| Index: third_party/WebKit/Source/wtf/dtoa/bignum.cc
|
| diff --git a/third_party/WebKit/Source/wtf/dtoa/bignum.cc b/third_party/WebKit/Source/wtf/dtoa/bignum.cc
|
| index dd6dd2e3b9abe2eec352874330e1191a70f42603..b3c68ed772172c61e7673c626112898f072edcbd 100644
|
| --- a/third_party/WebKit/Source/wtf/dtoa/bignum.cc
|
| +++ b/third_party/WebKit/Source/wtf/dtoa/bignum.cc
|
| @@ -33,736 +33,735 @@ namespace WTF {
|
|
|
| namespace double_conversion {
|
|
|
| - Bignum::Bignum()
|
| +Bignum::Bignum()
|
| : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
|
| - for (int i = 0; i < kBigitCapacity; ++i) {
|
| - bigits_[i] = 0;
|
| - }
|
| + for (int i = 0; i < kBigitCapacity; ++i) {
|
| + bigits_[i] = 0;
|
| + }
|
| +}
|
| +
|
| +template <typename S>
|
| +static int BitSize(S value) {
|
| + return 8 * sizeof(value);
|
| +}
|
| +
|
| +// Guaranteed to lie in one Bigit.
|
| +void Bignum::AssignUInt16(uint16_t value) {
|
| + ASSERT(kBigitSize >= BitSize(value));
|
| + Zero();
|
| + if (value == 0)
|
| + return;
|
| +
|
| + EnsureCapacity(1);
|
| + bigits_[0] = value;
|
| + used_digits_ = 1;
|
| +}
|
| +
|
| +void Bignum::AssignUInt64(uint64_t value) {
|
| + const int kUInt64Size = 64;
|
| +
|
| + Zero();
|
| + if (value == 0)
|
| + return;
|
| +
|
| + int needed_bigits = kUInt64Size / kBigitSize + 1;
|
| + EnsureCapacity(needed_bigits);
|
| + for (int i = 0; i < needed_bigits; ++i) {
|
| + bigits_[i] = (uint32_t)value & kBigitMask;
|
| + value = value >> kBigitSize;
|
| + }
|
| + used_digits_ = needed_bigits;
|
| + Clamp();
|
| +}
|
| +
|
| +void Bignum::AssignBignum(const Bignum& other) {
|
| + exponent_ = other.exponent_;
|
| + for (int i = 0; i < other.used_digits_; ++i) {
|
| + bigits_[i] = other.bigits_[i];
|
| + }
|
| + // Clear the excess digits (if there were any).
|
| + for (int i = other.used_digits_; i < used_digits_; ++i) {
|
| + bigits_[i] = 0;
|
| + }
|
| + used_digits_ = other.used_digits_;
|
| +}
|
| +
|
| +static uint64_t ReadUInt64(Vector<const char> buffer,
|
| + int from,
|
| + int digits_to_read) {
|
| + uint64_t result = 0;
|
| + for (int i = from; i < from + digits_to_read; ++i) {
|
| + int digit = buffer[i] - '0';
|
| + ASSERT(0 <= digit && digit <= 9);
|
| + result = result * 10 + digit;
|
| + }
|
| + return result;
|
| +}
|
| +
|
| +void Bignum::AssignDecimalString(Vector<const char> value) {
|
| + // 2^64 = 18446744073709551616 > 10^19
|
| + const int kMaxUint64DecimalDigits = 19;
|
| + Zero();
|
| + int length = value.length();
|
| + int pos = 0;
|
| + // Let's just say that each digit needs 4 bits.
|
| + while (length >= kMaxUint64DecimalDigits) {
|
| + uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
|
| + pos += kMaxUint64DecimalDigits;
|
| + length -= kMaxUint64DecimalDigits;
|
| + MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
|
| + AddUInt64(digits);
|
| + }
|
| + uint64_t digits = ReadUInt64(value, pos, length);
|
| + MultiplyByPowerOfTen(length);
|
| + AddUInt64(digits);
|
| + Clamp();
|
| +}
|
| +
|
| +static int HexCharValue(char c) {
|
| + if ('0' <= c && c <= '9')
|
| + return c - '0';
|
| + if ('a' <= c && c <= 'f')
|
| + return 10 + c - 'a';
|
| + if ('A' <= c && c <= 'F')
|
| + return 10 + c - 'A';
|
| + UNREACHABLE();
|
| + return 0; // To make compiler happy.
|
| +}
|
| +
|
| +void Bignum::AssignHexString(Vector<const char> value) {
|
| + Zero();
|
| + int length = value.length();
|
| +
|
| + int needed_bigits = length * 4 / kBigitSize + 1;
|
| + EnsureCapacity(needed_bigits);
|
| + int string_index = length - 1;
|
| + for (int i = 0; i < needed_bigits - 1; ++i) {
|
| + // These bigits are guaranteed to be "full".
|
| + Chunk current_bigit = 0;
|
| + for (int j = 0; j < kBigitSize / 4; j++) {
|
| + current_bigit += HexCharValue(value[string_index--]) << (j * 4);
|
| }
|
| -
|
| -
|
| - template<typename S>
|
| - static int BitSize(S value) {
|
| - return 8 * sizeof(value);
|
| - }
|
| -
|
| - // Guaranteed to lie in one Bigit.
|
| - void Bignum::AssignUInt16(uint16_t value) {
|
| - ASSERT(kBigitSize >= BitSize(value));
|
| - Zero();
|
| - if (value == 0) return;
|
| -
|
| - EnsureCapacity(1);
|
| - bigits_[0] = value;
|
| - used_digits_ = 1;
|
| - }
|
| -
|
| -
|
| - void Bignum::AssignUInt64(uint64_t value) {
|
| - const int kUInt64Size = 64;
|
| -
|
| - Zero();
|
| - if (value == 0) return;
|
| -
|
| - int needed_bigits = kUInt64Size / kBigitSize + 1;
|
| - EnsureCapacity(needed_bigits);
|
| - for (int i = 0; i < needed_bigits; ++i) {
|
| - bigits_[i] = (uint32_t)value & kBigitMask;
|
| - value = value >> kBigitSize;
|
| - }
|
| - used_digits_ = needed_bigits;
|
| - Clamp();
|
| - }
|
| -
|
| -
|
| - void Bignum::AssignBignum(const Bignum& other) {
|
| - exponent_ = other.exponent_;
|
| - for (int i = 0; i < other.used_digits_; ++i) {
|
| - bigits_[i] = other.bigits_[i];
|
| - }
|
| - // Clear the excess digits (if there were any).
|
| - for (int i = other.used_digits_; i < used_digits_; ++i) {
|
| - bigits_[i] = 0;
|
| - }
|
| - used_digits_ = other.used_digits_;
|
| - }
|
| -
|
| -
|
| - static uint64_t ReadUInt64(Vector<const char> buffer,
|
| - int from,
|
| - int digits_to_read) {
|
| - uint64_t result = 0;
|
| - for (int i = from; i < from + digits_to_read; ++i) {
|
| - int digit = buffer[i] - '0';
|
| - ASSERT(0 <= digit && digit <= 9);
|
| - result = result * 10 + digit;
|
| - }
|
| - return result;
|
| - }
|
| -
|
| -
|
| - void Bignum::AssignDecimalString(Vector<const char> value) {
|
| - // 2^64 = 18446744073709551616 > 10^19
|
| - const int kMaxUint64DecimalDigits = 19;
|
| - Zero();
|
| - int length = value.length();
|
| - int pos = 0;
|
| - // Let's just say that each digit needs 4 bits.
