| Index: media/base/yuv_convert.cc
|
| diff --git a/media/base/yuv_convert.cc b/media/base/yuv_convert.cc
|
| deleted file mode 100644
|
| index 2b156a7bf54cc72fad99e661d8d3a40ca6cd24ff..0000000000000000000000000000000000000000
|
| --- a/media/base/yuv_convert.cc
|
| +++ /dev/null
|
| @@ -1,734 +0,0 @@
|
| -// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -// This webpage shows layout of YV12 and other YUV formats
|
| -// http://www.fourcc.org/yuv.php
|
| -// The actual conversion is best described here
|
| -// http://en.wikipedia.org/wiki/YUV
|
| -// An article on optimizing YUV conversion using tables instead of multiplies
|
| -// http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
|
| -//
|
| -// YV12 is a full plane of Y and a half height, half width chroma planes
|
| -// YV16 is a full plane of Y and a full height, half width chroma planes
|
| -//
|
| -// ARGB pixel format is output, which on little endian is stored as BGRA.
|
| -// The alpha is set to 255, allowing the application to use RGBA or RGB32.
|
| -
|
| -#include "media/base/yuv_convert.h"
|
| -
|
| -#include <stddef.h>
|
| -
|
| -#include <algorithm>
|
| -
|
| -#include "base/cpu.h"
|
| -#include "base/logging.h"
|
| -#include "base/macros.h"
|
| -#include "base/memory/aligned_memory.h"
|
| -#include "base/third_party/dynamic_annotations/dynamic_annotations.h"
|
| -#include "build/build_config.h"
|
| -#include "media/base/simd/convert_rgb_to_yuv.h"
|
| -#include "media/base/simd/convert_yuv_to_rgb.h"
|
| -#include "media/base/simd/filter_yuv.h"
|
| -
|
| -#if defined(ARCH_CPU_X86_FAMILY)
|
| -#if defined(COMPILER_MSVC)
|
| -#include <intrin.h>
|
| -#else
|
| -#include <mmintrin.h>
|
| -#endif
|
| -#endif
|
| -
|
| -// Assembly functions are declared without namespace.
|
| -extern "C" { void EmptyRegisterState_MMX(); } // extern "C"
|
| -
|
| -namespace media {
|
| -
|
| -typedef void (
|
| - *FilterYUVRowsProc)(uint8_t*, const uint8_t*, const uint8_t*, int, uint8_t);
|
| -
|
| -typedef void (*ConvertRGBToYUVProc)(const uint8_t*,
|
| - uint8_t*,
|
| - uint8_t*,
|
| - uint8_t*,
|
| - int,
|
| - int,
|
| - int,
|
| - int,
|
| - int);
|
| -
|
| -typedef void (*ConvertYUVToRGB32Proc)(const uint8_t*,
|
| - const uint8_t*,
|
| - const uint8_t*,
|
| - uint8_t*,
|
| - int,
|
| - int,
|
| - int,
|
| - int,
|
| - int,
|
| - YUVType);
|
| -
|
| -typedef void (*ConvertYUVAToARGBProc)(const uint8_t*,
|
| - const uint8_t*,
|
| - const uint8_t*,
|
| - const uint8_t*,
|
| - uint8_t*,
|
| - int,
|
| - int,
|
| - int,
|
| - int,
|
| - int,
|
| - int,
|
| - YUVType);
|
| -
|
| -typedef void (*ConvertYUVToRGB32RowProc)(const uint8_t*,
|
| - const uint8_t*,
|
| - const uint8_t*,
|
| - uint8_t*,
|
| - ptrdiff_t,
|
| - const int16_t*);
|
| -
|
| -typedef void (*ConvertYUVAToARGBRowProc)(const uint8_t*,
|
| - const uint8_t*,
|
| - const uint8_t*,
|
| - const uint8_t*,
|
| - uint8_t*,
|
| - ptrdiff_t,
|
| - const int16_t*);
|
| -
|
| -typedef void (*ScaleYUVToRGB32RowProc)(const uint8_t*,
|
| - const uint8_t*,
|
| - const uint8_t*,
|
| - uint8_t*,
|
| - ptrdiff_t,
|
| - ptrdiff_t,
|
| - const int16_t*);
|
| -
|
| -static FilterYUVRowsProc g_filter_yuv_rows_proc_ = NULL;
|
| -static ConvertYUVToRGB32RowProc g_convert_yuv_to_rgb32_row_proc_ = NULL;
|
| -static ScaleYUVToRGB32RowProc g_scale_yuv_to_rgb32_row_proc_ = NULL;
|
| -static ScaleYUVToRGB32RowProc g_linear_scale_yuv_to_rgb32_row_proc_ = NULL;
|
| -static ConvertRGBToYUVProc g_convert_rgb32_to_yuv_proc_ = NULL;
|
| -static ConvertRGBToYUVProc g_convert_rgb24_to_yuv_proc_ = NULL;
|
| -static ConvertYUVToRGB32Proc g_convert_yuv_to_rgb32_proc_ = NULL;
|
| -static ConvertYUVAToARGBProc g_convert_yuva_to_argb_proc_ = NULL;
|
| -
|
| -static const int kYUVToRGBTableSize = 256 * 4 * 4 * sizeof(int16_t);
|
| -
|
| -static int16_t* g_table_rec601 = NULL;
|
| -static int16_t* g_table_jpeg = NULL;
|
| -static int16_t* g_table_rec709 = NULL;
|
| -
|
| -// Empty SIMD registers state after using them.
