OLD | NEW |
---|---|
1 // Copyright 2017 The Chromium Authors. All rights reserved. | 1 // Copyright 2017 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "ui/gfx/skia_color_space_util.h" | 5 #include "ui/gfx/skia_color_space_util.h" |
6 | 6 |
7 #include <algorithm> | 7 #include <algorithm> |
8 #include <cmath> | 8 #include <cmath> |
9 #include <vector> | |
10 | |
11 #include "base/logging.h" | |
9 | 12 |
10 namespace gfx { | 13 namespace gfx { |
11 | 14 |
12 namespace { | 15 namespace { |
13 } | 16 |
17 // Evaluate the gradient of the linear component of fn | |
18 void SkTransferFnEvalGradientLinear(const SkColorSpaceTransferFn& fn, | |
19 float x, | |
20 float* d_fn_d_fC_at_x, | |
21 float* d_fn_d_fF_at_x) { | |
22 *d_fn_d_fC_at_x = x; | |
23 *d_fn_d_fF_at_x = 1.f; | |
24 } | |
25 | |
26 // Solve for the parameters fC and fF, given the parameter fD. | |
27 bool SkTransferFnSolveLinear(SkColorSpaceTransferFn* fn, | |
msarett1
2017/02/22 19:53:18
I imagined this function being simpler. Ex: "draw
ccameron
2017/02/22 22:10:48
Yes, this is a bit scary at the moment -- it can h
| |
28 const float* x, | |
29 const float* t, | |
30 size_t n) { | |
31 // If this has no linear segment, don't try to solve for one. | |
32 if (fn->fD <= 0) { | |
33 fn->fC = 1; | |
34 fn->fF = 0; | |
35 return true; | |
36 } | |
37 | |
38 // Let ne_lhs be the left hand side of the normal equations, and let ne_rhs | |
39 // be the right hand side. This is a 4x4 matrix, but we will only update the | |
40 // upper-left 2x2 sub-matrix. | |
41 SkMatrix44 ne_lhs; | |
42 SkVector4 ne_rhs; | |
43 for (int row = 0; row < 2; ++row) { | |
44 for (int col = 0; col < 2; ++col) { | |
45 ne_lhs.set(row, col, 0); | |
46 } | |
47 } | |
48 for (int row = 0; row < 4; ++row) | |
49 ne_rhs.fData[row] = 0; | |
50 | |
51 // Add the contributions from each sample to the normal equations. | |
52 float x_linear_max = 0; | |
53 for (size_t i = 0; i < n; ++i) { | |
54 // Ignore points in the nonlinear segment. | |
55 if (x[i] >= fn->fD) | |
56 continue; | |
57 x_linear_max = std::max(x_linear_max, x[i]); | |
58 | |
59 // Let J be the gradient of fn with respect to parameters C and F, evaluated | |
60 // at this point. | |
61 float J[2]; | |
62 SkTransferFnEvalGradientLinear(*fn, x[i], &J[0], &J[1]); | |
63 | |
64 // Let r be the residual at this point. | |
65 float r = t[i]; | |
66 | |
67 // Update the normal equations left hand side with the outer product of J | |
68 // with itself. | |
69 for (int row = 0; row < 2; ++row) { | |
70 for (int col = 0; col < 2; ++col) { | |
71 ne_lhs.set(row, col, ne_lhs.get(row, col) + J[row] * J[col]); | |
72 } | |
73 // Update the normal equations right hand side the product of J with the | |
74 // residual | |
75 ne_rhs.fData[row] += J[row] * r; | |
76 } | |
77 } | |
78 | |
79 // If we only have a single x point at 0, that isn't enough to construct a | |
80 // linear segment, so add an additional point connecting to the nonlinear | |
81 // segment. | |
82 if (x_linear_max == 0) { | |
83 float J[2]; | |
84 SkTransferFnEvalGradientLinear(*fn, fn->fD, &J[0], &J[1]); | |
85 float r = SkTransferFnEval(*fn, fn->fD); | |
86 for (int row = 0; row < 2; ++row) { | |
87 for (int col = 0; col < 2; ++col) { | |
88 ne_lhs.set(row, col, ne_lhs.get(row, col) + J[row] * J[col]); | |
89 } | |
90 ne_rhs.fData[row] += J[row] * r; | |
91 } | |
92 } | |
93 | |
94 // Solve the normal equations. | |
95 SkMatrix44 ne_lhs_inv; | |
96 if (!ne_lhs.invert(&ne_lhs_inv)) | |
97 return false; | |
msarett1
2017/02/22 19:53:18
Logically, when can this fail?
