Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(2263)

Unified Diff: content/renderer/media/media_stream_constraints_util_sets.h

Issue 2728633002: Add utility set classes to support getUserMedia constraint proccessing. (Closed)
Patch Set: Add missing#include and make ResolutionSet::ClosestPointTo private Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: content/renderer/media/media_stream_constraints_util_sets.h
diff --git a/content/renderer/media/media_stream_constraints_util_sets.h b/content/renderer/media/media_stream_constraints_util_sets.h
new file mode 100644
index 0000000000000000000000000000000000000000..57fdda12b197fd24a542eac7b94dd159d733b920
--- /dev/null
+++ b/content/renderer/media/media_stream_constraints_util_sets.h
@@ -0,0 +1,355 @@
+// Copyright 2017 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef CONTENT_RENDERER_MEDIA_MEDIA_STREAM_CONSTRAINTS_UTIL_SETS_H_
+#define CONTENT_RENDERER_MEDIA_MEDIA_STREAM_CONSTRAINTS_UTIL_SETS_H_
+
+#include <algorithm>
+#include <limits>
+#include <utility>
+#include <vector>
+
+#include "base/gtest_prod_util.h"
+#include "base/logging.h"
+#include "content/common/content_export.h"
+#include "content/renderer/media/media_stream_constraints_util.h"
+
+namespace blink {
+struct WebMediaTrackConstraintSet;
+}
+
+namespace content {
+
+// This class template represents a set of candidates suitable for a numeric
+// range-based constraint.
+template <typename T>
+class NumericRangeSet {
+ public:
+ NumericRangeSet() : min_(0), max_(DefaultMax()) {}
+ NumericRangeSet(T min, T max) : min_(min), max_(max) {}
+ NumericRangeSet(const NumericRangeSet& other) = default;
+ NumericRangeSet& operator=(const NumericRangeSet& other) = default;
+ ~NumericRangeSet() = default;
+
+ T Min() const { return min_; }
+ T Max() const { return max_; }
+ bool IsEmpty() const { return max_ < min_; }
+
+ NumericRangeSet Intersection(const NumericRangeSet& other) const {
+ return NumericRangeSet(std::max(min_, other.min_),
+ std::min(max_, other.max_));
+ }
+
+ // Creates a NumericRangeSet based on the minimum and maximum values of
+ // |constraint|.
+ template <typename ConstraintType>
+ static auto FromConstraint(ConstraintType constraint)
+ -> NumericRangeSet<decltype(constraint.min())> {
+ return NumericRangeSet<decltype(constraint.min())>(
+ ConstraintHasMin(constraint) ? ConstraintMin(constraint) : 0,
+ ConstraintHasMax(constraint) ? ConstraintMax(constraint)
+ : DefaultMax());
+ }
+
+ private:
+ static inline T DefaultMax() {
+ return std::numeric_limits<T>::has_infinity
+ ? std::numeric_limits<T>::infinity()
+ : std::numeric_limits<T>::max();
+ }
+ T min_;
+ T max_;
+};
+
+// This class defines a set of discrete elements suitable for resolving
+// constraints with a countable number of choices not suitable to be constrained
+// by range. Examples are strings, booleans and certain constraints of type
+// long. A DiscreteSet can be empty, have their elements explicitly stated, or
+// be the universal set. The universal set is a set that contains all possible
+// elements. The specific definition of what elements are in the universal set
+// is application defined (e.g., it could be all possible boolean values, all
+// possible strings of length N, or anything that suits a particular
+// application).
+template <typename T>
+class DiscreteSet {
+ public:
+ // Creates a set containing the elements in |elements|.
+ // It is the responsibility of the caller to ensure that |elements| is not
+ // equivalent to the universal set and that |elements| has no repeated
+ // values. Takes ownership of |elements|.
