OLD | NEW |
(Empty) | |
| 1 // Copyright 2017 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "content/renderer/media/media_stream_constraints_util_sets.h" |
| 6 |
| 7 #include <cmath> |
| 8 |
| 9 #include "content/renderer/media/media_stream_constraints_util.h" |
| 10 #include "content/renderer/media/media_stream_video_source.h" |
| 11 #include "third_party/WebKit/public/platform/WebMediaConstraints.h" |
| 12 |
| 13 namespace content { |
| 14 |
| 15 using Point = ResolutionSet::Point; |
| 16 |
| 17 namespace { |
| 18 |
| 19 constexpr double kTolerance = 1e-5; |
| 20 |
| 21 constexpr int kDefaultHeight = MediaStreamVideoSource::kDefaultHeight; |
| 22 constexpr int kDefaultWidth = MediaStreamVideoSource::kDefaultWidth; |
| 23 constexpr double kDefaultAspectRatio = |
| 24 MediaStreamVideoSource::kDefaultAspectRatio; |
| 25 |
| 26 // Not perfect, but good enough for this application. |
| 27 bool AreApproximatelyEqual(double d1, double d2) { |
| 28 if (std::fabs((d1 - d2)) <= kTolerance) |
| 29 return true; |
| 30 |
| 31 return d1 == d2 || (std::fabs((d1 - d2) / d1) <= kTolerance && |
| 32 std::fabs((d1 - d2) / d2) <= kTolerance); |
| 33 } |
| 34 |
| 35 bool IsLess(double d1, double d2) { |
| 36 return d1 < d2 && !AreApproximatelyEqual(d1, d2); |
| 37 } |
| 38 |
| 39 bool IsLessOrEqual(double d1, double d2) { |
| 40 return d1 < d2 || AreApproximatelyEqual(d1, d2); |
| 41 } |
| 42 |
| 43 bool IsGreater(double d1, double d2) { |
| 44 return d1 > d2 && !AreApproximatelyEqual(d1, d2); |
| 45 } |
| 46 |
| 47 bool IsGreaterOrEqual(double d1, double d2) { |
| 48 return d1 > d2 || AreApproximatelyEqual(d1, d2); |
| 49 } |
| 50 |
| 51 int ToValidDimension(long dimension) { |
| 52 if (dimension > ResolutionSet::kMaxDimension) |
| 53 return ResolutionSet::kMaxDimension; |
| 54 if (dimension < 0) |
| 55 return 0; |
| 56 |
| 57 return static_cast<int>(dimension); |
| 58 } |
| 59 |
| 60 int MinDimensionFromConstraint(const blink::LongConstraint& constraint) { |
| 61 if (!ConstraintHasMin(constraint)) |
| 62 return 0; |
| 63 |
| 64 return ToValidDimension(ConstraintMin(constraint)); |
| 65 } |
| 66 |
| 67 int MaxDimensionFromConstraint(const blink::LongConstraint& constraint) { |
| 68 if (!ConstraintHasMax(constraint)) |
| 69 return ResolutionSet::kMaxDimension; |
| 70 |
| 71 return ToValidDimension(ConstraintMax(constraint)); |
| 72 } |
| 73 |
| 74 double ToValidAspectRatio(double aspect_ratio) { |
| 75 return aspect_ratio < 0.0 ? 0.0 : aspect_ratio; |
| 76 } |
| 77 |
| 78 double MinAspectRatioFromConstraint(const blink::DoubleConstraint& constraint) { |
| 79 if (!ConstraintHasMin(constraint)) |
| 80 return 0.0; |
| 81 |
| 82 return ToValidAspectRatio(ConstraintMin(constraint)); |
| 83 } |
| 84 |
| 85 double MaxAspectRatioFromConstraint(const blink::DoubleConstraint& constraint) { |
| 86 if (!ConstraintHasMax(constraint)) |
| 87 return HUGE_VAL; |
| 88 |
| 89 return ToValidAspectRatio(ConstraintMax(constraint)); |
| 90 } |
| 91 |
| 92 bool IsPositiveFiniteAspectRatio(double aspect_ratio) { |
