OLD | NEW |
(Empty) | |
| 1 // Copyright 2015 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "src/runtime/runtime-utils.h" |
| 6 |
| 7 #include "src/arguments.h" |
| 8 #include "src/base/macros.h" |
| 9 #include "src/conversions.h" |
| 10 #include "src/factory.h" |
| 11 #include "src/objects-inl.h" |
| 12 |
| 13 // Implement Single Instruction Multiple Data (SIMD) operations as defined in |
| 14 // the SIMD.js draft spec: |
| 15 // http://littledan.github.io/simd.html |
| 16 |
| 17 namespace v8 { |
| 18 namespace internal { |
| 19 |
| 20 namespace { |
| 21 |
| 22 // Functions to convert Numbers to SIMD component types. |
| 23 |
| 24 template <typename T, typename F> |
| 25 static bool CanCast(F from) { |
| 26 // A float can't represent 2^31 - 1 or 2^32 - 1 exactly, so promote the limits |
| 27 // to double. Otherwise, the limit is truncated and numbers like 2^31 or 2^32 |
| 28 // get through, causing any static_cast to be undefined. |
| 29 from = trunc(from); |
| 30 return from >= static_cast<double>(std::numeric_limits<T>::min()) && |
| 31 from <= static_cast<double>(std::numeric_limits<T>::max()); |
| 32 } |
| 33 |
| 34 |
| 35 // Explicitly specialize for conversions to float, which always succeed. |
| 36 template <> |
| 37 bool CanCast<float>(int32_t from) { |
| 38 return true; |
| 39 } |
| 40 |
| 41 |
| 42 template <> |
| 43 bool CanCast<float>(uint32_t from) { |
| 44 return true; |
| 45 } |
| 46 |
| 47 |
| 48 template <typename T> |
| 49 static T ConvertNumber(double number); |
| 50 |
| 51 |
| 52 template <> |
| 53 float ConvertNumber<float>(double number) { |
| 54 return DoubleToFloat32(number); |
| 55 } |
| 56 |
| 57 |
| 58 template <> |
| 59 int32_t ConvertNumber<int32_t>(double number) { |
| 60 return DoubleToInt32(number); |
| 61 } |
| 62 |
| 63 |
| 64 template <> |
| 65 uint32_t ConvertNumber<uint32_t>(double number) { |
| 66 return DoubleToUint32(number); |
| 67 } |
| 68 |
| 69 |
| 70 template <> |
| 71 int16_t ConvertNumber<int16_t>(double number) { |
| 72 return static_cast<int16_t>(DoubleToInt32(number)); |
| 73 } |
| 74 |
| 75 |
| 76 template <> |
| 77 uint16_t ConvertNumber<uint16_t>(double number) { |
| 78 return static_cast<uint16_t>(DoubleToUint32(number)); |
| 79 } |
| 80 |
| 81 |
| 82 template <> |
| 83 int8_t ConvertNumber<int8_t>(double number) { |
| 84 return static_cast<int8_t>(DoubleToInt32(number)); |
| 85 } |
| 86 |
| 87 |
| 88 template <> |
| 89 uint8_t ConvertNumber<uint8_t>(double number) { |
| 90 return static_cast<uint8_t>(DoubleToUint32(number)); |
| 91 } |
| 92 |
| 93 |
| 94 // TODO(bbudge): Make this consistent with SIMD instruction results. |
| 95 inline float RecipApprox(float a) { return 1.0f / a; } |
| 96 |
| 97 |
| 98 // TODO(bbudge): Make this consistent with SIMD instruction results. |
| 99 inline float RecipSqrtApprox(float a) { return 1.0f / std::sqrt(a); } |
| 100 |
| 101 |
| 102 // Saturating addition for int16_t and int8_t. |
| 103 template <typename T> |
| 104 inline T AddSaturate(T a, T b) { |
| 105 const T max = std::numeric_limits<T>::max(); |
| 106 const T min = std::numeric_limits<T>::min(); |
| 107 int32_t result = a + b; |
| 108 if (result > max) return max; |
| 109 if (result < min) return min; |
| 110 return result; |
| 111 } |
| 112 |
| 113 |
| 114 // Saturating subtraction for int16_t and int8_t. |
| 115 template <typename T> |
| 116 inline T SubSaturate(T a, T b) { |
| 117 const T max = std::numeric_limits<T>::max(); |
| 118 const T min = std::numeric_limits<T>::min(); |
| 119 int32_t result = a - b; |
| 120 if (result > max) return max; |
| 121 if (result < min) return min; |
| 122 return result; |
| 123 } |
| 124 |
| 125 |
| 126 inline float Min(float a, float b) { |
| 127 if (a < b) return a; |
| 128 if (a > b) return b; |
| 129 if (a == b) return std::signbit(a) ? a : b; |
| 130 return std::numeric_limits<float>::quiet_NaN(); |
| 131 } |
| 132 |
| 133 |
| 134 inline float Max(float a, float b) { |
| 135 if (a > b) return a; |
| 136 if (a < b) return b; |
| 137 if (a == b) return std::signbit(b) ? a : b; |
| 138 return std::numeric_limits<float>::quiet_NaN(); |
| 139 } |
| 140 |
| 141 |
| 142 inline float MinNumber(float a, float b) { |
| 143 if (std::isnan(a)) return b; |
| 144 if (std::isnan(b)) return a; |
| 145 return Min(a, b); |
| 146 } |
| 147 |
| 148 |
| 149 inline float MaxNumber(float a, float b) { |
| 150 if (std::isnan(a)) return b; |
| 151 if (std::isnan(b)) return a; |
| 152 return Max(a, b); |
| 153 } |
| 154 |
| 155 } // namespace |
| 156 |
| 157 //------------------------------------------------------------------- |
| 158 |
| 159 // SIMD helper functions. |
| 160 |
| 161 RUNTIME_FUNCTION(Runtime_IsSimdValue) { |
| 162 HandleScope scope(isolate); |
| 163 DCHECK_EQ(1, args.length()); |
| 164 return isolate->heap()->ToBoolean(args[0]->IsSimd128Value()); |
| 165 } |
| 166 |
| 167 |
| 168 //------------------------------------------------------------------- |
| 169 |
| 170 // Utility macros. |
| 171 |
