OLD | NEW |
1 // Copyright 2012 the V8 project authors. All rights reserved. | 1 // Copyright 2012 the V8 project authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #if V8_TARGET_ARCH_X87 | 5 #if V8_TARGET_ARCH_X87 |
6 | 6 |
7 #include "src/code-stubs.h" | 7 #include "src/code-stubs.h" |
8 #include "src/api-arguments.h" | 8 #include "src/api-arguments.h" |
9 #include "src/base/bits.h" | 9 #include "src/base/bits.h" |
10 #include "src/bootstrapper.h" | 10 #include "src/bootstrapper.h" |
(...skipping 264 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
275 // Put the double_exponent parameter in call stack | 275 // Put the double_exponent parameter in call stack |
276 __ fstp_d(Operand(esp, 1 * kDoubleSize)); | 276 __ fstp_d(Operand(esp, 1 * kDoubleSize)); |
277 __ CallCFunction(ExternalReference::power_double_double_function(isolate()), | 277 __ CallCFunction(ExternalReference::power_double_double_function(isolate()), |
278 4); | 278 4); |
279 } | 279 } |
280 // Return value is in st(0) on ia32. | 280 // Return value is in st(0) on ia32. |
281 __ ret(0); | 281 __ ret(0); |
282 } | 282 } |
283 | 283 |
284 void RegExpExecStub::Generate(MacroAssembler* masm) { | 284 void RegExpExecStub::Generate(MacroAssembler* masm) { |
285 // Just jump directly to runtime if native RegExp is not selected at compile | |
286 // time or if regexp entry in generated code is turned off runtime switch or | |
287 // at compilation. | |
288 #ifdef V8_INTERPRETED_REGEXP | 285 #ifdef V8_INTERPRETED_REGEXP |
289 __ TailCallRuntime(Runtime::kRegExpExec); | 286 // This case is handled prior to the RegExpExecStub call. |
| 287 __ Abort(kUnexpectedRegExpExecCall); |
290 #else // V8_INTERPRETED_REGEXP | 288 #else // V8_INTERPRETED_REGEXP |
291 | |
292 // Stack frame on entry. | |
293 // esp[0]: return address | |
294 // esp[4]: last_match_info (expected JSArray) | |
295 // esp[8]: previous index | |
296 // esp[12]: subject string | |
297 // esp[16]: JSRegExp object | |
298 | |
299 static const int kLastMatchInfoOffset = 1 * kPointerSize; | |
300 static const int kPreviousIndexOffset = 2 * kPointerSize; | |
301 static const int kSubjectOffset = 3 * kPointerSize; | |
302 static const int kJSRegExpOffset = 4 * kPointerSize; | |
303 | |
304 Label runtime; | |
305 Factory* factory = isolate()->factory(); | |
306 | |
307 // Ensure that a RegExp stack is allocated. | |
308 ExternalReference address_of_regexp_stack_memory_address = | |
309 ExternalReference::address_of_regexp_stack_memory_address(isolate()); | |
310 ExternalReference address_of_regexp_stack_memory_size = | |
311 ExternalReference::address_of_regexp_stack_memory_size(isolate()); | |
312 __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size)); | |
313 __ test(ebx, ebx); | |
314 __ j(zero, &runtime); | |
315 | |
316 // Check that the first argument is a JSRegExp object. | |
317 __ mov(eax, Operand(esp, kJSRegExpOffset)); | |
318 STATIC_ASSERT(kSmiTag == 0); | |
319 __ JumpIfSmi(eax, &runtime); | |
320 __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx); | |
321 __ j(not_equal, &runtime); | |
322 | |
323 // Check that the RegExp has been compiled (data contains a fixed array). | |
324 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); | |
325 if (FLAG_debug_code) { | |
326 __ test(ecx, Immediate(kSmiTagMask)); | |
327 __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected); | |
328 __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx); | |
329 __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected); | |
330 } | |
331 | |
332 // ecx: RegExp data (FixedArray) | |
333 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. | |
334 __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset)); | |
335 __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP))); | |
336 __ j(not_equal, &runtime); | |
337 | |
338 // ecx: RegExp data (FixedArray) | |
339 // Check that the number of captures fit in the static offsets vector buffer. | |
340 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); | |
341 // Check (number_of_captures + 1) * 2 <= offsets vector size | |
342 // Or number_of_captures * 2 <= offsets vector size - 2 | |
