| Index: third_party/WebKit/Source/wtf/dtoa/fast-dtoa.cc
|
| diff --git a/third_party/WebKit/Source/wtf/dtoa/fast-dtoa.cc b/third_party/WebKit/Source/wtf/dtoa/fast-dtoa.cc
|
| index 44ecae68f6e8e0280833fd74f83e4efa56b75f44..6670fa293d02626eaa3cc486e19458d529377121 100644
|
| --- a/third_party/WebKit/Source/wtf/dtoa/fast-dtoa.cc
|
| +++ b/third_party/WebKit/Source/wtf/dtoa/fast-dtoa.cc
|
| @@ -35,705 +35,698 @@ namespace WTF {
|
|
|
| namespace double_conversion {
|
|
|
| - // The minimal and maximal target exponent define the range of w's binary
|
| - // exponent, where 'w' is the result of multiplying the input by a cached power
|
| - // of ten.
|
| - //
|
| - // A different range might be chosen on a different platform, to optimize digit
|
| - // generation, but a smaller range requires more powers of ten to be cached.
|
| - static const int kMinimalTargetExponent = -60;
|
| - static const int kMaximalTargetExponent = -32;
|
| -
|
| -
|
| - // Adjusts the last digit of the generated number, and screens out generated
|
| - // solutions that may be inaccurate. A solution may be inaccurate if it is
|
| - // outside the safe interval, or if we cannot prove that it is closer to the
|
| - // input than a neighboring representation of the same length.
|
| - //
|
| - // Input: * buffer containing the digits of too_high / 10^kappa
|
| - // * the buffer's length
|
| - // * distance_too_high_w == (too_high - w).f() * unit
|
| - // * unsafe_interval == (too_high - too_low).f() * unit
|
| - // * rest = (too_high - buffer * 10^kappa).f() * unit
|
| - // * ten_kappa = 10^kappa * unit
|
| - // * unit = the common multiplier
|
| - // Output: returns true if the buffer is guaranteed to contain the closest
|
| - // representable number to the input.
|
| - // Modifies the generated digits in the buffer to approach (round towards) w.
|
| - static bool RoundWeed(Vector<char> buffer,
|
| - int length,
|
| - uint64_t distance_too_high_w,
|
| - uint64_t unsafe_interval,
|
| - uint64_t rest,
|
| - uint64_t ten_kappa,
|
| - uint64_t unit) {
|
| - uint64_t small_distance = distance_too_high_w - unit;
|
| - uint64_t big_distance = distance_too_high_w + unit;
|
| - // Let w_low = too_high - big_distance, and
|
| - // w_high = too_high - small_distance.
|
| - // Note: w_low < w < w_high
|
| - //
|
| - // The real w (* unit) must lie somewhere inside the interval
|
| - // ]w_low; w_high[ (often written as "(w_low; w_high)")
|
| -
|
| - // Basically the buffer currently contains a number in the unsafe interval
|
| - // ]too_low; too_high[ with too_low < w < too_high
|
| - //
|
| - // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| - // ^v 1 unit ^ ^ ^ ^
|
| - // boundary_high --------------------- . . . .
|
| - // ^v 1 unit . . . .
|
| - // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
|
| - // . . ^ . .
|
| - // . big_distance . . .
|
| - // . . . . rest
|
| - // small_distance . . . .
|
| - // v . . . .
|
| - // w_high - - - - - - - - - - - - - - - - - - . . . .
|
| - // ^v 1 unit . . . .
|
| - // w ---------------------------------------- . . . .
|
| - // ^v 1 unit v . . .
|
| - // w_low - - - - - - - - - - - - - - - - - - - - - . . .
|
| - // . . v
|
| - // buffer --------------------------------------------------+-------+--------
|
| - // . .
|
| - // safe_interval .
|
| - // v .
|
| - // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
|
| - // ^v 1 unit .
|
| - // boundary_low ------------------------- unsafe_interval
|
| - // ^v 1 unit v
|
| - // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| - //
|
| - //
|
| - // Note that the value of buffer could lie anywhere inside the range too_low
|
| - // to too_high.
|
| - //
|
| - // boundary_low, boundary_high and w are approximations of the real boundaries
|
| - // and v (the input number). They are guaranteed to be precise up to one unit.
|
| - // In fact the error is guaranteed to be strictly less than one unit.
|
| - //
|
| - // Anything that lies outside the unsafe interval is guaranteed not to round
|
| - // to v when read again.
|
| - // Anything that lies inside the safe interval is guaranteed to round to v
|
| - // when read again.
|
| - // If the number inside the buffer lies inside the unsafe interval but not
|
| - // inside the safe interval then we simply do not know and bail out (returning
|
| - // false).
|
| - //
|
| - // Similarly we have to take into account the imprecision of 'w' when finding
|
| - // the closest representation of 'w'. If we have two potential
|
| - // representations, and one is closer to both w_low and w_high, then we know
|
| - // it is closer to the actual value v.
|
| - //
|
| - // By generating the digits of too_high we got the largest (closest to
|
| - // too_high) buffer that is still in the unsafe interval. In the case where
|
| - // w_high < buffer < too_high we try to decrement the buffer.
|
| - // This way the buffer approaches (rounds towards) w.
|
| - // There are 3 conditions that stop the decrementation process:
|
| - // 1) the buffer is already below w_high
|
| - // 2) decrementing the buffer would make it leave the unsafe interval
|
| - // 3) decrementing the buffer would yield a number below w_high and farther
|
| - // away than the current number. In other words:
|
| - // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
|
| - // Instead of using the buffer directly we use its distance to too_high.
|
| - // Conceptually rest ~= too_high - buffer
|
| - // We need to do the following tests in this order to avoid over- and
|
| - // underflows.
|
| - ASSERT(rest <= unsafe_interval);
|
| - while (rest < small_distance && // Negated condition 1
|
| - unsafe_interval - rest >= ten_kappa && // Negated condition 2
|
| - (rest + ten_kappa < small_distance || // buffer{-1} > w_high
|
| - small_distance - rest >= rest + ten_kappa - small_distance)) {
|
| - buffer[length - 1]--;
|
| - rest += ten_kappa;
|
| - }
|
| -
|
| - // We have approached w+ as much as possible. We now test if approaching w-
|
| - // would require changing the buffer. If yes, then we have two possible
|
| - // representations close to w, but we cannot decide which one is closer.
|
| - if (rest < big_distance &&
|
| - unsafe_interval - rest >= ten_kappa &&
|
| - (rest + ten_kappa < big_distance ||
|
| - big_distance - rest > rest + ten_kappa - big_distance)) {
|
| - return false;
|
| - }
|
| -
|
| - // Weeding test.
|
| - // The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
|
| - // Since too_low = too_high - unsafe_interval this is equivalent to
|
| - // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
|
| - // Conceptually we have: rest ~= too_high - buffer
|
| - return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
|
| - }
|
| -
|
| -
|
| - // Rounds the buffer upwards if the result is closer to v by possibly adding
|
| - // 1 to the buffer. If the precision of the calculation is not sufficient to
|
| - // round correctly, return false.
|
| - // The rounding might shift the whole buffer in which case the kappa is
|
| - // adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
|
| - //
|
| - // If 2*rest > ten_kappa then the buffer needs to be round up.
|
| - // rest can have an error of +/- 1 unit. This function accounts for the
|
| - // imprecision and returns false, if the rounding direction cannot be
|
| - // unambiguously determined.
|
| - //
|
| - // Precondition: rest < ten_kappa.