| 172 // TODO(gdeepti): Fix to use ToNumber conversion once polyfill is updated. |
| 173 #define CONVERT_SIMD_LANE_ARG_CHECKED(name, index, lanes) \ |
| 174 Handle<Object> name_object = args.at(index); \ |
| 175 if (!name_object->IsNumber()) { \ |
| 176 THROW_NEW_ERROR_RETURN_FAILURE( \ |
| 177 isolate, NewTypeError(MessageTemplate::kInvalidSimdIndex)); \ |
| 178 } \ |
| 179 double number = name_object->Number(); \ |
| 180 if (number < 0 || number >= lanes || !IsInt32Double(number)) { \ |
| 181 THROW_NEW_ERROR_RETURN_FAILURE( \ |
| 182 isolate, NewRangeError(MessageTemplate::kInvalidSimdIndex)); \ |
| 183 } \ |
| 184 uint32_t name = static_cast<uint32_t>(number); |
| 185 |
| 186 #define CONVERT_SIMD_ARG_HANDLE_THROW(Type, name, index) \ |
| 187 Handle<Type> name; \ |
| 188 if (args[index]->Is##Type()) { \ |
| 189 name = args.at<Type>(index); \ |
| 190 } else { \ |
| 191 THROW_NEW_ERROR_RETURN_FAILURE( \ |
| 192 isolate, NewTypeError(MessageTemplate::kInvalidSimdOperation)); \ |
| 193 } |
| 194 |
| 195 #define SIMD_UNARY_OP(type, lane_type, lane_count, op, result) \ |
| 196 static const int kLaneCount = lane_count; \ |
| 197 DCHECK_EQ(1, args.length()); \ |
| 198 CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ |
| 199 lane_type lanes[kLaneCount]; \ |
| 200 for (int i = 0; i < kLaneCount; i++) { \ |
| 201 lanes[i] = op(a->get_lane(i)); \ |
| 202 } \ |
| 203 Handle<type> result = isolate->factory()->New##type(lanes); |
| 204 |
| 205 #define SIMD_BINARY_OP(type, lane_type, lane_count, op, result) \ |
| 206 static const int kLaneCount = lane_count; \ |
| 207 DCHECK_EQ(2, args.length()); \ |
| 208 CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ |
| 209 CONVERT_SIMD_ARG_HANDLE_THROW(type, b, 1); \ |
| 210 lane_type lanes[kLaneCount]; \ |
| 211 for (int i = 0; i < kLaneCount; i++) { \ |
| 212 lanes[i] = op(a->get_lane(i), b->get_lane(i)); \ |
| 213 } \ |
| 214 Handle<type> result = isolate->factory()->New##type(lanes); |
| 215 |
| 216 #define SIMD_RELATIONAL_OP(type, bool_type, lane_count, a, b, op, result) \ |
| 217 static const int kLaneCount = lane_count; \ |
| 218 DCHECK_EQ(2, args.length()); \ |
| 219 CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ |
| 220 CONVERT_SIMD_ARG_HANDLE_THROW(type, b, 1); \ |
| 221 bool lanes[kLaneCount]; \ |
| 222 for (int i = 0; i < kLaneCount; i++) { \ |
| 223 lanes[i] = a->get_lane(i) op b->get_lane(i); \ |
| 224 } \ |
| 225 Handle<bool_type> result = isolate->factory()->New##bool_type(lanes); |
| 226 |
| 227 //------------------------------------------------------------------- |
| 228 |
| 229 // Common functions. |
| 230 |
| 231 #define GET_NUMERIC_ARG(lane_type, name, index) \ |
| 232 Handle<Object> a; \ |
| 233 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, a, \ |
| 234 Object::ToNumber(args.at(index))); \ |
| 235 name = ConvertNumber<lane_type>(a->Number()); |
| 236 |
| 237 #define GET_BOOLEAN_ARG(lane_type, name, index) \ |
| 238 name = args[index]->BooleanValue(); |
| 239 |
| 240 #define SIMD_ALL_TYPES(FUNCTION) \ |
| 241 FUNCTION(Float32x4, float, 4, NewNumber, GET_NUMERIC_ARG) \ |
| 242 FUNCTION(Int32x4, int32_t, 4, NewNumber, GET_NUMERIC_ARG) \ |
| 243 FUNCTION(Uint32x4, uint32_t, 4, NewNumber, GET_NUMERIC_ARG) \ |
| 244 FUNCTION(Bool32x4, bool, 4, ToBoolean, GET_BOOLEAN_ARG) \ |
| 245 FUNCTION(Int16x8, int16_t, 8, NewNumber, GET_NUMERIC_ARG) \ |
| 246 FUNCTION(Uint16x8, uint16_t, 8, NewNumber, GET_NUMERIC_ARG) \ |
| 247 FUNCTION(Bool16x8, bool, 8, ToBoolean, GET_BOOLEAN_ARG) \ |
| 248 FUNCTION(Int8x16, int8_t, 16, NewNumber, GET_NUMERIC_ARG) \ |
| 249 FUNCTION(Uint8x16, uint8_t, 16, NewNumber, GET_NUMERIC_ARG) \ |
| 250 FUNCTION(Bool8x16, bool, 16, ToBoolean, GET_BOOLEAN_ARG) |
| 251 |
| 252 #define SIMD_CREATE_FUNCTION(type, lane_type, lane_count, extract, replace) \ |
| 253 RUNTIME_FUNCTION(Runtime_Create##type) { \ |
| 254 static const int kLaneCount = lane_count; \ |
| 255 HandleScope scope(isolate); \ |
| 256 DCHECK(args.length() == kLaneCount); \ |
| 257 lane_type lanes[kLaneCount]; \ |
| 258 for (int i = 0; i < kLaneCount; i++) { \ |
| 259 replace(lane_type, lanes[i], i) \ |
| 260 } \ |
| 261 return *isolate->factory()->New##type(lanes); \ |
| 262 } |
| 263 |
| 264 #define SIMD_EXTRACT_FUNCTION(type, lane_type, lane_count, extract, replace) \ |
| 265 RUNTIME_FUNCTION(Runtime_##type##ExtractLane) { \ |
| 266 HandleScope scope(isolate); \ |
| 267 DCHECK_EQ(2, args.length()); \ |
| 268 CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ |
| 269 CONVERT_SIMD_LANE_ARG_CHECKED(lane, 1, lane_count); \ |
| 270 return *isolate->factory()->extract(a->get_lane(lane)); \ |
| 271 } |
| 272 |
| 273 #define SIMD_REPLACE_FUNCTION(type, lane_type, lane_count, extract, replace) \ |
| 274 RUNTIME_FUNCTION(Runtime_##type##ReplaceLane) { \ |
| 275 static const int kLaneCount = lane_count; \ |
| 276 HandleScope scope(isolate); \ |
| 277 DCHECK_EQ(3, args.length()); \ |
| 278 CONVERT_SIMD_ARG_HANDLE_THROW(type, simd, 0); \ |
| 279 CONVERT_SIMD_LANE_ARG_CHECKED(lane, 1, kLaneCount); \ |
