OLD | NEW |
1 // Copyright 2010 the V8 project authors. All rights reserved. | 1 // Copyright 2010 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
11 // with the distribution. | 11 // with the distribution. |
12 // * Neither the name of Google Inc. nor the names of its | 12 // * Neither the name of Google Inc. nor the names of its |
13 // contributors may be used to endorse or promote products derived | 13 // contributors may be used to endorse or promote products derived |
14 // from this software without specific prior written permission. | 14 // from this software without specific prior written permission. |
15 // | 15 // |
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | 27 |
28 #include "strtod.h" | 28 #include "strtod.h" |
29 | 29 |
| 30 #include <limits.h> |
| 31 #include <stdarg.h> |
30 #include "bignum.h" | 32 #include "bignum.h" |
31 #include "cached-powers.h" | 33 #include "cached-powers.h" |
32 #include "double.h" | 34 #include "double.h" |
33 #include <stdarg.h> | |
34 #include <limits.h> | |
35 | 35 |
36 namespace WTF { | 36 namespace WTF { |
37 | 37 |
38 namespace double_conversion { | 38 namespace double_conversion { |
39 | 39 |
40 // 2^53 = 9007199254740992. | 40 // 2^53 = 9007199254740992. |
41 // Any integer with at most 15 decimal digits will hence fit into a double | 41 // Any integer with at most 15 decimal digits will hence fit into a double |
42 // (which has a 53bit significand) without loss of precision. | 42 // (which has a 53bit significand) without loss of precision. |
43 static const int kMaxExactDoubleIntegerDecimalDigits = 15; | 43 static const int kMaxExactDoubleIntegerDecimalDigits = 15; |
44 // 2^64 = 18446744073709551616 > 10^19 | 44 // 2^64 = 18446744073709551616 > 10^19 |
45 static const int kMaxUint64DecimalDigits = 19; | 45 static const int kMaxUint64DecimalDigits = 19; |
46 | 46 |
47 // Max double: 1.7976931348623157 x 10^308 | 47 // Max double: 1.7976931348623157 x 10^308 |
48 // Min non-zero double: 4.9406564584124654 x 10^-324 | 48 // Min non-zero double: 4.9406564584124654 x 10^-324 |
49 // Any x >= 10^309 is interpreted as +infinity. | 49 // Any x >= 10^309 is interpreted as +infinity. |
50 // Any x <= 10^-324 is interpreted as 0. | 50 // Any x <= 10^-324 is interpreted as 0. |
51 // Note that 2.5e-324 (despite being smaller than the min double) will be re
ad | 51 // Note that 2.5e-324 (despite being smaller than the min double) will be read |
52 // as non-zero (equal to the min non-zero double). | 52 // as non-zero (equal to the min non-zero double). |
53 static const int kMaxDecimalPower = 309; | 53 static const int kMaxDecimalPower = 309; |
54 static const int kMinDecimalPower = -324; | 54 static const int kMinDecimalPower = -324; |
55 | 55 |
56 // 2^64 = 18446744073709551616 | 56 // 2^64 = 18446744073709551616 |
57 static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF); | 57 static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF); |
58 | 58 |
59 | 59 static const double exact_powers_of_ten[] = { |
60 static const double exact_powers_of_ten[] = { | 60 1.0, // 10^0 |
61 1.0, // 10^0 | 61 10.0, 100.0, 1000.0, 10000.0, 100000.0, 1000000.0, 10000000.0, 100000000.0, |
62 10.0, | 62 1000000000.0, |
63 100.0, | 63 10000000000.0, // 10^10 |
64 1000.0, | 64 100000000000.0, 1000000000000.0, 10000000000000.0, 100000000000000.0, |
65 10000.0, | 65 1000000000000000.0, 10000000000000000.0, 100000000000000000.0, |
66 100000.0, | 66 1000000000000000000.0, 10000000000000000000.0, |
67 1000000.0, | 67 100000000000000000000.0, // 10^20 |
68 10000000.0, | 68 1000000000000000000000.0, |
69 100000000.0, | 69 // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22 |
70 1000000000.0, | 70 10000000000000000000000.0}; |
71 10000000000.0, // 10^10 | 71 static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten); |
72 100000000000.0, | 72 |
73 1000000000000.0, | 73 // Maximum number of significant digits in the decimal representation. |
74 10000000000000.0, | 74 // In fact the value is 772 (see conversions.cc), but to give us some margin |
75 100000000000000.0, | 75 // we round up to 780. |
76 1000000000000000.0, | 76 static const int kMaxSignificantDecimalDigits = 780; |