+ explicit DiscreteSet(std::vector<T> elements)
+ : is_universal_(false), elements_(std::move(elements)) {}
+ // Creates an empty set;
+ static DiscreteSet EmptySet() { return DiscreteSet(std::vector<T>()); }
+ static DiscreteSet UniversalSet() { return DiscreteSet(); }
+
+ DiscreteSet(const DiscreteSet& other) = default;
+ DiscreteSet& operator=(const DiscreteSet& other) = default;
+ DiscreteSet(DiscreteSet&& other) = default;
+ DiscreteSet& operator=(DiscreteSet&& other) = default;
+ ~DiscreteSet() = default;
+
+ bool Contains(const T& value) const {
+ return is_universal_ ||
+ std::find(elements_.begin(), elements_.end(), value) !=
+ elements_.end();
+ }
+
+ bool IsEmpty() const { return !is_universal_ && elements_.empty(); }
+
+ bool HasExplicitElements() const { return !elements_.empty(); }
+
+ DiscreteSet Intersection(const DiscreteSet& other) const {
+ if (is_universal_)
+ return other;
+ if (other.is_universal_)
+ return *this;
+ if (IsEmpty() || other.IsEmpty())
+ return EmptySet();
+
+ // Both sets have explicit elements.
+ std::vector<T> intersection;
+ for (const auto& entry : elements_) {
+ auto it =
+ std::find(other.elements_.begin(), other.elements_.end(), entry);
+ if (it != other.elements_.end()) {
+ intersection.push_back(entry);
+ }
+ }
+ return DiscreteSet(std::move(intersection));
+ }
+
+ // Returns a copy of the first element in the set. This is useful as a simple
+ // tie-breaker rule. This applies only to constrained nonempty sets.
+ // Behavior is undefined if the set is empty or universal.
+ T FirstElement() const {
+ DCHECK(HasExplicitElements());
+ return elements_[0];
+ }
+
+ bool is_universal() const { return is_universal_; }
+
+ private:
+ // Creates a universal set.
+ DiscreteSet() : is_universal_(true) {}
+
+ bool is_universal_;
+ std::vector<T> elements_;
+};
+
+// This class represents a set of (height, width) screen resolution candidates
+// determined by width, height and aspect-ratio constraints.
+// This class supports widths and heights from 0 to kMaxDimension, both
+// inclusive and aspect ratios from 0.0 to positive infinity, both inclusive.
+class CONTENT_EXPORT ResolutionSet {
+ public:
+ static constexpr int kMaxDimension = std::numeric_limits<int>::max();
+
+ // Helper class that represents (height, width) points on a plane.
+ class Point {
+ public:
+ // Creates a (|height|, |width|) point. |height| and |width| must be finite.
+ Point(double height, double width);
+ Point(const Point& other);
+ Point& operator=(const Point& other);
+ ~Point();
+
+ // Accessors.
+ double height() const { return height_; }
+ double width() const { return width_; }
+ double AspectRatio() const { return width_ / height_; }
+
+ // Exact equality/inequality operators.
+ bool operator==(const Point& other) const;
+ bool operator!=(const Point& other) const;
+
+ // Returns true if both coordinates of this point and |other| are
+ // approximately equal.
+ bool IsApproximatelyEqualTo(const Point& other) const;
+
+ // Vector-style addition and subtraction operators.
+ Point operator+(const Point& other) const;
+ Point operator-(const Point& other) const;
+
+ // Returns the dot product between |p1| and |p2|.
+ static double Dot(const Point& p1, const Point& p2);
+
+ // Returns the square Euclidean distance between |p1| and |p2|.
+ static double SquareEuclideanDistance(const Point& p1, const Point& p2);
+
+ // Returns the point in the line segment determined by |s1| and |s2| that
+ // is closest to |p|.
+ static Point ClosestPointInSegment(const Point& p,
+ const Point& s1,
+ const Point& s2);
+
+ private:
+ double height_;
+ double width_;
+ };
+
+ // Creates a set with the maximum supported ranges for width, height and
+ // aspect ratio.