|
| - static bool RoundWeedCounted(Vector<char> buffer,
|
| - int length,
|
| - uint64_t rest,
|
| - uint64_t ten_kappa,
|
| - uint64_t unit,
|
| - int* kappa) {
|
| - ASSERT(rest < ten_kappa);
|
| - // The following tests are done in a specific order to avoid overflows. They
|
| - // will work correctly with any uint64 values of rest < ten_kappa and unit.
|
| - //
|
| - // If the unit is too big, then we don't know which way to round. For example
|
| - // a unit of 50 means that the real number lies within rest +/- 50. If
|
| - // 10^kappa == 40 then there is no way to tell which way to round.
|
| - if (unit >= ten_kappa) return false;
|
| - // Even if unit is just half the size of 10^kappa we are already completely
|
| - // lost. (And after the previous test we know that the expression will not
|
| - // over/underflow.)
|
| - if (ten_kappa - unit <= unit) return false;
|
| - // If 2 * (rest + unit) <= 10^kappa we can safely round down.
|
| - if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
|
| - return true;
|
| - }
|
| - // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
|
| - if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
|
| - // Increment the last digit recursively until we find a non '9' digit.
|
| - buffer[length - 1]++;
|
| - for (int i = length - 1; i > 0; --i) {
|
| - if (buffer[i] != '0' + 10) break;
|
| - buffer[i] = '0';
|
| - buffer[i - 1]++;
|
| - }
|
| - // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
|
| - // exception of the first digit all digits are now '0'. Simply switch the
|
| - // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
|
| - // the power (the kappa) is increased.
|
| - if (buffer[0] == '0' + 10) {
|
| - buffer[0] = '1';
|
| - (*kappa) += 1;
|
| - }
|
| - return true;
|
| - }
|
| - return false;
|
| - }
|
| -
|
| -
|
| - static const uint32_t kTen4 = 10000;
|
| - static const uint32_t kTen5 = 100000;
|
| - static const uint32_t kTen6 = 1000000;
|
| - static const uint32_t kTen7 = 10000000;
|
| - static const uint32_t kTen8 = 100000000;
|
| - static const uint32_t kTen9 = 1000000000;
|
| -
|
| - // Returns the biggest power of ten that is less than or equal to the given
|
| - // number. We furthermore receive the maximum number of bits 'number' has.
|
| - // If number_bits == 0 then 0^-1 is returned
|
| - // The number of bits must be <= 32.
|
| - // Precondition: number < (1 << (number_bits + 1)).
|
| - static void BiggestPowerTen(uint32_t number,
|
| - int number_bits,
|
| - uint32_t* power,
|
| - int* exponent) {
|
| - ASSERT(number < (uint32_t)(1 << (number_bits + 1)));
|
| -
|
| - switch (number_bits) {
|
| - case 32:
|
| - case 31:
|
| - case 30:
|
| - if (kTen9 <= number) {
|
| - *power = kTen9;
|
| - *exponent = 9;
|
| - break;
|
| - } // else fallthrough
|
| - case 29:
|
| - case 28:
|
| - case 27:
|
| - if (kTen8 <= number) {
|
| - *power = kTen8;
|
| - *exponent = 8;
|
| - break;
|
| - } // else fallthrough
|
| - case 26:
|
| - case 25:
|
| - case 24:
|
| - if (kTen7 <= number) {
|
| - *power = kTen7;
|
| - *exponent = 7;
|
| - break;
|
| - } // else fallthrough
|
| - case 23:
|
| - case 22:
|
| - case 21:
|
| - case 20:
|
| - if (kTen6 <= number) {
|
| - *power = kTen6;
|
| - *exponent = 6;
|
| - break;
|
| - } // else fallthrough
|
| - case 19:
|
| - case 18:
|
| - case 17:
|
| - if (kTen5 <= number) {
|
| - *power = kTen5;
|
| - *exponent = 5;
|
| - break;
|
| - } // else fallthrough
|
| - case 16:
|
| - case 15:
|
| - case 14:
|
| - if (kTen4 <= number) {
|
| - *power = kTen4;
|
| - *exponent = 4;
|
| - break;
|
| - } // else fallthrough
|
| - case 13:
|
| - case 12:
|
| - case 11:
|
| - case 10:
|
| - if (1000 <= number) {
|
| - *power = 1000;
|
| - *exponent = 3;
|
| - break;
|
| - } // else fallthrough
|
| - case 9:
|
| - case 8:
|
| - case 7:
|
| - if (100 <= number) {
|
| - *power = 100;
|
| - *exponent = 2;
|
| - break;
|
| - } // else fallthrough
|
| - case 6:
|
| - case 5:
|
| - case 4:
|
| - if (10 <= number) {
|
| - *power = 10;
|
| - *exponent = 1;
|
| - break;
|
| - } // else fallthrough
|
| - case 3:
|
| - case 2:
|
| - case 1:
|
| - if (1 <= number) {
|
| - *power = 1;
|
| - *exponent = 0;
|
| - break;
|
| - } // else fallthrough
|
| - case 0:
|
| - *power = 0;
|
| - *exponent = -1;
|
| - break;
|
| - default:
|
| - // Following assignments are here to silence compiler warnings.
|
| - *power = 0;
|
| - *exponent = 0;
|
| - UNREACHABLE();
|
| - }
|
| - }
|
| -
|
| -
|
| - // Generates the digits of input number w.
|
| - // w is a floating-point number (DiyFp), consisting of a significand and an
|
| - // exponent. Its exponent is bounded by kMinimalTargetExponent and
|
| - // kMaximalTargetExponent.
|
| - // Hence -60 <= w.e() <= -32.
|
| - //
|
| - // Returns false if it fails, in which case the generated digits in the buffer
|
| - // should not be used.
|
| - // Preconditions:
|
| - // * low, w and high are correct up to 1 ulp (unit in the last place). That
|
| - // is, their error must be less than a unit of their last digits.
|
| - // * low.e() == w.e() == high.e()
|
| - // * low < w < high, and taking into account their error: low~ <= high~
|
| - // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
|
| - // Postconditions: returns false if procedure fails.
|
| - // otherwise:
|
| - // * buffer is not null-terminated, but len contains the number of digits.
|
| - // * buffer contains the shortest possible decimal digit-sequence
|
| - // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
|
| - // correct values of low and high (without their error).
|
| - // * if more than one decimal representation gives the minimal number of
|
| - // decimal digits then the one closest to W (where W is the correct value
|
| - // of w) is chosen.
|
| - // Remark: this procedure takes into account the imprecision of its input
|
| - // numbers. If the precision is not enough to guarantee all the postconditions
|
| - // then false is returned. This usually happens rarely (~0.5%).
|
| - //
|
| - // Say, for the sake of example, that
|
| - // w.e() == -48, and w.f() == 0x1234567890abcdef
|
| - // w's value can be computed by w.f() * 2^w.e()
|
| - // We can obtain w's integral digits by simply shifting w.f() by -w.e().
|
| - // -> w's integral part is 0x1234
|
| - // w's fractional part is therefore 0x567890abcdef.
|
| - // Printing w's integral part is easy (simply print 0x1234 in decimal).
|
| - // In order to print its fraction we repeatedly multiply the fraction by 10 and
|
| - // get each digit. Example the first digit after the point would be computed by
|
| - // (0x567890abcdef * 10) >> 48. -> 3
|
| - // The whole thing becomes slightly more complicated because we want to stop
|
| - // once we have enough digits. That is, once the digits inside the buffer
|
| - // represent 'w' we can stop. Everything inside the interval low - high
|
| - // represents w. However we have to pay attention to low, high and w's
|
| - // imprecision.
