| Index: third_party/WebKit/Source/wtf/dtoa/bignum.cc
 | 
| diff --git a/third_party/WebKit/Source/wtf/dtoa/bignum.cc b/third_party/WebKit/Source/wtf/dtoa/bignum.cc
 | 
| index dd6dd2e3b9abe2eec352874330e1191a70f42603..b3c68ed772172c61e7673c626112898f072edcbd 100644
 | 
| --- a/third_party/WebKit/Source/wtf/dtoa/bignum.cc
 | 
| +++ b/third_party/WebKit/Source/wtf/dtoa/bignum.cc
 | 
| @@ -33,736 +33,735 @@ namespace WTF {
 | 
|  
 | 
|  namespace double_conversion {
 | 
|  
 | 
| -    Bignum::Bignum()
 | 
| +Bignum::Bignum()
 | 
|      : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
 | 
| -        for (int i = 0; i < kBigitCapacity; ++i) {
 | 
| -            bigits_[i] = 0;
 | 
| -        }
 | 
| +  for (int i = 0; i < kBigitCapacity; ++i) {
 | 
| +    bigits_[i] = 0;
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +template <typename S>
 | 
| +static int BitSize(S value) {
 | 
| +  return 8 * sizeof(value);
 | 
| +}
 | 
| +
 | 
| +// Guaranteed to lie in one Bigit.
 | 
| +void Bignum::AssignUInt16(uint16_t value) {
 | 
| +  ASSERT(kBigitSize >= BitSize(value));
 | 
| +  Zero();
 | 
| +  if (value == 0)
 | 
| +    return;
 | 
| +
 | 
| +  EnsureCapacity(1);
 | 
| +  bigits_[0] = value;
 | 
| +  used_digits_ = 1;
 | 
| +}
 | 
| +
 | 
| +void Bignum::AssignUInt64(uint64_t value) {
 | 
| +  const int kUInt64Size = 64;
 | 
| +
 | 
| +  Zero();
 | 
| +  if (value == 0)
 | 
| +    return;
 | 
| +
 | 
| +  int needed_bigits = kUInt64Size / kBigitSize + 1;
 | 
| +  EnsureCapacity(needed_bigits);
 | 
| +  for (int i = 0; i < needed_bigits; ++i) {
 | 
| +    bigits_[i] = (uint32_t)value & kBigitMask;
 | 
| +    value = value >> kBigitSize;
 | 
| +  }
 | 
| +  used_digits_ = needed_bigits;
 | 
| +  Clamp();
 | 
| +}
 | 
| +
 | 
| +void Bignum::AssignBignum(const Bignum& other) {
 | 
| +  exponent_ = other.exponent_;
 | 
| +  for (int i = 0; i < other.used_digits_; ++i) {
 | 
| +    bigits_[i] = other.bigits_[i];
 | 
| +  }
 | 
| +  // Clear the excess digits (if there were any).
 | 
| +  for (int i = other.used_digits_; i < used_digits_; ++i) {
 | 
| +    bigits_[i] = 0;
 | 
| +  }
 | 
| +  used_digits_ = other.used_digits_;
 | 
| +}
 | 
| +
 | 
| +static uint64_t ReadUInt64(Vector<const char> buffer,
 | 
| +                           int from,
 | 
| +                           int digits_to_read) {
 | 
| +  uint64_t result = 0;
 | 
| +  for (int i = from; i < from + digits_to_read; ++i) {
 | 
| +    int digit = buffer[i] - '0';
 | 
| +    ASSERT(0 <= digit && digit <= 9);
 | 
| +    result = result * 10 + digit;
 | 
| +  }
 | 
| +  return result;
 | 
| +}
 | 
| +
 | 
| +void Bignum::AssignDecimalString(Vector<const char> value) {
 | 
| +  // 2^64 = 18446744073709551616 > 10^19
 | 
| +  const int kMaxUint64DecimalDigits = 19;
 | 
| +  Zero();
 | 
| +  int length = value.length();
 | 
| +  int pos = 0;
 | 
| +  // Let's just say that each digit needs 4 bits.
 | 
| +  while (length >= kMaxUint64DecimalDigits) {
 | 
| +    uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
 | 
| +    pos += kMaxUint64DecimalDigits;
 | 
| +    length -= kMaxUint64DecimalDigits;
 | 
| +    MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
 | 
| +    AddUInt64(digits);
 | 
| +  }
 | 
| +  uint64_t digits = ReadUInt64(value, pos, length);
 | 
| +  MultiplyByPowerOfTen(length);
 | 
| +  AddUInt64(digits);
 | 
| +  Clamp();
 | 
| +}
 | 
| +
 | 
| +static int HexCharValue(char c) {
 | 
| +  if ('0' <= c && c <= '9')
 | 
| +    return c - '0';
 | 
| +  if ('a' <= c && c <= 'f')
 | 
| +    return 10 + c - 'a';
 | 
| +  if ('A' <= c && c <= 'F')
 | 
| +    return 10 + c - 'A';
 | 
| +  UNREACHABLE();
 | 
| +  return 0;  // To make compiler happy.
 | 
| +}
 | 
| +
 | 
| +void Bignum::AssignHexString(Vector<const char> value) {
 | 
| +  Zero();
 | 
| +  int length = value.length();
 | 
| +
 | 
| +  int needed_bigits = length * 4 / kBigitSize + 1;
 | 
| +  EnsureCapacity(needed_bigits);
 | 
| +  int string_index = length - 1;
 | 
| +  for (int i = 0; i < needed_bigits - 1; ++i) {
 | 
| +    // These bigits are guaranteed to be "full".
 | 
| +    Chunk current_bigit = 0;
 | 
| +    for (int j = 0; j < kBigitSize / 4; j++) {
 | 
| +      current_bigit += HexCharValue(value[string_index--]) << (j * 4);
 | 
|      }
 | 
| -
 | 
| -
 | 
| -    template<typename S>
 | 
| -    static int BitSize(S value) {
 | 
| -        return 8 * sizeof(value);
 | 
| -    }
 | 
| -
 | 
| -    // Guaranteed to lie in one Bigit.
 | 
| -    void Bignum::AssignUInt16(uint16_t value) {
 | 
| -        ASSERT(kBigitSize >= BitSize(value));
 | 
| -        Zero();
 | 
| -        if (value == 0) return;
 | 
| -
 | 
| -        EnsureCapacity(1);
 | 
| -        bigits_[0] = value;
 | 
| -        used_digits_ = 1;
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    void Bignum::AssignUInt64(uint64_t value) {
 | 
| -        const int kUInt64Size = 64;
 | 
| -
 | 
| -        Zero();
 | 
| -        if (value == 0) return;
 | 
| -
 | 
| -        int needed_bigits = kUInt64Size / kBigitSize + 1;
 | 
| -        EnsureCapacity(needed_bigits);
 | 
| -        for (int i = 0; i < needed_bigits; ++i) {
 | 
| -            bigits_[i] = (uint32_t)value & kBigitMask;
 | 
| -            value = value >> kBigitSize;
 | 
| -        }
 | 
| -        used_digits_ = needed_bigits;
 | 
| -        Clamp();
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    void Bignum::AssignBignum(const Bignum& other) {
 | 
| -        exponent_ = other.exponent_;
 | 
| -        for (int i = 0; i < other.used_digits_; ++i) {
 | 
| -            bigits_[i] = other.bigits_[i];
 | 
| -        }
 | 
| -        // Clear the excess digits (if there were any).
 | 
| -        for (int i = other.used_digits_; i < used_digits_; ++i) {
 | 
| -            bigits_[i] = 0;
 | 
| -        }
 | 
| -        used_digits_ = other.used_digits_;
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    static uint64_t ReadUInt64(Vector<const char> buffer,
 | 
| -                               int from,
 | 
| -                               int digits_to_read) {
 | 
| -        uint64_t result = 0;
 | 
| -        for (int i = from; i < from + digits_to_read; ++i) {
 | 
| -            int digit = buffer[i] - '0';
 | 
| -            ASSERT(0 <= digit && digit <= 9);
 | 
| -            result = result * 10 + digit;
 | 
| -        }
 | 
| -        return result;
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    void Bignum::AssignDecimalString(Vector<const char> value) {
 | 
| -        // 2^64 = 18446744073709551616 > 10^19
 | 
| -        const int kMaxUint64DecimalDigits = 19;
 | 
| -        Zero();
 | 
| -        int length = value.length();
 | 
| -        int pos = 0;
 | 
| -        // Let's just say that each digit needs 4 bits.
 | 
| -        while (length >= kMaxUint64DecimalDigits) {
 | 
| -            uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
 | 
| -            pos += kMaxUint64DecimalDigits;
 | 
| -            length -= kMaxUint64DecimalDigits;
 | 
| -            MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
 | 
| -            AddUInt64(digits);
 | 
| -        }
 | 
| -        uint64_t digits = ReadUInt64(value, pos, length);
 | 
| -        MultiplyByPowerOfTen(length);
 | 
| -        AddUInt64(digits);
 | 
| -        Clamp();
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    static int HexCharValue(char c) {
 | 
| -        if ('0' <= c && c <= '9') return c - '0';
 | 
| -        if ('a' <= c && c <= 'f') return 10 + c - 'a';
 | 
| -        if ('A' <= c && c <= 'F') return 10 + c - 'A';
 | 
| -        UNREACHABLE();
 | 
| -        return 0;  // To make compiler happy.