+ ResolutionSet();
+ ResolutionSet(int min_height,
+ int max_height,
+ int min_width,
+ int max_width,
+ double min_aspect_ratio,
+ double max_aspect_ratio);
+ ResolutionSet(const ResolutionSet& other);
+ ResolutionSet& operator=(const ResolutionSet& other);
+ ~ResolutionSet();
+
+ // Getters.
+ int min_height() const { return min_height_; }
+ int max_height() const { return max_height_; }
+ int min_width() const { return min_width_; }
+ int max_width() const { return max_width_; }
+ double min_aspect_ratio() const { return min_aspect_ratio_; }
+ double max_aspect_ratio() const { return max_aspect_ratio_; }
+
+ // Returns true if this set is empty.
+ bool IsEmpty() const;
+
+ // These functions return true if a particular variable causes the set to be
+ // empty.
+ bool IsHeightEmpty() const;
+ bool IsWidthEmpty() const;
+ bool IsAspectRatioEmpty() const;
+
+ // These functions return true if the given point is included in this set.
+ bool ContainsPoint(const Point& point) const;
+ bool ContainsPoint(int height, int width) const;
+
+ // Returns a new set with the intersection of |*this| and |other|.
+ ResolutionSet Intersection(const ResolutionSet& other) const;
+
+ // Returns a point in this (nonempty) set closest to the ideal values for the
+ // height, width and aspectRatio constraints in |constraint_set|.
+ // Note that this function ignores all the other data in |constraint_set|.
+ // Only the ideal height, width and aspect ratio are used, and from now on
+ // referred to as |ideal_height|, |ideal_width| and |ideal_aspect_ratio|
+ // respectively.
+ //
+ // * If all three ideal values are given, |ideal_aspect_ratio| is ignored and
+ // the point closest to (|ideal_height|, |ideal_width|) is returned.
+ // * If two ideal values are given, they are used to determine a single ideal
+ // point, which can be one of:
+ // - (|ideal_height|, |ideal_width|),
+ // - (|ideal_height|, |ideal_height|*|ideal_aspect_ratio|), or
+ // - (|ideal_width| / |ideal_aspect_ratio|, |ideal_width|).
+ // The point in the set closest to the ideal point is returned.
+ // * If a single ideal value is given, a point in the set closest to the line
+ // defined by the ideal value is returned. If there is more than one point
+ // closest to the ideal line, the following tie-breaker rules are used:
+ // - If |ideal_height| is provided, the point closest to
+ // (|ideal_height|, |ideal_height| * kDefaultAspectRatio).
+ // - If |ideal_width| is provided, the point closest to
+ // (|ideal_width| / kDefaultAspectRatio, |ideal_width|).
+ // - If |ideal_aspect_ratio| is provided, the point with largest area among
+ // the points closest to
+ // (kDefaultHeight, kDefaultHeight * aspect_ratio) and
+ // (kDefaultWidth / aspect_ratio, kDefaultWidth),
+ // where aspect_ratio is |ideal_aspect_ratio| if the ideal line intersects
+ // the set, and the closest aspect ratio to |ideal_aspect_ratio| among the
+ // points in the set if no point in the set has an aspect ratio equal to
+ // |ideal_aspect_ratio|.
+ // * If no ideal value is given, proceed as if only |ideal_aspect_ratio| was
+ // provided with a value of kDefaultAspectRatio.
+ //
+ // This is intended to support the implementation of the spec algorithm for
+ // selection of track settings, as defined in
+ // https://w3c.github.io/mediacapture-main/#dfn-selectsettings.
+ //
+ // The main difference between this algorithm and the spec is that when ideal
+ // values are provided, the spec mandates finding a point that minimizes the
+ // sum of custom relative distances for each provided ideal value, while this
+ // algorithm minimizes either the Euclidean distance (sum of square distances)
+ // on a height-width plane for the cases where two or three ideal values are
+ // provided, or the absolute distance for the case with one ideal value.
+ // Also, in the case with three ideal values, this algorithm ignores the
+ // distance to the ideal aspect ratio.
+ // In most cases the difference in the final result should be negligible.
