Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(646)

Unified Diff: media/base/yuv_convert.cc

Issue 2694113002: Delete media/base/yuv_convert and dependents. Prefer libyuv. (Closed)
Patch Set: Fix media_unittests. Created 3 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « media/base/yuv_convert.h ('k') | media/base/yuv_convert_perftest.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: media/base/yuv_convert.cc
diff --git a/media/base/yuv_convert.cc b/media/base/yuv_convert.cc
deleted file mode 100644
index 2b156a7bf54cc72fad99e661d8d3a40ca6cd24ff..0000000000000000000000000000000000000000
--- a/media/base/yuv_convert.cc
+++ /dev/null
@@ -1,734 +0,0 @@
-// Copyright (c) 2012 The Chromium Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-// This webpage shows layout of YV12 and other YUV formats
-// http://www.fourcc.org/yuv.php
-// The actual conversion is best described here
-// http://en.wikipedia.org/wiki/YUV
-// An article on optimizing YUV conversion using tables instead of multiplies
-// http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
-//
-// YV12 is a full plane of Y and a half height, half width chroma planes
-// YV16 is a full plane of Y and a full height, half width chroma planes
-//
-// ARGB pixel format is output, which on little endian is stored as BGRA.
-// The alpha is set to 255, allowing the application to use RGBA or RGB32.
-
-#include "media/base/yuv_convert.h"
-
-#include <stddef.h>
-
-#include <algorithm>
-
-#include "base/cpu.h"
-#include "base/logging.h"
-#include "base/macros.h"
-#include "base/memory/aligned_memory.h"
-#include "base/third_party/dynamic_annotations/dynamic_annotations.h"
-#include "build/build_config.h"
-#include "media/base/simd/convert_rgb_to_yuv.h"
-#include "media/base/simd/convert_yuv_to_rgb.h"
-#include "media/base/simd/filter_yuv.h"
-
-#if defined(ARCH_CPU_X86_FAMILY)
-#if defined(COMPILER_MSVC)
-#include <intrin.h>
-#else
-#include <mmintrin.h>
-#endif
-#endif
-
-// Assembly functions are declared without namespace.
-extern "C" { void EmptyRegisterState_MMX(); } // extern "C"
-
-namespace media {
-
-typedef void (
- *FilterYUVRowsProc)(uint8_t*, const uint8_t*, const uint8_t*, int, uint8_t);
-
-typedef void (*ConvertRGBToYUVProc)(const uint8_t*,
- uint8_t*,
- uint8_t*,
- uint8_t*,
- int,
- int,
- int,
- int,
- int);
-
-typedef void (*ConvertYUVToRGB32Proc)(const uint8_t*,
- const uint8_t*,
- const uint8_t*,
- uint8_t*,
- int,
- int,
- int,
- int,
- int,
- YUVType);
-
-typedef void (*ConvertYUVAToARGBProc)(const uint8_t*,
- const uint8_t*,
- const uint8_t*,
- const uint8_t*,
- uint8_t*,
- int,
- int,
- int,
- int,
- int,
- int,
- YUVType);
-
-typedef void (*ConvertYUVToRGB32RowProc)(const uint8_t*,
- const uint8_t*,
- const uint8_t*,
- uint8_t*,
- ptrdiff_t,
- const int16_t*);
-
-typedef void (*ConvertYUVAToARGBRowProc)(const uint8_t*,
- const uint8_t*,
- const uint8_t*,
- const uint8_t*,
- uint8_t*,
- ptrdiff_t,
- const int16_t*);
-
-typedef void (*ScaleYUVToRGB32RowProc)(const uint8_t*,
- const uint8_t*,
- const uint8_t*,
- uint8_t*,
- ptrdiff_t,
- ptrdiff_t,
- const int16_t*);
-
-static FilterYUVRowsProc g_filter_yuv_rows_proc_ = NULL;
-static ConvertYUVToRGB32RowProc g_convert_yuv_to_rgb32_row_proc_ = NULL;
-static ScaleYUVToRGB32RowProc g_scale_yuv_to_rgb32_row_proc_ = NULL;
-static ScaleYUVToRGB32RowProc g_linear_scale_yuv_to_rgb32_row_proc_ = NULL;
-static ConvertRGBToYUVProc g_convert_rgb32_to_yuv_proc_ = NULL;
-static ConvertRGBToYUVProc g_convert_rgb24_to_yuv_proc_ = NULL;
-static ConvertYUVToRGB32Proc g_convert_yuv_to_rgb32_proc_ = NULL;
-static ConvertYUVAToARGBProc g_convert_yuva_to_argb_proc_ = NULL;
-
-static const int kYUVToRGBTableSize = 256 * 4 * 4 * sizeof(int16_t);
-
-static int16_t* g_table_rec601 = NULL;
-static int16_t* g_table_jpeg = NULL;
-static int16_t* g_table_rec709 = NULL;
-
-// Empty SIMD registers state after using them.