| 280 lane_type lanes[kLaneCount]; \ |
| 281 for (int i = 0; i < kLaneCount; i++) { \ |
| 282 lanes[i] = simd->get_lane(i); \ |
| 283 } \ |
| 284 replace(lane_type, lanes[lane], 2); \ |
| 285 Handle<type> result = isolate->factory()->New##type(lanes); \ |
| 286 return *result; \ |
| 287 } |
| 288 |
| 289 #define SIMD_CHECK_FUNCTION(type, lane_type, lane_count, extract, replace) \ |
| 290 RUNTIME_FUNCTION(Runtime_##type##Check) { \ |
| 291 HandleScope scope(isolate); \ |
| 292 CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ |
| 293 return *a; \ |
| 294 } |
| 295 |
| 296 #define SIMD_SWIZZLE_FUNCTION(type, lane_type, lane_count, extract, replace) \ |
| 297 RUNTIME_FUNCTION(Runtime_##type##Swizzle) { \ |
| 298 static const int kLaneCount = lane_count; \ |
| 299 HandleScope scope(isolate); \ |
| 300 DCHECK(args.length() == 1 + kLaneCount); \ |
| 301 CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ |
| 302 lane_type lanes[kLaneCount]; \ |
| 303 for (int i = 0; i < kLaneCount; i++) { \ |
| 304 CONVERT_SIMD_LANE_ARG_CHECKED(index, i + 1, kLaneCount); \ |
| 305 lanes[i] = a->get_lane(index); \ |
| 306 } \ |
| 307 Handle<type> result = isolate->factory()->New##type(lanes); \ |
| 308 return *result; \ |
| 309 } |
| 310 |
| 311 #define SIMD_SHUFFLE_FUNCTION(type, lane_type, lane_count, extract, replace) \ |
| 312 RUNTIME_FUNCTION(Runtime_##type##Shuffle) { \ |
| 313 static const int kLaneCount = lane_count; \ |
| 314 HandleScope scope(isolate); \ |
| 315 DCHECK(args.length() == 2 + kLaneCount); \ |
| 316 CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ |
| 317 CONVERT_SIMD_ARG_HANDLE_THROW(type, b, 1); \ |
| 318 lane_type lanes[kLaneCount]; \ |
| 319 for (int i = 0; i < kLaneCount; i++) { \ |
| 320 CONVERT_SIMD_LANE_ARG_CHECKED(index, i + 2, kLaneCount * 2); \ |
| 321 lanes[i] = index < kLaneCount ? a->get_lane(index) \ |
| 322 : b->get_lane(index - kLaneCount); \ |
| 323 } \ |
| 324 Handle<type> result = isolate->factory()->New##type(lanes); \ |
| 325 return *result; \ |
| 326 } |
| 327 |
| 328 SIMD_ALL_TYPES(SIMD_CREATE_FUNCTION) |
| 329 SIMD_ALL_TYPES(SIMD_EXTRACT_FUNCTION) |
| 330 SIMD_ALL_TYPES(SIMD_REPLACE_FUNCTION) |
| 331 SIMD_ALL_TYPES(SIMD_CHECK_FUNCTION) |
| 332 SIMD_ALL_TYPES(SIMD_SWIZZLE_FUNCTION) |
| 333 SIMD_ALL_TYPES(SIMD_SHUFFLE_FUNCTION) |
| 334 |
| 335 //------------------------------------------------------------------- |
| 336 |
| 337 // Float-only functions. |
| 338 |
| 339 #define SIMD_ABS_FUNCTION(type, lane_type, lane_count) \ |
| 340 RUNTIME_FUNCTION(Runtime_##type##Abs) { \ |
| 341 HandleScope scope(isolate); \ |
| 342 SIMD_UNARY_OP(type, lane_type, lane_count, std::abs, result); \ |
| 343 return *result; \ |
| 344 } |
| 345 |
| 346 #define SIMD_SQRT_FUNCTION(type, lane_type, lane_count) \ |
| 347 RUNTIME_FUNCTION(Runtime_##type##Sqrt) { \ |
| 348 HandleScope scope(isolate); \ |
| 349 SIMD_UNARY_OP(type, lane_type, lane_count, std::sqrt, result); \ |
| 350 return *result; \ |
| 351 } |
| 352 |
| 353 #define SIMD_RECIP_APPROX_FUNCTION(type, lane_type, lane_count) \ |
| 354 RUNTIME_FUNCTION(Runtime_##type##RecipApprox) { \ |
| 355 HandleScope scope(isolate); \ |
| 356 SIMD_UNARY_OP(type, lane_type, lane_count, RecipApprox, result); \ |
| 357 return *result; \ |
| 358 } |
| 359 |
| 360 #define SIMD_RECIP_SQRT_APPROX_FUNCTION(type, lane_type, lane_count) \ |
| 361 RUNTIME_FUNCTION(Runtime_##type##RecipSqrtApprox) { \ |
| 362 HandleScope scope(isolate); \ |
| 363 SIMD_UNARY_OP(type, lane_type, lane_count, RecipSqrtApprox, result); \ |
| 364 return *result; \ |
| 365 } |
| 366 |
| 367 #define BINARY_DIV(a, b) (a) / (b) |
| 368 #define SIMD_DIV_FUNCTION(type, lane_type, lane_count) \ |
| 369 RUNTIME_FUNCTION(Runtime_##type##Div) { \ |
| 370 HandleScope scope(isolate); \ |
| 371 SIMD_BINARY_OP(type, lane_type, lane_count, BINARY_DIV, result); \ |
| 372 return *result; \ |
| 373 } |
| 374 |
| 375 #define SIMD_MINNUM_FUNCTION(type, lane_type, lane_count) \ |
| 376 RUNTIME_FUNCTION(Runtime_##type##MinNum) { \ |
| 377 HandleScope scope(isolate); \ |
| 378 SIMD_BINARY_OP(type, lane_type, lane_count, MinNumber, result); \ |
| 379 return *result; \ |
| 380 } |
| 381 |
| 382 #define SIMD_MAXNUM_FUNCTION(type, lane_type, lane_count) \ |
| 383 RUNTIME_FUNCTION(Runtime_##type##MaxNum) { \ |
| 384 HandleScope scope(isolate); \ |
| 385 SIMD_BINARY_OP(type, lane_type, lane_count, MaxNumber, result); \ |
| 386 return *result; \ |
| 387 } |
| 388 |
| 389 SIMD_ABS_FUNCTION(Float32x4, float, 4) |
| 390 SIMD_SQRT_FUNCTION(Float32x4, float, 4) |
| 391 SIMD_RECIP_APPROX_FUNCTION(Float32x4, float, 4) |
| 392 SIMD_RECIP_SQRT_APPROX_FUNCTION(Float32x4, float, 4) |
| 393 SIMD_DIV_FUNCTION(Float32x4, float, 4) |
| 394 SIMD_MINNUM_FUNCTION(Float32x4, float, 4) |
| 395 SIMD_MAXNUM_FUNCTION(Float32x4, float, 4) |
| 396 |
| 397 //------------------------------------------------------------------- |
| 398 |
| 399 // Int-only functions. |
| 400 |
| 401 #define SIMD_INT_TYPES(FUNCTION) \ |
