| OLD | NEW |
| 1 // Copyright 2012 the V8 project authors. All rights reserved. | 1 // Copyright 2012 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 #if V8_TARGET_ARCH_IA32 | 5 #if V8_TARGET_ARCH_IA32 |
| 6 | 6 |
| 7 #include "src/code-stubs.h" | 7 #include "src/code-stubs.h" |
| 8 #include "src/api-arguments.h" | 8 #include "src/api-arguments.h" |
| 9 #include "src/base/bits.h" | 9 #include "src/base/bits.h" |
| 10 #include "src/bootstrapper.h" | 10 #include "src/bootstrapper.h" |
| (...skipping 445 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 456 __ sub(esp, Immediate(kDoubleSize)); | 456 __ sub(esp, Immediate(kDoubleSize)); |
| 457 __ fstp_d(Operand(esp, 0)); | 457 __ fstp_d(Operand(esp, 0)); |
| 458 __ movsd(double_result, Operand(esp, 0)); | 458 __ movsd(double_result, Operand(esp, 0)); |
| 459 __ add(esp, Immediate(kDoubleSize)); | 459 __ add(esp, Immediate(kDoubleSize)); |
| 460 | 460 |
| 461 __ bind(&done); | 461 __ bind(&done); |
| 462 __ ret(0); | 462 __ ret(0); |
| 463 } | 463 } |
| 464 | 464 |
| 465 void RegExpExecStub::Generate(MacroAssembler* masm) { | 465 void RegExpExecStub::Generate(MacroAssembler* masm) { |
| 466 // Just jump directly to runtime if native RegExp is not selected at compile | |
| 467 // time or if regexp entry in generated code is turned off runtime switch or | |
| 468 // at compilation. | |
| 469 #ifdef V8_INTERPRETED_REGEXP | 466 #ifdef V8_INTERPRETED_REGEXP |
| 470 __ TailCallRuntime(Runtime::kRegExpExec); | 467 // This case is handled prior to the RegExpExecStub call. |
| 468 __ Abort(kUnexpectedRegExpExecCall); |
| 471 #else // V8_INTERPRETED_REGEXP | 469 #else // V8_INTERPRETED_REGEXP |
| 472 | |
| 473 // Stack frame on entry. | |
| 474 // esp[0]: return address | |
| 475 // esp[4]: last_match_info (expected JSArray) | |
| 476 // esp[8]: previous index | |
| 477 // esp[12]: subject string | |
| 478 // esp[16]: JSRegExp object | |
| 479 | |
| 480 static const int kLastMatchInfoOffset = 1 * kPointerSize; | |
| 481 static const int kPreviousIndexOffset = 2 * kPointerSize; | |
| 482 static const int kSubjectOffset = 3 * kPointerSize; | |
| 483 static const int kJSRegExpOffset = 4 * kPointerSize; | |
| 484 | |
| 485 Label runtime; | |
| 486 Factory* factory = isolate()->factory(); | |
| 487 | |
| 488 // Ensure that a RegExp stack is allocated. | |
| 489 ExternalReference address_of_regexp_stack_memory_address = | |
| 490 ExternalReference::address_of_regexp_stack_memory_address(isolate()); | |
| 491 ExternalReference address_of_regexp_stack_memory_size = | |
| 492 ExternalReference::address_of_regexp_stack_memory_size(isolate()); | |
| 493 __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size)); | |
| 494 __ test(ebx, ebx); | |
| 495 __ j(zero, &runtime); | |
| 496 | |
| 497 // Check that the first argument is a JSRegExp object. | |
| 498 __ mov(eax, Operand(esp, kJSRegExpOffset)); | |
| 499 STATIC_ASSERT(kSmiTag == 0); | |
| 500 __ JumpIfSmi(eax, &runtime); | |
| 501 __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx); | |
| 502 __ j(not_equal, &runtime); | |
| 503 | |
| 504 // Check that the RegExp has been compiled (data contains a fixed array). | |
| 505 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); | |
| 506 if (FLAG_debug_code) { | |
| 507 __ test(ecx, Immediate(kSmiTagMask)); | |
| 508 __ Check(not_zero, kUnexpectedTypeForRegExpDataFixedArrayExpected); | |
| 509 __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx); | |
| 510 __ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected); | |
| 511 } | |
| 512 | |
| 513 // ecx: RegExp data (FixedArray) | |
| 514 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. | |
