| Index: chrome/test/data/dromaeo/tests/v8-deltablue.html
|
| ===================================================================
|
| --- chrome/test/data/dromaeo/tests/v8-deltablue.html (revision 0)
|
| +++ chrome/test/data/dromaeo/tests/v8-deltablue.html (revision 0)
|
| @@ -0,0 +1,887 @@
|
| +<html>
|
| +<head>
|
| +<script src="../htmlrunner.js"></script>
|
| +<script>
|
| +// Copyright 2008 the V8 project authors. All rights reserved.
|
| +// Copyright 1996 John Maloney and Mario Wolczko.
|
| +
|
| +// This program is free software; you can redistribute it and/or modify
|
| +// it under the terms of the GNU General Public License as published by
|
| +// the Free Software Foundation; either version 2 of the License, or
|
| +// (at your option) any later version.
|
| +//
|
| +// This program is distributed in the hope that it will be useful,
|
| +// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| +// GNU General Public License for more details.
|
| +//
|
| +// You should have received a copy of the GNU General Public License
|
| +// along with this program; if not, write to the Free Software
|
| +// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
| +
|
| +
|
| +// This implementation of the DeltaBlue benchmark is derived
|
| +// from the Smalltalk implementation by John Maloney and Mario
|
| +// Wolczko. Some parts have been translated directly, whereas
|
| +// others have been modified more aggresively to make it feel
|
| +// more like a JavaScript program.
|
| +
|
| +
|
| +/**
|
| + * A JavaScript implementation of the DeltaBlue constrain-solving
|
| + * algorithm, as described in:
|
| + *
|
| + * "The DeltaBlue Algorithm: An Incremental Constraint Hierarchy Solver"
|
| + * Bjorn N. Freeman-Benson and John Maloney
|
| + * January 1990 Communications of the ACM,
|
| + * also available as University of Washington TR 89-08-06.
|
| + *
|
| + * Beware: this benchmark is written in a grotesque style where
|
| + * the constraint model is built by side-effects from constructors.
|
| + * I've kept it this way to avoid deviating too much from the original
|
| + * implementation.
|
| + */
|
| +
|
| +
|
| +/* --- O b j e c t M o d e l --- */
|
| +
|
| +function inherits(orig, shuper) {
|
| + function Inheriter() { }
|
| + Inheriter.prototype = shuper.prototype;
|
| + orig.prototype = new Inheriter();
|
| + orig.superConstructor = shuper;
|
| +}
|
| +
|
| +function OrderedCollection() {
|
| + this.elms = new Array();
|
| +}
|
| +
|
| +OrderedCollection.prototype.add = function (elm) {
|
| + this.elms.push(elm);
|
| +}
|
| +
|
| +OrderedCollection.prototype.at = function (index) {
|
| + return this.elms[index];
|
| +}
|
| +
|
| +OrderedCollection.prototype.size = function () {
|
| + return this.elms.length;
|
| +}
|
| +
|
| +OrderedCollection.prototype.removeFirst = function () {
|
| + return this.elms.pop();
|
| +}
|
| +
|
| +OrderedCollection.prototype.remove = function (elm) {
|
| + var index = 0, skipped = 0;
|
| + for (var i = 0; i < this.elms.length; i++) {
|
| + var value = this.elms[i];
|
| + if (value != elm) {
|
| + this.elms[index] = value;
|
| + index++;
|
| + } else {
|
| + skipped++;
|
| + }
|
| + }
|
| + for (var i = 0; i < skipped; i++)
|
| + this.elms.pop();
|
| +}
|
| +
|
| +/* --- *
|
| + * S t r e n g t h
|
| + * --- */
|
| +
|
| +/**
|
| + * Strengths are used to measure the relative importance of constraints.
|
| + * New strengths may be inserted in the strength hierarchy without
|
| + * disrupting current constraints. Strengths cannot be created outside
|
| + * this class, so pointer comparison can be used for value comparison.
