| - __ dsllv(t1, t0, a3);
|
| - __ daddu(t0, t2, t1);
|
| - __ dsllv(t1, a1, a3);
|
| - __ daddu(a2, t0, t1);
|
| + CHECK(a3.is(RegExpExecDescriptor::StringEndRegister()));
|
| + CHECK(a2.is(RegExpExecDescriptor::StringStartRegister()));
|
|
|
| - __ ld(t2, FieldMemOperand(subject, String::kLengthOffset));
|
| -
|
| - __ SmiUntag(t2);
|
| - __ dsllv(t1, t2, a3);
|
| - __ daddu(a3, t0, t1);
|
| // Argument 2 (a1): Previous index.
|
| - // Already there
|
| + CHECK(a1.is(RegExpExecDescriptor::LastIndexRegister()));
|
|
|
| // Argument 1 (a0): Subject string.
|
| - __ mov(a0, subject);
|
| + CHECK(a0.is(RegExpExecDescriptor::StringRegister()));
|
|
|
| // Locate the code entry and call it.
|
| - __ Daddu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
|
| + Register code_reg = RegExpExecDescriptor::CodeRegister();
|
| + __ Daddu(code_reg, code_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
|
| DirectCEntryStub stub(isolate());
|
| - stub.GenerateCall(masm, t9);
|
| + stub.GenerateCall(masm, code_reg);
|
|
|
| __ LeaveExitFrame(false, no_reg, true);
|
|
|
| - // v0: result
|
| - // subject: subject string (callee saved)
|
| - // regexp_data: RegExp data (callee saved)
|
| - // last_match_info_elements: Last match info elements (callee saved)
|
| - // Check the result.
|
| - Label success;
|
| - __ Branch(&success, eq, v0, Operand(1));
|
| - // We expect exactly one result since we force the called regexp to behave
|
| - // as non-global.
|
| - Label failure;
|
| - __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE));
|
| - // If not exception it can only be retry. Handle that in the runtime system.
|
| - __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
|
| - // Result must now be exception. If there is no pending exception already a
|
| - // stack overflow (on the backtrack stack) was detected in RegExp code but
|
| - // haven't created the exception yet. Handle that in the runtime system.
|
| - // TODO(592): Rerunning the RegExp to get the stack overflow exception.
|
| - __ li(a1, Operand(isolate()->factory()->the_hole_value()));
|
| - __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
|
| - isolate())));
|
| - __ ld(v0, MemOperand(a2, 0));
|
| - __ Branch(&runtime, eq, v0, Operand(a1));
|
| -
|
| - // For exception, throw the exception again.
|
| - __ TailCallRuntime(Runtime::kRegExpExecReThrow);
|
| -
|
| - __ bind(&failure);
|
| - // For failure and exception return null.
|
| - __ li(v0, Operand(isolate()->factory()->null_value()));
|
| - __ DropAndRet(4);
|
| -
|
| - // Process the result from the native regexp code.
|
| - __ bind(&success);
|
| -
|
| - __ lw(a1, UntagSmiFieldMemOperand(
|
| - regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
|
| - // Calculate number of capture registers (number_of_captures + 1) * 2.
|
| - __ Daddu(a1, a1, Operand(1));
|
| - __ dsll(a1, a1, 1); // Multiply by 2.
|
| -
|
| - // Check that the last match info is a FixedArray.
|
| - __ ld(last_match_info_elements, MemOperand(sp, kLastMatchInfoOffset));
|
| - __ JumpIfSmi(last_match_info_elements, &runtime);
|
| - // Check that the object has fast elements.
|
| - __ ld(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
|
| - __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
|
| - __ Branch(&runtime, ne, a0, Operand(at));
|
| - // Check that the last match info has space for the capture registers and the
|
| - // additional information.
|
| - __ ld(a0,
|
| - FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
|
| - __ Daddu(a2, a1, Operand(RegExpMatchInfo::kLastMatchOverhead));
|
| -
|
| - __ SmiUntag(at, a0);
|
| - __ Branch(&runtime, gt, a2, Operand(at));
|
| -
|
| - // a1: number of capture registers
|
| - // subject: subject string
|
| - // Store the capture count.
|
| - __ SmiTag(a2, a1); // To smi.
|
| - __ sd(a2, FieldMemOperand(last_match_info_elements,
|
| - RegExpMatchInfo::kNumberOfCapturesOffset));
|
| - // Store last subject and last input.