|
| - static bool DigitGen(DiyFp low,
|
| - DiyFp w,
|
| - DiyFp high,
|
| - Vector<char> buffer,
|
| - int* length,
|
| - int* kappa) {
|
| - ASSERT(low.e() == w.e() && w.e() == high.e());
|
| - ASSERT(low.f() + 1 <= high.f() - 1);
|
| - ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
|
| - // low, w and high are imprecise, but by less than one ulp (unit in the last
|
| - // place).
|
| - // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
|
| - // the new numbers are outside of the interval we want the final
|
| - // representation to lie in.
|
| - // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
|
| - // numbers that are certain to lie in the interval. We will use this fact
|
| - // later on.
|
| - // We will now start by generating the digits within the uncertain
|
| - // interval. Later we will weed out representations that lie outside the safe
|
| - // interval and thus _might_ lie outside the correct interval.
|
| - uint64_t unit = 1;
|
| - DiyFp too_low = DiyFp(low.f() - unit, low.e());
|
| - DiyFp too_high = DiyFp(high.f() + unit, high.e());
|
| - // too_low and too_high are guaranteed to lie outside the interval we want the
|
| - // generated number in.
|
| - DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
|
| - // We now cut the input number into two parts: the integral digits and the
|
| - // fractionals. We will not write any decimal separator though, but adapt
|
| - // kappa instead.
|
| - // Reminder: we are currently computing the digits (stored inside the buffer)
|
| - // such that: too_low < buffer * 10^kappa < too_high
|
| - // We use too_high for the digit_generation and stop as soon as possible.
|
| - // If we stop early we effectively round down.
|
| - DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
|
| - // Division by one is a shift.
|
| - uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
|
| - // Modulo by one is an and.
|
| - uint64_t fractionals = too_high.f() & (one.f() - 1);
|
| - uint32_t divisor;
|
| - int divisor_exponent;
|
| - BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
|
| - &divisor, &divisor_exponent);
|
| - *kappa = divisor_exponent + 1;
|
| - *length = 0;
|
| - // Loop invariant: buffer = too_high / 10^kappa (integer division)
|
| - // The invariant holds for the first iteration: kappa has been initialized
|
| - // with the divisor exponent + 1. And the divisor is the biggest power of ten
|
| - // that is smaller than integrals.
|
| - while (*kappa > 0) {
|
| - char digit = static_cast<char>(integrals / divisor);
|
| - buffer[*length] = '0' + digit;
|
| - (*length)++;
|
| - integrals %= divisor;
|
| - (*kappa)--;
|
| - // Note that kappa now equals the exponent of the divisor and that the
|
| - // invariant thus holds again.
|
| - uint64_t rest =
|
| - (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
|
| - // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
|
| - // Reminder: unsafe_interval.e() == one.e()
|
| - if (rest < unsafe_interval.f()) {
|
| - // Rounding down (by not emitting the remaining digits) yields a number
|
| - // that lies within the unsafe interval.
|
| - return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
|
| - unsafe_interval.f(), rest,
|
| - static_cast<uint64_t>(divisor) << -one.e(), unit);
|
| - }
|
| - divisor /= 10;
|
| - }
|
| -
|
| - // The integrals have been generated. We are at the point of the decimal
|
| - // separator. In the following loop we simply multiply the remaining digits by
|
| - // 10 and divide by one. We just need to pay attention to multiply associated
|
| - // data (like the interval or 'unit'), too.
|
| - // Note that the multiplication by 10 does not overflow, because w.e >= -60
|
| - // and thus one.e >= -60.
|
| - ASSERT(one.e() >= -60);
|
| - ASSERT(fractionals < one.f());
|
| - ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
|
| - while (true) {
|
| - fractionals *= 10;
|
| - unit *= 10;
|
| - unsafe_interval.set_f(unsafe_interval.f() * 10);
|
| - // Integer division by one.
|
| - char digit = static_cast<char>(fractionals >> -one.e());
|
| - buffer[*length] = '0' + digit;
|
| - (*length)++;
|
| - fractionals &= one.f() - 1; // Modulo by one.
|
| - (*kappa)--;
|
| - if (fractionals < unsafe_interval.f()) {
|
| - return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
|
| - unsafe_interval.f(), fractionals, one.f(), unit);
|
| - }
|
| - }
|
| - }
|
| -
|
| -
|
| -
|
| - // Generates (at most) requested_digits digits of input number w.
|
| - // w is a floating-point number (DiyFp), consisting of a significand and an
|
| - // exponent. Its exponent is bounded by kMinimalTargetExponent and
|
| - // kMaximalTargetExponent.
|
| - // Hence -60 <= w.e() <= -32.
|
| - //
|
| - // Returns false if it fails, in which case the generated digits in the buffer
|
| - // should not be used.
|
| - // Preconditions:
|
| - // * w is correct up to 1 ulp (unit in the last place). That
|
| - // is, its error must be strictly less than a unit of its last digit.
|
| - // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
|
| - //
|
| - // Postconditions: returns false if procedure fails.
|
| - // otherwise:
|
| - // * buffer is not null-terminated, but length contains the number of
|
| - // digits.
|
| - // * the representation in buffer is the most precise representation of
|
| - // requested_digits digits.
|
| - // * buffer contains at most requested_digits digits of w. If there are less
|
| - // than requested_digits digits then some trailing '0's have been removed.
|
| - // * kappa is such that
|
| - // w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
|
| - //
|
| - // Remark: This procedure takes into account the imprecision of its input
|
| - // numbers. If the precision is not enough to guarantee all the postconditions
|
| - // then false is returned. This usually happens rarely, but the failure-rate
|
| - // increases with higher requested_digits.
|
| - static bool DigitGenCounted(DiyFp w,
|
| - int requested_digits,
|
| - Vector<char> buffer,
|
| - int* length,
|
| - int* kappa) {
|
| - ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
|
| - ASSERT(kMinimalTargetExponent >= -60);
|
| - ASSERT(kMaximalTargetExponent <= -32);
|
| - // w is assumed to have an error less than 1 unit. Whenever w is scaled we
|
| - // also scale its error.
|
| - uint64_t w_error = 1;
|
| - // We cut the input number into two parts: the integral digits and the
|
| - // fractional digits. We don't emit any decimal separator, but adapt kappa
|
| - // instead. Example: instead of writing "1.2" we put "12" into the buffer and
|
| - // increase kappa by 1.
|
| - DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
|
| - // Division by one is a shift.
|
| - uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
|
| - // Modulo by one is an and.
|
| - uint64_t fractionals = w.f() & (one.f() - 1);
|
| - uint32_t divisor;
|
| - int divisor_exponent;
|
| - BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
|
| - &divisor, &divisor_exponent);
|
| - *kappa = divisor_exponent + 1;
|
| - *length = 0;
|
| -
|
| - // Loop invariant: buffer = w / 10^kappa (integer division)
|
| - // The invariant holds for the first iteration: kappa has been initialized
|
| - // with the divisor exponent + 1. And the divisor is the biggest power of ten
|
| - // that is smaller than 'integrals'.
|
| - while (*kappa > 0) {
|
| - char digit = static_cast<char>(integrals / divisor);
|
| - buffer[*length] = '0' + digit;
|
| - (*length)++;
|
| - requested_digits--;
|
| - integrals %= divisor;
|
| - (*kappa)--;
|
| - // Note that kappa now equals the exponent of the divisor and that the
|
| - // invariant thus holds again.