|
| -void EmptyRegisterStateStub() {}
|
| -#if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
|
| -void EmptyRegisterStateIntrinsic() { _mm_empty(); }
|
| -#endif
|
| -typedef void (*EmptyRegisterStateProc)();
|
| -static EmptyRegisterStateProc g_empty_register_state_proc_ = NULL;
|
| -
|
| -// Get the appropriate value to bitshift by for vertical indices.
|
| -int GetVerticalShift(YUVType type) {
|
| - switch (type) {
|
| - case YV16:
|
| - return 0;
|
| - case YV12:
|
| - case YV12J:
|
| - case YV12HD:
|
| - return 1;
|
| - }
|
| - NOTREACHED();
|
| - return 0;
|
| -}
|
| -
|
| -const int16_t* GetLookupTable(YUVType type) {
|
| - switch (type) {
|
| - case YV12:
|
| - case YV16:
|
| - return g_table_rec601;
|
| - case YV12J:
|
| - return g_table_jpeg;
|
| - case YV12HD:
|
| - return g_table_rec709;
|
| - }
|
| - NOTREACHED();
|
| - return NULL;
|
| -}
|
| -
|
| -// Populates a pre-allocated lookup table from a YUV->RGB matrix.
|
| -const int16_t* PopulateYUVToRGBTable(const double matrix[3][3],
|
| - bool full_range,
|
| - int16_t* table) {
|
| - // We'll have 4 sub-tables that lie contiguous in memory, one for each of Y,
|
| - // U, V and A.
|
| - const int kNumTables = 4;
|
| - // Each table has 256 rows (for all possible 8-bit values).
|
| - const int kNumRows = 256;
|
| - // Each row has 4 columns, for contributions to each of R, G, B and A.
|
| - const int kNumColumns = 4;
|
| - // Each element is a fixed-point (10.6) 16-bit signed value.
|
| - const int kElementSize = sizeof(int16_t);
|
| -
|
| - // Sanity check that our constants here match the size of the statically
|
| - // allocated tables.
|
| - static_assert(
|
| - kNumTables * kNumRows * kNumColumns * kElementSize == kYUVToRGBTableSize,
|
| - "YUV lookup table size doesn't match expectation.");
|
| -
|
| - // Y needs an offset of -16 for color ranges that ignore the lower 16 values,
|
| - // U and V get -128 to put them in [-128, 127] from [0, 255].
|
| - int offsets[3] = {(full_range ? 0 : -16), -128, -128};
|
| -
|
| - for (int i = 0; i < kNumRows; ++i) {
|
| - // Y, U, and V contributions to each of R, G, B and A.
|
| - for (int j = 0; j < 3; ++j) {
|
| -#if defined(OS_ANDROID)
|
| - // Android is RGBA.
|
| - table[(j * kNumRows + i) * kNumColumns + 0] =
|
| - matrix[j][0] * 64 * (i + offsets[j]) + 0.5;
|
| - table[(j * kNumRows + i) * kNumColumns + 1] =
|
| - matrix[j][1] * 64 * (i + offsets[j]) + 0.5;
|
| - table[(j * kNumRows + i) * kNumColumns + 2] =
|
| - matrix[j][2] * 64 * (i + offsets[j]) + 0.5;
|
| -#else
|
| - // Other platforms are BGRA.
