| Index: third_party/WebKit/Source/wtf/dtoa/fast-dtoa.cc
 | 
| diff --git a/third_party/WebKit/Source/wtf/dtoa/fast-dtoa.cc b/third_party/WebKit/Source/wtf/dtoa/fast-dtoa.cc
 | 
| index 44ecae68f6e8e0280833fd74f83e4efa56b75f44..6670fa293d02626eaa3cc486e19458d529377121 100644
 | 
| --- a/third_party/WebKit/Source/wtf/dtoa/fast-dtoa.cc
 | 
| +++ b/third_party/WebKit/Source/wtf/dtoa/fast-dtoa.cc
 | 
| @@ -35,705 +35,698 @@ namespace WTF {
 | 
|  
 | 
|  namespace double_conversion {
 | 
|  
 | 
| -    // The minimal and maximal target exponent define the range of w's binary
 | 
| -    // exponent, where 'w' is the result of multiplying the input by a cached power
 | 
| -    // of ten.
 | 
| -    //
 | 
| -    // A different range might be chosen on a different platform, to optimize digit
 | 
| -    // generation, but a smaller range requires more powers of ten to be cached.
 | 
| -    static const int kMinimalTargetExponent = -60;
 | 
| -    static const int kMaximalTargetExponent = -32;
 | 
| -
 | 
| -
 | 
| -    // Adjusts the last digit of the generated number, and screens out generated
 | 
| -    // solutions that may be inaccurate. A solution may be inaccurate if it is
 | 
| -    // outside the safe interval, or if we cannot prove that it is closer to the
 | 
| -    // input than a neighboring representation of the same length.
 | 
| -    //
 | 
| -    // Input: * buffer containing the digits of too_high / 10^kappa
 | 
| -    //        * the buffer's length
 | 
| -    //        * distance_too_high_w == (too_high - w).f() * unit
 | 
| -    //        * unsafe_interval == (too_high - too_low).f() * unit
 | 
| -    //        * rest = (too_high - buffer * 10^kappa).f() * unit
 | 
| -    //        * ten_kappa = 10^kappa * unit
 | 
| -    //        * unit = the common multiplier
 | 
| -    // Output: returns true if the buffer is guaranteed to contain the closest
 | 
| -    //    representable number to the input.
 | 
| -    //  Modifies the generated digits in the buffer to approach (round towards) w.
 | 
| -    static bool RoundWeed(Vector<char> buffer,
 | 
| -                          int length,
 | 
| -                          uint64_t distance_too_high_w,
 | 
| -                          uint64_t unsafe_interval,
 | 
| -                          uint64_t rest,
 | 
| -                          uint64_t ten_kappa,
 | 
| -                          uint64_t unit) {
 | 
| -        uint64_t small_distance = distance_too_high_w - unit;
 | 
| -        uint64_t big_distance = distance_too_high_w + unit;
 | 
| -        // Let w_low  = too_high - big_distance, and
 | 
| -        //     w_high = too_high - small_distance.
 | 
| -        // Note: w_low < w < w_high
 | 
| -        //
 | 
| -        // The real w (* unit) must lie somewhere inside the interval
 | 
| -        // ]w_low; w_high[ (often written as "(w_low; w_high)")
 | 
| -
 | 
| -        // Basically the buffer currently contains a number in the unsafe interval
 | 
| -        // ]too_low; too_high[ with too_low < w < too_high
 | 
| -        //
 | 
| -        //  too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 | 
| -        //                     ^v 1 unit            ^      ^                 ^      ^
 | 
| -        //  boundary_high ---------------------     .      .                 .      .
 | 
| -        //                     ^v 1 unit            .      .                 .      .
 | 
| -        //   - - - - - - - - - - - - - - - - - - -  +  - - + - - - - - -     .      .
 | 
| -        //                                          .      .         ^       .      .
 | 
| -        //                                          .  big_distance  .       .      .
 | 
| -        //                                          .      .         .       .    rest
 | 
| -        //                              small_distance     .         .       .      .
 | 
| -        //                                          v      .         .       .      .
 | 
| -        //  w_high - - - - - - - - - - - - - - - - - -     .         .       .      .
 | 
| -        //                     ^v 1 unit                   .         .       .      .
 | 
| -        //  w ----------------------------------------     .         .       .      .
 | 
| -        //                     ^v 1 unit                   v         .       .      .
 | 
| -        //  w_low  - - - - - - - - - - - - - - - - - - - - -         .       .      .
 | 
| -        //                                                           .       .      v
 | 
| -        //  buffer --------------------------------------------------+-------+--------
 | 
| -        //                                                           .       .
 | 
| -        //                                                  safe_interval    .
 | 
| -        //                                                           v       .
 | 
| -        //   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -     .
 | 
| -        //                     ^v 1 unit                                     .
 | 
| -        //  boundary_low -------------------------                     unsafe_interval
 | 
| -        //                     ^v 1 unit                                     v
 | 
| -        //  too_low  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 | 
| -        //
 | 
| -        //
 | 
| -        // Note that the value of buffer could lie anywhere inside the range too_low
 | 
| -        // to too_high.
 | 
| -        //
 | 
| -        // boundary_low, boundary_high and w are approximations of the real boundaries
 | 
| -        // and v (the input number). They are guaranteed to be precise up to one unit.
 | 
| -        // In fact the error is guaranteed to be strictly less than one unit.
 | 
| -        //
 | 
| -        // Anything that lies outside the unsafe interval is guaranteed not to round
 | 
| -        // to v when read again.
 | 
| -        // Anything that lies inside the safe interval is guaranteed to round to v
 | 
| -        // when read again.
 | 
| -        // If the number inside the buffer lies inside the unsafe interval but not
 | 
| -        // inside the safe interval then we simply do not know and bail out (returning
 | 
| -        // false).
 | 
| -        //
 | 
| -        // Similarly we have to take into account the imprecision of 'w' when finding
 | 
| -        // the closest representation of 'w'. If we have two potential
 | 
| -        // representations, and one is closer to both w_low and w_high, then we know
 | 
| -        // it is closer to the actual value v.
 | 
| -        //
 | 
| -        // By generating the digits of too_high we got the largest (closest to
 | 
| -        // too_high) buffer that is still in the unsafe interval. In the case where
 | 
| -        // w_high < buffer < too_high we try to decrement the buffer.
 | 
| -        // This way the buffer approaches (rounds towards) w.
 | 
| -        // There are 3 conditions that stop the decrementation process:
 | 
| -        //   1) the buffer is already below w_high
 | 
| -        //   2) decrementing the buffer would make it leave the unsafe interval
 | 
| -        //   3) decrementing the buffer would yield a number below w_high and farther
 | 
| -        //      away than the current number. In other words:
 | 
| -        //              (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
 | 
| -        // Instead of using the buffer directly we use its distance to too_high.
 | 
| -        // Conceptually rest ~= too_high - buffer
 | 
| -        // We need to do the following tests in this order to avoid over- and
 | 
| -        // underflows.
 | 
| -        ASSERT(rest <= unsafe_interval);
 | 
| -        while (rest < small_distance &&  // Negated condition 1
 | 
| -               unsafe_interval - rest >= ten_kappa &&  // Negated condition 2
 | 
| -               (rest + ten_kappa < small_distance ||  // buffer{-1} > w_high
 | 
| -                small_distance - rest >= rest + ten_kappa - small_distance)) {
 | 
| -                   buffer[length - 1]--;
 | 
| -                   rest += ten_kappa;
 | 
| -               }
 | 
| -
 | 
| -        // We have approached w+ as much as possible. We now test if approaching w-
 | 
| -        // would require changing the buffer. If yes, then we have two possible
 | 
| -        // representations close to w, but we cannot decide which one is closer.
 | 
| -        if (rest < big_distance &&
 | 
| -            unsafe_interval - rest >= ten_kappa &&
 | 
| -            (rest + ten_kappa < big_distance ||
 | 
| -             big_distance - rest > rest + ten_kappa - big_distance)) {
 | 
| -                return false;
 | 
| -            }
 | 
| -
 | 
| -        // Weeding test.
 | 
| -        //   The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
 | 
| -        //   Since too_low = too_high - unsafe_interval this is equivalent to
 | 
| -        //      [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
 | 
| -        //   Conceptually we have: rest ~= too_high - buffer
 | 
| -        return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    // Rounds the buffer upwards if the result is closer to v by possibly adding
 | 
| -    // 1 to the buffer. If the precision of the calculation is not sufficient to
 | 
| -    // round correctly, return false.
 | 
| -    // The rounding might shift the whole buffer in which case the kappa is
 | 
| -    // adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
 | 
| -    //
 | 
| -    // If 2*rest > ten_kappa then the buffer needs to be round up.
 | 
| -    // rest can have an error of +/- 1 unit. This function accounts for the
 | 
| -    // imprecision and returns false, if the rounding direction cannot be
 | 
| -    // unambiguously determined.