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    void Bignum::AssignHexString(Vector<const char> value) {
 | 
| -        Zero();
 | 
| -        int length = value.length();
 | 
| -
 | 
| -        int needed_bigits = length * 4 / kBigitSize + 1;
 | 
| -        EnsureCapacity(needed_bigits);
 | 
| -        int string_index = length - 1;
 | 
| -        for (int i = 0; i < needed_bigits - 1; ++i) {
 | 
| -            // These bigits are guaranteed to be "full".
 | 
| -            Chunk current_bigit = 0;
 | 
| -            for (int j = 0; j < kBigitSize / 4; j++) {
 | 
| -                current_bigit += HexCharValue(value[string_index--]) << (j * 4);
 | 
| -            }
 | 
| -            bigits_[i] = current_bigit;
 | 
| -        }
 | 
| -        used_digits_ = needed_bigits - 1;
 | 
| -
 | 
| -        Chunk most_significant_bigit = 0;  // Could be = 0;
 | 
| -        for (int j = 0; j <= string_index; ++j) {
 | 
| -            most_significant_bigit <<= 4;
 | 
| -            most_significant_bigit += HexCharValue(value[j]);
 | 
| -        }
 | 
| -        if (most_significant_bigit != 0) {
 | 
| -            bigits_[used_digits_] = most_significant_bigit;
 | 
| -            used_digits_++;
 | 
| -        }
 | 
| -        Clamp();
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    void Bignum::AddUInt64(uint64_t operand) {
 | 
| -        if (operand == 0) return;
 | 
| -        Bignum other;
 | 
| -        other.AssignUInt64(operand);
 | 
| -        AddBignum(other);
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    void Bignum::AddBignum(const Bignum& other) {
 | 
| -        ASSERT(IsClamped());
 | 
| -        ASSERT(other.IsClamped());
 | 
| -
 | 
| -        // If this has a greater exponent than other append zero-bigits to this.
 | 
| -        // After this call exponent_ <= other.exponent_.
 | 
| -        Align(other);
 | 
| -
 | 
| -        // There are two possibilities:
 | 
| -        //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent)
 | 
| -        //     bbbbb 00000000
 | 
| -        //   ----------------
 | 
| -        //   ccccccccccc 0000
 | 
| -        // or
 | 
| -        //    aaaaaaaaaa 0000
 | 
| -        //  bbbbbbbbb 0000000
 | 
| -        //  -----------------
 | 
| -        //  cccccccccccc 0000
 | 
| -        // In both cases we might need a carry bigit.
 | 
| -
 | 
| -        EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
 | 
| -        Chunk carry = 0;
 | 
| -        int bigit_pos = other.exponent_ - exponent_;
 | 
| -        ASSERT(bigit_pos >= 0);
 | 
| -        for (int i = 0; i < other.used_digits_; ++i) {
 | 
| -            Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
 | 
| -            bigits_[bigit_pos] = sum & kBigitMask;
 | 
| -            carry = sum >> kBigitSize;
 | 
| -            bigit_pos++;
 | 
| -        }
 | 
| -
 | 
| -        while (carry != 0) {
 | 
| -            Chunk sum = bigits_[bigit_pos] + carry;
 | 
| -            bigits_[bigit_pos] = sum & kBigitMask;
 | 
| -            carry = sum >> kBigitSize;
 | 
| -            bigit_pos++;
 | 
| -        }
 | 
| -        used_digits_ = Max(bigit_pos, used_digits_);
 | 
| -        ASSERT(IsClamped());
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    void Bignum::SubtractBignum(const Bignum& other) {
 | 
| -        ASSERT(IsClamped());
 | 
| -        ASSERT(other.IsClamped());
 | 
| -        // We require this to be bigger than other.
 | 
| -        ASSERT(LessEqual(other, *this));
 | 
| -
 | 
| -        Align(other);
 | 
| -
 | 
| -        int offset = other.exponent_ - exponent_;
 | 
| -        Chunk borrow = 0;
 | 
| -        int i;
 | 
| -        for (i = 0; i < other.used_digits_; ++i) {
 | 
| -            ASSERT((borrow == 0) || (borrow == 1));
 | 
| -            Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
 | 
| -            bigits_[i + offset] = difference & kBigitMask;
 | 
| -            borrow = difference >> (kChunkSize - 1);
 | 
| -        }
 | 
| -        while (borrow != 0) {
 | 
| -            Chunk difference = bigits_[i + offset] - borrow;
 | 
| -            bigits_[i + offset] = difference & kBigitMask;
 | 
| -            borrow = difference >> (kChunkSize - 1);
 | 
| -            ++i;
 | 
| -        }
 | 
| -        Clamp();
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    void Bignum::ShiftLeft(int shift_amount) {
 | 
| -        if (used_digits_ == 0) return;
 | 
| -        exponent_ += shift_amount / kBigitSize;
 | 
| -        int local_shift = shift_amount % kBigitSize;
 | 
| -        EnsureCapacity(used_digits_ + 1);
 | 
| -        BigitsShiftLeft(local_shift);
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    void Bignum::MultiplyByUInt32(uint32_t factor) {
 | 
| -        if (factor == 1) return;
 | 
| -        if (factor == 0) {
 | 
| -            Zero();
 | 
| -            return;
 | 
| -        }
 | 
| -        if (used_digits_ == 0) return;
 | 
| -
 | 
| -        // The product of a bigit with the factor is of size kBigitSize + 32.
 | 
| -        // Assert that this number + 1 (for the carry) fits into double chunk.
 | 
| -        ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
 | 
| -        DoubleChunk carry = 0;
 | 
| -        for (int i = 0; i < used_digits_; ++i) {
 | 
| -            DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
 | 
| -            bigits_[i] = static_cast<Chunk>(product & kBigitMask);
 | 
| -            carry = (product >> kBigitSize);
 | 
| -        }
 | 
| -        while (carry != 0) {
 | 
| -            EnsureCapacity(used_digits_ + 1);
 | 
| -            bigits_[used_digits_] = (uint32_t)carry & kBigitMask;
 | 
| -            used_digits_++;
 | 
| -            carry >>= kBigitSize;
 | 
| -        }
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    void Bignum::MultiplyByUInt64(uint64_t factor) {
 | 
| -        if (factor == 1) return;
 | 
| -        if (factor == 0) {
 | 
| -            Zero();
 | 
| -            return;
 | 
| -        }
 | 
| -        ASSERT(kBigitSize < 32);
 | 
| -        uint64_t carry = 0;
 | 
| -        uint64_t low = factor & 0xFFFFFFFF;
 | 
| -        uint64_t high = factor >> 32;
 | 
| -        for (int i = 0; i < used_digits_; ++i) {
 | 
| -            uint64_t product_low = low * bigits_[i];
 | 
| -            uint64_t product_high = high * bigits_[i];
 | 
| -            uint64_t tmp = (carry & kBigitMask) + product_low;
 | 
| -            bigits_[i] = (uint32_t)tmp & kBigitMask;
 | 
| -            carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
 | 
| +    bigits_[i] = current_bigit;
 | 
| +  }
 | 
| +  used_digits_ = needed_bigits - 1;
 | 
| +
 | 
| +  Chunk most_significant_bigit = 0;  // Could be = 0;
 | 
| +  for (int j = 0; j <= string_index; ++j) {
 | 
| +    most_significant_bigit <<= 4;
 | 
| +    most_significant_bigit += HexCharValue(value[j]);
 | 
| +  }
 | 
| +  if (most_significant_bigit != 0) {
 | 
| +    bigits_[used_digits_] = most_significant_bigit;
 | 
| +    used_digits_++;
 | 
| +  }
 | 
| +  Clamp();
 | 
| +}
 | 
| +
 | 
| +void Bignum::AddUInt64(uint64_t operand) {
 | 
| +  if (operand == 0)
 | 
| +    return;
 | 
| +  Bignum other;
 | 
| +  other.AssignUInt64(operand);
 | 
| +  AddBignum(other);
 | 
| +}
 | 
| +
 | 
| +void Bignum::AddBignum(const Bignum& other) {
 | 
| +  ASSERT(IsClamped());
 | 
| +  ASSERT(other.IsClamped());
 | 
| +
 | 
| +  // If this has a greater exponent than other append zero-bigits to this.