|
| - __ sd(subject, FieldMemOperand(last_match_info_elements,
|
| - RegExpMatchInfo::kLastSubjectOffset));
|
| - __ mov(a2, subject);
|
| - __ RecordWriteField(last_match_info_elements,
|
| - RegExpMatchInfo::kLastSubjectOffset, subject, a7,
|
| - kRAHasNotBeenSaved, kDontSaveFPRegs);
|
| - __ mov(subject, a2);
|
| - __ sd(subject, FieldMemOperand(last_match_info_elements,
|
| - RegExpMatchInfo::kLastInputOffset));
|
| - __ RecordWriteField(last_match_info_elements,
|
| - RegExpMatchInfo::kLastInputOffset, subject, a7,
|
| - kRAHasNotBeenSaved, kDontSaveFPRegs);
|
| -
|
| - // Get the static offsets vector filled by the native regexp code.
|
| - ExternalReference address_of_static_offsets_vector =
|
| - ExternalReference::address_of_static_offsets_vector(isolate());
|
| - __ li(a2, Operand(address_of_static_offsets_vector));
|
| -
|
| - // a1: number of capture registers
|
| - // a2: offsets vector
|
| - Label next_capture, done;
|
| - // Capture register counter starts from number of capture registers and
|
| - // counts down until wrapping after zero.
|
| - __ Daddu(a0, last_match_info_elements,
|
| - Operand(RegExpMatchInfo::kFirstCaptureOffset - kHeapObjectTag));
|
| - __ bind(&next_capture);
|
| - __ Dsubu(a1, a1, Operand(1));
|
| - __ Branch(&done, lt, a1, Operand(zero_reg));
|
| - // Read the value from the static offsets vector buffer.
|
| - __ lw(a3, MemOperand(a2, 0));
|
| - __ daddiu(a2, a2, kIntSize);
|
| - // Store the smi value in the last match info.
|
| - __ SmiTag(a3);
|
| - __ sd(a3, MemOperand(a0, 0));
|
| - __ Branch(&next_capture, USE_DELAY_SLOT);
|
| - __ daddiu(a0, a0, kPointerSize); // In branch delay slot.
|
| -
|
| - __ bind(&done);
|
| -
|
| - // Return last match info.
|
| - __ mov(v0, last_match_info_elements);
|
| - __ DropAndRet(4);
|
| -
|
| - // Do the runtime call to execute the regexp.
|
| - __ bind(&runtime);
|
| - __ TailCallRuntime(Runtime::kRegExpExec);
|
| -
|
| - // Deferred code for string handling.
|
| - // (5) Long external string? If not, go to (7).
|
| - __ bind(¬_seq_nor_cons);
|
| - // Go to (7).
|
| - __ Branch(¬_long_external, gt, a1, Operand(kExternalStringTag));
|
| -
|
| - // (6) External string. Make it, offset-wise, look like a sequential string.
|
| - __ bind(&external_string);
|
| - __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
|
| - __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
|
| - if (FLAG_debug_code) {
|
| - // Assert that we do not have a cons or slice (indirect strings) here.
|
| - // Sequential strings have already been ruled out.
|
| - __ And(at, a0, Operand(kIsIndirectStringMask));
|
| - __ Assert(eq,
|
| - kExternalStringExpectedButNotFound,
|
| - at,
|
| - Operand(zero_reg));
|
| - }
|
| - __ ld(subject,
|
| - FieldMemOperand(subject, ExternalString::kResourceDataOffset));
|
| - // Move the pointer so that offset-wise, it looks like a sequential string.
|
| - STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
|
| - __ Dsubu(subject,
|
| - subject,
|
| - SeqTwoByteString::kHeaderSize - kHeapObjectTag);
|
| - __ jmp(&seq_string); // Go to (4).
|
| -
|
| - // (7) Short external string or not a string? If yes, bail out to runtime.
|
| - __ bind(¬_long_external);
|
| - STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
|
| - __ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask));
|
| - __ Branch(&runtime, ne, at, Operand(zero_reg));
|
| -
|
| - // (8) Sliced or thin string. Replace subject with parent. Go to (4).
|
| - Label thin_string;
|
| - __ Branch(&thin_string, eq, a1, Operand(kThinStringTag));
|
| - // Load offset into t0 and replace subject string with parent.
|
| - __ ld(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset));
|
| - __ SmiUntag(t0);
|
| - __ ld(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
|
| - __ jmp(&check_underlying); // Go to (1).
|
| -
|
| - __ bind(&thin_string);
|
| - __ ld(subject, FieldMemOperand(subject, ThinString::kActualOffset));
|
| - __ jmp(&check_underlying); // Go to (1).
|
| + // Return the smi-tagged result.
|
| + __ SmiTag(v0);
|
| + __ Ret();
|
| #endif // V8_INTERPRETED_REGEXP
|
| }
|
|
|
|
|