 | 
| -    //
 | 
| -    // Precondition: rest < ten_kappa.
 | 
| -    static bool RoundWeedCounted(Vector<char> buffer,
 | 
| -                                 int length,
 | 
| -                                 uint64_t rest,
 | 
| -                                 uint64_t ten_kappa,
 | 
| -                                 uint64_t unit,
 | 
| -                                 int* kappa) {
 | 
| -        ASSERT(rest < ten_kappa);
 | 
| -        // The following tests are done in a specific order to avoid overflows. They
 | 
| -        // will work correctly with any uint64 values of rest < ten_kappa and unit.
 | 
| -        //
 | 
| -        // If the unit is too big, then we don't know which way to round. For example
 | 
| -        // a unit of 50 means that the real number lies within rest +/- 50. If
 | 
| -        // 10^kappa == 40 then there is no way to tell which way to round.
 | 
| -        if (unit >= ten_kappa) return false;
 | 
| -        // Even if unit is just half the size of 10^kappa we are already completely
 | 
| -        // lost. (And after the previous test we know that the expression will not
 | 
| -        // over/underflow.)
 | 
| -        if (ten_kappa - unit <= unit) return false;
 | 
| -        // If 2 * (rest + unit) <= 10^kappa we can safely round down.
 | 
| -        if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
 | 
| -            return true;
 | 
| -        }
 | 
| -        // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
 | 
| -        if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
 | 
| -            // Increment the last digit recursively until we find a non '9' digit.
 | 
| -            buffer[length - 1]++;
 | 
| -            for (int i = length - 1; i > 0; --i) {
 | 
| -                if (buffer[i] != '0' + 10) break;
 | 
| -                buffer[i] = '0';
 | 
| -                buffer[i - 1]++;
 | 
| -            }
 | 
| -            // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
 | 
| -            // exception of the first digit all digits are now '0'. Simply switch the
 | 
| -            // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
 | 
| -            // the power (the kappa) is increased.
 | 
| -            if (buffer[0] == '0' + 10) {
 | 
| -                buffer[0] = '1';
 | 
| -                (*kappa) += 1;
 | 
| -            }
 | 
| -            return true;
 | 
| -        }
 | 
| -        return false;
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    static const uint32_t kTen4 = 10000;
 | 
| -    static const uint32_t kTen5 = 100000;
 | 
| -    static const uint32_t kTen6 = 1000000;
 | 
| -    static const uint32_t kTen7 = 10000000;
 | 
| -    static const uint32_t kTen8 = 100000000;
 | 
| -    static const uint32_t kTen9 = 1000000000;
 | 
| -
 | 
| -    // Returns the biggest power of ten that is less than or equal to the given
 | 
| -    // number. We furthermore receive the maximum number of bits 'number' has.
 | 
| -    // If number_bits == 0 then 0^-1 is returned
 | 
| -    // The number of bits must be <= 32.
 | 
| -    // Precondition: number < (1 << (number_bits + 1)).
 | 
| -    static void BiggestPowerTen(uint32_t number,
 | 
| -                                int number_bits,
 | 
| -                                uint32_t* power,
 | 
| -                                int* exponent) {
 | 
| -        ASSERT(number < (uint32_t)(1 << (number_bits + 1)));
 | 
| -
 | 
| -        switch (number_bits) {
 | 
| -            case 32:
 | 
| -            case 31:
 | 
| -            case 30:
 | 
| -                if (kTen9 <= number) {
 | 
| -                    *power = kTen9;
 | 
| -                    *exponent = 9;
 | 
| -                    break;
 | 
| -                }  // else fallthrough
 | 
| -            case 29:
 | 
| -            case 28:
 | 
| -            case 27:
 | 
| -                if (kTen8 <= number) {
 | 
| -                    *power = kTen8;
 | 
| -                    *exponent = 8;
 | 
| -                    break;
 | 
| -                }  // else fallthrough
 | 
| -            case 26:
 | 
| -            case 25:
 | 
| -            case 24:
 | 
| -                if (kTen7 <= number) {
 | 
| -                    *power = kTen7;
 | 
| -                    *exponent = 7;
 | 
| -                    break;
 | 
| -                }  // else fallthrough
 | 
| -            case 23:
 | 
| -            case 22:
 | 
| -            case 21:
 | 
| -            case 20:
 | 
| -                if (kTen6 <= number) {
 | 
| -                    *power = kTen6;
 | 
| -                    *exponent = 6;
 | 
| -                    break;
 | 
| -                }  // else fallthrough
 | 
| -            case 19:
 | 
| -            case 18:
 | 
| -            case 17:
 | 
| -                if (kTen5 <= number) {
 | 
| -                    *power = kTen5;
 | 
| -                    *exponent = 5;
 | 
| -                    break;
 | 
| -                }  // else fallthrough
 | 
| -            case 16:
 | 
| -            case 15:
 | 
| -            case 14:
 | 
| -                if (kTen4 <= number) {
 | 
| -                    *power = kTen4;
 | 
| -                    *exponent = 4;
 | 
| -                    break;
 | 
| -                }  // else fallthrough
 | 
| -            case 13:
 | 
| -            case 12:
 | 
| -            case 11:
 | 
| -            case 10:
 | 
| -                if (1000 <= number) {
 | 
| -                    *power = 1000;
 | 
| -                    *exponent = 3;
 | 
| -                    break;
 | 
| -                }  // else fallthrough
 | 
| -            case 9:
 | 
| -            case 8:
 | 
| -            case 7:
 | 
| -                if (100 <= number) {
 | 
| -                    *power = 100;
 | 
| -                    *exponent = 2;
 | 
| -                    break;
 | 
| -                }  // else fallthrough
 | 
| -            case 6:
 | 
| -            case 5:
 | 
| -            case 4:
 | 
| -                if (10 <= number) {
 | 
| -                    *power = 10;
 | 
| -                    *exponent = 1;
 | 
| -                    break;
 | 
| -                }  // else fallthrough
 | 
| -            case 3:
 | 
| -            case 2:
 | 
| -            case 1:
 | 
| -                if (1 <= number) {
 | 
| -                    *power = 1;
 | 
| -                    *exponent = 0;
 | 
| -                    break;
 | 
| -                }  // else fallthrough
 | 
| -            case 0:
 | 
| -                *power = 0;
 | 
| -                *exponent = -1;
 | 
| -                break;
 | 
| -            default:
 | 
| -                // Following assignments are here to silence compiler warnings.
 | 
| -                *power = 0;
 | 
| -                *exponent = 0;
 | 
| -                UNREACHABLE();
 | 
| -        }
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -    // Generates the digits of input number w.
 | 
| -    // w is a floating-point number (DiyFp), consisting of a significand and an
 | 
| -    // exponent. Its exponent is bounded by kMinimalTargetExponent and
 | 
| -    // kMaximalTargetExponent.
 | 
| -    //       Hence -60 <= w.e() <= -32.
 | 
| -    //
 | 
| -    // Returns false if it fails, in which case the generated digits in the buffer
 | 
| -    // should not be used.
 | 
| -    // Preconditions:
 | 
| -    //  * low, w and high are correct up to 1 ulp (unit in the last place). That
 | 
| -    //    is, their error must be less than a unit of their last digits.
 | 
| -    //  * low.e() == w.e() == high.e()
 | 
| -    //  * low < w < high, and taking into account their error: low~ <= high~
 | 
| -    //  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
 | 
| -    // Postconditions: returns false if procedure fails.
 | 
| -    //   otherwise:
 | 
| -    //     * buffer is not null-terminated, but len contains the number of digits.
 | 
| -    //     * buffer contains the shortest possible decimal digit-sequence
 | 
| -    //       such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
 | 
| -    //       correct values of low and high (without their error).
 | 
| -    //     * if more than one decimal representation gives the minimal number of
 | 
| -    //       decimal digits then the one closest to W (where W is the correct value
 | 
| -    //       of w) is chosen.
 | 
| -    // Remark: this procedure takes into account the imprecision of its input
 | 
| -    //   numbers. If the precision is not enough to guarantee all the postconditions
 | 
| -    //   then false is returned. This usually happens rarely (~0.5%).
 | 
| -    //
 | 
| -    // Say, for the sake of example, that
 | 
| -    //   w.e() == -48, and w.f() == 0x1234567890abcdef
 | 
| -    // w's value can be computed by w.f() * 2^w.e()
 | 
| -    // We can obtain w's integral digits by simply shifting w.f() by -w.e().
 | 
| -    //  -> w's integral part is 0x1234
 | 
| -    //  w's fractional part is therefore 0x567890abcdef.
 | 
| -    // Printing w's integral part is easy (simply print 0x1234 in decimal).