343 // Multiplying by 2 comes for free since edx is smi-tagged. | |
344 STATIC_ASSERT(kSmiTag == 0); | |
345 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); | |
346 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); | |
347 __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2); | |
348 __ j(above, &runtime); | |
349 | |
350 // Reset offset for possibly sliced string. | |
351 __ Move(edi, Immediate(0)); | |
352 __ mov(eax, Operand(esp, kSubjectOffset)); | |
353 __ JumpIfSmi(eax, &runtime); | |
354 __ mov(edx, eax); // Make a copy of the original subject string. | |
355 | |
356 // eax: subject string | |
357 // edx: subject string | |
358 // ecx: RegExp data (FixedArray) | |
359 // Handle subject string according to its encoding and representation: | |
360 // (1) Sequential two byte? If yes, go to (9). | |
361 // (2) Sequential one byte? If yes, go to (5). | |
362 // (3) Sequential or cons? If not, go to (6). | |
363 // (4) Cons string. If the string is flat, replace subject with first string | |
364 // and go to (1). Otherwise bail out to runtime. | |
365 // (5) One byte sequential. Load regexp code for one byte. | |
366 // (E) Carry on. | |
367 /// [...] | |
368 | |
369 // Deferred code at the end of the stub: | |
370 // (6) Long external string? If not, go to (10). | |
371 // (7) External string. Make it, offset-wise, look like a sequential string. | |
372 // (8) Is the external string one byte? If yes, go to (5). | |
373 // (9) Two byte sequential. Load regexp code for two byte. Go to (E). | |
374 // (10) Short external string or not a string? If yes, bail out to runtime. | |
375 // (11) Sliced or thin string. Replace subject with parent. Go to (1). | |
376 | |
377 Label seq_one_byte_string /* 5 */, seq_two_byte_string /* 9 */, | |
378 external_string /* 7 */, check_underlying /* 1 */, | |
379 not_seq_nor_cons /* 6 */, check_code /* E */, not_long_external /* 10 */; | |
380 | |
381 __ bind(&check_underlying); | |
382 // (1) Sequential two byte? If yes, go to (9). | |
383 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); | |
384 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); | |
385 | |
386 __ and_(ebx, kIsNotStringMask | | |
387 kStringRepresentationMask | | |
388 kStringEncodingMask | | |
389 kShortExternalStringMask); | |
390 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0); | |
391 __ j(zero, &seq_two_byte_string); // Go to (9). | |
392 | |
393 // (2) Sequential one byte? If yes, go to (5). | |
394 // Any other sequential string must be one byte. | |
395 __ and_(ebx, Immediate(kIsNotStringMask | | |
396 kStringRepresentationMask | | |
397 kShortExternalStringMask)); | |
398 __ j(zero, &seq_one_byte_string, Label::kNear); // Go to (5). | |
399 | |
400 // (3) Sequential or cons? If not, go to (6). | |
401 // We check whether the subject string is a cons, since sequential strings | |
402 // have already been covered. | |
403 STATIC_ASSERT(kConsStringTag < kExternalStringTag); | |
404 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); | |
405 STATIC_ASSERT(kThinStringTag > kExternalStringTag); | |
406 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); | |
407 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); | |
408 __ cmp(ebx, Immediate(kExternalStringTag)); | |
409 __ j(greater_equal, ¬_seq_nor_cons); // Go to (6). | |
410 | |
411 // (4) Cons string. Check that it's flat. | |
412 // Replace subject with first string and reload instance type. | |
413 __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string()); | |
414 __ j(not_equal, &runtime); | |
415 __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset)); | |
416 __ jmp(&check_underlying); | |
417 | |
418 // eax: sequential subject string (or look-alike, external string) | |
419 // edx: original subject string | |
420 // ecx: RegExp data (FixedArray) | |
421 // (5) One byte sequential. Load regexp code for one byte. | |
422 __ bind(&seq_one_byte_string); | |
423 // Load previous index and check range before edx is overwritten. We have | |
424 // to use edx instead of eax here because it might have been only made to | |