|
| - table[(j * kNumRows + i) * kNumColumns + 0] =
|
| - matrix[j][2] * 64 * (i + offsets[j]) + 0.5;
|
| - table[(j * kNumRows + i) * kNumColumns + 1] =
|
| - matrix[j][1] * 64 * (i + offsets[j]) + 0.5;
|
| - table[(j * kNumRows + i) * kNumColumns + 2] =
|
| - matrix[j][0] * 64 * (i + offsets[j]) + 0.5;
|
| -#endif
|
| - // Alpha contributions from Y and V are always 0. U is set such that
|
| - // all values result in a full '255' alpha value.
|
| - table[(j * kNumRows + i) * kNumColumns + 3] = (j == 1) ? 256 * 64 - 1 : 0;
|
| - }
|
| - // And YUVA alpha is passed through as-is.
|
| - for (int k = 0; k < kNumTables; ++k)
|
| - table[((kNumTables - 1) * kNumRows + i) * kNumColumns + k] = i;
|
| - }
|
| -
|
| - return table;
|
| -}
|
| -
|
| -void InitializeCPUSpecificYUVConversions() {
|
| - CHECK(!g_filter_yuv_rows_proc_);
|
| - CHECK(!g_convert_yuv_to_rgb32_row_proc_);
|
| - CHECK(!g_scale_yuv_to_rgb32_row_proc_);
|
| - CHECK(!g_linear_scale_yuv_to_rgb32_row_proc_);
|
| - CHECK(!g_convert_rgb32_to_yuv_proc_);
|
| - CHECK(!g_convert_rgb24_to_yuv_proc_);
|
| - CHECK(!g_convert_yuv_to_rgb32_proc_);
|
| - CHECK(!g_convert_yuva_to_argb_proc_);
|
| - CHECK(!g_empty_register_state_proc_);
|
| -
|
| - g_filter_yuv_rows_proc_ = FilterYUVRows_C;
|
| - g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_C;
|
| - g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_C;
|
| - g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_C;
|
| - g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_C;
|
| - g_convert_rgb24_to_yuv_proc_ = ConvertRGB24ToYUV_C;
|
| - g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_C;
|
| - g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_C;
|
| - g_empty_register_state_proc_ = EmptyRegisterStateStub;
|
| -
|
| - // Assembly code confuses MemorySanitizer. Also not available in iOS builds.
|
| -#if defined(ARCH_CPU_X86_FAMILY) && !defined(MEMORY_SANITIZER) && \
|
| - !defined(OS_IOS)
|
| - g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_MMX;
|
| -
|
| -#if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
|
| - g_empty_register_state_proc_ = EmptyRegisterStateIntrinsic;
|
| -#else
|
| - g_empty_register_state_proc_ = EmptyRegisterState_MMX;
|
| -#endif
|
| -
|
| - g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_SSE;
|
| - g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_SSE;
|
| -
|
| - g_filter_yuv_rows_proc_ = FilterYUVRows_SSE2;
|
| - g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_SSE2;
|
| -
|
| -#if defined(ARCH_CPU_X86_64)
|
| - g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE2_X64;
|
| -
|
| - // Technically this should be in the MMX section, but MSVC will optimize out
|
| - // the export of LinearScaleYUVToRGB32Row_MMX, which is required by the unit
|
| - // tests, if that decision can be made at compile time. Since all X64 CPUs
|
| - // have SSE2, we can hack around this by making the selection here.
|
| - g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX_X64;
|
| -#else
|
| - g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE;
|
| - g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_SSE;
|
| -#endif
|
| -
|
| - base::CPU cpu;
|
| - if (cpu.has_ssse3()) {
|
| - g_convert_rgb24_to_yuv_proc_ = &ConvertRGB24ToYUV_SSSE3;
|
| -
|
| - // TODO(hclam): Add ConvertRGB32ToYUV_SSSE3 when the cyan problem is solved.
|
| - // See: crbug.com/100462
|
| - }
|
| -#endif
|
| -
|
| - // Initialize YUV conversion lookup tables.
|
| -
|
| - // SD Rec601 YUV->RGB matrix, see http://www.fourcc.org/fccyvrgb.php
|
| - const double kRec601ConvertMatrix[3][3] = {
|
| - {1.164, 1.164, 1.164}, {0.0, -0.391, 2.018}, {1.596, -0.813, 0.0},
|
| - };
|
| -
|
| - // JPEG table, values from above link.