|
| + */
|
| +function Strength(strengthValue, name) {
|
| + this.strengthValue = strengthValue;
|
| + this.name = name;
|
| +}
|
| +
|
| +Strength.stronger = function (s1, s2) {
|
| + return s1.strengthValue < s2.strengthValue;
|
| +}
|
| +
|
| +Strength.weaker = function (s1, s2) {
|
| + return s1.strengthValue > s2.strengthValue;
|
| +}
|
| +
|
| +Strength.weakestOf = function (s1, s2) {
|
| + return this.weaker(s1, s2) ? s1 : s2;
|
| +}
|
| +
|
| +Strength.strongest = function (s1, s2) {
|
| + return this.stronger(s1, s2) ? s1 : s2;
|
| +}
|
| +
|
| +Strength.prototype.nextWeaker = function () {
|
| + switch (this.strengthValue) {
|
| + case 0: return Strength.WEAKEST;
|
| + case 1: return Strength.WEAK_DEFAULT;
|
| + case 2: return Strength.NORMAL;
|
| + case 3: return Strength.STRONG_DEFAULT;
|
| + case 4: return Strength.PREFERRED;
|
| + case 5: return Strength.REQUIRED;
|
| + }
|
| +}
|
| +
|
| +// Strength constants.
|
| +Strength.REQUIRED = new Strength(0, "required");
|
| +Strength.STONG_PREFERRED = new Strength(1, "strongPreferred");
|
| +Strength.PREFERRED = new Strength(2, "preferred");
|
| +Strength.STRONG_DEFAULT = new Strength(3, "strongDefault");
|
| +Strength.NORMAL = new Strength(4, "normal");
|
| +Strength.WEAK_DEFAULT = new Strength(5, "weakDefault");
|
| +Strength.WEAKEST = new Strength(6, "weakest");
|
| +
|
| +/* --- *
|
| + * C o n s t r a i n t
|
| + * --- */
|
| +
|
| +/**
|
| + * An abstract class representing a system-maintainable relationship
|
| + * (or "constraint") between a set of variables. A constraint supplies
|
| + * a strength instance variable; concrete subclasses provide a means
|
| + * of storing the constrained variables and other information required
|
| + * to represent a constraint.
|
| + */
|
| +function Constraint(strength) {
|
| + this.strength = strength;
|
| +}
|
| +
|
| +/**
|
| + * Activate this constraint and attempt to satisfy it.
|
| + */
|
| +Constraint.prototype.addConstraint = function () {
|
| + this.addToGraph();
|
| + planner.incrementalAdd(this);
|
| +}
|
| +
|
| +/**
|
| + * Attempt to find a way to enforce this constraint. If successful,
|
| + * record the solution, perhaps modifying the current dataflow
|
| + * graph. Answer the constraint that this constraint overrides, if
|
| + * there is one, or nil, if there isn't.
|
| + * Assume: I am not already satisfied.
|
| + */
|
| +Constraint.prototype.satisfy = function (mark) {
|
| + this.chooseMethod(mark);
|
| + if (!this.isSatisfied()) {
|
| + if (this.strength == Strength.REQUIRED)
|
| + alert("Could not satisfy a required constraint!");
|
| + return null;
|
| + }
|
| + this.markInputs(mark);
|
| + var out = this.output();
|
| + var overridden = out.determinedBy;
|
| + if (overridden != null) overridden.markUnsatisfied();
|
| + out.determinedBy = this;
|
| + if (!planner.addPropagate(this, mark))
|
| + alert("Cycle encountered");
|
| + out.mark = mark;
|
| + return overridden;
|
| +}
|
| +
|
| +Constraint.prototype.destroyConstraint = function () {
|
| + if (this.isSatisfied()) planner.incrementalRemove(this);
|
| + else this.removeFromGraph();
|
| +}
|
| +
|
| +/**
|
| + * Normal constraints are not input constraints. An input constraint
|
| + * is one that depends on external state, such as the mouse, the
|
| + * keybord, a clock, or some arbitraty piece of imperative code.
|
| + */
|
| +Constraint.prototype.isInput = function () {
|
| + return false;
|
| +}
|
| +
|
| +/* --- *
|
| + * U n a r y C o n s t r a i n t
|
| + * --- */
|
| +
|
| +/**
|
| + * Abstract superclass for constraints having a single possible output
|
| + * variable.