 | 
| -    // In order to print its fraction we repeatedly multiply the fraction by 10 and
 | 
| -    // get each digit. Example the first digit after the point would be computed by
 | 
| -    //   (0x567890abcdef * 10) >> 48. -> 3
 | 
| -    // The whole thing becomes slightly more complicated because we want to stop
 | 
| -    // once we have enough digits. That is, once the digits inside the buffer
 | 
| -    // represent 'w' we can stop. Everything inside the interval low - high
 | 
| -    // represents w. However we have to pay attention to low, high and w's
 | 
| -    // imprecision.
 | 
| -    static bool DigitGen(DiyFp low,
 | 
| -                         DiyFp w,
 | 
| -                         DiyFp high,
 | 
| -                         Vector<char> buffer,
 | 
| -                         int* length,
 | 
| -                         int* kappa) {
 | 
| -        ASSERT(low.e() == w.e() && w.e() == high.e());
 | 
| -        ASSERT(low.f() + 1 <= high.f() - 1);
 | 
| -        ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
 | 
| -        // low, w and high are imprecise, but by less than one ulp (unit in the last
 | 
| -        // place).
 | 
| -        // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
 | 
| -        // the new numbers are outside of the interval we want the final
 | 
| -        // representation to lie in.
 | 
| -        // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
 | 
| -        // numbers that are certain to lie in the interval. We will use this fact
 | 
| -        // later on.
 | 
| -        // We will now start by generating the digits within the uncertain
 | 
| -        // interval. Later we will weed out representations that lie outside the safe
 | 
| -        // interval and thus _might_ lie outside the correct interval.
 | 
| -        uint64_t unit = 1;
 | 
| -        DiyFp too_low = DiyFp(low.f() - unit, low.e());
 | 
| -        DiyFp too_high = DiyFp(high.f() + unit, high.e());
 | 
| -        // too_low and too_high are guaranteed to lie outside the interval we want the
 | 
| -        // generated number in.
 | 
| -        DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
 | 
| -        // We now cut the input number into two parts: the integral digits and the
 | 
| -        // fractionals. We will not write any decimal separator though, but adapt
 | 
| -        // kappa instead.
 | 
| -        // Reminder: we are currently computing the digits (stored inside the buffer)
 | 
| -        // such that:   too_low < buffer * 10^kappa < too_high
 | 
| -        // We use too_high for the digit_generation and stop as soon as possible.
 | 
| -        // If we stop early we effectively round down.
 | 
| -        DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
 | 
| -        // Division by one is a shift.
 | 
| -        uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
 | 
| -        // Modulo by one is an and.
 | 
| -        uint64_t fractionals = too_high.f() & (one.f() - 1);
 | 
| -        uint32_t divisor;
 | 
| -        int divisor_exponent;
 | 
| -        BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
 | 
| -                        &divisor, &divisor_exponent);
 | 
| -        *kappa = divisor_exponent + 1;
 | 
| -        *length = 0;
 | 
| -        // Loop invariant: buffer = too_high / 10^kappa  (integer division)
 | 
| -        // The invariant holds for the first iteration: kappa has been initialized
 | 
| -        // with the divisor exponent + 1. And the divisor is the biggest power of ten
 | 
| -        // that is smaller than integrals.
 | 
| -        while (*kappa > 0) {
 | 
| -            char digit = static_cast<char>(integrals / divisor);
 | 
| -            buffer[*length] = '0' + digit;
 | 
| -            (*length)++;
 | 
| -            integrals %= divisor;
 | 
| -            (*kappa)--;
 | 
| -            // Note that kappa now equals the exponent of the divisor and that the
 | 
| -            // invariant thus holds again.
 | 
| -            uint64_t rest =
 | 
| -            (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
 | 
| -            // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
 | 
| -            // Reminder: unsafe_interval.e() == one.e()
 | 
| -            if (rest < unsafe_interval.f()) {
 | 
| -                // Rounding down (by not emitting the remaining digits) yields a number
 | 
| -                // that lies within the unsafe interval.
 | 
| -                return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
 | 
| -                                 unsafe_interval.f(), rest,
 | 
| -                                 static_cast<uint64_t>(divisor) << -one.e(), unit);
 | 
| -            }
 | 
| -            divisor /= 10;
 | 
| -        }
 | 
| -
 | 
| -        // The integrals have been generated. We are at the point of the decimal
 | 
| -        // separator. In the following loop we simply multiply the remaining digits by
 | 
| -        // 10 and divide by one. We just need to pay attention to multiply associated
 | 
| -        // data (like the interval or 'unit'), too.
 | 
| -        // Note that the multiplication by 10 does not overflow, because w.e >= -60
 | 
| -        // and thus one.e >= -60.
 | 
| -        ASSERT(one.e() >= -60);
 | 
| -        ASSERT(fractionals < one.f());
 | 
| -        ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
 | 
| -        while (true) {
 | 
| -            fractionals *= 10;
 | 
| -            unit *= 10;
 | 
| -            unsafe_interval.set_f(unsafe_interval.f() * 10);
 | 
| -            // Integer division by one.
 | 
| -            char digit = static_cast<char>(fractionals >> -one.e());
 | 
| -            buffer[*length] = '0' + digit;
 | 
| -            (*length)++;
 | 
| -            fractionals &= one.f() - 1;  // Modulo by one.
 | 
| -            (*kappa)--;
 | 
| -            if (fractionals < unsafe_interval.f()) {
 | 
| -                return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
 | 
| -                                 unsafe_interval.f(), fractionals, one.f(), unit);
 | 
| -            }
 | 
| -        }
 | 
| -    }
 | 
| -
 | 
| -
 | 
| -
 | 
| -    // Generates (at most) requested_digits digits of input number w.
 | 
| -    // w is a floating-point number (DiyFp), consisting of a significand and an
 | 
| -    // exponent. Its exponent is bounded by kMinimalTargetExponent and
 | 
| -    // kMaximalTargetExponent.
 | 
| -    //       Hence -60 <= w.e() <= -32.
 | 
| -    //
 | 
| -    // Returns false if it fails, in which case the generated digits in the buffer
 | 
| -    // should not be used.
 | 
| -    // Preconditions:
 | 
| -    //  * w is correct up to 1 ulp (unit in the last place). That
 | 
| -    //    is, its error must be strictly less than a unit of its last digit.
 | 
| -    //  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
 | 
| -    //
 | 
| -    // Postconditions: returns false if procedure fails.
 | 
| -    //   otherwise:
 | 
| -    //     * buffer is not null-terminated, but length contains the number of
 | 
| -    //       digits.
 | 
| -    //     * the representation in buffer is the most precise representation of
 | 
| -    //       requested_digits digits.
 | 
| -    //     * buffer contains at most requested_digits digits of w. If there are less
 | 
| -    //       than requested_digits digits then some trailing '0's have been removed.
 | 
| -    //     * kappa is such that
 | 
| -    //            w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
 | 
| -    //
 | 
| -    // Remark: This procedure takes into account the imprecision of its input
 | 
| -    //   numbers. If the precision is not enough to guarantee all the postconditions
 | 
| -    //   then false is returned. This usually happens rarely, but the failure-rate
 | 
| -    //   increases with higher requested_digits.
 | 
| -    static bool DigitGenCounted(DiyFp w,
 | 
| -                                int requested_digits,
 | 
| -                                Vector<char> buffer,
 | 
| -                                int* length,
 | 
| -                                int* kappa) {
 | 
| -        ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
 | 
| -        ASSERT(kMinimalTargetExponent >= -60);
 | 
| -        ASSERT(kMaximalTargetExponent <= -32);
 | 
| -        // w is assumed to have an error less than 1 unit. Whenever w is scaled we
 | 
| -        // also scale its error.
 | 
| -        uint64_t w_error = 1;
 | 
| -        // We cut the input number into two parts: the integral digits and the
 | 
| -        // fractional digits. We don't emit any decimal separator, but adapt kappa
 | 
| -        // instead. Example: instead of writing "1.2" we put "12" into the buffer and
 | 
| -        // increase kappa by 1.
 | 
| -        DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
 | 
| -        // Division by one is a shift.
 | 
| -        uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
 | 
| -        // Modulo by one is an and.
 | 
| -        uint64_t fractionals = w.f() & (one.f() - 1);
 | 
| -        uint32_t divisor;
 | 
| -        int divisor_exponent;
 | 
| -        BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
 | 
| -                        &divisor, &divisor_exponent);
 | 
| -        *kappa = divisor_exponent + 1;
 | 
| -        *length = 0;
 | 
| -
 | 
| -        // Loop invariant: buffer = w / 10^kappa  (integer division)
 | 
| -        // The invariant holds for the first iteration: kappa has been initialized
 | 
| -        // with the divisor exponent + 1. And the divisor is the biggest power of ten
 | 
| -        // that is smaller than 'integrals'.