| 402 FUNCTION(Int32x4, int32_t, 32, 4) \ |
| 403 FUNCTION(Int16x8, int16_t, 16, 8) \ |
| 404 FUNCTION(Int8x16, int8_t, 8, 16) |
| 405 |
| 406 #define SIMD_UINT_TYPES(FUNCTION) \ |
| 407 FUNCTION(Uint32x4, uint32_t, 32, 4) \ |
| 408 FUNCTION(Uint16x8, uint16_t, 16, 8) \ |
| 409 FUNCTION(Uint8x16, uint8_t, 8, 16) |
| 410 |
| 411 #define CONVERT_SHIFT_ARG_CHECKED(name, index) \ |
| 412 Handle<Object> name_object = args.at(index); \ |
| 413 if (!name_object->IsNumber()) { \ |
| 414 THROW_NEW_ERROR_RETURN_FAILURE( \ |
| 415 isolate, NewTypeError(MessageTemplate::kInvalidSimdOperation)); \ |
| 416 } \ |
| 417 int32_t signed_shift = 0; \ |
| 418 args[index]->ToInt32(&signed_shift); \ |
| 419 uint32_t name = bit_cast<uint32_t>(signed_shift); |
| 420 |
| 421 #define SIMD_LSL_FUNCTION(type, lane_type, lane_bits, lane_count) \ |
| 422 RUNTIME_FUNCTION(Runtime_##type##ShiftLeftByScalar) { \ |
| 423 static const int kLaneCount = lane_count; \ |
| 424 HandleScope scope(isolate); \ |
| 425 DCHECK_EQ(2, args.length()); \ |
| 426 CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ |
| 427 CONVERT_SHIFT_ARG_CHECKED(shift, 1); \ |
| 428 lane_type lanes[kLaneCount] = {0}; \ |
| 429 shift &= lane_bits - 1; \ |
| 430 for (int i = 0; i < kLaneCount; i++) { \ |
| 431 lanes[i] = a->get_lane(i) << shift; \ |
| 432 } \ |
| 433 Handle<type> result = isolate->factory()->New##type(lanes); \ |
| 434 return *result; \ |
| 435 } |
| 436 |
| 437 #define SIMD_LSR_FUNCTION(type, lane_type, lane_bits, lane_count) \ |
| 438 RUNTIME_FUNCTION(Runtime_##type##ShiftRightByScalar) { \ |
| 439 static const int kLaneCount = lane_count; \ |
| 440 HandleScope scope(isolate); \ |
| 441 DCHECK_EQ(2, args.length()); \ |
| 442 CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ |
| 443 CONVERT_SHIFT_ARG_CHECKED(shift, 1); \ |
| 444 lane_type lanes[kLaneCount] = {0}; \ |
| 445 shift &= lane_bits - 1; \ |
| 446 for (int i = 0; i < kLaneCount; i++) { \ |
| 447 lanes[i] = static_cast<lane_type>(bit_cast<lane_type>(a->get_lane(i)) >> \ |
| 448 shift); \ |
| 449 } \ |
| 450 Handle<type> result = isolate->factory()->New##type(lanes); \ |
| 451 return *result; \ |
| 452 } |
| 453 |
| 454 #define SIMD_ASR_FUNCTION(type, lane_type, lane_bits, lane_count) \ |
| 455 RUNTIME_FUNCTION(Runtime_##type##ShiftRightByScalar) { \ |
| 456 static const int kLaneCount = lane_count; \ |
| 457 HandleScope scope(isolate); \ |
| 458 DCHECK_EQ(2, args.length()); \ |
| 459 CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ |
| 460 CONVERT_SHIFT_ARG_CHECKED(shift, 1); \ |
| 461 shift &= lane_bits - 1; \ |
| 462 lane_type lanes[kLaneCount]; \ |
| 463 for (int i = 0; i < kLaneCount; i++) { \ |
| 464 int64_t shifted = static_cast<int64_t>(a->get_lane(i)) >> shift; \ |
| 465 lanes[i] = static_cast<lane_type>(shifted); \ |
| 466 } \ |
| 467 Handle<type> result = isolate->factory()->New##type(lanes); \ |
| 468 return *result; \ |
| 469 } |
| 470 |
| 471 SIMD_INT_TYPES(SIMD_LSL_FUNCTION) |
| 472 SIMD_UINT_TYPES(SIMD_LSL_FUNCTION) |
| 473 SIMD_INT_TYPES(SIMD_ASR_FUNCTION) |
| 474 SIMD_UINT_TYPES(SIMD_LSR_FUNCTION) |
| 475 |
| 476 //------------------------------------------------------------------- |
| 477 |
| 478 // Bool-only functions. |
| 479 |
| 480 #define SIMD_BOOL_TYPES(FUNCTION) \ |
| 481 FUNCTION(Bool32x4, 4) \ |
| 482 FUNCTION(Bool16x8, 8) \ |
| 483 FUNCTION(Bool8x16, 16) |
| 484 |
| 485 #define SIMD_ANY_FUNCTION(type, lane_count) \ |
| 486 RUNTIME_FUNCTION(Runtime_##type##AnyTrue) { \ |
| 487 HandleScope scope(isolate); \ |
| 488 DCHECK_EQ(1, args.length()); \ |
| 489 CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ |
| 490 bool result = false; \ |
| 491 for (int i = 0; i < lane_count; i++) { \ |
| 492 if (a->get_lane(i)) { \ |
| 493 result = true; \ |
| 494 break; \ |
| 495 } \ |
| 496 } \ |
| 497 return isolate->heap()->ToBoolean(result); \ |
| 498 } |
| 499 |
| 500 #define SIMD_ALL_FUNCTION(type, lane_count) \ |
| 501 RUNTIME_FUNCTION(Runtime_##type##AllTrue) { \ |
| 502 HandleScope scope(isolate); \ |
| 503 DCHECK_EQ(1, args.length()); \ |
| 504 CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ |
| 505 bool result = true; \ |
| 506 for (int i = 0; i < lane_count; i++) { \ |
| 507 if (!a->get_lane(i)) { \ |
| 508 result = false; \ |
| 509 break; \ |
| 510 } \ |
| 511 } \ |
| 512 return isolate->heap()->ToBoolean(result); \ |
| 513 } |
| 514 |
| 515 SIMD_BOOL_TYPES(SIMD_ANY_FUNCTION) |
| 516 SIMD_BOOL_TYPES(SIMD_ALL_FUNCTION) |
| 517 |
| 518 //------------------------------------------------------------------- |
| 519 |
| 520 // Small Int-only functions. |
| 521 |
| 522 #define SIMD_SMALL_INT_TYPES(FUNCTION) \ |
| 523 FUNCTION(Int16x8, int16_t, 8) \ |
| 524 FUNCTION(Uint16x8, uint16_t, 8) \ |
| 525 FUNCTION(Int8x16, int8_t, 16) \ |
| 526 FUNCTION(Uint8x16, uint8_t, 16) |
| 527 |
| 528 #define SIMD_ADD_SATURATE_FUNCTION(type, lane_type, lane_count) \ |
| 529 RUNTIME_FUNCTION(Runtime_##type##AddSaturate) { \ |
| 530 HandleScope scope(isolate); \ |