| 515 __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset)); | |
| 516 __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP))); | |
| 517 __ j(not_equal, &runtime); | |
| 518 | |
| 519 // ecx: RegExp data (FixedArray) | |
| 520 // Check that the number of captures fit in the static offsets vector buffer. | |
| 521 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); | |
| 522 // Check (number_of_captures + 1) * 2 <= offsets vector size | |
| 523 // Or number_of_captures * 2 <= offsets vector size - 2 | |
| 524 // Multiplying by 2 comes for free since edx is smi-tagged. | |
| 525 STATIC_ASSERT(kSmiTag == 0); | |
| 526 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); | |
| 527 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); | |
| 528 __ cmp(edx, Isolate::kJSRegexpStaticOffsetsVectorSize - 2); | |
| 529 __ j(above, &runtime); | |
| 530 | |
| 531 // Reset offset for possibly sliced string. | |
| 532 __ Move(edi, Immediate(0)); | |
| 533 __ mov(eax, Operand(esp, kSubjectOffset)); | |
| 534 __ JumpIfSmi(eax, &runtime); | |
| 535 __ mov(edx, eax); // Make a copy of the original subject string. | |
| 536 | |
| 537 // eax: subject string | |
| 538 // edx: subject string | |
| 539 // ecx: RegExp data (FixedArray) | |
| 540 // Handle subject string according to its encoding and representation: | |
| 541 // (1) Sequential two byte? If yes, go to (9). | |
| 542 // (2) Sequential one byte? If yes, go to (5). | |
| 543 // (3) Sequential or cons? If not, go to (6). | |
| 544 // (4) Cons string. If the string is flat, replace subject with first string | |
| 545 // and go to (1). Otherwise bail out to runtime. | |
| 546 // (5) One byte sequential. Load regexp code for one byte. | |
| 547 // (E) Carry on. | |
| 548 /// [...] | |
| 549 | |
| 550 // Deferred code at the end of the stub: | |
| 551 // (6) Long external string? If not, go to (10). | |
| 552 // (7) External string. Make it, offset-wise, look like a sequential string. | |
| 553 // (8) Is the external string one byte? If yes, go to (5). | |
| 554 // (9) Two byte sequential. Load regexp code for two byte. Go to (E). | |
| 555 // (10) Short external string or not a string? If yes, bail out to runtime. | |
| 556 // (11) Sliced or thin string. Replace subject with parent. Go to (1). | |
| 557 | |
| 558 Label seq_one_byte_string /* 5 */, seq_two_byte_string /* 9 */, | |
| 559 external_string /* 7 */, check_underlying /* 1 */, | |
| 560 not_seq_nor_cons /* 6 */, check_code /* E */, not_long_external /* 10 */; | |
| 561 | |
| 562 __ bind(&check_underlying); | |
| 563 // (1) Sequential two byte? If yes, go to (9). | |
| 564 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); | |
| 565 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); | |
| 566 | |
| 567 __ and_(ebx, kIsNotStringMask | | |
| 568 kStringRepresentationMask | | |
| 569 kStringEncodingMask | | |
| 570 kShortExternalStringMask); | |
| 571 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0); | |
| 572 __ j(zero, &seq_two_byte_string); // Go to (9). | |
| 573 | |
| 574 // (2) Sequential one byte? If yes, go to (5). | |
| 575 // Any other sequential string must be one byte. | |
| 576 __ and_(ebx, Immediate(kIsNotStringMask | | |
| 577 kStringRepresentationMask | | |
| 578 kShortExternalStringMask)); | |
| 579 __ j(zero, &seq_one_byte_string, Label::kNear); // Go to (5). | |
| 580 | |
| 581 // (3) Sequential or cons? If not, go to (6). | |
| 582 // We check whether the subject string is a cons, since sequential strings | |
| 583 // have already been covered. | |
| 584 STATIC_ASSERT(kConsStringTag < kExternalStringTag); | |