Sure, matrix inver
ccameron
2017/02/22 22:10:48
True, if we have at least 1 data point, then, up t
| |
98 SkVector4 solution = ne_lhs_inv * ne_rhs; | |
99 | |
100 // Update the transfer function. | |
101 fn->fC = solution.fData[0]; | |
102 fn->fF = solution.fData[1]; | |
103 return true; | |
104 } | |
105 | |
106 // Evaluate the gradient of the nonlinear component of fn | |
107 void SkTransferFnEvalGradientNonlinear(const SkColorSpaceTransferFn& fn, | |
108 float x, | |
109 float* d_fn_d_fA_at_x, | |
110 float* d_fn_d_fB_at_x, | |
111 float* d_fn_d_fE_at_x, | |
112 float* d_fn_d_fG_at_x) { | |
113 float base = fn.fA * x + fn.fB; | |
114 if (base > 0.f) { | |
115 *d_fn_d_fA_at_x = fn.fG * x * std::pow(base, fn.fG - 1.f); | |
116 *d_fn_d_fB_at_x = fn.fG * std::pow(base, fn.fG - 1.f); | |
117 *d_fn_d_fE_at_x = 1.f; | |
118 *d_fn_d_fG_at_x = std::pow(base, fn.fG) * std::log(base); | |
119 } else { | |
120 *d_fn_d_fA_at_x = 0.f; | |
121 *d_fn_d_fB_at_x = 0.f; | |
122 *d_fn_d_fE_at_x = 0.f; | |
123 *d_fn_d_fG_at_x = 0.f; | |
124 } | |
125 } | |
126 | |
127 // Take one Gauss-Newton step updating fA, fB, fE, and fG, given fD. | |
128 bool SkTransferFnGaussNewtonStepNonlinear(SkColorSpaceTransferFn* fn, | |
129 float* error_Linfty_before, | |
130 const float* x, | |
131 const float* t, | |
132 size_t n) { | |
133 float kEpsilon = 1.f / 1024.f; | |
134 // Let ne_lhs be the left hand side of the normal equations, and let ne_rhs | |
135 // be the right hand side. | |
136 SkMatrix44 ne_lhs; | |
137 SkVector4 ne_rhs; | |
138 for (int row = 0; row < 4; ++row) { | |
139 for (int col = 0; col < 4; ++col) { | |
140 ne_lhs.set(row, col, 0); | |
141 } | |
142 ne_rhs.fData[row] = 0; | |
143 } | |
144 | |
145 // Add the contributions from each sample to the normal equations. | |
146 *error_Linfty_before = 0; | |
147 for (size_t i = 0; i < n; ++i) { | |
148 // Ignore points in the linear segment. | |
149 if (x[i] < fn->fD) | |
150 continue; | |
151 // Let J be the gradient of fn with respect to parameters A, B, E, and G, | |
152 // evaulated at this point. | |
153 float J[4]; | |
154 SkTransferFnEvalGradientNonlinear(*fn, x[i], &J[0], &J[1], &J[2], &J[3]); | |
155 // Let r be the residual at this point; | |
156 float r = t[i] - SkTransferFnEval(*fn, x[i]); | |
157 *error_Linfty_before += std::abs(r); | |
158 // Update the normal equations left hand side with the outer product of J | |
159 // with itself. | |
160 for (int row = 0; row < 4; ++row) { | |
161 for (int col = 0; col < 4; ++col) { | |
162 ne_lhs.set(row, col, ne_lhs.get(row, col) + J[row] * J[col]); | |
163 } | |
164 // Update the normal equations right hand side the product of J with the | |
165 // residual | |
166 ne_rhs.fData[row] += J[row] * r; | |
167 } | |
168 } | |
169 | |
ccameron
2017/02/22 10:21:30
If we find that we can assume that TrFn(1)=1, then
msarett1
2017/02/22 19:53:18
Acknowledged, really hope this is the case.