|
| - if (requested_digits == 0) break;
|
| - divisor /= 10;
|
| - }
|
| -
|
| - if (requested_digits == 0) {
|
| - uint64_t rest =
|
| - (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
|
| - return RoundWeedCounted(buffer, *length, rest,
|
| - static_cast<uint64_t>(divisor) << -one.e(), w_error,
|
| - kappa);
|
| - }
|
| -
|
| - // The integrals have been generated. We are at the point of the decimal
|
| - // separator. In the following loop we simply multiply the remaining digits by
|
| - // 10 and divide by one. We just need to pay attention to multiply associated
|
| - // data (the 'unit'), too.
|
| - // Note that the multiplication by 10 does not overflow, because w.e >= -60
|
| - // and thus one.e >= -60.
|
| - ASSERT(one.e() >= -60);
|
| - ASSERT(fractionals < one.f());
|
| - ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
|
| - while (requested_digits > 0 && fractionals > w_error) {
|
| - fractionals *= 10;
|
| - w_error *= 10;
|
| - // Integer division by one.
|
| - char digit = static_cast<char>(fractionals >> -one.e());
|
| - buffer[*length] = '0' + digit;
|
| - (*length)++;
|
| - requested_digits--;
|
| - fractionals &= one.f() - 1; // Modulo by one.
|
| - (*kappa)--;
|
| - }
|
| - if (requested_digits != 0) return false;
|
| - return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
|
| - kappa);
|
| +// The minimal and maximal target exponent define the range of w's binary
|
| +// exponent, where 'w' is the result of multiplying the input by a cached power
|
| +// of ten.
|
| +//
|
| +// A different range might be chosen on a different platform, to optimize digit
|
| +// generation, but a smaller range requires more powers of ten to be cached.
|
| +static const int kMinimalTargetExponent = -60;
|
| +static const int kMaximalTargetExponent = -32;
|
| +
|
| +// Adjusts the last digit of the generated number, and screens out generated
|
| +// solutions that may be inaccurate. A solution may be inaccurate if it is
|
| +// outside the safe interval, or if we cannot prove that it is closer to the
|
| +// input than a neighboring representation of the same length.
|
| +//
|
| +// Input: * buffer containing the digits of too_high / 10^kappa
|
| +// * the buffer's length
|
| +// * distance_too_high_w == (too_high - w).f() * unit
|
| +// * unsafe_interval == (too_high - too_low).f() * unit
|
| +// * rest = (too_high - buffer * 10^kappa).f() * unit
|
| +// * ten_kappa = 10^kappa * unit
|
| +// * unit = the common multiplier
|
| +// Output: returns true if the buffer is guaranteed to contain the closest
|
| +// representable number to the input.
|
| +// Modifies the generated digits in the buffer to approach (round towards) w.
|
| +static bool RoundWeed(Vector<char> buffer,
|
| + int length,
|
| + uint64_t distance_too_high_w,
|
| + uint64_t unsafe_interval,
|
| + uint64_t rest,
|
| + uint64_t ten_kappa,
|
| + uint64_t unit) {
|
| + uint64_t small_distance = distance_too_high_w - unit;
|
| + uint64_t big_distance = distance_too_high_w + unit;
|
| + // Let w_low = too_high - big_distance, and
|
| + // w_high = too_high - small_distance.
|
| + // Note: w_low < w < w_high
|
| + //
|
| + // The real w (* unit) must lie somewhere inside the interval
|
| + // ]w_low; w_high[ (often written as "(w_low; w_high)")
|
| +
|
| + // Basically the buffer currently contains a number in the unsafe interval
|
| + // ]too_low; too_high[ with too_low < w < too_high
|
| + //
|
| + // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| + // ^v 1 unit ^ ^ ^ ^
|
| + // boundary_high --------------------- . . . .
|
| + // ^v 1 unit . . . .
|
| + // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
|
| + // . . ^ . .
|
| + // . big_distance . . .
|
| + // . . . . rest
|
| + // small_distance . . . .
|
| + // v . . . .
|
| + // w_high - - - - - - - - - - - - - - - - - - . . . .
|
| + // ^v 1 unit . . . .
|
| + // w ---------------------------------------- . . . .
|
| + // ^v 1 unit v . . .
|
| + // w_low - - - - - - - - - - - - - - - - - - - - - . . .
|
| + // . . v
|
| + // buffer --------------------------------------------------+-------+--------
|
| + // . .
|
| + // safe_interval .
|
| + // v .
|
| + // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
|
| + // ^v 1 unit .
|
| + // boundary_low ------------------------- unsafe_interval
|
| + // ^v 1 unit v
|
| + // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| + //
|
| + //
|
| + // Note that the value of buffer could lie anywhere inside the range too_low
|
| + // to too_high.
|
| + //
|
| + // boundary_low, boundary_high and w are approximations of the real boundaries
|
| + // and v (the input number). They are guaranteed to be precise up to one unit.
|
| + // In fact the error is guaranteed to be strictly less than one unit.
|
| + //
|
| + // Anything that lies outside the unsafe interval is guaranteed not to round
|
| + // to v when read again.
|
| + // Anything that lies inside the safe interval is guaranteed to round to v
|
| + // when read again.
|
| + // If the number inside the buffer lies inside the unsafe interval but not
|
| + // inside the safe interval then we simply do not know and bail out (returning
|
| + // false).
|
| + //
|
| + // Similarly we have to take into account the imprecision of 'w' when finding
|
| + // the closest representation of 'w'. If we have two potential
|
| + // representations, and one is closer to both w_low and w_high, then we know
|
| + // it is closer to the actual value v.
|
| + //
|
| + // By generating the digits of too_high we got the largest (closest to
|
| + // too_high) buffer that is still in the unsafe interval. In the case where
|
| + // w_high < buffer < too_high we try to decrement the buffer.
|
| + // This way the buffer approaches (rounds towards) w.
|
| + // There are 3 conditions that stop the decrementation process:
|
| + // 1) the buffer is already below w_high
|
| + // 2) decrementing the buffer would make it leave the unsafe interval
|
| + // 3) decrementing the buffer would yield a number below w_high and farther
|
| + // away than the current number. In other words:
|
| + // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
|
| + // Instead of using the buffer directly we use its distance to too_high.
|
| + // Conceptually rest ~= too_high - buffer
|
| + // We need to do the following tests in this order to avoid over- and
|
| + // underflows.
|
| + ASSERT(rest <= unsafe_interval);
|
| + while (rest < small_distance && // Negated condition 1
|
| + unsafe_interval - rest >= ten_kappa && // Negated condition 2
|
| + (rest + ten_kappa < small_distance || // buffer{-1} > w_high
|
| + small_distance - rest >= rest + ten_kappa - small_distance)) {
|
| + buffer[length - 1]--;
|
| + rest += ten_kappa;
|
| + }
|
| +
|
| + // We have approached w+ as much as possible. We now test if approaching w-
|
| + // would require changing the buffer. If yes, then we have two possible
|
| + // representations close to w, but we cannot decide which one is closer.
|
| + if (rest < big_distance && unsafe_interval - rest >= ten_kappa &&
|
| + (rest + ten_kappa < big_distance ||
|
| + big_distance - rest > rest + ten_kappa - big_distance)) {
|
| + return false;
|
| + }
|
| +
|
| + // Weeding test.