| 585 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); | |
| 586 STATIC_ASSERT(kThinStringTag > kExternalStringTag); | |
| 587 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); | |
| 588 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); | |
| 589 __ cmp(ebx, Immediate(kExternalStringTag)); | |
| 590 __ j(greater_equal, ¬_seq_nor_cons); // Go to (6). | |
| 591 | |
| 592 // (4) Cons string. Check that it's flat. | |
| 593 // Replace subject with first string and reload instance type. | |
| 594 __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string()); | |
| 595 __ j(not_equal, &runtime); | |
| 596 __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset)); | |
| 597 __ jmp(&check_underlying); | |
| 598 | |
| 599 // eax: sequential subject string (or look-alike, external string) | |
| 600 // edx: original subject string | |
| 601 // ecx: RegExp data (FixedArray) | |
| 602 // (5) One byte sequential. Load regexp code for one byte. | |
| 603 __ bind(&seq_one_byte_string); | |
| 604 // Load previous index and check range before edx is overwritten. We have | |
| 605 // to use edx instead of eax here because it might have been only made to | |
| 606 // look like a sequential string when it actually is an external string. | |
| 607 __ mov(ebx, Operand(esp, kPreviousIndexOffset)); | |
| 608 __ JumpIfNotSmi(ebx, &runtime); | |
| 609 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset)); | |
| 610 __ j(above_equal, &runtime); | |
| 611 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataOneByteCodeOffset)); | |
| 612 __ Move(ecx, Immediate(1)); // Type is one byte. | |
| 613 | |
| 614 // (E) Carry on. String handling is done. | |
| 615 __ bind(&check_code); | |
| 616 // edx: irregexp code | |
| 617 // Check that the irregexp code has been generated for the actual string | |
| 618 // encoding. If it has, the field contains a code object otherwise it contains | |
| 619 // a smi (code flushing support). | |
| 620 __ JumpIfSmi(edx, &runtime); | |
| 621 | |
| 622 // eax: subject string | |
| 623 // ebx: previous index (smi) | |
| 624 // edx: code | |
| 625 // ecx: encoding of subject string (1 if one_byte, 0 if two_byte); | |
| 626 // All checks done. Now push arguments for native regexp code. | |
| 627 Counters* counters = isolate()->counters(); | |
| 628 __ IncrementCounter(counters->regexp_entry_native(), 1); | |
| 629 | |
| 630 // Isolates: note we add an additional parameter here (isolate pointer). | 470 // Isolates: note we add an additional parameter here (isolate pointer). |
| 631 static const int kRegExpExecuteArguments = 9; | 471 static const int kRegExpExecuteArguments = 9; |
| 632 __ EnterApiExitFrame(kRegExpExecuteArguments); | 472 __ EnterApiExitFrame(kRegExpExecuteArguments); |
| 633 | 473 |
| 634 // Argument 9: Pass current isolate address. | 474 // Argument 9: Pass current isolate address. |
| 635 __ mov(Operand(esp, 8 * kPointerSize), | 475 __ mov(Operand(esp, 8 * kPointerSize), |
| 636 Immediate(ExternalReference::isolate_address(isolate()))); | 476 Immediate(ExternalReference::isolate_address(isolate()))); |
| 637 | 477 |
| 638 // Argument 8: Indicate that this is a direct call from JavaScript. | 478 // Argument 8: Indicate that this is a direct call from JavaScript. |
| 639 __ mov(Operand(esp, 7 * kPointerSize), Immediate(1)); | 479 __ mov(Operand(esp, 7 * kPointerSize), Immediate(1)); |
| 640 | 480 |
| 641 // Argument 7: Start (high end) of backtracking stack memory area. | 481 // Argument 7: Start (high end) of backtracking stack memory area. |
| 482 ExternalReference address_of_regexp_stack_memory_address = |
| 483 ExternalReference::address_of_regexp_stack_memory_address(isolate()); |