| 531 SIMD_BINARY_OP(type, lane_type, lane_count, AddSaturate, result); \ |
| 532 return *result; \ |
| 533 } |
| 534 |
| 535 #define BINARY_SUB(a, b) (a) - (b) |
| 536 #define SIMD_SUB_SATURATE_FUNCTION(type, lane_type, lane_count) \ |
| 537 RUNTIME_FUNCTION(Runtime_##type##SubSaturate) { \ |
| 538 HandleScope scope(isolate); \ |
| 539 SIMD_BINARY_OP(type, lane_type, lane_count, SubSaturate, result); \ |
| 540 return *result; \ |
| 541 } |
| 542 |
| 543 SIMD_SMALL_INT_TYPES(SIMD_ADD_SATURATE_FUNCTION) |
| 544 SIMD_SMALL_INT_TYPES(SIMD_SUB_SATURATE_FUNCTION) |
| 545 |
| 546 //------------------------------------------------------------------- |
| 547 |
| 548 // Numeric functions. |
| 549 |
| 550 #define SIMD_NUMERIC_TYPES(FUNCTION) \ |
| 551 FUNCTION(Float32x4, float, 4) \ |
| 552 FUNCTION(Int32x4, int32_t, 4) \ |
| 553 FUNCTION(Uint32x4, uint32_t, 4) \ |
| 554 FUNCTION(Int16x8, int16_t, 8) \ |
| 555 FUNCTION(Uint16x8, uint16_t, 8) \ |
| 556 FUNCTION(Int8x16, int8_t, 16) \ |
| 557 FUNCTION(Uint8x16, uint8_t, 16) |
| 558 |
| 559 #define BINARY_ADD(a, b) (a) + (b) |
| 560 #define SIMD_ADD_FUNCTION(type, lane_type, lane_count) \ |
| 561 RUNTIME_FUNCTION(Runtime_##type##Add) { \ |
| 562 HandleScope scope(isolate); \ |
| 563 SIMD_BINARY_OP(type, lane_type, lane_count, BINARY_ADD, result); \ |
| 564 return *result; \ |
| 565 } |
| 566 |
| 567 #define BINARY_SUB(a, b) (a) - (b) |
| 568 #define SIMD_SUB_FUNCTION(type, lane_type, lane_count) \ |
| 569 RUNTIME_FUNCTION(Runtime_##type##Sub) { \ |
| 570 HandleScope scope(isolate); \ |
| 571 SIMD_BINARY_OP(type, lane_type, lane_count, BINARY_SUB, result); \ |
| 572 return *result; \ |
| 573 } |
| 574 |
| 575 #define BINARY_MUL(a, b) (a) * (b) |
| 576 #define SIMD_MUL_FUNCTION(type, lane_type, lane_count) \ |
| 577 RUNTIME_FUNCTION(Runtime_##type##Mul) { \ |
| 578 HandleScope scope(isolate); \ |
| 579 SIMD_BINARY_OP(type, lane_type, lane_count, BINARY_MUL, result); \ |
| 580 return *result; \ |
| 581 } |
| 582 |
| 583 #define SIMD_MIN_FUNCTION(type, lane_type, lane_count) \ |
| 584 RUNTIME_FUNCTION(Runtime_##type##Min) { \ |
| 585 HandleScope scope(isolate); \ |
| 586 SIMD_BINARY_OP(type, lane_type, lane_count, Min, result); \ |
| 587 return *result; \ |
| 588 } |
| 589 |
| 590 #define SIMD_MAX_FUNCTION(type, lane_type, lane_count) \ |
| 591 RUNTIME_FUNCTION(Runtime_##type##Max) { \ |
| 592 HandleScope scope(isolate); \ |
| 593 SIMD_BINARY_OP(type, lane_type, lane_count, Max, result); \ |
| 594 return *result; \ |
| 595 } |
| 596 |
| 597 SIMD_NUMERIC_TYPES(SIMD_ADD_FUNCTION) |
| 598 SIMD_NUMERIC_TYPES(SIMD_SUB_FUNCTION) |
| 599 SIMD_NUMERIC_TYPES(SIMD_MUL_FUNCTION) |
| 600 SIMD_NUMERIC_TYPES(SIMD_MIN_FUNCTION) |
| 601 SIMD_NUMERIC_TYPES(SIMD_MAX_FUNCTION) |
| 602 |
| 603 //------------------------------------------------------------------- |
| 604 |
| 605 // Relational functions. |
| 606 |
| 607 #define SIMD_RELATIONAL_TYPES(FUNCTION) \ |
| 608 FUNCTION(Float32x4, Bool32x4, 4) \ |
| 609 FUNCTION(Int32x4, Bool32x4, 4) \ |
| 610 FUNCTION(Uint32x4, Bool32x4, 4) \ |
| 611 FUNCTION(Int16x8, Bool16x8, 8) \ |
| 612 FUNCTION(Uint16x8, Bool16x8, 8) \ |
| 613 FUNCTION(Int8x16, Bool8x16, 16) \ |
| 614 FUNCTION(Uint8x16, Bool8x16, 16) |
| 615 |
| 616 #define SIMD_EQUALITY_TYPES(FUNCTION) \ |
| 617 SIMD_RELATIONAL_TYPES(FUNCTION) \ |
| 618 FUNCTION(Bool32x4, Bool32x4, 4) \ |
| 619 FUNCTION(Bool16x8, Bool16x8, 8) \ |
| 620 FUNCTION(Bool8x16, Bool8x16, 16) |
| 621 |
| 622 #define SIMD_EQUAL_FUNCTION(type, bool_type, lane_count) \ |
| 623 RUNTIME_FUNCTION(Runtime_##type##Equal) { \ |
| 624 HandleScope scope(isolate); \ |
| 625 SIMD_RELATIONAL_OP(type, bool_type, lane_count, a, b, ==, result); \ |
| 626 return *result; \ |
| 627 } |
| 628 |
| 629 #define SIMD_NOT_EQUAL_FUNCTION(type, bool_type, lane_count) \ |
| 630 RUNTIME_FUNCTION(Runtime_##type##NotEqual) { \ |
| 631 HandleScope scope(isolate); \ |
| 632 SIMD_RELATIONAL_OP(type, bool_type, lane_count, a, b, !=, result); \ |
| 633 return *result; \ |
| 634 } |
| 635 |
| 636 SIMD_EQUALITY_TYPES(SIMD_EQUAL_FUNCTION) |
| 637 SIMD_EQUALITY_TYPES(SIMD_NOT_EQUAL_FUNCTION) |
| 638 |
| 639 #define SIMD_LESS_THAN_FUNCTION(type, bool_type, lane_count) \ |
| 640 RUNTIME_FUNCTION(Runtime_##type##LessThan) { \ |
| 641 HandleScope scope(isolate); \ |
| 642 SIMD_RELATIONAL_OP(type, bool_type, lane_count, a, b, <, result); \ |
| 643 return *result; \ |
| 644 } |
| 645 |
| 646 #define SIMD_LESS_THAN_OR_EQUAL_FUNCTION(type, bool_type, lane_count) \ |
| 647 RUNTIME_FUNCTION(Runtime_##type##LessThanOrEqual) { \ |
| 648 HandleScope scope(isolate); \ |
| 649 SIMD_RELATIONAL_OP(type, bool_type, lane_count, a, b, <=, result); \ |
| 650 return *result; \ |
| 651 } |
| 652 |
| 653 #define SIMD_GREATER_THAN_FUNCTION(type, bool_type, lane_count) \ |
| 654 RUNTIME_FUNCTION(Runtime_##type##GreaterThan) { \ |
| 655 HandleScope scope(isolate); \ |
| 656 SIMD_RELATIONAL_OP(type, bool_type, lane_count, a, b, >, result); \ |
| 657 return *result; \ |
| 658 } |
| 659 |