| 93 return std::isfinite(aspect_ratio) && aspect_ratio > 0.0; |
| 94 } |
| 95 |
| 96 // If |vertices| has a single element, return |vertices[0]|. |
| 97 // If |vertices| has two elements, returns the point in the segment defined by |
| 98 // |vertices| that is closest to |point|. |
| 99 // |vertices| must have 1 or 2 elements. Otherwise, behavior is undefined. |
| 100 // This function is called when |point| has already been determined to be |
| 101 // outside a polygon and |vertices| is the vertex or side closest to |point|. |
| 102 Point GetClosestPointToVertexOrSide(const std::vector<Point> vertices, |
| 103 const Point& point) { |
| 104 DCHECK(!vertices.empty()); |
| 105 // If only a single vertex closest to |point|, return that vertex. |
| 106 if (vertices.size() == 1U) |
| 107 return vertices[0]; |
| 108 |
| 109 DCHECK_EQ(vertices.size(), 2U); |
| 110 // If a polygon side is closest to the ideal height, return the |
| 111 // point with aspect ratio closest to the default. |
| 112 return Point::ClosestPointInSegment(point, vertices[0], vertices[1]); |
| 113 } |
| 114 |
| 115 Point SelectPointWithLargestArea(const Point& p1, const Point& p2) { |
| 116 return p1.width() * p1.height() > p2.width() * p2.height() ? p1 : p2; |
| 117 } |
| 118 |
| 119 } // namespace |
| 120 |
| 121 Point::Point(double height, double width) : height_(height), width_(width) { |
| 122 DCHECK(!std::isnan(height_)); |
| 123 DCHECK(!std::isnan(width_)); |
| 124 } |
| 125 Point::Point(const Point& other) = default; |
| 126 Point& Point::operator=(const Point& other) = default; |
| 127 Point::~Point() = default; |
| 128 |
| 129 bool Point::operator==(const Point& other) const { |
| 130 return height_ == other.height_ && width_ == other.width_; |
| 131 } |
| 132 |
| 133 bool Point::operator!=(const Point& other) const { |
| 134 return !(*this == other); |
| 135 } |
| 136 |
| 137 bool Point::IsApproximatelyEqualTo(const Point& other) const { |
| 138 return AreApproximatelyEqual(height_, other.height_) && |
| 139 AreApproximatelyEqual(width_, other.width_); |
| 140 } |
| 141 |
| 142 Point Point::operator+(const Point& other) const { |
| 143 return Point(height_ + other.height_, width_ + other.width_); |
| 144 } |
| 145 |
| 146 Point Point::operator-(const Point& other) const { |
| 147 return Point(height_ - other.height_, width_ - other.width_); |
| 148 } |
| 149 |
| 150 Point operator*(double d, const Point& p) { |
| 151 return Point(d * p.height(), d * p.width()); |
| 152 } |
| 153 |
| 154 // Returns the dot product between |p1| and |p2|. |
| 155 // static |
| 156 double Point::Dot(const Point& p1, const Point& p2) { |
| 157 return p1.height_ * p2.height_ + p1.width_ * p2.width_; |
| 158 } |
| 159 |
| 160 // static |
| 161 double Point::SquareEuclideanDistance(const Point& p1, const Point& p2) { |
| 162 Point diff = p1 - p2; |
| 163 return Dot(diff, diff); |
| 164 } |
| 165 |
| 166 // static |
| 167 Point Point::ClosestPointInSegment(const Point& p, |
| 168 const Point& s1, |
| 169 const Point& s2) { |