|
| - while (length >= kMaxUint64DecimalDigits) {
|
| - uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
|
| - pos += kMaxUint64DecimalDigits;
|
| - length -= kMaxUint64DecimalDigits;
|
| - MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
|
| - AddUInt64(digits);
|
| - }
|
| - uint64_t digits = ReadUInt64(value, pos, length);
|
| - MultiplyByPowerOfTen(length);
|
| - AddUInt64(digits);
|
| - Clamp();
|
| - }
|
| -
|
| -
|
| - static int HexCharValue(char c) {
|
| - if ('0' <= c && c <= '9') return c - '0';
|
| - if ('a' <= c && c <= 'f') return 10 + c - 'a';
|
| - if ('A' <= c && c <= 'F') return 10 + c - 'A';
|
| - UNREACHABLE();
|
| - return 0; // To make compiler happy.
|
| - }
|
| -
|
| -
|
| - void Bignum::AssignHexString(Vector<const char> value) {
|
| - Zero();
|
| - int length = value.length();
|
| -
|
| - int needed_bigits = length * 4 / kBigitSize + 1;
|
| - EnsureCapacity(needed_bigits);
|
| - int string_index = length - 1;
|
| - for (int i = 0; i < needed_bigits - 1; ++i) {
|
| - // These bigits are guaranteed to be "full".
|
| - Chunk current_bigit = 0;
|
| - for (int j = 0; j < kBigitSize / 4; j++) {
|
| - current_bigit += HexCharValue(value[string_index--]) << (j * 4);
|
| - }
|
| - bigits_[i] = current_bigit;
|
| - }
|
| - used_digits_ = needed_bigits - 1;
|
| -
|
| - Chunk most_significant_bigit = 0; // Could be = 0;
|
| - for (int j = 0; j <= string_index; ++j) {
|
| - most_significant_bigit <<= 4;
|
| - most_significant_bigit += HexCharValue(value[j]);
|
| - }
|
| - if (most_significant_bigit != 0) {
|
| - bigits_[used_digits_] = most_significant_bigit;
|
| - used_digits_++;
|
| - }
|
| - Clamp();
|
| - }
|
| -
|
| -
|
| - void Bignum::AddUInt64(uint64_t operand) {
|
| - if (operand == 0) return;
|
| - Bignum other;
|
| - other.AssignUInt64(operand);
|
| - AddBignum(other);
|
| - }
|
| -
|
| -
|
| - void Bignum::AddBignum(const Bignum& other) {
|
| - ASSERT(IsClamped());
|
| - ASSERT(other.IsClamped());
|
| -
|
| - // If this has a greater exponent than other append zero-bigits to this.
|
| - // After this call exponent_ <= other.exponent_.
|
| - Align(other);
|
| -
|
| - // There are two possibilities:
|
| - // aaaaaaaaaaa 0000 (where the 0s represent a's exponent)
|
| - // bbbbb 00000000
|
| - // ----------------
|
| - // ccccccccccc 0000
|
| - // or
|
| - // aaaaaaaaaa 0000
|
| - // bbbbbbbbb 0000000
|
| - // -----------------
|
| - // cccccccccccc 0000
|
| - // In both cases we might need a carry bigit.
|
| -
|
| - EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
|
| - Chunk carry = 0;
|
| - int bigit_pos = other.exponent_ - exponent_;
|
| - ASSERT(bigit_pos >= 0);
|
| - for (int i = 0; i < other.used_digits_; ++i) {
|
| - Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
|
| - bigits_[bigit_pos] = sum & kBigitMask;
|
| - carry = sum >> kBigitSize;
|
| - bigit_pos++;
|
| - }
|
| -
|
| - while (carry != 0) {
|
| - Chunk sum = bigits_[bigit_pos] + carry;
|
| - bigits_[bigit_pos] = sum & kBigitMask;
|
| - carry = sum >> kBigitSize;
|
| - bigit_pos++;
|
| - }
|
| - used_digits_ = Max(bigit_pos, used_digits_);
|
| - ASSERT(IsClamped());
|
| - }
|
| -
|
| -
|
| - void Bignum::SubtractBignum(const Bignum& other) {
|
| - ASSERT(IsClamped());
|
| - ASSERT(other.IsClamped());
|
| - // We require this to be bigger than other.
|
| - ASSERT(LessEqual(other, *this));
|
| -
|
| - Align(other);
|
| -
|
| - int offset = other.exponent_ - exponent_;
|
| - Chunk borrow = 0;
|
| - int i;
|
| - for (i = 0; i < other.used_digits_; ++i) {
|
| - ASSERT((borrow == 0) || (borrow == 1));
|
| - Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
|
| - bigits_[i + offset] = difference & kBigitMask;
|
| - borrow = difference >> (kChunkSize - 1);
|
| - }
|
| - while (borrow != 0) {
|
| - Chunk difference = bigits_[i + offset] - borrow;
|
| - bigits_[i + offset] = difference & kBigitMask;
|
| - borrow = difference >> (kChunkSize - 1);
|
| - ++i;
|
| - }
|
| - Clamp();
|
| - }
|
| -
|
| -
|
| - void Bignum::ShiftLeft(int shift_amount) {
|
| - if (used_digits_ == 0) return;
|
| - exponent_ += shift_amount / kBigitSize;
|
| - int local_shift = shift_amount % kBigitSize;
|
| - EnsureCapacity(used_digits_ + 1);
|
| - BigitsShiftLeft(local_shift);
|
| - }
|
| -
|
| -
|
| - void Bignum::MultiplyByUInt32(uint32_t factor) {
|
| - if (factor == 1) return;
|
| - if (factor == 0) {
|
| - Zero();
|
| - return;
|
| - }
|
| - if (used_digits_ == 0) return;
|
| -
|
| - // The product of a bigit with the factor is of size kBigitSize + 32.
|
| - // Assert that this number + 1 (for the carry) fits into double chunk.