| 660 #define SIMD_GREATER_THAN_OR_EQUAL_FUNCTION(type, bool_type, lane_count) \ |
| 661 RUNTIME_FUNCTION(Runtime_##type##GreaterThanOrEqual) { \ |
| 662 HandleScope scope(isolate); \ |
| 663 SIMD_RELATIONAL_OP(type, bool_type, lane_count, a, b, >=, result); \ |
| 664 return *result; \ |
| 665 } |
| 666 |
| 667 SIMD_RELATIONAL_TYPES(SIMD_LESS_THAN_FUNCTION) |
| 668 SIMD_RELATIONAL_TYPES(SIMD_LESS_THAN_OR_EQUAL_FUNCTION) |
| 669 SIMD_RELATIONAL_TYPES(SIMD_GREATER_THAN_FUNCTION) |
| 670 SIMD_RELATIONAL_TYPES(SIMD_GREATER_THAN_OR_EQUAL_FUNCTION) |
| 671 |
| 672 //------------------------------------------------------------------- |
| 673 |
| 674 // Logical functions. |
| 675 |
| 676 #define SIMD_LOGICAL_TYPES(FUNCTION) \ |
| 677 FUNCTION(Int32x4, int32_t, 4, _INT) \ |
| 678 FUNCTION(Uint32x4, uint32_t, 4, _INT) \ |
| 679 FUNCTION(Int16x8, int16_t, 8, _INT) \ |
| 680 FUNCTION(Uint16x8, uint16_t, 8, _INT) \ |
| 681 FUNCTION(Int8x16, int8_t, 16, _INT) \ |
| 682 FUNCTION(Uint8x16, uint8_t, 16, _INT) \ |
| 683 FUNCTION(Bool32x4, bool, 4, _BOOL) \ |
| 684 FUNCTION(Bool16x8, bool, 8, _BOOL) \ |
| 685 FUNCTION(Bool8x16, bool, 16, _BOOL) |
| 686 |
| 687 #define BINARY_AND_INT(a, b) (a) & (b) |
| 688 #define BINARY_AND_BOOL(a, b) (a) && (b) |
| 689 #define SIMD_AND_FUNCTION(type, lane_type, lane_count, op) \ |
| 690 RUNTIME_FUNCTION(Runtime_##type##And) { \ |
| 691 HandleScope scope(isolate); \ |
| 692 SIMD_BINARY_OP(type, lane_type, lane_count, BINARY_AND##op, result); \ |
| 693 return *result; \ |
| 694 } |
| 695 |
| 696 #define BINARY_OR_INT(a, b) (a) | (b) |
| 697 #define BINARY_OR_BOOL(a, b) (a) || (b) |
| 698 #define SIMD_OR_FUNCTION(type, lane_type, lane_count, op) \ |
| 699 RUNTIME_FUNCTION(Runtime_##type##Or) { \ |
| 700 HandleScope scope(isolate); \ |
| 701 SIMD_BINARY_OP(type, lane_type, lane_count, BINARY_OR##op, result); \ |
| 702 return *result; \ |
| 703 } |
| 704 |
| 705 #define BINARY_XOR_INT(a, b) (a) ^ (b) |
| 706 #define BINARY_XOR_BOOL(a, b) (a) != (b) |
| 707 #define SIMD_XOR_FUNCTION(type, lane_type, lane_count, op) \ |
| 708 RUNTIME_FUNCTION(Runtime_##type##Xor) { \ |
| 709 HandleScope scope(isolate); \ |
| 710 SIMD_BINARY_OP(type, lane_type, lane_count, BINARY_XOR##op, result); \ |
| 711 return *result; \ |
| 712 } |
| 713 |
| 714 #define UNARY_NOT_INT ~ |
| 715 #define UNARY_NOT_BOOL ! |
| 716 #define SIMD_NOT_FUNCTION(type, lane_type, lane_count, op) \ |
| 717 RUNTIME_FUNCTION(Runtime_##type##Not) { \ |
| 718 HandleScope scope(isolate); \ |
| 719 SIMD_UNARY_OP(type, lane_type, lane_count, UNARY_NOT##op, result); \ |
| 720 return *result; \ |
| 721 } |
| 722 |
| 723 SIMD_LOGICAL_TYPES(SIMD_AND_FUNCTION) |
| 724 SIMD_LOGICAL_TYPES(SIMD_OR_FUNCTION) |
| 725 SIMD_LOGICAL_TYPES(SIMD_XOR_FUNCTION) |
| 726 SIMD_LOGICAL_TYPES(SIMD_NOT_FUNCTION) |
| 727 |
| 728 //------------------------------------------------------------------- |
| 729 |
| 730 // Select functions. |
| 731 |
| 732 #define SIMD_SELECT_TYPES(FUNCTION) \ |
| 733 FUNCTION(Float32x4, float, Bool32x4, 4) \ |
| 734 FUNCTION(Int32x4, int32_t, Bool32x4, 4) \ |
| 735 FUNCTION(Uint32x4, uint32_t, Bool32x4, 4) \ |
| 736 FUNCTION(Int16x8, int16_t, Bool16x8, 8) \ |
| 737 FUNCTION(Uint16x8, uint16_t, Bool16x8, 8) \ |
| 738 FUNCTION(Int8x16, int8_t, Bool8x16, 16) \ |
| 739 FUNCTION(Uint8x16, uint8_t, Bool8x16, 16) |
| 740 |
| 741 #define SIMD_SELECT_FUNCTION(type, lane_type, bool_type, lane_count) \ |
| 742 RUNTIME_FUNCTION(Runtime_##type##Select) { \ |
| 743 static const int kLaneCount = lane_count; \ |
| 744 HandleScope scope(isolate); \ |
| 745 DCHECK_EQ(3, args.length()); \ |
| 746 CONVERT_SIMD_ARG_HANDLE_THROW(bool_type, mask, 0); \ |
| 747 CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 1); \ |
| 748 CONVERT_SIMD_ARG_HANDLE_THROW(type, b, 2); \ |
| 749 lane_type lanes[kLaneCount]; \ |
| 750 for (int i = 0; i < kLaneCount; i++) { \ |
| 751 lanes[i] = mask->get_lane(i) ? a->get_lane(i) : b->get_lane(i); \ |
| 752 } \ |
| 753 Handle<type> result = isolate->factory()->New##type(lanes); \ |
| 754 return *result; \ |
| 755 } |
| 756 |
| 757 SIMD_SELECT_TYPES(SIMD_SELECT_FUNCTION) |
| 758 |
| 759 //------------------------------------------------------------------- |
| 760 |
| 761 // Signed / unsigned functions. |
| 762 |
| 763 #define SIMD_SIGNED_TYPES(FUNCTION) \ |
| 764 FUNCTION(Float32x4, float, 4) \ |
| 765 FUNCTION(Int32x4, int32_t, 4) \ |
| 766 FUNCTION(Int16x8, int16_t, 8) \ |
| 767 FUNCTION(Int8x16, int8_t, 16) |
| 768 |
| 769 #define SIMD_NEG_FUNCTION(type, lane_type, lane_count) \ |
| 770 RUNTIME_FUNCTION(Runtime_##type##Neg) { \ |
| 771 HandleScope scope(isolate); \ |
| 772 SIMD_UNARY_OP(type, lane_type, lane_count, -, result); \ |
| 773 return *result; \ |
| 774 } |
| 775 |
| 776 SIMD_SIGNED_TYPES(SIMD_NEG_FUNCTION) |
| 777 |
| 778 //------------------------------------------------------------------- |
| 779 |
| 780 // Casting functions. |
| 781 |
| 782 #define SIMD_FROM_TYPES(FUNCTION) \ |
| 783 FUNCTION(Float32x4, float, 4, Int32x4, int32_t) \ |
