Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(226)

Unified Diff: pkg/dev_compiler/tool/input_sdk/lib/core/num.dart

Issue 2698353003: unfork DDC's copy of most SDK libraries (Closed)
Patch Set: revert core_patch Created 3 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: pkg/dev_compiler/tool/input_sdk/lib/core/num.dart
diff --git a/pkg/dev_compiler/tool/input_sdk/lib/core/num.dart b/pkg/dev_compiler/tool/input_sdk/lib/core/num.dart
deleted file mode 100644
index 21f23eef18321ab7fc4b59aa397cdbb7ead0b0d6..0000000000000000000000000000000000000000
--- a/pkg/dev_compiler/tool/input_sdk/lib/core/num.dart
+++ /dev/null
@@ -1,453 +0,0 @@
-// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
-// for details. All rights reserved. Use of this source code is governed by a
-// BSD-style license that can be found in the LICENSE file.
-
-part of dart.core;
-
-/**
- * An integer or floating-point number.
- *
- * It is a compile-time error for any type other than [int] or [double]
- * to attempt to extend or implement num.
- */
-abstract class num implements Comparable<num> {
- /**
- * Test whether this value is numerically equal to `other`.
- *
- * If both operands are doubles, they are equal if they have the same
- * representation, except that:
- *
- * * zero and minus zero (0.0 and -0.0) are considered equal. They
- * both have the numerical value zero.
- * * NaN is not equal to anything, including NaN. If either operand is
- * NaN, the result is always false.
- *
- * If one operand is a double and the other is an int, they are equal if
- * the double has an integer value (finite with no fractional part) and
- * `identical(doubleValue.toInt(), intValue)` is true.
- *
- * If both operands are integers, they are equal if they have the same value.
- *
- * Returns false if `other` is not a [num].
- *
- * Notice that the behavior for NaN is non-reflexive. This means that
- * equality of double values is not a proper equality relation, as is
- * otherwise required of `operator==`. Using NaN in, e.g., a [HashSet]
- * will fail to work. The behavior is the standard IEEE-754 equality of
- * doubles.
- *
- * If you can avoid NaN values, the remaining doubles do have a proper eqality
- * relation, and can be used safely.
- *
- * Use [compareTo] for a comparison that distinguishes zero and minus zero,
- * and that considers NaN values as equal.
- */
- bool operator==(Object other);
-
- /**
- * Returns a hash code for a numerical value.
- *
- * The hash code is compatible with equality. It returns the same value
- * for an [int] and a [double] with the same numerical value, and therefore
- * the same value for the doubles zero and minus zero.
- *
- * No guarantees are made about the hash code of NaN.
- */
- int get hashCode;
-
- /**
- * Compares this to `other`.
- *
- * Returns a negative number if `this` is less than `other`, zero if they are
- * equal, and a positive number if `this` is greater than `other`.
- *
- * The orderding represented by this method is a total ordering of [num]
- * values. All distinct doubles are non-equal, as are all distinct integers,
- * but integers are equal to doubles if they have the same numerical
- * value.
- *
- * For ordering, the double NaN value is considered equal to itself, and
- * greater than any numeric value (unlike its behavior in `operator==`).
- *
- * The double value -0.0 is considered less than 0.0 (and the integer 0), but
- * greater than any non-zero negative value.
- *
- * Positive infinity is greater than any finite value (any value apart from
- * itself and NaN), and negative infinity is less than any other value.
- *
- * All other values are compared using their numeric value.
- */
- int compareTo(num other);
-
- /** Addition operator. */
- num operator +(num other);
-
- /** Subtraction operator. */
- num operator -(num other);
-
- /** Multiplication operator. */
- num operator *(num other);
-
- /**
- * Euclidean modulo operator.
- *
- * Returns the remainder of the euclidean division. The euclidean division of
- * two integers `a` and `b` yields two integers `q` and `r` such that
- * `a == b * q + r` and `0 <= r < b.abs()`.
- *
- * The euclidean division is only defined for integers, but can be easily
- * extended to work with doubles. In that case `r` may have a non-integer
- * value, but it still verifies `0 <= r < |b|`.