|
| - ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
|
| - DoubleChunk carry = 0;
|
| - for (int i = 0; i < used_digits_; ++i) {
|
| - DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
|
| - bigits_[i] = static_cast<Chunk>(product & kBigitMask);
|
| - carry = (product >> kBigitSize);
|
| - }
|
| - while (carry != 0) {
|
| - EnsureCapacity(used_digits_ + 1);
|
| - bigits_[used_digits_] = (uint32_t)carry & kBigitMask;
|
| - used_digits_++;
|
| - carry >>= kBigitSize;
|
| - }
|
| - }
|
| -
|
| -
|
| - void Bignum::MultiplyByUInt64(uint64_t factor) {
|
| - if (factor == 1) return;
|
| - if (factor == 0) {
|
| - Zero();
|
| - return;
|
| - }
|
| - ASSERT(kBigitSize < 32);
|
| - uint64_t carry = 0;
|
| - uint64_t low = factor & 0xFFFFFFFF;
|
| - uint64_t high = factor >> 32;
|
| - for (int i = 0; i < used_digits_; ++i) {
|
| - uint64_t product_low = low * bigits_[i];
|
| - uint64_t product_high = high * bigits_[i];
|
| - uint64_t tmp = (carry & kBigitMask) + product_low;
|
| - bigits_[i] = (uint32_t)tmp & kBigitMask;
|
| - carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
|
| + bigits_[i] = current_bigit;
|
| + }
|
| + used_digits_ = needed_bigits - 1;
|
| +
|
| + Chunk most_significant_bigit = 0; // Could be = 0;
|
| + for (int j = 0; j <= string_index; ++j) {
|
| + most_significant_bigit <<= 4;
|
| + most_significant_bigit += HexCharValue(value[j]);
|
| + }
|
| + if (most_significant_bigit != 0) {
|
| + bigits_[used_digits_] = most_significant_bigit;
|
| + used_digits_++;
|
| + }
|
| + Clamp();
|
| +}
|
| +
|
| +void Bignum::AddUInt64(uint64_t operand) {
|
| + if (operand == 0)
|
| + return;
|
| + Bignum other;
|
| + other.AssignUInt64(operand);
|
| + AddBignum(other);
|
| +}
|
| +
|
| +void Bignum::AddBignum(const Bignum& other) {
|
| + ASSERT(IsClamped());
|
| + ASSERT(other.IsClamped());
|
| +
|
| + // If this has a greater exponent than other append zero-bigits to this.
|
| + // After this call exponent_ <= other.exponent_.
|
| + Align(other);
|
| +
|
| + // There are two possibilities:
|
| + // aaaaaaaaaaa 0000 (where the 0s represent a's exponent)
|
| + // bbbbb 00000000
|
| + // ----------------
|
| + // ccccccccccc 0000
|
| + // or
|
| + // aaaaaaaaaa 0000
|
| + // bbbbbbbbb 0000000
|
| + // -----------------
|
| + // cccccccccccc 0000
|
| + // In both cases we might need a carry bigit.
|
| +
|
| + EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
|
| + Chunk carry = 0;
|
| + int bigit_pos = other.exponent_ - exponent_;
|
| + ASSERT(bigit_pos >= 0);
|
| + for (int i = 0; i < other.used_digits_; ++i) {
|
| + Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
|
| + bigits_[bigit_pos] = sum & kBigitMask;
|
| + carry = sum >> kBigitSize;
|
| + bigit_pos++;
|
| + }
|
| +
|
| + while (carry != 0) {
|
| + Chunk sum = bigits_[bigit_pos] + carry;
|
| + bigits_[bigit_pos] = sum & kBigitMask;
|
| + carry = sum >> kBigitSize;
|
| + bigit_pos++;
|
| + }
|
| + used_digits_ = Max(bigit_pos, used_digits_);
|
| + ASSERT(IsClamped());
|
| +}
|
| +
|
| +void Bignum::SubtractBignum(const Bignum& other) {
|
| + ASSERT(IsClamped());
|
| + ASSERT(other.IsClamped());
|
| + // We require this to be bigger than other.
|
| + ASSERT(LessEqual(other, *this));
|
| +
|
| + Align(other);
|
| +
|
| + int offset = other.exponent_ - exponent_;
|
| + Chunk borrow = 0;
|
| + int i;
|
| + for (i = 0; i < other.used_digits_; ++i) {
|
| + ASSERT((borrow == 0) || (borrow == 1));
|
| + Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
|
| + bigits_[i + offset] = difference & kBigitMask;
|
| + borrow = difference >> (kChunkSize - 1);
|
| + }
|
| + while (borrow != 0) {
|
| + Chunk difference = bigits_[i + offset] - borrow;
|
| + bigits_[i + offset] = difference & kBigitMask;
|
| + borrow = difference >> (kChunkSize - 1);
|
| + ++i;
|
| + }
|
| + Clamp();
|
| +}
|
| +
|
| +void Bignum::ShiftLeft(int shift_amount) {
|
| + if (used_digits_ == 0)
|
| + return;
|
| + exponent_ += shift_amount / kBigitSize;
|
| + int local_shift = shift_amount % kBigitSize;
|
| + EnsureCapacity(used_digits_ + 1);
|
| + BigitsShiftLeft(local_shift);
|
| +}
|
| +
|
| +void Bignum::MultiplyByUInt32(uint32_t factor) {
|
| + if (factor == 1)
|
| + return;
|
| + if (factor == 0) {
|
| + Zero();
|
| + return;
|
| + }
|
| + if (used_digits_ == 0)
|
| + return;
|
| +
|
| + // The product of a bigit with the factor is of size kBigitSize + 32.
|
| + // Assert that this number + 1 (for the carry) fits into double chunk.
|
| + ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
|
| + DoubleChunk carry = 0;
|
| + for (int i = 0; i < used_digits_; ++i) {
|
| + DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
|
| + bigits_[i] = static_cast<Chunk>(product & kBigitMask);
|
| + carry = (product >> kBigitSize);
|
| + }
|
| + while (carry != 0) {
|
| + EnsureCapacity(used_digits_ + 1);
|
| + bigits_[used_digits_] = (uint32_t)carry & kBigitMask;
|
| + used_digits_++;
|
| + carry >>= kBigitSize;
|
| + }
|
| +}
|
| +
|
| +void Bignum::MultiplyByUInt64(uint64_t factor) {
|
| + if (factor == 1)
|
| + return;
|
| + if (factor == 0) {
|
| + Zero();
|
| + return;
|
| + }
|
| + ASSERT(kBigitSize < 32);
|
| + uint64_t carry = 0;
|
| + uint64_t low = factor & 0xFFFFFFFF;
|
| + uint64_t high = factor >> 32;
|
| + for (int i = 0; i < used_digits_; ++i) {
|
| + uint64_t product_low = low * bigits_[i];
|
| + uint64_t product_high = high * bigits_[i];
|
| + uint64_t tmp = (carry & kBigitMask) + product_low;
|
| + bigits_[i] = (uint32_t)tmp & kBigitMask;
|
| + carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
|
| (product_high << (32 - kBigitSize));
|
| - }
|
| - while (carry != 0) {
|
| - EnsureCapacity(used_digits_ + 1);
|
| - bigits_[used_digits_] = (uint32_t)carry & kBigitMask;
|
| - used_digits_++;
|
| - carry >>= kBigitSize;
|
| - }
|
| + }
|
| + while (carry != 0) {
|
| + EnsureCapacity(used_digits_ + 1);
|
| + bigits_[used_digits_] = (uint32_t)carry & kBigitMask;
|
| + used_digits_++;
|
| + carry >>= kBigitSize;
|
| + }
|
| +}
|
| +
|
| +void Bignum::MultiplyByPowerOfTen(int exponent) {
|
| + const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d);
|
| + const uint16_t kFive1 = 5;
|
| + const uint16_t kFive2 = kFive1 * 5;
|
| + const uint16_t kFive3 = kFive2 * 5;
|
| + const uint16_t kFive4 = kFive3 * 5;
|
| + const uint16_t kFive5 = kFive4 * 5;
|
| + const uint16_t kFive6 = kFive5 * 5;
|
| + const uint32_t kFive7 = kFive6 * 5;
|
| + const uint32_t kFive8 = kFive7 * 5;
|
| + const uint32_t kFive9 = kFive8 * 5;
|
| + const uint32_t kFive10 = kFive9 * 5;
|
| + const uint32_t kFive11 = kFive10 * 5;
|
| + const uint32_t kFive12 = kFive11 * 5;
|
| + const uint32_t kFive13 = kFive12 * 5;
|
| + const uint32_t kFive1_to_12[] = {kFive1, kFive2, kFive3, kFive4,
|
| + kFive5, kFive6, kFive7, kFive8,
|
| + kFive9, kFive10, kFive11, kFive12};
|
| +
|
| + ASSERT(exponent >= 0);
|
| + if (exponent == 0)
|
| + return;
|
| + if (used_digits_ == 0)
|
| + return;
|
| +
|
| + // We shift by exponent at the end just before returning.