| 170 // If |s1| and |s2| are the same, it is not really a segment. The closest |
| 171 // point to |p| is |s1|=|s2|. |
| 172 if (s1 == s2) |
| 173 return s1; |
| 174 |
| 175 // Translate coordinates to a system where the origin is |s1|. |
| 176 Point p_trans = p - s1; |
| 177 Point s2_trans = s2 - s1; |
| 178 |
| 179 // On this system, we are interested in the projection of |p_trans| on |
| 180 // |s2_trans|. The projection is m * |s2_trans|, where |
| 181 // m = Dot(|s2_trans|, |p_trans|) / Dot(|s2_trans|, |s2_trans|). |
| 182 // If 0 <= m <= 1, the projection falls within the segment, and the closest |
| 183 // point is the projection itself. |
| 184 // If m < 0, the closest point is S1. |
| 185 // If m > 1, the closest point is S2. |
| 186 double m = Dot(s2_trans, p_trans) / Dot(s2_trans, s2_trans); |
| 187 if (m < 0) |
| 188 return s1; |
| 189 else if (m > 1) |
| 190 return s2; |
| 191 |
| 192 // Return the projection in the original coordinate system. |
| 193 return s1 + m * s2_trans; |
| 194 } |
| 195 |
| 196 ResolutionSet::ResolutionSet(int min_height, |
| 197 int max_height, |
| 198 int min_width, |
| 199 int max_width, |
| 200 double min_aspect_ratio, |
| 201 double max_aspect_ratio) |
| 202 : min_height_(min_height), |
| 203 max_height_(max_height), |
| 204 min_width_(min_width), |
| 205 max_width_(max_width), |
| 206 min_aspect_ratio_(min_aspect_ratio), |
| 207 max_aspect_ratio_(max_aspect_ratio) { |
| 208 DCHECK_GE(min_height_, 0); |
| 209 DCHECK_GE(max_height_, 0); |
| 210 DCHECK_LE(max_height_, kMaxDimension); |
| 211 DCHECK_GE(min_width_, 0); |
| 212 DCHECK_GE(max_width_, 0); |
| 213 DCHECK_LE(max_width_, kMaxDimension); |
| 214 DCHECK_GE(min_aspect_ratio_, 0.0); |
| 215 DCHECK_GE(max_aspect_ratio_, 0.0); |
| 216 DCHECK(!std::isnan(min_aspect_ratio_)); |
| 217 DCHECK(!std::isnan(max_aspect_ratio_)); |
| 218 } |
| 219 |
| 220 ResolutionSet::ResolutionSet() |
| 221 : ResolutionSet(0, kMaxDimension, 0, kMaxDimension, 0.0, HUGE_VAL) {} |
| 222 |
| 223 ResolutionSet::ResolutionSet(const ResolutionSet& other) = default; |
| 224 ResolutionSet::~ResolutionSet() = default; |
| 225 ResolutionSet& ResolutionSet::operator=(const ResolutionSet& other) = default; |
| 226 |
| 227 bool ResolutionSet::IsHeightEmpty() const { |
| 228 return min_height_ > max_height_ || min_height_ >= kMaxDimension || |
| 229 max_height_ <= 0; |
| 230 } |
| 231 |
| 232 bool ResolutionSet::IsWidthEmpty() const { |
| 233 return min_width_ > max_width_ || min_width_ >= kMaxDimension || |
| 234 max_width_ <= 0; |
| 235 } |
| 236 |
| 237 bool ResolutionSet::IsAspectRatioEmpty() const { |
| 238 double max_resolution_aspect_ratio = |
| 239 static_cast<double>(max_width_) / static_cast<double>(min_height_); |
| 240 double min_resolution_aspect_ratio = |
| 241 static_cast<double>(min_width_) / static_cast<double>(max_height_); |
| 242 |
| 243 return IsGreater(min_aspect_ratio_, max_aspect_ratio_) || |
| 244 IsLess(max_resolution_aspect_ratio, min_aspect_ratio_) || |
| 245 IsGreater(min_resolution_aspect_ratio, max_aspect_ratio_) || |