- *
- * The sign of the returned value `r` is always positive.
- *
- * See [remainder] for the remainder of the truncating division.
- */
- num operator %(num other);
-
- /** Division operator. */
- double operator /(num other);
-
- /**
- * Truncating division operator.
- *
- * If either operand is a [double] then the result of the truncating division
- * `a ~/ b` is equivalent to `(a / b).truncate().toInt()`.
- *
- * If both operands are [int]s then `a ~/ b` performs the truncating
- * integer division.
- */
- int operator ~/(num other);
-
- /** Negate operator. */
- num operator -();
-
- /**
- * Returns the remainder of the truncating division of `this` by [other].
- *
- * The result `r` of this operation satisfies:
- * `this == (this ~/ other) * other + r`.
- * As a consequence the remainder `r` has the same sign as the divider `this`.
- */
- num remainder(num other);
-
- /** Relational less than operator. */
- bool operator <(num other);
-
- /** Relational less than or equal operator. */
- bool operator <=(num other);
-
- /** Relational greater than operator. */
- bool operator >(num other);
-
- /** Relational greater than or equal operator. */
- bool operator >=(num other);
-
- /** True if the number is the double Not-a-Number value; otherwise, false. */
- bool get isNaN;
-
- /**
- * True if the number is negative; otherwise, false.
- *
- * Negative numbers are those less than zero, and the double `-0.0`.
- */
- bool get isNegative;
-
- /**
- * True if the number is positive infinity or negative infinity; otherwise,
- * false.
- */
- bool get isInfinite;
-
- /**
- * True if the number is finite; otherwise, false.
- *
- * The only non-finite numbers are NaN, positive infinitity and
- * negative infinity.
- */
- bool get isFinite;
-
- /** Returns the absolute value of this [num]. */
- num abs();
-
- /**
- * Returns minus one, zero or plus one depending on the sign and
- * numerical value of the number.
- *
- * Returns minus one if the number is less than zero,
- * plus one if the number is greater than zero,
- * and zero if the number is equal to zero.
- *
- * Returns NaN if the number is the double NaN value.
- *
- * Returns a number of the same type as this number.
- * For doubles, `-0.0.sign == -0.0`.
-
- * The result satisfies:
- *
- * n == n.sign * n.abs()
- *
- * for all numbers `n` (except NaN, because NaN isn't `==` to itself).
- */
- num get sign;
-
- /**
- * Returns the integer closest to `this`.
- *
- * Rounds away from zero when there is no closest integer:
- * `(3.5).round() == 4` and `(-3.5).round() == -4`.
- *
- * If `this` is not finite (`NaN` or infinity), throws an [UnsupportedError].
- */
- int round();
-
- /**
- * Returns the greatest integer no greater than `this`.
- *
- * If `this` is not finite (`NaN` or infinity), throws an [UnsupportedError].
- */
- int floor();
-
- /**
- * Returns the least integer no smaller than `this`.
- *
- * If `this` is not finite (`NaN` or infinity), throws an [UnsupportedError].
- */
- int ceil();
-
- /**
- * Returns the integer obtained by discarding any fractional
- * digits from `this`.
- *
- * If `this` is not finite (`NaN` or infinity), throws an [UnsupportedError].
- */
- int truncate();
-
- /**
- * Returns the double integer value closest to `this`.
- *
- * Rounds away from zero when there is no closest integer:
- * `(3.5).roundToDouble() == 4` and `(-3.5).roundToDouble() == -4`.
- *
- * If this is already an integer valued double, including `-0.0`, or it is a
- * non-finite double value, the value is returned unmodified.
- *
- * For the purpose of rounding, `-0.0` is considered to be below `0.0`,
- * and `-0.0` is therefore considered closer to negative numbers than `0.0`.
- * This means that for a value, `d` in the range `-0.5 < d < 0.0`,
- * the result is `-0.0`.
- *
- * The result is always a double.
- * If this is a numerically large integer, the result may be an infinite
- * double.
- */
- double roundToDouble();
-
- /**
- * Returns the greatest double integer value no greater than `this`.