| |
170 // Note that if fG = 1, then the normal equations will be singular (because, | |
171 // when fG = 1, because fA and fE are equivalent parameters). To avoid | |
172 // problems, fix fE (row/column 3) in these circumstances. | |
173 if (std::abs(fn->fG - 1) < kEpsilon) { | |
174 for (int row = 0; row < 4; ++row) { | |
175 float value = (row == 2) ? 1.f : 0.f; | |
176 ne_lhs.set(row, 2, value); | |
177 ne_lhs.set(2, row, value); | |
178 } | |
179 ne_rhs.fData[2] = 0.f; | |
180 } | |
181 | |
182 // Solve the normal equations. | |
183 SkMatrix44 ne_lhs_inv; | |
184 if (!ne_lhs.invert(&ne_lhs_inv)) | |
185 return false; | |
186 SkVector4 step = ne_lhs_inv * ne_rhs; | |
187 | |
188 // Update the transfer function. | |
189 fn->fA += step.fData[0]; | |
190 fn->fB += step.fData[1]; | |
191 fn->fE += step.fData[2]; | |
192 fn->fG += step.fData[3]; | |
193 return true; | |
194 } | |
195 | |
196 // Solve for fA, fB, fE, and fG, given fD. The initial value of |fn| is the | |
197 // point from which iteration starts. | |
198 bool SkTransferFnSolveNonlinear(SkColorSpaceTransferFn* fn, | |
199 const float* x, | |
200 const float* t, | |
201 size_t n) { | |
202 // Take a maximum of 16 Gauss-Newton steps. | |
203 const size_t kNumSteps = 16; | |
204 | |
205 // The L-infinity error before each step. | |
206 float step_error[kNumSteps] = {0}; | |
207 | |
208 for (size_t step = 0; step < kNumSteps; ++step) { | |
209 // If the normal equations are singular, we can't continue. | |
210 if (!SkTransferFnGaussNewtonStepNonlinear(fn, &step_error[step], x, t, n)) | |
211 return false; | |
212 | |
213 // If the error is inf or nan, we are clearly not converging. | |
214 if (std::isnan(step_error[step]) || std::isinf(step_error[step])) | |
215 return false; | |
216 | |
217 // If our error is already tiny, don't bother with more iterations. | |
218 const float kConvergedEarlyEpsilon = 1.f / 32768.f; | |
msarett1
2017/02/22 19:53:18
How important is it to have this case? Are we wor
ccameron
2017/02/22 22:10:48
In the final version I'll want to have some early-
| |
219 if (step_error[step] < kConvergedEarlyEpsilon) | |
220 break; | |
221 | |
222 // If our error is non-negligable and increasing then we are not in the | |
223 // region of convergence. | |
224 const float kNonNegligbleErrorEpsilon = 1.f / 256.f; | |
225 const float kGrowthFactor = 1.25f; | |
226 if (step > 2 && step_error[step] > kNonNegligbleErrorEpsilon) { | |
227 if (step_error[step - 1] * kGrowthFactor < step_error[step] && | |
228 step_error[step - 2] * kGrowthFactor < step_error[step - 1]) { | |
229 return false; | |
230 } | |
231 } | |
232 } | |
233 | |
234 // We've converged to a reasonable solution. If some of the parameters are | |
235 // extremely close to 0 or 1, set them to 0 or 1. | |
236 const float kRoundEpsilon = 1.f / 1024.f; | |
237 if (std::abs(fn->fA - 1.f) < kRoundEpsilon) | |
238 fn->fA = 1.f; | |
239 if (std::abs(fn->fB) < kRoundEpsilon) | |
240 fn->fB = 0; | |
241 if (std::abs(fn->fE) < kRoundEpsilon) | |
242 fn->fE = 0; | |
243 if (std::abs(fn->fG - 1.f) < kRoundEpsilon) | |
244 fn->fG = 1.f; | |
245 return true; | |
246 } | |
247 | |