 | 
| +  // After this call exponent_ <= other.exponent_.
 | 
| +  Align(other);
 | 
| +
 | 
| +  // There are two possibilities:
 | 
| +  //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent)
 | 
| +  //     bbbbb 00000000
 | 
| +  //   ----------------
 | 
| +  //   ccccccccccc 0000
 | 
| +  // or
 | 
| +  //    aaaaaaaaaa 0000
 | 
| +  //  bbbbbbbbb 0000000
 | 
| +  //  -----------------
 | 
| +  //  cccccccccccc 0000
 | 
| +  // In both cases we might need a carry bigit.
 | 
| +
 | 
| +  EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
 | 
| +  Chunk carry = 0;
 | 
| +  int bigit_pos = other.exponent_ - exponent_;
 | 
| +  ASSERT(bigit_pos >= 0);
 | 
| +  for (int i = 0; i < other.used_digits_; ++i) {
 | 
| +    Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
 | 
| +    bigits_[bigit_pos] = sum & kBigitMask;
 | 
| +    carry = sum >> kBigitSize;
 | 
| +    bigit_pos++;
 | 
| +  }
 | 
| +
 | 
| +  while (carry != 0) {
 | 
| +    Chunk sum = bigits_[bigit_pos] + carry;
 | 
| +    bigits_[bigit_pos] = sum & kBigitMask;
 | 
| +    carry = sum >> kBigitSize;
 | 
| +    bigit_pos++;
 | 
| +  }
 | 
| +  used_digits_ = Max(bigit_pos, used_digits_);
 | 
| +  ASSERT(IsClamped());
 | 
| +}
 | 
| +
 | 
| +void Bignum::SubtractBignum(const Bignum& other) {
 | 
| +  ASSERT(IsClamped());
 | 
| +  ASSERT(other.IsClamped());
 | 
| +  // We require this to be bigger than other.
 | 
| +  ASSERT(LessEqual(other, *this));
 | 
| +
 | 
| +  Align(other);
 | 
| +
 | 
| +  int offset = other.exponent_ - exponent_;
 | 
| +  Chunk borrow = 0;
 | 
| +  int i;
 | 
| +  for (i = 0; i < other.used_digits_; ++i) {
 | 
| +    ASSERT((borrow == 0) || (borrow == 1));
 | 
| +    Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
 | 
| +    bigits_[i + offset] = difference & kBigitMask;
 | 
| +    borrow = difference >> (kChunkSize - 1);
 | 
| +  }
 | 
| +  while (borrow != 0) {
 | 
| +    Chunk difference = bigits_[i + offset] - borrow;
 | 
| +    bigits_[i + offset] = difference & kBigitMask;
 | 
| +    borrow = difference >> (kChunkSize - 1);
 | 
| +    ++i;
 | 
| +  }
 | 
| +  Clamp();
 | 
| +}
 | 
| +
 | 
| +void Bignum::ShiftLeft(int shift_amount) {
 | 
| +  if (used_digits_ == 0)
 | 
| +    return;
 | 
| +  exponent_ += shift_amount / kBigitSize;
 | 
| +  int local_shift = shift_amount % kBigitSize;
 | 
| +  EnsureCapacity(used_digits_ + 1);
 | 
| +  BigitsShiftLeft(local_shift);
 | 
| +}
 | 
| +
 | 
| +void Bignum::MultiplyByUInt32(uint32_t factor) {
 | 
| +  if (factor == 1)
 | 
| +    return;
 | 
| +  if (factor == 0) {
 | 
| +    Zero();
 | 
| +    return;
 | 
| +  }
 | 
| +  if (used_digits_ == 0)
 | 
| +    return;
 | 
| +
 | 
| +  // The product of a bigit with the factor is of size kBigitSize + 32.
 | 
| +  // Assert that this number + 1 (for the carry) fits into double chunk.
 | 
| +  ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
 | 
| +  DoubleChunk carry = 0;
 | 
| +  for (int i = 0; i < used_digits_; ++i) {
 | 
| +    DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
 | 
| +    bigits_[i] = static_cast<Chunk>(product & kBigitMask);
 | 
| +    carry = (product >> kBigitSize);
 | 
| +  }
 | 
| +  while (carry != 0) {
 | 
| +    EnsureCapacity(used_digits_ + 1);
 | 
| +    bigits_[used_digits_] = (uint32_t)carry & kBigitMask;
 | 
| +    used_digits_++;
 | 
| +    carry >>= kBigitSize;
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +void Bignum::MultiplyByUInt64(uint64_t factor) {
 | 
| +  if (factor == 1)
 | 
| +    return;
 | 
| +  if (factor == 0) {
 | 
| +    Zero();
 | 
| +    return;
 | 
| +  }
 | 
| +  ASSERT(kBigitSize < 32);
 | 
| +  uint64_t carry = 0;
 | 
| +  uint64_t low = factor & 0xFFFFFFFF;
 | 
| +  uint64_t high = factor >> 32;
 | 
| +  for (int i = 0; i < used_digits_; ++i) {
 | 
| +    uint64_t product_low = low * bigits_[i];
 | 
| +    uint64_t product_high = high * bigits_[i];
 | 
| +    uint64_t tmp = (carry & kBigitMask) + product_low;
 | 
| +    bigits_[i] = (uint32_t)tmp & kBigitMask;
 | 
| +    carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
 | 
|              (product_high << (32 - kBigitSize));
 | 
| -        }
 | 
| -        while (carry != 0) {
 | 
| -            EnsureCapacity(used_digits_ + 1);
 | 
| -            bigits_[used_digits_] = (uint32_t)carry & kBigitMask;
 | 
| -            used_digits_++;
 | 
| -            carry >>= kBigitSize;
 | 
| -        }
 | 
| +  }
 | 
| +  while (carry != 0) {
 | 
| +    EnsureCapacity(used_digits_ + 1);
 | 
| +    bigits_[used_digits_] = (uint32_t)carry & kBigitMask;
 | 
| +    used_digits_++;
 | 
| +    carry >>= kBigitSize;
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +void Bignum::MultiplyByPowerOfTen(int exponent) {
 | 
| +  const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d);
 | 
| +  const uint16_t kFive1 = 5;
 | 
| +  const uint16_t kFive2 = kFive1 * 5;
 | 
| +  const uint16_t kFive3 = kFive2 * 5;
 | 
| +  const uint16_t kFive4 = kFive3 * 5;
 | 
| +  const uint16_t kFive5 = kFive4 * 5;
 | 
| +  const uint16_t kFive6 = kFive5 * 5;
 | 
| +  const uint32_t kFive7 = kFive6 * 5;
 | 
| +  const uint32_t kFive8 = kFive7 * 5;
 | 
| +  const uint32_t kFive9 = kFive8 * 5;
 | 
| +  const uint32_t kFive10 = kFive9 * 5;
 | 
| +  const uint32_t kFive11 = kFive10 * 5;
 | 
| +  const uint32_t kFive12 = kFive11 * 5;
 | 
| +  const uint32_t kFive13 = kFive12 * 5;
 | 
| +  const uint32_t kFive1_to_12[] = {kFive1, kFive2,  kFive3,  kFive4,
 | 
| +                                   kFive5, kFive6,  kFive7,  kFive8,
 | 
| +                                   kFive9, kFive10, kFive11, kFive12};
 | 
| +
 | 
| +  ASSERT(exponent >= 0);
 | 
| +  if (exponent == 0)
 | 
| +    return;
 | 
| +  if (used_digits_ == 0)
 | 
| +    return;
 | 
| +
 | 
| +  // We shift by exponent at the end just before returning.