| 784 FUNCTION(Float32x4, float, 4, Uint32x4, uint32_t) \ |
| 785 FUNCTION(Int32x4, int32_t, 4, Float32x4, float) \ |
| 786 FUNCTION(Int32x4, int32_t, 4, Uint32x4, uint32_t) \ |
| 787 FUNCTION(Uint32x4, uint32_t, 4, Float32x4, float) \ |
| 788 FUNCTION(Uint32x4, uint32_t, 4, Int32x4, int32_t) \ |
| 789 FUNCTION(Int16x8, int16_t, 8, Uint16x8, uint16_t) \ |
| 790 FUNCTION(Uint16x8, uint16_t, 8, Int16x8, int16_t) \ |
| 791 FUNCTION(Int8x16, int8_t, 16, Uint8x16, uint8_t) \ |
| 792 FUNCTION(Uint8x16, uint8_t, 16, Int8x16, int8_t) |
| 793 |
| 794 #define SIMD_FROM_FUNCTION(type, lane_type, lane_count, from_type, from_ctype) \ |
| 795 RUNTIME_FUNCTION(Runtime_##type##From##from_type) { \ |
| 796 static const int kLaneCount = lane_count; \ |
| 797 HandleScope scope(isolate); \ |
| 798 DCHECK_EQ(1, args.length()); \ |
| 799 CONVERT_SIMD_ARG_HANDLE_THROW(from_type, a, 0); \ |
| 800 lane_type lanes[kLaneCount]; \ |
| 801 for (int i = 0; i < kLaneCount; i++) { \ |
| 802 from_ctype a_value = a->get_lane(i); \ |
| 803 if (a_value != a_value || !CanCast<lane_type>(a_value)) { \ |
| 804 THROW_NEW_ERROR_RETURN_FAILURE( \ |
| 805 isolate, NewRangeError(MessageTemplate::kInvalidSimdLaneValue)); \ |
| 806 } \ |
| 807 lanes[i] = static_cast<lane_type>(a_value); \ |
| 808 } \ |
| 809 Handle<type> result = isolate->factory()->New##type(lanes); \ |
| 810 return *result; \ |
| 811 } |
| 812 |
| 813 SIMD_FROM_TYPES(SIMD_FROM_FUNCTION) |
| 814 |
| 815 #define SIMD_FROM_BITS_TYPES(FUNCTION) \ |
| 816 FUNCTION(Float32x4, float, 4, Int32x4) \ |
| 817 FUNCTION(Float32x4, float, 4, Uint32x4) \ |
| 818 FUNCTION(Float32x4, float, 4, Int16x8) \ |
| 819 FUNCTION(Float32x4, float, 4, Uint16x8) \ |
| 820 FUNCTION(Float32x4, float, 4, Int8x16) \ |
| 821 FUNCTION(Float32x4, float, 4, Uint8x16) \ |
| 822 FUNCTION(Int32x4, int32_t, 4, Float32x4) \ |
| 823 FUNCTION(Int32x4, int32_t, 4, Uint32x4) \ |
| 824 FUNCTION(Int32x4, int32_t, 4, Int16x8) \ |
| 825 FUNCTION(Int32x4, int32_t, 4, Uint16x8) \ |
| 826 FUNCTION(Int32x4, int32_t, 4, Int8x16) \ |
| 827 FUNCTION(Int32x4, int32_t, 4, Uint8x16) \ |
| 828 FUNCTION(Uint32x4, uint32_t, 4, Float32x4) \ |
| 829 FUNCTION(Uint32x4, uint32_t, 4, Int32x4) \ |
| 830 FUNCTION(Uint32x4, uint32_t, 4, Int16x8) \ |
| 831 FUNCTION(Uint32x4, uint32_t, 4, Uint16x8) \ |
| 832 FUNCTION(Uint32x4, uint32_t, 4, Int8x16) \ |
| 833 FUNCTION(Uint32x4, uint32_t, 4, Uint8x16) \ |
| 834 FUNCTION(Int16x8, int16_t, 8, Float32x4) \ |
| 835 FUNCTION(Int16x8, int16_t, 8, Int32x4) \ |
| 836 FUNCTION(Int16x8, int16_t, 8, Uint32x4) \ |
| 837 FUNCTION(Int16x8, int16_t, 8, Uint16x8) \ |
| 838 FUNCTION(Int16x8, int16_t, 8, Int8x16) \ |
| 839 FUNCTION(Int16x8, int16_t, 8, Uint8x16) \ |
| 840 FUNCTION(Uint16x8, uint16_t, 8, Float32x4) \ |
| 841 FUNCTION(Uint16x8, uint16_t, 8, Int32x4) \ |
| 842 FUNCTION(Uint16x8, uint16_t, 8, Uint32x4) \ |
| 843 FUNCTION(Uint16x8, uint16_t, 8, Int16x8) \ |
| 844 FUNCTION(Uint16x8, uint16_t, 8, Int8x16) \ |
| 845 FUNCTION(Uint16x8, uint16_t, 8, Uint8x16) \ |
| 846 FUNCTION(Int8x16, int8_t, 16, Float32x4) \ |
| 847 FUNCTION(Int8x16, int8_t, 16, Int32x4) \ |
| 848 FUNCTION(Int8x16, int8_t, 16, Uint32x4) \ |
| 849 FUNCTION(Int8x16, int8_t, 16, Int16x8) \ |
| 850 FUNCTION(Int8x16, int8_t, 16, Uint16x8) \ |
| 851 FUNCTION(Int8x16, int8_t, 16, Uint8x16) \ |
| 852 FUNCTION(Uint8x16, uint8_t, 16, Float32x4) \ |
| 853 FUNCTION(Uint8x16, uint8_t, 16, Int32x4) \ |
| 854 FUNCTION(Uint8x16, uint8_t, 16, Uint32x4) \ |
| 855 FUNCTION(Uint8x16, uint8_t, 16, Int16x8) \ |
| 856 FUNCTION(Uint8x16, uint8_t, 16, Uint16x8) \ |
| 857 FUNCTION(Uint8x16, uint8_t, 16, Int8x16) |
| 858 |
| 859 #define SIMD_FROM_BITS_FUNCTION(type, lane_type, lane_count, from_type) \ |
| 860 RUNTIME_FUNCTION(Runtime_##type##From##from_type##Bits) { \ |
| 861 static const int kLaneCount = lane_count; \ |
| 862 HandleScope scope(isolate); \ |
| 863 DCHECK_EQ(1, args.length()); \ |
| 864 CONVERT_SIMD_ARG_HANDLE_THROW(from_type, a, 0); \ |
| 865 lane_type lanes[kLaneCount]; \ |
| 866 a->CopyBits(lanes); \ |
| 867 Handle<type> result = isolate->factory()->New##type(lanes); \ |
| 868 return *result; \ |
| 869 } |
| 870 |
| 871 SIMD_FROM_BITS_TYPES(SIMD_FROM_BITS_FUNCTION) |
| 872 |
| 873 |
| 874 //------------------------------------------------------------------- |
| 875 |
| 876 // Load and Store functions. |
| 877 |
| 878 #define SIMD_LOADN_STOREN_TYPES(FUNCTION) \ |
| 879 FUNCTION(Float32x4, float, 4) \ |
| 880 FUNCTION(Int32x4, int32_t, 4) \ |
| 881 FUNCTION(Uint32x4, uint32_t, 4) |
| 882 |
| 883 #define SIMD_COERCE_INDEX(name, i) \ |
| 884 Handle<Object> length_object, number_object; \ |
| 885 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, length_object, \ |
| 886 Object::ToLength(isolate, args.at(i))); \ |
| 887 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, number_object, \ |
| 888 Object::ToNumber(args.at(i))); \ |
| 889 if (number_object->Number() != length_object->Number()) { \ |
| 890 THROW_NEW_ERROR_RETURN_FAILURE( \ |