|
| + */
|
| +function UnaryConstraint(v, strength) {
|
| + UnaryConstraint.superConstructor.call(this, strength);
|
| + this.myOutput = v;
|
| + this.satisfied = false;
|
| + this.addConstraint();
|
| +}
|
| +
|
| +inherits(UnaryConstraint,Constraint);
|
| +
|
| +/**
|
| + * Adds this constraint to the constraint graph
|
| + */
|
| +UnaryConstraint.prototype.addToGraph = function () {
|
| + this.myOutput.addConstraint(this);
|
| + this.satisfied = false;
|
| +}
|
| +
|
| +/**
|
| + * Decides if this constraint can be satisfied and records that
|
| + * decision.
|
| + */
|
| +UnaryConstraint.prototype.chooseMethod = function (mark) {
|
| + this.satisfied = (this.myOutput.mark != mark)
|
| + && Strength.stronger(this.strength, this.myOutput.walkStrength);
|
| +}
|
| +
|
| +/**
|
| + * Returns true if this constraint is satisfied in the current solution.
|
| + */
|
| +UnaryConstraint.prototype.isSatisfied = function () {
|
| + return this.satisfied;
|
| +}
|
| +
|
| +UnaryConstraint.prototype.markInputs = function (mark) {
|
| + // has no inputs
|
| +}
|
| +
|
| +/**
|
| + * Returns the current output variable.
|
| + */
|
| +UnaryConstraint.prototype.output = function () {
|
| + return this.myOutput;
|
| +}
|
| +
|
| +/**
|
| + * Calculate the walkabout strength, the stay flag, and, if it is
|
| + * 'stay', the value for the current output of this constraint. Assume
|
| + * this constraint is satisfied.
|
| + */
|
| +UnaryConstraint.prototype.recalculate = function () {
|
| + this.myOutput.walkStrength = this.strength;
|
| + this.myOutput.stay = !this.isInput();
|
| + if (this.myOutput.stay) this.execute(); // Stay optimization
|
| +}
|
| +
|
| +/**
|
| + * Records that this constraint is unsatisfied
|
| + */
|
| +UnaryConstraint.prototype.markUnsatisfied = function () {
|
| + this.satisfied = false;
|
| +}
|
| +
|
| +UnaryConstraint.prototype.inputsKnown = function () {
|
| + return true;
|
| +}
|
| +
|
| +UnaryConstraint.prototype.removeFromGraph = function () {
|
| + if (this.myOutput != null) this.myOutput.removeConstraint(this);
|
| + this.satisfied = false;
|
| +}
|
| +
|
| +/* --- *
|
| + * S t a y C o n s t r a i n t
|
| + * --- */
|
| +
|
| +/**
|
| + * Variables that should, with some level of preference, stay the same.
|
| + * Planners may exploit the fact that instances, if satisfied, will not
|
| + * change their output during plan execution. This is called "stay
|
| + * optimization".
|
| + */
|
| +function StayConstraint(v, str) {
|
| + StayConstraint.superConstructor.call(this, v, str);
|
| +}
|
| +
|
| +inherits(StayConstraint,UnaryConstraint);
|
| +
|
| +StayConstraint.prototype.execute = function () {
|
| + // Stay constraints do nothing
|
| +}
|
| +
|
| +/* --- *
|
| + * E d i t C o n s t r a i n t
|
| + * --- */
|
| +
|
| +/**
|
| + * A unary input constraint used to mark a variable that the client
|
| + * wishes to change.
|
| + */
|
| +function EditConstraint(v, str) {
|
| + EditConstraint.superConstructor.call(this, v, str);
|
| +}
|
| +
|
| +inherits(EditConstraint,UnaryConstraint);
|
| +
|
| +/**
|
| + * Edits indicate that a variable is to be changed by imperative code.
|
| + */
|
| +EditConstraint.prototype.isInput = function () {
|
| + return true;
|
| +}
|
| +
|
| +EditConstraint.prototype.execute = function () {
|
| + // Edit constraints do nothing
|
| +}
|
| +
|
| +/* --- *
|
| + * B i n a r y C o n s t r a i n t
|
| + * --- */
|
| +
|
| +var Direction = new Object();
|
| +Direction.NONE = 0;
|
| +Direction.FORWARD = 1;
|
| +Direction.BACKWARD = -1;
|
| +
|
| +/**
|
| + * Abstract superclass for constraints having two possible output
|
| + * variables.