 | 
| +  int remaining_exponent = exponent;
 | 
| +  while (remaining_exponent >= 27) {
 | 
| +    MultiplyByUInt64(kFive27);
 | 
| +    remaining_exponent -= 27;
 | 
| +  }
 | 
| +  while (remaining_exponent >= 13) {
 | 
| +    MultiplyByUInt32(kFive13);
 | 
| +    remaining_exponent -= 13;
 | 
| +  }
 | 
| +  if (remaining_exponent > 0) {
 | 
| +    MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
 | 
| +  }
 | 
| +  ShiftLeft(exponent);
 | 
| +}
 | 
| +
 | 
| +void Bignum::Square() {
 | 
| +  ASSERT(IsClamped());
 | 
| +  int product_length = 2 * used_digits_;
 | 
| +  EnsureCapacity(product_length);
 | 
| +
 | 
| +  // Comba multiplication: compute each column separately.
 | 
| +  // Example: r = a2a1a0 * b2b1b0.
 | 
| +  //    r =  1    * a0b0 +
 | 
| +  //        10    * (a1b0 + a0b1) +
 | 
| +  //        100   * (a2b0 + a1b1 + a0b2) +
 | 
| +  //        1000  * (a2b1 + a1b2) +
 | 
| +  //        10000 * a2b2
 | 
| +  //
 | 
| +  // In the worst case we have to accumulate nb-digits products of digit*digit.
 | 
| +  //
 | 
| +  // Assert that the additional number of bits in a DoubleChunk are enough to
 | 
| +  // sum up used_digits of Bigit*Bigit.
 | 
| +  if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
 | 
| +    UNIMPLEMENTED();
 | 
| +  }
 | 
| +  DoubleChunk accumulator = 0;
 | 
| +  // First shift the digits so we don't overwrite them.
 | 
| +  int copy_offset = used_digits_;
 | 
| +  for (int i = 0; i < used_digits_; ++i) {
 | 
| +    bigits_[copy_offset + i] = bigits_[i];
 | 
| +  }
 | 
| +  // We have two loops to avoid some 'if's in the loop.
 | 
| +  for (int i = 0; i < used_digits_; ++i) {
 | 
| +    // Process temporary digit i with power i.
 | 
| +    // The sum of the two indices must be equal to i.
 | 
| +    int bigit_index1 = i;
 | 
| +    int bigit_index2 = 0;
 | 
| +    // Sum all of the sub-products.
 | 
| +    while (bigit_index1 >= 0) {
 | 
| +      Chunk chunk1 = bigits_[copy_offset + bigit_index1];
 | 
| +      Chunk chunk2 = bigits_[copy_offset + bigit_index2];
 | 
| +      accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
 | 
| +      bigit_index1--;
 | 
| +      bigit_index2++;
 | 
|      }
 | 
| -
 | 
| -
 | 
| -    void Bignum::MultiplyByPowerOfTen(int exponent) {
 | 
| -        const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d);
 | 
| -        const uint16_t kFive1 = 5;
 | 
| -        const uint16_t kFive2 = kFive1 * 5;
 | 
| -        const uint16_t kFive3 = kFive2 * 5;
 | 
| -        const uint16_t kFive4 = kFive3 * 5;
 | 
| -        const uint16_t kFive5 = kFive4 * 5;
 | 
| -        const uint16_t kFive6 = kFive5 * 5;
 | 
| -        const uint32_t kFive7 = kFive6 * 5;
 | 
| -        const uint32_t kFive8 = kFive7 * 5;
 | 
| -        const uint32_t kFive9 = kFive8 * 5;
 | 
| -        const uint32_t kFive10 = kFive9 * 5;
 | 
| -        const uint32_t kFive11 = kFive10 * 5;
 | 
| -        const uint32_t kFive12 = kFive11 * 5;
 | 
| -        const uint32_t kFive13 = kFive12 * 5;
 | 
| -        const uint32_t kFive1_to_12[] =
 | 
| -        { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
 | 
| -            kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
 | 
| -
 | 
| -        ASSERT(exponent >= 0);
 | 
| -        if (exponent == 0) return;
 | 
| -        if (used_digits_ == 0) return;
 | 
| -
 | 
| -        // We shift by exponent at the end just before returning.
 | 
| -        int remaining_exponent = exponent;
 | 
| -        while (remaining_exponent >= 27) {
 | 
| -            MultiplyByUInt64(kFive27);
 | 
| -            remaining_exponent -= 27;
 | 
| -        }
 | 
| -        while (remaining_exponent >= 13) {
 | 
| -            MultiplyByUInt32(kFive13);
 | 
| -            remaining_exponent -= 13;
 | 
| -        }
 | 
| -        if (remaining_exponent > 0) {
 | 
| -            MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
 | 
| -        }
 | 
| -        ShiftLeft(exponent);
 | 
| +    bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
 | 
| +    accumulator >>= kBigitSize;
 | 
| +  }
 | 
| +  for (int i = used_digits_; i < product_length; ++i) {
 | 
| +    int bigit_index1 = used_digits_ - 1;
 | 
| +    int bigit_index2 = i - bigit_index1;
 | 
| +    // Invariant: sum of both indices is again equal to i.
 | 
| +    // Inner loop runs 0 times on last iteration, emptying accumulator.
 | 
| +    while (bigit_index2 < used_digits_) {
 | 
| +      Chunk chunk1 = bigits_[copy_offset + bigit_index1];
 | 
| +      Chunk chunk2 = bigits_[copy_offset + bigit_index2];
 | 
| +      accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
 | 
| +      bigit_index1--;
 | 
| +      bigit_index2++;
 | 
|      }
 | 
| -
 | 
| -
 | 
| -    void Bignum::Square() {
 | 
| -        ASSERT(IsClamped());
 | 
| -        int product_length = 2 * used_digits_;
 | 
| -        EnsureCapacity(product_length);
 | 
| -
 | 
| -        // Comba multiplication: compute each column separately.
 | 
| -        // Example: r = a2a1a0 * b2b1b0.
 | 
| -        //    r =  1    * a0b0 +
 | 
| -        //        10    * (a1b0 + a0b1) +
 | 
| -        //        100   * (a2b0 + a1b1 + a0b2) +
 | 
| -        //        1000  * (a2b1 + a1b2) +
 | 
| -        //        10000 * a2b2
 | 
| -        //
 | 
| -        // In the worst case we have to accumulate nb-digits products of digit*digit.
 | 
| -        //
 | 
| -        // Assert that the additional number of bits in a DoubleChunk are enough to
 | 
| -        // sum up used_digits of Bigit*Bigit.
 | 
| -        if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
 | 
| -            UNIMPLEMENTED();
 | 
| -        }
 | 
| -        DoubleChunk accumulator = 0;
 | 
| -        // First shift the digits so we don't overwrite them.
 | 
| -        int copy_offset = used_digits_;
 | 
| -        for (int i = 0; i < used_digits_; ++i) {
 | 
| -            bigits_[copy_offset + i] = bigits_[i];
 | 
| -        }
 | 
| -        // We have two loops to avoid some 'if's in the loop.
 | 
| -        for (int i = 0; i < used_digits_; ++i) {
 | 
| -            // Process temporary digit i with power i.
 | 
| -            // The sum of the two indices must be equal to i.
 | 
| -            int bigit_index1 = i;
 | 
| -            int bigit_index2 = 0;
 | 
| -            // Sum all of the sub-products.