248 void SkApproximateTransferFnInternal(const float* x, | |
249 const float* t, | |
250 size_t n, | |
251 SkColorSpaceTransferFn* fn, | |
252 float* error, | |
253 bool* nonlinear_fit_converged, | |
254 bool* linear_fit_succeeded) { | |
255 // First, guess at a value of fD. Assume that the nonlinear segment applies | |
256 // to all x >= 0.1. This is generally a safe assumption (fD is usually less | |
257 // than 0.1). | |
258 fn->fD = 0.1f; | |
259 | |
260 // Do a nonlinear regression on the nonlinear segment. Use a number of guesses | |
261 // for the initial value of fG, because not all values will converge. | |
262 *nonlinear_fit_converged = false; | |
263 { | |
264 const size_t kNumInitialGammas = 4; | |
265 float initial_gammas[kNumInitialGammas] = {1.f, 2.f, 3.f, 0.5f}; | |
266 for (size_t i = 0; i < kNumInitialGammas; ++i) { | |
267 fn->fG = initial_gammas[i]; | |
268 fn->fA = 1; | |
269 fn->fB = 0; | |
270 fn->fC = 1; | |
271 fn->fE = 0; | |
272 fn->fF = 0; | |
273 if (SkTransferFnSolveNonlinear(fn, x, t, n)) { | |
274 *nonlinear_fit_converged = true; | |
275 break; | |
276 } | |
277 } | |
278 } | |
279 | |
280 // Now walk back fD from our initial guess to the point where our nonlinear | |
281 // fit no longer fits (or all the way to 0 if it fits). | |
282 if (*nonlinear_fit_converged) { | |
283 // Find the L-infinity error of this nonlinear fit (using our old fD value). | |
284 float max_error_in_nonlinear_fit = 0; | |
285 for (size_t i = 0; i < n; ++i) { | |
286 if (x[i] < fn->fD) | |
287 continue; | |
288 float error_at_xi = std::abs(t[i] - SkTransferFnEval(*fn, x[i])); | |
289 max_error_in_nonlinear_fit = | |
290 std::max(max_error_in_nonlinear_fit, error_at_xi); | |
291 } | |
292 | |
293 // Now find the maximum x value where this nonlinear fit is no longer | |
294 // accurate or no longer defined. | |
295 fn->fD = 0.f; | |
296 float max_x_where_nonlinear_does_not_fit = -1.f; | |
297 for (size_t i = 0; i < n; ++i) { | |
298 bool nonlinear_fits_xi = true; | |
299 if (fn->fA * x[i] + fn->fB < 0) { | |
300 // The nonlinear segment is undefined when fA * x + fB is less than 0. | |
301 nonlinear_fits_xi = false; | |
302 } else { | |
303 // Define "no longer accurate" as "has more than 10% more error than | |
304 // the maximum error in the fit segment". | |
305 float error_at_xi = std::abs(t[i] - SkTransferFnEval(*fn, x[i])); | |
306 if (error_at_xi > 1.1f * max_error_in_nonlinear_fit) | |
307 nonlinear_fits_xi = false; | |
308 } | |
309 if (!nonlinear_fits_xi) { | |
310 max_x_where_nonlinear_does_not_fit = | |
311 std::max(max_x_where_nonlinear_does_not_fit, x[i]); | |
312 } | |
313 } | |
314 | |
315 // Now let fD be the highest sample of x that is above the threshold where | |
316 // the nonlinear segment does not fit. | |
317 fn->fD = 1.f; | |
318 for (size_t i = 0; i < n; ++i) { | |
319 if (x[i] > max_x_where_nonlinear_does_not_fit) | |
320 fn->fD = std::min(fn->fD, x[i]); | |
321 } | |
322 } else { | |
323 // If the nonlinear fit didn't converge, then try a linear fit on the full | |
324 // range. | |
325 fn->fD = 1.1f; | |
msarett1
2017/02/22 19:53:18
I think you choose 1.1f here because the linear ra
ccameron
2017/02/22 22:10:48
Done.