-void EmptyRegisterStateStub() {}
-#if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
-void EmptyRegisterStateIntrinsic() { _mm_empty(); }
-#endif
-typedef void (*EmptyRegisterStateProc)();
-static EmptyRegisterStateProc g_empty_register_state_proc_ = NULL;
-
-// Get the appropriate value to bitshift by for vertical indices.
-int GetVerticalShift(YUVType type) {
- switch (type) {
- case YV16:
- return 0;
- case YV12:
- case YV12J:
- case YV12HD:
- return 1;
- }
- NOTREACHED();
- return 0;
-}
-
-const int16_t* GetLookupTable(YUVType type) {
- switch (type) {
- case YV12:
- case YV16:
- return g_table_rec601;
- case YV12J:
- return g_table_jpeg;
- case YV12HD:
- return g_table_rec709;
- }
- NOTREACHED();
- return NULL;
-}
-
-// Populates a pre-allocated lookup table from a YUV->RGB matrix.
-const int16_t* PopulateYUVToRGBTable(const double matrix[3][3],
- bool full_range,
- int16_t* table) {
- // We'll have 4 sub-tables that lie contiguous in memory, one for each of Y,
- // U, V and A.
- const int kNumTables = 4;
- // Each table has 256 rows (for all possible 8-bit values).
- const int kNumRows = 256;
- // Each row has 4 columns, for contributions to each of R, G, B and A.
- const int kNumColumns = 4;
- // Each element is a fixed-point (10.6) 16-bit signed value.
- const int kElementSize = sizeof(int16_t);
-
- // Sanity check that our constants here match the size of the statically
- // allocated tables.
- static_assert(
- kNumTables * kNumRows * kNumColumns * kElementSize == kYUVToRGBTableSize,
- "YUV lookup table size doesn't match expectation.");
-
- // Y needs an offset of -16 for color ranges that ignore the lower 16 values,
- // U and V get -128 to put them in [-128, 127] from [0, 255].
- int offsets[3] = {(full_range ? 0 : -16), -128, -128};
-
- for (int i = 0; i < kNumRows; ++i) {
- // Y, U, and V contributions to each of R, G, B and A.
- for (int j = 0; j < 3; ++j) {
-#if defined(OS_ANDROID)
- // Android is RGBA.
- table[(j * kNumRows + i) * kNumColumns + 0] =
- matrix[j][0] * 64 * (i + offsets[j]) + 0.5;
- table[(j * kNumRows + i) * kNumColumns + 1] =
- matrix[j][1] * 64 * (i + offsets[j]) + 0.5;
- table[(j * kNumRows + i) * kNumColumns + 2] =
- matrix[j][2] * 64 * (i + offsets[j]) + 0.5;
-#else
- // Other platforms are BGRA.
- table[(j * kNumRows + i) * kNumColumns + 0] =
- matrix[j][2] * 64 * (i + offsets[j]) + 0.5;
- table[(j * kNumRows + i) * kNumColumns + 1] =
- matrix[j][1] * 64 * (i + offsets[j]) + 0.5;
- table[(j * kNumRows + i) * kNumColumns + 2] =
- matrix[j][0] * 64 * (i + offsets[j]) + 0.5;
-#endif
- // Alpha contributions from Y and V are always 0. U is set such that
- // all values result in a full '255' alpha value.
- table[(j * kNumRows + i) * kNumColumns + 3] = (j == 1) ? 256 * 64 - 1 : 0;
- }
- // And YUVA alpha is passed through as-is.