|
| + */
|
| +function BinaryConstraint(var1, var2, strength) {
|
| + BinaryConstraint.superConstructor.call(this, strength);
|
| + this.v1 = var1;
|
| + this.v2 = var2;
|
| + this.direction = Direction.NONE;
|
| + this.addConstraint();
|
| +}
|
| +
|
| +inherits(BinaryConstraint,Constraint);
|
| +
|
| +/**
|
| + * Decides if this constratint can be satisfied and which way it
|
| + * should flow based on the relative strength of the variables related,
|
| + * and record that decision.
|
| + */
|
| +BinaryConstraint.prototype.chooseMethod = function (mark) {
|
| + if (this.v1.mark == mark) {
|
| + this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v2.walkStrength))
|
| + ? Direction.FORWARD
|
| + : Direction.NONE;
|
| + }
|
| + if (this.v2.mark == mark) {
|
| + this.direction = (this.v1.mark != mark && Strength.stronger(this.strength, this.v1.walkStrength))
|
| + ? Direction.BACKWARD
|
| + : Direction.NONE;
|
| + }
|
| + if (Strength.weaker(this.v1.walkStrength, this.v2.walkStrength)) {
|
| + this.direction = Strength.stronger(this.strength, this.v1.walkStrength)
|
| + ? Direction.BACKWARD
|
| + : Direction.NONE;
|
| + } else {
|
| + this.direction = Strength.stronger(this.strength, this.v2.walkStrength)
|
| + ? Direction.FORWARD
|
| + : Direction.BACKWARD
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Add this constraint to the constraint graph
|
| + */
|
| +BinaryConstraint.prototype.addToGraph = function () {
|
| + this.v1.addConstraint(this);
|
| + this.v2.addConstraint(this);
|
| + this.direction = Direction.NONE;
|
| +}
|
| +
|
| +/**
|
| + * Answer true if this constraint is satisfied in the current solution.
|
| + */
|
| +BinaryConstraint.prototype.isSatisfied = function () {
|
| + return this.direction != Direction.NONE;
|
| +}
|
| +
|
| +/**
|
| + * Mark the input variable with the given mark.
|
| + */
|
| +BinaryConstraint.prototype.markInputs = function (mark) {
|
| + this.input().mark = mark;
|
| +}
|
| +
|
| +/**
|
| + * Returns the current input variable
|
| + */
|
| +BinaryConstraint.prototype.input = function () {
|
| + return (this.direction == Direction.FORWARD) ? this.v1 : this.v2;
|
| +}
|
| +
|
| +/**
|
| + * Returns the current output variable
|
| + */
|
| +BinaryConstraint.prototype.output = function () {
|
| + return (this.direction == Direction.FORWARD) ? this.v2 : this.v1;
|
| +}
|
| +
|
| +/**
|
| + * Calculate the walkabout strength, the stay flag, and, if it is
|
| + * 'stay', the value for the current output of this
|
| + * constraint. Assume this constraint is satisfied.
|
| + */
|
| +BinaryConstraint.prototype.recalculate = function () {
|
| + var ihn = this.input(), out = this.output();
|
| + out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength);
|
| + out.stay = ihn.stay;
|
| + if (out.stay) this.execute();
|
| +}
|
| +
|
| +/**
|
| + * Record the fact that this constraint is unsatisfied.
|
| + */
|
| +BinaryConstraint.prototype.markUnsatisfied = function () {
|
| + this.direction = Direction.NONE;
|
| +}
|
| +
|
| +BinaryConstraint.prototype.inputsKnown = function (mark) {
|
| + var i = this.input();
|
| + return i.mark == mark || i.stay || i.determinedBy == null;
|
| +}
|
| +
|
| +BinaryConstraint.prototype.removeFromGraph = function () {
|
| + if (this.v1 != null) this.v1.removeConstraint(this);
|
| + if (this.v2 != null) this.v2.removeConstraint(this);
|
| + this.direction = Direction.NONE;
|
| +}
|
| +
|
| +/* --- *
|
| + * S c a l e C o n s t r a i n t
|
| + * --- */
|
| +
|
| +/**
|
| + * Relates two variables by the linear scaling relationship: "v2 =
|
| + * (v1 * scale) + offset". Either v1 or v2 may be changed to maintain
|
| + * this relationship but the scale factor and offset are considered
|
| + * read-only.