|
| + int remaining_exponent = exponent;
|
| + while (remaining_exponent >= 27) {
|
| + MultiplyByUInt64(kFive27);
|
| + remaining_exponent -= 27;
|
| + }
|
| + while (remaining_exponent >= 13) {
|
| + MultiplyByUInt32(kFive13);
|
| + remaining_exponent -= 13;
|
| + }
|
| + if (remaining_exponent > 0) {
|
| + MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
|
| + }
|
| + ShiftLeft(exponent);
|
| +}
|
| +
|
| +void Bignum::Square() {
|
| + ASSERT(IsClamped());
|
| + int product_length = 2 * used_digits_;
|
| + EnsureCapacity(product_length);
|
| +
|
| + // Comba multiplication: compute each column separately.
|
| + // Example: r = a2a1a0 * b2b1b0.
|
| + // r = 1 * a0b0 +
|
| + // 10 * (a1b0 + a0b1) +
|
| + // 100 * (a2b0 + a1b1 + a0b2) +
|
| + // 1000 * (a2b1 + a1b2) +
|
| + // 10000 * a2b2
|
| + //
|
| + // In the worst case we have to accumulate nb-digits products of digit*digit.
|
| + //
|
| + // Assert that the additional number of bits in a DoubleChunk are enough to
|
| + // sum up used_digits of Bigit*Bigit.
|
| + if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
|
| + UNIMPLEMENTED();
|
| + }
|
| + DoubleChunk accumulator = 0;
|
| + // First shift the digits so we don't overwrite them.
|
| + int copy_offset = used_digits_;
|
| + for (int i = 0; i < used_digits_; ++i) {
|
| + bigits_[copy_offset + i] = bigits_[i];
|
| + }
|
| + // We have two loops to avoid some 'if's in the loop.
|
| + for (int i = 0; i < used_digits_; ++i) {
|
| + // Process temporary digit i with power i.
|
| + // The sum of the two indices must be equal to i.
|
| + int bigit_index1 = i;
|
| + int bigit_index2 = 0;
|
| + // Sum all of the sub-products.
|
| + while (bigit_index1 >= 0) {
|
| + Chunk chunk1 = bigits_[copy_offset + bigit_index1];
|
| + Chunk chunk2 = bigits_[copy_offset + bigit_index2];
|
| + accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
|
| + bigit_index1--;
|
| + bigit_index2++;
|
| }
|
| -
|
| -
|
| - void Bignum::MultiplyByPowerOfTen(int exponent) {
|
| - const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d);
|
| - const uint16_t kFive1 = 5;
|
| - const uint16_t kFive2 = kFive1 * 5;
|
| - const uint16_t kFive3 = kFive2 * 5;
|
| - const uint16_t kFive4 = kFive3 * 5;
|
| - const uint16_t kFive5 = kFive4 * 5;
|
| - const uint16_t kFive6 = kFive5 * 5;
|
| - const uint32_t kFive7 = kFive6 * 5;
|
| - const uint32_t kFive8 = kFive7 * 5;
|
| - const uint32_t kFive9 = kFive8 * 5;
|
| - const uint32_t kFive10 = kFive9 * 5;
|
| - const uint32_t kFive11 = kFive10 * 5;
|
| - const uint32_t kFive12 = kFive11 * 5;
|
| - const uint32_t kFive13 = kFive12 * 5;
|
| - const uint32_t kFive1_to_12[] =
|
| - { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
|
| - kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
|
| -
|
| - ASSERT(exponent >= 0);
|
| - if (exponent == 0) return;
|
| - if (used_digits_ == 0) return;
|
| -
|
| - // We shift by exponent at the end just before returning.
|
| - int remaining_exponent = exponent;
|
| - while (remaining_exponent >= 27) {
|
| - MultiplyByUInt64(kFive27);
|
| - remaining_exponent -= 27;
|
| - }
|
| - while (remaining_exponent >= 13) {
|
| - MultiplyByUInt32(kFive13);
|
| - remaining_exponent -= 13;
|
| - }
|
| - if (remaining_exponent > 0) {
|
| - MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
|
| - }
|
| - ShiftLeft(exponent);
|
| + bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
|
| + accumulator >>= kBigitSize;
|
| + }
|
| + for (int i = used_digits_; i < product_length; ++i) {
|
| + int bigit_index1 = used_digits_ - 1;
|
| + int bigit_index2 = i - bigit_index1;
|
| + // Invariant: sum of both indices is again equal to i.
|
| + // Inner loop runs 0 times on last iteration, emptying accumulator.
|
| + while (bigit_index2 < used_digits_) {
|
| + Chunk chunk1 = bigits_[copy_offset + bigit_index1];
|
| + Chunk chunk2 = bigits_[copy_offset + bigit_index2];
|
| + accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
|
| + bigit_index1--;
|
| + bigit_index2++;
|
| }
|
| -
|
| -
|
| - void Bignum::Square() {
|
| - ASSERT(IsClamped());
|
| - int product_length = 2 * used_digits_;
|
| - EnsureCapacity(product_length);
|
| -
|
| - // Comba multiplication: compute each column separately.
|
| - // Example: r = a2a1a0 * b2b1b0.
|
| - // r = 1 * a0b0 +
|
| - // 10 * (a1b0 + a0b1) +
|
| - // 100 * (a2b0 + a1b1 + a0b2) +
|
| - // 1000 * (a2b1 + a1b2) +
|
| - // 10000 * a2b2
|
| - //
|
| - // In the worst case we have to accumulate nb-digits products of digit*digit.
|
| - //
|
| - // Assert that the additional number of bits in a DoubleChunk are enough to
|
| - // sum up used_digits of Bigit*Bigit.
|
| - if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
|
| - UNIMPLEMENTED();
|
| - }
|
| - DoubleChunk accumulator = 0;
|
| - // First shift the digits so we don't overwrite them.
|
| - int copy_offset = used_digits_;
|
| - for (int i = 0; i < used_digits_; ++i) {
|
| - bigits_[copy_offset + i] = bigits_[i];
|
| - }
|
| - // We have two loops to avoid some 'if's in the loop.
|
| - for (int i = 0; i < used_digits_; ++i) {
|
| - // Process temporary digit i with power i.