|
| + // The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
|
| + // Since too_low = too_high - unsafe_interval this is equivalent to
|
| + // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
|
| + // Conceptually we have: rest ~= too_high - buffer
|
| + return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
|
| +}
|
| +
|
| +// Rounds the buffer upwards if the result is closer to v by possibly adding
|
| +// 1 to the buffer. If the precision of the calculation is not sufficient to
|
| +// round correctly, return false.
|
| +// The rounding might shift the whole buffer in which case the kappa is
|
| +// adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
|
| +//
|
| +// If 2*rest > ten_kappa then the buffer needs to be round up.
|
| +// rest can have an error of +/- 1 unit. This function accounts for the
|
| +// imprecision and returns false, if the rounding direction cannot be
|
| +// unambiguously determined.
|
| +//
|
| +// Precondition: rest < ten_kappa.
|
| +static bool RoundWeedCounted(Vector<char> buffer,
|
| + int length,
|
| + uint64_t rest,
|
| + uint64_t ten_kappa,
|
| + uint64_t unit,
|
| + int* kappa) {
|
| + ASSERT(rest < ten_kappa);
|
| + // The following tests are done in a specific order to avoid overflows. They
|
| + // will work correctly with any uint64 values of rest < ten_kappa and unit.
|
| + //
|
| + // If the unit is too big, then we don't know which way to round. For example
|
| + // a unit of 50 means that the real number lies within rest +/- 50. If
|
| + // 10^kappa == 40 then there is no way to tell which way to round.
|
| + if (unit >= ten_kappa)
|
| + return false;
|
| + // Even if unit is just half the size of 10^kappa we are already completely
|
| + // lost. (And after the previous test we know that the expression will not
|
| + // over/underflow.)
|
| + if (ten_kappa - unit <= unit)
|
| + return false;
|
| + // If 2 * (rest + unit) <= 10^kappa we can safely round down.
|
| + if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
|
| + return true;
|
| + }
|
| + // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
|
| + if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
|
| + // Increment the last digit recursively until we find a non '9' digit.
|
| + buffer[length - 1]++;
|
| + for (int i = length - 1; i > 0; --i) {
|
| + if (buffer[i] != '0' + 10)
|
| + break;
|
| + buffer[i] = '0';
|
| + buffer[i - 1]++;
|
| }
|
| -
|
| -
|
| - // Provides a decimal representation of v.
|
| - // Returns true if it succeeds, otherwise the result cannot be trusted.
|
| - // There will be *length digits inside the buffer (not null-terminated).
|
| - // If the function returns true then
|
| - // v == (double) (buffer * 10^decimal_exponent).
|
| - // The digits in the buffer are the shortest representation possible: no
|
| - // 0.09999999999999999 instead of 0.1. The shorter representation will even be
|
| - // chosen even if the longer one would be closer to v.
|
| - // The last digit will be closest to the actual v. That is, even if several
|
| - // digits might correctly yield 'v' when read again, the closest will be
|
| - // computed.
|
| - static bool Grisu3(double v,
|
| - Vector<char> buffer,
|
| - int* length,
|
| - int* decimal_exponent) {
|
| - DiyFp w = Double(v).AsNormalizedDiyFp();
|
| - // boundary_minus and boundary_plus are the boundaries between v and its
|
| - // closest floating-point neighbors. Any number strictly between
|
| - // boundary_minus and boundary_plus will round to v when convert to a double.
|
| - // Grisu3 will never output representations that lie exactly on a boundary.
|
| - DiyFp boundary_minus, boundary_plus;
|
| - Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
|
| - ASSERT(boundary_plus.e() == w.e());
|
| - DiyFp ten_mk; // Cached power of ten: 10^-k
|
| - int mk; // -k
|
| - int ten_mk_minimal_binary_exponent =
|
| - kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
|
| - int ten_mk_maximal_binary_exponent =
|
| - kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
|
| - PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
|
| - ten_mk_minimal_binary_exponent,
|
| - ten_mk_maximal_binary_exponent,
|
| - &ten_mk, &mk);
|
| - ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
|
| - DiyFp::kSignificandSize) &&
|
| - (kMaximalTargetExponent >= w.e() + ten_mk.e() +
|
| - DiyFp::kSignificandSize));
|
| - // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
|
| - // 64 bit significand and ten_mk is thus only precise up to 64 bits.
|
| -
|
| - // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
|
| - // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
|
| - // off by a small amount.
|
| - // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
|
| - // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
|
| - // (f-1) * 2^e < w*10^k < (f+1) * 2^e
|
| - DiyFp scaled_w = DiyFp::Times(w, ten_mk);
|
| - ASSERT(scaled_w.e() ==
|
| - boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
|
| - // In theory it would be possible to avoid some recomputations by computing
|
| - // the difference between w and boundary_minus/plus (a power of 2) and to
|
| - // compute scaled_boundary_minus/plus by subtracting/adding from
|
| - // scaled_w. However the code becomes much less readable and the speed
|
| - // enhancements are not terriffic.
|
| - DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
|
| - DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
|
| -
|
| - // DigitGen will generate the digits of scaled_w. Therefore we have
|
| - // v == (double) (scaled_w * 10^-mk).
|
| - // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
|
| - // integer than it will be updated. For instance if scaled_w == 1.23 then
|
| - // the buffer will be filled with "123" und the decimal_exponent will be
|
| - // decreased by 2.
|
| - int kappa;
|
| - bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
|
| - buffer, length, &kappa);
|
| - *decimal_exponent = -mk + kappa;
|
| - return result;
|
| + // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
|
| + // exception of the first digit all digits are now '0'. Simply switch the
|
| + // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
|
| + // the power (the kappa) is increased.
|
| + if (buffer[0] == '0' + 10) {
|
| + buffer[0] = '1';
|
| + (*kappa) += 1;
|
| }
|
| -
|
| -
|
| - // The "counted" version of grisu3 (see above) only generates requested_digits
|
| - // number of digits. This version does not generate the shortest representation,
|
| - // and with enough requested digits 0.1 will at some point print as 0.9999999...
|
| - // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
|
| - // therefore the rounding strategy for halfway cases is irrelevant.
|
| - static bool Grisu3Counted(double v,
|
| - int requested_digits,
|
| - Vector<char> buffer,
|
| - int* length,
|
| - int* decimal_exponent) {
|
| - DiyFp w = Double(v).AsNormalizedDiyFp();
|
| - DiyFp ten_mk; // Cached power of ten: 10^-k
|
| - int mk; // -k
|
| - int ten_mk_minimal_binary_exponent =
|
| - kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
|
| - int ten_mk_maximal_binary_exponent =
|
| - kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
|
| - PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
|
| - ten_mk_minimal_binary_exponent,
|
| - ten_mk_maximal_binary_exponent,
|
| - &ten_mk, &mk);
|
| - ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
|
| - DiyFp::kSignificandSize) &&
|
| - (kMaximalTargetExponent >= w.e() + ten_mk.e() +
|
| - DiyFp::kSignificandSize));
|
| - // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
|
| - // 64 bit significand and ten_mk is thus only precise up to 64 bits.
|
| -
|
| - // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
|
| - // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
|
| - // off by a small amount.
|
| - // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
|
| - // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
|
| - // (f-1) * 2^e < w*10^k < (f+1) * 2^e
|
| - DiyFp scaled_w = DiyFp::Times(w, ten_mk);
|
| -
|
| - // We now have (double) (scaled_w * 10^-mk).
