Index: third_party/WebKit/Source/wtf/dtoa/bignum.cc |
diff --git a/third_party/WebKit/Source/wtf/dtoa/bignum.cc b/third_party/WebKit/Source/wtf/dtoa/bignum.cc |
index dd6dd2e3b9abe2eec352874330e1191a70f42603..b3c68ed772172c61e7673c626112898f072edcbd 100644 |
--- a/third_party/WebKit/Source/wtf/dtoa/bignum.cc |
+++ b/third_party/WebKit/Source/wtf/dtoa/bignum.cc |
@@ -33,736 +33,735 @@ namespace WTF { |
namespace double_conversion { |
- Bignum::Bignum() |
+Bignum::Bignum() |
: bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) { |
- for (int i = 0; i < kBigitCapacity; ++i) { |
- bigits_[i] = 0; |
- } |
+ for (int i = 0; i < kBigitCapacity; ++i) { |
+ bigits_[i] = 0; |
+ } |
+} |
+ |
+template <typename S> |
+static int BitSize(S value) { |
+ return 8 * sizeof(value); |
+} |
+ |
+// Guaranteed to lie in one Bigit. |
+void Bignum::AssignUInt16(uint16_t value) { |
+ ASSERT(kBigitSize >= BitSize(value)); |
+ Zero(); |
+ if (value == 0) |
+ return; |
+ |
+ EnsureCapacity(1); |
+ bigits_[0] = value; |
+ used_digits_ = 1; |
+} |
+ |
+void Bignum::AssignUInt64(uint64_t value) { |
+ const int kUInt64Size = 64; |
+ |
+ Zero(); |
+ if (value == 0) |
+ return; |
+ |
+ int needed_bigits = kUInt64Size / kBigitSize + 1; |
+ EnsureCapacity(needed_bigits); |
+ for (int i = 0; i < needed_bigits; ++i) { |
+ bigits_[i] = (uint32_t)value & kBigitMask; |
+ value = value >> kBigitSize; |
+ } |
+ used_digits_ = needed_bigits; |
+ Clamp(); |
+} |
+ |
+void Bignum::AssignBignum(const Bignum& other) { |
+ exponent_ = other.exponent_; |
+ for (int i = 0; i < other.used_digits_; ++i) { |
+ bigits_[i] = other.bigits_[i]; |
+ } |
+ // Clear the excess digits (if there were any). |
+ for (int i = other.used_digits_; i < used_digits_; ++i) { |
+ bigits_[i] = 0; |
+ } |
+ used_digits_ = other.used_digits_; |
+} |
+ |
+static uint64_t ReadUInt64(Vector<const char> buffer, |
+ int from, |
+ int digits_to_read) { |
+ uint64_t result = 0; |
+ for (int i = from; i < from + digits_to_read; ++i) { |
+ int digit = buffer[i] - '0'; |
+ ASSERT(0 <= digit && digit <= 9); |
+ result = result * 10 + digit; |
+ } |
+ return result; |
+} |
+ |
+void Bignum::AssignDecimalString(Vector<const char> value) { |
+ // 2^64 = 18446744073709551616 > 10^19 |
+ const int kMaxUint64DecimalDigits = 19; |
+ Zero(); |
+ int length = value.length(); |
+ int pos = 0; |
+ // Let's just say that each digit needs 4 bits. |
+ while (length >= kMaxUint64DecimalDigits) { |
+ uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits); |
+ pos += kMaxUint64DecimalDigits; |
+ length -= kMaxUint64DecimalDigits; |
+ MultiplyByPowerOfTen(kMaxUint64DecimalDigits); |
+ AddUInt64(digits); |
+ } |
+ uint64_t digits = ReadUInt64(value, pos, length); |
+ MultiplyByPowerOfTen(length); |
+ AddUInt64(digits); |
+ Clamp(); |
+} |
+ |
+static int HexCharValue(char c) { |
+ if ('0' <= c && c <= '9') |
+ return c - '0'; |
+ if ('a' <= c && c <= 'f') |
+ return 10 + c - 'a'; |
+ if ('A' <= c && c <= 'F') |
+ return 10 + c - 'A'; |
+ UNREACHABLE(); |
+ return 0; // To make compiler happy. |
+} |
+ |
+void Bignum::AssignHexString(Vector<const char> value) { |
+ Zero(); |
+ int length = value.length(); |
+ |
+ int needed_bigits = length * 4 / kBigitSize + 1; |
+ EnsureCapacity(needed_bigits); |
+ int string_index = length - 1; |
+ for (int i = 0; i < needed_bigits - 1; ++i) { |
+ // These bigits are guaranteed to be "full". |
+ Chunk current_bigit = 0; |
+ for (int j = 0; j < kBigitSize / 4; j++) { |
+ current_bigit += HexCharValue(value[string_index--]) << (j * 4); |
} |
- |
- |
- template<typename S> |
- static int BitSize(S value) { |
- return 8 * sizeof(value); |
- } |
- |
- // Guaranteed to lie in one Bigit. |
- void Bignum::AssignUInt16(uint16_t value) { |
- ASSERT(kBigitSize >= BitSize(value)); |
- Zero(); |
- if (value == 0) return; |
- |
- EnsureCapacity(1); |
- bigits_[0] = value; |
- used_digits_ = 1; |
- } |
- |
- |
- void Bignum::AssignUInt64(uint64_t value) { |
- const int kUInt64Size = 64; |
- |
- Zero(); |
- if (value == 0) return; |
- |
- int needed_bigits = kUInt64Size / kBigitSize + 1; |
- EnsureCapacity(needed_bigits); |
- for (int i = 0; i < needed_bigits; ++i) { |
- bigits_[i] = (uint32_t)value & kBigitMask; |
- value = value >> kBigitSize; |
- } |
- used_digits_ = needed_bigits; |
- Clamp(); |
- } |
- |
- |
- void Bignum::AssignBignum(const Bignum& other) { |
- exponent_ = other.exponent_; |
- for (int i = 0; i < other.used_digits_; ++i) { |
- bigits_[i] = other.bigits_[i]; |
- } |
- // Clear the excess digits (if there were any). |
- for (int i = other.used_digits_; i < used_digits_; ++i) { |
- bigits_[i] = 0; |
- } |
- used_digits_ = other.used_digits_; |
- } |
- |
- |
- static uint64_t ReadUInt64(Vector<const char> buffer, |
- int from, |
- int digits_to_read) { |
- uint64_t result = 0; |
- for (int i = from; i < from + digits_to_read; ++i) { |
- int digit = buffer[i] - '0'; |
- ASSERT(0 <= digit && digit <= 9); |
- result = result * 10 + digit; |
- } |
- return result; |
- } |
- |
- |
- void Bignum::AssignDecimalString(Vector<const char> value) { |
- // 2^64 = 18446744073709551616 > 10^19 |
- const int kMaxUint64DecimalDigits = 19; |
- Zero(); |
- int length = value.length(); |
- int pos = 0; |
- // Let's just say that each digit needs 4 bits. |
- while (length >= kMaxUint64DecimalDigits) { |
- uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits); |
- pos += kMaxUint64DecimalDigits; |
- length -= kMaxUint64DecimalDigits; |
- MultiplyByPowerOfTen(kMaxUint64DecimalDigits); |
- AddUInt64(digits); |