 | 
| -        while (*kappa > 0) {
 | 
| -            char digit = static_cast<char>(integrals / divisor);
 | 
| -            buffer[*length] = '0' + digit;
 | 
| -            (*length)++;
 | 
| -            requested_digits--;
 | 
| -            integrals %= divisor;
 | 
| -            (*kappa)--;
 | 
| -            // Note that kappa now equals the exponent of the divisor and that the
 | 
| -            // invariant thus holds again.
 | 
| -            if (requested_digits == 0) break;
 | 
| -            divisor /= 10;
 | 
| -        }
 | 
| -
 | 
| -        if (requested_digits == 0) {
 | 
| -            uint64_t rest =
 | 
| -            (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
 | 
| -            return RoundWeedCounted(buffer, *length, rest,
 | 
| -                                    static_cast<uint64_t>(divisor) << -one.e(), w_error,
 | 
| -                                    kappa);
 | 
| -        }
 | 
| -
 | 
| -        // The integrals have been generated. We are at the point of the decimal
 | 
| -        // separator. In the following loop we simply multiply the remaining digits by
 | 
| -        // 10 and divide by one. We just need to pay attention to multiply associated
 | 
| -        // data (the 'unit'), too.
 | 
| -        // Note that the multiplication by 10 does not overflow, because w.e >= -60
 | 
| -        // and thus one.e >= -60.
 | 
| -        ASSERT(one.e() >= -60);
 | 
| -        ASSERT(fractionals < one.f());
 | 
| -        ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
 | 
| -        while (requested_digits > 0 && fractionals > w_error) {
 | 
| -            fractionals *= 10;
 | 
| -            w_error *= 10;
 | 
| -            // Integer division by one.
 | 
| -            char digit = static_cast<char>(fractionals >> -one.e());
 | 
| -            buffer[*length] = '0' + digit;
 | 
| -            (*length)++;
 | 
| -            requested_digits--;
 | 
| -            fractionals &= one.f() - 1;  // Modulo by one.
 | 
| -            (*kappa)--;
 | 
| -        }
 | 
| -        if (requested_digits != 0) return false;
 | 
| -        return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
 | 
| -                                kappa);
 | 
| +// The minimal and maximal target exponent define the range of w's binary
 | 
| +// exponent, where 'w' is the result of multiplying the input by a cached power
 | 
| +// of ten.
 | 
| +//
 | 
| +// A different range might be chosen on a different platform, to optimize digit
 | 
| +// generation, but a smaller range requires more powers of ten to be cached.
 | 
| +static const int kMinimalTargetExponent = -60;
 | 
| +static const int kMaximalTargetExponent = -32;
 | 
| +
 | 
| +// Adjusts the last digit of the generated number, and screens out generated
 | 
| +// solutions that may be inaccurate. A solution may be inaccurate if it is
 | 
| +// outside the safe interval, or if we cannot prove that it is closer to the
 | 
| +// input than a neighboring representation of the same length.
 | 
| +//
 | 
| +// Input: * buffer containing the digits of too_high / 10^kappa
 | 
| +//        * the buffer's length
 | 
| +//        * distance_too_high_w == (too_high - w).f() * unit
 | 
| +//        * unsafe_interval == (too_high - too_low).f() * unit
 | 
| +//        * rest = (too_high - buffer * 10^kappa).f() * unit
 | 
| +//        * ten_kappa = 10^kappa * unit
 | 
| +//        * unit = the common multiplier
 | 
| +// Output: returns true if the buffer is guaranteed to contain the closest
 | 
| +//    representable number to the input.
 | 
| +//  Modifies the generated digits in the buffer to approach (round towards) w.
 | 
| +static bool RoundWeed(Vector<char> buffer,
 | 
| +                      int length,
 | 
| +                      uint64_t distance_too_high_w,
 | 
| +                      uint64_t unsafe_interval,
 | 
| +                      uint64_t rest,
 | 
| +                      uint64_t ten_kappa,
 | 
| +                      uint64_t unit) {
 | 
| +  uint64_t small_distance = distance_too_high_w - unit;
 | 
| +  uint64_t big_distance = distance_too_high_w + unit;
 | 
| +  // Let w_low  = too_high - big_distance, and
 | 
| +  //     w_high = too_high - small_distance.
 | 
| +  // Note: w_low < w < w_high
 | 
| +  //
 | 
| +  // The real w (* unit) must lie somewhere inside the interval
 | 
| +  // ]w_low; w_high[ (often written as "(w_low; w_high)")
 | 
| +
 | 
| +  // Basically the buffer currently contains a number in the unsafe interval
 | 
| +  // ]too_low; too_high[ with too_low < w < too_high
 | 
| +  //
 | 
| +  //  too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 | 
| +  //                     ^v 1 unit            ^      ^                 ^      ^
 | 
| +  //  boundary_high ---------------------     .      .                 .      .
 | 
| +  //                     ^v 1 unit            .      .                 .      .
 | 
| +  //   - - - - - - - - - - - - - - - - - - -  +  - - + - - - - - -     .      .
 | 
| +  //                                          .      .         ^       .      .
 | 
| +  //                                          .  big_distance  .       .      .
 | 
| +  //                                          .      .         .       .    rest
 | 
| +  //                              small_distance     .         .       .      .
 | 
| +  //                                          v      .         .       .      .
 | 
| +  //  w_high - - - - - - - - - - - - - - - - - -     .         .       .      .
 | 
| +  //                     ^v 1 unit                   .         .       .      .
 | 
| +  //  w ----------------------------------------     .         .       .      .
 | 
| +  //                     ^v 1 unit                   v         .       .      .
 | 
| +  //  w_low  - - - - - - - - - - - - - - - - - - - - -         .       .      .
 | 
| +  //                                                           .       .      v
 | 
| +  //  buffer --------------------------------------------------+-------+--------
 | 
| +  //                                                           .       .
 | 
| +  //                                                  safe_interval    .
 | 
| +  //                                                           v       .
 | 
| +  //   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -     .
 | 
| +  //                     ^v 1 unit                                     .
 | 
| +  //  boundary_low -------------------------                     unsafe_interval
 | 
| +  //                     ^v 1 unit                                     v
 | 
| +  //  too_low  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 | 
| +  //
 | 
| +  //
 | 
| +  // Note that the value of buffer could lie anywhere inside the range too_low
 | 
| +  // to too_high.
 | 
| +  //
 | 
| +  // boundary_low, boundary_high and w are approximations of the real boundaries
 | 
| +  // and v (the input number). They are guaranteed to be precise up to one unit.
 | 
| +  // In fact the error is guaranteed to be strictly less than one unit.
 | 
| +  //
 | 
| +  // Anything that lies outside the unsafe interval is guaranteed not to round
 | 
| +  // to v when read again.
 | 
| +  // Anything that lies inside the safe interval is guaranteed to round to v
 | 
| +  // when read again.
 | 
| +  // If the number inside the buffer lies inside the unsafe interval but not
 | 
| +  // inside the safe interval then we simply do not know and bail out (returning
 | 
| +  // false).
 | 
| +  //
 | 
| +  // Similarly we have to take into account the imprecision of 'w' when finding
 | 
| +  // the closest representation of 'w'. If we have two potential
 | 
| +  // representations, and one is closer to both w_low and w_high, then we know
 | 
| +  // it is closer to the actual value v.
 | 
| +  //
 | 
| +  // By generating the digits of too_high we got the largest (closest to
 | 
| +  // too_high) buffer that is still in the unsafe interval. In the case where
 | 
| +  // w_high < buffer < too_high we try to decrement the buffer.
 | 
| +  // This way the buffer approaches (rounds towards) w.
 | 
| +  // There are 3 conditions that stop the decrementation process:
 | 
| +  //   1) the buffer is already below w_high
 | 
| +  //   2) decrementing the buffer would make it leave the unsafe interval
 | 
| +  //   3) decrementing the buffer would yield a number below w_high and farther
 | 
| +  //      away than the current number. In other words:
 | 
| +  //              (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
 | 
| +  // Instead of using the buffer directly we use its distance to too_high.
 | 
| +  // Conceptually rest ~= too_high - buffer
 | 
| +  // We need to do the following tests in this order to avoid over- and
 | 
| +  // underflows.
 | 
| +  ASSERT(rest <= unsafe_interval);
 | 
| +  while (rest < small_distance &&                // Negated condition 1
 | 
| +         unsafe_interval - rest >= ten_kappa &&  // Negated condition 2
 | 
| +         (rest + ten_kappa < small_distance ||   // buffer{-1} > w_high
 | 
| +          small_distance - rest >= rest + ten_kappa - small_distance)) {
 | 
| +    buffer[length - 1]--;
 | 
| +    rest += ten_kappa;
 | 
| +  }
 | 
| +
 | 
| +  // We have approached w+ as much as possible. We now test if approaching w-
 | 
| +  // would require changing the buffer. If yes, then we have two possible
 | 
| +  // representations close to w, but we cannot decide which one is closer.