|
| - // The sum of the two indices must be equal to i.
|
| - int bigit_index1 = i;
|
| - int bigit_index2 = 0;
|
| - // Sum all of the sub-products.
|
| - while (bigit_index1 >= 0) {
|
| - Chunk chunk1 = bigits_[copy_offset + bigit_index1];
|
| - Chunk chunk2 = bigits_[copy_offset + bigit_index2];
|
| - accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
|
| - bigit_index1--;
|
| - bigit_index2++;
|
| - }
|
| - bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
|
| - accumulator >>= kBigitSize;
|
| - }
|
| - for (int i = used_digits_; i < product_length; ++i) {
|
| - int bigit_index1 = used_digits_ - 1;
|
| - int bigit_index2 = i - bigit_index1;
|
| - // Invariant: sum of both indices is again equal to i.
|
| - // Inner loop runs 0 times on last iteration, emptying accumulator.
|
| - while (bigit_index2 < used_digits_) {
|
| - Chunk chunk1 = bigits_[copy_offset + bigit_index1];
|
| - Chunk chunk2 = bigits_[copy_offset + bigit_index2];
|
| - accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
|
| - bigit_index1--;
|
| - bigit_index2++;
|
| - }
|
| - // The overwritten bigits_[i] will never be read in further loop iterations,
|
| - // because bigit_index1 and bigit_index2 are always greater
|
| - // than i - used_digits_.
|
| - bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
|
| - accumulator >>= kBigitSize;
|
| - }
|
| - // Since the result was guaranteed to lie inside the number the
|
| - // accumulator must be 0 now.
|
| - ASSERT(accumulator == 0);
|
| -
|
| - // Don't forget to update the used_digits and the exponent.
|
| - used_digits_ = product_length;
|
| - exponent_ *= 2;
|
| - Clamp();
|
| + // The overwritten bigits_[i] will never be read in further loop iterations,
|
| + // because bigit_index1 and bigit_index2 are always greater
|
| + // than i - used_digits_.
|
| + bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
|
| + accumulator >>= kBigitSize;
|
| + }
|
| + // Since the result was guaranteed to lie inside the number the
|
| + // accumulator must be 0 now.
|
| + ASSERT(accumulator == 0);
|
| +
|
| + // Don't forget to update the used_digits and the exponent.
|
| + used_digits_ = product_length;
|
| + exponent_ *= 2;
|
| + Clamp();
|
| +}
|
| +
|
| +void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
|
| + ASSERT(base != 0);
|
| + ASSERT(power_exponent >= 0);
|
| + if (power_exponent == 0) {
|
| + AssignUInt16(1);
|
| + return;
|
| + }
|
| + Zero();
|
| + int shifts = 0;
|
| + // We expect base to be in range 2-32, and most often to be 10.
|
| + // It does not make much sense to implement different algorithms for counting
|
| + // the bits.
|
| + while ((base & 1) == 0) {
|
| + base >>= 1;
|
| + shifts++;
|
| + }
|
| + int bit_size = 0;
|
| + int tmp_base = base;
|
| + while (tmp_base != 0) {
|
| + tmp_base >>= 1;
|
| + bit_size++;
|
| + }
|
| + int final_size = bit_size * power_exponent;
|
| + // 1 extra bigit for the shifting, and one for rounded final_size.
|
| + EnsureCapacity(final_size / kBigitSize + 2);
|
| +
|
| + // Left to Right exponentiation.
|
| + int mask = 1;
|
| + while (power_exponent >= mask)
|
| + mask <<= 1;
|
| +
|
| + // The mask is now pointing to the bit above the most significant 1-bit of
|
| + // power_exponent.
|
| + // Get rid of first 1-bit;
|
| + mask >>= 2;
|
| + uint64_t this_value = base;
|
| +
|
| + bool delayed_multipliciation = false;
|
| + const uint64_t max_32bits = 0xFFFFFFFF;
|
| + while (mask != 0 && this_value <= max_32bits) {
|
| + this_value = this_value * this_value;
|
| + // Verify that there is enough space in this_value to perform the
|
| + // multiplication. The first bit_size bits must be 0.
|
| + if ((power_exponent & mask) != 0) {
|
| + uint64_t base_bits_mask =
|
| + ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
|
| + bool high_bits_zero = (this_value & base_bits_mask) == 0;
|
| + if (high_bits_zero) {
|
| + this_value *= base;
|
| + } else {
|
| + delayed_multipliciation = true;
|
| + }
|
| }
|
| -
|
| -
|
| - void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
|
| - ASSERT(base != 0);
|
| - ASSERT(power_exponent >= 0);
|
| - if (power_exponent == 0) {
|
| - AssignUInt16(1);
|
| - return;
|
| - }
|
| - Zero();
|
| - int shifts = 0;
|
| - // We expect base to be in range 2-32, and most often to be 10.
|
| - // It does not make much sense to implement different algorithms for counting
|
| - // the bits.
|
| - while ((base & 1) == 0) {
|
| - base >>= 1;
|
| - shifts++;
|
| - }
|
| - int bit_size = 0;
|
| - int tmp_base = base;
|
| - while (tmp_base != 0) {
|
| - tmp_base >>= 1;
|
| - bit_size++;
|
| - }
|
| - int final_size = bit_size * power_exponent;
|
| - // 1 extra bigit for the shifting, and one for rounded final_size.
|
| - EnsureCapacity(final_size / kBigitSize + 2);
|
| -
|
| - // Left to Right exponentiation.
|
| - int mask = 1;
|
| - while (power_exponent >= mask) mask <<= 1;
|
| -
|
| - // The mask is now pointing to the bit above the most significant 1-bit of
|
| - // power_exponent.
|
| - // Get rid of first 1-bit;
|
| - mask >>= 2;
|
| - uint64_t this_value = base;
|
| -
|
| - bool delayed_multipliciation = false;
|
| - const uint64_t max_32bits = 0xFFFFFFFF;
|
| - while (mask != 0 && this_value <= max_32bits) {
|
| - this_value = this_value * this_value;
|
| - // Verify that there is enough space in this_value to perform the
|
| - // multiplication. The first bit_size bits must be 0.
|
| - if ((power_exponent & mask) != 0) {
|
| - uint64_t base_bits_mask =
|
| - ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
|
| - bool high_bits_zero = (this_value & base_bits_mask) == 0;
|
| - if (high_bits_zero) {
|
| - this_value *= base;
|
| - } else {
|
| - delayed_multipliciation = true;
|
| - }
|
| - }
|
| - mask >>= 1;
|
| - }
|
| - AssignUInt64(this_value);
|
| - if (delayed_multipliciation) {
|
| - MultiplyByUInt32(base);
|
| - }
|
| -
|
| - // Now do the same thing as a bignum.
|
| - while (mask != 0) {
|
| - Square();
|
| - if ((power_exponent & mask) != 0) {
|
| - MultiplyByUInt32(base);
|
| - }
|
| - mask >>= 1;
|
| - }
|
| -
|
| - // And finally add the saved shifts.