| 246 !std::isfinite(min_aspect_ratio_) || max_aspect_ratio_ <= 0.0; |
| 247 } |
| 248 |
| 249 bool ResolutionSet::IsEmpty() const { |
| 250 return IsHeightEmpty() || IsWidthEmpty() || IsAspectRatioEmpty(); |
| 251 } |
| 252 |
| 253 bool ResolutionSet::ContainsPoint(const Point& point) const { |
| 254 double ratio = point.AspectRatio(); |
| 255 return point.height() >= min_height_ && point.height() <= max_height_ && |
| 256 point.width() >= min_width_ && point.width() <= max_width_ && |
| 257 ((IsGreaterOrEqual(ratio, min_aspect_ratio_) && |
| 258 IsLessOrEqual(ratio, max_aspect_ratio_)) || |
| 259 // (0.0, 0.0) is always included in the aspect-ratio range. |
| 260 (point.width() == 0.0 && point.height() == 0.0)); |
| 261 } |
| 262 |
| 263 bool ResolutionSet::ContainsPoint(int height, int width) const { |
| 264 return ContainsPoint(Point(height, width)); |
| 265 } |
| 266 |
| 267 ResolutionSet ResolutionSet::Intersection(const ResolutionSet& other) const { |
| 268 return ResolutionSet(std::max(min_height_, other.min_height_), |
| 269 std::min(max_height_, other.max_height_), |
| 270 std::max(min_width_, other.min_width_), |
| 271 std::min(max_width_, other.max_width_), |
| 272 std::max(min_aspect_ratio_, other.min_aspect_ratio_), |
| 273 std::min(max_aspect_ratio_, other.max_aspect_ratio_)); |
| 274 } |
| 275 |
| 276 Point ResolutionSet::SelectClosestPointToIdeal( |
| 277 const blink::WebMediaTrackConstraintSet& constraint_set) const { |
| 278 DCHECK(!IsEmpty()); |
| 279 int num_ideals = 0; |
| 280 if (constraint_set.height.hasIdeal()) |
| 281 ++num_ideals; |
| 282 if (constraint_set.width.hasIdeal()) |
| 283 ++num_ideals; |
| 284 if (constraint_set.aspectRatio.hasIdeal()) |
| 285 ++num_ideals; |
| 286 |
| 287 switch (num_ideals) { |
| 288 case 0: |
| 289 return SelectClosestPointToIdealAspectRatio(kDefaultAspectRatio); |
| 290 |
| 291 case 1: |
| 292 // This case requires a point closest to a line. |
| 293 // In all variants, if the ideal line intersects the polygon, select the |
| 294 // point in the intersection that is closest to preserving the default |
| 295 // aspect ratio or a default dimension. |
| 296 // If the ideal line is outside the polygon, there is either a single |
| 297 // vertex or a polygon side closest to the ideal line. If a single vertex, |
| 298 // select that vertex. If a polygon side, select the point on that side |
| 299 // that is closest to preserving the default aspect ratio or a default |
| 300 // dimension. |
| 301 if (constraint_set.height.hasIdeal()) { |
| 302 int ideal_height = ToValidDimension(constraint_set.height.ideal()); |
| 303 ResolutionSet ideal_line = ResolutionSet::FromExactHeight(ideal_height); |
| 304 ResolutionSet intersection = Intersection(ideal_line); |
| 305 if (!intersection.IsEmpty()) { |
| 306 return intersection.ClosestPointTo( |
| 307 Point(ideal_height, ideal_height * kDefaultAspectRatio)); |
| 308 } |
| 309 std::vector<Point> closest_vertices = |
| 310 GetClosestVertices(&Point::height, ideal_height); |