| 484 ExternalReference address_of_regexp_stack_memory_size = |
| 485 ExternalReference::address_of_regexp_stack_memory_size(isolate()); |
| 642 __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address)); | 486 __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address)); |
| 643 __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size)); | 487 __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size)); |
| 644 __ mov(Operand(esp, 6 * kPointerSize), esi); | 488 __ mov(Operand(esp, 6 * kPointerSize), esi); |
| 645 | 489 |
| 646 // Argument 6: Set the number of capture registers to zero to force global | 490 // Argument 6: Set the number of capture registers to zero to force global |
| 647 // regexps to behave as non-global. This does not affect non-global regexps. | 491 // regexps to behave as non-global. This does not affect non-global regexps. |
| 648 __ mov(Operand(esp, 5 * kPointerSize), Immediate(0)); | 492 __ mov(Operand(esp, 5 * kPointerSize), Immediate(0)); |
| 649 | 493 |
| 650 // Argument 5: static offsets vector buffer. | 494 // Argument 5: static offsets vector buffer. |
| 651 __ mov(Operand(esp, 4 * kPointerSize), | 495 __ mov(Operand(esp, 4 * kPointerSize), |
| 652 Immediate(ExternalReference::address_of_static_offsets_vector( | 496 Immediate(ExternalReference::address_of_static_offsets_vector( |
| 653 isolate()))); | 497 isolate()))); |
| 654 | 498 |
| 499 // Argument 4: End of string data |
| 500 // Argument 3: Start of string data |
| 501 __ mov(Operand(esp, 3 * kPointerSize), |
| 502 RegExpExecDescriptor::StringEndRegister()); |
| 503 __ mov(Operand(esp, 2 * kPointerSize), |
| 504 RegExpExecDescriptor::StringStartRegister()); |
| 505 |
| 655 // Argument 2: Previous index. | 506 // Argument 2: Previous index. |
| 656 __ SmiUntag(ebx); | 507 __ mov(Operand(esp, 1 * kPointerSize), |
| 657 __ mov(Operand(esp, 1 * kPointerSize), ebx); | 508 RegExpExecDescriptor::LastIndexRegister()); |
| 658 | 509 |
| 659 // Argument 1: Original subject string. | 510 // Argument 1: Original subject string. |
| 660 // The original subject is in the previous stack frame. Therefore we have to | 511 __ mov(Operand(esp, 0 * kPointerSize), |
| 661 // use ebp, which points exactly to one pointer size below the previous esp. | 512 RegExpExecDescriptor::StringRegister()); |
| 662 // (Because creating a new stack frame pushes the previous ebp onto the stack | |
| 663 // and thereby moves up esp by one kPointerSize.) | |
| 664 __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize)); | |
| 665 __ mov(Operand(esp, 0 * kPointerSize), esi); | |
| 666 | |
| 667 // esi: original subject string | |
| 668 // eax: underlying subject string | |
| 669 // ebx: previous index | |
| 670 // ecx: encoding of subject string (1 if one_byte 0 if two_byte); | |
| 671 // edx: code | |
| 672 // Argument 4: End of string data | |
| 673 // Argument 3: Start of string data | |
| 674 // Prepare start and end index of the input. | |
| 675 // Load the length from the original sliced string if that is the case. | |
| 676 __ mov(esi, FieldOperand(esi, String::kLengthOffset)); | |
| 677 __ add(esi, edi); // Calculate input end wrt offset. | |
| 678 __ SmiUntag(edi); | |
| 679 __ add(ebx, edi); // Calculate input start wrt offset. | |
| 680 | |
| 681 // ebx: start index of the input string | |
| 682 // esi: end index of the input string | |
| 683 Label setup_two_byte, setup_rest; | |
| 684 __ test(ecx, ecx); | |
| 685 __ j(zero, &setup_two_byte, Label::kNear); | |
| 686 __ SmiUntag(esi); | |
| 687 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqOneByteString::kHeaderSize)); | |