- } |
- uint64_t digits = ReadUInt64(value, pos, length); |
- MultiplyByPowerOfTen(length); |
- AddUInt64(digits); |
- Clamp(); |
- } |
- |
- |
- static int HexCharValue(char c) { |
- if ('0' <= c && c <= '9') return c - '0'; |
- if ('a' <= c && c <= 'f') return 10 + c - 'a'; |
- if ('A' <= c && c <= 'F') return 10 + c - 'A'; |
- UNREACHABLE(); |
- return 0; // To make compiler happy. |
- } |
- |
- |
- void Bignum::AssignHexString(Vector<const char> value) { |
- Zero(); |
- int length = value.length(); |
- |
- int needed_bigits = length * 4 / kBigitSize + 1; |
- EnsureCapacity(needed_bigits); |
- int string_index = length - 1; |
- for (int i = 0; i < needed_bigits - 1; ++i) { |
- // These bigits are guaranteed to be "full". |
- Chunk current_bigit = 0; |
- for (int j = 0; j < kBigitSize / 4; j++) { |
- current_bigit += HexCharValue(value[string_index--]) << (j * 4); |
- } |
- bigits_[i] = current_bigit; |
- } |
- used_digits_ = needed_bigits - 1; |
- |
- Chunk most_significant_bigit = 0; // Could be = 0; |
- for (int j = 0; j <= string_index; ++j) { |
- most_significant_bigit <<= 4; |
- most_significant_bigit += HexCharValue(value[j]); |
- } |
- if (most_significant_bigit != 0) { |
- bigits_[used_digits_] = most_significant_bigit; |
- used_digits_++; |
- } |
- Clamp(); |
- } |
- |
- |
- void Bignum::AddUInt64(uint64_t operand) { |
- if (operand == 0) return; |
- Bignum other; |
- other.AssignUInt64(operand); |
- AddBignum(other); |
- } |
- |
- |
- void Bignum::AddBignum(const Bignum& other) { |
- ASSERT(IsClamped()); |
- ASSERT(other.IsClamped()); |
- |
- // If this has a greater exponent than other append zero-bigits to this. |
- // After this call exponent_ <= other.exponent_. |
- Align(other); |
- |
- // There are two possibilities: |
- // aaaaaaaaaaa 0000 (where the 0s represent a's exponent) |
- // bbbbb 00000000 |
- // ---------------- |
- // ccccccccccc 0000 |
- // or |
- // aaaaaaaaaa 0000 |
- // bbbbbbbbb 0000000 |
- // ----------------- |
- // cccccccccccc 0000 |
- // In both cases we might need a carry bigit. |
- |
- EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_); |
- Chunk carry = 0; |
- int bigit_pos = other.exponent_ - exponent_; |
- ASSERT(bigit_pos >= 0); |
- for (int i = 0; i < other.used_digits_; ++i) { |
- Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry; |
- bigits_[bigit_pos] = sum & kBigitMask; |
- carry = sum >> kBigitSize; |
- bigit_pos++; |
- } |
- |
- while (carry != 0) { |
- Chunk sum = bigits_[bigit_pos] + carry; |
- bigits_[bigit_pos] = sum & kBigitMask; |
- carry = sum >> kBigitSize; |
- bigit_pos++; |
- } |
- used_digits_ = Max(bigit_pos, used_digits_); |
- ASSERT(IsClamped()); |
- } |
- |
- |
- void Bignum::SubtractBignum(const Bignum& other) { |
- ASSERT(IsClamped()); |
- ASSERT(other.IsClamped()); |
- // We require this to be bigger than other. |
- ASSERT(LessEqual(other, *this)); |
- |
- Align(other); |
- |
- int offset = other.exponent_ - exponent_; |
- Chunk borrow = 0; |
- int i; |
- for (i = 0; i < other.used_digits_; ++i) { |
- ASSERT((borrow == 0) || (borrow == 1)); |
- Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow; |
- bigits_[i + offset] = difference & kBigitMask; |
- borrow = difference >> (kChunkSize - 1); |
- } |
- while (borrow != 0) { |
- Chunk difference = bigits_[i + offset] - borrow; |
- bigits_[i + offset] = difference & kBigitMask; |
- borrow = difference >> (kChunkSize - 1); |
- ++i; |
- } |
- Clamp(); |
- } |
- |
- |
- void Bignum::ShiftLeft(int shift_amount) { |
- if (used_digits_ == 0) return; |
- exponent_ += shift_amount / kBigitSize; |
- int local_shift = shift_amount % kBigitSize; |
- EnsureCapacity(used_digits_ + 1); |
- BigitsShiftLeft(local_shift); |
- } |
- |
- |
- void Bignum::MultiplyByUInt32(uint32_t factor) { |
- if (factor == 1) return; |
- if (factor == 0) { |
- Zero(); |
- return; |
- } |
- if (used_digits_ == 0) return; |
- |
- // The product of a bigit with the factor is of size kBigitSize + 32. |
- // Assert that this number + 1 (for the carry) fits into double chunk. |
- ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1); |
- DoubleChunk carry = 0; |
- for (int i = 0; i < used_digits_; ++i) { |
- DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry; |
- bigits_[i] = static_cast<Chunk>(product & kBigitMask); |
- carry = (product >> kBigitSize); |
- } |
- while (carry != 0) { |
- EnsureCapacity(used_digits_ + 1); |
- bigits_[used_digits_] = (uint32_t)carry & kBigitMask; |
- used_digits_++; |
- carry >>= kBigitSize; |
- } |
- } |
- |
- |
- void Bignum::MultiplyByUInt64(uint64_t factor) { |
- if (factor == 1) return; |
- if (factor == 0) { |
- Zero(); |
- return; |
- } |
- ASSERT(kBigitSize < 32); |
- uint64_t carry = 0; |
- uint64_t low = factor & 0xFFFFFFFF; |
- uint64_t high = factor >> 32; |
- for (int i = 0; i < used_digits_; ++i) { |
- uint64_t product_low = low * bigits_[i]; |
- uint64_t product_high = high * bigits_[i]; |
- uint64_t tmp = (carry & kBigitMask) + product_low; |
- bigits_[i] = (uint32_t)tmp & kBigitMask; |
- carry = (carry >> kBigitSize) + (tmp >> kBigitSize) + |
+ bigits_[i] = current_bigit; |
+ } |
+ used_digits_ = needed_bigits - 1; |
+ |
+ Chunk most_significant_bigit = 0; // Could be = 0; |
+ for (int j = 0; j <= string_index; ++j) { |
+ most_significant_bigit <<= 4; |
+ most_significant_bigit += HexCharValue(value[j]); |
+ } |
+ if (most_significant_bigit != 0) { |
+ bigits_[used_digits_] = most_significant_bigit; |
+ used_digits_++; |
+ } |
+ Clamp(); |
+} |
+ |
+void Bignum::AddUInt64(uint64_t operand) { |