 | 
| +  if (rest < big_distance && unsafe_interval - rest >= ten_kappa &&
 | 
| +      (rest + ten_kappa < big_distance ||
 | 
| +       big_distance - rest > rest + ten_kappa - big_distance)) {
 | 
| +    return false;
 | 
| +  }
 | 
| +
 | 
| +  // Weeding test.
 | 
| +  //   The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
 | 
| +  //   Since too_low = too_high - unsafe_interval this is equivalent to
 | 
| +  //      [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
 | 
| +  //   Conceptually we have: rest ~= too_high - buffer
 | 
| +  return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
 | 
| +}
 | 
| +
 | 
| +// Rounds the buffer upwards if the result is closer to v by possibly adding
 | 
| +// 1 to the buffer. If the precision of the calculation is not sufficient to
 | 
| +// round correctly, return false.
 | 
| +// The rounding might shift the whole buffer in which case the kappa is
 | 
| +// adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
 | 
| +//
 | 
| +// If 2*rest > ten_kappa then the buffer needs to be round up.
 | 
| +// rest can have an error of +/- 1 unit. This function accounts for the
 | 
| +// imprecision and returns false, if the rounding direction cannot be
 | 
| +// unambiguously determined.
 | 
| +//
 | 
| +// Precondition: rest < ten_kappa.
 | 
| +static bool RoundWeedCounted(Vector<char> buffer,
 | 
| +                             int length,
 | 
| +                             uint64_t rest,
 | 
| +                             uint64_t ten_kappa,
 | 
| +                             uint64_t unit,
 | 
| +                             int* kappa) {
 | 
| +  ASSERT(rest < ten_kappa);
 | 
| +  // The following tests are done in a specific order to avoid overflows. They
 | 
| +  // will work correctly with any uint64 values of rest < ten_kappa and unit.
 | 
| +  //
 | 
| +  // If the unit is too big, then we don't know which way to round. For example
 | 
| +  // a unit of 50 means that the real number lies within rest +/- 50. If
 | 
| +  // 10^kappa == 40 then there is no way to tell which way to round.
 | 
| +  if (unit >= ten_kappa)
 | 
| +    return false;
 | 
| +  // Even if unit is just half the size of 10^kappa we are already completely
 | 
| +  // lost. (And after the previous test we know that the expression will not
 | 
| +  // over/underflow.)
 | 
| +  if (ten_kappa - unit <= unit)
 | 
| +    return false;
 | 
| +  // If 2 * (rest + unit) <= 10^kappa we can safely round down.
 | 
| +  if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
 | 
| +    return true;
 | 
| +  }
 | 
| +  // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
 | 
| +  if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
 | 
| +    // Increment the last digit recursively until we find a non '9' digit.
 | 
| +    buffer[length - 1]++;
 | 
| +    for (int i = length - 1; i > 0; --i) {
 | 
| +      if (buffer[i] != '0' + 10)
 | 
| +        break;
 | 
| +      buffer[i] = '0';
 | 
| +      buffer[i - 1]++;
 | 
|      }
 | 
| -
 | 
| -
 | 
| -    // Provides a decimal representation of v.
 | 
| -    // Returns true if it succeeds, otherwise the result cannot be trusted.
 | 
| -    // There will be *length digits inside the buffer (not null-terminated).
 | 
| -    // If the function returns true then
 | 
| -    //        v == (double) (buffer * 10^decimal_exponent).
 | 
| -    // The digits in the buffer are the shortest representation possible: no
 | 
| -    // 0.09999999999999999 instead of 0.1. The shorter representation will even be
 | 
| -    // chosen even if the longer one would be closer to v.
 | 
| -    // The last digit will be closest to the actual v. That is, even if several
 | 
| -    // digits might correctly yield 'v' when read again, the closest will be
 | 
| -    // computed.
 | 
| -    static bool Grisu3(double v,
 | 
| -                       Vector<char> buffer,
 | 
| -                       int* length,
 | 
| -                       int* decimal_exponent) {
 | 
| -        DiyFp w = Double(v).AsNormalizedDiyFp();
 | 
| -        // boundary_minus and boundary_plus are the boundaries between v and its
 | 
| -        // closest floating-point neighbors. Any number strictly between
 | 
| -        // boundary_minus and boundary_plus will round to v when convert to a double.
 | 
| -        // Grisu3 will never output representations that lie exactly on a boundary.
 | 
| -        DiyFp boundary_minus, boundary_plus;
 | 
| -        Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
 | 
| -        ASSERT(boundary_plus.e() == w.e());
 | 
| -        DiyFp ten_mk;  // Cached power of ten: 10^-k
 | 
| -        int mk;        // -k
 | 
| -        int ten_mk_minimal_binary_exponent =
 | 
| -        kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
 | 
| -        int ten_mk_maximal_binary_exponent =
 | 
| -        kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
 | 
| -        PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
 | 
| -                                                               ten_mk_minimal_binary_exponent,
 | 
| -                                                               ten_mk_maximal_binary_exponent,
 | 
| -                                                               &ten_mk, &mk);
 | 
| -        ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
 | 
| -                DiyFp::kSignificandSize) &&
 | 
| -               (kMaximalTargetExponent >= w.e() + ten_mk.e() +
 | 
| -                DiyFp::kSignificandSize));
 | 
| -        // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
 | 
| -        // 64 bit significand and ten_mk is thus only precise up to 64 bits.
 | 
| -
 | 
| -        // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
 | 
| -        // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
 | 
| -        // off by a small amount.
 | 
| -        // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
 | 
| -        // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
 | 
| -        //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
 | 
| -        DiyFp scaled_w = DiyFp::Times(w, ten_mk);
 | 
| -        ASSERT(scaled_w.e() ==
 | 
| -               boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
 | 
| -        // In theory it would be possible to avoid some recomputations by computing
 | 
| -        // the difference between w and boundary_minus/plus (a power of 2) and to
 | 
| -        // compute scaled_boundary_minus/plus by subtracting/adding from
 | 
| -        // scaled_w. However the code becomes much less readable and the speed
 | 
| -        // enhancements are not terriffic.
 | 
| -        DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
 | 
| -        DiyFp scaled_boundary_plus  = DiyFp::Times(boundary_plus,  ten_mk);
 | 
| -
 | 
| -        // DigitGen will generate the digits of scaled_w. Therefore we have
 | 
| -        // v == (double) (scaled_w * 10^-mk).
 | 
| -        // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
 | 
| -        // integer than it will be updated. For instance if scaled_w == 1.23 then
 | 
| -        // the buffer will be filled with "123" und the decimal_exponent will be
 | 
| -        // decreased by 2.
 | 
| -        int kappa;
 | 
| -        bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
 | 
| -                               buffer, length, &kappa);
 | 
| -        *decimal_exponent = -mk + kappa;
 | 
| -        return result;
 | 
| +    // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
 | 
| +    // exception of the first digit all digits are now '0'. Simply switch the
 | 
| +    // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
 | 
| +    // the power (the kappa) is increased.
 | 
| +    if (buffer[0] == '0' + 10) {
 | 
| +      buffer[0] = '1';
 | 
| +      (*kappa) += 1;
 | 
|      }
 | 
| -
 | 
| -
 | 
| -    // The "counted" version of grisu3 (see above) only generates requested_digits
 | 
| -    // number of digits. This version does not generate the shortest representation,
 | 
| -    // and with enough requested digits 0.1 will at some point print as 0.9999999...
 | 
| -    // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
 | 
| -    // therefore the rounding strategy for halfway cases is irrelevant.
 | 
| -    static bool Grisu3Counted(double v,
 | 
| -                              int requested_digits,
 | 
| -                              Vector<char> buffer,
 | 
| -                              int* length,
 | 
| -                              int* decimal_exponent) {
 | 
| -        DiyFp w = Double(v).AsNormalizedDiyFp();
 | 
| -        DiyFp ten_mk;  // Cached power of ten: 10^-k
 | 
| -        int mk;        // -k
 | 
| -        int ten_mk_minimal_binary_exponent =
 | 
| -        kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
 | 
| -        int ten_mk_maximal_binary_exponent =
 | 
| -        kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
 | 
| -        PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
 | 
| -                                                               ten_mk_minimal_binary_exponent,
 | 
| -                                                               ten_mk_maximal_binary_exponent,
 | 
| -                                                               &ten_mk, &mk);
 | 
| -        ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
 | 
| -                DiyFp::kSignificandSize) &&
 | 
| -               (kMaximalTargetExponent >= w.e() + ten_mk.e() +
 | 
| -                DiyFp::kSignificandSize));
 | 
| -        // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
 | 
| -        // 64 bit significand and ten_mk is thus only precise up to 64 bits.
 | 
| -
 | 
| -        // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
 | 
| -        // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
 | 
| -        // off by a small amount.
 | 
| -        // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
 | 
| -        // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
 | 
| -        //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
 | 
| -        DiyFp scaled_w = DiyFp::Times(w, ten_mk);
 | 
| -
 | 
| -        // We now have (double) (scaled_w * 10^-mk).