- for (int k = 0; k < kNumTables; ++k)
- table[((kNumTables - 1) * kNumRows + i) * kNumColumns + k] = i;
- }
-
- return table;
-}
-
-void InitializeCPUSpecificYUVConversions() {
- CHECK(!g_filter_yuv_rows_proc_);
- CHECK(!g_convert_yuv_to_rgb32_row_proc_);
- CHECK(!g_scale_yuv_to_rgb32_row_proc_);
- CHECK(!g_linear_scale_yuv_to_rgb32_row_proc_);
- CHECK(!g_convert_rgb32_to_yuv_proc_);
- CHECK(!g_convert_rgb24_to_yuv_proc_);
- CHECK(!g_convert_yuv_to_rgb32_proc_);
- CHECK(!g_convert_yuva_to_argb_proc_);
- CHECK(!g_empty_register_state_proc_);
-
- g_filter_yuv_rows_proc_ = FilterYUVRows_C;
- g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_C;
- g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_C;
- g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_C;
- g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_C;
- g_convert_rgb24_to_yuv_proc_ = ConvertRGB24ToYUV_C;
- g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_C;
- g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_C;
- g_empty_register_state_proc_ = EmptyRegisterStateStub;
-
- // Assembly code confuses MemorySanitizer. Also not available in iOS builds.
-#if defined(ARCH_CPU_X86_FAMILY) && !defined(MEMORY_SANITIZER) && \
- !defined(OS_IOS)
- g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_MMX;
-
-#if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
- g_empty_register_state_proc_ = EmptyRegisterStateIntrinsic;
-#else
- g_empty_register_state_proc_ = EmptyRegisterState_MMX;
-#endif
-
- g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_SSE;
- g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_SSE;
-
- g_filter_yuv_rows_proc_ = FilterYUVRows_SSE2;
- g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_SSE2;
-
-#if defined(ARCH_CPU_X86_64)
- g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE2_X64;
-
- // Technically this should be in the MMX section, but MSVC will optimize out
- // the export of LinearScaleYUVToRGB32Row_MMX, which is required by the unit
- // tests, if that decision can be made at compile time. Since all X64 CPUs
- // have SSE2, we can hack around this by making the selection here.
- g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX_X64;
-#else
- g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE;
- g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_SSE;
-#endif
-
- base::CPU cpu;
- if (cpu.has_ssse3()) {
- g_convert_rgb24_to_yuv_proc_ = &ConvertRGB24ToYUV_SSSE3;
-
- // TODO(hclam): Add ConvertRGB32ToYUV_SSSE3 when the cyan problem is solved.
- // See: crbug.com/100462
- }
-#endif
-
- // Initialize YUV conversion lookup tables.
-
- // SD Rec601 YUV->RGB matrix, see http://www.fourcc.org/fccyvrgb.php
- const double kRec601ConvertMatrix[3][3] = {
- {1.164, 1.164, 1.164}, {0.0, -0.391, 2.018}, {1.596, -0.813, 0.0},
- };
-
- // JPEG table, values from above link.
- const double kJPEGConvertMatrix[3][3] = {
- {1.0, 1.0, 1.0}, {0.0, -0.34414, 1.772}, {1.402, -0.71414, 0.0},
- };
-
- // Rec709 "HD" color space, values from:
- // http://www.equasys.de/colorconversion.html
- const double kRec709ConvertMatrix[3][3] = {
- {1.164, 1.164, 1.164}, {0.0, -0.213, 2.112}, {1.793, -0.533, 0.0},
- };
-
- g_table_rec601 =
- static_cast<int16_t*>(base::AlignedAlloc(kYUVToRGBTableSize, 16));
- PopulateYUVToRGBTable(kRec601ConvertMatrix, false, g_table_rec601);
-
- g_table_rec709 =
- static_cast<int16_t*>(base::AlignedAlloc(kYUVToRGBTableSize, 16));
- PopulateYUVToRGBTable(kRec709ConvertMatrix, false, g_table_rec709);
-
- g_table_jpeg =
- static_cast<int16_t*>(base::AlignedAlloc(kYUVToRGBTableSize, 16));
- PopulateYUVToRGBTable(kJPEGConvertMatrix, true, g_table_jpeg);
-}
-
-// Empty SIMD registers state after using them.