|
| + */
|
| +function ScaleConstraint(src, scale, offset, dest, strength) {
|
| + this.direction = Direction.NONE;
|
| + this.scale = scale;
|
| + this.offset = offset;
|
| + ScaleConstraint.superConstructor.call(this, src, dest, strength);
|
| +}
|
| +
|
| +inherits(ScaleConstraint,BinaryConstraint);
|
| +
|
| +/**
|
| + * Adds this constraint to the constraint graph.
|
| + */
|
| +ScaleConstraint.prototype.addToGraph = function () {
|
| + ScaleConstraint.superConstructor.prototype.addToGraph.call(this);
|
| + this.scale.addConstraint(this);
|
| + this.offset.addConstraint(this);
|
| +}
|
| +
|
| +ScaleConstraint.prototype.removeFromGraph = function () {
|
| + ScaleConstraint.superConstructor.prototype.removeFromGraph.call(this);
|
| + if (this.scale != null) this.scale.removeConstraint(this);
|
| + if (this.offset != null) this.offset.removeConstraint(this);
|
| +}
|
| +
|
| +ScaleConstraint.prototype.markInputs = function (mark) {
|
| + ScaleConstraint.superConstructor.prototype.markInputs.call(this, mark);
|
| + this.scale.mark = this.offset.mark = mark;
|
| +}
|
| +
|
| +/**
|
| + * Enforce this constraint. Assume that it is satisfied.
|
| + */
|
| +ScaleConstraint.prototype.execute = function () {
|
| + if (this.direction == Direction.FORWARD) {
|
| + this.v2.value = this.v1.value * this.scale.value + this.offset.value;
|
| + } else {
|
| + this.v1.value = (this.v2.value - this.offset.value) / this.scale.value;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Calculate the walkabout strength, the stay flag, and, if it is
|
| + * 'stay', the value for the current output of this constraint. Assume
|
| + * this constraint is satisfied.
|
| + */
|
| +ScaleConstraint.prototype.recalculate = function () {
|
| + var ihn = this.input(), out = this.output();
|
| + out.walkStrength = Strength.weakestOf(this.strength, ihn.walkStrength);
|
| + out.stay = ihn.stay && this.scale.stay && this.offset.stay;
|
| + if (out.stay) this.execute();
|
| +}
|
| +
|
| +/* --- *
|
| + * E q u a l i t y C o n s t r a i n t
|
| + * --- */
|
| +
|
| +/**
|
| + * Constrains two variables to have the same value.
|
| + */
|
| +function EqualityConstraint(var1, var2, strength) {
|
| + EqualityConstraint.superConstructor.call(this, var1, var2, strength);
|
| +}
|
| +
|
| +inherits(EqualityConstraint,BinaryConstraint);
|
| +
|
| +/**
|
| + * Enforce this constraint. Assume that it is satisfied.
|
| + */
|
| +EqualityConstraint.prototype.execute = function () {
|
| + this.output().value = this.input().value;
|
| +}
|
| +
|
| +/* --- *
|
| + * V a r i a b l e
|
| + * --- */
|
| +
|
| +/**
|
| + * A constrained variable. In addition to its value, it maintain the
|
| + * structure of the constraint graph, the current dataflow graph, and
|
| + * various parameters of interest to the DeltaBlue incremental
|
| + * constraint solver.
|
| + **/
|
| +function Variable(name, initialValue) {
|
| + this.value = initialValue || 0;
|
| + this.constraints = new OrderedCollection();
|
| + this.determinedBy = null;
|
| + this.mark = 0;
|
| + this.walkStrength = Strength.WEAKEST;
|
| + this.stay = true;
|
| + this.name = name;
|
| +}
|
| +
|
| +/**
|
| + * Add the given constraint to the set of all constraints that refer
|
| + * this variable.