425 // look like a sequential string when it actually is an external string. | |
426 __ mov(ebx, Operand(esp, kPreviousIndexOffset)); | |
427 __ JumpIfNotSmi(ebx, &runtime); | |
428 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset)); | |
429 __ j(above_equal, &runtime); | |
430 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset)); | |
431 __ Move(ecx, Immediate(1)); // Type is one byte. | |
432 | |
433 // (E) Carry on. String handling is done. | |
434 __ bind(&check_code); | |
435 // edx: irregexp code | |
436 // Check that the irregexp code has been generated for the actual string | |
437 // encoding. If it has, the field contains a code object otherwise it contains | |
438 // a smi (code flushing support). | |
439 __ JumpIfSmi(edx, &runtime); | |
440 | |
441 // eax: subject string | |
442 // ebx: previous index (smi) | |
443 // edx: code | |
444 // ecx: encoding of subject string (1 if one_byte, 0 if two_byte); | |
445 // All checks done. Now push arguments for native regexp code. | |
446 Counters* counters = isolate()->counters(); | |
447 __ IncrementCounter(counters->regexp_entry_native(), 1); | |
448 | |
449 // Isolates: note we add an additional parameter here (isolate pointer). | 289 // Isolates: note we add an additional parameter here (isolate pointer). |
450 static const int kRegExpExecuteArguments = 9; | 290 static const int kRegExpExecuteArguments = 9; |
451 __ EnterApiExitFrame(kRegExpExecuteArguments); | 291 __ EnterApiExitFrame(kRegExpExecuteArguments); |
452 | 292 |
453 // Argument 9: Pass current isolate address. | 293 // Argument 9: Pass current isolate address. |
454 __ mov(Operand(esp, 8 * kPointerSize), | 294 __ mov(Operand(esp, 8 * kPointerSize), |
455 Immediate(ExternalReference::isolate_address(isolate()))); | 295 Immediate(ExternalReference::isolate_address(isolate()))); |
456 | 296 |
457 // Argument 8: Indicate that this is a direct call from JavaScript. | 297 // Argument 8: Indicate that this is a direct call from JavaScript. |
458 __ mov(Operand(esp, 7 * kPointerSize), Immediate(1)); | 298 __ mov(Operand(esp, 7 * kPointerSize), Immediate(1)); |
459 | 299 |
460 // Argument 7: Start (high end) of backtracking stack memory area. | 300 // Argument 7: Start (high end) of backtracking stack memory area. |
| 301 ExternalReference address_of_regexp_stack_memory_address = |
| 302 ExternalReference::address_of_regexp_stack_memory_address(isolate()); |
| 303 ExternalReference address_of_regexp_stack_memory_size = |
| 304 ExternalReference::address_of_regexp_stack_memory_size(isolate()); |
461 __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address)); | 305 __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address)); |
462 __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size)); | 306 __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size)); |
463 __ mov(Operand(esp, 6 * kPointerSize), esi); | 307 __ mov(Operand(esp, 6 * kPointerSize), esi); |
464 | 308 |
465 // Argument 6: Set the number of capture registers to zero to force global | 309 // Argument 6: Set the number of capture registers to zero to force global |
466 // regexps to behave as non-global. This does not affect non-global regexps. | 310 // regexps to behave as non-global. This does not affect non-global regexps. |
467 __ mov(Operand(esp, 5 * kPointerSize), Immediate(0)); | 311 __ mov(Operand(esp, 5 * kPointerSize), Immediate(0)); |
468 | 312 |
469 // Argument 5: static offsets vector buffer. | 313 // Argument 5: static offsets vector buffer. |
470 __ mov(Operand(esp, 4 * kPointerSize), | 314 __ mov(Operand(esp, 4 * kPointerSize), |
471 Immediate(ExternalReference::address_of_static_offsets_vector( | 315 Immediate(ExternalReference::address_of_static_offsets_vector( |
472 isolate()))); | 316 isolate()))); |
473 | 317 |
| 318 // Argument 4: End of string data |
| 319 // Argument 3: Start of string data |
| 320 __ mov(Operand(esp, 3 * kPointerSize), |
| 321 RegExpExecDescriptor::StringEndRegister()); |
| 322 __ mov(Operand(esp, 2 * kPointerSize), |
| 323 RegExpExecDescriptor::StringStartRegister()); |
| 324 |