 | 
| -        // DigitGen will generate the first requested_digits digits of scaled_w and
 | 
| -        // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
 | 
| -        // will not always be exactly the same since DigitGenCounted only produces a
 | 
| -        // limited number of digits.)
 | 
| -        int kappa;
 | 
| -        bool result = DigitGenCounted(scaled_w, requested_digits,
 | 
| -                                      buffer, length, &kappa);
 | 
| -        *decimal_exponent = -mk + kappa;
 | 
| -        return result;
 | 
| +    return true;
 | 
| +  }
 | 
| +  return false;
 | 
| +}
 | 
| +
 | 
| +static const uint32_t kTen4 = 10000;
 | 
| +static const uint32_t kTen5 = 100000;
 | 
| +static const uint32_t kTen6 = 1000000;
 | 
| +static const uint32_t kTen7 = 10000000;
 | 
| +static const uint32_t kTen8 = 100000000;
 | 
| +static const uint32_t kTen9 = 1000000000;
 | 
| +
 | 
| +// Returns the biggest power of ten that is less than or equal to the given
 | 
| +// number. We furthermore receive the maximum number of bits 'number' has.
 | 
| +// If number_bits == 0 then 0^-1 is returned
 | 
| +// The number of bits must be <= 32.
 | 
| +// Precondition: number < (1 << (number_bits + 1)).
 | 
| +static void BiggestPowerTen(uint32_t number,
 | 
| +                            int number_bits,
 | 
| +                            uint32_t* power,
 | 
| +                            int* exponent) {
 | 
| +  ASSERT(number < (uint32_t)(1 << (number_bits + 1)));
 | 
| +
 | 
| +  switch (number_bits) {
 | 
| +    case 32:
 | 
| +    case 31:
 | 
| +    case 30:
 | 
| +      if (kTen9 <= number) {
 | 
| +        *power = kTen9;
 | 
| +        *exponent = 9;
 | 
| +        break;
 | 
| +      }  // else fallthrough
 | 
| +    case 29:
 | 
| +    case 28:
 | 
| +    case 27:
 | 
| +      if (kTen8 <= number) {
 | 
| +        *power = kTen8;
 | 
| +        *exponent = 8;
 | 
| +        break;
 | 
| +      }  // else fallthrough
 | 
| +    case 26:
 | 
| +    case 25:
 | 
| +    case 24:
 | 
| +      if (kTen7 <= number) {
 | 
| +        *power = kTen7;
 | 
| +        *exponent = 7;
 | 
| +        break;
 | 
| +      }  // else fallthrough
 | 
| +    case 23:
 | 
| +    case 22:
 | 
| +    case 21:
 | 
| +    case 20:
 | 
| +      if (kTen6 <= number) {
 | 
| +        *power = kTen6;
 | 
| +        *exponent = 6;
 | 
| +        break;
 | 
| +      }  // else fallthrough
 | 
| +    case 19:
 | 
| +    case 18:
 | 
| +    case 17:
 | 
| +      if (kTen5 <= number) {
 | 
| +        *power = kTen5;
 | 
| +        *exponent = 5;
 | 
| +        break;
 | 
| +      }  // else fallthrough
 | 
| +    case 16:
 | 
| +    case 15:
 | 
| +    case 14:
 | 
| +      if (kTen4 <= number) {
 | 
| +        *power = kTen4;
 | 
| +        *exponent = 4;
 | 
| +        break;
 | 
| +      }  // else fallthrough
 | 
| +    case 13:
 | 
| +    case 12:
 | 
| +    case 11:
 | 
| +    case 10:
 | 
| +      if (1000 <= number) {
 | 
| +        *power = 1000;
 | 
| +        *exponent = 3;
 | 
| +        break;
 | 
| +      }  // else fallthrough
 | 
| +    case 9:
 | 
| +    case 8:
 | 
| +    case 7:
 | 
| +      if (100 <= number) {
 | 
| +        *power = 100;
 | 
| +        *exponent = 2;
 | 
| +        break;
 | 
| +      }  // else fallthrough
 | 
| +    case 6:
 | 
| +    case 5:
 | 
| +    case 4:
 | 
| +      if (10 <= number) {
 | 
| +        *power = 10;
 | 
| +        *exponent = 1;
 | 
| +        break;
 | 
| +      }  // else fallthrough
 | 
| +    case 3:
 | 
| +    case 2:
 | 
| +    case 1:
 | 
| +      if (1 <= number) {
 | 
| +        *power = 1;
 | 
| +        *exponent = 0;
 | 
| +        break;
 | 
| +      }  // else fallthrough
 | 
| +    case 0:
 | 
| +      *power = 0;
 | 
| +      *exponent = -1;
 | 
| +      break;
 | 
| +    default:
 | 
| +      // Following assignments are here to silence compiler warnings.
 | 
| +      *power = 0;
 | 
| +      *exponent = 0;
 | 
| +      UNREACHABLE();
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +// Generates the digits of input number w.
 | 
| +// w is a floating-point number (DiyFp), consisting of a significand and an
 | 
| +// exponent. Its exponent is bounded by kMinimalTargetExponent and
 | 
| +// kMaximalTargetExponent.
 | 
| +//       Hence -60 <= w.e() <= -32.
 | 
| +//
 | 
| +// Returns false if it fails, in which case the generated digits in the buffer
 | 
| +// should not be used.
 | 
| +// Preconditions:
 | 
| +//  * low, w and high are correct up to 1 ulp (unit in the last place). That
 | 
| +//    is, their error must be less than a unit of their last digits.
 | 
| +//  * low.e() == w.e() == high.e()
 | 
| +//  * low < w < high, and taking into account their error: low~ <= high~
 | 
| +//  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
 | 
| +// Postconditions: returns false if procedure fails.
 | 
| +//   otherwise:
 | 
| +//     * buffer is not null-terminated, but len contains the number of digits.
 | 
| +//     * buffer contains the shortest possible decimal digit-sequence
 | 
| +//       such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
 | 
| +//       correct values of low and high (without their error).
 | 
| +//     * if more than one decimal representation gives the minimal number of
 | 
| +//       decimal digits then the one closest to W (where W is the correct value
 | 
| +//       of w) is chosen.
 | 
| +// Remark: this procedure takes into account the imprecision of its input
 | 
| +//   numbers. If the precision is not enough to guarantee all the postconditions
 | 
| +//   then false is returned. This usually happens rarely (~0.5%).
 | 
| +//
 | 
| +// Say, for the sake of example, that
 | 
| +//   w.e() == -48, and w.f() == 0x1234567890abcdef
 | 
| +// w's value can be computed by w.f() * 2^w.e()
 | 
| +// We can obtain w's integral digits by simply shifting w.f() by -w.e().
 | 
| +//  -> w's integral part is 0x1234
 | 
| +//  w's fractional part is therefore 0x567890abcdef.
 | 
| +// Printing w's integral part is easy (simply print 0x1234 in decimal).
 | 
| +// In order to print its fraction we repeatedly multiply the fraction by 10 and
 | 
| +// get each digit. Example the first digit after the point would be computed by
 | 
| +//   (0x567890abcdef * 10) >> 48. -> 3
 | 
| +// The whole thing becomes slightly more complicated because we want to stop
 | 
| +// once we have enough digits. That is, once the digits inside the buffer
 | 
| +// represent 'w' we can stop. Everything inside the interval low - high
 | 
| +// represents w. However we have to pay attention to low, high and w's
 | 
| +// imprecision.
 | 
| +static bool DigitGen(DiyFp low,
 | 
| +                     DiyFp w,
 | 
| +                     DiyFp high,
 | 
| +                     Vector<char> buffer,
 | 
| +                     int* length,
 | 
| +                     int* kappa) {
 | 
| +  ASSERT(low.e() == w.e() && w.e() == high.e());
 | 
| +  ASSERT(low.f() + 1 <= high.f() - 1);
 | 
| +  ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
 | 
| +  // low, w and high are imprecise, but by less than one ulp (unit in the last
 | 
| +  // place).
 | 
| +  // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
 | 
| +  // the new numbers are outside of the interval we want the final
 | 
| +  // representation to lie in.
 | 
| +  // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
 | 
| +  // numbers that are certain to lie in the interval. We will use this fact
 | 
| +  // later on.
 | 
| +  // We will now start by generating the digits within the uncertain
 | 
| +  // interval. Later we will weed out representations that lie outside the safe
 | 
| +  // interval and thus _might_ lie outside the correct interval.
 | 
| +  uint64_t unit = 1;
 | 
| +  DiyFp too_low = DiyFp(low.f() - unit, low.e());
 | 
| +  DiyFp too_high = DiyFp(high.f() + unit, high.e());
 | 
| +  // too_low and too_high are guaranteed to lie outside the interval we want the
 | 
| +  // generated number in.