77 10000000000000000.0, | 77 |
78 100000000000000000.0, | 78 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) { |
79 1000000000000000000.0, | 79 for (int i = 0; i < buffer.length(); i++) { |
80 10000000000000000000.0, | 80 if (buffer[i] != '0') { |
81 100000000000000000000.0, // 10^20 | 81 return buffer.SubVector(i, buffer.length()); |
82 1000000000000000000000.0, | 82 } |
83 // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22 | 83 } |
84 10000000000000000000000.0 | 84 return Vector<const char>(buffer.start(), 0); |
85 }; | 85 } |
86 static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten); | 86 |
87 | 87 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) { |
88 // Maximum number of significant digits in the decimal representation. | 88 for (int i = buffer.length() - 1; i >= 0; --i) { |
89 // In fact the value is 772 (see conversions.cc), but to give us some margin | 89 if (buffer[i] != '0') { |
90 // we round up to 780. | 90 return buffer.SubVector(0, i + 1); |
91 static const int kMaxSignificantDecimalDigits = 780; | 91 } |
92 | 92 } |
93 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) { | 93 return Vector<const char>(buffer.start(), 0); |
94 for (int i = 0; i < buffer.length(); i++) { | 94 } |
95 if (buffer[i] != '0') { | 95 |
96 return buffer.SubVector(i, buffer.length()); | 96 static void TrimToMaxSignificantDigits(Vector<const char> buffer, |
97 } | 97 int exponent, |
98 } | 98 char* significant_buffer, |
99 return Vector<const char>(buffer.start(), 0); | 99 int* significant_exponent) { |
100 } | 100 for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) { |
101 | 101 significant_buffer[i] = buffer[i]; |
102 | 102 } |
103 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) { | 103 // The input buffer has been trimmed. Therefore the last digit must be |
104 for (int i = buffer.length() - 1; i >= 0; --i) { | 104 // different from '0'. |
105 if (buffer[i] != '0') { | 105 ASSERT(buffer[buffer.length() - 1] != '0'); |
106 return buffer.SubVector(0, i + 1); | 106 // Set the last digit to be non-zero. This is sufficient to guarantee |
107 } | 107 // correct rounding. |
108 } | 108 significant_buffer[kMaxSignificantDecimalDigits - 1] = '1'; |
109 return Vector<const char>(buffer.start(), 0); | 109 *significant_exponent = |
110 } | 110 exponent + (buffer.length() - kMaxSignificantDecimalDigits); |
111 | 111 } |
112 | 112 |
113 static void TrimToMaxSignificantDigits(Vector<const char> buffer, | 113 // Reads digits from the buffer and converts them to a uint64. |
114 int exponent, | 114 // Reads in as many digits as fit into a uint64. |
115 char* significant_buffer, | 115 // When the string starts with "1844674407370955161" no further digit is read. |
116 int* significant_exponent) { | 116 // Since 2^64 = 18446744073709551616 it would still be possible read another |
117 for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) { | 117 // digit if it was less or equal than 6, but this would complicate the code. |
118 significant_buffer[i] = buffer[i]; | 118 static uint64_t ReadUint64(Vector<const char> buffer, |
119 } | 119 int* number_of_read_digits) { |
120 // The input buffer has been trimmed. Therefore the last digit must be | 120 uint64_t result = 0; |
121 // different from '0'. | 121 int i = 0; |
122 ASSERT(buffer[buffer.length() - 1] != '0'); | 122 while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) { |
123 // Set the last digit to be non-zero. This is sufficient to guarantee | 123 int digit = buffer[i++] - '0'; |
124 // correct rounding. | 124 ASSERT(0 <= digit && digit <= 9); |
125 significant_buffer[kMaxSignificantDecimalDigits - 1] = '1'; | 125 result = 10 * result + digit; |
126 *significant_exponent = | 126 } |
127 exponent + (buffer.length() - kMaxSignificantDecimalDigits); | 127 *number_of_read_digits = i; |
128 } | 128 return result; |
129 | 129 } |
130 // Reads digits from the buffer and converts them to a uint64. | 130 |
131 // Reads in as many digits as fit into a uint64. | 131 // Reads a DiyFp from the buffer. |
132 // When the string starts with "1844674407370955161" no further digit is rea
d. | 132 // The returned DiyFp is not necessarily normalized. |