474 // Argument 2: Previous index. | 325 // Argument 2: Previous index. |
475 __ SmiUntag(ebx); | 326 __ mov(Operand(esp, 1 * kPointerSize), |
476 __ mov(Operand(esp, 1 * kPointerSize), ebx); | 327 RegExpExecDescriptor::LastIndexRegister()); |
477 | 328 |
478 // Argument 1: Original subject string. | 329 // Argument 1: Original subject string. |
479 // The original subject is in the previous stack frame. Therefore we have to | 330 __ mov(Operand(esp, 0 * kPointerSize), |
480 // use ebp, which points exactly to one pointer size below the previous esp. | 331 RegExpExecDescriptor::StringRegister()); |
481 // (Because creating a new stack frame pushes the previous ebp onto the stack | |
482 // and thereby moves up esp by one kPointerSize.) | |
483 __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize)); | |
484 __ mov(Operand(esp, 0 * kPointerSize), esi); | |
485 | |
486 // esi: original subject string | |
487 // eax: underlying subject string | |
488 // ebx: previous index | |
489 // ecx: encoding of subject string (1 if one_byte 0 if two_byte); | |
490 // edx: code | |
491 // Argument 4: End of string data | |
492 // Argument 3: Start of string data | |
493 // Prepare start and end index of the input. | |
494 // Load the length from the original sliced string if that is the case. | |
495 __ mov(esi, FieldOperand(esi, String::kLengthOffset)); | |
496 __ add(esi, edi); // Calculate input end wrt offset. | |
497 __ SmiUntag(edi); | |
498 __ add(ebx, edi); // Calculate input start wrt offset. | |
499 | |
500 // ebx: start index of the input string | |
501 // esi: end index of the input string | |
502 Label setup_two_byte, setup_rest; | |
503 __ test(ecx, ecx); | |
504 __ j(zero, &setup_two_byte, Label::kNear); | |
505 __ SmiUntag(esi); | |
506 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize)); | |
507 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4. | |
508 __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize)); | |
509 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3. | |
510 __ jmp(&setup_rest, Label::kNear); | |
511 | |
512 __ bind(&setup_two_byte); | |
513 STATIC_ASSERT(kSmiTag == 0); | |
514 STATIC_ASSERT(kSmiTagSize == 1); // esi is smi (powered by 2). | |
515 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize)); | |
516 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4. | |
517 __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize)); | |
518 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3. | |
519 | |
520 __ bind(&setup_rest); | |
521 | 332 |
522 // Locate the code entry and call it. | 333 // Locate the code entry and call it. |
523 __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag)); | 334 __ add(RegExpExecDescriptor::CodeRegister(), |
524 __ call(edx); | 335 Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| 336 __ call(RegExpExecDescriptor::CodeRegister()); |
525 | 337 |
526 // Drop arguments and come back to JS mode. | 338 // Drop arguments and come back to JS mode. |
527 __ LeaveApiExitFrame(true); | 339 __ LeaveApiExitFrame(true); |
528 | 340 |
529 // Check the result. | 341 // TODO(jgruber): Don't tag return value once this is supported by stubs. |
530 Label success; | 342 __ SmiTag(eax); |
531 __ cmp(eax, 1); | 343 __ ret(0 * kPointerSize); |
532 // We expect exactly one result since we force the called regexp to behave | |
533 // as non-global. | |
534 __ j(equal, &success); | |
535 Label failure; | |
536 __ cmp(eax, NativeRegExpMacroAssembler::FAILURE); | |
537 __ j(equal, &failure); | |
538 __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION); | |
539 // If not exception it can only be retry. Handle that in the runtime system. | |
540 __ j(not_equal, &runtime); | |
541 // Result must now be exception. If there is no pending exception already a | |
542 // stack overflow (on the backtrack stack) was detected in RegExp code but | |
543 // haven't created the exception yet. Handle that in the runtime system. | |
544 // TODO(592): Rerunning the RegExp to get the stack overflow exception. | |
545 ExternalReference pending_exception(Isolate::kPendingExceptionAddress, | |
546 isolate()); | |
