Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1128)

Unified Diff: third_party/zlib/contrib/arm/chunkcopy.h

Issue 2722063002: zlib: inflate using wider loads and stores
Patch Set: zlib: inflate using wider loads and stores Created 3 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « third_party/zlib/BUILD.gn ('k') | third_party/zlib/contrib/arm/inffast.c » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: third_party/zlib/contrib/arm/chunkcopy.h
diff --git a/third_party/zlib/contrib/arm/chunkcopy.h b/third_party/zlib/contrib/arm/chunkcopy.h
new file mode 100644
index 0000000000000000000000000000000000000000..2d6fd6f996a98622dcb21d573099ac97b9a78c8f
--- /dev/null
+++ b/third_party/zlib/contrib/arm/chunkcopy.h
@@ -0,0 +1,279 @@
+/* chunkcopy.h -- fast copies and sets
+ * Copyright (C) 2017 ARM, Inc.
+ * For conditions of distribution and use, see copyright notice in zlib.h
+ */
+
+#ifndef CHUNKCOPY_H
+#define CHUNKCOPY_H
+
+#include "zutil.h"
+#include <arm_neon.h>
+
+#if __STDC_VERSION__ >= 199901L
+#define Z_RESTRICT restrict
+#else
+#define Z_RESTRICT
+#endif
+
+typedef uint8x16_t chunkcopy_chunk_t;
+#define CHUNKCOPY_CHUNK_SIZE sizeof(chunkcopy_chunk_t)
+
+/*
+ Ask the compiler to perform a wide, unaligned load with an machine
+ instruction appropriate for the chunkcopy_chunk_t type.
+ */
+static inline chunkcopy_chunk_t loadchunk(const unsigned char FAR *s) {
+ chunkcopy_chunk_t c;
+ __builtin_memcpy(&c, s, sizeof(c));
+ return c;
+}
+
+/*
+ Ask the compiler to perform a wide, unaligned store with an machine
+ instruction appropriate for the chunkcopy_chunk_t type.
+ */
+static inline void storechunk(unsigned char FAR *d, chunkcopy_chunk_t c) {
+ __builtin_memcpy(d, &c, sizeof(c));
+}
+
+/*
+ Perform a memcpy-like operation, but assume that length is non-zero and that
+ it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE bytes of output even if
+ the length is shorter than this.
+
+ It also guarantees that it will properly unroll the data if the distance
+ between `out` and `from` is at least CHUNKCOPY_CHUNK_SIZE, which we rely on
+ in chunkcopy_relaxed().
+
+ Aside from better memory bus utilisation, this means that short copies
+ (CHUNKCOPY_CHUNK_SIZE bytes or fewer) will fall straight through the loop
+ without iteration, which will hopefully make the branch prediction more
+ reliable.
+ */
+static inline unsigned char FAR *chunkcopy_core(unsigned char FAR *out,
+ const unsigned char FAR *from,
+ unsigned len) {
+ int bump = (--len % CHUNKCOPY_CHUNK_SIZE) + 1;
+ storechunk(out, loadchunk(from));
+ out += bump;
+ from += bump;
+ len /= CHUNKCOPY_CHUNK_SIZE;
+ while (len-- > 0) {
+ storechunk(out, loadchunk(from));
+ out += CHUNKCOPY_CHUNK_SIZE;
+ from += CHUNKCOPY_CHUNK_SIZE;
+ }
+ return out;
+}
+
+/*
+ Like chunkcopy_core, but avoid writing beyond of legal output.
+
+ Accepts an additional pointer to the end of safe output. A generic safe
+ copy would use (out + len), but it's normally the case that the end of the
+ output buffer is beyond the end of the current copy, and this can still be
+ exploited.