+ if (operand == 0) |
+ return; |
+ Bignum other; |
+ other.AssignUInt64(operand); |
+ AddBignum(other); |
+} |
+ |
+void Bignum::AddBignum(const Bignum& other) { |
+ ASSERT(IsClamped()); |
+ ASSERT(other.IsClamped()); |
+ |
+ // If this has a greater exponent than other append zero-bigits to this. |
+ // After this call exponent_ <= other.exponent_. |
+ Align(other); |
+ |
+ // There are two possibilities: |
+ // aaaaaaaaaaa 0000 (where the 0s represent a's exponent) |
+ // bbbbb 00000000 |
+ // ---------------- |
+ // ccccccccccc 0000 |
+ // or |
+ // aaaaaaaaaa 0000 |
+ // bbbbbbbbb 0000000 |
+ // ----------------- |
+ // cccccccccccc 0000 |
+ // In both cases we might need a carry bigit. |
+ |
+ EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_); |
+ Chunk carry = 0; |
+ int bigit_pos = other.exponent_ - exponent_; |
+ ASSERT(bigit_pos >= 0); |
+ for (int i = 0; i < other.used_digits_; ++i) { |
+ Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry; |
+ bigits_[bigit_pos] = sum & kBigitMask; |
+ carry = sum >> kBigitSize; |
+ bigit_pos++; |
+ } |
+ |
+ while (carry != 0) { |
+ Chunk sum = bigits_[bigit_pos] + carry; |
+ bigits_[bigit_pos] = sum & kBigitMask; |
+ carry = sum >> kBigitSize; |
+ bigit_pos++; |
+ } |
+ used_digits_ = Max(bigit_pos, used_digits_); |
+ ASSERT(IsClamped()); |
+} |
+ |
+void Bignum::SubtractBignum(const Bignum& other) { |
+ ASSERT(IsClamped()); |
+ ASSERT(other.IsClamped()); |
+ // We require this to be bigger than other. |
+ ASSERT(LessEqual(other, *this)); |
+ |
+ Align(other); |
+ |
+ int offset = other.exponent_ - exponent_; |
+ Chunk borrow = 0; |
+ int i; |
+ for (i = 0; i < other.used_digits_; ++i) { |
+ ASSERT((borrow == 0) || (borrow == 1)); |
+ Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow; |
+ bigits_[i + offset] = difference & kBigitMask; |
+ borrow = difference >> (kChunkSize - 1); |
+ } |
+ while (borrow != 0) { |
+ Chunk difference = bigits_[i + offset] - borrow; |
+ bigits_[i + offset] = difference & kBigitMask; |
+ borrow = difference >> (kChunkSize - 1); |
+ ++i; |
+ } |
+ Clamp(); |
+} |
+ |
+void Bignum::ShiftLeft(int shift_amount) { |
+ if (used_digits_ == 0) |
+ return; |
+ exponent_ += shift_amount / kBigitSize; |
+ int local_shift = shift_amount % kBigitSize; |
+ EnsureCapacity(used_digits_ + 1); |
+ BigitsShiftLeft(local_shift); |
+} |
+ |
+void Bignum::MultiplyByUInt32(uint32_t factor) { |
+ if (factor == 1) |
+ return; |
+ if (factor == 0) { |
+ Zero(); |
+ return; |
+ } |
+ if (used_digits_ == 0) |
+ return; |
+ |
+ // The product of a bigit with the factor is of size kBigitSize + 32. |
+ // Assert that this number + 1 (for the carry) fits into double chunk. |
+ ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1); |
+ DoubleChunk carry = 0; |
+ for (int i = 0; i < used_digits_; ++i) { |
+ DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry; |
+ bigits_[i] = static_cast<Chunk>(product & kBigitMask); |
+ carry = (product >> kBigitSize); |
+ } |
+ while (carry != 0) { |
+ EnsureCapacity(used_digits_ + 1); |
+ bigits_[used_digits_] = (uint32_t)carry & kBigitMask; |
+ used_digits_++; |
+ carry >>= kBigitSize; |
+ } |
+} |
+ |
+void Bignum::MultiplyByUInt64(uint64_t factor) { |
+ if (factor == 1) |
+ return; |
+ if (factor == 0) { |
+ Zero(); |
+ return; |
+ } |
+ ASSERT(kBigitSize < 32); |
+ uint64_t carry = 0; |
+ uint64_t low = factor & 0xFFFFFFFF; |
+ uint64_t high = factor >> 32; |
+ for (int i = 0; i < used_digits_; ++i) { |
+ uint64_t product_low = low * bigits_[i]; |
+ uint64_t product_high = high * bigits_[i]; |
+ uint64_t tmp = (carry & kBigitMask) + product_low; |
+ bigits_[i] = (uint32_t)tmp & kBigitMask; |
+ carry = (carry >> kBigitSize) + (tmp >> kBigitSize) + |
(product_high << (32 - kBigitSize)); |
- } |
- while (carry != 0) { |
- EnsureCapacity(used_digits_ + 1); |
- bigits_[used_digits_] = (uint32_t)carry & kBigitMask; |
- used_digits_++; |
- carry >>= kBigitSize; |
- } |
+ } |
+ while (carry != 0) { |
+ EnsureCapacity(used_digits_ + 1); |
+ bigits_[used_digits_] = (uint32_t)carry & kBigitMask; |
+ used_digits_++; |
+ carry >>= kBigitSize; |
+ } |
+} |
+ |
+void Bignum::MultiplyByPowerOfTen(int exponent) { |
+ const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d); |
+ const uint16_t kFive1 = 5; |
+ const uint16_t kFive2 = kFive1 * 5; |
+ const uint16_t kFive3 = kFive2 * 5; |
+ const uint16_t kFive4 = kFive3 * 5; |
+ const uint16_t kFive5 = kFive4 * 5; |
+ const uint16_t kFive6 = kFive5 * 5; |
+ const uint32_t kFive7 = kFive6 * 5; |
+ const uint32_t kFive8 = kFive7 * 5; |
+ const uint32_t kFive9 = kFive8 * 5; |
+ const uint32_t kFive10 = kFive9 * 5; |
+ const uint32_t kFive11 = kFive10 * 5; |
+ const uint32_t kFive12 = kFive11 * 5; |
+ const uint32_t kFive13 = kFive12 * 5; |
+ const uint32_t kFive1_to_12[] = {kFive1, kFive2, kFive3, kFive4, |
+ kFive5, kFive6, kFive7, kFive8, |
+ kFive9, kFive10, kFive11, kFive12}; |
+ |
+ ASSERT(exponent >= 0); |
+ if (exponent == 0) |
+ return; |
+ if (used_digits_ == 0) |
+ return; |
+ |
+ // We shift by exponent at the end just before returning. |
+ int remaining_exponent = exponent; |
+ while (remaining_exponent >= 27) { |
+ MultiplyByUInt64(kFive27); |
+ remaining_exponent -= 27; |
+ } |
+ while (remaining_exponent >= 13) { |
+ MultiplyByUInt32(kFive13); |
+ remaining_exponent -= 13; |
+ } |
+ if (remaining_exponent > 0) { |
+ MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]); |
+ } |
+ ShiftLeft(exponent); |
+} |
+ |
+void Bignum::Square() { |
+ ASSERT(IsClamped()); |
+ int product_length = 2 * used_digits_; |
