OLD | NEW |
1 // Copyright 2010 the V8 project authors. All rights reserved. | 1 // Copyright 2010 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
11 // with the distribution. | 11 // with the distribution. |
12 // * Neither the name of Google Inc. nor the names of its | 12 // * Neither the name of Google Inc. nor the names of its |
13 // contributors may be used to endorse or promote products derived | 13 // contributors may be used to endorse or promote products derived |
14 // from this software without specific prior written permission. | 14 // from this software without specific prior written permission. |
15 // | 15 // |
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | 27 |
28 #include "double-conversion.h" | 28 #include "double-conversion.h" |
29 | 29 |
| 30 #include <limits.h> |
| 31 #include <math.h> |
30 #include "bignum-dtoa.h" | 32 #include "bignum-dtoa.h" |
31 #include "double.h" | 33 #include "double.h" |
32 #include "fast-dtoa.h" | 34 #include "fast-dtoa.h" |
33 #include "fixed-dtoa.h" | 35 #include "fixed-dtoa.h" |
34 #include "strtod.h" | 36 #include "strtod.h" |
35 #include "utils.h" | 37 #include "utils.h" |
36 #include <limits.h> | |
37 #include <math.h> | |
38 | 38 |
39 namespace WTF { | 39 namespace WTF { |
40 | 40 |
41 namespace double_conversion { | 41 namespace double_conversion { |
42 | 42 |
43 const DoubleToStringConverter& DoubleToStringConverter::EcmaScriptConverter(
) { | 43 const DoubleToStringConverter& DoubleToStringConverter::EcmaScriptConverter() { |
44 int flags = UNIQUE_ZERO | EMIT_POSITIVE_EXPONENT_SIGN; | 44 int flags = UNIQUE_ZERO | EMIT_POSITIVE_EXPONENT_SIGN; |
45 static DoubleToStringConverter converter(flags, | 45 static DoubleToStringConverter converter(flags, "Infinity", "NaN", 'e', -6, |
46 "Infinity", | 46 21, 6, 0); |
47 "NaN", | 47 return converter; |
48 'e', | 48 } |
49 -6, 21, | 49 |
50 6, 0); | 50 bool DoubleToStringConverter::HandleSpecialValues( |
51 return converter; | 51 double value, |
52 } | 52 StringBuilder* result_builder) const { |
53 | 53 Double double_inspect(value); |
54 | 54 if (double_inspect.IsInfinite()) { |
55 bool DoubleToStringConverter::HandleSpecialValues( | 55 if (infinity_symbol_ == NULL) |
56 double value, | 56 return false; |
57 StringBuilder* result_buil
der) const { | 57 if (value < 0) { |
58 Double double_inspect(value); | 58 result_builder->AddCharacter('-'); |
59 if (double_inspect.IsInfinite()) { | 59 } |
60 if (infinity_symbol_ == NULL) return false; | 60 result_builder->AddString(infinity_symbol_); |
61 if (value < 0) { | 61 return true; |
62 result_builder->AddCharacter('-'); | 62 } |
63 } | 63 if (double_inspect.IsNan()) { |
64 result_builder->AddString(infinity_symbol_); | 64 if (nan_symbol_ == NULL) |
65 return true; | 65 return false; |
| 66 result_builder->AddString(nan_symbol_); |
| 67 return true; |
| 68 } |
| 69 return false; |
| 70 } |
| 71 |
| 72 void DoubleToStringConverter::CreateExponentialRepresentation( |
| 73 const char* decimal_digits, |
| 74 int length, |
| 75 int exponent, |
| 76 StringBuilder* result_builder) const { |
| 77 ASSERT(length != 0); |
| 78 result_builder->AddCharacter(decimal_digits[0]); |
| 79 if (length != 1) { |
| 80 result_builder->AddCharacter('.'); |
| 81 result_builder->AddSubstring(&decimal_digits[1], length - 1); |
| 82 } |
| 83 result_builder->AddCharacter(exponent_character_); |
| 84 if (exponent < 0) { |
| 85 result_builder->AddCharacter('-'); |
| 86 exponent = -exponent; |
| 87 } else { |
| 88 if ((flags_ & EMIT_POSITIVE_EXPONENT_SIGN) != 0) { |
| 89 result_builder->AddCharacter('+'); |
| 90 } |
| 91 } |
| 92 if (exponent == 0) { |
| 93 result_builder->AddCharacter('0'); |
| 94 return; |
| 95 } |
| 96 ASSERT(exponent < 1e4); |
| 97 const int kMaxExponentLength = 5; |
| 98 char buffer[kMaxExponentLength + 1]; |
| 99 int first_char_pos = kMaxExponentLength; |
| 100 buffer[first_char_pos] = '\0'; |
| 101 while (exponent > 0) { |
| 102 buffer[--first_char_pos] = '0' + (exponent % 10); |
| 103 exponent /= 10; |
| 104 } |
| 105 result_builder->AddSubstring(&buffer[first_char_pos], |
| 106 kMaxExponentLength - first_char_pos); |
| 107 } |
| 108 |
| 109 void DoubleToStringConverter::CreateDecimalRepresentation( |
| 110 const char* decimal_digits, |
| 111 int length, |
| 112 int decimal_point, |
| 113 int digits_after_point, |
| 114 StringBuilder* result_builder) const { |
| 115 // Create a representation that is padded with zeros if needed. |
| 116 if (decimal_point <= 0) { |
| 117 // "0.00000decimal_rep". |
| 118 result_builder->AddCharacter('0'); |
| 119 if (digits_after_point > 0) { |
| 120 result_builder->AddCharacter('.'); |
| 121 result_builder->AddPadding('0', -decimal_point); |
| 122 ASSERT(length <= digits_after_point - (-decimal_point)); |
| 123 result_builder->AddSubstring(decimal_digits, length); |
| 124 int remaining_digits = digits_after_point - (-decimal_point) - length; |
| 125 result_builder->AddPadding('0', remaining_digits); |
| 126 } |