133 // Since 2^64 = 18446744073709551616 it would still be possible read another | 133 // If remaining_decimals is zero then the returned DiyFp is accurate. |
134 // digit if it was less or equal than 6, but this would complicate the code. | 134 // Otherwise it has been rounded and has error of at most 1/2 ulp. |
135 static uint64_t ReadUint64(Vector<const char> buffer, | 135 static void ReadDiyFp(Vector<const char> buffer, |
136 int* number_of_read_digits) { | 136 DiyFp* result, |
137 uint64_t result = 0; | 137 int* remaining_decimals) { |
138 int i = 0; | 138 int read_digits; |
139 while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) { | 139 uint64_t significand = ReadUint64(buffer, &read_digits); |
140 int digit = buffer[i++] - '0'; | 140 if (buffer.length() == read_digits) { |
141 ASSERT(0 <= digit && digit <= 9); | 141 *result = DiyFp(significand, 0); |
142 result = 10 * result + digit; | 142 *remaining_decimals = 0; |
143 } | 143 } else { |
144 *number_of_read_digits = i; | 144 // Round the significand. |
145 return result; | 145 if (buffer[read_digits] >= '5') { |
146 } | 146 significand++; |
147 | 147 } |
148 | 148 // Compute the binary exponent. |
149 // Reads a DiyFp from the buffer. | 149 int exponent = 0; |
150 // The returned DiyFp is not necessarily normalized. | 150 *result = DiyFp(significand, exponent); |
151 // If remaining_decimals is zero then the returned DiyFp is accurate. | 151 *remaining_decimals = buffer.length() - read_digits; |
152 // Otherwise it has been rounded and has error of at most 1/2 ulp. | 152 } |
153 static void ReadDiyFp(Vector<const char> buffer, | 153 } |
154 DiyFp* result, | 154 |
155 int* remaining_decimals) { | 155 static bool DoubleStrtod(Vector<const char> trimmed, |
156 int read_digits; | 156 int exponent, |
157 uint64_t significand = ReadUint64(buffer, &read_digits); | 157 double* result) { |
158 if (buffer.length() == read_digits) { | |
159 *result = DiyFp(significand, 0); | |
160 *remaining_decimals = 0; | |
161 } else { | |
162 // Round the significand. | |
163 if (buffer[read_digits] >= '5') { | |
164 significand++; | |
165 } | |
166 // Compute the binary exponent. | |
167 int exponent = 0; | |
168 *result = DiyFp(significand, exponent); | |
169 *remaining_decimals = buffer.length() - read_digits; | |
170 } | |
171 } | |
172 | |
173 | |
174 static bool DoubleStrtod(Vector<const char> trimmed, | |
175 int exponent, | |
176 double* result) { | |
177 #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS) | 158 #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS) |
178 // On x86 the floating-point stack can be 64 or 80 bits wide. If it is | 159 // On x86 the floating-point stack can be 64 or 80 bits wide. If it is |
179 // 80 bits wide (as is the case on Linux) then double-rounding occurs an
d the | 160 // 80 bits wide (as is the case on Linux) then double-rounding occurs and the |
180 // result is not accurate. | 161 // result is not accurate. |
181 // We know that Windows32 uses 64 bits and is therefore accurate. | 162 // We know that Windows32 uses 64 bits and is therefore accurate. |
182 // Note that the ARM simulator is compiled for 32bits. It therefore exhi
bits | 163 // Note that the ARM simulator is compiled for 32bits. It therefore exhibits |
183 // the same problem. | 164 // the same problem. |
184 return false; | 165 return false; |
185 #endif | 166 #endif |
186 if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) { | 167 if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) { |
187 int read_digits; | 168 int read_digits; |
188 // The trimmed input fits into a double. | 169 // The trimmed input fits into a double. |
189 // If the 10^exponent (resp. 10^-exponent) fits into a double too th
en we | 170 // If the 10^exponent (resp. 10^-exponent) fits into a double too then we |
190 // can compute the result-double simply by multiplying (resp. dividi
ng) the | 171 // can compute the result-double simply by multiplying (resp. dividing) the |
191 // two numbers. | 172 // two numbers. |
192 // This is possible because IEEE guarantees that floating-point oper
ations | 173 // This is possible because IEEE guarantees that floating-point operations |