+ EnsureCapacity(product_length); |
+ |
+ // Comba multiplication: compute each column separately. |
+ // Example: r = a2a1a0 * b2b1b0. |
+ // r = 1 * a0b0 + |
+ // 10 * (a1b0 + a0b1) + |
+ // 100 * (a2b0 + a1b1 + a0b2) + |
+ // 1000 * (a2b1 + a1b2) + |
+ // 10000 * a2b2 |
+ // |
+ // In the worst case we have to accumulate nb-digits products of digit*digit. |
+ // |
+ // Assert that the additional number of bits in a DoubleChunk are enough to |
+ // sum up used_digits of Bigit*Bigit. |
+ if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) { |
+ UNIMPLEMENTED(); |
+ } |
+ DoubleChunk accumulator = 0; |
+ // First shift the digits so we don't overwrite them. |
+ int copy_offset = used_digits_; |
+ for (int i = 0; i < used_digits_; ++i) { |
+ bigits_[copy_offset + i] = bigits_[i]; |
+ } |
+ // We have two loops to avoid some 'if's in the loop. |
+ for (int i = 0; i < used_digits_; ++i) { |
+ // Process temporary digit i with power i. |
+ // The sum of the two indices must be equal to i. |
+ int bigit_index1 = i; |
+ int bigit_index2 = 0; |
+ // Sum all of the sub-products. |
+ while (bigit_index1 >= 0) { |
+ Chunk chunk1 = bigits_[copy_offset + bigit_index1]; |
+ Chunk chunk2 = bigits_[copy_offset + bigit_index2]; |
+ accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; |
+ bigit_index1--; |
+ bigit_index2++; |
} |
- |
- |
- void Bignum::MultiplyByPowerOfTen(int exponent) { |
- const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d); |
- const uint16_t kFive1 = 5; |
- const uint16_t kFive2 = kFive1 * 5; |
- const uint16_t kFive3 = kFive2 * 5; |
- const uint16_t kFive4 = kFive3 * 5; |
- const uint16_t kFive5 = kFive4 * 5; |
- const uint16_t kFive6 = kFive5 * 5; |
- const uint32_t kFive7 = kFive6 * 5; |
- const uint32_t kFive8 = kFive7 * 5; |
- const uint32_t kFive9 = kFive8 * 5; |
- const uint32_t kFive10 = kFive9 * 5; |
- const uint32_t kFive11 = kFive10 * 5; |
- const uint32_t kFive12 = kFive11 * 5; |
- const uint32_t kFive13 = kFive12 * 5; |
- const uint32_t kFive1_to_12[] = |
- { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6, |
- kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 }; |
- |
- ASSERT(exponent >= 0); |
- if (exponent == 0) return; |
- if (used_digits_ == 0) return; |
- |
- // We shift by exponent at the end just before returning. |
- int remaining_exponent = exponent; |
- while (remaining_exponent >= 27) { |
- MultiplyByUInt64(kFive27); |
- remaining_exponent -= 27; |
- } |
- while (remaining_exponent >= 13) { |
- MultiplyByUInt32(kFive13); |
- remaining_exponent -= 13; |
- } |
- if (remaining_exponent > 0) { |
- MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]); |
- } |
- ShiftLeft(exponent); |
+ bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; |
+ accumulator >>= kBigitSize; |
+ } |
+ for (int i = used_digits_; i < product_length; ++i) { |
+ int bigit_index1 = used_digits_ - 1; |
+ int bigit_index2 = i - bigit_index1; |
+ // Invariant: sum of both indices is again equal to i. |
+ // Inner loop runs 0 times on last iteration, emptying accumulator. |
+ while (bigit_index2 < used_digits_) { |
+ Chunk chunk1 = bigits_[copy_offset + bigit_index1]; |
+ Chunk chunk2 = bigits_[copy_offset + bigit_index2]; |
+ accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; |
+ bigit_index1--; |
+ bigit_index2++; |
} |
- |
- |
- void Bignum::Square() { |
- ASSERT(IsClamped()); |
- int product_length = 2 * used_digits_; |
- EnsureCapacity(product_length); |
- |
- // Comba multiplication: compute each column separately. |
- // Example: r = a2a1a0 * b2b1b0. |
- // r = 1 * a0b0 + |
- // 10 * (a1b0 + a0b1) + |
- // 100 * (a2b0 + a1b1 + a0b2) + |
- // 1000 * (a2b1 + a1b2) + |
- // 10000 * a2b2 |
- // |
- // In the worst case we have to accumulate nb-digits products of digit*digit. |
- // |
- // Assert that the additional number of bits in a DoubleChunk are enough to |
- // sum up used_digits of Bigit*Bigit. |
- if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) { |
- UNIMPLEMENTED(); |
- } |
- DoubleChunk accumulator = 0; |
- // First shift the digits so we don't overwrite them. |
- int copy_offset = used_digits_; |
- for (int i = 0; i < used_digits_; ++i) { |
- bigits_[copy_offset + i] = bigits_[i]; |
- } |
- // We have two loops to avoid some 'if's in the loop. |
- for (int i = 0; i < used_digits_; ++i) { |
- // Process temporary digit i with power i. |
- // The sum of the two indices must be equal to i. |
- int bigit_index1 = i; |
- int bigit_index2 = 0; |
- // Sum all of the sub-products. |
- while (bigit_index1 >= 0) { |
- Chunk chunk1 = bigits_[copy_offset + bigit_index1]; |
- Chunk chunk2 = bigits_[copy_offset + bigit_index2]; |
- accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; |
- bigit_index1--; |
- bigit_index2++; |
- } |
- bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; |
- accumulator >>= kBigitSize; |
- } |
- for (int i = used_digits_; i < product_length; ++i) { |
- int bigit_index1 = used_digits_ - 1; |
- int bigit_index2 = i - bigit_index1; |
- // Invariant: sum of both indices is again equal to i. |
- // Inner loop runs 0 times on last iteration, emptying accumulator. |
- while (bigit_index2 < used_digits_) { |
- Chunk chunk1 = bigits_[copy_offset + bigit_index1]; |
- Chunk chunk2 = bigits_[copy_offset + bigit_index2]; |
- accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; |
- bigit_index1--; |
- bigit_index2++; |
- } |
- // The overwritten bigits_[i] will never be read in further loop iterations, |
- // because bigit_index1 and bigit_index2 are always greater |