+ // The reason to follow this approach is that optimization in the worst case
+ // is reduced to projection of a point on line segment, which is a simple
+ // operation that provides exact results. Using the distance function of the
+ // spec, which is not continuous, would require complex optimization methods
+ // that do not necessarily guarantee finding the real optimal value.
+ //
+ // This function has undefined behavior if this set is empty.
+ Point SelectClosestPointToIdeal(
+ const blink::WebMediaTrackConstraintSet& constraint_set) const;
+
+ // Utilities that return ResolutionSets constrained on a specific variable.
+ static ResolutionSet FromHeight(int min, int max);
+ static ResolutionSet FromExactHeight(int value);
+ static ResolutionSet FromWidth(int min, int max);
+ static ResolutionSet FromExactWidth(int value);
+ static ResolutionSet FromAspectRatio(double min, double max);
+ static ResolutionSet FromExactAspectRatio(double value);
+
+ // Returns a ResolutionCandidateSet initialized with |constraint_set|'s
+ // width, height and aspectRatio constraints.
+ static ResolutionSet FromConstraintSet(
+ const blink::WebMediaTrackConstraintSet& constraint_set);
+
+ private:
+ FRIEND_TEST_ALL_PREFIXES(MediaStreamConstraintsUtilSetsTest,
+ ResolutionVertices);
+ FRIEND_TEST_ALL_PREFIXES(MediaStreamConstraintsUtilSetsTest,
+ ResolutionPointSetClosestPoint);
+ FRIEND_TEST_ALL_PREFIXES(MediaStreamConstraintsUtilSetsTest,
+ ResolutionLineSetClosestPoint);
+ FRIEND_TEST_ALL_PREFIXES(MediaStreamConstraintsUtilSetsTest,
+ ResolutionGeneralSetClosestPoint);
+ FRIEND_TEST_ALL_PREFIXES(MediaStreamConstraintsUtilSetsTest,
+ ResolutionIdealOutsideSinglePoint);
+
+ // Implements SelectClosestPointToIdeal() for the case when only the ideal
+ // aspect ratio is provided.
+ Point SelectClosestPointToIdealAspectRatio(double ideal_aspect_ratio) const;
+
+ // Returns the closest point in this set to |point|. If |point| is included in
+ // this set, Point is returned. If this set is empty, behavior is undefined.
+ Point ClosestPointTo(const Point& point) const;
+
+ // Returns the vertices of the set that have the property accessed
+ // by |accessor| closest to |value|. The returned vector always has one or two
+ // elements. Behavior is undefined if the set is empty.
+ std::vector<Point> GetClosestVertices(double (Point::*accessor)() const,
+ double value) const;
+
+ // Returns a list of the vertices defined by the constraints on a height-width
+ // Cartesian plane.
+ // If the list is empty, the set is empty.
+ // If the list contains a single point, the set contains a single point.
+ // If the list contains two points, the set is composed of points on a line
+ // segment.
+ // If the list contains three to six points, they are the vertices of a
+ // convex polygon containing all valid points in the set. Each pair of
+ // consecutive vertices (modulo the size of the list) corresponds to a side of
+ // the polygon, with the vertices given in counterclockwise order.
+ // The list cannot contain more than six points.
+ std::vector<Point> ComputeVertices() const;
+
+ // Adds |point| to |vertices| if |point| is included in this candidate set.
+ void TryAddVertex(std::vector<ResolutionSet::Point>* vertices,
+ const ResolutionSet::Point& point) const;
+
+ int min_height_;
+ int max_height_;
+ int min_width_;
+ int max_width_;
+ double min_aspect_ratio_;
+ double max_aspect_ratio_;
+};
+
+// Scalar multiplication for Points.
+ResolutionSet::Point CONTENT_EXPORT operator*(double d,
+ const ResolutionSet::Point& p);
+
+} // namespace content
+
+#endif // CONTENT_RENDERER_MEDIA_MEDIA_STREAM_CONSTRAINTS_UTIL_SETS_H_

Powered by Google App Engine
This is Rietveld 408576698