| 127 } else if (decimal_point >= length) { |
| 128 // "decimal_rep0000.00000" or "decimal_rep.0000" |
| 129 result_builder->AddSubstring(decimal_digits, length); |
| 130 result_builder->AddPadding('0', decimal_point - length); |
| 131 if (digits_after_point > 0) { |
| 132 result_builder->AddCharacter('.'); |
| 133 result_builder->AddPadding('0', digits_after_point); |
| 134 } |
| 135 } else { |
| 136 // "decima.l_rep000" |
| 137 ASSERT(digits_after_point > 0); |
| 138 result_builder->AddSubstring(decimal_digits, decimal_point); |
| 139 result_builder->AddCharacter('.'); |
| 140 ASSERT(length - decimal_point <= digits_after_point); |
| 141 result_builder->AddSubstring(&decimal_digits[decimal_point], |
| 142 length - decimal_point); |
| 143 int remaining_digits = digits_after_point - (length - decimal_point); |
| 144 result_builder->AddPadding('0', remaining_digits); |
| 145 } |
| 146 if (digits_after_point == 0) { |
| 147 if ((flags_ & EMIT_TRAILING_DECIMAL_POINT) != 0) { |
| 148 result_builder->AddCharacter('.'); |
| 149 } |
| 150 if ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) { |
| 151 result_builder->AddCharacter('0'); |
| 152 } |
| 153 } |
| 154 } |
| 155 |
| 156 bool DoubleToStringConverter::ToShortest(double value, |
| 157 StringBuilder* result_builder) const { |
| 158 if (Double(value).IsSpecial()) { |
| 159 return HandleSpecialValues(value, result_builder); |
| 160 } |
| 161 |
| 162 int decimal_point; |
| 163 bool sign; |
| 164 const int kDecimalRepCapacity = kBase10MaximalLength + 1; |
| 165 char decimal_rep[kDecimalRepCapacity]; |
| 166 int decimal_rep_length; |
| 167 |
| 168 DoubleToAscii(value, SHORTEST, 0, decimal_rep, kDecimalRepCapacity, &sign, |
| 169 &decimal_rep_length, &decimal_point); |
| 170 |
| 171 bool unique_zero = (flags_ & UNIQUE_ZERO) != 0; |
| 172 if (sign && (value != 0.0 || !unique_zero)) { |
| 173 result_builder->AddCharacter('-'); |
| 174 } |
| 175 |
| 176 int exponent = decimal_point - 1; |
| 177 if ((decimal_in_shortest_low_ <= exponent) && |
| 178 (exponent < decimal_in_shortest_high_)) { |
| 179 CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point, |
| 180 Max(0, decimal_rep_length - decimal_point), |
| 181 result_builder); |
| 182 } else { |
| 183 CreateExponentialRepresentation(decimal_rep, decimal_rep_length, exponent, |
| 184 result_builder); |
| 185 } |
| 186 return true; |
| 187 } |
| 188 |
| 189 bool DoubleToStringConverter::ToFixed(double value, |
| 190 int requested_digits, |
| 191 StringBuilder* result_builder) const { |
| 192 ASSERT(kMaxFixedDigitsBeforePoint == 60); |
| 193 const double kFirstNonFixed = 1e60; |
| 194 |
| 195 if (Double(value).IsSpecial()) { |
| 196 return HandleSpecialValues(value, result_builder); |
| 197 } |
| 198 |
| 199 if (requested_digits > kMaxFixedDigitsAfterPoint) |
| 200 return false; |
| 201 if (value >= kFirstNonFixed || value <= -kFirstNonFixed) |
| 202 return false; |
| 203 |
| 204 // Find a sufficiently precise decimal representation of n. |
| 205 int decimal_point; |
| 206 bool sign; |
| 207 // Add space for the '\0' byte. |
| 208 const int kDecimalRepCapacity = |
| 209 kMaxFixedDigitsBeforePoint + kMaxFixedDigitsAfterPoint + 1; |
| 210 char decimal_rep[kDecimalRepCapacity]; |
| 211 int decimal_rep_length; |
| 212 DoubleToAscii(value, FIXED, requested_digits, decimal_rep, |
| 213 kDecimalRepCapacity, &sign, &decimal_rep_length, |
| 214 &decimal_point); |
| 215 |
| 216 bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); |
| 217 if (sign && (value != 0.0 || !unique_zero)) { |
| 218 result_builder->AddCharacter('-'); |
| 219 } |
| 220 |
| 221 CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point, |
| 222 requested_digits, result_builder); |
| 223 return true; |
| 224 } |
| 225 |
| 226 bool DoubleToStringConverter::ToExponential( |
| 227 double value, |
| 228 int requested_digits, |
| 229 StringBuilder* result_builder) const { |
| 230 if (Double(value).IsSpecial()) { |
| 231 return HandleSpecialValues(value, result_builder); |
| 232 } |
| 233 |
| 234 if (requested_digits < -1) |
| 235 return false; |
| 236 if (requested_digits > kMaxExponentialDigits) |
| 237 return false; |
| 238 |
| 239 int decimal_point; |
| 240 bool sign; |
| 241 // Add space for digit before the decimal point and the '\0' character. |
| 242 const int kDecimalRepCapacity = kMaxExponentialDigits + 2; |
| 243 ASSERT(kDecimalRepCapacity > kBase10MaximalLength); |
| 244 char decimal_rep[kDecimalRepCapacity]; |
| 245 int decimal_rep_length; |
| 246 |
| 247 if (requested_digits == -1) { |
| 248 DoubleToAscii(value, SHORTEST, 0, decimal_rep, kDecimalRepCapacity, &sign, |
| 249 &decimal_rep_length, &decimal_point); |
| 250 } else { |
| 251 DoubleToAscii(value, PRECISION, requested_digits + 1, decimal_rep, |
| 252 kDecimalRepCapacity, &sign, &decimal_rep_length, |
| 253 &decimal_point); |
| 254 ASSERT(decimal_rep_length <= requested_digits + 1); |
| 255 |
| 256 for (int i = decimal_rep_length; i < requested_digits + 1; ++i) { |
| 257 decimal_rep[i] = '0'; |