|
| - // DigitGen will generate the first requested_digits digits of scaled_w and
|
| - // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
|
| - // will not always be exactly the same since DigitGenCounted only produces a
|
| - // limited number of digits.)
|
| - int kappa;
|
| - bool result = DigitGenCounted(scaled_w, requested_digits,
|
| - buffer, length, &kappa);
|
| - *decimal_exponent = -mk + kappa;
|
| - return result;
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +static const uint32_t kTen4 = 10000;
|
| +static const uint32_t kTen5 = 100000;
|
| +static const uint32_t kTen6 = 1000000;
|
| +static const uint32_t kTen7 = 10000000;
|
| +static const uint32_t kTen8 = 100000000;
|
| +static const uint32_t kTen9 = 1000000000;
|
| +
|
| +// Returns the biggest power of ten that is less than or equal to the given
|
| +// number. We furthermore receive the maximum number of bits 'number' has.
|
| +// If number_bits == 0 then 0^-1 is returned
|
| +// The number of bits must be <= 32.
|
| +// Precondition: number < (1 << (number_bits + 1)).
|
| +static void BiggestPowerTen(uint32_t number,
|
| + int number_bits,
|
| + uint32_t* power,
|
| + int* exponent) {
|
| + ASSERT(number < (uint32_t)(1 << (number_bits + 1)));
|
| +
|
| + switch (number_bits) {
|
| + case 32:
|
| + case 31:
|
| + case 30:
|
| + if (kTen9 <= number) {
|
| + *power = kTen9;
|
| + *exponent = 9;
|
| + break;
|
| + } // else fallthrough
|
| + case 29:
|
| + case 28:
|
| + case 27:
|
| + if (kTen8 <= number) {
|
| + *power = kTen8;
|
| + *exponent = 8;
|
| + break;
|
| + } // else fallthrough
|
| + case 26:
|
| + case 25:
|
| + case 24:
|
| + if (kTen7 <= number) {
|
| + *power = kTen7;
|
| + *exponent = 7;
|
| + break;
|
| + } // else fallthrough
|
| + case 23:
|
| + case 22:
|
| + case 21:
|
| + case 20:
|
| + if (kTen6 <= number) {
|
| + *power = kTen6;
|
| + *exponent = 6;
|
| + break;
|
| + } // else fallthrough
|
| + case 19:
|
| + case 18:
|
| + case 17:
|
| + if (kTen5 <= number) {
|
| + *power = kTen5;
|
| + *exponent = 5;
|
| + break;
|
| + } // else fallthrough
|
| + case 16:
|
| + case 15:
|
| + case 14:
|
| + if (kTen4 <= number) {
|
| + *power = kTen4;
|
| + *exponent = 4;
|
| + break;
|
| + } // else fallthrough
|
| + case 13:
|
| + case 12:
|
| + case 11:
|
| + case 10:
|
| + if (1000 <= number) {
|
| + *power = 1000;
|
| + *exponent = 3;
|
| + break;
|
| + } // else fallthrough
|
| + case 9:
|
| + case 8:
|
| + case 7:
|
| + if (100 <= number) {
|
| + *power = 100;
|
| + *exponent = 2;
|
| + break;
|
| + } // else fallthrough
|
| + case 6:
|
| + case 5:
|
| + case 4:
|
| + if (10 <= number) {
|
| + *power = 10;
|
| + *exponent = 1;
|
| + break;
|
| + } // else fallthrough
|
| + case 3:
|
| + case 2:
|
| + case 1:
|
| + if (1 <= number) {
|
| + *power = 1;
|
| + *exponent = 0;
|
| + break;
|
| + } // else fallthrough
|
| + case 0:
|
| + *power = 0;
|
| + *exponent = -1;
|
| + break;
|
| + default:
|
| + // Following assignments are here to silence compiler warnings.
|
| + *power = 0;
|
| + *exponent = 0;
|
| + UNREACHABLE();
|
| + }
|
| +}
|
| +
|
| +// Generates the digits of input number w.
|
| +// w is a floating-point number (DiyFp), consisting of a significand and an
|
| +// exponent. Its exponent is bounded by kMinimalTargetExponent and
|
| +// kMaximalTargetExponent.
|
| +// Hence -60 <= w.e() <= -32.
|
| +//
|
| +// Returns false if it fails, in which case the generated digits in the buffer
|
| +// should not be used.
|
| +// Preconditions:
|
| +// * low, w and high are correct up to 1 ulp (unit in the last place). That
|
| +// is, their error must be less than a unit of their last digits.
|
| +// * low.e() == w.e() == high.e()
|
| +// * low < w < high, and taking into account their error: low~ <= high~
|
| +// * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
|
| +// Postconditions: returns false if procedure fails.
|
| +// otherwise:
|
| +// * buffer is not null-terminated, but len contains the number of digits.
|
| +// * buffer contains the shortest possible decimal digit-sequence
|
| +// such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
|
| +// correct values of low and high (without their error).
|
| +// * if more than one decimal representation gives the minimal number of
|
| +// decimal digits then the one closest to W (where W is the correct value
|
| +// of w) is chosen.
|
| +// Remark: this procedure takes into account the imprecision of its input
|
| +// numbers. If the precision is not enough to guarantee all the postconditions
|
| +// then false is returned. This usually happens rarely (~0.5%).
|
| +//
|
| +// Say, for the sake of example, that
|
| +// w.e() == -48, and w.f() == 0x1234567890abcdef
|
| +// w's value can be computed by w.f() * 2^w.e()
|
| +// We can obtain w's integral digits by simply shifting w.f() by -w.e().
|
| +// -> w's integral part is 0x1234
|
| +// w's fractional part is therefore 0x567890abcdef.
|
| +// Printing w's integral part is easy (simply print 0x1234 in decimal).
|
| +// In order to print its fraction we repeatedly multiply the fraction by 10 and
|
| +// get each digit. Example the first digit after the point would be computed by
|
| +// (0x567890abcdef * 10) >> 48. -> 3
|
| +// The whole thing becomes slightly more complicated because we want to stop
|
| +// once we have enough digits. That is, once the digits inside the buffer
|
| +// represent 'w' we can stop. Everything inside the interval low - high
|
| +// represents w. However we have to pay attention to low, high and w's
|
| +// imprecision.
|
| +static bool DigitGen(DiyFp low,
|
| + DiyFp w,
|
| + DiyFp high,
|
| + Vector<char> buffer,
|
| + int* length,
|
| + int* kappa) {
|
| + ASSERT(low.e() == w.e() && w.e() == high.e());
|
| + ASSERT(low.f() + 1 <= high.f() - 1);
|
| + ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
|
| + // low, w and high are imprecise, but by less than one ulp (unit in the last
|
| + // place).
|
| + // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
|
| + // the new numbers are outside of the interval we want the final
|
| + // representation to lie in.
|
| + // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
|
| + // numbers that are certain to lie in the interval. We will use this fact
|
| + // later on.
|
| + // We will now start by generating the digits within the uncertain
|
| + // interval. Later we will weed out representations that lie outside the safe
|
| + // interval and thus _might_ lie outside the correct interval.
|
| + uint64_t unit = 1;
|
| + DiyFp too_low = DiyFp(low.f() - unit, low.e());
|
| + DiyFp too_high = DiyFp(high.f() + unit, high.e());
|
| + // too_low and too_high are guaranteed to lie outside the interval we want the
|
| + // generated number in.
|
| + DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
|
| + // We now cut the input number into two parts: the integral digits and the
|
| + // fractionals. We will not write any decimal separator though, but adapt
|
| + // kappa instead.