| 688 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4. | |
| 689 __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqOneByteString::kHeaderSize)); | |
| 690 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3. | |
| 691 __ jmp(&setup_rest, Label::kNear); | |
| 692 | |
| 693 __ bind(&setup_two_byte); | |
| 694 STATIC_ASSERT(kSmiTag == 0); | |
| 695 STATIC_ASSERT(kSmiTagSize == 1); // esi is smi (powered by 2). | |
| 696 __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize)); | |
| 697 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4. | |
| 698 __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize)); | |
| 699 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3. | |
| 700 | |
| 701 __ bind(&setup_rest); | |
| 702 | 513 |
| 703 // Locate the code entry and call it. | 514 // Locate the code entry and call it. |
| 704 __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag)); | 515 __ add(RegExpExecDescriptor::CodeRegister(), |
| 705 __ call(edx); | 516 Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| 517 __ call(RegExpExecDescriptor::CodeRegister()); |
| 706 | 518 |
| 707 // Drop arguments and come back to JS mode. | 519 // Drop arguments and come back to JS mode. |
| 708 __ LeaveApiExitFrame(true); | 520 __ LeaveApiExitFrame(true); |
| 709 | 521 |
| 710 // Check the result. | 522 // TODO(jgruber): Don't tag return value once this is supported by stubs. |
| 711 Label success; | 523 __ SmiTag(eax); |
| 712 __ cmp(eax, 1); | 524 __ ret(0 * kPointerSize); |
| 713 // We expect exactly one result since we force the called regexp to behave | |
| 714 // as non-global. | |
| 715 __ j(equal, &success); | |
| 716 Label failure; | |
| 717 __ cmp(eax, NativeRegExpMacroAssembler::FAILURE); | |
| 718 __ j(equal, &failure); | |
| 719 __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION); | |
| 720 // If not exception it can only be retry. Handle that in the runtime system. | |
| 721 __ j(not_equal, &runtime); | |
| 722 // Result must now be exception. If there is no pending exception already a | |
| 723 // stack overflow (on the backtrack stack) was detected in RegExp code but | |
| 724 // haven't created the exception yet. Handle that in the runtime system. | |
| 725 // TODO(592): Rerunning the RegExp to get the stack overflow exception. | |
| 726 ExternalReference pending_exception(Isolate::kPendingExceptionAddress, | |
| 727 isolate()); | |
| 728 __ mov(edx, Immediate(isolate()->factory()->the_hole_value())); | |
| 729 __ mov(eax, Operand::StaticVariable(pending_exception)); | |
| 730 __ cmp(edx, eax); | |
| 731 __ j(equal, &runtime); | |
| 732 | |
| 733 // For exception, throw the exception again. | |
| 734 __ TailCallRuntime(Runtime::kRegExpExecReThrow); | |
| 735 | |
| 736 __ bind(&failure); | |
| 737 // For failure to match, return null. | |
| 738 __ mov(eax, factory->null_value()); | |
| 739 __ ret(4 * kPointerSize); | |
| 740 | |
| 741 // Load RegExp data. | |
| 742 __ bind(&success); | |
| 743 __ mov(eax, Operand(esp, kJSRegExpOffset)); | |
| 744 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); | |
| 745 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); | |
| 746 // Calculate number of capture registers (number_of_captures + 1) * 2. | |
| 747 STATIC_ASSERT(kSmiTag == 0); | |
| 748 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); | |
| 749 __ add(edx, Immediate(2)); // edx was a smi. | |
| 750 | |
| 751 // edx: Number of capture registers | |
| 752 // Check that the last match info is a FixedArray. | |
| 753 __ mov(ebx, Operand(esp, kLastMatchInfoOffset)); | |
| 754 __ JumpIfSmi(ebx, &runtime); | |
| 755 // Check that the object has fast elements. | |