| 258 } |
| 259 decimal_rep_length = requested_digits + 1; |
| 260 } |
| 261 |
| 262 bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); |
| 263 if (sign && (value != 0.0 || !unique_zero)) { |
| 264 result_builder->AddCharacter('-'); |
| 265 } |
| 266 |
| 267 int exponent = decimal_point - 1; |
| 268 CreateExponentialRepresentation(decimal_rep, decimal_rep_length, exponent, |
| 269 result_builder); |
| 270 return true; |
| 271 } |
| 272 |
| 273 bool DoubleToStringConverter::ToPrecision(double value, |
| 274 int precision, |
| 275 StringBuilder* result_builder) const { |
| 276 if (Double(value).IsSpecial()) { |
| 277 return HandleSpecialValues(value, result_builder); |
| 278 } |
| 279 |
| 280 if (precision < kMinPrecisionDigits || precision > kMaxPrecisionDigits) { |
| 281 return false; |
| 282 } |
| 283 |
| 284 // Find a sufficiently precise decimal representation of n. |
| 285 int decimal_point; |
| 286 bool sign; |
| 287 // Add one for the terminating null character. |
| 288 const int kDecimalRepCapacity = kMaxPrecisionDigits + 1; |
| 289 char decimal_rep[kDecimalRepCapacity]; |
| 290 int decimal_rep_length; |
| 291 |
| 292 DoubleToAscii(value, PRECISION, precision, decimal_rep, kDecimalRepCapacity, |
| 293 &sign, &decimal_rep_length, &decimal_point); |
| 294 ASSERT(decimal_rep_length <= precision); |
| 295 |
| 296 bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); |
| 297 if (sign && (value != 0.0 || !unique_zero)) { |
| 298 result_builder->AddCharacter('-'); |
| 299 } |
| 300 |
| 301 // The exponent if we print the number as x.xxeyyy. That is with the |
| 302 // decimal point after the first digit. |
| 303 int exponent = decimal_point - 1; |
| 304 |
| 305 int extra_zero = ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) ? 1 : 0; |
| 306 if ((-decimal_point + 1 > max_leading_padding_zeroes_in_precision_mode_) || |
| 307 (decimal_point - precision + extra_zero > |
| 308 max_trailing_padding_zeroes_in_precision_mode_)) { |
| 309 // Fill buffer to contain 'precision' digits. |
| 310 // Usually the buffer is already at the correct length, but 'DoubleToAscii' |
| 311 // is allowed to return less characters. |
| 312 for (int i = decimal_rep_length; i < precision; ++i) { |
| 313 decimal_rep[i] = '0'; |
| 314 } |
| 315 |
| 316 CreateExponentialRepresentation(decimal_rep, precision, exponent, |
| 317 result_builder); |
| 318 } else { |
| 319 CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point, |
| 320 Max(0, precision - decimal_point), |
| 321 result_builder); |
| 322 } |
| 323 return true; |
| 324 } |
| 325 |
| 326 static BignumDtoaMode DtoaToBignumDtoaMode( |
| 327 DoubleToStringConverter::DtoaMode dtoa_mode) { |
| 328 switch (dtoa_mode) { |
| 329 case DoubleToStringConverter::SHORTEST: |
| 330 return BIGNUM_DTOA_SHORTEST; |
| 331 case DoubleToStringConverter::FIXED: |
| 332 return BIGNUM_DTOA_FIXED; |
| 333 case DoubleToStringConverter::PRECISION: |
| 334 return BIGNUM_DTOA_PRECISION; |
| 335 default: |
| 336 UNREACHABLE(); |
| 337 return BIGNUM_DTOA_SHORTEST; // To silence compiler. |
| 338 } |
| 339 } |
| 340 |
| 341 void DoubleToStringConverter::DoubleToAscii(double v, |
| 342 DtoaMode mode, |
| 343 int requested_digits, |
| 344 char* buffer, |
| 345 int buffer_length, |
| 346 bool* sign, |
| 347 int* length, |
| 348 int* point) { |
| 349 Vector<char> vector(buffer, buffer_length); |
| 350 ASSERT(!Double(v).IsSpecial()); |
| 351 ASSERT(mode == SHORTEST || requested_digits >= 0); |
| 352 |
| 353 if (Double(v).Sign() < 0) { |
| 354 *sign = true; |
| 355 v = -v; |
| 356 } else { |
| 357 *sign = false; |
| 358 } |
| 359 |
| 360 if (mode == PRECISION && requested_digits == 0) { |
| 361 vector[0] = '\0'; |
| 362 *length = 0; |
| 363 return; |
| 364 } |
| 365 |
| 366 if (v == 0) { |
| 367 vector[0] = '0'; |
| 368 vector[1] = '\0'; |
| 369 *length = 1; |
| 370 *point = 1; |
| 371 return; |
| 372 } |
| 373 |
| 374 bool fast_worked; |
| 375 switch (mode) { |
| 376 case SHORTEST: |
| 377 fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST, 0, vector, length, point); |
| 378 break; |
| 379 case FIXED: |
| 380 fast_worked = FastFixedDtoa(v, requested_digits, vector, length, point); |
| 381 break; |
| 382 case PRECISION: |
| 383 fast_worked = FastDtoa(v, FAST_DTOA_PRECISION, requested_digits, vector, |
| 384 length, point); |
| 385 break; |
| 386 default: |
| 387 UNREACHABLE(); |
| 388 fast_worked = false; |
| 389 } |
| 390 if (fast_worked) |
| 391 return; |
| 392 |
| 393 // If the fast dtoa didn't succeed use the slower bignum version. |
| 394 BignumDtoaMode bignum_mode = DtoaToBignumDtoaMode(mode); |
| 395 BignumDtoa(v, bignum_mode, requested_digits, vector, length, point); |
| 396 vector[*length] = '\0'; |
| 397 } |
| 398 |
| 399 // Maximum number of significant digits in decimal representation. |
| 400 // The longest possible double in decimal representation is |
| 401 // (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074 |
| 402 // (768 digits). If we parse a number whose first digits are equal to a |