-void EmptyRegisterState() { g_empty_register_state_proc_(); }
-
-// 16.16 fixed point arithmetic
-const int kFractionBits = 16;
-const int kFractionMax = 1 << kFractionBits;
-const int kFractionMask = ((1 << kFractionBits) - 1);
-
-// Scale a frame of YUV to 32 bit ARGB.
-void ScaleYUVToRGB32(const uint8_t* y_buf,
- const uint8_t* u_buf,
- const uint8_t* v_buf,
- uint8_t* rgb_buf,
- int source_width,
- int source_height,
- int width,
- int height,
- int y_pitch,
- int uv_pitch,
- int rgb_pitch,
- YUVType yuv_type,
- Rotate view_rotate,
- ScaleFilter filter) {
- // Handle zero sized sources and destinations.
- if ((yuv_type == YV12 && (source_width < 2 || source_height < 2)) ||
- (yuv_type == YV16 && (source_width < 2 || source_height < 1)) ||
- width == 0 || height == 0)
- return;
-
- const int16_t* lookup_table = GetLookupTable(yuv_type);
-
- // 4096 allows 3 buffers to fit in 12k.
- // Helps performance on CPU with 16K L1 cache.
- // Large enough for 3830x2160 and 30" displays which are 2560x1600.
- const int kFilterBufferSize = 4096;
- // Disable filtering if the screen is too big (to avoid buffer overflows).
- // This should never happen to regular users: they don't have monitors
- // wider than 4096 pixels.
- // TODO(fbarchard): Allow rotated videos to filter.
- if (source_width > kFilterBufferSize || view_rotate)
- filter = FILTER_NONE;
-
- unsigned int y_shift = GetVerticalShift(yuv_type);
- // Diagram showing origin and direction of source sampling.
- // ->0 4<-
- // 7 3
- //
- // 6 5
- // ->1 2<-
- // Rotations that start at right side of image.
- if ((view_rotate == ROTATE_180) || (view_rotate == ROTATE_270) ||
- (view_rotate == MIRROR_ROTATE_0) || (view_rotate == MIRROR_ROTATE_90)) {
- y_buf += source_width - 1;
- u_buf += source_width / 2 - 1;
- v_buf += source_width / 2 - 1;
- source_width = -source_width;
- }
- // Rotations that start at bottom of image.
- if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_180) ||
- (view_rotate == MIRROR_ROTATE_90) || (view_rotate == MIRROR_ROTATE_180)) {
- y_buf += (source_height - 1) * y_pitch;
- u_buf += ((source_height >> y_shift) - 1) * uv_pitch;
- v_buf += ((source_height >> y_shift) - 1) * uv_pitch;
- source_height = -source_height;
- }
-
- int source_dx = source_width * kFractionMax / width;
-
- if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_270)) {
- int tmp = height;
- height = width;
- width = tmp;
- tmp = source_height;
- source_height = source_width;
- source_width = tmp;
- int source_dy = source_height * kFractionMax / height;
- source_dx = ((source_dy >> kFractionBits) * y_pitch) << kFractionBits;
- if (view_rotate == ROTATE_90) {
- y_pitch = -1;
- uv_pitch = -1;
- source_height = -source_height;
- } else {
- y_pitch = 1;
- uv_pitch = 1;
- }
- }
-
- // Need padding because FilterRows() will write 1 to 16 extra pixels
- // after the end for SSE2 version.
- uint8_t yuvbuf[16 + kFilterBufferSize * 3 + 16];
- uint8_t* ybuf = reinterpret_cast<uint8_t*>(
- reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15);
- uint8_t* ubuf = ybuf + kFilterBufferSize;
- uint8_t* vbuf = ubuf + kFilterBufferSize;
-
- // TODO(fbarchard): Fixed point math is off by 1 on negatives.
-
- // We take a y-coordinate in [0,1] space in the source image space, and
- // transform to a y-coordinate in [0,1] space in the destination image space.
- // Note that the coordinate endpoints lie on pixel boundaries, not on pixel
- // centers: e.g. a two-pixel-high image will have pixel centers at 0.25 and
- // 0.75. The formula is as follows (in fixed-point arithmetic):
- // y_dst = dst_height * ((y_src + 0.5) / src_height)
- // dst_pixel = clamp([0, dst_height - 1], floor(y_dst - 0.5))
- // Implement this here as an accumulator + delta, to avoid expensive math
- // in the loop.