193 // return the best possible approximation. | 174 // return the best possible approximation. |
194 if (exponent < 0 && -exponent < kExactPowersOfTenSize) { | 175 if (exponent < 0 && -exponent < kExactPowersOfTenSize) { |
195 // 10^-exponent fits into a double. | 176 // 10^-exponent fits into a double. |
196 *result = static_cast<double>(ReadUint64(trimmed, &read_digits))
; | 177 *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); |
197 ASSERT(read_digits == trimmed.length()); | 178 ASSERT(read_digits == trimmed.length()); |
198 *result /= exact_powers_of_ten[-exponent]; | 179 *result /= exact_powers_of_ten[-exponent]; |
199 return true; | 180 return true; |
200 } | 181 } |
201 if (0 <= exponent && exponent < kExactPowersOfTenSize) { | 182 if (0 <= exponent && exponent < kExactPowersOfTenSize) { |
202 // 10^exponent fits into a double. | 183 // 10^exponent fits into a double. |
203 *result = static_cast<double>(ReadUint64(trimmed, &read_digits))
; | 184 *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); |
204 ASSERT(read_digits == trimmed.length()); | 185 ASSERT(read_digits == trimmed.length()); |
205 *result *= exact_powers_of_ten[exponent]; | 186 *result *= exact_powers_of_ten[exponent]; |
206 return true; | 187 return true; |
207 } | 188 } |
208 int remaining_digits = | 189 int remaining_digits = |
209 kMaxExactDoubleIntegerDecimalDigits - trimmed.length(); | 190 kMaxExactDoubleIntegerDecimalDigits - trimmed.length(); |
210 if ((0 <= exponent) && | 191 if ((0 <= exponent) && |
211 (exponent - remaining_digits < kExactPowersOfTenSize)) { | 192 (exponent - remaining_digits < kExactPowersOfTenSize)) { |
212 // The trimmed string was short and we can multiply it with | 193 // The trimmed string was short and we can multiply it with |
213 // 10^remaining_digits. As a result the remaining exponent now f
its | 194 // 10^remaining_digits. As a result the remaining exponent now fits |
214 // into a double too. | 195 // into a double too. |
215 *result = static_cast<double>(ReadUint64(trimmed, &read_digits))
; | 196 *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); |
216 ASSERT(read_digits == trimmed.length()); | 197 ASSERT(read_digits == trimmed.length()); |
217 *result *= exact_powers_of_ten[remaining_digits]; | 198 *result *= exact_powers_of_ten[remaining_digits]; |
218 *result *= exact_powers_of_ten[exponent - remaining_digits]; | 199 *result *= exact_powers_of_ten[exponent - remaining_digits]; |
219 return true; | 200 return true; |
220 } | 201 } |
221 } | 202 } |
222 return false; | 203 return false; |
223 } | 204 } |
224 | 205 |
225 | 206 // Returns 10^exponent as an exact DiyFp. |
226 // Returns 10^exponent as an exact DiyFp. | 207 // The given exponent must be in the range [1; kDecimalExponentDistance[. |
227 // The given exponent must be in the range [1; kDecimalExponentDistance[. | 208 static DiyFp AdjustmentPowerOfTen(int exponent) { |
228 static DiyFp AdjustmentPowerOfTen(int exponent) { | 209 ASSERT(0 < exponent); |
229 ASSERT(0 < exponent); | 210 ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance); |
230 ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance); | 211 // Simply hardcode the remaining powers for the given decimal exponent |
231 // Simply hardcode the remaining powers for the given decimal exponent | 212 // distance. |
232 // distance. | 213 ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8); |
233 ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8); | 214 switch (exponent) { |
234 switch (exponent) { | 215 case 1: |
235 case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60); | 216 return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60); |
236 case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57); | 217 case 2: |
237 case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54); | 218 return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57); |
238 case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50); | 219 case 3: |
239 case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47); | 220 return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54); |
240 case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44); | 221 case 4: |