|
| - const double kJPEGConvertMatrix[3][3] = {
|
| - {1.0, 1.0, 1.0}, {0.0, -0.34414, 1.772}, {1.402, -0.71414, 0.0},
|
| - };
|
| -
|
| - // Rec709 "HD" color space, values from:
|
| - // http://www.equasys.de/colorconversion.html
|
| - const double kRec709ConvertMatrix[3][3] = {
|
| - {1.164, 1.164, 1.164}, {0.0, -0.213, 2.112}, {1.793, -0.533, 0.0},
|
| - };
|
| -
|
| - g_table_rec601 =
|
| - static_cast<int16_t*>(base::AlignedAlloc(kYUVToRGBTableSize, 16));
|
| - PopulateYUVToRGBTable(kRec601ConvertMatrix, false, g_table_rec601);
|
| -
|
| - g_table_rec709 =
|
| - static_cast<int16_t*>(base::AlignedAlloc(kYUVToRGBTableSize, 16));
|
| - PopulateYUVToRGBTable(kRec709ConvertMatrix, false, g_table_rec709);
|
| -
|
| - g_table_jpeg =
|
| - static_cast<int16_t*>(base::AlignedAlloc(kYUVToRGBTableSize, 16));
|
| - PopulateYUVToRGBTable(kJPEGConvertMatrix, true, g_table_jpeg);
|
| -}
|
| -
|
| -// Empty SIMD registers state after using them.
|
| -void EmptyRegisterState() { g_empty_register_state_proc_(); }
|
| -
|
| -// 16.16 fixed point arithmetic
|
| -const int kFractionBits = 16;
|
| -const int kFractionMax = 1 << kFractionBits;
|
| -const int kFractionMask = ((1 << kFractionBits) - 1);
|
| -
|
| -// Scale a frame of YUV to 32 bit ARGB.
|
| -void ScaleYUVToRGB32(const uint8_t* y_buf,
|
| - const uint8_t* u_buf,
|
| - const uint8_t* v_buf,
|
| - uint8_t* rgb_buf,
|
| - int source_width,
|
| - int source_height,
|
| - int width,
|
| - int height,
|
| - int y_pitch,
|
| - int uv_pitch,
|
| - int rgb_pitch,
|
| - YUVType yuv_type,
|
| - Rotate view_rotate,
|
| - ScaleFilter filter) {
|
| - // Handle zero sized sources and destinations.
|
| - if ((yuv_type == YV12 && (source_width < 2 || source_height < 2)) ||
|
| - (yuv_type == YV16 && (source_width < 2 || source_height < 1)) ||
|
| - width == 0 || height == 0)
|
| - return;
|
| -
|
| - const int16_t* lookup_table = GetLookupTable(yuv_type);
|
| -
|
| - // 4096 allows 3 buffers to fit in 12k.
|
| - // Helps performance on CPU with 16K L1 cache.
|
| - // Large enough for 3830x2160 and 30" displays which are 2560x1600.
|
| - const int kFilterBufferSize = 4096;
|
| - // Disable filtering if the screen is too big (to avoid buffer overflows).
|
| - // This should never happen to regular users: they don't have monitors
|
| - // wider than 4096 pixels.
|
| - // TODO(fbarchard): Allow rotated videos to filter.
|
| - if (source_width > kFilterBufferSize || view_rotate)
|
| - filter = FILTER_NONE;
|
| -
|
| - unsigned int y_shift = GetVerticalShift(yuv_type);
|
| - // Diagram showing origin and direction of source sampling.
|
| - // ->0 4<-
|
| - // 7 3
|
| - //
|
| - // 6 5
|
| - // ->1 2<-
|
| - // Rotations that start at right side of image.
|
| - if ((view_rotate == ROTATE_180) || (view_rotate == ROTATE_270) ||
|
| - (view_rotate == MIRROR_ROTATE_0) || (view_rotate == MIRROR_ROTATE_90)) {
|
| - y_buf += source_width - 1;
|
| - u_buf += source_width / 2 - 1;
|
| - v_buf += source_width / 2 - 1;
|
| - source_width = -source_width;
|
| - }
|
| - // Rotations that start at bottom of image.