- // than i - used_digits_. |
- bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; |
- accumulator >>= kBigitSize; |
- } |
- // Since the result was guaranteed to lie inside the number the |
- // accumulator must be 0 now. |
- ASSERT(accumulator == 0); |
- |
- // Don't forget to update the used_digits and the exponent. |
- used_digits_ = product_length; |
- exponent_ *= 2; |
- Clamp(); |
+ // The overwritten bigits_[i] will never be read in further loop iterations, |
+ // because bigit_index1 and bigit_index2 are always greater |
+ // than i - used_digits_. |
+ bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; |
+ accumulator >>= kBigitSize; |
+ } |
+ // Since the result was guaranteed to lie inside the number the |
+ // accumulator must be 0 now. |
+ ASSERT(accumulator == 0); |
+ |
+ // Don't forget to update the used_digits and the exponent. |
+ used_digits_ = product_length; |
+ exponent_ *= 2; |
+ Clamp(); |
+} |
+ |
+void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) { |
+ ASSERT(base != 0); |
+ ASSERT(power_exponent >= 0); |
+ if (power_exponent == 0) { |
+ AssignUInt16(1); |
+ return; |
+ } |
+ Zero(); |
+ int shifts = 0; |
+ // We expect base to be in range 2-32, and most often to be 10. |
+ // It does not make much sense to implement different algorithms for counting |
+ // the bits. |
+ while ((base & 1) == 0) { |
+ base >>= 1; |
+ shifts++; |
+ } |
+ int bit_size = 0; |
+ int tmp_base = base; |
+ while (tmp_base != 0) { |
+ tmp_base >>= 1; |
+ bit_size++; |
+ } |
+ int final_size = bit_size * power_exponent; |
+ // 1 extra bigit for the shifting, and one for rounded final_size. |
+ EnsureCapacity(final_size / kBigitSize + 2); |
+ |
+ // Left to Right exponentiation. |
+ int mask = 1; |
+ while (power_exponent >= mask) |
+ mask <<= 1; |
+ |
+ // The mask is now pointing to the bit above the most significant 1-bit of |
+ // power_exponent. |
+ // Get rid of first 1-bit; |
+ mask >>= 2; |
+ uint64_t this_value = base; |
+ |
+ bool delayed_multipliciation = false; |
+ const uint64_t max_32bits = 0xFFFFFFFF; |
+ while (mask != 0 && this_value <= max_32bits) { |
+ this_value = this_value * this_value; |
+ // Verify that there is enough space in this_value to perform the |
+ // multiplication. The first bit_size bits must be 0. |
+ if ((power_exponent & mask) != 0) { |
+ uint64_t base_bits_mask = |
+ ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1); |
+ bool high_bits_zero = (this_value & base_bits_mask) == 0; |
+ if (high_bits_zero) { |
+ this_value *= base; |
+ } else { |
+ delayed_multipliciation = true; |
+ } |
} |
- |
- |
- void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) { |
- ASSERT(base != 0); |
- ASSERT(power_exponent >= 0); |
- if (power_exponent == 0) { |
- AssignUInt16(1); |
- return; |
- } |
- Zero(); |
- int shifts = 0; |
- // We expect base to be in range 2-32, and most often to be 10. |
- // It does not make much sense to implement different algorithms for counting |
- // the bits. |
- while ((base & 1) == 0) { |
- base >>= 1; |
- shifts++; |
- } |
- int bit_size = 0; |
- int tmp_base = base; |
- while (tmp_base != 0) { |
- tmp_base >>= 1; |
- bit_size++; |
- } |
- int final_size = bit_size * power_exponent; |
- // 1 extra bigit for the shifting, and one for rounded final_size. |
- EnsureCapacity(final_size / kBigitSize + 2); |
- |
- // Left to Right exponentiation. |
- int mask = 1; |
- while (power_exponent >= mask) mask <<= 1; |
- |
- // The mask is now pointing to the bit above the most significant 1-bit of |
- // power_exponent. |
- // Get rid of first 1-bit; |
- mask >>= 2; |
- uint64_t this_value = base; |
- |
- bool delayed_multipliciation = false; |
- const uint64_t max_32bits = 0xFFFFFFFF; |
- while (mask != 0 && this_value <= max_32bits) { |
- this_value = this_value * this_value; |
- // Verify that there is enough space in this_value to perform the |
- // multiplication. The first bit_size bits must be 0. |
- if ((power_exponent & mask) != 0) { |
- uint64_t base_bits_mask = |
- ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1); |
- bool high_bits_zero = (this_value & base_bits_mask) == 0; |
- if (high_bits_zero) { |
- this_value *= base; |
- } else { |
- delayed_multipliciation = true; |
- } |
- } |
- mask >>= 1; |
- } |
- AssignUInt64(this_value); |
- if (delayed_multipliciation) { |
- MultiplyByUInt32(base); |
- } |
- |
- // Now do the same thing as a bignum. |
- while (mask != 0) { |
- Square(); |
- if ((power_exponent & mask) != 0) { |
- MultiplyByUInt32(base); |
- } |
- mask >>= 1; |
- } |
- |
- // And finally add the saved shifts. |
- ShiftLeft(shifts * power_exponent); |
+ mask >>= 1; |
+ } |
+ AssignUInt64(this_value); |
+ if (delayed_multipliciation) { |
+ MultiplyByUInt32(base); |
+ } |
+ |
+ // Now do the same thing as a bignum. |
+ while (mask != 0) { |
+ Square(); |
+ if ((power_exponent & mask) != 0) { |
+ MultiplyByUInt32(base); |
} |
- |
- |
- // Precondition: this/other < 16bit. |
- uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) { |
- ASSERT(IsClamped()); |
- ASSERT(other.IsClamped()); |
- ASSERT(other.used_digits_ > 0); |
- |
- // Easy case: if we have less digits than the divisor than the result is 0. |
- // Note: this handles the case where this == 0, too. |
- if (BigitLength() < other.BigitLength()) { |
- return 0; |
- } |
- |
- Align(other); |
- |
- uint16_t result = 0; |
- |
- // Start by removing multiples of 'other' until both numbers have the same |
- // number of digits. |
- while (BigitLength() > other.BigitLength()) { |