241 case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40); | 222 return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50); |
242 default: | 223 case 5: |
243 UNREACHABLE(); | 224 return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47); |
244 return DiyFp(0, 0); | 225 case 6: |
245 } | 226 return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44); |
246 } | 227 case 7: |
247 | 228 return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40); |
248 | 229 default: |
249 // If the function returns true then the result is the correct double. | 230 UNREACHABLE(); |
250 // Otherwise it is either the correct double or the double that is just belo
w | 231 return DiyFp(0, 0); |
251 // the correct double. | 232 } |
252 static bool DiyFpStrtod(Vector<const char> buffer, | 233 } |
253 int exponent, | 234 |
254 double* result) { | 235 // If the function returns true then the result is the correct double. |
255 DiyFp input; | 236 // Otherwise it is either the correct double or the double that is just below |
256 int remaining_decimals; | 237 // the correct double. |
257 ReadDiyFp(buffer, &input, &remaining_decimals); | 238 static bool DiyFpStrtod(Vector<const char> buffer, |
258 // Since we may have dropped some digits the input is not accurate. | 239 int exponent, |
259 // If remaining_decimals is different than 0 than the error is at most | 240 double* result) { |
260 // .5 ulp (unit in the last place). | 241 DiyFp input; |
261 // We don't want to deal with fractions and therefore keep a common | 242 int remaining_decimals; |
262 // denominator. | 243 ReadDiyFp(buffer, &input, &remaining_decimals); |
263 const int kDenominatorLog = 3; | 244 // Since we may have dropped some digits the input is not accurate. |
264 const int kDenominator = 1 << kDenominatorLog; | 245 // If remaining_decimals is different than 0 than the error is at most |
265 // Move the remaining decimals into the exponent. | 246 // .5 ulp (unit in the last place). |
266 exponent += remaining_decimals; | 247 // We don't want to deal with fractions and therefore keep a common |
267 int64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2); | 248 // denominator. |
268 | 249 const int kDenominatorLog = 3; |
269 int old_e = input.e(); | 250 const int kDenominator = 1 << kDenominatorLog; |
270 input.Normalize(); | 251 // Move the remaining decimals into the exponent. |
271 error <<= old_e - input.e(); | 252 exponent += remaining_decimals; |
272 | 253 int64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2); |
273 ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent); | 254 |
274 if (exponent < PowersOfTenCache::kMinDecimalExponent) { | 255 int old_e = input.e(); |
275 *result = 0.0; | 256 input.Normalize(); |
276 return true; | 257 error <<= old_e - input.e(); |
277 } | 258 |
278 DiyFp cached_power; | 259 ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent); |
279 int cached_decimal_exponent; | 260 if (exponent < PowersOfTenCache::kMinDecimalExponent) { |
280 PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent, | 261 *result = 0.0; |
281 &cached_power, | 262 return true; |
282 &cached_decimal_expon
ent); | 263 } |
283 | 264 DiyFp cached_power; |
284 if (cached_decimal_exponent != exponent) { | 265 int cached_decimal_exponent; |
285 int adjustment_exponent = exponent - cached_decimal_exponent; | 266 PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent, &cached_power, |
286 DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent); | 267 &cached_decimal_exponent); |
287 input.Multiply(adjustment_power); | 268 |
288 if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent
) { | 269 if (cached_decimal_exponent != exponent) { |
289 // The product of input with the adjustment power fits into a 64
bit | 270 int adjustment_exponent = exponent - cached_decimal_exponent; |
290 // integer. | 271 DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent); |
291 ASSERT(DiyFp::kSignificandSize == 64); | 272 input.Multiply(adjustment_power); |
292 } else { | 273 if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) { |
293 // The adjustment power is exact. There is hence only an error o