|
| - if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_180) ||
|
| - (view_rotate == MIRROR_ROTATE_90) || (view_rotate == MIRROR_ROTATE_180)) {
|
| - y_buf += (source_height - 1) * y_pitch;
|
| - u_buf += ((source_height >> y_shift) - 1) * uv_pitch;
|
| - v_buf += ((source_height >> y_shift) - 1) * uv_pitch;
|
| - source_height = -source_height;
|
| - }
|
| -
|
| - int source_dx = source_width * kFractionMax / width;
|
| -
|
| - if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_270)) {
|
| - int tmp = height;
|
| - height = width;
|
| - width = tmp;
|
| - tmp = source_height;
|
| - source_height = source_width;
|
| - source_width = tmp;
|
| - int source_dy = source_height * kFractionMax / height;
|
| - source_dx = ((source_dy >> kFractionBits) * y_pitch) << kFractionBits;
|
| - if (view_rotate == ROTATE_90) {
|
| - y_pitch = -1;
|
| - uv_pitch = -1;
|
| - source_height = -source_height;
|
| - } else {
|
| - y_pitch = 1;
|
| - uv_pitch = 1;
|
| - }
|
| - }
|
| -
|
| - // Need padding because FilterRows() will write 1 to 16 extra pixels
|
| - // after the end for SSE2 version.
|
| - uint8_t yuvbuf[16 + kFilterBufferSize * 3 + 16];
|
| - uint8_t* ybuf = reinterpret_cast<uint8_t*>(
|
| - reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15);
|
| - uint8_t* ubuf = ybuf + kFilterBufferSize;
|
| - uint8_t* vbuf = ubuf + kFilterBufferSize;
|
| -
|
| - // TODO(fbarchard): Fixed point math is off by 1 on negatives.
|
| -
|
| - // We take a y-coordinate in [0,1] space in the source image space, and
|
| - // transform to a y-coordinate in [0,1] space in the destination image space.
|
| - // Note that the coordinate endpoints lie on pixel boundaries, not on pixel
|
| - // centers: e.g. a two-pixel-high image will have pixel centers at 0.25 and
|
| - // 0.75. The formula is as follows (in fixed-point arithmetic):
|
| - // y_dst = dst_height * ((y_src + 0.5) / src_height)
|
| - // dst_pixel = clamp([0, dst_height - 1], floor(y_dst - 0.5))
|
| - // Implement this here as an accumulator + delta, to avoid expensive math
|
| - // in the loop.
|
| - int source_y_subpixel_accum =
|
| - ((kFractionMax / 2) * source_height) / height - (kFractionMax / 2);
|
| - int source_y_subpixel_delta = ((1 << kFractionBits) * source_height) / height;
|
| -
|
| - // TODO(fbarchard): Split this into separate function for better efficiency.
|
| - for (int y = 0; y < height; ++y) {
|
| - uint8_t* dest_pixel = rgb_buf + y * rgb_pitch;
|
| - int source_y_subpixel = source_y_subpixel_accum;
|
| - source_y_subpixel_accum += source_y_subpixel_delta;
|
| - if (source_y_subpixel < 0)
|
| - source_y_subpixel = 0;
|
| - else if (source_y_subpixel > ((source_height - 1) << kFractionBits))
|
| - source_y_subpixel = (source_height - 1) << kFractionBits;
|
| -
|
| - const uint8_t* y_ptr = NULL;
|
| - const uint8_t* u_ptr = NULL;
|
| - const uint8_t* v_ptr = NULL;
|
| - // Apply vertical filtering if necessary.
|
| - // TODO(fbarchard): Remove memcpy when not necessary.
|
| - if (filter & media::FILTER_BILINEAR_V) {
|
| - int source_y = source_y_subpixel >> kFractionBits;
|
| - y_ptr = y_buf + source_y * y_pitch;
|
| - u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
|
| - v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
|
| -
|
| - // Vertical scaler uses 16.8 fixed point.
|
| - uint8_t source_y_fraction = (source_y_subpixel & kFractionMask) >> 8;
|
| - if (source_y_fraction != 0) {
|
| - g_filter_yuv_rows_proc_(
|
| - ybuf, y_ptr, y_ptr + y_pitch, source_width, source_y_fraction);
|
| - } else {
|
| - memcpy(ybuf, y_ptr, source_width);
|
| - }
|
| - y_ptr = ybuf;
|
| - ybuf[source_width] = ybuf[source_width - 1];
|
| -
|
| - int uv_source_width = (source_width + 1) / 2;
|
| - uint8_t source_uv_fraction;
|
| -
|
| - // For formats with half-height UV planes, each even-numbered pixel row
|
| - // should not interpolate, since the next row to interpolate from should
|
| - // be a duplicate of the current row.