 | 
| -            while (bigit_index1 >= 0) {
 | 
| -                Chunk chunk1 = bigits_[copy_offset + bigit_index1];
 | 
| -                Chunk chunk2 = bigits_[copy_offset + bigit_index2];
 | 
| -                accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
 | 
| -                bigit_index1--;
 | 
| -                bigit_index2++;
 | 
| -            }
 | 
| -            bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
 | 
| -            accumulator >>= kBigitSize;
 | 
| -        }
 | 
| -        for (int i = used_digits_; i < product_length; ++i) {
 | 
| -            int bigit_index1 = used_digits_ - 1;
 | 
| -            int bigit_index2 = i - bigit_index1;
 | 
| -            // Invariant: sum of both indices is again equal to i.
 | 
| -            // Inner loop runs 0 times on last iteration, emptying accumulator.
 | 
| -            while (bigit_index2 < used_digits_) {
 | 
| -                Chunk chunk1 = bigits_[copy_offset + bigit_index1];
 | 
| -                Chunk chunk2 = bigits_[copy_offset + bigit_index2];
 | 
| -                accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
 | 
| -                bigit_index1--;
 | 
| -                bigit_index2++;
 | 
| -            }
 | 
| -            // The overwritten bigits_[i] will never be read in further loop iterations,
 | 
| -            // because bigit_index1 and bigit_index2 are always greater
 | 
| -            // than i - used_digits_.
 | 
| -            bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
 | 
| -            accumulator >>= kBigitSize;
 | 
| -        }
 | 
| -        // Since the result was guaranteed to lie inside the number the
 | 
| -        // accumulator must be 0 now.
 | 
| -        ASSERT(accumulator == 0);
 | 
| -
 | 
| -        // Don't forget to update the used_digits and the exponent.
 | 
| -        used_digits_ = product_length;
 | 
| -        exponent_ *= 2;
 | 
| -        Clamp();
 | 
| +    // The overwritten bigits_[i] will never be read in further loop iterations,
 | 
| +    // because bigit_index1 and bigit_index2 are always greater
 | 
| +    // than i - used_digits_.
 | 
| +    bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
 | 
| +    accumulator >>= kBigitSize;
 | 
| +  }
 | 
| +  // Since the result was guaranteed to lie inside the number the
 | 
| +  // accumulator must be 0 now.
 | 
| +  ASSERT(accumulator == 0);
 | 
| +
 | 
| +  // Don't forget to update the used_digits and the exponent.
 | 
| +  used_digits_ = product_length;
 | 
| +  exponent_ *= 2;
 | 
| +  Clamp();
 | 
| +}
 | 
| +
 | 
| +void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
 | 
| +  ASSERT(base != 0);
 | 
| +  ASSERT(power_exponent >= 0);
 | 
| +  if (power_exponent == 0) {
 | 
| +    AssignUInt16(1);
 | 
| +    return;
 | 
| +  }
 | 
| +  Zero();
 | 
| +  int shifts = 0;
 | 
| +  // We expect base to be in range 2-32, and most often to be 10.
 | 
| +  // It does not make much sense to implement different algorithms for counting
 | 
| +  // the bits.
 | 
| +  while ((base & 1) == 0) {
 | 
| +    base >>= 1;
 | 
| +    shifts++;
 | 
| +  }
 | 
| +  int bit_size = 0;
 | 
| +  int tmp_base = base;
 | 
| +  while (tmp_base != 0) {
 | 
| +    tmp_base >>= 1;
 | 
| +    bit_size++;
 | 
| +  }
 | 
| +  int final_size = bit_size * power_exponent;
 | 
| +  // 1 extra bigit for the shifting, and one for rounded final_size.
 | 
| +  EnsureCapacity(final_size / kBigitSize + 2);
 | 
| +
 | 
| +  // Left to Right exponentiation.
 | 
| +  int mask = 1;
 | 
| +  while (power_exponent >= mask)
 | 
| +    mask <<= 1;
 | 
| +
 | 
| +  // The mask is now pointing to the bit above the most significant 1-bit of
 | 
| +  // power_exponent.
 | 
| +  // Get rid of first 1-bit;
 | 
| +  mask >>= 2;
 | 
| +  uint64_t this_value = base;
 | 
| +
 | 
| +  bool delayed_multipliciation = false;
 | 
| +  const uint64_t max_32bits = 0xFFFFFFFF;
 | 
| +  while (mask != 0 && this_value <= max_32bits) {
 | 
| +    this_value = this_value * this_value;
 | 
| +    // Verify that there is enough space in this_value to perform the
 | 
| +    // multiplication.  The first bit_size bits must be 0.
 | 
| +    if ((power_exponent & mask) != 0) {
 | 
| +      uint64_t base_bits_mask =
 | 
| +          ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
 | 
| +      bool high_bits_zero = (this_value & base_bits_mask) == 0;
 | 
| +      if (high_bits_zero) {
 | 
| +        this_value *= base;
 | 
| +      } else {
 | 
| +        delayed_multipliciation = true;
 | 
| +      }
 | 
|      }
 | 
| -
 | 
| -
 | 
| -    void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
 | 
| -        ASSERT(base != 0);
 | 
| -        ASSERT(power_exponent >= 0);
 | 
| -        if (power_exponent == 0) {
 | 
| -            AssignUInt16(1);
 | 
| -            return;
 | 
| -        }
 | 
| -        Zero();
 | 
| -        int shifts = 0;
 | 
| -        // We expect base to be in range 2-32, and most often to be 10.
 | 
| -        // It does not make much sense to implement different algorithms for counting
 | 
| -        // the bits.
 | 
| -        while ((base & 1) == 0) {
 | 
| -            base >>= 1;
 | 
| -            shifts++;
 | 
| -        }
 | 
| -        int bit_size = 0;
 | 
| -        int tmp_base = base;
 | 
| -        while (tmp_base != 0) {
 | 
| -            tmp_base >>= 1;
 | 
| -            bit_size++;
 | 
| -        }
 | 
| -        int final_size = bit_size * power_exponent;
 | 
| -        // 1 extra bigit for the shifting, and one for rounded final_size.
 | 
| -        EnsureCapacity(final_size / kBigitSize + 2);
 | 
| -
 | 
| -        // Left to Right exponentiation.
 | 
| -        int mask = 1;
 | 
| -        while (power_exponent >= mask) mask <<= 1;
 | 
| -
 | 
| -        // The mask is now pointing to the bit above the most significant 1-bit of
 | 
| -        // power_exponent.
 | 
| -        // Get rid of first 1-bit;
 | 
| -        mask >>= 2;
 | 
| -        uint64_t this_value = base;
 | 
| -
 | 
| -        bool delayed_multipliciation = false;
 | 
| -        const uint64_t max_32bits = 0xFFFFFFFF;
 | 
| -        while (mask != 0 && this_value <= max_32bits) {
 | 
| -            this_value = this_value * this_value;
 | 
| -            // Verify that there is enough space in this_value to perform the
 | 
| -            // multiplication.  The first bit_size bits must be 0.
 | 
| -            if ((power_exponent & mask) != 0) {
 | 
| -                uint64_t base_bits_mask =
 | 
| -                ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
 | 
| -                bool high_bits_zero = (this_value & base_bits_mask) == 0;
 | 
| -                if (high_bits_zero) {
 | 
| -                    this_value *= base;
 | 
| -                } else {
 | 
| -                    delayed_multipliciation = true;
 | 
| -                }
 | 
| -            }
 | 
| -            mask >>= 1;
 | 
| -        }
 | 
| -        AssignUInt64(this_value);
 | 
| -        if (delayed_multipliciation) {
 | 
| -            MultiplyByUInt32(base);
 | 
| -        }
 | 
| -
 | 
| -        // Now do the same thing as a bignum.
 | 
| -        while (mask != 0) {
 | 
| -            Square();
 | 
| -            if ((power_exponent & mask) != 0) {
 | 
| -                MultiplyByUInt32(base);
 | 
| -            }
 | 
| -            mask >>= 1;
 | 
| -        }
 | 
| -
 | 
| -        // And finally add the saved shifts.
 | 
| -        ShiftLeft(shifts * power_exponent);
 | 
| +    mask >>= 1;
 | 
| +  }
 | 
| +  AssignUInt64(this_value);
 | 
| +  if (delayed_multipliciation) {
 | 
| +    MultiplyByUInt32(base);
 | 
| +  }
 | 
| +
 | 
| +  // Now do the same thing as a bignum.