f 0.5. | 274 // The product of input with the adjustment power fits into a 64 bit |
294 error += kDenominator / 2; | 275 // integer. |
295 } | 276 ASSERT(DiyFp::kSignificandSize == 64); |
296 } | 277 } else { |
297 | 278 // The adjustment power is exact. There is hence only an error of 0.5. |
298 input.Multiply(cached_power); | 279 error += kDenominator / 2; |
299 // The error introduced by a multiplication of a*b equals | 280 } |
300 // error_a + error_b + error_a*error_b/2^64 + 0.5 | 281 } |
301 // Substituting a with 'input' and b with 'cached_power' we have | 282 |
302 // error_b = 0.5 (all cached powers have an error of less than 0.5 ul
p), | 283 input.Multiply(cached_power); |
303 // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64 | 284 // The error introduced by a multiplication of a*b equals |
304 int error_b = kDenominator / 2; | 285 // error_a + error_b + error_a*error_b/2^64 + 0.5 |
305 int error_ab = (error == 0 ? 0 : 1); // We round up to 1. | 286 // Substituting a with 'input' and b with 'cached_power' we have |
306 int fixed_error = kDenominator / 2; | 287 // error_b = 0.5 (all cached powers have an error of less than 0.5 ulp), |
307 error += error_b + error_ab + fixed_error; | 288 // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64 |
308 | 289 int error_b = kDenominator / 2; |
309 old_e = input.e(); | 290 int error_ab = (error == 0 ? 0 : 1); // We round up to 1. |
310 input.Normalize(); | 291 int fixed_error = kDenominator / 2; |
311 error <<= old_e - input.e(); | 292 error += error_b + error_ab + fixed_error; |
312 | 293 |
313 // See if the double's significand changes if we add/subtract the error. | 294 old_e = input.e(); |
314 int order_of_magnitude = DiyFp::kSignificandSize + input.e(); | 295 input.Normalize(); |
315 int effective_significand_size = | 296 error <<= old_e - input.e(); |
316 Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude); | 297 |
317 int precision_digits_count = | 298 // See if the double's significand changes if we add/subtract the error. |
318 DiyFp::kSignificandSize - effective_significand_size; | 299 int order_of_magnitude = DiyFp::kSignificandSize + input.e(); |
319 if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize)
{ | 300 int effective_significand_size = |
320 // This can only happen for very small denormals. In this case the | 301 Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude); |
321 // half-way multiplied by the denominator exceeds the range of an ui
nt64. | 302 int precision_digits_count = |
322 // Simply shift everything to the right. | 303 DiyFp::kSignificandSize - effective_significand_size; |
323 int shift_amount = (precision_digits_count + kDenominatorLog) - | 304 if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) { |
324 DiyFp::kSignificandSize + 1; | 305 // This can only happen for very small denormals. In this case the |
325 input.set_f(input.f() >> shift_amount); | 306 // half-way multiplied by the denominator exceeds the range of an uint64. |
326 input.set_e(input.e() + shift_amount); | 307 // Simply shift everything to the right. |
327 // We add 1 for the lost precision of error, and kDenominator for | 308 int shift_amount = (precision_digits_count + kDenominatorLog) - |
328 // the lost precision of input.f(). | 309 DiyFp::kSignificandSize + 1; |
329 error = (error >> shift_amount) + 1 + kDenominator; | 310 input.set_f(input.f() >> shift_amount); |
330 precision_digits_count -= shift_amount; | 311 input.set_e(input.e() + shift_amount); |
331 } | 312 // We add 1 for the lost precision of error, and kDenominator for |
332 // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too
. | 313 // the lost precision of input.f(). |
333 ASSERT(DiyFp::kSignificandSize == 64); | 314 error = (error >> shift_amount) + 1 + kDenominator; |
334 ASSERT(precision_digits_count < 64); | 315 precision_digits_count -= shift_amount; |
335 uint64_t one64 = 1; | 316 } |
336 uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1; | 317 // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too. |
337 uint64_t precision_bits = input.f() & precision_bits_mask; | 318 ASSERT(DiyFp::kSignificandSize == 64); |