- int source_y_subpixel_accum =
- ((kFractionMax / 2) * source_height) / height - (kFractionMax / 2);
- int source_y_subpixel_delta = ((1 << kFractionBits) * source_height) / height;
-
- // TODO(fbarchard): Split this into separate function for better efficiency.
- for (int y = 0; y < height; ++y) {
- uint8_t* dest_pixel = rgb_buf + y * rgb_pitch;
- int source_y_subpixel = source_y_subpixel_accum;
- source_y_subpixel_accum += source_y_subpixel_delta;
- if (source_y_subpixel < 0)
- source_y_subpixel = 0;
- else if (source_y_subpixel > ((source_height - 1) << kFractionBits))
- source_y_subpixel = (source_height - 1) << kFractionBits;
-
- const uint8_t* y_ptr = NULL;
- const uint8_t* u_ptr = NULL;
- const uint8_t* v_ptr = NULL;
- // Apply vertical filtering if necessary.
- // TODO(fbarchard): Remove memcpy when not necessary.
- if (filter & media::FILTER_BILINEAR_V) {
- int source_y = source_y_subpixel >> kFractionBits;
- y_ptr = y_buf + source_y * y_pitch;
- u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
- v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
-
- // Vertical scaler uses 16.8 fixed point.
- uint8_t source_y_fraction = (source_y_subpixel & kFractionMask) >> 8;
- if (source_y_fraction != 0) {
- g_filter_yuv_rows_proc_(
- ybuf, y_ptr, y_ptr + y_pitch, source_width, source_y_fraction);
- } else {
- memcpy(ybuf, y_ptr, source_width);
- }
- y_ptr = ybuf;
- ybuf[source_width] = ybuf[source_width - 1];
-
- int uv_source_width = (source_width + 1) / 2;
- uint8_t source_uv_fraction;
-
- // For formats with half-height UV planes, each even-numbered pixel row
- // should not interpolate, since the next row to interpolate from should
- // be a duplicate of the current row.
- if (y_shift && (source_y & 0x1) == 0)
- source_uv_fraction = 0;
- else
- source_uv_fraction = source_y_fraction;
-
- if (source_uv_fraction != 0) {
- g_filter_yuv_rows_proc_(
- ubuf, u_ptr, u_ptr + uv_pitch, uv_source_width, source_uv_fraction);
- g_filter_yuv_rows_proc_(
- vbuf, v_ptr, v_ptr + uv_pitch, uv_source_width, source_uv_fraction);
- } else {
- memcpy(ubuf, u_ptr, uv_source_width);
- memcpy(vbuf, v_ptr, uv_source_width);
- }
- u_ptr = ubuf;
- v_ptr = vbuf;
- ubuf[uv_source_width] = ubuf[uv_source_width - 1];
- vbuf[uv_source_width] = vbuf[uv_source_width - 1];
- } else {
- // Offset by 1/2 pixel for center sampling.
- int source_y = (source_y_subpixel + (kFractionMax / 2)) >> kFractionBits;
- y_ptr = y_buf + source_y * y_pitch;
- u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
- v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
- }
- if (source_dx == kFractionMax) { // Not scaled
- g_convert_yuv_to_rgb32_row_proc_(y_ptr, u_ptr, v_ptr, dest_pixel, width,
- lookup_table);
- } else {
- if (filter & FILTER_BILINEAR_H) {
- g_linear_scale_yuv_to_rgb32_row_proc_(y_ptr, u_ptr, v_ptr, dest_pixel,
- width, source_dx,
- lookup_table);
- } else {
- g_scale_yuv_to_rgb32_row_proc_(y_ptr, u_ptr, v_ptr, dest_pixel, width,
- source_dx, lookup_table);
- }
- }
- }
-
- g_empty_register_state_proc_();
-}
-
-// Scale a frame of YV12 to 32 bit ARGB for a specific rectangle.
-void ScaleYUVToRGB32WithRect(const uint8_t* y_buf,
- const uint8_t* u_buf,
- const uint8_t* v_buf,
- uint8_t* rgb_buf,
- int source_width,
- int source_height,
- int dest_width,
- int dest_height,
- int dest_rect_left,
- int dest_rect_top,
- int dest_rect_right,
- int dest_rect_bottom,
- int y_pitch,
- int uv_pitch,
- int rgb_pitch) {
- // This routine doesn't currently support up-scaling.