- *
- * If this is already an integer valued double, including `-0.0`, or it is a
- * non-finite double value, the value is returned unmodified.
- *
- * For the purpose of rounding, `-0.0` is considered to be below `0.0`.
- * A number `d` in the range `0.0 < d < 1.0` will return `0.0`.
- *
- * The result is always a double.
- * If this is a numerically large integer, the result may be an infinite
- * double.
- */
- double floorToDouble();
-
- /**
- * Returns the least double integer value no smaller than `this`.
- *
- * If this is already an integer valued double, including `-0.0`, or it is a
- * non-finite double value, the value is returned unmodified.
- *
- * For the purpose of rounding, `-0.0` is considered to be below `0.0`.
- * A number `d` in the range `-1.0 < d < 0.0` will return `-0.0`.
- *
- * The result is always a double.
- * If this is a numerically large integer, the result may be an infinite
- * double.
- */
- double ceilToDouble();
-
- /**
- * Returns the double integer value obtained by discarding any fractional
- * digits from the double value of `this`.
- *
- * If this is already an integer valued double, including `-0.0`, or it is a
- * non-finite double value, the value is returned unmodified.
- *
- * For the purpose of rounding, `-0.0` is considered to be below `0.0`.
- * A number `d` in the range `-1.0 < d < 0.0` will return `-0.0`, and
- * in the range `0.0 < d < 1.0` it will return 0.0.
- *
- * The result is always a double.
- * If this is a numerically large integer, the result may be an infinite
- * double.
- */
- double truncateToDouble();
-
- /**
- * Returns this [num] clamped to be in the range [lowerLimit]-[upperLimit].
- *
- * The comparison is done using [compareTo] and therefore takes `-0.0` into
- * account. This also implies that [double.NAN] is treated as the maximal
- * double value.
- */
- num clamp(num lowerLimit, num upperLimit);
-
- /** Truncates this [num] to an integer and returns the result as an [int]. */
- int toInt();
-
- /**
- * Return this [num] as a [double].
- *
- * If the number is not representable as a [double], an
- * approximation is returned. For numerically large integers, the
- * approximation may be infinite.
- */
- double toDouble();
-
- /**
- * Returns a decimal-point string-representation of `this`.
- *
- * Converts `this` to a [double] before computing the string representation.
- *
- * If the absolute value of `this` is greater or equal to `10^21` then this
- * methods returns an exponential representation computed by
- * `this.toStringAsExponential()`. Otherwise the result
- * is the closest string representation with exactly [fractionDigits] digits
- * after the decimal point. If [fractionDigits] equals 0 then the decimal
- * point is omitted.
- *
- * The parameter [fractionDigits] must be an integer satisfying:
- * `0 <= fractionDigits <= 20`.
- *
- * Examples:
- *
- * 1.toStringAsFixed(3); // 1.000
- * (4321.12345678).toStringAsFixed(3); // 4321.123
- * (4321.12345678).toStringAsFixed(5); // 4321.12346
- * 123456789012345678901.toStringAsFixed(3); // 123456789012345683968.000
- * 1000000000000000000000.toStringAsFixed(3); // 1e+21
- * 5.25.toStringAsFixed(0); // 5
- */
- String toStringAsFixed(int fractionDigits);
-
- /**
- * Returns an exponential string-representation of `this`.
- *
- * Converts `this` to a [double] before computing the string representation.
- *
- * If [fractionDigits] is given then it must be an integer satisfying:
- * `0 <= fractionDigits <= 20`. In this case the string contains exactly
- * [fractionDigits] after the decimal point. Otherwise, without the parameter,
- * the returned string uses the shortest number of digits that accurately
- * represent [this].
- *
- * If [fractionDigits] equals 0 then the decimal point is omitted.
- * Examples:
- *
- * 1.toStringAsExponential(); // 1e+0
- * 1.toStringAsExponential(3); // 1.000e+0
- * 123456.toStringAsExponential(); // 1.23456e+5
- * 123456.toStringAsExponential(3); // 1.235e+5
- * 123.toStringAsExponential(0); // 1e+2
- */
- String toStringAsExponential([int fractionDigits]);
-
- /**
- * Converts `this` to a double and returns a string representation with
- * exactly [precision] significant digits.