| 756 __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset)); | |
| 757 __ cmp(eax, factory->fixed_array_map()); | |
| 758 __ j(not_equal, &runtime); | |
| 759 // Check that the last match info has space for the capture registers and the | |
| 760 // additional information. | |
| 761 __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset)); | |
| 762 __ SmiUntag(eax); | |
| 763 __ sub(eax, Immediate(RegExpMatchInfo::kLastMatchOverhead)); | |
| 764 __ cmp(edx, eax); | |
| 765 __ j(greater, &runtime); | |
| 766 | |
| 767 // ebx: last_match_info (FixedArray) | |
| 768 // edx: number of capture registers | |
| 769 // Store the capture count. | |
| 770 __ SmiTag(edx); // Number of capture registers to smi. | |
| 771 __ mov(FieldOperand(ebx, RegExpMatchInfo::kNumberOfCapturesOffset), edx); | |
| 772 __ SmiUntag(edx); // Number of capture registers back from smi. | |
| 773 // Store last subject and last input. | |
| 774 __ mov(eax, Operand(esp, kSubjectOffset)); | |
| 775 __ mov(ecx, eax); | |
| 776 __ mov(FieldOperand(ebx, RegExpMatchInfo::kLastSubjectOffset), eax); | |
| 777 __ RecordWriteField(ebx, RegExpMatchInfo::kLastSubjectOffset, eax, edi, | |
| 778 kDontSaveFPRegs); | |
| 779 __ mov(eax, ecx); | |
| 780 __ mov(FieldOperand(ebx, RegExpMatchInfo::kLastInputOffset), eax); | |
| 781 __ RecordWriteField(ebx, RegExpMatchInfo::kLastInputOffset, eax, edi, | |
| 782 kDontSaveFPRegs); | |
| 783 | |
| 784 // Get the static offsets vector filled by the native regexp code. | |
| 785 ExternalReference address_of_static_offsets_vector = | |
| 786 ExternalReference::address_of_static_offsets_vector(isolate()); | |
| 787 __ mov(ecx, Immediate(address_of_static_offsets_vector)); | |
| 788 | |
| 789 // ebx: last_match_info (FixedArray) | |
| 790 // ecx: offsets vector | |
| 791 // edx: number of capture registers | |
| 792 Label next_capture, done; | |
| 793 // Capture register counter starts from number of capture registers and | |
| 794 // counts down until wrapping after zero. | |
| 795 __ bind(&next_capture); | |
| 796 __ sub(edx, Immediate(1)); | |
| 797 __ j(negative, &done, Label::kNear); | |
| 798 // Read the value from the static offsets vector buffer. | |
| 799 __ mov(edi, Operand(ecx, edx, times_int_size, 0)); | |
| 800 __ SmiTag(edi); | |
| 801 // Store the smi value in the last match info. | |
| 802 __ mov(FieldOperand(ebx, edx, times_pointer_size, | |
| 803 RegExpMatchInfo::kFirstCaptureOffset), | |
| 804 edi); | |
| 805 __ jmp(&next_capture); | |
| 806 __ bind(&done); | |
| 807 | |
| 808 // Return last match info. | |
| 809 __ mov(eax, ebx); | |
| 810 __ ret(4 * kPointerSize); | |
| 811 | |
| 812 // Do the runtime call to execute the regexp. | |
| 813 __ bind(&runtime); | |
| 814 __ TailCallRuntime(Runtime::kRegExpExec); | |
| 815 | |
| 816 // Deferred code for string handling. | |
| 817 // (6) Long external string? If not, go to (10). | |
| 818 __ bind(¬_seq_nor_cons); | |
| 819 // Compare flags are still set from (3). | |
| 820 __ j(greater, ¬_long_external, Label::kNear); // Go to (10). | |
| 821 | |
| 822 // (7) External string. Short external strings have been ruled out. | |
| 823 __ bind(&external_string); | |
| 824 // Reload instance type. | |
| 825 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); | |
| 826 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); | |
| 827 if (FLAG_debug_code) { | |
| 828 // Assert that we do not have a cons or slice (indirect strings) here. | |
| 829 // Sequential strings have already been ruled out. | |
| 830 __ test_b(ebx, Immediate(kIsIndirectStringMask)); | |
| 831 __ Assert(zero, kExternalStringExpectedButNotFound); | |
| 832 } | |