- CHECK_LE(dest_width, source_width);
- CHECK_LE(dest_height, source_height);
-
- // Sanity-check the destination rectangle.
- DCHECK(dest_rect_left >= 0 && dest_rect_right <= dest_width);
- DCHECK(dest_rect_top >= 0 && dest_rect_bottom <= dest_height);
- DCHECK(dest_rect_right > dest_rect_left);
- DCHECK(dest_rect_bottom > dest_rect_top);
-
- const int16_t* lookup_table = GetLookupTable(YV12);
-
- // Fixed-point value of vertical and horizontal scale down factor.
- // Values are in the format 16.16.
- int y_step = kFractionMax * source_height / dest_height;
- int x_step = kFractionMax * source_width / dest_width;
-
- // Determine the coordinates of the rectangle in 16.16 coords.
- // NB: Our origin is the *center* of the top/left pixel, NOT its top/left.
- // If we're down-scaling by more than a factor of two, we start with a 50%
- // fraction to avoid degenerating to point-sampling - we should really just
- // fix the fraction at 50% for all pixels in that case.
- int source_left = dest_rect_left * x_step;
- int source_right = (dest_rect_right - 1) * x_step;
- if (x_step < kFractionMax * 2) {
- source_left += ((x_step - kFractionMax) / 2);
- source_right += ((x_step - kFractionMax) / 2);
- } else {
- source_left += kFractionMax / 2;
- source_right += kFractionMax / 2;
- }
- int source_top = dest_rect_top * y_step;
- if (y_step < kFractionMax * 2) {
- source_top += ((y_step - kFractionMax) / 2);
- } else {
- source_top += kFractionMax / 2;
- }
-
- // Determine the parts of the Y, U and V buffers to interpolate.
- int source_y_left = source_left >> kFractionBits;
- int source_y_right =
- std::min((source_right >> kFractionBits) + 2, source_width + 1);
-
- int source_uv_left = source_y_left / 2;
- int source_uv_right = std::min((source_right >> (kFractionBits + 1)) + 2,
- (source_width + 1) / 2);
-
- int source_y_width = source_y_right - source_y_left;
- int source_uv_width = source_uv_right - source_uv_left;
-
- // Determine number of pixels in each output row.
- int dest_rect_width = dest_rect_right - dest_rect_left;
-
- // Intermediate buffer for vertical interpolation.
- // 4096 bytes allows 3 buffers to fit in 12k, which fits in a 16K L1 cache,
- // and is bigger than most users will generally need.
- // The buffer is 16-byte aligned and padded with 16 extra bytes; some of the
- // FilterYUVRowsProcs have alignment requirements, and the SSE version can
- // write up to 16 bytes past the end of the buffer.
- const int kFilterBufferSize = 4096;
- const bool kAvoidUsingOptimizedFilter = source_width > kFilterBufferSize;
- uint8_t yuv_temp[16 + kFilterBufferSize * 3 + 16];
- // memset() yuv_temp to 0 to avoid bogus warnings when running on Valgrind.
- if (RunningOnValgrind())
- memset(yuv_temp, 0, sizeof(yuv_temp));
- uint8_t* y_temp = reinterpret_cast<uint8_t*>(
- reinterpret_cast<uintptr_t>(yuv_temp + 15) & ~15);
- uint8_t* u_temp = y_temp + kFilterBufferSize;
- uint8_t* v_temp = u_temp + kFilterBufferSize;
-
- // Move to the top-left pixel of output.
- rgb_buf += dest_rect_top * rgb_pitch;
- rgb_buf += dest_rect_left * 4;
-
- // For each destination row perform interpolation and color space
- // conversion to produce the output.
- for (int row = dest_rect_top; row < dest_rect_bottom; ++row) {
- // Round the fixed-point y position to get the current row.
- int source_row = source_top >> kFractionBits;
- int source_uv_row = source_row / 2;
- DCHECK(source_row < source_height);
-
- // Locate the first row for each plane for interpolation.