| 311 Point ideal_point(closest_vertices[0].height(), |
| 312 closest_vertices[0].height() * kDefaultAspectRatio); |
| 313 return GetClosestPointToVertexOrSide(closest_vertices, ideal_point); |
| 314 } else if (constraint_set.width.hasIdeal()) { |
| 315 int ideal_width = ToValidDimension(constraint_set.width.ideal()); |
| 316 ResolutionSet ideal_line = ResolutionSet::FromExactWidth(ideal_width); |
| 317 ResolutionSet intersection = Intersection(ideal_line); |
| 318 if (!intersection.IsEmpty()) { |
| 319 return intersection.ClosestPointTo( |
| 320 Point(ideal_width / kDefaultAspectRatio, ideal_width)); |
| 321 } |
| 322 std::vector<Point> closest_vertices = |
| 323 GetClosestVertices(&Point::width, ideal_width); |
| 324 Point ideal_point(closest_vertices[0].width() / kDefaultAspectRatio, |
| 325 closest_vertices[0].width()); |
| 326 return GetClosestPointToVertexOrSide(closest_vertices, ideal_point); |
| 327 } else { |
| 328 DCHECK(constraint_set.aspectRatio.hasIdeal()); |
| 329 double ideal_aspect_ratio = |
| 330 ToValidAspectRatio(constraint_set.aspectRatio.ideal()); |
| 331 return SelectClosestPointToIdealAspectRatio(ideal_aspect_ratio); |
| 332 } |
| 333 |
| 334 case 2: |
| 335 case 3: |
| 336 double ideal_height; |
| 337 double ideal_width; |
| 338 if (constraint_set.height.hasIdeal()) { |
| 339 ideal_height = ToValidDimension(constraint_set.height.ideal()); |
| 340 ideal_width = |
| 341 constraint_set.width.hasIdeal() |
| 342 ? ToValidDimension(constraint_set.width.ideal()) |
| 343 : ideal_height * |
| 344 ToValidAspectRatio(constraint_set.aspectRatio.ideal()); |
| 345 } else { |
| 346 DCHECK(constraint_set.width.hasIdeal()); |
| 347 DCHECK(constraint_set.aspectRatio.hasIdeal()); |
| 348 ideal_width = ToValidDimension(constraint_set.width.ideal()); |
| 349 ideal_height = ideal_width / |
| 350 ToValidAspectRatio(constraint_set.aspectRatio.ideal()); |
| 351 } |
| 352 return ClosestPointTo(Point(ideal_height, ideal_width)); |
| 353 |
| 354 default: |
| 355 NOTREACHED(); |
| 356 } |
| 357 NOTREACHED(); |
| 358 return Point(-1, -1); |
| 359 } |
| 360 |
| 361 Point ResolutionSet::SelectClosestPointToIdealAspectRatio( |
| 362 double ideal_aspect_ratio) const { |
| 363 ResolutionSet intersection = |
| 364 Intersection(ResolutionSet::FromExactAspectRatio(ideal_aspect_ratio)); |
| 365 if (!intersection.IsEmpty()) { |
| 366 Point default_height_point(kDefaultHeight, |
| 367 kDefaultHeight * ideal_aspect_ratio); |
| 368 Point default_width_point(kDefaultWidth / ideal_aspect_ratio, |
| 369 kDefaultWidth); |
| 370 return SelectPointWithLargestArea( |
| 371 intersection.ClosestPointTo(default_height_point), |
| 372 intersection.ClosestPointTo(default_width_point)); |
| 373 } |
| 374 std::vector<Point> closest_vertices = |
| 375 GetClosestVertices(&Point::AspectRatio, ideal_aspect_ratio); |
| 376 double actual_aspect_ratio = closest_vertices[0].AspectRatio(); |
| 377 Point default_height_point(kDefaultHeight, |
| 378 kDefaultHeight * actual_aspect_ratio); |
| 379 Point default_width_point(kDefaultWidth / actual_aspect_ratio, kDefaultWidth); |