| |
326 } | |
327 | |
328 // Compute the linear segment, now that we have our definitive fD. | |
329 *linear_fit_succeeded = SkTransferFnSolveLinear(fn, x, t, n); | |
330 | |
331 // If the nonlinear fit didn't converge, re-express the linear fit in | |
332 // canonical form as a nonlinear fit with fG as 1. | |
333 if (*linear_fit_succeeded && !*nonlinear_fit_converged) { | |
msarett1
2017/02/22 19:53:18
I'd like to think this will always be:
A = 1.0f
B
ccameron
2017/02/22 22:10:48
Yeah, it'll be nice to not have to worry about the
| |
334 fn->fA = fn->fC; | |
335 fn->fB = fn->fF; | |
336 fn->fC = 1; | |
337 fn->fD = 0; | |
338 fn->fE = 0; | |
339 fn->fF = 0; | |
340 fn->fG = 1; | |
341 } | |
342 | |
343 // Return the L-infinity error of the total approximation. | |
344 *error = 0.f; | |
345 for (size_t i = 0; i < n; ++i) | |
346 *error = std::max(*error, std::abs(t[i] - SkTransferFnEval(*fn, x[i]))); | |
347 } | |
348 | |
349 } // namespace | |
14 | 350 |
15 float SkTransferFnEval(const SkColorSpaceTransferFn& fn, float x) { | 351 float SkTransferFnEval(const SkColorSpaceTransferFn& fn, float x) { |
16 if (x < 0.f) | 352 if (x < 0.f) |
17 return 0.f; | 353 return 0.f; |
18 if (x < fn.fD) | 354 if (x < fn.fD) |
19 return fn.fC * x + fn.fF; | 355 return fn.fC * x + fn.fF; |
20 return std::pow(fn.fA * x + fn.fB, fn.fG) + fn.fE; | 356 return std::pow(fn.fA * x + fn.fB, fn.fG) + fn.fE; |
21 } | 357 } |
22 | 358 |
23 SkColorSpaceTransferFn SkTransferFnInverse(const SkColorSpaceTransferFn& fn) { | 359 SkColorSpaceTransferFn SkTransferFnInverse(const SkColorSpaceTransferFn& fn) { |
(...skipping 30 matching lines...) Expand all Loading... | |
54 const float kStep = 1.f / 8.f; | 390 const float kStep = 1.f / 8.f; |
55 const float kEpsilon = 2.5f / 256.f; | 391 const float kEpsilon = 2.5f / 256.f; |
56 for (float x = 0; x <= 1.f; x += kStep) { | 392 for (float x = 0; x <= 1.f; x += kStep) { |
57 float a_of_x = SkTransferFnEval(a, x); | 393 float a_of_x = SkTransferFnEval(a, x); |
58 if (std::abs(a_of_x - x) > kEpsilon) | 394 if (std::abs(a_of_x - x) > kEpsilon) |
59 return false; | 395 return false; |
60 } | 396 } |
61 return true; | 397 return true; |
62 } | 398 } |
63 | 399 |
400 void SkApproximateTransferFn(const float* x, | |
401 const float* t, | |
402 size_t n, | |
403 SkColorSpaceTransferFn* fn, | |
404 float* error, | |
405 bool* nonlinear_fit_converged, | |
406 bool* linear_fit_succeeded) { | |
407 SkApproximateTransferFnInternal(x, t, n, fn, error, nonlinear_fit_converged, | |
408 linear_fit_succeeded); | |
409 } | |
410 | |
64 bool SkMatrixIsApproximatelyIdentity(const SkMatrix44& m) { | 411 bool SkMatrixIsApproximatelyIdentity(const SkMatrix44& m) { |
65 const float kEpsilon = 1.f / 256.f; | 412 const float kEpsilon = 1.f / 256.f; |
66 for (int i = 0; i < 4; ++i) { | 413 for (int i = 0; i < 4; ++i) { |
67 for (int j = 0; j < 4; ++j) { | 414 for (int j = 0; j < 4; ++j) { |
68 float identity_value = i == j ? 1 : 0; | 415 float identity_value = i == j ? 1 : 0; |
69 float value = m.get(i, j); | 416 float value = m.get(i, j); |
70 if (std::abs(identity_value - value) > kEpsilon) | 417 if (std::abs(identity_value - value) > kEpsilon) |
71 return false; | 418 return false; |
72 } | 419 } |
73 } | 420 } |
74 return true; | 421 return true; |
75 } | 422 } |
76 | 423 |
77 } // namespace gfx | 424 } // namespace gfx |
OLD | NEW |