- const uint8_t* y0_ptr = y_buf + y_pitch * source_row + source_y_left;
- const uint8_t* u0_ptr = u_buf + uv_pitch * source_uv_row + source_uv_left;
- const uint8_t* v0_ptr = v_buf + uv_pitch * source_uv_row + source_uv_left;
- const uint8_t* y1_ptr = NULL;
- const uint8_t* u1_ptr = NULL;
- const uint8_t* v1_ptr = NULL;
-
- // Locate the second row for interpolation, being careful not to overrun.
- if (source_row + 1 >= source_height) {
- y1_ptr = y0_ptr;
- } else {
- y1_ptr = y0_ptr + y_pitch;
- }
- if (source_uv_row + 1 >= (source_height + 1) / 2) {
- u1_ptr = u0_ptr;
- v1_ptr = v0_ptr;
- } else {
- u1_ptr = u0_ptr + uv_pitch;
- v1_ptr = v0_ptr + uv_pitch;
- }
-
- if (!kAvoidUsingOptimizedFilter) {
- // Vertical scaler uses 16.8 fixed point.
- uint8_t fraction = (source_top & kFractionMask) >> 8;
- g_filter_yuv_rows_proc_(
- y_temp + source_y_left, y0_ptr, y1_ptr, source_y_width, fraction);
- g_filter_yuv_rows_proc_(
- u_temp + source_uv_left, u0_ptr, u1_ptr, source_uv_width, fraction);
- g_filter_yuv_rows_proc_(
- v_temp + source_uv_left, v0_ptr, v1_ptr, source_uv_width, fraction);
-
- // Perform horizontal interpolation and color space conversion.
- // TODO(hclam): Use the MMX version after more testing.
- LinearScaleYUVToRGB32RowWithRange_C(y_temp, u_temp, v_temp, rgb_buf,
- dest_rect_width, source_left, x_step,
- lookup_table);
- } else {
- // If the frame is too large then we linear scale a single row.
- LinearScaleYUVToRGB32RowWithRange_C(y0_ptr, u0_ptr, v0_ptr, rgb_buf,
- dest_rect_width, source_left, x_step,
- lookup_table);
- }
-
- // Advance vertically in the source and destination image.
- source_top += y_step;
- rgb_buf += rgb_pitch;
- }
-
- g_empty_register_state_proc_();
-}
-
-void ConvertRGB32ToYUV(const uint8_t* rgbframe,
- uint8_t* yplane,
- uint8_t* uplane,
- uint8_t* vplane,
- int width,
- int height,
- int rgbstride,
- int ystride,
- int uvstride) {
- g_convert_rgb32_to_yuv_proc_(rgbframe,
- yplane,
- uplane,
- vplane,
- width,
- height,
- rgbstride,
- ystride,
- uvstride);
-}
-
-void ConvertRGB24ToYUV(const uint8_t* rgbframe,
- uint8_t* yplane,
- uint8_t* uplane,
- uint8_t* vplane,
- int width,
- int height,
- int rgbstride,
- int ystride,
- int uvstride) {
- g_convert_rgb24_to_yuv_proc_(rgbframe,
- yplane,
- uplane,
- vplane,
- width,
- height,
- rgbstride,
- ystride,
- uvstride);
-}
-
-void ConvertYUVToRGB32(const uint8_t* yplane,
- const uint8_t* uplane,
- const uint8_t* vplane,
- uint8_t* rgbframe,
- int width,
- int height,
- int ystride,
- int uvstride,
- int rgbstride,
- YUVType yuv_type) {
- g_convert_yuv_to_rgb32_proc_(yplane,
- uplane,
- vplane,
- rgbframe,
- width,
- height,
- ystride,
- uvstride,
- rgbstride,
- yuv_type);
-}
-
-void ConvertYUVAToARGB(const uint8_t* yplane,
- const uint8_t* uplane,
- const uint8_t* vplane,
- const uint8_t* aplane,
- uint8_t* rgbframe,
- int width,
- int height,
- int ystride,
- int uvstride,
- int astride,
- int rgbstride,
- YUVType yuv_type) {
- g_convert_yuva_to_argb_proc_(yplane,
- uplane,
- vplane,
- aplane,
- rgbframe,
- width,
- height,
- ystride,
- uvstride,
- astride,
- rgbstride,
- yuv_type);
-}
-
-} // namespace media
« no previous file with comments | « media/base/yuv_convert.h ('k') | media/base/yuv_convert_perftest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698