|
| + // Reminder: we are currently computing the digits (stored inside the buffer)
|
| + // such that: too_low < buffer * 10^kappa < too_high
|
| + // We use too_high for the digit_generation and stop as soon as possible.
|
| + // If we stop early we effectively round down.
|
| + DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
|
| + // Division by one is a shift.
|
| + uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
|
| + // Modulo by one is an and.
|
| + uint64_t fractionals = too_high.f() & (one.f() - 1);
|
| + uint32_t divisor;
|
| + int divisor_exponent;
|
| + BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), &divisor,
|
| + &divisor_exponent);
|
| + *kappa = divisor_exponent + 1;
|
| + *length = 0;
|
| + // Loop invariant: buffer = too_high / 10^kappa (integer division)
|
| + // The invariant holds for the first iteration: kappa has been initialized
|
| + // with the divisor exponent + 1. And the divisor is the biggest power of ten
|
| + // that is smaller than integrals.
|
| + while (*kappa > 0) {
|
| + char digit = static_cast<char>(integrals / divisor);
|
| + buffer[*length] = '0' + digit;
|
| + (*length)++;
|
| + integrals %= divisor;
|
| + (*kappa)--;
|
| + // Note that kappa now equals the exponent of the divisor and that the
|
| + // invariant thus holds again.
|
| + uint64_t rest =
|
| + (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
|
| + // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
|
| + // Reminder: unsafe_interval.e() == one.e()
|
| + if (rest < unsafe_interval.f()) {
|
| + // Rounding down (by not emitting the remaining digits) yields a number
|
| + // that lies within the unsafe interval.
|
| + return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
|
| + unsafe_interval.f(), rest,
|
| + static_cast<uint64_t>(divisor) << -one.e(), unit);
|
| }
|
| -
|
| -
|
| - bool FastDtoa(double v,
|
| - FastDtoaMode mode,
|
| - int requested_digits,
|
| - Vector<char> buffer,
|
| - int* length,
|
| - int* decimal_point) {
|
| - ASSERT(v > 0);
|
| - ASSERT(!Double(v).IsSpecial());
|
| -
|
| - bool result = false;
|
| - int decimal_exponent = 0;
|
| - switch (mode) {
|
| - case FAST_DTOA_SHORTEST:
|
| - result = Grisu3(v, buffer, length, &decimal_exponent);
|
| - break;
|
| - case FAST_DTOA_PRECISION:
|
| - result = Grisu3Counted(v, requested_digits,
|
| - buffer, length, &decimal_exponent);
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - if (result) {
|
| - *decimal_point = *length + decimal_exponent;
|
| - buffer[*length] = '\0';
|
| - }
|
| - return result;
|
| + divisor /= 10;
|
| + }
|
| +
|
| + // The integrals have been generated. We are at the point of the decimal
|
| + // separator. In the following loop we simply multiply the remaining digits by
|
| + // 10 and divide by one. We just need to pay attention to multiply associated
|
| + // data (like the interval or 'unit'), too.
|
| + // Note that the multiplication by 10 does not overflow, because w.e >= -60
|
| + // and thus one.e >= -60.
|
| + ASSERT(one.e() >= -60);
|
| + ASSERT(fractionals < one.f());
|
| + ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
|
| + while (true) {
|
| + fractionals *= 10;
|
| + unit *= 10;
|
| + unsafe_interval.set_f(unsafe_interval.f() * 10);
|
| + // Integer division by one.
|
| + char digit = static_cast<char>(fractionals >> -one.e());
|
| + buffer[*length] = '0' + digit;
|
| + (*length)++;
|
| + fractionals &= one.f() - 1; // Modulo by one.
|
| + (*kappa)--;
|
| + if (fractionals < unsafe_interval.f()) {
|
| + return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
|
| + unsafe_interval.f(), fractionals, one.f(), unit);
|
| }
|
| + }
|
| +}
|
| +
|
| +// Generates (at most) requested_digits digits of input number w.
|
| +// w is a floating-point number (DiyFp), consisting of a significand and an
|
| +// exponent. Its exponent is bounded by kMinimalTargetExponent and
|
| +// kMaximalTargetExponent.
|
| +// Hence -60 <= w.e() <= -32.
|
| +//
|
| +// Returns false if it fails, in which case the generated digits in the buffer
|
| +// should not be used.
|
| +// Preconditions:
|
| +// * w is correct up to 1 ulp (unit in the last place). That
|
| +// is, its error must be strictly less than a unit of its last digit.
|
| +// * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
|
| +//
|
| +// Postconditions: returns false if procedure fails.
|
| +// otherwise:
|
| +// * buffer is not null-terminated, but length contains the number of
|
| +// digits.
|
| +// * the representation in buffer is the most precise representation of
|
| +// requested_digits digits.
|
| +// * buffer contains at most requested_digits digits of w. If there are less
|
| +// than requested_digits digits then some trailing '0's have been removed.
|
| +// * kappa is such that
|
| +// w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
|
| +//
|
| +// Remark: This procedure takes into account the imprecision of its input
|
| +// numbers. If the precision is not enough to guarantee all the postconditions
|
| +// then false is returned. This usually happens rarely, but the failure-rate
|
| +// increases with higher requested_digits.
|
| +static bool DigitGenCounted(DiyFp w,
|
| + int requested_digits,
|
| + Vector<char> buffer,
|
| + int* length,
|
| + int* kappa) {
|
| + ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
|
| + ASSERT(kMinimalTargetExponent >= -60);
|
| + ASSERT(kMaximalTargetExponent <= -32);
|
| + // w is assumed to have an error less than 1 unit. Whenever w is scaled we
|
| + // also scale its error.
|
| + uint64_t w_error = 1;
|
| + // We cut the input number into two parts: the integral digits and the
|
| + // fractional digits. We don't emit any decimal separator, but adapt kappa
|
| + // instead. Example: instead of writing "1.2" we put "12" into the buffer and
|
| + // increase kappa by 1.
|
| + DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
|
| + // Division by one is a shift.
|
| + uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
|
| + // Modulo by one is an and.
|
| + uint64_t fractionals = w.f() & (one.f() - 1);
|
| + uint32_t divisor;
|
| + int divisor_exponent;
|
| + BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), &divisor,
|
| + &divisor_exponent);
|
| + *kappa = divisor_exponent + 1;
|
| + *length = 0;
|
| +
|
| + // Loop invariant: buffer = w / 10^kappa (integer division)
|
| + // The invariant holds for the first iteration: kappa has been initialized
|
| + // with the divisor exponent + 1. And the divisor is the biggest power of ten
|
| + // that is smaller than 'integrals'.
|
| + while (*kappa > 0) {
|
| + char digit = static_cast<char>(integrals / divisor);
|
| + buffer[*length] = '0' + digit;
|
| + (*length)++;
|
| + requested_digits--;
|
| + integrals %= divisor;
|
| + (*kappa)--;
|
| + // Note that kappa now equals the exponent of the divisor and that the
|
| + // invariant thus holds again.
|
| + if (requested_digits == 0)
|
| + break;
|
| + divisor /= 10;
|
| + }
|
| +
|
| + if (requested_digits == 0) {
|
| + uint64_t rest =
|
| + (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
|
| + return RoundWeedCounted(buffer, *length, rest,
|
| + static_cast<uint64_t>(divisor) << -one.e(), w_error,
|
| + kappa);
|
| + }
|
| +
|
| + // The integrals have been generated. We are at the point of the decimal
|
| + // separator. In the following loop we simply multiply the remaining digits by
|
| + // 10 and divide by one. We just need to pay attention to multiply associated
|
| + // data (the 'unit'), too.