| 833 __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset)); | |
| 834 // Move the pointer so that offset-wise, it looks like a sequential string. | |
| 835 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); | |
| 836 __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); | |
| 837 STATIC_ASSERT(kTwoByteStringTag == 0); | |
| 838 // (8) Is the external string one byte? If yes, go to (5). | |
| 839 __ test_b(ebx, Immediate(kStringEncodingMask)); | |
| 840 __ j(not_zero, &seq_one_byte_string); // Go to (5). | |
| 841 | |
| 842 // eax: sequential subject string (or look-alike, external string) | |
| 843 // edx: original subject string | |
| 844 // ecx: RegExp data (FixedArray) | |
| 845 // (9) Two byte sequential. Load regexp code for two byte. Go to (E). | |
| 846 __ bind(&seq_two_byte_string); | |
| 847 // Load previous index and check range before edx is overwritten. We have | |
| 848 // to use edx instead of eax here because it might have been only made to | |
| 849 // look like a sequential string when it actually is an external string. | |
| 850 __ mov(ebx, Operand(esp, kPreviousIndexOffset)); | |
| 851 __ JumpIfNotSmi(ebx, &runtime); | |
| 852 __ cmp(ebx, FieldOperand(edx, String::kLengthOffset)); | |
| 853 __ j(above_equal, &runtime); | |
| 854 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset)); | |
| 855 __ Move(ecx, Immediate(0)); // Type is two byte. | |
| 856 __ jmp(&check_code); // Go to (E). | |
| 857 | |
| 858 // (10) Not a string or a short external string? If yes, bail out to runtime. | |
| 859 __ bind(¬_long_external); | |
| 860 // Catch non-string subject or short external string. | |
| 861 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0); | |
| 862 __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag)); | |
| 863 __ j(not_zero, &runtime); | |
| 864 | |
| 865 // (11) Sliced or thin string. Replace subject with parent. Go to (1). | |
| 866 Label thin_string; | |
| 867 __ cmp(ebx, Immediate(kThinStringTag)); | |
| 868 __ j(equal, &thin_string, Label::kNear); | |
| 869 // Load offset into edi and replace subject string with parent. | |
| 870 __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset)); | |
| 871 __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset)); | |
| 872 __ jmp(&check_underlying); // Go to (1). | |
| 873 | |
| 874 __ bind(&thin_string); | |
| 875 __ mov(eax, FieldOperand(eax, ThinString::kActualOffset)); | |
| 876 __ jmp(&check_underlying); // Go to (1). | |
| 877 #endif // V8_INTERPRETED_REGEXP | 525 #endif // V8_INTERPRETED_REGEXP |
| 878 } | 526 } |
| 879 | 527 |
| 880 | 528 |
| 881 static int NegativeComparisonResult(Condition cc) { | 529 static int NegativeComparisonResult(Condition cc) { |
| 882 DCHECK(cc != equal); | 530 DCHECK(cc != equal); |
| 883 DCHECK((cc == less) || (cc == less_equal) | 531 DCHECK((cc == less) || (cc == less_equal) |
| 884 || (cc == greater) || (cc == greater_equal)); | 532 || (cc == greater) || (cc == greater_equal)); |
| 885 return (cc == greater || cc == greater_equal) ? LESS : GREATER; | 533 return (cc == greater || cc == greater_equal) ? LESS : GREATER; |
| 886 } | 534 } |
| (...skipping 2454 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 3341 kStackUnwindSpace, nullptr, return_value_operand, | 2989 kStackUnwindSpace, nullptr, return_value_operand, |
| 3342 NULL); | 2990 NULL); |
| 3343 } | 2991 } |
| 3344 | 2992 |
| 3345 #undef __ | 2993 #undef __ |
| 3346 | 2994 |
| 3347 } // namespace internal | 2995 } // namespace internal |
| 3348 } // namespace v8 | 2996 } // namespace v8 |
| 3349 | 2997 |
| 3350 #endif // V8_TARGET_ARCH_IA32 | 2998 #endif // V8_TARGET_ARCH_IA32 |
| OLD | NEW |