547 __ mov(edx, Immediate(isolate()->factory()->the_hole_value())); | |
548 __ mov(eax, Operand::StaticVariable(pending_exception)); | |
549 __ cmp(edx, eax); | |
550 __ j(equal, &runtime); | |
551 | |
552 // For exception, throw the exception again. | |
553 __ TailCallRuntime(Runtime::kRegExpExecReThrow); | |
554 | |
555 __ bind(&failure); | |
556 // For failure to match, return null. | |
557 __ mov(eax, factory->null_value()); | |
558 __ ret(4 * kPointerSize); | |
559 | |
560 // Load RegExp data. | |
561 __ bind(&success); | |
562 __ mov(eax, Operand(esp, kJSRegExpOffset)); | |
563 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); | |
564 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); | |
565 // Calculate number of capture registers (number_of_captures + 1) * 2. | |
566 STATIC_ASSERT(kSmiTag == 0); | |
567 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); | |
568 __ add(edx, Immediate(2)); // edx was a smi. | |
569 | |
570 // edx: Number of capture registers | |
571 // Check that the last match info is a FixedArray. | |
572 __ mov(ebx, Operand(esp, kLastMatchInfoOffset)); | |
573 __ JumpIfSmi(ebx, &runtime); | |
574 // Check that the object has fast elements. | |
575 __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset)); | |
576 __ cmp(eax, factory->fixed_array_map()); | |
577 __ j(not_equal, &runtime); | |
578 // Check that the last match info has space for the capture registers and the | |
579 // additional information. | |
580 __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset)); | |
581 __ SmiUntag(eax); | |
582 __ sub(eax, Immediate(RegExpMatchInfo::kLastMatchOverhead)); | |
583 __ cmp(edx, eax); | |
584 __ j(greater, &runtime); | |
585 | |
586 // ebx: last_match_info backing store (FixedArray) | |
587 // edx: number of capture registers | |
588 // Store the capture count. | |
589 __ SmiTag(edx); // Number of capture registers to smi. | |
590 __ mov(FieldOperand(ebx, RegExpMatchInfo::kNumberOfCapturesOffset), edx); | |
591 __ SmiUntag(edx); // Number of capture registers back from smi. | |
592 // Store last subject and last input. | |
593 __ mov(eax, Operand(esp, kSubjectOffset)); | |
594 __ mov(ecx, eax); | |
595 __ mov(FieldOperand(ebx, RegExpMatchInfo::kLastSubjectOffset), eax); | |
596 __ RecordWriteField(ebx, RegExpMatchInfo::kLastSubjectOffset, eax, edi, | |
597 kDontSaveFPRegs); | |
598 __ mov(eax, ecx); | |
599 __ mov(FieldOperand(ebx, RegExpMatchInfo::kLastInputOffset), eax); | |
600 __ RecordWriteField(ebx, RegExpMatchInfo::kLastInputOffset, eax, edi, | |
601 kDontSaveFPRegs); | |
602 | |
603 // Get the static offsets vector filled by the native regexp code. | |
604 ExternalReference address_of_static_offsets_vector = | |
605 ExternalReference::address_of_static_offsets_vector(isolate()); | |
606 __ mov(ecx, Immediate(address_of_static_offsets_vector)); | |
607 | |
608 // ebx: last_match_info backing store (FixedArray) | |
609 // ecx: offsets vector | |
610 // edx: number of capture registers | |
611 Label next_capture, done; | |
612 // Capture register counter starts from number of capture registers and | |
613 // counts down until wrapping after zero. | |
614 __ bind(&next_capture); | |
615 __ sub(edx, Immediate(1)); | |
616 __ j(negative, &done, Label::kNear); | |
617 // Read the value from the static offsets vector buffer. | |
618 __ mov(edi, Operand(ecx, edx, times_int_size, 0)); | |
619 __ SmiTag(edi); | |
620 // Store the smi value in the last match info. | |
621 __ mov(FieldOperand(ebx, edx, times_pointer_size, | |
622 RegExpMatchInfo::kFirstCaptureOffset), | |
623 edi); | |
624 __ jmp(&next_capture); | |
625 __ bind(&done); | |
626 | |
627 // Return last match info. | |
628 __ mov(eax, ebx); | |
629 __ ret(4 * kPointerSize); | |
630 | |
631 // Do the runtime call to execute the regexp. | |
632 __ bind(&runtime); | |
633 __ TailCallRuntime(Runtime::kRegExpExec); | |
634 | |
635 // Deferred code for string handling. | |
636 // (6) Long external string? If not, go to (10). | |
637 __ bind(¬_seq_nor_cons); | |
638 // Compare flags are still set from (3). | |
639 __ j(greater, ¬_long_external, Label::kNear); // Go to (10). | |