| 403 // mean of 2 adjacent doubles (that could have up to 769 digits) the result |
| 404 // must be rounded to the bigger one unless the tail consists of zeros, so |
| 405 // we don't need to preserve all the digits. |
| 406 const int kMaxSignificantDigits = 772; |
| 407 |
| 408 static double SignedZero(bool sign) { |
| 409 return sign ? -0.0 : 0.0; |
| 410 } |
| 411 |
| 412 double StringToDoubleConverter::StringToDouble( |
| 413 const char* input, |
| 414 size_t length, |
| 415 size_t* processed_characters_count) { |
| 416 const char* current = input; |
| 417 const char* end = input + length; |
| 418 |
| 419 *processed_characters_count = 0; |
| 420 |
| 421 // To make sure that iterator dereferencing is valid the following |
| 422 // convention is used: |
| 423 // 1. Each '++current' statement is followed by check for equality to 'end'. |
| 424 // 3. If 'current' becomes equal to 'end' the function returns or goes to |
| 425 // 'parsing_done'. |
| 426 // 4. 'current' is not dereferenced after the 'parsing_done' label. |
| 427 // 5. Code before 'parsing_done' may rely on 'current != end'. |
| 428 if (current == end) |
| 429 return 0.0; |
| 430 |
| 431 // The longest form of simplified number is: "-<significant digits>.1eXXX\0". |
| 432 const int kBufferSize = kMaxSignificantDigits + 10; |
| 433 char buffer[kBufferSize]; // NOLINT: size is known at compile time. |
| 434 int buffer_pos = 0; |
| 435 |
| 436 // Exponent will be adjusted if insignificant digits of the integer part |
| 437 // or insignificant leading zeros of the fractional part are dropped. |
| 438 int exponent = 0; |
| 439 int significant_digits = 0; |
| 440 int insignificant_digits = 0; |
| 441 bool nonzero_digit_dropped = false; |
| 442 bool sign = false; |
| 443 |
| 444 if (*current == '+' || *current == '-') { |
| 445 sign = (*current == '-'); |
| 446 ++current; |
| 447 if (current == end) |
| 448 return 0.0; |
| 449 } |
| 450 |
| 451 bool leading_zero = false; |
| 452 if (*current == '0') { |
| 453 ++current; |
| 454 if (current == end) { |
| 455 *processed_characters_count = current - input; |
| 456 return SignedZero(sign); |
| 457 } |
| 458 |
| 459 leading_zero = true; |
| 460 |
| 461 // Ignore leading zeros in the integer part. |
| 462 while (*current == '0') { |
| 463 ++current; |
| 464 if (current == end) { |
| 465 *processed_characters_count = current - input; |
| 466 return SignedZero(sign); |
| 467 } |
| 468 } |
| 469 } |
| 470 |
| 471 // Copy significant digits of the integer part (if any) to the buffer. |
| 472 while (*current >= '0' && *current <= '9') { |
| 473 if (significant_digits < kMaxSignificantDigits) { |
| 474 ASSERT(buffer_pos < kBufferSize); |
| 475 buffer[buffer_pos++] = static_cast<char>(*current); |
| 476 significant_digits++; |
| 477 } else { |
| 478 insignificant_digits++; // Move the digit into the exponential part. |
| 479 nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; |
| 480 } |
| 481 ++current; |
| 482 if (current == end) |
| 483 goto parsing_done; |
| 484 } |
| 485 |
| 486 if (*current == '.') { |
| 487 ++current; |
| 488 if (current == end) { |
| 489 if (significant_digits == 0 && !leading_zero) { |
| 490 return 0.0; |
| 491 } else { |
| 492 goto parsing_done; |
| 493 } |
| 494 } |
| 495 |
| 496 if (significant_digits == 0) { |
| 497 // Integer part consists of 0 or is absent. Significant digits start after |
| 498 // leading zeros (if any). |
| 499 while (*current == '0') { |
| 500 ++current; |
| 501 if (current == end) { |
| 502 *processed_characters_count = current - input; |
| 503 return SignedZero(sign); |
66 } | 504 } |
67 if (double_inspect.IsNan()) { | 505 exponent--; // Move this 0 into the exponent. |
68 if (nan_symbol_ == NULL) return false; | 506 } |
69 result_builder->AddString(nan_symbol_); | 507 } |
70 return true; | 508 |
71 } | 509 // There is a fractional part. |
72 return false; | 510 while (*current >= '0' && *current <= '9') { |
73 } | 511 if (significant_digits < kMaxSignificantDigits) { |
74 | |
75 | |
76 void DoubleToStringConverter::CreateExponentialRepresentation( | |
77 const char* de
cimal_digits, | |
78 int length, | |
79 int exponent, | |
80 StringBuilder*
result_builder) const { | |
81 ASSERT(length != 0); | |
82 result_builder->AddCharacter(decimal_digits[0]); | |
83 if (length != 1) { | |
84 result_builder->AddCharacter('.'); | |
85 result_builder->AddSubstring(&decimal_digits[1], length-1); | |
86 } | |
87 result_builder->AddCharacter(exponent_character_); | |
88 if (exponent < 0) { | |
89 result_builder->AddCharacter('-'); | |
90 exponent = -exponent; | |
91 } else { | |
92 if ((flags_ & EMIT_POSITIVE_EXPONENT_SIGN) != 0) { | |
93 result_builder->AddCharacter('+'); | |
94 } | |
95 } | |
96 if (exponent == 0) { | |
97 result_builder->AddCharacter('0'); | |
98 return; | |
99 } | |
100 ASSERT(exponent < 1e4); | |
101 const int kMaxExponentLength = 5; | |
102 char buffer[kMaxExponentLength + 1]; | |
103 int first_char_pos = kMaxExponentLength; | |