|
| + // Note that the multiplication by 10 does not overflow, because w.e >= -60
|
| + // and thus one.e >= -60.
|
| + ASSERT(one.e() >= -60);
|
| + ASSERT(fractionals < one.f());
|
| + ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
|
| + while (requested_digits > 0 && fractionals > w_error) {
|
| + fractionals *= 10;
|
| + w_error *= 10;
|
| + // Integer division by one.
|
| + char digit = static_cast<char>(fractionals >> -one.e());
|
| + buffer[*length] = '0' + digit;
|
| + (*length)++;
|
| + requested_digits--;
|
| + fractionals &= one.f() - 1; // Modulo by one.
|
| + (*kappa)--;
|
| + }
|
| + if (requested_digits != 0)
|
| + return false;
|
| + return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
|
| + kappa);
|
| +}
|
| +
|
| +// Provides a decimal representation of v.
|
| +// Returns true if it succeeds, otherwise the result cannot be trusted.
|
| +// There will be *length digits inside the buffer (not null-terminated).
|
| +// If the function returns true then
|
| +// v == (double) (buffer * 10^decimal_exponent).
|
| +// The digits in the buffer are the shortest representation possible: no
|
| +// 0.09999999999999999 instead of 0.1. The shorter representation will even be
|
| +// chosen even if the longer one would be closer to v.
|
| +// The last digit will be closest to the actual v. That is, even if several
|
| +// digits might correctly yield 'v' when read again, the closest will be
|
| +// computed.
|
| +static bool Grisu3(double v,
|
| + Vector<char> buffer,
|
| + int* length,
|
| + int* decimal_exponent) {
|
| + DiyFp w = Double(v).AsNormalizedDiyFp();
|
| + // boundary_minus and boundary_plus are the boundaries between v and its
|
| + // closest floating-point neighbors. Any number strictly between
|
| + // boundary_minus and boundary_plus will round to v when convert to a double.
|
| + // Grisu3 will never output representations that lie exactly on a boundary.
|
| + DiyFp boundary_minus, boundary_plus;
|
| + Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
|
| + ASSERT(boundary_plus.e() == w.e());
|
| + DiyFp ten_mk; // Cached power of ten: 10^-k
|
| + int mk; // -k
|
| + int ten_mk_minimal_binary_exponent =
|
| + kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
|
| + int ten_mk_maximal_binary_exponent =
|
| + kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
|
| + PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
|
| + ten_mk_minimal_binary_exponent, ten_mk_maximal_binary_exponent, &ten_mk,
|
| + &mk);
|
| + ASSERT(
|
| + (kMinimalTargetExponent <=
|
| + w.e() + ten_mk.e() + DiyFp::kSignificandSize) &&
|
| + (kMaximalTargetExponent >= w.e() + ten_mk.e() + DiyFp::kSignificandSize));
|
| + // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
|
| + // 64 bit significand and ten_mk is thus only precise up to 64 bits.
|
| +
|
| + // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
|
| + // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
|
| + // off by a small amount.
|
| + // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
|
| + // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
|
| + // (f-1) * 2^e < w*10^k < (f+1) * 2^e
|
| + DiyFp scaled_w = DiyFp::Times(w, ten_mk);
|
| + ASSERT(scaled_w.e() ==
|
| + boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
|
| + // In theory it would be possible to avoid some recomputations by computing
|
| + // the difference between w and boundary_minus/plus (a power of 2) and to
|
| + // compute scaled_boundary_minus/plus by subtracting/adding from
|
| + // scaled_w. However the code becomes much less readable and the speed
|
| + // enhancements are not terriffic.
|
| + DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
|
| + DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
|
| +
|
| + // DigitGen will generate the digits of scaled_w. Therefore we have
|
| + // v == (double) (scaled_w * 10^-mk).
|
| + // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
|
| + // integer than it will be updated. For instance if scaled_w == 1.23 then
|
| + // the buffer will be filled with "123" und the decimal_exponent will be
|
| + // decreased by 2.
|
| + int kappa;
|
| + bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
|
| + buffer, length, &kappa);
|
| + *decimal_exponent = -mk + kappa;
|
| + return result;
|
| +}
|
| +
|
| +// The "counted" version of grisu3 (see above) only generates requested_digits
|
| +// number of digits. This version does not generate the shortest representation,
|
| +// and with enough requested digits 0.1 will at some point print as 0.9999999...
|
| +// Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
|
| +// therefore the rounding strategy for halfway cases is irrelevant.
|
| +static bool Grisu3Counted(double v,
|
| + int requested_digits,
|
| + Vector<char> buffer,
|
| + int* length,
|
| + int* decimal_exponent) {
|
| + DiyFp w = Double(v).AsNormalizedDiyFp();
|
| + DiyFp ten_mk; // Cached power of ten: 10^-k
|
| + int mk; // -k
|
| + int ten_mk_minimal_binary_exponent =
|
| + kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
|
| + int ten_mk_maximal_binary_exponent =
|
| + kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
|
| + PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
|
| + ten_mk_minimal_binary_exponent, ten_mk_maximal_binary_exponent, &ten_mk,
|
| + &mk);
|
| + ASSERT(
|
| + (kMinimalTargetExponent <=
|
| + w.e() + ten_mk.e() + DiyFp::kSignificandSize) &&
|
| + (kMaximalTargetExponent >= w.e() + ten_mk.e() + DiyFp::kSignificandSize));
|
| + // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
|
| + // 64 bit significand and ten_mk is thus only precise up to 64 bits.
|
| +
|
| + // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
|
| + // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
|
| + // off by a small amount.
|
| + // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
|
| + // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
|
| + // (f-1) * 2^e < w*10^k < (f+1) * 2^e
|
| + DiyFp scaled_w = DiyFp::Times(w, ten_mk);
|
| +
|
| + // We now have (double) (scaled_w * 10^-mk).
|
| + // DigitGen will generate the first requested_digits digits of scaled_w and
|
| + // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
|
| + // will not always be exactly the same since DigitGenCounted only produces a
|
| + // limited number of digits.)
|
| + int kappa;
|
| + bool result =
|
| + DigitGenCounted(scaled_w, requested_digits, buffer, length, &kappa);
|
| + *decimal_exponent = -mk + kappa;
|
| + return result;
|
| +}
|
| +
|
| +bool FastDtoa(double v,
|
| + FastDtoaMode mode,
|
| + int requested_digits,
|
| + Vector<char> buffer,
|
| + int* length,
|
| + int* decimal_point) {
|
| + ASSERT(v > 0);
|
| + ASSERT(!Double(v).IsSpecial());
|
| +
|
| + bool result = false;
|
| + int decimal_exponent = 0;
|
| + switch (mode) {
|
| + case FAST_DTOA_SHORTEST:
|
| + result = Grisu3(v, buffer, length, &decimal_exponent);
|
| + break;
|
| + case FAST_DTOA_PRECISION:
|
| + result =
|
| + Grisu3Counted(v, requested_digits, buffer, length, &decimal_exponent);
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| + if (result) {
|
| + *decimal_point = *length + decimal_exponent;
|
| + buffer[*length] = '\0';
|
| + }
|
| + return result;
|
| +}
|
|
|
| } // namespace double_conversion
|
|
|
| -} // namespace WTF
|
| +} // namespace WTF
|
|
|