| 380 return SelectPointWithLargestArea( |
| 381 GetClosestPointToVertexOrSide(closest_vertices, default_height_point), |
| 382 GetClosestPointToVertexOrSide(closest_vertices, default_width_point)); |
| 383 } |
| 384 |
| 385 Point ResolutionSet::ClosestPointTo(const Point& point) const { |
| 386 DCHECK(std::numeric_limits<double>::has_infinity); |
| 387 |
| 388 if (ContainsPoint(point)) |
| 389 return point; |
| 390 |
| 391 auto vertices = ComputeVertices(); |
| 392 DCHECK_GE(vertices.size(), 1U); |
| 393 Point best_candidate(0, 0); |
| 394 double best_distance = HUGE_VAL; |
| 395 for (size_t i = 0; i < vertices.size(); ++i) { |
| 396 Point candidate = Point::ClosestPointInSegment( |
| 397 point, vertices[i], vertices[(i + 1) % vertices.size()]); |
| 398 double distance = Point::SquareEuclideanDistance(point, candidate); |
| 399 if (distance < best_distance) { |
| 400 best_candidate = candidate; |
| 401 best_distance = distance; |
| 402 } |
| 403 } |
| 404 |
| 405 DCHECK(std::isfinite(best_distance)); |
| 406 return best_candidate; |
| 407 } |
| 408 |
| 409 std::vector<Point> ResolutionSet::GetClosestVertices(double (Point::*accessor)() |
| 410 const, |
| 411 double value) const { |
| 412 DCHECK(!IsEmpty()); |
| 413 std::vector<Point> vertices = ComputeVertices(); |
| 414 std::vector<Point> closest_vertices; |
| 415 double best_diff = HUGE_VAL; |
| 416 for (const auto& vertex : vertices) { |
| 417 double diff; |
| 418 if (std::isfinite(value)) |
| 419 diff = std::fabs((vertex.*accessor)() - value); |
| 420 else |
| 421 diff = (vertex.*accessor)() == value ? 0.0 : HUGE_VAL; |
| 422 if (diff <= best_diff) { |
| 423 if (diff < best_diff) { |
| 424 best_diff = diff; |
| 425 closest_vertices.clear(); |
| 426 } |
| 427 closest_vertices.push_back(vertex); |
| 428 } |
| 429 } |
| 430 DCHECK(!closest_vertices.empty()); |
| 431 DCHECK_LE(closest_vertices.size(), 2U); |
| 432 return closest_vertices; |
| 433 } |
| 434 |
| 435 // static |
| 436 ResolutionSet ResolutionSet::FromHeight(int min, int max) { |
| 437 return ResolutionSet(min, max, 0, kMaxDimension, 0.0, HUGE_VAL); |
| 438 } |
| 439 |
| 440 // static |
| 441 ResolutionSet ResolutionSet::FromExactHeight(int value) { |
| 442 return ResolutionSet(value, value, 0, kMaxDimension, 0.0, HUGE_VAL); |
| 443 } |
| 444 |
| 445 // static |
| 446 ResolutionSet ResolutionSet::FromWidth(int min, int max) { |
| 447 return ResolutionSet(0, kMaxDimension, min, max, 0.0, HUGE_VAL); |
| 448 } |
| 449 |
| 450 // static |
| 451 ResolutionSet ResolutionSet::FromExactWidth(int value) { |
| 452 return ResolutionSet(0, kMaxDimension, value, value, 0.0, HUGE_VAL); |
| 453 } |
| 454 |
| 455 // static |
| 456 ResolutionSet ResolutionSet::FromAspectRatio(double min, double max) { |
| 457 return ResolutionSet(0, kMaxDimension, 0, kMaxDimension, min, max); |
| 458 } |
| 459 |
| 460 // static |
| 461 ResolutionSet ResolutionSet::FromExactAspectRatio(double value) { |
| 462 return ResolutionSet(0, kMaxDimension, 0, kMaxDimension, value, value); |
| 463 } |