| 891 isolate, NewTypeError(MessageTemplate::kInvalidSimdIndex)); \ |
| 892 } \ |
| 893 int32_t name = number_object->Number(); |
| 894 |
| 895 // Common Load and Store Functions |
| 896 |
| 897 #define SIMD_LOAD(type, lane_type, lane_count, count, result) \ |
| 898 static const int kLaneCount = lane_count; \ |
| 899 DCHECK_EQ(2, args.length()); \ |
| 900 CONVERT_SIMD_ARG_HANDLE_THROW(JSTypedArray, tarray, 0); \ |
| 901 SIMD_COERCE_INDEX(index, 1); \ |
| 902 size_t bpe = tarray->element_size(); \ |
| 903 uint32_t bytes = count * sizeof(lane_type); \ |
| 904 size_t byte_length = NumberToSize(tarray->byte_length()); \ |
| 905 if (index < 0 || index * bpe + bytes > byte_length) { \ |
| 906 THROW_NEW_ERROR_RETURN_FAILURE( \ |
| 907 isolate, NewRangeError(MessageTemplate::kInvalidSimdIndex)); \ |
| 908 } \ |
| 909 size_t tarray_offset = NumberToSize(tarray->byte_offset()); \ |
| 910 uint8_t* tarray_base = \ |
| 911 static_cast<uint8_t*>(tarray->GetBuffer()->backing_store()) + \ |
| 912 tarray_offset; \ |
| 913 lane_type lanes[kLaneCount] = {0}; \ |
| 914 memcpy(lanes, tarray_base + index * bpe, bytes); \ |
| 915 Handle<type> result = isolate->factory()->New##type(lanes); |
| 916 |
| 917 #define SIMD_STORE(type, lane_type, lane_count, count, a) \ |
| 918 static const int kLaneCount = lane_count; \ |
| 919 DCHECK_EQ(3, args.length()); \ |
| 920 CONVERT_SIMD_ARG_HANDLE_THROW(JSTypedArray, tarray, 0); \ |
| 921 CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 2); \ |
| 922 SIMD_COERCE_INDEX(index, 1); \ |
| 923 size_t bpe = tarray->element_size(); \ |
| 924 uint32_t bytes = count * sizeof(lane_type); \ |
| 925 size_t byte_length = NumberToSize(tarray->byte_length()); \ |
| 926 if (index < 0 || byte_length < index * bpe + bytes) { \ |
| 927 THROW_NEW_ERROR_RETURN_FAILURE( \ |
| 928 isolate, NewRangeError(MessageTemplate::kInvalidSimdIndex)); \ |
| 929 } \ |
| 930 size_t tarray_offset = NumberToSize(tarray->byte_offset()); \ |
| 931 uint8_t* tarray_base = \ |
| 932 static_cast<uint8_t*>(tarray->GetBuffer()->backing_store()) + \ |
| 933 tarray_offset; \ |
| 934 lane_type lanes[kLaneCount]; \ |
| 935 for (int i = 0; i < kLaneCount; i++) { \ |
| 936 lanes[i] = a->get_lane(i); \ |
| 937 } \ |
| 938 memcpy(tarray_base + index * bpe, lanes, bytes); |
| 939 |
| 940 #define SIMD_LOAD_FUNCTION(type, lane_type, lane_count) \ |
| 941 RUNTIME_FUNCTION(Runtime_##type##Load) { \ |
| 942 HandleScope scope(isolate); \ |
| 943 SIMD_LOAD(type, lane_type, lane_count, lane_count, result); \ |
| 944 return *result; \ |
| 945 } |
| 946 |
| 947 |
| 948 #define SIMD_LOAD1_FUNCTION(type, lane_type, lane_count) \ |
| 949 RUNTIME_FUNCTION(Runtime_##type##Load1) { \ |
| 950 HandleScope scope(isolate); \ |
| 951 SIMD_LOAD(type, lane_type, lane_count, 1, result); \ |
| 952 return *result; \ |
| 953 } |
| 954 |
| 955 |
| 956 #define SIMD_LOAD2_FUNCTION(type, lane_type, lane_count) \ |
| 957 RUNTIME_FUNCTION(Runtime_##type##Load2) { \ |
| 958 HandleScope scope(isolate); \ |
| 959 SIMD_LOAD(type, lane_type, lane_count, 2, result); \ |
| 960 return *result; \ |
| 961 } |
| 962 |
| 963 |
| 964 #define SIMD_LOAD3_FUNCTION(type, lane_type, lane_count) \ |
| 965 RUNTIME_FUNCTION(Runtime_##type##Load3) { \ |
| 966 HandleScope scope(isolate); \ |
| 967 SIMD_LOAD(type, lane_type, lane_count, 3, result); \ |
| 968 return *result; \ |
| 969 } |
| 970 |
| 971 |
| 972 #define SIMD_STORE_FUNCTION(type, lane_type, lane_count) \ |
| 973 RUNTIME_FUNCTION(Runtime_##type##Store) { \ |
| 974 HandleScope scope(isolate); \ |
| 975 SIMD_STORE(type, lane_type, lane_count, lane_count, a); \ |
| 976 return *a; \ |
| 977 } |
| 978 |
| 979 |
| 980 #define SIMD_STORE1_FUNCTION(type, lane_type, lane_count) \ |
| 981 RUNTIME_FUNCTION(Runtime_##type##Store1) { \ |
| 982 HandleScope scope(isolate); \ |
| 983 SIMD_STORE(type, lane_type, lane_count, 1, a); \ |
| 984 return *a; \ |
| 985 } |
| 986 |
| 987 |
| 988 #define SIMD_STORE2_FUNCTION(type, lane_type, lane_count) \ |
| 989 RUNTIME_FUNCTION(Runtime_##type##Store2) { \ |
| 990 HandleScope scope(isolate); \ |
| 991 SIMD_STORE(type, lane_type, lane_count, 2, a); \ |
| 992 return *a; \ |
| 993 } |
| 994 |
| 995 |
| 996 #define SIMD_STORE3_FUNCTION(type, lane_type, lane_count) \ |
| 997 RUNTIME_FUNCTION(Runtime_##type##Store3) { \ |
| 998 HandleScope scope(isolate); \ |
| 999 SIMD_STORE(type, lane_type, lane_count, 3, a); \ |
| 1000 return *a; \ |
| 1001 } |
| 1002 |
| 1003 |
| 1004 SIMD_NUMERIC_TYPES(SIMD_LOAD_FUNCTION) |
| 1005 SIMD_LOADN_STOREN_TYPES(SIMD_LOAD1_FUNCTION) |
| 1006 SIMD_LOADN_STOREN_TYPES(SIMD_LOAD2_FUNCTION) |
| 1007 SIMD_LOADN_STOREN_TYPES(SIMD_LOAD3_FUNCTION) |
| 1008 SIMD_NUMERIC_TYPES(SIMD_STORE_FUNCTION) |
| 1009 SIMD_LOADN_STOREN_TYPES(SIMD_STORE1_FUNCTION) |
| 1010 SIMD_LOADN_STOREN_TYPES(SIMD_STORE2_FUNCTION) |
| 1011 SIMD_LOADN_STOREN_TYPES(SIMD_STORE3_FUNCTION) |
| 1012 |
| 1013 //------------------------------------------------------------------- |
| 1014 |
| 1015 } // namespace internal |
| 1016 } // namespace v8 |
OLD | NEW |