640 | |
641 // (7) External string. Short external strings have been ruled out. | |
642 __ bind(&external_string); | |
643 // Reload instance type. | |
644 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); | |
645 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); | |
646 if (FLAG_debug_code) { | |
647 // Assert that we do not have a cons or slice (indirect strings) here. | |
648 // Sequential strings have already been ruled out. | |
649 __ test_b(ebx, Immediate(kIsIndirectStringMask)); | |
650 __ Assert(zero, kExternalStringExpectedButNotFound); | |
651 } | |
652 __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset)); | |
653 // Move the pointer so that offset-wise, it looks like a sequential string. | |
654 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); | |
655 __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); | |
656 STATIC_ASSERT(kTwoByteStringTag == 0); | |
657 // (8) Is the external string one byte? If yes, go to (5). | |
658 __ test_b(ebx, Immediate(kStringEncodingMask)); | |
659 __ j(not_zero, &seq_one_byte_string); // Go to (5). | |
660 | |
661 // eax: sequential subject string (or look-alike, external string) | |
662 // edx: original subject string | |
663 // ecx: RegExp data (FixedArray) | |
664 // (9) Two byte sequential. Load regexp code for two byte. Go to (E). | |
665 __ bind(&seq_two_byte_string); | |
666 // Load previous index and check range before edx is overwritten. We have | |
667 // to use edx instead of eax here because it might have been only made to | |
668 // look like a sequential string when it actually is an external string. | |
669 __ mov(ebx, Operand(esp, kPreviousIndexOffset)); | |
670 __ JumpIfNotSmi(ebx, &runtime); | |
671 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset)); | |
672 __ j(above_equal, &runtime); | |
673 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset)); | |
674 __ Move(ecx, Immediate(0)); // Type is two byte. | |
675 __ jmp(&check_code); // Go to (E). | |
676 | |
677 // (10) Not a string or a short external string? If yes, bail out to runtime. | |
678 __ bind(¬_long_external); | |
679 // Catch non-string subject or short external string. | |
680 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0); | |
681 __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag)); | |
682 __ j(not_zero, &runtime); | |
683 | |
684 // (11) Sliced or thin string. Replace subject with parent. Go to (1). | |
685 Label thin_string; | |
686 __ cmp(ebx, Immediate(kThinStringTag)); | |
687 __ j(equal, &thin_string, Label::kNear); | |
688 // Load offset into edi and replace subject string with parent. | |
689 __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset)); | |
690 __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset)); | |
691 __ jmp(&check_underlying); // Go to (1). | |
692 | |
693 __ bind(&thin_string); | |
694 __ mov(eax, FieldOperand(eax, ThinString::kActualOffset)); | |
695 __ jmp(&check_underlying); // Go to (1). | |
696 #endif // V8_INTERPRETED_REGEXP | 344 #endif // V8_INTERPRETED_REGEXP |
697 } | 345 } |
698 | 346 |
699 | 347 |
700 static int NegativeComparisonResult(Condition cc) { | 348 static int NegativeComparisonResult(Condition cc) { |
701 DCHECK(cc != equal); | 349 DCHECK(cc != equal); |
702 DCHECK((cc == less) || (cc == less_equal) | 350 DCHECK((cc == less) || (cc == less_equal) |
703 || (cc == greater) || (cc == greater_equal)); | 351 || (cc == greater) || (cc == greater_equal)); |
704 return (cc == greater || cc == greater_equal) ? LESS : GREATER; | 352 return (cc == greater || cc == greater_equal) ? LESS : GREATER; |
705 } | 353 } |
(...skipping 3190 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
3896 kStackUnwindSpace, nullptr, return_value_operand, | 3544 kStackUnwindSpace, nullptr, return_value_operand, |
3897 NULL); | 3545 NULL); |
3898 } | 3546 } |
3899 | 3547 |
3900 #undef __ | 3548 #undef __ |
3901 | 3549 |
3902 } // namespace internal | 3550 } // namespace internal |
3903 } // namespace v8 | 3551 } // namespace v8 |
3904 | 3552 |
3905 #endif // V8_TARGET_ARCH_X87 | 3553 #endif // V8_TARGET_ARCH_X87 |
OLD | NEW |