338 uint64_t half_way = one64 << (precision_digits_count - 1); | 319 ASSERT(precision_digits_count < 64); |
339 precision_bits *= kDenominator; | 320 uint64_t one64 = 1; |
340 half_way *= kDenominator; | 321 uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1; |
341 DiyFp rounded_input(input.f() >> precision_digits_count, | 322 uint64_t precision_bits = input.f() & precision_bits_mask; |
342 input.e() + precision_digits_count); | 323 uint64_t half_way = one64 << (precision_digits_count - 1); |
343 if (precision_bits >= half_way + error) { | 324 precision_bits *= kDenominator; |
344 rounded_input.set_f(rounded_input.f() + 1); | 325 half_way *= kDenominator; |
345 } | 326 DiyFp rounded_input(input.f() >> precision_digits_count, |
346 // If the last_bits are too close to the half-way case than we are too | 327 input.e() + precision_digits_count); |
347 // inaccurate and round down. In this case we return false so that we ca
n | 328 if (precision_bits >= half_way + error) { |
348 // fall back to a more precise algorithm. | 329 rounded_input.set_f(rounded_input.f() + 1); |
349 | 330 } |
350 *result = Double(rounded_input).value(); | 331 // If the last_bits are too close to the half-way case than we are too |
351 if (half_way - error < precision_bits && precision_bits < half_way + err
or) { | 332 // inaccurate and round down. In this case we return false so that we can |
352 // Too imprecise. The caller will have to fall back to a slower vers
ion. | 333 // fall back to a more precise algorithm. |
353 // However the returned number is guaranteed to be either the correc
t | 334 |
354 // double, or the next-lower double. | 335 *result = Double(rounded_input).value(); |
355 return false; | 336 if (half_way - error < precision_bits && precision_bits < half_way + error) { |
356 } else { | 337 // Too imprecise. The caller will have to fall back to a slower version. |
357 return true; | 338 // However the returned number is guaranteed to be either the correct |
358 } | 339 // double, or the next-lower double. |
359 } | 340 return false; |
360 | 341 } else { |
361 | 342 return true; |
362 // Returns the correct double for the buffer*10^exponent. | 343 } |
363 // The variable guess should be a close guess that is either the correct dou
ble | 344 } |
364 // or its lower neighbor (the nearest double less than the correct one). | 345 |
365 // Preconditions: | 346 // Returns the correct double for the buffer*10^exponent. |
366 // buffer.length() + exponent <= kMaxDecimalPower + 1 | 347 // The variable guess should be a close guess that is either the correct double |
367 // buffer.length() + exponent > kMinDecimalPower | 348 // or its lower neighbor (the nearest double less than the correct one). |
368 // buffer.length() <= kMaxDecimalSignificantDigits | 349 // Preconditions: |
369 static double BignumStrtod(Vector<const char> buffer, | 350 // buffer.length() + exponent <= kMaxDecimalPower + 1 |
370 int exponent, | 351 // buffer.length() + exponent > kMinDecimalPower |
371 double guess) { | 352 // buffer.length() <= kMaxDecimalSignificantDigits |
372 if (guess == Double::Infinity()) { | 353 static double BignumStrtod(Vector<const char> buffer, |
373 return guess; | 354 int exponent, |
374 } | 355 double guess) { |
375 | 356 if (guess == Double::Infinity()) { |
376 DiyFp upper_boundary = Double(guess).UpperBoundary(); | 357 return guess; |
377 | 358 } |
378 ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1); | 359 |
379 ASSERT(buffer.length() + exponent > kMinDecimalPower); | 360 DiyFp upper_boundary = Double(guess).UpperBoundary(); |
380 ASSERT(buffer.length() <= kMaxSignificantDecimalDigits); | 361 |
381 // Make sure that the Bignum will be able to hold all our numbers. | 362 ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1); |
382 // Our Bignum implementation has a separate field for exponents. Shifts
will | 363 ASSERT(buffer.length() + exponent > kMinDecimalPower); |
383 // consume at most one bigit (< 64 bits). | 364 ASSERT(buffer.length() <= kMaxSignificantDecimalDigits); |
384 // ln(10) == 3.3219... | 365 // Make sure that the Bignum will be able to hold all our numbers. |
385 ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBit
s); | 366 // Our Bignum implementation has a separate field for exponents. Shifts will |
386 Bignum input; | 367 // consume at most one bigit (< 64 bits). |
387 Bignum boundary; | 368 // ln(10) == 3.3219... |
388 input.AssignDecimalString(buffer); | 369 ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits); |
389 boundary.AssignUInt64(upper_boundary.f()); | 370 Bignum input; |
390 if (exponent >= 0) { | 371 Bignum boundary; |
391 input.MultiplyByPowerOfTen(exponent); | 372 input.AssignDecimalString(buffer); |
392 } else { | 373 boundary.AssignUInt64(upper_boundary.f()); |
393 boundary.MultiplyByPowerOfTen(-exponent); | 374 if (exponent >= 0) { |
394 } | 375 input.MultiplyByPowerOfTen(exponent); |
395 if (upper_boundary.e() > 0) { | 376 } else { |
396 boundary.ShiftLeft(upper_boundary.e()); | 377 boundary.MultiplyByPowerOfTen(-exponent); |
397 } else { | 378 } |
398 input.ShiftLeft(-upper_boundary.e()); | 379 if (upper_boundary.e() > 0) { |
399 } | 380 boundary.ShiftLeft(upper_boundary.e()); |
400 int comparison = Bignum::Compare(input, boundary); | 381 } else { |
401 if (comparison < 0) { | 382 input.ShiftLeft(-upper_boundary.e()); |
402 return guess; | 383 } |
403 } else if (comparison > 0) { | 384 int comparison = Bignum::Compare(input, boundary); |
404 return Double(guess).NextDouble(); | 385 if (comparison < 0) { |
405 } else if ((Double(guess).Significand() & 1) == 0) { | 386 return guess; |
406 // Round towards even. | 387 } else if (comparison > 0) { |
407 return guess; | 388 return Double(guess).NextDouble(); |
408 } else { | 389 } else if ((Double(guess).Significand() & 1) == 0) { |
409 return Double(guess).NextDouble(); | 390 // Round towards even. |
410 } | 391 return guess; |
411 } | 392 } else { |
412 | 393 return Double(guess).NextDouble(); |
413 | 394 } |
414 double Strtod(Vector<const char> buffer, int exponent) { | 395 } |
415 Vector<const char> left_trimmed = TrimLeadingZeros(buffer); | 396 |
416 Vector<const char> trimmed = TrimTrailingZeros(left_trimmed); | 397 double Strtod(Vector<const char> buffer, int exponent) { |
417 exponent += left_trimmed.length() - trimmed.length(); | 398 Vector<const char> left_trimmed = TrimLeadingZeros(buffer); |
418 if (trimmed.length() == 0) return 0.0; | 399 Vector<const char> trimmed = TrimTrailingZeros(left_trimmed); |
419 if (trimmed.length() > kMaxSignificantDecimalDigits) { | 400 exponent += left_trimmed.length() - trimmed.length(); |
420 char significant_buffer[kMaxSignificantDecimalDigits]; | 401 if (trimmed.length() == 0) |
421 int significant_exponent; | 402 return 0.0; |
422 TrimToMaxSignificantDigits(trimmed, exponent, | 403 if (trimmed.length() > kMaxSignificantDecimalDigits) { |
423 significant_buffer, &significant_exponent
); | 404 char significant_buffer[kMaxSignificantDecimalDigits]; |
424 return Strtod(Vector<const char>(significant_buffer, | 405 int significant_exponent; |
425 kMaxSignificantDecimalDigits), | 406 TrimToMaxSignificantDigits(trimmed, exponent, significant_buffer, |
426 significant_exponent); | 407 &significant_exponent); |
427 } | 408 return Strtod( |
428 if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) { | 409 Vector<const char>(significant_buffer, kMaxSignificantDecimalDigits), |
429 return Double::Infinity(); | 410 significant_exponent); |
430 } | 411 } |
431 if (exponent + trimmed.length() <= kMinDecimalPower) { | 412 if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) { |
432 return 0.0; | 413 return Double::Infinity(); |
433 } | 414 } |
434 | 415 if (exponent + trimmed.length() <= kMinDecimalPower) { |
435 double guess; | 416 return 0.0; |
436 if (DoubleStrtod(trimmed, exponent, &guess) || | 417 } |
437 DiyFpStrtod(trimmed, exponent, &guess)) { | 418 |
438 return guess; | 419 double guess; |
439 } | 420 if (DoubleStrtod(trimmed, exponent, &guess) || |
440 return BignumStrtod(trimmed, exponent, guess); | 421 DiyFpStrtod(trimmed, exponent, &guess)) { |
441 } | 422 return guess; |
| 423 } |
| 424 return BignumStrtod(trimmed, exponent, guess); |
| 425 } |
442 | 426 |
443 } // namespace double_conversion | 427 } // namespace double_conversion |
444 | 428 |
445 } // namespace WTF | 429 } // namespace WTF |
OLD | NEW |