- // This naive approach is extremely inefficient if the this divided other |
- // might be big. This function is implemented for doubleToString where |
- // the result should be small (less than 10). |
- ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16)); |
- // Remove the multiples of the first digit. |
- // Example this = 23 and other equals 9. -> Remove 2 multiples. |
- result += static_cast<uint16_t>(bigits_[used_digits_ - 1]); |
- SubtractTimes(other, bigits_[used_digits_ - 1]); |
- } |
- |
- ASSERT(BigitLength() == other.BigitLength()); |
- |
- // Both bignums are at the same length now. |
- // Since other has more than 0 digits we know that the access to |
- // bigits_[used_digits_ - 1] is safe. |
- Chunk this_bigit = bigits_[used_digits_ - 1]; |
- Chunk other_bigit = other.bigits_[other.used_digits_ - 1]; |
- |
- if (other.used_digits_ == 1) { |
- // Shortcut for easy (and common) case. |
- uint16_t quotient = static_cast<uint16_t>(this_bigit / other_bigit); |
- bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient; |
- result += quotient; |
- Clamp(); |
- return result; |
- } |
- |
- uint16_t division_estimate = static_cast<uint16_t>(this_bigit / (other_bigit + 1)); |
- result += division_estimate; |
- SubtractTimes(other, division_estimate); |
- |
- if (other_bigit * (division_estimate + 1) > this_bigit) { |
- // No need to even try to subtract. Even if other's remaining digits were 0 |
- // another subtraction would be too much. |
- return result; |
- } |
- |
- while (LessEqual(other, *this)) { |
- SubtractBignum(other); |
- result++; |
- } |
- return result; |
+ mask >>= 1; |
+ } |
+ |
+ // And finally add the saved shifts. |
+ ShiftLeft(shifts * power_exponent); |
+} |
+ |
+// Precondition: this/other < 16bit. |
+uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) { |
+ ASSERT(IsClamped()); |
+ ASSERT(other.IsClamped()); |
+ ASSERT(other.used_digits_ > 0); |
+ |
+ // Easy case: if we have less digits than the divisor than the result is 0. |
+ // Note: this handles the case where this == 0, too. |
+ if (BigitLength() < other.BigitLength()) { |
+ return 0; |
+ } |
+ |
+ Align(other); |
+ |
+ uint16_t result = 0; |
+ |
+ // Start by removing multiples of 'other' until both numbers have the same |
+ // number of digits. |
+ while (BigitLength() > other.BigitLength()) { |
+ // This naive approach is extremely inefficient if the this divided other |
+ // might be big. This function is implemented for doubleToString where |
+ // the result should be small (less than 10). |
+ ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16)); |
+ // Remove the multiples of the first digit. |
+ // Example this = 23 and other equals 9. -> Remove 2 multiples. |
+ result += static_cast<uint16_t>(bigits_[used_digits_ - 1]); |
+ SubtractTimes(other, bigits_[used_digits_ - 1]); |
+ } |
+ |
+ ASSERT(BigitLength() == other.BigitLength()); |
+ |
+ // Both bignums are at the same length now. |
+ // Since other has more than 0 digits we know that the access to |
+ // bigits_[used_digits_ - 1] is safe. |
+ Chunk this_bigit = bigits_[used_digits_ - 1]; |
+ Chunk other_bigit = other.bigits_[other.used_digits_ - 1]; |
+ |
+ if (other.used_digits_ == 1) { |
+ // Shortcut for easy (and common) case. |
+ uint16_t quotient = static_cast<uint16_t>(this_bigit / other_bigit); |
+ bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient; |
+ result += quotient; |
+ Clamp(); |
+ return result; |
+ } |
+ |
+ uint16_t division_estimate = |
+ static_cast<uint16_t>(this_bigit / (other_bigit + 1)); |
+ result += division_estimate; |
+ SubtractTimes(other, division_estimate); |
+ |
+ if (other_bigit * (division_estimate + 1) > this_bigit) { |
+ // No need to even try to subtract. Even if other's remaining digits were 0 |
+ // another subtraction would be too much. |
+ return result; |
+ } |
+ |
+ while (LessEqual(other, *this)) { |
+ SubtractBignum(other); |
+ result++; |
+ } |
+ return result; |
+} |
+ |
+template <typename S> |
+static int SizeInHexChars(S number) { |
+ ASSERT(number > 0); |
+ int result = 0; |
+ while (number != 0) { |
+ number >>= 4; |
+ result++; |
+ } |
+ return result; |
+} |
+ |
+static char HexCharOfValue(uint8_t value) { |
+ ASSERT(0 <= value && value <= 16); |
+ if (value < 10) |
+ return value + '0'; |
+ return value - 10 + 'A'; |
+} |
+ |
+bool Bignum::ToHexString(char* buffer, int buffer_size) const { |
+ ASSERT(IsClamped()); |
+ // Each bigit must be printable as separate hex-character. |
+ ASSERT(kBigitSize % 4 == 0); |
+ const int kHexCharsPerBigit = kBigitSize / 4; |
+ |
+ if (used_digits_ == 0) { |
+ if (buffer_size < 2) |
+ return false; |
+ buffer[0] = '0'; |
+ buffer[1] = '\0'; |
+ return true; |
+ } |
+ // We add 1 for the terminating '\0' character. |
+ int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit + |
+ SizeInHexChars(bigits_[used_digits_ - 1]) + 1; |
+ if (needed_chars > buffer_size) |
+ return false; |
+ int string_index = needed_chars - 1; |
+ buffer[string_index--] = '\0'; |
+ for (int i = 0; i < exponent_; ++i) { |
+ for (int j = 0; j < kHexCharsPerBigit; ++j) { |
+ buffer[string_index--] = '0'; |
} |
- |
- |
- template<typename S> |
- static int SizeInHexChars(S number) { |
- ASSERT(number > 0); |
- int result = 0; |
- while (number != 0) { |
- number >>= 4; |
- result++; |
- } |
- return result; |
+ } |
+ for (int i = 0; i < used_digits_ - 1; ++i) { |
+ Chunk current_bigit = bigits_[i]; |
+ for (int j = 0; j < kHexCharsPerBigit; ++j) { |
+ buffer[string_index--] = HexCharOfValue(current_bigit & 0xF); |