 | 
| +  while (mask != 0) {
 | 
| +    Square();
 | 
| +    if ((power_exponent & mask) != 0) {
 | 
| +      MultiplyByUInt32(base);
 | 
|      }
 | 
| -
 | 
| -
 | 
| -    // Precondition: this/other < 16bit.
 | 
| -    uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
 | 
| -        ASSERT(IsClamped());
 | 
| -        ASSERT(other.IsClamped());
 | 
| -        ASSERT(other.used_digits_ > 0);
 | 
| -
 | 
| -        // Easy case: if we have less digits than the divisor than the result is 0.
 | 
| -        // Note: this handles the case where this == 0, too.
 | 
| -        if (BigitLength() < other.BigitLength()) {
 | 
| -            return 0;
 | 
| -        }
 | 
| -
 | 
| -        Align(other);
 | 
| -
 | 
| -        uint16_t result = 0;
 | 
| -
 | 
| -        // Start by removing multiples of 'other' until both numbers have the same
 | 
| -        // number of digits.
 | 
| -        while (BigitLength() > other.BigitLength()) {
 | 
| -            // This naive approach is extremely inefficient if the this divided other
 | 
| -            // might be big. This function is implemented for doubleToString where
 | 
| -            // the result should be small (less than 10).
 | 
| -            ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
 | 
| -            // Remove the multiples of the first digit.
 | 
| -            // Example this = 23 and other equals 9. -> Remove 2 multiples.
 | 
| -            result += static_cast<uint16_t>(bigits_[used_digits_ - 1]);
 | 
| -            SubtractTimes(other, bigits_[used_digits_ - 1]);
 | 
| -        }
 | 
| -
 | 
| -        ASSERT(BigitLength() == other.BigitLength());
 | 
| -
 | 
| -        // Both bignums are at the same length now.
 | 
| -        // Since other has more than 0 digits we know that the access to
 | 
| -        // bigits_[used_digits_ - 1] is safe.
 | 
| -        Chunk this_bigit = bigits_[used_digits_ - 1];
 | 
| -        Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
 | 
| -
 | 
| -        if (other.used_digits_ == 1) {
 | 
| -            // Shortcut for easy (and common) case.
 | 
| -            uint16_t quotient = static_cast<uint16_t>(this_bigit / other_bigit);
 | 
| -            bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
 | 
| -            result += quotient;
 | 
| -            Clamp();
 | 
| -            return result;
 | 
| -        }
 | 
| -
 | 
| -        uint16_t division_estimate = static_cast<uint16_t>(this_bigit / (other_bigit + 1));
 | 
| -        result += division_estimate;
 | 
| -        SubtractTimes(other, division_estimate);
 | 
| -
 | 
| -        if (other_bigit * (division_estimate + 1) > this_bigit) {
 | 
| -            // No need to even try to subtract. Even if other's remaining digits were 0
 | 
| -            // another subtraction would be too much.
 | 
| -            return result;
 | 
| -        }
 | 
| -
 | 
| -        while (LessEqual(other, *this)) {
 | 
| -            SubtractBignum(other);
 | 
| -            result++;
 | 
| -        }
 | 
| -        return result;
 | 
| +    mask >>= 1;
 | 
| +  }
 | 
| +
 | 
| +  // And finally add the saved shifts.
 | 
| +  ShiftLeft(shifts * power_exponent);
 | 
| +}
 | 
| +
 | 
| +// Precondition: this/other < 16bit.
 | 
| +uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
 | 
| +  ASSERT(IsClamped());
 | 
| +  ASSERT(other.IsClamped());
 | 
| +  ASSERT(other.used_digits_ > 0);
 | 
| +
 | 
| +  // Easy case: if we have less digits than the divisor than the result is 0.
 | 
| +  // Note: this handles the case where this == 0, too.
 | 
| +  if (BigitLength() < other.BigitLength()) {
 | 
| +    return 0;
 | 
| +  }
 | 
| +
 | 
| +  Align(other);
 | 
| +
 | 
| +  uint16_t result = 0;
 | 
| +
 | 
| +  // Start by removing multiples of 'other' until both numbers have the same
 | 
| +  // number of digits.
 | 
| +  while (BigitLength() > other.BigitLength()) {
 | 
| +    // This naive approach is extremely inefficient if the this divided other
 | 
| +    // might be big. This function is implemented for doubleToString where
 | 
| +    // the result should be small (less than 10).
 | 
| +    ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
 | 
| +    // Remove the multiples of the first digit.
 | 
| +    // Example this = 23 and other equals 9. -> Remove 2 multiples.
 | 
| +    result += static_cast<uint16_t>(bigits_[used_digits_ - 1]);
 | 
| +    SubtractTimes(other, bigits_[used_digits_ - 1]);
 | 
| +  }
 | 
| +
 | 
| +  ASSERT(BigitLength() == other.BigitLength());
 | 
| +
 | 
| +  // Both bignums are at the same length now.
 | 
| +  // Since other has more than 0 digits we know that the access to
 | 
| +  // bigits_[used_digits_ - 1] is safe.
 | 
| +  Chunk this_bigit = bigits_[used_digits_ - 1];
 | 
| +  Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
 | 
| +
 | 
| +  if (other.used_digits_ == 1) {
 | 
| +    // Shortcut for easy (and common) case.
 | 
| +    uint16_t quotient = static_cast<uint16_t>(this_bigit / other_bigit);
 | 
| +    bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
 | 
| +    result += quotient;
 | 
| +    Clamp();
 | 
| +    return result;
 | 
| +  }
 | 
| +
 | 
| +  uint16_t division_estimate =
 | 
| +      static_cast<uint16_t>(this_bigit / (other_bigit + 1));
 | 
| +  result += division_estimate;
 | 
| +  SubtractTimes(other, division_estimate);
 | 
| +
 | 
| +  if (other_bigit * (division_estimate + 1) > this_bigit) {
 | 
| +    // No need to even try to subtract. Even if other's remaining digits were 0
 | 
| +    // another subtraction would be too much.
 | 
| +    return result;
 | 
| +  }
 | 
| +
 | 
| +  while (LessEqual(other, *this)) {
 | 
| +    SubtractBignum(other);
 | 
| +    result++;
 | 
| +  }
 | 
| +  return result;
 | 
| +}
 | 
| +
 | 
| +template <typename S>
 | 
| +static int SizeInHexChars(S number) {
 | 
| +  ASSERT(number > 0);
 | 
| +  int result = 0;
 | 
| +  while (number != 0) {
 | 
| +    number >>= 4;
 | 
| +    result++;
 | 
| +  }
 | 
| +  return result;
 | 
| +}
 | 
| +
 | 
| +static char HexCharOfValue(uint8_t value) {
 | 
| +  ASSERT(0 <= value && value <= 16);
 | 
| +  if (value < 10)
 | 
| +    return value + '0';
 | 
| +  return value - 10 + 'A';
 | 
| +}
 | 
| +
 | 
| +bool Bignum::ToHexString(char* buffer, int buffer_size) const {
 | 
| +  ASSERT(IsClamped());
 | 
| +  // Each bigit must be printable as separate hex-character.
 | 
| +  ASSERT(kBigitSize % 4 == 0);
 | 
| +  const int kHexCharsPerBigit = kBigitSize / 4;
 | 
| +
 | 
| +  if (used_digits_ == 0) {
 | 
| +    if (buffer_size < 2)
 | 
| +      return false;
 | 
| +    buffer[0] = '0';
 | 
| +    buffer[1] = '\0';
 | 
| +    return true;
 | 
| +  }
 | 
| +  // We add 1 for the terminating '\0' character.