104 buffer[first_char_pos] = '\0'; | |
105 while (exponent > 0) { | |
106 buffer[--first_char_pos] = '0' + (exponent % 10); | |
107 exponent /= 10; | |
108 } | |
109 result_builder->AddSubstring(&buffer[first_char_pos], | |
110 kMaxExponentLength - first_char_pos); | |
111 } | |
112 | |
113 | |
114 void DoubleToStringConverter::CreateDecimalRepresentation( | |
115 const char* decima
l_digits, | |
116 int length, | |
117 int decimal_point, | |
118 int digits_after_p
oint, | |
119 StringBuilder* res
ult_builder) const { | |
120 // Create a representation that is padded with zeros if needed. | |
121 if (decimal_point <= 0) { | |
122 // "0.00000decimal_rep". | |
123 result_builder->AddCharacter('0'); | |
124 if (digits_after_point > 0) { | |
125 result_builder->AddCharacter('.'); | |
126 result_builder->AddPadding('0', -decimal_point); | |
127 ASSERT(length <= digits_after_point - (-decimal_point)); | |
128 result_builder->AddSubstring(decimal_digits, length); | |
129 int remaining_digits = digits_after_point - (-decimal_point) - l
ength; | |
130 result_builder->AddPadding('0', remaining_digits); | |
131 } | |
132 } else if (decimal_point >= length) { | |
133 // "decimal_rep0000.00000" or "decimal_rep.0000" | |
134 result_builder->AddSubstring(decimal_digits, length); | |
135 result_builder->AddPadding('0', decimal_point - length); | |
136 if (digits_after_point > 0) { | |
137 result_builder->AddCharacter('.'); | |
138 result_builder->AddPadding('0', digits_after_point); | |
139 } | |
140 } else { | |
141 // "decima.l_rep000" | |
142 ASSERT(digits_after_point > 0); | |
143 result_builder->AddSubstring(decimal_digits, decimal_point); | |
144 result_builder->AddCharacter('.'); | |
145 ASSERT(length - decimal_point <= digits_after_point); | |
146 result_builder->AddSubstring(&decimal_digits[decimal_point], | |
147 length - decimal_point); | |
148 int remaining_digits = digits_after_point - (length - decimal_point)
; | |
149 result_builder->AddPadding('0', remaining_digits); | |
150 } | |
151 if (digits_after_point == 0) { | |
152 if ((flags_ & EMIT_TRAILING_DECIMAL_POINT) != 0) { | |
153 result_builder->AddCharacter('.'); | |
154 } | |
155 if ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) { | |
156 result_builder->AddCharacter('0'); | |
157 } | |
158 } | |
159 } | |
160 | |
161 | |
162 bool DoubleToStringConverter::ToShortest(double value, | |
163 StringBuilder* result_builder) cons
t { | |
164 if (Double(value).IsSpecial()) { | |
165 return HandleSpecialValues(value, result_builder); | |
166 } | |
167 | |
168 int decimal_point; | |
169 bool sign; | |
170 const int kDecimalRepCapacity = kBase10MaximalLength + 1; | |
171 char decimal_rep[kDecimalRepCapacity]; | |
172 int decimal_rep_length; | |
173 | |
174 DoubleToAscii(value, SHORTEST, 0, decimal_rep, kDecimalRepCapacity, | |
175 &sign, &decimal_rep_length, &decimal_point); | |
176 | |
177 bool unique_zero = (flags_ & UNIQUE_ZERO) != 0; | |
178 if (sign && (value != 0.0 || !unique_zero)) { | |
179 result_builder->AddCharacter('-'); | |
180 } | |
181 | |
182 int exponent = decimal_point - 1; | |
183 if ((decimal_in_shortest_low_ <= exponent) && | |
184 (exponent < decimal_in_shortest_high_)) { | |
185 CreateDecimalRepresentation(decimal_rep, decimal_rep_length, | |
186 decimal_point, | |
187 Max(0, decimal_rep_length - decimal_poin
t), | |
188 result_builder); | |
189 } else { | |
190 CreateExponentialRepresentation(decimal_rep, decimal_rep_length, exp
onent, | |
191 result_builder); | |
192 } | |
193 return true; | |
194 } | |
195 | |
196 | |
197 bool DoubleToStringConverter::ToFixed(double value, | |
198 int requested_digits, | |
199 StringBuilder* result_builder) const { | |
200 ASSERT(kMaxFixedDigitsBeforePoint == 60); | |
201 const double kFirstNonFixed = 1e60; | |
202 | |
203 if (Double(value).IsSpecial()) { | |
204 return HandleSpecialValues(value, result_builder); | |
205 } | |
206 | |
207 if (requested_digits > kMaxFixedDigitsAfterPoint) return false; | |
208 if (value >= kFirstNonFixed || value <= -kFirstNonFixed) return false; | |
209 | |
210 // Find a sufficiently precise decimal representation of n. | |
211 int decimal_point; | |
212 bool sign; | |
213 // Add space for the '\0' byte. | |
214 const int kDecimalRepCapacity = | |
215 kMaxFixedDigitsBeforePoint + kMaxFixedDigitsAfterPoint + 1; | |
216 char decimal_rep[kDecimalRepCapacity]; | |
217 int decimal_rep_length; | |
218 DoubleToAscii(value, FIXED, requested_digits, | |
219 decimal_rep, kDecimalRepCapacity, | |
220 &sign, &decimal_rep_length, &decimal_point); | |
221 | |
222 bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); | |
223 if (sign && (value != 0.0 || !unique_zero)) { | |
224 result_builder->AddCharacter('-'); | |
225 } | |
226 | |
227 CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_poi
nt, | |
228 requested_digits, result_builder); | |
229 return true; | |
230 } | |
231 | |
232 | |
233 bool DoubleToStringConverter::ToExponential( | |
234 double value, | |