+ */
+static inline unsigned char FAR *chunkcopy_core_safe(unsigned char FAR *out,
+ const unsigned char FAR * from,
+ unsigned len,
+ unsigned char FAR *limit) {
+ Assert(out + len <= limit, "chunk copy exceeds safety limit");
+ if (limit - out < CHUNKCOPY_CHUNK_SIZE) {
+ const unsigned char FAR * Z_RESTRICT rfrom = from;
+ if (len & 8) { __builtin_memcpy(out, rfrom, 8); out += 8; rfrom += 8; }
+ if (len & 4) { __builtin_memcpy(out, rfrom, 4); out += 4; rfrom += 4; }
+ if (len & 2) { __builtin_memcpy(out, rfrom, 2); out += 2; rfrom += 2; }
+ if (len & 1) { *out++ = *rfrom++; }
+ return out;
+ }
+ return chunkcopy_core(out, from, len);
+}
+
+/*
+ Perform short copies until distance can be rewritten as being at least
+ CHUNKCOPY_CHUNK_SIZE.
+
+ This assumes that it's OK to overwrite at least the first
+ 2*CHUNKCOPY_CHUNK_SIZE bytes of output even if the copy is shorter than
+ this. This assumption holds within inflate_fast() which starts every
+ iteration with at least 258 bytes of output space available (258 being the
+ maximum length output from a single token; see inffast.c).
+ */
+static inline unsigned char FAR *chunkunroll_relaxed(unsigned char FAR *out,
+ unsigned FAR *dist,
+ unsigned FAR *len) {
+ const unsigned char FAR *from = out - *dist;
+ while (*dist < *len && *dist < CHUNKCOPY_CHUNK_SIZE) {
+ storechunk(out, loadchunk(from));
+ out += *dist;
+ *len -= *dist;
+ *dist += *dist;
+ }
+ return out;
+}
+
+
+static inline uint8x16_t chunkset_vld1q_dup_u8x8(const unsigned char FAR * Z_RESTRICT from) {
+#if defined(__clang__) || defined(__aarch64__)
+ return vreinterpretq_u8_u64(vld1q_dup_u64((void *)from));
+#else
+ /* 32-bit GCC uses an alignment hint for vld1q_dup_u64, even when given a
+ * void pointer, so here's an alternate implementation.
+ */
+ uint8x8_t h = vld1_u8(from);
+ return vcombine_u8(h, h);
+#endif
+}
+
+/*
+ Perform an overlapping copy which behaves as a memset() operation, but
+ supporting periods other than one, and assume that length is non-zero and
+ that it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE*3 bytes of output
+ even if the length is shorter than this.
+ */
+static inline unsigned char FAR *chunkset_core(unsigned char FAR *out,
+ unsigned period,
+ unsigned len) {
+ uint8x16_t f;
+ int bump = ((len - 1) % sizeof(f)) + 1;
+
+ switch (period) {
+ case 1:
+ f = vld1q_dup_u8(out - 1);
+ vst1q_u8(out, f);
+ out += bump;
+ len -= bump;
+ while (len > 0) {
+ vst1q_u8(out, f);
+ out += sizeof(f);
+ len -= sizeof(f);
+ }
+ return out;
+ case 2:
+ f = vreinterpretq_u8_u16(vld1q_dup_u16((void *)(out - 2)));
+ vst1q_u8(out, f);
+ out += bump;
+ len -= bump;
+ if (len > 0) {
+ f = vreinterpretq_u8_u16(vld1q_dup_u16((void *)(out - 2)));
+ do {
+ vst1q_u8(out, f);
+ out += sizeof(f);
+ len -= sizeof(f);
+ } while (len > 0);
+ }
+ return out;
+ case 4:
+ f = vreinterpretq_u8_u32(vld1q_dup_u32((void *)(out - 4)));
+ vst1q_u8(out, f);
+ out += bump;
+ len -= bump;
+ if (len > 0) {
+ f = vreinterpretq_u8_u32(vld1q_dup_u32((void *)(out - 4)));
+ do {
+ vst1q_u8(out, f);
+ out += sizeof(f);
+ len -= sizeof(f);
+ } while (len > 0);
+ }
+ return out;
+ case 8:
+ f = chunkset_vld1q_dup_u8x8(out - 8);
+ vst1q_u8(out, f);
+ out += bump;
+ len -= bump;
+ if (len > 0) {
+ f = chunkset_vld1q_dup_u8x8(out - 8);
+ do {
+ vst1q_u8(out, f);
+ out += sizeof(f);
+ len -= sizeof(f);
+ } while (len > 0);
+ }
+ return out;
+ }
+ out = chunkunroll_relaxed(out, &period, &len);
+ return chunkcopy_core(out, out - period, len);
+}
+
+/*
+ Perform a memcpy-like operation, but assume that length is non-zero and that
+ it's OK to overwrite at least CHUNKCOPY_CHUNK_SIZE bytes of output even if
+ the length is shorter than this.