|
| - if (y_shift && (source_y & 0x1) == 0)
|
| - source_uv_fraction = 0;
|
| - else
|
| - source_uv_fraction = source_y_fraction;
|
| -
|
| - if (source_uv_fraction != 0) {
|
| - g_filter_yuv_rows_proc_(
|
| - ubuf, u_ptr, u_ptr + uv_pitch, uv_source_width, source_uv_fraction);
|
| - g_filter_yuv_rows_proc_(
|
| - vbuf, v_ptr, v_ptr + uv_pitch, uv_source_width, source_uv_fraction);
|
| - } else {
|
| - memcpy(ubuf, u_ptr, uv_source_width);
|
| - memcpy(vbuf, v_ptr, uv_source_width);
|
| - }
|
| - u_ptr = ubuf;
|
| - v_ptr = vbuf;
|
| - ubuf[uv_source_width] = ubuf[uv_source_width - 1];
|
| - vbuf[uv_source_width] = vbuf[uv_source_width - 1];
|
| - } else {
|
| - // Offset by 1/2 pixel for center sampling.
|
| - int source_y = (source_y_subpixel + (kFractionMax / 2)) >> kFractionBits;
|
| - y_ptr = y_buf + source_y * y_pitch;
|
| - u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
|
| - v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
|
| - }
|
| - if (source_dx == kFractionMax) { // Not scaled
|
| - g_convert_yuv_to_rgb32_row_proc_(y_ptr, u_ptr, v_ptr, dest_pixel, width,
|
| - lookup_table);
|
| - } else {
|
| - if (filter & FILTER_BILINEAR_H) {
|
| - g_linear_scale_yuv_to_rgb32_row_proc_(y_ptr, u_ptr, v_ptr, dest_pixel,
|
| - width, source_dx,
|
| - lookup_table);
|
| - } else {
|
| - g_scale_yuv_to_rgb32_row_proc_(y_ptr, u_ptr, v_ptr, dest_pixel, width,
|
| - source_dx, lookup_table);
|
| - }
|
| - }
|
| - }
|
| -
|
| - g_empty_register_state_proc_();
|
| -}
|
| -
|
| -// Scale a frame of YV12 to 32 bit ARGB for a specific rectangle.
|
| -void ScaleYUVToRGB32WithRect(const uint8_t* y_buf,
|
| - const uint8_t* u_buf,
|
| - const uint8_t* v_buf,
|
| - uint8_t* rgb_buf,
|
| - int source_width,
|
| - int source_height,
|
| - int dest_width,
|
| - int dest_height,
|
| - int dest_rect_left,
|
| - int dest_rect_top,
|
| - int dest_rect_right,
|
| - int dest_rect_bottom,
|
| - int y_pitch,
|
| - int uv_pitch,
|
| - int rgb_pitch) {
|
| - // This routine doesn't currently support up-scaling.
|
| - CHECK_LE(dest_width, source_width);
|
| - CHECK_LE(dest_height, source_height);
|
| -
|
| - // Sanity-check the destination rectangle.
|
| - DCHECK(dest_rect_left >= 0 && dest_rect_right <= dest_width);
|
| - DCHECK(dest_rect_top >= 0 && dest_rect_bottom <= dest_height);
|
| - DCHECK(dest_rect_right > dest_rect_left);
|
| - DCHECK(dest_rect_bottom > dest_rect_top);
|
| -
|
| - const int16_t* lookup_table = GetLookupTable(YV12);
|
| -
|
| - // Fixed-point value of vertical and horizontal scale down factor.
|
| - // Values are in the format 16.16.
|
| - int y_step = kFractionMax * source_height / dest_height;
|
| - int x_step = kFractionMax * source_width / dest_width;
|
| -
|
| - // Determine the coordinates of the rectangle in 16.16 coords.
|
| - // NB: Our origin is the *center* of the top/left pixel, NOT its top/left.
|
| - // If we're down-scaling by more than a factor of two, we start with a 50%
|
| - // fraction to avoid degenerating to point-sampling - we should really just
|
| - // fix the fraction at 50% for all pixels in that case.