|
| - ShiftLeft(shifts * power_exponent);
|
| + mask >>= 1;
|
| + }
|
| + AssignUInt64(this_value);
|
| + if (delayed_multipliciation) {
|
| + MultiplyByUInt32(base);
|
| + }
|
| +
|
| + // Now do the same thing as a bignum.
|
| + while (mask != 0) {
|
| + Square();
|
| + if ((power_exponent & mask) != 0) {
|
| + MultiplyByUInt32(base);
|
| }
|
| -
|
| -
|
| - // Precondition: this/other < 16bit.
|
| - uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
|
| - ASSERT(IsClamped());
|
| - ASSERT(other.IsClamped());
|
| - ASSERT(other.used_digits_ > 0);
|
| -
|
| - // Easy case: if we have less digits than the divisor than the result is 0.
|
| - // Note: this handles the case where this == 0, too.
|
| - if (BigitLength() < other.BigitLength()) {
|
| - return 0;
|
| - }
|
| -
|
| - Align(other);
|
| -
|
| - uint16_t result = 0;
|
| -
|
| - // Start by removing multiples of 'other' until both numbers have the same
|
| - // number of digits.
|
| - while (BigitLength() > other.BigitLength()) {
|
| - // This naive approach is extremely inefficient if the this divided other
|
| - // might be big. This function is implemented for doubleToString where
|
| - // the result should be small (less than 10).
|
| - ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
|
| - // Remove the multiples of the first digit.
|
| - // Example this = 23 and other equals 9. -> Remove 2 multiples.
|
| - result += static_cast<uint16_t>(bigits_[used_digits_ - 1]);
|
| - SubtractTimes(other, bigits_[used_digits_ - 1]);
|
| - }
|
| -
|
| - ASSERT(BigitLength() == other.BigitLength());
|
| -
|
| - // Both bignums are at the same length now.
|
| - // Since other has more than 0 digits we know that the access to
|
| - // bigits_[used_digits_ - 1] is safe.
|
| - Chunk this_bigit = bigits_[used_digits_ - 1];
|
| - Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
|
| -
|
| - if (other.used_digits_ == 1) {
|
| - // Shortcut for easy (and common) case.
|
| - uint16_t quotient = static_cast<uint16_t>(this_bigit / other_bigit);
|
| - bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
|
| - result += quotient;
|
| - Clamp();
|
| - return result;
|
| - }
|
| -
|
| - uint16_t division_estimate = static_cast<uint16_t>(this_bigit / (other_bigit + 1));
|
| - result += division_estimate;
|
| - SubtractTimes(other, division_estimate);
|
| -
|
| - if (other_bigit * (division_estimate + 1) > this_bigit) {
|
| - // No need to even try to subtract. Even if other's remaining digits were 0
|
| - // another subtraction would be too much.
|
| - return result;
|
| - }
|
| -
|
| - while (LessEqual(other, *this)) {
|
| - SubtractBignum(other);
|
| - result++;
|
| - }
|
| - return result;
|
| + mask >>= 1;
|
| + }
|
| +
|
| + // And finally add the saved shifts.
|
| + ShiftLeft(shifts * power_exponent);
|
| +}
|
| +
|
| +// Precondition: this/other < 16bit.
|
| +uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
|
| + ASSERT(IsClamped());
|
| + ASSERT(other.IsClamped());
|
| + ASSERT(other.used_digits_ > 0);
|
| +
|
| + // Easy case: if we have less digits than the divisor than the result is 0.
|
| + // Note: this handles the case where this == 0, too.
|
| + if (BigitLength() < other.BigitLength()) {
|
| + return 0;
|
| + }
|
| +
|
| + Align(other);
|
| +
|
| + uint16_t result = 0;
|
| +
|
| + // Start by removing multiples of 'other' until both numbers have the same
|
| + // number of digits.
|
| + while (BigitLength() > other.BigitLength()) {
|
| + // This naive approach is extremely inefficient if the this divided other
|
| + // might be big. This function is implemented for doubleToString where
|
| + // the result should be small (less than 10).
|
| + ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
|
| + // Remove the multiples of the first digit.
|
| + // Example this = 23 and other equals 9. -> Remove 2 multiples.
|
| + result += static_cast<uint16_t>(bigits_[used_digits_ - 1]);
|
| + SubtractTimes(other, bigits_[used_digits_ - 1]);
|
| + }
|
| +
|
| + ASSERT(BigitLength() == other.BigitLength());
|
| +
|
| + // Both bignums are at the same length now.
|
| + // Since other has more than 0 digits we know that the access to
|
| + // bigits_[used_digits_ - 1] is safe.
|
| + Chunk this_bigit = bigits_[used_digits_ - 1];
|
| + Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
|
| +
|
| + if (other.used_digits_ == 1) {
|
| + // Shortcut for easy (and common) case.
|
| + uint16_t quotient = static_cast<uint16_t>(this_bigit / other_bigit);
|
| + bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
|
| + result += quotient;
|
| + Clamp();
|
| + return result;
|
| + }
|
| +
|
| + uint16_t division_estimate =
|
| + static_cast<uint16_t>(this_bigit / (other_bigit + 1));
|
| + result += division_estimate;
|
| + SubtractTimes(other, division_estimate);
|
| +
|
| + if (other_bigit * (division_estimate + 1) > this_bigit) {
|
| + // No need to even try to subtract. Even if other's remaining digits were 0
|
| + // another subtraction would be too much.
|
| + return result;
|
| + }
|
| +
|
| + while (LessEqual(other, *this)) {
|
| + SubtractBignum(other);
|
| + result++;
|
| + }
|
| + return result;
|
| +}
|
| +
|
| +template <typename S>
|
| +static int SizeInHexChars(S number) {
|
| + ASSERT(number > 0);
|
| + int result = 0;
|
| + while (number != 0) {
|
| + number >>= 4;
|
| + result++;
|
| + }
|
| + return result;
|
| +}
|
| +
|
| +static char HexCharOfValue(uint8_t value) {
|
| + ASSERT(0 <= value && value <= 16);
|
| + if (value < 10)
|
| + return value + '0';
|
| + return value - 10 + 'A';
|
| +}
|
| +
|
| +bool Bignum::ToHexString(char* buffer, int buffer_size) const {
|
| + ASSERT(IsClamped());
|
| + // Each bigit must be printable as separate hex-character.
|
| + ASSERT(kBigitSize % 4 == 0);
|
| + const int kHexCharsPerBigit = kBigitSize / 4;
|
| +
|
| + if (used_digits_ == 0) {
|
| + if (buffer_size < 2)
|
| + return false;
|
| + buffer[0] = '0';
|
| + buffer[1] = '\0';
|
| + return true;
|
| + }
|
| + // We add 1 for the terminating '\0' character.