 | 
| +  DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
 | 
| +  // We now cut the input number into two parts: the integral digits and the
 | 
| +  // fractionals. We will not write any decimal separator though, but adapt
 | 
| +  // kappa instead.
 | 
| +  // Reminder: we are currently computing the digits (stored inside the buffer)
 | 
| +  // such that:   too_low < buffer * 10^kappa < too_high
 | 
| +  // We use too_high for the digit_generation and stop as soon as possible.
 | 
| +  // If we stop early we effectively round down.
 | 
| +  DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
 | 
| +  // Division by one is a shift.
 | 
| +  uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
 | 
| +  // Modulo by one is an and.
 | 
| +  uint64_t fractionals = too_high.f() & (one.f() - 1);
 | 
| +  uint32_t divisor;
 | 
| +  int divisor_exponent;
 | 
| +  BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), &divisor,
 | 
| +                  &divisor_exponent);
 | 
| +  *kappa = divisor_exponent + 1;
 | 
| +  *length = 0;
 | 
| +  // Loop invariant: buffer = too_high / 10^kappa  (integer division)
 | 
| +  // The invariant holds for the first iteration: kappa has been initialized
 | 
| +  // with the divisor exponent + 1. And the divisor is the biggest power of ten
 | 
| +  // that is smaller than integrals.
 | 
| +  while (*kappa > 0) {
 | 
| +    char digit = static_cast<char>(integrals / divisor);
 | 
| +    buffer[*length] = '0' + digit;
 | 
| +    (*length)++;
 | 
| +    integrals %= divisor;
 | 
| +    (*kappa)--;
 | 
| +    // Note that kappa now equals the exponent of the divisor and that the
 | 
| +    // invariant thus holds again.
 | 
| +    uint64_t rest =
 | 
| +        (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
 | 
| +    // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
 | 
| +    // Reminder: unsafe_interval.e() == one.e()
 | 
| +    if (rest < unsafe_interval.f()) {
 | 
| +      // Rounding down (by not emitting the remaining digits) yields a number
 | 
| +      // that lies within the unsafe interval.
 | 
| +      return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
 | 
| +                       unsafe_interval.f(), rest,
 | 
| +                       static_cast<uint64_t>(divisor) << -one.e(), unit);
 | 
|      }
 | 
| -
 | 
| -
 | 
| -    bool FastDtoa(double v,
 | 
| -                  FastDtoaMode mode,
 | 
| -                  int requested_digits,
 | 
| -                  Vector<char> buffer,
 | 
| -                  int* length,
 | 
| -                  int* decimal_point) {
 | 
| -        ASSERT(v > 0);
 | 
| -        ASSERT(!Double(v).IsSpecial());
 | 
| -
 | 
| -        bool result = false;
 | 
| -        int decimal_exponent = 0;
 | 
| -        switch (mode) {
 | 
| -            case FAST_DTOA_SHORTEST:
 | 
| -                result = Grisu3(v, buffer, length, &decimal_exponent);
 | 
| -                break;
 | 
| -            case FAST_DTOA_PRECISION:
 | 
| -                result = Grisu3Counted(v, requested_digits,
 | 
| -                                       buffer, length, &decimal_exponent);
 | 
| -                break;
 | 
| -            default:
 | 
| -                UNREACHABLE();
 | 
| -        }
 | 
| -        if (result) {
 | 
| -            *decimal_point = *length + decimal_exponent;
 | 
| -            buffer[*length] = '\0';
 | 
| -        }
 | 
| -        return result;
 | 
| +    divisor /= 10;
 | 
| +  }
 | 
| +
 | 
| +  // The integrals have been generated. We are at the point of the decimal
 | 
| +  // separator. In the following loop we simply multiply the remaining digits by
 | 
| +  // 10 and divide by one. We just need to pay attention to multiply associated
 | 
| +  // data (like the interval or 'unit'), too.
 | 
| +  // Note that the multiplication by 10 does not overflow, because w.e >= -60
 | 
| +  // and thus one.e >= -60.
 | 
| +  ASSERT(one.e() >= -60);
 | 
| +  ASSERT(fractionals < one.f());
 | 
| +  ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
 | 
| +  while (true) {
 | 
| +    fractionals *= 10;
 | 
| +    unit *= 10;
 | 
| +    unsafe_interval.set_f(unsafe_interval.f() * 10);
 | 
| +    // Integer division by one.
 | 
| +    char digit = static_cast<char>(fractionals >> -one.e());
 | 
| +    buffer[*length] = '0' + digit;
 | 
| +    (*length)++;
 | 
| +    fractionals &= one.f() - 1;  // Modulo by one.
 | 
| +    (*kappa)--;
 | 
| +    if (fractionals < unsafe_interval.f()) {
 | 
| +      return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
 | 
| +                       unsafe_interval.f(), fractionals, one.f(), unit);
 | 
|      }
 | 
| +  }
 | 
| +}
 | 
| +
 | 
| +// Generates (at most) requested_digits digits of input number w.
 | 
| +// w is a floating-point number (DiyFp), consisting of a significand and an
 | 
| +// exponent. Its exponent is bounded by kMinimalTargetExponent and
 | 
| +// kMaximalTargetExponent.
 | 
| +//       Hence -60 <= w.e() <= -32.
 | 
| +//
 | 
| +// Returns false if it fails, in which case the generated digits in the buffer
 | 
| +// should not be used.
 | 
| +// Preconditions:
 | 
| +//  * w is correct up to 1 ulp (unit in the last place). That
 | 
| +//    is, its error must be strictly less than a unit of its last digit.
 | 
| +//  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
 | 
| +//
 | 
| +// Postconditions: returns false if procedure fails.
 | 
| +//   otherwise:
 | 
| +//     * buffer is not null-terminated, but length contains the number of
 | 
| +//       digits.
 | 
| +//     * the representation in buffer is the most precise representation of
 | 
| +//       requested_digits digits.
 | 
| +//     * buffer contains at most requested_digits digits of w. If there are less
 | 
| +//       than requested_digits digits then some trailing '0's have been removed.
 | 
| +//     * kappa is such that
 | 
| +//            w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
 | 
| +//
 | 
| +// Remark: This procedure takes into account the imprecision of its input
 | 
| +//   numbers. If the precision is not enough to guarantee all the postconditions
 | 
| +//   then false is returned. This usually happens rarely, but the failure-rate
 | 
| +//   increases with higher requested_digits.
 | 
| +static bool DigitGenCounted(DiyFp w,
 | 
| +                            int requested_digits,
 | 
| +                            Vector<char> buffer,
 | 
| +                            int* length,
 | 
| +                            int* kappa) {
 | 
| +  ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
 | 
| +  ASSERT(kMinimalTargetExponent >= -60);
 | 
| +  ASSERT(kMaximalTargetExponent <= -32);
 | 
| +  // w is assumed to have an error less than 1 unit. Whenever w is scaled we
 | 
| +  // also scale its error.
 | 
| +  uint64_t w_error = 1;
 | 
| +  // We cut the input number into two parts: the integral digits and the
 | 
| +  // fractional digits. We don't emit any decimal separator, but adapt kappa
 | 
| +  // instead. Example: instead of writing "1.2" we put "12" into the buffer and
 | 
| +  // increase kappa by 1.
 | 
| +  DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
 | 
| +  // Division by one is a shift.
 | 
| +  uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
 | 
| +  // Modulo by one is an and.
 | 
| +  uint64_t fractionals = w.f() & (one.f() - 1);
 | 
| +  uint32_t divisor;
 | 
| +  int divisor_exponent;
 | 
| +  BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), &divisor,
 | 
| +                  &divisor_exponent);
 | 
| +  *kappa = divisor_exponent + 1;
 | 
| +  *length = 0;
 | 
| +
 | 
| +  // Loop invariant: buffer = w / 10^kappa  (integer division)
 | 
| +  // The invariant holds for the first iteration: kappa has been initialized
 | 
| +  // with the divisor exponent + 1. And the divisor is the biggest power of ten
 | 
| +  // that is smaller than 'integrals'.
 | 
| +  while (*kappa > 0) {
 | 
| +    char digit = static_cast<char>(integrals / divisor);
 | 
| +    buffer[*length] = '0' + digit;
 | 
| +    (*length)++;
 | 
| +    requested_digits--;
 | 
| +    integrals %= divisor;
 | 
| +    (*kappa)--;
 | 
| +    // Note that kappa now equals the exponent of the divisor and that the
 | 
| +    // invariant thus holds again.