| 464 |
| 465 std::vector<Point> ResolutionSet::ComputeVertices() const { |
| 466 std::vector<Point> vertices; |
| 467 // Add vertices in counterclockwise order |
| 468 // Start with (min_height, min_width) and continue along min_width. |
| 469 TryAddVertex(&vertices, Point(min_height_, min_width_)); |
| 470 if (IsPositiveFiniteAspectRatio(max_aspect_ratio_)) |
| 471 TryAddVertex(&vertices, Point(min_width_ / max_aspect_ratio_, min_width_)); |
| 472 if (IsPositiveFiniteAspectRatio(min_aspect_ratio_)) |
| 473 TryAddVertex(&vertices, Point(min_width_ / min_aspect_ratio_, min_width_)); |
| 474 TryAddVertex(&vertices, Point(max_height_, min_width_)); |
| 475 // Continue along max_height. |
| 476 if (IsPositiveFiniteAspectRatio(min_aspect_ratio_)) { |
| 477 TryAddVertex(&vertices, |
| 478 Point(max_height_, max_height_ * min_aspect_ratio_)); |
| 479 } |
| 480 if (IsPositiveFiniteAspectRatio(max_aspect_ratio_)) |
| 481 TryAddVertex(&vertices, |
| 482 Point(max_height_, max_height_ * max_aspect_ratio_)); |
| 483 TryAddVertex(&vertices, Point(max_height_, max_width_)); |
| 484 // Continue along max_width. |
| 485 if (IsPositiveFiniteAspectRatio(min_aspect_ratio_)) |
| 486 TryAddVertex(&vertices, Point(max_width_ / min_aspect_ratio_, max_width_)); |
| 487 if (IsPositiveFiniteAspectRatio(max_aspect_ratio_)) |
| 488 TryAddVertex(&vertices, Point(max_width_ / max_aspect_ratio_, max_width_)); |
| 489 TryAddVertex(&vertices, Point(min_height_, max_width_)); |
| 490 // Finish along min_height. |
| 491 if (IsPositiveFiniteAspectRatio(max_aspect_ratio_)) { |
| 492 TryAddVertex(&vertices, |
| 493 Point(min_height_, min_height_ * max_aspect_ratio_)); |
| 494 } |
| 495 if (IsPositiveFiniteAspectRatio(min_aspect_ratio_)) { |
| 496 TryAddVertex(&vertices, |
| 497 Point(min_height_, min_height_ * min_aspect_ratio_)); |
| 498 } |
| 499 |
| 500 DCHECK_LE(vertices.size(), 6U); |
| 501 return vertices; |
| 502 } |
| 503 |
| 504 void ResolutionSet::TryAddVertex(std::vector<Point>* vertices, |
| 505 const Point& point) const { |
| 506 if (!ContainsPoint(point)) |
| 507 return; |
| 508 |
| 509 // Add the point to the |vertices| if not already added. |
| 510 // This is to prevent duplicates in case an aspect ratio intersects a width |
| 511 // or height right on a vertex. |
| 512 if (vertices->empty() || |
| 513 (*(vertices->end() - 1) != point && *vertices->begin() != point)) { |
| 514 vertices->push_back(point); |
| 515 } |
| 516 } |
| 517 |
| 518 ResolutionSet ResolutionSet::FromConstraintSet( |
| 519 const blink::WebMediaTrackConstraintSet& constraint_set) { |
| 520 return ResolutionSet( |
| 521 MinDimensionFromConstraint(constraint_set.height), |
| 522 MaxDimensionFromConstraint(constraint_set.height), |
| 523 MinDimensionFromConstraint(constraint_set.width), |
| 524 MaxDimensionFromConstraint(constraint_set.width), |
| 525 MinAspectRatioFromConstraint(constraint_set.aspectRatio), |
| 526 MaxAspectRatioFromConstraint(constraint_set.aspectRatio)); |
| 527 } |
| 528 |
| 529 } // namespace content |
OLD | NEW |