|
| - int source_left = dest_rect_left * x_step;
|
| - int source_right = (dest_rect_right - 1) * x_step;
|
| - if (x_step < kFractionMax * 2) {
|
| - source_left += ((x_step - kFractionMax) / 2);
|
| - source_right += ((x_step - kFractionMax) / 2);
|
| - } else {
|
| - source_left += kFractionMax / 2;
|
| - source_right += kFractionMax / 2;
|
| - }
|
| - int source_top = dest_rect_top * y_step;
|
| - if (y_step < kFractionMax * 2) {
|
| - source_top += ((y_step - kFractionMax) / 2);
|
| - } else {
|
| - source_top += kFractionMax / 2;
|
| - }
|
| -
|
| - // Determine the parts of the Y, U and V buffers to interpolate.
|
| - int source_y_left = source_left >> kFractionBits;
|
| - int source_y_right =
|
| - std::min((source_right >> kFractionBits) + 2, source_width + 1);
|
| -
|
| - int source_uv_left = source_y_left / 2;
|
| - int source_uv_right = std::min((source_right >> (kFractionBits + 1)) + 2,
|
| - (source_width + 1) / 2);
|
| -
|
| - int source_y_width = source_y_right - source_y_left;
|
| - int source_uv_width = source_uv_right - source_uv_left;
|
| -
|
| - // Determine number of pixels in each output row.
|
| - int dest_rect_width = dest_rect_right - dest_rect_left;
|
| -
|
| - // Intermediate buffer for vertical interpolation.
|
| - // 4096 bytes allows 3 buffers to fit in 12k, which fits in a 16K L1 cache,
|
| - // and is bigger than most users will generally need.
|
| - // The buffer is 16-byte aligned and padded with 16 extra bytes; some of the
|
| - // FilterYUVRowsProcs have alignment requirements, and the SSE version can
|
| - // write up to 16 bytes past the end of the buffer.
|
| - const int kFilterBufferSize = 4096;
|
| - const bool kAvoidUsingOptimizedFilter = source_width > kFilterBufferSize;
|
| - uint8_t yuv_temp[16 + kFilterBufferSize * 3 + 16];
|
| - // memset() yuv_temp to 0 to avoid bogus warnings when running on Valgrind.
|
| - if (RunningOnValgrind())
|
| - memset(yuv_temp, 0, sizeof(yuv_temp));
|
| - uint8_t* y_temp = reinterpret_cast<uint8_t*>(
|
| - reinterpret_cast<uintptr_t>(yuv_temp + 15) & ~15);
|
| - uint8_t* u_temp = y_temp + kFilterBufferSize;
|
| - uint8_t* v_temp = u_temp + kFilterBufferSize;
|
| -
|
| - // Move to the top-left pixel of output.
|
| - rgb_buf += dest_rect_top * rgb_pitch;
|
| - rgb_buf += dest_rect_left * 4;
|
| -
|
| - // For each destination row perform interpolation and color space
|
| - // conversion to produce the output.
|
| - for (int row = dest_rect_top; row < dest_rect_bottom; ++row) {
|
| - // Round the fixed-point y position to get the current row.
|
| - int source_row = source_top >> kFractionBits;
|
| - int source_uv_row = source_row / 2;
|
| - DCHECK(source_row < source_height);
|
| -
|
| - // Locate the first row for each plane for interpolation.
|
| - const uint8_t* y0_ptr = y_buf + y_pitch * source_row + source_y_left;
|
| - const uint8_t* u0_ptr = u_buf + uv_pitch * source_uv_row + source_uv_left;
|
| - const uint8_t* v0_ptr = v_buf + uv_pitch * source_uv_row + source_uv_left;
|
| - const uint8_t* y1_ptr = NULL;
|
| - const uint8_t* u1_ptr = NULL;
|
| - const uint8_t* v1_ptr = NULL;
|
| -
|
| - // Locate the second row for interpolation, being careful not to overrun.
|
| - if (source_row + 1 >= source_height) {
|
| - y1_ptr = y0_ptr;
|
| - } else {
|
| - y1_ptr = y0_ptr + y_pitch;
|
| - }
|
| - if (source_uv_row + 1 >= (source_height + 1) / 2) {
|
| - u1_ptr = u0_ptr;
|
| - v1_ptr = v0_ptr;
|
| - } else {
|
| - u1_ptr = u0_ptr + uv_pitch;
|
| - v1_ptr = v0_ptr + uv_pitch;
|
| - }
|
| -
|
| - if (!kAvoidUsingOptimizedFilter) {
|
| - // Vertical scaler uses 16.8 fixed point.