 | 
| +  int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
 | 
| +                     SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
 | 
| +  if (needed_chars > buffer_size)
 | 
| +    return false;
 | 
| +  int string_index = needed_chars - 1;
 | 
| +  buffer[string_index--] = '\0';
 | 
| +  for (int i = 0; i < exponent_; ++i) {
 | 
| +    for (int j = 0; j < kHexCharsPerBigit; ++j) {
 | 
| +      buffer[string_index--] = '0';
 | 
|      }
 | 
| -
 | 
| -
 | 
| -    template<typename S>
 | 
| -    static int SizeInHexChars(S number) {
 | 
| -        ASSERT(number > 0);
 | 
| -        int result = 0;
 | 
| -        while (number != 0) {
 | 
| -            number >>= 4;
 | 
| -            result++;
 | 
| -        }
 | 
| -        return result;
 | 
| +  }
 | 
| +  for (int i = 0; i < used_digits_ - 1; ++i) {
 | 
| +    Chunk current_bigit = bigits_[i];
 | 
| +    for (int j = 0; j < kHexCharsPerBigit; ++j) {
 | 
| +      buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
 | 
| +      current_bigit >>= 4;
 | 
|      }
 | 
| -
 | 
| -
 | 
| -    static char HexCharOfValue(uint8_t value) {
 | 
| -        ASSERT(0 <= value && value <= 16);
 | 
| -        if (value < 10) return value + '0';
 | 
| -        return value - 10 + 'A';
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    bool Bignum::ToHexString(char* buffer, int buffer_size) const {
 | 
| -        ASSERT(IsClamped());
 | 
| -        // Each bigit must be printable as separate hex-character.
 | 
| -        ASSERT(kBigitSize % 4 == 0);
 | 
| -        const int kHexCharsPerBigit = kBigitSize / 4;
 | 
| -
 | 
| -        if (used_digits_ == 0) {
 | 
| -            if (buffer_size < 2) return false;
 | 
| -            buffer[0] = '0';
 | 
| -            buffer[1] = '\0';
 | 
| -            return true;
 | 
| -        }
 | 
| -        // We add 1 for the terminating '\0' character.
 | 
| -        int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
 | 
| -        SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
 | 
| -        if (needed_chars > buffer_size) return false;
 | 
| -        int string_index = needed_chars - 1;
 | 
| -        buffer[string_index--] = '\0';
 | 
| -        for (int i = 0; i < exponent_; ++i) {
 | 
| -            for (int j = 0; j < kHexCharsPerBigit; ++j) {
 | 
| -                buffer[string_index--] = '0';
 | 
| -            }
 | 
| -        }
 | 
| -        for (int i = 0; i < used_digits_ - 1; ++i) {
 | 
| -            Chunk current_bigit = bigits_[i];
 | 
| -            for (int j = 0; j < kHexCharsPerBigit; ++j) {
 | 
| -                buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
 | 
| -                current_bigit >>= 4;
 | 
| -            }
 | 
| -        }
 | 
| -        // And finally the last bigit.
 | 
| -        Chunk most_significant_bigit = bigits_[used_digits_ - 1];
 | 
| -        while (most_significant_bigit != 0) {
 | 
| -            buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
 | 
| -            most_significant_bigit >>= 4;
 | 
| -        }
 | 
| -        return true;
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    Bignum::Chunk Bignum::BigitAt(int index) const {
 | 
| -        if (index >= BigitLength()) return 0;
 | 
| -        if (index < exponent_) return 0;
 | 
| -        return bigits_[index - exponent_];
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    int Bignum::Compare(const Bignum& a, const Bignum& b) {
 | 
| -        ASSERT(a.IsClamped());
 | 
| -        ASSERT(b.IsClamped());
 | 
| -        int bigit_length_a = a.BigitLength();
 | 
| -        int bigit_length_b = b.BigitLength();
 | 
| -        if (bigit_length_a < bigit_length_b) return -1;
 | 
| -        if (bigit_length_a > bigit_length_b) return +1;
 | 
| -        for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
 | 
| -            Chunk bigit_a = a.BigitAt(i);
 | 
| -            Chunk bigit_b = b.BigitAt(i);
 | 
| -            if (bigit_a < bigit_b) return -1;
 | 
| -            if (bigit_a > bigit_b) return +1;
 | 
| -            // Otherwise they are equal up to this digit. Try the next digit.
 | 
| -        }
 | 
| -        return 0;
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
 | 
| -        ASSERT(a.IsClamped());
 | 
| -        ASSERT(b.IsClamped());
 | 
| -        ASSERT(c.IsClamped());
 | 
| -        if (a.BigitLength() < b.BigitLength()) {
 | 
| -            return PlusCompare(b, a, c);
 | 
| -        }
 | 
| -        if (a.BigitLength() + 1 < c.BigitLength()) return -1;
 | 
| -        if (a.BigitLength() > c.BigitLength()) return +1;
 | 
| -        // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
 | 
| -        // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
 | 
| -        // of 'a'.
 | 
| -        if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
 | 
| -            return -1;
 | 
| -        }
 | 
| -
 | 
| -        Chunk borrow = 0;
 | 
| -        // Starting at min_exponent all digits are == 0. So no need to compare them.
 | 
| -        int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
 | 
| -        for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
 | 
| -            Chunk chunk_a = a.BigitAt(i);
 | 
| -            Chunk chunk_b = b.BigitAt(i);
 | 
| -            Chunk chunk_c = c.BigitAt(i);
 | 
| -            Chunk sum = chunk_a + chunk_b;
 | 
| -            if (sum > chunk_c + borrow) {
 | 
| -                return +1;
 | 
| -            } else {
 | 
| -                borrow = chunk_c + borrow - sum;
 | 
| -                if (borrow > 1) return -1;
 | 
| -                borrow <<= kBigitSize;
 | 
| -            }
 | 
| -        }
 | 
| -        if (borrow == 0) return 0;
 | 
| +  }
 | 
| +  // And finally the last bigit.
 | 
| +  Chunk most_significant_bigit = bigits_[used_digits_ - 1];
 | 
| +  while (most_significant_bigit != 0) {
 | 
| +    buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
 | 
| +    most_significant_bigit >>= 4;
 | 
| +  }
 | 
| +  return true;
 | 
| +}
 | 
| +
 | 
| +Bignum::Chunk Bignum::BigitAt(int index) const {
 | 
| +  if (index >= BigitLength())
 | 
| +    return 0;
 | 
| +  if (index < exponent_)
 | 
| +    return 0;
 | 
| +  return bigits_[index - exponent_];
 | 
| +}
 | 
| +
 | 
| +int Bignum::Compare(const Bignum& a, const Bignum& b) {
 | 
| +  ASSERT(a.IsClamped());
 | 
| +  ASSERT(b.IsClamped());
 | 
| +  int bigit_length_a = a.BigitLength();
 | 
| +  int bigit_length_b = b.BigitLength();
 | 
| +  if (bigit_length_a < bigit_length_b)
 | 
| +    return -1;
 | 
| +  if (bigit_length_a > bigit_length_b)
 | 
| +    return +1;
 | 
| +  for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
 | 
| +    Chunk bigit_a = a.BigitAt(i);
 | 
| +    Chunk bigit_b = b.BigitAt(i);
 | 
| +    if (bigit_a < bigit_b)
 | 
| +      return -1;
 | 
| +    if (bigit_a > bigit_b)
 | 
| +      return +1;
 | 
| +    // Otherwise they are equal up to this digit. Try the next digit.
 | 
| +  }
 | 
| +  return 0;
 | 
| +}
 | 
| +
 | 
| +int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
 | 
| +  ASSERT(a.IsClamped());
 | 
| +  ASSERT(b.IsClamped());
 | 
| +  ASSERT(c.IsClamped());
 | 
| +  if (a.BigitLength() < b.BigitLength()) {
 | 
| +    return PlusCompare(b, a, c);
 | 
| +  }
 | 
| +  if (a.BigitLength() + 1 < c.BigitLength())
 | 
| +    return -1;
 | 
| +  if (a.BigitLength() > c.BigitLength())
 | 
| +    return +1;
 | 
| +  // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
 | 
| +  // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
 | 
| +  // of 'a'.
 | 
| +  if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
 | 
| +    return -1;
 | 
| +  }
 | 
| +
 | 
| +  Chunk borrow = 0;
 | 
| +  // Starting at min_exponent all digits are == 0. So no need to compare them.
 | 
| +  int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
 | 
| +  for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
 | 
| +    Chunk chunk_a = a.BigitAt(i);
 | 
| +    Chunk chunk_b = b.BigitAt(i);
 | 
| +    Chunk chunk_c = c.BigitAt(i);
 | 
| +    Chunk sum = chunk_a + chunk_b;
 | 
| +    if (sum > chunk_c + borrow) {
 | 
| +      return +1;
 | 
| +    } else {
 | 
| +      borrow = chunk_c + borrow - sum;
 | 
| +      if (borrow > 1)
 | 
|          return -1;
 | 
| +      borrow <<= kBigitSize;
 | 
|      }
 | 
| -
 | 
| -
 | 
| -    void Bignum::Clamp() {
 | 
| -        while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
 | 
| -            used_digits_--;
 | 
| -        }
 | 
| -        if (used_digits_ == 0) {
 | 
| -            // Zero.