 | 
| +    if (requested_digits == 0)
 | 
| +      break;
 | 
| +    divisor /= 10;
 | 
| +  }
 | 
| +
 | 
| +  if (requested_digits == 0) {
 | 
| +    uint64_t rest =
 | 
| +        (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
 | 
| +    return RoundWeedCounted(buffer, *length, rest,
 | 
| +                            static_cast<uint64_t>(divisor) << -one.e(), w_error,
 | 
| +                            kappa);
 | 
| +  }
 | 
| +
 | 
| +  // The integrals have been generated. We are at the point of the decimal
 | 
| +  // separator. In the following loop we simply multiply the remaining digits by
 | 
| +  // 10 and divide by one. We just need to pay attention to multiply associated
 | 
| +  // data (the 'unit'), too.
 | 
| +  // Note that the multiplication by 10 does not overflow, because w.e >= -60
 | 
| +  // and thus one.e >= -60.
 | 
| +  ASSERT(one.e() >= -60);
 | 
| +  ASSERT(fractionals < one.f());
 | 
| +  ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
 | 
| +  while (requested_digits > 0 && fractionals > w_error) {
 | 
| +    fractionals *= 10;
 | 
| +    w_error *= 10;
 | 
| +    // Integer division by one.
 | 
| +    char digit = static_cast<char>(fractionals >> -one.e());
 | 
| +    buffer[*length] = '0' + digit;
 | 
| +    (*length)++;
 | 
| +    requested_digits--;
 | 
| +    fractionals &= one.f() - 1;  // Modulo by one.
 | 
| +    (*kappa)--;
 | 
| +  }
 | 
| +  if (requested_digits != 0)
 | 
| +    return false;
 | 
| +  return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
 | 
| +                          kappa);
 | 
| +}
 | 
| +
 | 
| +// Provides a decimal representation of v.
 | 
| +// Returns true if it succeeds, otherwise the result cannot be trusted.
 | 
| +// There will be *length digits inside the buffer (not null-terminated).
 | 
| +// If the function returns true then
 | 
| +//        v == (double) (buffer * 10^decimal_exponent).
 | 
| +// The digits in the buffer are the shortest representation possible: no
 | 
| +// 0.09999999999999999 instead of 0.1. The shorter representation will even be
 | 
| +// chosen even if the longer one would be closer to v.
 | 
| +// The last digit will be closest to the actual v. That is, even if several
 | 
| +// digits might correctly yield 'v' when read again, the closest will be
 | 
| +// computed.
 | 
| +static bool Grisu3(double v,
 | 
| +                   Vector<char> buffer,
 | 
| +                   int* length,
 | 
| +                   int* decimal_exponent) {
 | 
| +  DiyFp w = Double(v).AsNormalizedDiyFp();
 | 
| +  // boundary_minus and boundary_plus are the boundaries between v and its
 | 
| +  // closest floating-point neighbors. Any number strictly between
 | 
| +  // boundary_minus and boundary_plus will round to v when convert to a double.
 | 
| +  // Grisu3 will never output representations that lie exactly on a boundary.
 | 
| +  DiyFp boundary_minus, boundary_plus;
 | 
| +  Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
 | 
| +  ASSERT(boundary_plus.e() == w.e());
 | 
| +  DiyFp ten_mk;  // Cached power of ten: 10^-k
 | 
| +  int mk;        // -k
 | 
| +  int ten_mk_minimal_binary_exponent =
 | 
| +      kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
 | 
| +  int ten_mk_maximal_binary_exponent =
 | 
| +      kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
 | 
| +  PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
 | 
| +      ten_mk_minimal_binary_exponent, ten_mk_maximal_binary_exponent, &ten_mk,
 | 
| +      &mk);
 | 
| +  ASSERT(
 | 
| +      (kMinimalTargetExponent <=
 | 
| +       w.e() + ten_mk.e() + DiyFp::kSignificandSize) &&
 | 
| +      (kMaximalTargetExponent >= w.e() + ten_mk.e() + DiyFp::kSignificandSize));
 | 
| +  // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
 | 
| +  // 64 bit significand and ten_mk is thus only precise up to 64 bits.
 | 
| +
 | 
| +  // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
 | 
| +  // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
 | 
| +  // off by a small amount.
 | 
| +  // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
 | 
| +  // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
 | 
| +  //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
 | 
| +  DiyFp scaled_w = DiyFp::Times(w, ten_mk);
 | 
| +  ASSERT(scaled_w.e() ==
 | 
| +         boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
 | 
| +  // In theory it would be possible to avoid some recomputations by computing
 | 
| +  // the difference between w and boundary_minus/plus (a power of 2) and to
 | 
| +  // compute scaled_boundary_minus/plus by subtracting/adding from
 | 
| +  // scaled_w. However the code becomes much less readable and the speed
 | 
| +  // enhancements are not terriffic.
 | 
| +  DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
 | 
| +  DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
 | 
| +
 | 
| +  // DigitGen will generate the digits of scaled_w. Therefore we have
 | 
| +  // v == (double) (scaled_w * 10^-mk).
 | 
| +  // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
 | 
| +  // integer than it will be updated. For instance if scaled_w == 1.23 then
 | 
| +  // the buffer will be filled with "123" und the decimal_exponent will be
 | 
| +  // decreased by 2.
 | 
| +  int kappa;
 | 
| +  bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
 | 
| +                         buffer, length, &kappa);
 | 
| +  *decimal_exponent = -mk + kappa;
 | 
| +  return result;
 | 
| +}
 | 
| +
 | 
| +// The "counted" version of grisu3 (see above) only generates requested_digits
 | 
| +// number of digits. This version does not generate the shortest representation,
 | 
| +// and with enough requested digits 0.1 will at some point print as 0.9999999...
 | 
| +// Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
 | 
| +// therefore the rounding strategy for halfway cases is irrelevant.
 | 
| +static bool Grisu3Counted(double v,
 | 
| +                          int requested_digits,
 | 
| +                          Vector<char> buffer,
 | 
| +                          int* length,
 | 
| +                          int* decimal_exponent) {
 | 
| +  DiyFp w = Double(v).AsNormalizedDiyFp();
 | 
| +  DiyFp ten_mk;  // Cached power of ten: 10^-k
 | 
| +  int mk;        // -k
 | 
| +  int ten_mk_minimal_binary_exponent =
 | 
| +      kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
 | 
| +  int ten_mk_maximal_binary_exponent =
 | 
| +      kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
 | 
| +  PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
 | 
| +      ten_mk_minimal_binary_exponent, ten_mk_maximal_binary_exponent, &ten_mk,
 | 
| +      &mk);
 | 
| +  ASSERT(
 | 
| +      (kMinimalTargetExponent <=
 | 
| +       w.e() + ten_mk.e() + DiyFp::kSignificandSize) &&
 | 
| +      (kMaximalTargetExponent >= w.e() + ten_mk.e() + DiyFp::kSignificandSize));
 | 
| +  // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
 | 
| +  // 64 bit significand and ten_mk is thus only precise up to 64 bits.
 | 
| +
 | 
| +  // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
 | 
| +  // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
 | 
| +  // off by a small amount.
 | 
| +  // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
 | 
| +  // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
 | 
| +  //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
 | 
| +  DiyFp scaled_w = DiyFp::Times(w, ten_mk);
 | 
| +
 | 
| +  // We now have (double) (scaled_w * 10^-mk).
 | 
| +  // DigitGen will generate the first requested_digits digits of scaled_w and
 | 
| +  // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
 | 
| +  // will not always be exactly the same since DigitGenCounted only produces a
 | 
| +  // limited number of digits.)
 | 
| +  int kappa;
 | 
| +  bool result =
 | 
| +      DigitGenCounted(scaled_w, requested_digits, buffer, length, &kappa);
 | 
| +  *decimal_exponent = -mk + kappa;
 | 
| +  return result;
 | 
| +}
 | 
| +
 | 
| +bool FastDtoa(double v,
 | 
| +              FastDtoaMode mode,
 | 
| +              int requested_digits,
 | 
| +              Vector<char> buffer,
 | 
| +              int* length,
 | 
| +              int* decimal_point) {
 | 
| +  ASSERT(v > 0);
 | 
| +  ASSERT(!Double(v).IsSpecial());
 | 
| +
 | 
| +  bool result = false;
 | 
| +  int decimal_exponent = 0;
 | 
| +  switch (mode) {
 | 
| +    case FAST_DTOA_SHORTEST:
 | 
| +      result = Grisu3(v, buffer, length, &decimal_exponent);
 | 
| +      break;
 | 
| +    case FAST_DTOA_PRECISION:
 | 
| +      result =
 | 
| +          Grisu3Counted(v, requested_digits, buffer, length, &decimal_exponent);
 | 
| +      break;
 | 
| +    default:
 | 
| +      UNREACHABLE();
 | 
| +  }
 | 
| +  if (result) {
 | 
| +    *decimal_point = *length + decimal_exponent;
 | 
| +    buffer[*length] = '\0';
 | 
| +  }
 | 
| +  return result;
 | 
| +}
 | 
|  
 | 
|  }  // namespace double_conversion
 | 
|  
 | 
| -} // namespace WTF
 | 
| +}  // namespace WTF
 | 
| 
 |