235 int requested_digits, | |
236 StringBuilder* result_builder) c
onst { | |
237 if (Double(value).IsSpecial()) { | |
238 return HandleSpecialValues(value, result_builder); | |
239 } | |
240 | |
241 if (requested_digits < -1) return false; | |
242 if (requested_digits > kMaxExponentialDigits) return false; | |
243 | |
244 int decimal_point; | |
245 bool sign; | |
246 // Add space for digit before the decimal point and the '\0' character. | |
247 const int kDecimalRepCapacity = kMaxExponentialDigits + 2; | |
248 ASSERT(kDecimalRepCapacity > kBase10MaximalLength); | |
249 char decimal_rep[kDecimalRepCapacity]; | |
250 int decimal_rep_length; | |
251 | |
252 if (requested_digits == -1) { | |
253 DoubleToAscii(value, SHORTEST, 0, | |
254 decimal_rep, kDecimalRepCapacity, | |
255 &sign, &decimal_rep_length, &decimal_point); | |
256 } else { | |
257 DoubleToAscii(value, PRECISION, requested_digits + 1, | |
258 decimal_rep, kDecimalRepCapacity, | |
259 &sign, &decimal_rep_length, &decimal_point); | |
260 ASSERT(decimal_rep_length <= requested_digits + 1); | |
261 | |
262 for (int i = decimal_rep_length; i < requested_digits + 1; ++i) { | |
263 decimal_rep[i] = '0'; | |
264 } | |
265 decimal_rep_length = requested_digits + 1; | |
266 } | |
267 | |
268 bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); | |
269 if (sign && (value != 0.0 || !unique_zero)) { | |
270 result_builder->AddCharacter('-'); | |
271 } | |
272 | |
273 int exponent = decimal_point - 1; | |
274 CreateExponentialRepresentation(decimal_rep, | |
275 decimal_rep_length, | |
276 exponent, | |
277 result_builder); | |
278 return true; | |
279 } | |
280 | |
281 | |
282 bool DoubleToStringConverter::ToPrecision(double value, | |
283 int precision, | |
284 StringBuilder* result_builder) con
st { | |
285 if (Double(value).IsSpecial()) { | |
286 return HandleSpecialValues(value, result_builder); | |
287 } | |
288 | |
289 if (precision < kMinPrecisionDigits || precision > kMaxPrecisionDigits)
{ | |
290 return false; | |
291 } | |
292 | |
293 // Find a sufficiently precise decimal representation of n. | |
294 int decimal_point; | |
295 bool sign; | |
296 // Add one for the terminating null character. | |
297 const int kDecimalRepCapacity = kMaxPrecisionDigits + 1; | |
298 char decimal_rep[kDecimalRepCapacity]; | |
299 int decimal_rep_length; | |
300 | |
301 DoubleToAscii(value, PRECISION, precision, | |
302 decimal_rep, kDecimalRepCapacity, | |
303 &sign, &decimal_rep_length, &decimal_point); | |
304 ASSERT(decimal_rep_length <= precision); | |
305 | |
306 bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); | |
307 if (sign && (value != 0.0 || !unique_zero)) { | |
308 result_builder->AddCharacter('-'); | |
309 } | |
310 | |
311 // The exponent if we print the number as x.xxeyyy. That is with the | |
312 // decimal point after the first digit. | |
313 int exponent = decimal_point - 1; | |
314 | |
315 int extra_zero = ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) ? 1 :
0; | |
316 if ((-decimal_point + 1 > max_leading_padding_zeroes_in_precision_mode_)
|| | |
317 (decimal_point - precision + extra_zero > | |
318 max_trailing_padding_zeroes_in_precision_mode_)) { | |
319 // Fill buffer to contain 'precision' digits. | |
320 // Usually the buffer is already at the correct length, but 'Dou
bleToAscii' | |
321 // is allowed to return less characters. | |
322 for (int i = decimal_rep_length; i < precision; ++i) { | |
323 decimal_rep[i] = '0'; | |
324 } | |
325 | |
326 CreateExponentialRepresentation(decimal_rep, | |
327 precision, | |
328 exponent, | |
329 result_builder); | |
330 } else { | |
331 CreateDecimalRepresentation(decimal_rep, decimal_rep_length, dec
imal_point, | |
332 Max(0, precision - decimal_point), | |
333 result_builder); | |
334 } | |
335 return true; | |
336 } | |
337 | |
338 | |
339 static BignumDtoaMode DtoaToBignumDtoaMode( | |
340 DoubleToStringConverter::DtoaMode
dtoa_mode) { | |
341 switch (dtoa_mode) { | |
342 case DoubleToStringConverter::SHORTEST: return BIGNUM_DTOA_SHORTEST
; | |
343 case DoubleToStringConverter::FIXED: return BIGNUM_DTOA_FIXED; | |
344 case DoubleToStringConverter::PRECISION: return BIGNUM_DTOA_PRECISIO
N; | |
345 default: | |
346 UNREACHABLE(); | |
347 return BIGNUM_DTOA_SHORTEST; // To silence compiler. | |
348 } | |
349 } | |
350 | |
351 | |
352 void DoubleToStringConverter::DoubleToAscii(double v, | |
353 DtoaMode mode, | |
354 int requested_digits, | |
355 char* buffer, | |
356 int buffer_length, | |
357 bool* sign, | |
358 int* length, | |
359 int* point) { | |
360 Vector<char> vector(buffer, buffer_length); | |
361 ASSERT(!Double(v).IsSpecial()); | |
362 ASSERT(mode == SHORTEST || requested_digits >= 0); | |
363 | |
364 if (Double(v).Sign() < 0) { | |
365 *sign = true; | |
366 v = -v; | |
367 } else { | |
368 *sign = false; | |
369 } | |
370 | |
371 if (mode == PRECISION && requested_digits == 0) { | |
372 vector[0] = '\0'; | |
373 *length = 0; | |
374 return; | |
375 } | |
376 | |