|
| + int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
|
| + SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
|
| + if (needed_chars > buffer_size)
|
| + return false;
|
| + int string_index = needed_chars - 1;
|
| + buffer[string_index--] = '\0';
|
| + for (int i = 0; i < exponent_; ++i) {
|
| + for (int j = 0; j < kHexCharsPerBigit; ++j) {
|
| + buffer[string_index--] = '0';
|
| }
|
| -
|
| -
|
| - template<typename S>
|
| - static int SizeInHexChars(S number) {
|
| - ASSERT(number > 0);
|
| - int result = 0;
|
| - while (number != 0) {
|
| - number >>= 4;
|
| - result++;
|
| - }
|
| - return result;
|
| + }
|
| + for (int i = 0; i < used_digits_ - 1; ++i) {
|
| + Chunk current_bigit = bigits_[i];
|
| + for (int j = 0; j < kHexCharsPerBigit; ++j) {
|
| + buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
|
| + current_bigit >>= 4;
|
| }
|
| -
|
| -
|
| - static char HexCharOfValue(uint8_t value) {
|
| - ASSERT(0 <= value && value <= 16);
|
| - if (value < 10) return value + '0';
|
| - return value - 10 + 'A';
|
| - }
|
| -
|
| -
|
| - bool Bignum::ToHexString(char* buffer, int buffer_size) const {
|
| - ASSERT(IsClamped());
|
| - // Each bigit must be printable as separate hex-character.
|
| - ASSERT(kBigitSize % 4 == 0);
|
| - const int kHexCharsPerBigit = kBigitSize / 4;
|
| -
|
| - if (used_digits_ == 0) {
|
| - if (buffer_size < 2) return false;
|
| - buffer[0] = '0';
|
| - buffer[1] = '\0';
|
| - return true;
|
| - }
|
| - // We add 1 for the terminating '\0' character.
|
| - int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
|
| - SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
|
| - if (needed_chars > buffer_size) return false;
|
| - int string_index = needed_chars - 1;
|
| - buffer[string_index--] = '\0';
|
| - for (int i = 0; i < exponent_; ++i) {
|
| - for (int j = 0; j < kHexCharsPerBigit; ++j) {
|
| - buffer[string_index--] = '0';
|
| - }
|
| - }
|
| - for (int i = 0; i < used_digits_ - 1; ++i) {
|
| - Chunk current_bigit = bigits_[i];
|
| - for (int j = 0; j < kHexCharsPerBigit; ++j) {
|
| - buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
|
| - current_bigit >>= 4;
|
| - }
|
| - }
|
| - // And finally the last bigit.
|
| - Chunk most_significant_bigit = bigits_[used_digits_ - 1];
|
| - while (most_significant_bigit != 0) {
|
| - buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
|
| - most_significant_bigit >>= 4;
|
| - }
|
| - return true;
|
| - }
|
| -
|
| -
|
| - Bignum::Chunk Bignum::BigitAt(int index) const {
|
| - if (index >= BigitLength()) return 0;
|
| - if (index < exponent_) return 0;
|
| - return bigits_[index - exponent_];
|
| - }
|
| -
|
| -
|
| - int Bignum::Compare(const Bignum& a, const Bignum& b) {
|
| - ASSERT(a.IsClamped());
|
| - ASSERT(b.IsClamped());
|
| - int bigit_length_a = a.BigitLength();
|
| - int bigit_length_b = b.BigitLength();
|
| - if (bigit_length_a < bigit_length_b) return -1;
|
| - if (bigit_length_a > bigit_length_b) return +1;
|
| - for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
|
| - Chunk bigit_a = a.BigitAt(i);
|
| - Chunk bigit_b = b.BigitAt(i);
|
| - if (bigit_a < bigit_b) return -1;
|
| - if (bigit_a > bigit_b) return +1;
|
| - // Otherwise they are equal up to this digit. Try the next digit.
|
| - }
|
| - return 0;
|
| - }
|
| -
|
| -
|
| - int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
|
| - ASSERT(a.IsClamped());
|
| - ASSERT(b.IsClamped());
|
| - ASSERT(c.IsClamped());
|
| - if (a.BigitLength() < b.BigitLength()) {
|
| - return PlusCompare(b, a, c);
|
| - }
|
| - if (a.BigitLength() + 1 < c.BigitLength()) return -1;
|
| - if (a.BigitLength() > c.BigitLength()) return +1;
|
| - // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
|
| - // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
|
| - // of 'a'.
|
| - if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
|
| - return -1;
|
| - }
|
| -
|
| - Chunk borrow = 0;
|
| - // Starting at min_exponent all digits are == 0. So no need to compare them.
|
| - int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
|
| - for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
|
| - Chunk chunk_a = a.BigitAt(i);
|
| - Chunk chunk_b = b.BigitAt(i);
|
| - Chunk chunk_c = c.BigitAt(i);
|
| - Chunk sum = chunk_a + chunk_b;
|
| - if (sum > chunk_c + borrow) {
|
| - return +1;
|
| - } else {
|
| - borrow = chunk_c + borrow - sum;
|
| - if (borrow > 1) return -1;
|
| - borrow <<= kBigitSize;
|
| - }
|
| - }
|
| - if (borrow == 0) return 0;
|
| + }
|
| + // And finally the last bigit.
|
| + Chunk most_significant_bigit = bigits_[used_digits_ - 1];
|
| + while (most_significant_bigit != 0) {
|
| + buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
|
| + most_significant_bigit >>= 4;
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +Bignum::Chunk Bignum::BigitAt(int index) const {
|
| + if (index >= BigitLength())
|
| + return 0;
|
| + if (index < exponent_)
|
| + return 0;
|
| + return bigits_[index - exponent_];
|
| +}
|
| +
|
| +int Bignum::Compare(const Bignum& a, const Bignum& b) {
|
| + ASSERT(a.IsClamped());
|
| + ASSERT(b.IsClamped());
|
| + int bigit_length_a = a.BigitLength();
|
| + int bigit_length_b = b.BigitLength();
|
| + if (bigit_length_a < bigit_length_b)
|
| + return -1;
|
| + if (bigit_length_a > bigit_length_b)
|
| + return +1;
|
| + for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
|
| + Chunk bigit_a = a.BigitAt(i);
|
| + Chunk bigit_b = b.BigitAt(i);
|
| + if (bigit_a < bigit_b)
|
| + return -1;
|
| + if (bigit_a > bigit_b)
|
| + return +1;
|
| + // Otherwise they are equal up to this digit. Try the next digit.
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
|
| + ASSERT(a.IsClamped());
|
| + ASSERT(b.IsClamped());
|
| + ASSERT(c.IsClamped());
|
| + if (a.BigitLength() < b.BigitLength()) {
|
| + return PlusCompare(b, a, c);
|
| + }
|
| + if (a.BigitLength() + 1 < c.BigitLength())
|
| + return -1;
|
| + if (a.BigitLength() > c.BigitLength())
|
| + return +1;
|
| + // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
|
| + // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
|
| + // of 'a'.
|
| + if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
|
| + return -1;
|
| + }
|
| +
|
| + Chunk borrow = 0;
|
| + // Starting at min_exponent all digits are == 0. So no need to compare them.
|
| + int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
|
| + for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
|
| + Chunk chunk_a = a.BigitAt(i);
|
| + Chunk chunk_b = b.BigitAt(i);
|
| + Chunk chunk_c = c.BigitAt(i);
|
| + Chunk sum = chunk_a + chunk_b;
|
| + if (sum > chunk_c + borrow) {
|
| + return +1;
|
| + } else {
|
| + borrow = chunk_c + borrow - sum;
|
| + if (borrow > 1)
|
| return -1;
|
| + borrow <<= kBigitSize;
|
| }
|
| -
|
| -
|
| - void Bignum::Clamp() {
|
| - while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
|
| - used_digits_--;
|
| - }
|
| - if (used_digits_ == 0) {
|
| - // Zero.