 | 
| -            exponent_ = 0;
 | 
| -        }
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    bool Bignum::IsClamped() const {
 | 
| -        return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    void Bignum::Zero() {
 | 
| -        for (int i = 0; i < used_digits_; ++i) {
 | 
| -            bigits_[i] = 0;
 | 
| -        }
 | 
| -        used_digits_ = 0;
 | 
| -        exponent_ = 0;
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    void Bignum::Align(const Bignum& other) {
 | 
| -        if (exponent_ > other.exponent_) {
 | 
| -            // If "X" represents a "hidden" digit (by the exponent) then we are in the
 | 
| -            // following case (a == this, b == other):
 | 
| -            // a:  aaaaaaXXXX   or a:   aaaaaXXX
 | 
| -            // b:     bbbbbbX      b: bbbbbbbbXX
 | 
| -            // We replace some of the hidden digits (X) of a with 0 digits.
 | 
| -            // a:  aaaaaa000X   or a:   aaaaa0XX
 | 
| -            int zero_digits = exponent_ - other.exponent_;
 | 
| -            EnsureCapacity(used_digits_ + zero_digits);
 | 
| -            for (int i = used_digits_ - 1; i >= 0; --i) {
 | 
| -                bigits_[i + zero_digits] = bigits_[i];
 | 
| -            }
 | 
| -            for (int i = 0; i < zero_digits; ++i) {
 | 
| -                bigits_[i] = 0;
 | 
| -            }
 | 
| -            used_digits_ += zero_digits;
 | 
| -            exponent_ -= zero_digits;
 | 
| -            ASSERT(used_digits_ >= 0);
 | 
| -            ASSERT(exponent_ >= 0);
 | 
| -        }
 | 
| +  }
 | 
| +  if (borrow == 0)
 | 
| +    return 0;
 | 
| +  return -1;
 | 
| +}
 | 
| +
 | 
| +void Bignum::Clamp() {
 | 
| +  while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
 | 
| +    used_digits_--;
 | 
| +  }
 | 
| +  if (used_digits_ == 0) {
 | 
| +    // Zero.
 | 
| +    exponent_ = 0;
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +bool Bignum::IsClamped() const {
 | 
| +  return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
 | 
| +}
 | 
| +
 | 
| +void Bignum::Zero() {
 | 
| +  for (int i = 0; i < used_digits_; ++i) {
 | 
| +    bigits_[i] = 0;
 | 
| +  }
 | 
| +  used_digits_ = 0;
 | 
| +  exponent_ = 0;
 | 
| +}
 | 
| +
 | 
| +void Bignum::Align(const Bignum& other) {
 | 
| +  if (exponent_ > other.exponent_) {
 | 
| +    // If "X" represents a "hidden" digit (by the exponent) then we are in the
 | 
| +    // following case (a == this, b == other):
 | 
| +    // a:  aaaaaaXXXX   or a:   aaaaaXXX
 | 
| +    // b:     bbbbbbX      b: bbbbbbbbXX
 | 
| +    // We replace some of the hidden digits (X) of a with 0 digits.
 | 
| +    // a:  aaaaaa000X   or a:   aaaaa0XX
 | 
| +    int zero_digits = exponent_ - other.exponent_;
 | 
| +    EnsureCapacity(used_digits_ + zero_digits);
 | 
| +    for (int i = used_digits_ - 1; i >= 0; --i) {
 | 
| +      bigits_[i + zero_digits] = bigits_[i];
 | 
|      }
 | 
| -
 | 
| -
 | 
| -    void Bignum::BigitsShiftLeft(int shift_amount) {
 | 
| -        ASSERT(shift_amount < kBigitSize);
 | 
| -        ASSERT(shift_amount >= 0);
 | 
| -        Chunk carry = 0;
 | 
| -        for (int i = 0; i < used_digits_; ++i) {
 | 
| -            Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
 | 
| -            bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
 | 
| -            carry = new_carry;
 | 
| -        }
 | 
| -        if (carry != 0) {
 | 
| -            bigits_[used_digits_] = carry;
 | 
| -            used_digits_++;
 | 
| -        }
 | 
| +    for (int i = 0; i < zero_digits; ++i) {
 | 
| +      bigits_[i] = 0;
 | 
|      }
 | 
| -
 | 
| -
 | 
| -    void Bignum::SubtractTimes(const Bignum& other, int factor) {
 | 
| -        ASSERT(exponent_ <= other.exponent_);
 | 
| -        if (factor < 3) {
 | 
| -            for (int i = 0; i < factor; ++i) {
 | 
| -                SubtractBignum(other);
 | 
| -            }
 | 
| -            return;
 | 
| -        }
 | 
| -        Chunk borrow = 0;
 | 
| -        int exponent_diff = other.exponent_ - exponent_;
 | 
| -        for (int i = 0; i < other.used_digits_; ++i) {
 | 
| -            DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
 | 
| -            DoubleChunk remove = borrow + product;
 | 
| -            Chunk difference = bigits_[i + exponent_diff] - ((uint32_t)remove & kBigitMask);
 | 
| -            bigits_[i + exponent_diff] = difference & kBigitMask;
 | 
| -            borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
 | 
| -                                        (remove >> kBigitSize));
 | 
| -        }
 | 
| -        for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
 | 
| -            if (borrow == 0) return;
 | 
| -            Chunk difference = bigits_[i] - borrow;
 | 
| -            bigits_[i] = difference & kBigitMask;
 | 
| -            borrow = difference >> (kChunkSize - 1);
 | 
| -        }
 | 
| -        Clamp();
 | 
| +    used_digits_ += zero_digits;
 | 
| +    exponent_ -= zero_digits;
 | 
| +    ASSERT(used_digits_ >= 0);
 | 
| +    ASSERT(exponent_ >= 0);
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +void Bignum::BigitsShiftLeft(int shift_amount) {
 | 
| +  ASSERT(shift_amount < kBigitSize);
 | 
| +  ASSERT(shift_amount >= 0);
 | 
| +  Chunk carry = 0;
 | 
| +  for (int i = 0; i < used_digits_; ++i) {
 | 
| +    Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
 | 
| +    bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
 | 
| +    carry = new_carry;
 | 
| +  }
 | 
| +  if (carry != 0) {
 | 
| +    bigits_[used_digits_] = carry;
 | 
| +    used_digits_++;
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +void Bignum::SubtractTimes(const Bignum& other, int factor) {
 | 
| +  ASSERT(exponent_ <= other.exponent_);
 | 
| +  if (factor < 3) {
 | 
| +    for (int i = 0; i < factor; ++i) {
 | 
| +      SubtractBignum(other);
 | 
|      }
 | 
| -
 | 
| +    return;
 | 
| +  }
 | 
| +  Chunk borrow = 0;
 | 
| +  int exponent_diff = other.exponent_ - exponent_;
 | 
| +  for (int i = 0; i < other.used_digits_; ++i) {
 | 
| +    DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
 | 
| +    DoubleChunk remove = borrow + product;
 | 
| +    Chunk difference =
 | 
| +        bigits_[i + exponent_diff] - ((uint32_t)remove & kBigitMask);
 | 
| +    bigits_[i + exponent_diff] = difference & kBigitMask;
 | 
| +    borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
 | 
| +                                (remove >> kBigitSize));
 | 
| +  }
 | 
| +  for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
 | 
| +    if (borrow == 0)
 | 
| +      return;
 | 
| +    Chunk difference = bigits_[i] - borrow;
 | 
| +    bigits_[i] = difference & kBigitMask;
 | 
| +    borrow = difference >> (kChunkSize - 1);
 | 
| +  }
 | 
| +  Clamp();
 | 
| +}
 | 
|  
 | 
|  }  // namespace double_conversion
 | 
|  
 | 
| -} // namespace WTF
 | 
| +}  // namespace WTF
 | 
| 
 |