- *
- * The parameter [precision] must be an integer satisfying:
- * `1 <= precision <= 21`.
- *
- * Examples:
- *
- * 1.toStringAsPrecision(2); // 1.0
- * 1e15.toStringAsPrecision(3); // 1.00+15
- * 1234567.toStringAsPrecision(3); // 1.23e+6
- * 1234567.toStringAsPrecision(9); // 1234567.00
- * 12345678901234567890.toStringAsPrecision(20); // 12345678901234567168
- * 12345678901234567890.toStringAsPrecision(14); // 1.2345678901235e+19
- * 0.00000012345.toStringAsPrecision(15); // 1.23450000000000e-7
- * 0.0000012345.toStringAsPrecision(15); // 0.00000123450000000000
- */
- String toStringAsPrecision(int precision);
-
- /**
- * Returns the shortest string that correctly represent the input number.
- *
- * All [double]s in the range `10^-6` (inclusive) to `10^21` (exclusive)
- * are converted to their decimal representation with at least one digit
- * after the decimal point. For all other doubles,
- * except for special values like `NaN` or `Infinity`, this method returns an
- * exponential representation (see [toStringAsExponential]).
- *
- * Returns `"NaN"` for [double.NAN], `"Infinity"` for [double.INFINITY], and
- * `"-Infinity"` for [double.MINUS_INFINITY].
- *
- * An [int] is converted to a decimal representation with no decimal point.
- *
- * Examples:
- *
- * (0.000001).toString(); // "0.000001"
- * (0.0000001).toString(); // "1e-7"
- * (111111111111111111111.0).toString(); // "111111111111111110000.0"
- * (100000000000000000000.0).toString(); // "100000000000000000000.0"
- * (1000000000000000000000.0).toString(); // "1e+21"
- * (1111111111111111111111.0).toString(); // "1.1111111111111111e+21"
- * 1.toString(); // "1"
- * 111111111111111111111.toString(); // "111111111111111110000"
- * 100000000000000000000.toString(); // "100000000000000000000"
- * 1000000000000000000000.toString(); // "1000000000000000000000"
- * 1111111111111111111111.toString(); // "1111111111111111111111"
- * 1.234e5.toString(); // 123400
- * 1234.5e6.toString(); // 1234500000
- * 12.345e67.toString(); // 1.2345e+68
- *
- * Note: the conversion may round the output if the returned string
- * is accurate enough to uniquely identify the input-number.
- * For example the most precise representation of the [double] `9e59` equals
- * `"899999999999999918767229449717619953810131273674690656206848"`, but
- * this method returns the shorter (but still uniquely identifying) `"9e59"`.
- *
- */
- String toString();
-
- /**
- * Parses a string containing a number literal into a number.
- *
- * The method first tries to read the [input] as integer (similar to
- * [int.parse] without a radix).
- * If that fails, it tries to parse the [input] as a double (similar to
- * [double.parse]).
- * If that fails, too, it invokes [onError] with [input], and the result
- * of that invocation becomes the result of calling `parse`.
- *
- * If no [onError] is supplied, it defaults to a function that throws a
- * [FormatException].
- *
- * For any number `n`, this function satisfies
- * `identical(n, num.parse(n.toString()))` (except when `n` is a NaN `double`
- * with a payload).
- */
- static num parse(String input, [num onError(String input)]) {
- String source = input.trim();
- // TODO(lrn): Optimize to detect format and result type in one check.
- num result = int.parse(source, onError: _returnIntNull);
- if (result != null) return result;
- result = double.parse(source, _returnDoubleNull);
- if (result != null) return result;
- if (onError == null) throw new FormatException(input);
- return onError(input);
- }
-
- /** Helper functions for [parse]. */
- static int _returnIntNull(String _) => null;
- static double _returnDoubleNull(String _) => null;
-}
« no previous file with comments | « pkg/dev_compiler/tool/input_sdk/lib/core/null.dart ('k') | pkg/dev_compiler/tool/input_sdk/lib/core/object.dart » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698