+
+ Unlike chunkcopy_core() above, no guarantee is made regarding the behaviour
+ of overlapping buffers, regardless of the distance between the pointers.
+ This is reflected in the `restrict`-qualified pointers, allowing the
+ compiler to reorder loads and stores.
+ */
+static inline unsigned char FAR *chunkcopy_relaxed(unsigned char FAR * Z_RESTRICT out,
+ const unsigned char FAR * Z_RESTRICT from,
+ unsigned len) {
+ return chunkcopy_core(out, from, len);
+}
+
+/*
+ Like chunkcopy_relaxed, but avoid writing beyond of legal output.
+
+ Unlike chunkcopy_core_safe() above, no guarantee is made regarding the
+ behaviour of overlapping buffers, regardless of the distance between the
+ pointers. This is reflected in the `restrict`-qualified pointers, allowing
+ the compiler to reorder loads and stores.
+
+ Accepts an additional pointer to the end of safe output. A generic safe
+ copy would use (out + len), but it's normally the case that the end of the
+ output buffer is beyond the end of the current copy, and this can still be
+ exploited.
+ */
+static inline unsigned char FAR *chunkcopy_safe(unsigned char FAR *out,
+ const unsigned char FAR * Z_RESTRICT from,
+ unsigned len,
+ unsigned char FAR *limit) {
+ Assert(out + len <= limit, "chunk copy exceeds safety limit");
+ return chunkcopy_core_safe(out, from, len, limit);
+}
+
+/*
+ Perform chunky copy within the same buffer, where the source and destination
+ may potentially overlap.
+
+ Assumes that len > 0 on entry, and that it's safe to write at least
+ CHUNKCOPY_CHUNK_SIZE*3 bytes to the output.
+ */
+static inline unsigned char FAR *chunkcopy_lapped_relaxed(unsigned char FAR *out,
+ unsigned dist,
+ unsigned len) {
+ if (dist < len && dist < CHUNKCOPY_CHUNK_SIZE) {
+ return chunkset_core(out, dist, len);
+ }
+ return chunkcopy_core(out, out - dist, len);
+}
+
+/*
+ Behave like chunkcopy_lapped_relaxed, but avoid writing beyond of legal output.
+
+ Accepts an additional pointer to the end of safe output. A generic safe
+ copy would use (out + len), but it's normally the case that the end of the
+ output buffer is beyond the end of the current copy, and this can still be
+ exploited.
+ */
+static inline unsigned char FAR *chunkcopy_lapped_safe(unsigned char FAR *out,
+ unsigned dist,
+ unsigned len,
+ unsigned char FAR *limit) {
+ Assert(out + len <= limit, "chunk copy exceeds safety limit");
+ if (limit - out < CHUNKCOPY_CHUNK_SIZE * 3) {
+ /* TODO: try harder to optimise this */
+ while (len-- > 0) {
+ *out = *(out - dist);
+ out++;
+ }
+ return out;
+ }
+ return chunkcopy_lapped_relaxed(out, dist, len);
+}
+
+#undef Z_RESTRICT
+
+#endif /* CHUNKCOPY_H */
« no previous file with comments | « third_party/zlib/BUILD.gn ('k') | third_party/zlib/contrib/arm/inffast.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698