377 if (v == 0) { | |
378 vector[0] = '0'; | |
379 vector[1] = '\0'; | |
380 *length = 1; | |
381 *point = 1; | |
382 return; | |
383 } | |
384 | |
385 bool fast_worked; | |
386 switch (mode) { | |
387 case SHORTEST: | |
388 fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST, 0, vector, length,
point); | |
389 break; | |
390 case FIXED: | |
391 fast_worked = FastFixedDtoa(v, requested_digits, vector, length,
point); | |
392 break; | |
393 case PRECISION: | |
394 fast_worked = FastDtoa(v, FAST_DTOA_PRECISION, requested_digits, | |
395 vector, length, point); | |
396 break; | |
397 default: | |
398 UNREACHABLE(); | |
399 fast_worked = false; | |
400 } | |
401 if (fast_worked) return; | |
402 | |
403 // If the fast dtoa didn't succeed use the slower bignum version. | |
404 BignumDtoaMode bignum_mode = DtoaToBignumDtoaMode(mode); | |
405 BignumDtoa(v, bignum_mode, requested_digits, vector, length, point); | |
406 vector[*length] = '\0'; | |
407 } | |
408 | |
409 | |
410 // Maximum number of significant digits in decimal representation. | |
411 // The longest possible double in decimal representation is | |
412 // (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074 | |
413 // (768 digits). If we parse a number whose first digits are equal to a | |
414 // mean of 2 adjacent doubles (that could have up to 769 digits) the result | |
415 // must be rounded to the bigger one unless the tail consists of zeros, so | |
416 // we don't need to preserve all the digits. | |
417 const int kMaxSignificantDigits = 772; | |
418 | |
419 | |
420 static double SignedZero(bool sign) { | |
421 return sign ? -0.0 : 0.0; | |
422 } | |
423 | |
424 | |
425 double StringToDoubleConverter::StringToDouble( | |
426 const char* input, | |
427 size_t length, | |
428 size_t* processed_characters_
count) { | |
429 const char* current = input; | |
430 const char* end = input + length; | |
431 | |
432 *processed_characters_count = 0; | |
433 | |
434 // To make sure that iterator dereferencing is valid the following | |
435 // convention is used: | |
436 // 1. Each '++current' statement is followed by check for equality to 'e
nd'. | |
437 // 3. If 'current' becomes equal to 'end' the function returns or goes t
o | |
438 // 'parsing_done'. | |
439 // 4. 'current' is not dereferenced after the 'parsing_done' label. | |
440 // 5. Code before 'parsing_done' may rely on 'current != end'. | |
441 if (current == end) return 0.0; | |
442 | |
443 // The longest form of simplified number is: "-<significant digits>.1eXX
X\0". | |
444 const int kBufferSize = kMaxSignificantDigits + 10; | |
445 char buffer[kBufferSize]; // NOLINT: size is known at compile time. | |
446 int buffer_pos = 0; | |
447 | |
448 // Exponent will be adjusted if insignificant digits of the integer part | |
449 // or insignificant leading zeros of the fractional part are dropped. | |
450 int exponent = 0; | |
451 int significant_digits = 0; | |
452 int insignificant_digits = 0; | |
453 bool nonzero_digit_dropped = false; | |
454 bool sign = false; | |
455 | |
456 if (*current == '+' || *current == '-') { | |
457 sign = (*current == '-'); | |
458 ++current; | |
459 if (current == end) return 0.0; | |
460 } | |
461 | |
462 bool leading_zero = false; | |
463 if (*current == '0') { | |
464 ++current; | |
465 if (current == end) { | |
466 *processed_characters_count = current - input; | |
467 return SignedZero(sign); | |
468 } | |
469 | |
470 leading_zero = true; | |
471 | |
472 // Ignore leading zeros in the integer part. | |
473 while (*current == '0') { | |
474 ++current; | |
475 if (current == end) { | |
476 *processed_characters_count = current - input; | |
477 return SignedZero(sign); | |
478 } | |
479 } | |
480 } | |
481 | |
482 // Copy significant digits of the integer part (if any) to the buffer. | |
483 while (*current >= '0' && *current <= '9') { | |
484 if (significant_digits < kMaxSignificantDigits) { | |
485 ASSERT(buffer_pos < kBufferSize); | |
486 buffer[buffer_pos++] = static_cast<char>(*current); | |
487 significant_digits++; | |
488 } else { | |
489 insignificant_digits++; // Move the digit into the exponential
part. | |
490 nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'
; | |
491 } | |
492 ++current; | |
493 if (current == end) goto parsing_done; | |
494 } | |
495 | |
496 if (*current == '.') { | |
497 ++current; | |
498 if (current == end) { | |
499 if (significant_digits == 0 && !leading_zero) { | |
500 return 0.0; | |
501 } else { | |
502 goto parsing_done; | |
503 } | |
504 } | |
505 | |
506 if (significant_digits == 0) { | |
507 // Integer part consists of 0 or is absent. Significant digits s
tart after | |
508 // leading zeros (if any). | |
509 while (*current == '0') { | |
510 ++current; | |
511 if (current == end) { | |
512 *processed_characters_count = current - input; | |
513 return SignedZero(sign); | |
514 } | |
515 exponent--; // Move this 0 into the exponent. | |
516 } | |
517 } | |
518 | |
519 // There is a fractional part. | |