|
| - uint8_t fraction = (source_top & kFractionMask) >> 8;
|
| - g_filter_yuv_rows_proc_(
|
| - y_temp + source_y_left, y0_ptr, y1_ptr, source_y_width, fraction);
|
| - g_filter_yuv_rows_proc_(
|
| - u_temp + source_uv_left, u0_ptr, u1_ptr, source_uv_width, fraction);
|
| - g_filter_yuv_rows_proc_(
|
| - v_temp + source_uv_left, v0_ptr, v1_ptr, source_uv_width, fraction);
|
| -
|
| - // Perform horizontal interpolation and color space conversion.
|
| - // TODO(hclam): Use the MMX version after more testing.
|
| - LinearScaleYUVToRGB32RowWithRange_C(y_temp, u_temp, v_temp, rgb_buf,
|
| - dest_rect_width, source_left, x_step,
|
| - lookup_table);
|
| - } else {
|
| - // If the frame is too large then we linear scale a single row.
|
| - LinearScaleYUVToRGB32RowWithRange_C(y0_ptr, u0_ptr, v0_ptr, rgb_buf,
|
| - dest_rect_width, source_left, x_step,
|
| - lookup_table);
|
| - }
|
| -
|
| - // Advance vertically in the source and destination image.
|
| - source_top += y_step;
|
| - rgb_buf += rgb_pitch;
|
| - }
|
| -
|
| - g_empty_register_state_proc_();
|
| -}
|
| -
|
| -void ConvertRGB32ToYUV(const uint8_t* rgbframe,
|
| - uint8_t* yplane,
|
| - uint8_t* uplane,
|
| - uint8_t* vplane,
|
| - int width,
|
| - int height,
|
| - int rgbstride,
|
| - int ystride,
|
| - int uvstride) {
|
| - g_convert_rgb32_to_yuv_proc_(rgbframe,
|
| - yplane,
|
| - uplane,
|
| - vplane,
|
| - width,
|
| - height,
|
| - rgbstride,
|
| - ystride,
|
| - uvstride);
|
| -}
|
| -
|
| -void ConvertRGB24ToYUV(const uint8_t* rgbframe,
|
| - uint8_t* yplane,
|
| - uint8_t* uplane,
|
| - uint8_t* vplane,
|
| - int width,
|
| - int height,
|
| - int rgbstride,
|
| - int ystride,
|
| - int uvstride) {
|
| - g_convert_rgb24_to_yuv_proc_(rgbframe,
|
| - yplane,
|
| - uplane,
|
| - vplane,
|
| - width,
|
| - height,
|
| - rgbstride,
|
| - ystride,
|
| - uvstride);
|
| -}
|
| -
|
| -void ConvertYUVToRGB32(const uint8_t* yplane,
|
| - const uint8_t* uplane,
|
| - const uint8_t* vplane,
|
| - uint8_t* rgbframe,
|
| - int width,
|
| - int height,
|
| - int ystride,
|
| - int uvstride,
|
| - int rgbstride,
|
| - YUVType yuv_type) {
|
| - g_convert_yuv_to_rgb32_proc_(yplane,
|
| - uplane,
|
| - vplane,
|
| - rgbframe,
|
| - width,
|
| - height,
|
| - ystride,
|
| - uvstride,
|
| - rgbstride,
|
| - yuv_type);
|
| -}
|
| -
|
| -void ConvertYUVAToARGB(const uint8_t* yplane,
|
| - const uint8_t* uplane,
|
| - const uint8_t* vplane,
|
| - const uint8_t* aplane,
|
| - uint8_t* rgbframe,
|
| - int width,
|
| - int height,
|
| - int ystride,
|
| - int uvstride,
|
| - int astride,
|
| - int rgbstride,
|
| - YUVType yuv_type) {
|
| - g_convert_yuva_to_argb_proc_(yplane,
|
| - uplane,
|
| - vplane,
|
| - aplane,
|
| - rgbframe,
|
| - width,
|
| - height,
|
| - ystride,
|
| - uvstride,
|
| - astride,
|
| - rgbstride,
|
| - yuv_type);
|
| -}
|
| -
|
| -} // namespace media
|
|
|