+ current_bigit >>= 4; |
} |
- |
- |
- static char HexCharOfValue(uint8_t value) { |
- ASSERT(0 <= value && value <= 16); |
- if (value < 10) return value + '0'; |
- return value - 10 + 'A'; |
- } |
- |
- |
- bool Bignum::ToHexString(char* buffer, int buffer_size) const { |
- ASSERT(IsClamped()); |
- // Each bigit must be printable as separate hex-character. |
- ASSERT(kBigitSize % 4 == 0); |
- const int kHexCharsPerBigit = kBigitSize / 4; |
- |
- if (used_digits_ == 0) { |
- if (buffer_size < 2) return false; |
- buffer[0] = '0'; |
- buffer[1] = '\0'; |
- return true; |
- } |
- // We add 1 for the terminating '\0' character. |
- int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit + |
- SizeInHexChars(bigits_[used_digits_ - 1]) + 1; |
- if (needed_chars > buffer_size) return false; |
- int string_index = needed_chars - 1; |
- buffer[string_index--] = '\0'; |
- for (int i = 0; i < exponent_; ++i) { |
- for (int j = 0; j < kHexCharsPerBigit; ++j) { |
- buffer[string_index--] = '0'; |
- } |
- } |
- for (int i = 0; i < used_digits_ - 1; ++i) { |
- Chunk current_bigit = bigits_[i]; |
- for (int j = 0; j < kHexCharsPerBigit; ++j) { |
- buffer[string_index--] = HexCharOfValue(current_bigit & 0xF); |
- current_bigit >>= 4; |
- } |
- } |
- // And finally the last bigit. |
- Chunk most_significant_bigit = bigits_[used_digits_ - 1]; |
- while (most_significant_bigit != 0) { |
- buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF); |
- most_significant_bigit >>= 4; |
- } |
- return true; |
- } |
- |
- |
- Bignum::Chunk Bignum::BigitAt(int index) const { |
- if (index >= BigitLength()) return 0; |
- if (index < exponent_) return 0; |
- return bigits_[index - exponent_]; |
- } |
- |
- |
- int Bignum::Compare(const Bignum& a, const Bignum& b) { |
- ASSERT(a.IsClamped()); |
- ASSERT(b.IsClamped()); |
- int bigit_length_a = a.BigitLength(); |
- int bigit_length_b = b.BigitLength(); |
- if (bigit_length_a < bigit_length_b) return -1; |
- if (bigit_length_a > bigit_length_b) return +1; |
- for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) { |
- Chunk bigit_a = a.BigitAt(i); |
- Chunk bigit_b = b.BigitAt(i); |
- if (bigit_a < bigit_b) return -1; |
- if (bigit_a > bigit_b) return +1; |
- // Otherwise they are equal up to this digit. Try the next digit. |
- } |
- return 0; |
- } |
- |
- |
- int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) { |
- ASSERT(a.IsClamped()); |
- ASSERT(b.IsClamped()); |
- ASSERT(c.IsClamped()); |
- if (a.BigitLength() < b.BigitLength()) { |
- return PlusCompare(b, a, c); |
- } |
- if (a.BigitLength() + 1 < c.BigitLength()) return -1; |
- if (a.BigitLength() > c.BigitLength()) return +1; |
- // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than |
- // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one |
- // of 'a'. |
- if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) { |
- return -1; |
- } |
- |
- Chunk borrow = 0; |
- // Starting at min_exponent all digits are == 0. So no need to compare them. |
- int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_); |
- for (int i = c.BigitLength() - 1; i >= min_exponent; --i) { |
- Chunk chunk_a = a.BigitAt(i); |
- Chunk chunk_b = b.BigitAt(i); |
- Chunk chunk_c = c.BigitAt(i); |
- Chunk sum = chunk_a + chunk_b; |
- if (sum > chunk_c + borrow) { |
- return +1; |
- } else { |
- borrow = chunk_c + borrow - sum; |
- if (borrow > 1) return -1; |
- borrow <<= kBigitSize; |
- } |
- } |
- if (borrow == 0) return 0; |
+ } |
+ // And finally the last bigit. |
+ Chunk most_significant_bigit = bigits_[used_digits_ - 1]; |
+ while (most_significant_bigit != 0) { |
+ buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF); |
+ most_significant_bigit >>= 4; |
+ } |
+ return true; |
+} |
+ |
+Bignum::Chunk Bignum::BigitAt(int index) const { |
+ if (index >= BigitLength()) |
+ return 0; |
+ if (index < exponent_) |
+ return 0; |
+ return bigits_[index - exponent_]; |
+} |
+ |
+int Bignum::Compare(const Bignum& a, const Bignum& b) { |
+ ASSERT(a.IsClamped()); |
+ ASSERT(b.IsClamped()); |
+ int bigit_length_a = a.BigitLength(); |
+ int bigit_length_b = b.BigitLength(); |
+ if (bigit_length_a < bigit_length_b) |
+ return -1; |
+ if (bigit_length_a > bigit_length_b) |
+ return +1; |
+ for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) { |
+ Chunk bigit_a = a.BigitAt(i); |
+ Chunk bigit_b = b.BigitAt(i); |
+ if (bigit_a < bigit_b) |
+ return -1; |
+ if (bigit_a > bigit_b) |
+ return +1; |
+ // Otherwise they are equal up to this digit. Try the next digit. |
+ } |
+ return 0; |
+} |
+ |
+int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) { |
+ ASSERT(a.IsClamped()); |
+ ASSERT(b.IsClamped()); |
+ ASSERT(c.IsClamped()); |
+ if (a.BigitLength() < b.BigitLength()) { |
+ return PlusCompare(b, a, c); |
+ } |
+ if (a.BigitLength() + 1 < c.BigitLength()) |
+ return -1; |
+ if (a.BigitLength() > c.BigitLength()) |
+ return +1; |
+ // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than |
+ // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one |
+ // of 'a'. |
+ if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) { |
+ return -1; |
+ } |
+ |
+ Chunk borrow = 0; |
+ // Starting at min_exponent all digits are == 0. So no need to compare them. |
+ int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_); |
+ for (int i = c.BigitLength() - 1; i >= min_exponent; --i) { |
+ Chunk chunk_a = a.BigitAt(i); |
+ Chunk chunk_b = b.BigitAt(i); |
+ Chunk chunk_c = c.BigitAt(i); |
+ Chunk sum = chunk_a + chunk_b; |
+ if (sum > chunk_c + borrow) { |