520 while (*current >= '0' && *current <= '9') { | |
521 if (significant_digits < kMaxSignificantDigits) { | |
522 ASSERT(buffer_pos < kBufferSize); | |
523 buffer[buffer_pos++] = static_cast<char>(*current); | |
524 significant_digits++; | |
525 exponent--; | |
526 } else { | |
527 // Ignore insignificant digits in the fractional part. | |
528 nonzero_digit_dropped = nonzero_digit_dropped || *current !=
'0'; | |
529 } | |
530 ++current; | |
531 if (current == end) goto parsing_done; | |
532 } | |
533 } | |
534 | |
535 if (!leading_zero && exponent == 0 && significant_digits == 0) { | |
536 // If leading_zeros is true then the string contains zeros. | |
537 // If exponent < 0 then string was [+-]\.0*... | |
538 // If significant_digits != 0 the string is not equal to 0. | |
539 // Otherwise there are no digits in the string. | |
540 return 0.0; | |
541 } | |
542 | |
543 // Parse exponential part. | |
544 if (*current == 'e' || *current == 'E') { | |
545 ++current; | |
546 if (current == end) { | |
547 --current; | |
548 goto parsing_done; | |
549 } | |
550 char sign = 0; | |
551 if (*current == '+' || *current == '-') { | |
552 sign = static_cast<char>(*current); | |
553 ++current; | |
554 if (current == end) { | |
555 current -= 2; | |
556 goto parsing_done; | |
557 } | |
558 } | |
559 | |
560 if (*current < '0' || *current > '9') { | |
561 if (sign) | |
562 --current; | |
563 --current; | |
564 goto parsing_done; | |
565 } | |
566 | |
567 const int max_exponent = INT_MAX / 2; | |
568 ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2
); | |
569 int num = 0; | |
570 do { | |
571 // Check overflow. | |
572 int digit = *current - '0'; | |
573 if (num >= max_exponent / 10 | |
574 && !(num == max_exponent / 10 && digit <= max_exponent % 10)
) { | |
575 num = max_exponent; | |
576 } else { | |
577 num = num * 10 + digit; | |
578 } | |
579 ++current; | |
580 } while (current != end && *current >= '0' && *current <= '9'); | |
581 | |
582 exponent += (sign == '-' ? -num : num); | |
583 } | |
584 | |
585 parsing_done: | |
586 exponent += insignificant_digits; | |
587 | |
588 if (nonzero_digit_dropped) { | |
589 buffer[buffer_pos++] = '1'; | |
590 exponent--; | |
591 } | |
592 | |
593 ASSERT(buffer_pos < kBufferSize); | 512 ASSERT(buffer_pos < kBufferSize); |
594 buffer[buffer_pos] = '\0'; | 513 buffer[buffer_pos++] = static_cast<char>(*current); |
595 | 514 significant_digits++; |
596 double converted = Strtod(Vector<const char>(buffer, buffer_pos), expone
nt); | 515 exponent--; |
597 *processed_characters_count = current - input; | 516 } else { |
598 return sign? -converted: converted; | 517 // Ignore insignificant digits in the fractional part. |
599 } | 518 nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; |
| 519 } |
| 520 ++current; |
| 521 if (current == end) |
| 522 goto parsing_done; |
| 523 } |
| 524 } |
| 525 |
| 526 if (!leading_zero && exponent == 0 && significant_digits == 0) { |
| 527 // If leading_zeros is true then the string contains zeros. |
| 528 // If exponent < 0 then string was [+-]\.0*... |
| 529 // If significant_digits != 0 the string is not equal to 0. |
| 530 // Otherwise there are no digits in the string. |
| 531 return 0.0; |
| 532 } |
| 533 |
| 534 // Parse exponential part. |
| 535 if (*current == 'e' || *current == 'E') { |
| 536 ++current; |
| 537 if (current == end) { |
| 538 --current; |
| 539 goto parsing_done; |
| 540 } |
| 541 char sign = 0; |
| 542 if (*current == '+' || *current == '-') { |
| 543 sign = static_cast<char>(*current); |
| 544 ++current; |
| 545 if (current == end) { |
| 546 current -= 2; |
| 547 goto parsing_done; |
| 548 } |
| 549 } |
| 550 |
| 551 if (*current < '0' || *current > '9') { |
| 552 if (sign) |
| 553 --current; |
| 554 --current; |
| 555 goto parsing_done; |
| 556 } |
| 557 |
| 558 const int max_exponent = INT_MAX / 2; |
| 559 ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2); |
| 560 int num = 0; |
| 561 do { |
| 562 // Check overflow. |
| 563 int digit = *current - '0'; |
| 564 if (num >= max_exponent / 10 && |
| 565 !(num == max_exponent / 10 && digit <= max_exponent % 10)) { |
| 566 num = max_exponent; |
| 567 } else { |
| 568 num = num * 10 + digit; |
| 569 } |
| 570 ++current; |
| 571 } while (current != end && *current >= '0' && *current <= '9'); |
| 572 |
| 573 exponent += (sign == '-' ? -num : num); |
| 574 } |
| 575 |
| 576 parsing_done: |
| 577 exponent += insignificant_digits; |
| 578 |
| 579 if (nonzero_digit_dropped) { |
| 580 buffer[buffer_pos++] = '1'; |
| 581 exponent--; |
| 582 } |
| 583 |
| 584 ASSERT(buffer_pos < kBufferSize); |
| 585 buffer[buffer_pos] = '\0'; |
| 586 |
| 587 double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent); |
| 588 *processed_characters_count = current - input; |
| 589 return sign ? -converted : converted; |
| 590 } |
600 | 591 |
601 } // namespace double_conversion | 592 } // namespace double_conversion |
602 | 593 |
603 } // namespace WTF | 594 } // namespace WTF |
OLD | NEW |