|
| - exponent_ = 0;
|
| - }
|
| - }
|
| -
|
| -
|
| - bool Bignum::IsClamped() const {
|
| - return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
|
| - }
|
| -
|
| -
|
| - void Bignum::Zero() {
|
| - for (int i = 0; i < used_digits_; ++i) {
|
| - bigits_[i] = 0;
|
| - }
|
| - used_digits_ = 0;
|
| - exponent_ = 0;
|
| - }
|
| -
|
| -
|
| - void Bignum::Align(const Bignum& other) {
|
| - if (exponent_ > other.exponent_) {
|
| - // If "X" represents a "hidden" digit (by the exponent) then we are in the
|
| - // following case (a == this, b == other):
|
| - // a: aaaaaaXXXX or a: aaaaaXXX
|
| - // b: bbbbbbX b: bbbbbbbbXX
|
| - // We replace some of the hidden digits (X) of a with 0 digits.
|
| - // a: aaaaaa000X or a: aaaaa0XX
|
| - int zero_digits = exponent_ - other.exponent_;
|
| - EnsureCapacity(used_digits_ + zero_digits);
|
| - for (int i = used_digits_ - 1; i >= 0; --i) {
|
| - bigits_[i + zero_digits] = bigits_[i];
|
| - }
|
| - for (int i = 0; i < zero_digits; ++i) {
|
| - bigits_[i] = 0;
|
| - }
|
| - used_digits_ += zero_digits;
|
| - exponent_ -= zero_digits;
|
| - ASSERT(used_digits_ >= 0);
|
| - ASSERT(exponent_ >= 0);
|
| - }
|
| + }
|
| + if (borrow == 0)
|
| + return 0;
|
| + return -1;
|
| +}
|
| +
|
| +void Bignum::Clamp() {
|
| + while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
|
| + used_digits_--;
|
| + }
|
| + if (used_digits_ == 0) {
|
| + // Zero.
|
| + exponent_ = 0;
|
| + }
|
| +}
|
| +
|
| +bool Bignum::IsClamped() const {
|
| + return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
|
| +}
|
| +
|
| +void Bignum::Zero() {
|
| + for (int i = 0; i < used_digits_; ++i) {
|
| + bigits_[i] = 0;
|
| + }
|
| + used_digits_ = 0;
|
| + exponent_ = 0;
|
| +}
|
| +
|
| +void Bignum::Align(const Bignum& other) {
|
| + if (exponent_ > other.exponent_) {
|
| + // If "X" represents a "hidden" digit (by the exponent) then we are in the
|
| + // following case (a == this, b == other):
|
| + // a: aaaaaaXXXX or a: aaaaaXXX
|
| + // b: bbbbbbX b: bbbbbbbbXX
|
| + // We replace some of the hidden digits (X) of a with 0 digits.
|
| + // a: aaaaaa000X or a: aaaaa0XX
|
| + int zero_digits = exponent_ - other.exponent_;
|
| + EnsureCapacity(used_digits_ + zero_digits);
|
| + for (int i = used_digits_ - 1; i >= 0; --i) {
|
| + bigits_[i + zero_digits] = bigits_[i];
|
| }
|
| -
|
| -
|
| - void Bignum::BigitsShiftLeft(int shift_amount) {
|
| - ASSERT(shift_amount < kBigitSize);
|
| - ASSERT(shift_amount >= 0);
|
| - Chunk carry = 0;
|
| - for (int i = 0; i < used_digits_; ++i) {
|
| - Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
|
| - bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
|
| - carry = new_carry;
|
| - }
|
| - if (carry != 0) {
|
| - bigits_[used_digits_] = carry;
|
| - used_digits_++;
|
| - }
|
| + for (int i = 0; i < zero_digits; ++i) {
|
| + bigits_[i] = 0;
|
| }
|
| -
|
| -
|
| - void Bignum::SubtractTimes(const Bignum& other, int factor) {
|
| - ASSERT(exponent_ <= other.exponent_);
|
| - if (factor < 3) {
|
| - for (int i = 0; i < factor; ++i) {
|
| - SubtractBignum(other);
|
| - }
|
| - return;
|
| - }
|
| - Chunk borrow = 0;
|
| - int exponent_diff = other.exponent_ - exponent_;
|
| - for (int i = 0; i < other.used_digits_; ++i) {
|
| - DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
|
| - DoubleChunk remove = borrow + product;
|
| - Chunk difference = bigits_[i + exponent_diff] - ((uint32_t)remove & kBigitMask);
|
| - bigits_[i + exponent_diff] = difference & kBigitMask;
|
| - borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
|
| - (remove >> kBigitSize));
|
| - }
|
| - for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
|
| - if (borrow == 0) return;
|
| - Chunk difference = bigits_[i] - borrow;
|
| - bigits_[i] = difference & kBigitMask;
|
| - borrow = difference >> (kChunkSize - 1);
|
| - }
|
| - Clamp();
|
| + used_digits_ += zero_digits;
|
| + exponent_ -= zero_digits;
|
| + ASSERT(used_digits_ >= 0);
|
| + ASSERT(exponent_ >= 0);
|
| + }
|
| +}
|
| +
|
| +void Bignum::BigitsShiftLeft(int shift_amount) {
|
| + ASSERT(shift_amount < kBigitSize);
|
| + ASSERT(shift_amount >= 0);
|
| + Chunk carry = 0;
|
| + for (int i = 0; i < used_digits_; ++i) {
|
| + Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
|
| + bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
|
| + carry = new_carry;
|
| + }
|
| + if (carry != 0) {
|
| + bigits_[used_digits_] = carry;
|
| + used_digits_++;
|
| + }
|
| +}
|
| +
|
| +void Bignum::SubtractTimes(const Bignum& other, int factor) {
|
| + ASSERT(exponent_ <= other.exponent_);
|
| + if (factor < 3) {
|
| + for (int i = 0; i < factor; ++i) {
|
| + SubtractBignum(other);
|
| }
|
| -
|
| + return;
|
| + }
|
| + Chunk borrow = 0;
|
| + int exponent_diff = other.exponent_ - exponent_;
|
| + for (int i = 0; i < other.used_digits_; ++i) {
|
| + DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
|
| + DoubleChunk remove = borrow + product;
|
| + Chunk difference =
|
| + bigits_[i + exponent_diff] - ((uint32_t)remove & kBigitMask);
|
| + bigits_[i + exponent_diff] = difference & kBigitMask;
|
| + borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
|
| + (remove >> kBigitSize));
|
| + }
|
| + for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
|
| + if (borrow == 0)
|
| + return;
|
| + Chunk difference = bigits_[i] - borrow;
|
| + bigits_[i] = difference & kBigitMask;
|
| + borrow = difference >> (kChunkSize - 1);
|
| + }
|
| + Clamp();
|
| +}
|
|
|
| } // namespace double_conversion
|
|
|
| -} // namespace WTF
|
| +} // namespace WTF
|
|
|