+ return +1; |
+ } else { |
+ borrow = chunk_c + borrow - sum; |
+ if (borrow > 1) |
return -1; |
+ borrow <<= kBigitSize; |
} |
- |
- |
- void Bignum::Clamp() { |
- while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) { |
- used_digits_--; |
- } |
- if (used_digits_ == 0) { |
- // Zero. |
- exponent_ = 0; |
- } |
- } |
- |
- |
- bool Bignum::IsClamped() const { |
- return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0; |
- } |
- |
- |
- void Bignum::Zero() { |
- for (int i = 0; i < used_digits_; ++i) { |
- bigits_[i] = 0; |
- } |
- used_digits_ = 0; |
- exponent_ = 0; |
- } |
- |
- |
- void Bignum::Align(const Bignum& other) { |
- if (exponent_ > other.exponent_) { |
- // If "X" represents a "hidden" digit (by the exponent) then we are in the |
- // following case (a == this, b == other): |
- // a: aaaaaaXXXX or a: aaaaaXXX |
- // b: bbbbbbX b: bbbbbbbbXX |
- // We replace some of the hidden digits (X) of a with 0 digits. |
- // a: aaaaaa000X or a: aaaaa0XX |
- int zero_digits = exponent_ - other.exponent_; |
- EnsureCapacity(used_digits_ + zero_digits); |
- for (int i = used_digits_ - 1; i >= 0; --i) { |
- bigits_[i + zero_digits] = bigits_[i]; |
- } |
- for (int i = 0; i < zero_digits; ++i) { |
- bigits_[i] = 0; |
- } |
- used_digits_ += zero_digits; |
- exponent_ -= zero_digits; |
- ASSERT(used_digits_ >= 0); |
- ASSERT(exponent_ >= 0); |
- } |
+ } |
+ if (borrow == 0) |
+ return 0; |
+ return -1; |
+} |
+ |
+void Bignum::Clamp() { |
+ while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) { |
+ used_digits_--; |
+ } |
+ if (used_digits_ == 0) { |
+ // Zero. |
+ exponent_ = 0; |
+ } |
+} |
+ |
+bool Bignum::IsClamped() const { |
+ return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0; |
+} |
+ |
+void Bignum::Zero() { |
+ for (int i = 0; i < used_digits_; ++i) { |
+ bigits_[i] = 0; |
+ } |
+ used_digits_ = 0; |
+ exponent_ = 0; |
+} |
+ |
+void Bignum::Align(const Bignum& other) { |
+ if (exponent_ > other.exponent_) { |
+ // If "X" represents a "hidden" digit (by the exponent) then we are in the |
+ // following case (a == this, b == other): |
+ // a: aaaaaaXXXX or a: aaaaaXXX |
+ // b: bbbbbbX b: bbbbbbbbXX |
+ // We replace some of the hidden digits (X) of a with 0 digits. |
+ // a: aaaaaa000X or a: aaaaa0XX |
+ int zero_digits = exponent_ - other.exponent_; |
+ EnsureCapacity(used_digits_ + zero_digits); |
+ for (int i = used_digits_ - 1; i >= 0; --i) { |
+ bigits_[i + zero_digits] = bigits_[i]; |
} |
- |
- |
- void Bignum::BigitsShiftLeft(int shift_amount) { |
- ASSERT(shift_amount < kBigitSize); |
- ASSERT(shift_amount >= 0); |
- Chunk carry = 0; |
- for (int i = 0; i < used_digits_; ++i) { |
- Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount); |
- bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask; |
- carry = new_carry; |
- } |
- if (carry != 0) { |
- bigits_[used_digits_] = carry; |
- used_digits_++; |
- } |
+ for (int i = 0; i < zero_digits; ++i) { |
+ bigits_[i] = 0; |
} |
- |
- |
- void Bignum::SubtractTimes(const Bignum& other, int factor) { |
- ASSERT(exponent_ <= other.exponent_); |
- if (factor < 3) { |
- for (int i = 0; i < factor; ++i) { |
- SubtractBignum(other); |
- } |
- return; |
- } |
- Chunk borrow = 0; |
- int exponent_diff = other.exponent_ - exponent_; |
- for (int i = 0; i < other.used_digits_; ++i) { |
- DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i]; |
- DoubleChunk remove = borrow + product; |
- Chunk difference = bigits_[i + exponent_diff] - ((uint32_t)remove & kBigitMask); |
- bigits_[i + exponent_diff] = difference & kBigitMask; |
- borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) + |
- (remove >> kBigitSize)); |
- } |
- for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) { |
- if (borrow == 0) return; |
- Chunk difference = bigits_[i] - borrow; |
- bigits_[i] = difference & kBigitMask; |
- borrow = difference >> (kChunkSize - 1); |
- } |
- Clamp(); |
+ used_digits_ += zero_digits; |
+ exponent_ -= zero_digits; |
+ ASSERT(used_digits_ >= 0); |
+ ASSERT(exponent_ >= 0); |
+ } |
+} |
+ |
+void Bignum::BigitsShiftLeft(int shift_amount) { |
+ ASSERT(shift_amount < kBigitSize); |
+ ASSERT(shift_amount >= 0); |
+ Chunk carry = 0; |
+ for (int i = 0; i < used_digits_; ++i) { |
+ Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount); |
+ bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask; |
+ carry = new_carry; |
+ } |
+ if (carry != 0) { |
+ bigits_[used_digits_] = carry; |
+ used_digits_++; |
+ } |
+} |
+ |
+void Bignum::SubtractTimes(const Bignum& other, int factor) { |
+ ASSERT(exponent_ <= other.exponent_); |
+ if (factor < 3) { |
+ for (int i = 0; i < factor; ++i) { |
+ SubtractBignum(other); |
} |
- |
+ return; |
+ } |
+ Chunk borrow = 0; |
+ int exponent_diff = other.exponent_ - exponent_; |
+ for (int i = 0; i < other.used_digits_; ++i) { |
+ DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i]; |
+ DoubleChunk remove = borrow + product; |
+ Chunk difference = |
+ bigits_[i + exponent_diff] - ((uint32_t)remove & kBigitMask); |
+ bigits_[i + exponent_diff] = difference & kBigitMask; |
+ borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) + |
+ (remove >> kBigitSize)); |
+ } |
+ for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) { |
+ if (borrow == 0) |
+ return; |
+ Chunk difference = bigits_[i] - borrow; |
+ bigits_[i] = difference & kBigitMask; |
+ borrow = difference >> (kChunkSize - 1); |
+ } |
+ Clamp(); |
+} |
} // namespace double_conversion |
-} // namespace WTF |
+} // namespace WTF |