|
| + */
|
| +Variable.prototype.addConstraint = function (c) {
|
| + this.constraints.add(c);
|
| +}
|
| +
|
| +/**
|
| + * Removes all traces of c from this variable.
|
| + */
|
| +Variable.prototype.removeConstraint = function (c) {
|
| + this.constraints.remove(c);
|
| + if (this.determinedBy == c) this.determinedBy = null;
|
| +}
|
| +
|
| +/* --- *
|
| + * P l a n n e r
|
| + * --- */
|
| +
|
| +/**
|
| + * The DeltaBlue planner
|
| + */
|
| +function Planner() {
|
| + this.currentMark = 0;
|
| +}
|
| +
|
| +/**
|
| + * Attempt to satisfy the given constraint and, if successful,
|
| + * incrementally update the dataflow graph. Details: If satifying
|
| + * the constraint is successful, it may override a weaker constraint
|
| + * on its output. The algorithm attempts to resatisfy that
|
| + * constraint using some other method. This process is repeated
|
| + * until either a) it reaches a variable that was not previously
|
| + * determined by any constraint or b) it reaches a constraint that
|
| + * is too weak to be satisfied using any of its methods. The
|
| + * variables of constraints that have been processed are marked with
|
| + * a unique mark value so that we know where we've been. This allows
|
| + * the algorithm to avoid getting into an infinite loop even if the
|
| + * constraint graph has an inadvertent cycle.
|
| + */
|
| +Planner.prototype.incrementalAdd = function (c) {
|
| + var mark = this.newMark();
|
| + var overridden = c.satisfy(mark);
|
| + while (overridden != null)
|
| + overridden = overridden.satisfy(mark);
|
| +}
|
| +
|
| +/**
|
| + * Entry point for retracting a constraint. Remove the given
|
| + * constraint and incrementally update the dataflow graph.
|
| + * Details: Retracting the given constraint may allow some currently
|
| + * unsatisfiable downstream constraint to be satisfied. We therefore collect
|
| + * a list of unsatisfied downstream constraints and attempt to
|
| + * satisfy each one in turn. This list is traversed by constraint
|
| + * strength, strongest first, as a heuristic for avoiding
|
| + * unnecessarily adding and then overriding weak constraints.
|
| + * Assume: c is satisfied.
|
| + */
|
| +Planner.prototype.incrementalRemove = function (c) {
|
| + var out = c.output();
|
| + c.markUnsatisfied();
|
| + c.removeFromGraph();
|
| + var unsatisfied = this.removePropagateFrom(out);
|
| + var strength = Strength.REQUIRED;
|
| + do {
|
| + for (var i = 0; i < unsatisfied.size(); i++) {
|
| + var u = unsatisfied.at(i);
|
| + if (u.strength == strength)
|
| + this.incrementalAdd(u);
|
| + }
|
| + strength = strength.nextWeaker();
|
| + } while (strength != Strength.WEAKEST);
|
| +}
|
| +
|
| +/**
|
| + * Select a previously unused mark value.
|
| + */
|
| +Planner.prototype.newMark = function () {
|
| + return ++this.currentMark;
|
| +}
|
| +
|
| +/**
|
| + * Extract a plan for resatisfaction starting from the given source
|
| + * constraints, usually a set of input constraints. This method
|
| + * assumes that stay optimization is desired; the plan will contain
|
| + * only constraints whose output variables are not stay. Constraints
|
| + * that do no computation, such as stay and edit constraints, are
|
| + * not included in the plan.
|
| + * Details: The outputs of a constraint are marked when it is added
|
| + * to the plan under construction. A constraint may be appended to
|
| + * the plan when all its input variables are known. A variable is
|
| + * known if either a) the variable is marked (indicating that has
|
| + * been computed by a constraint appearing earlier in the plan), b)
|
| + * the variable is 'stay' (i.e. it is a constant at plan execution
|
| + * time), or c) the variable is not determined by any
|
| + * constraint. The last provision is for past states of history
|
| + * variables, which are not stay but which are also not computed by
|
| + * any constraint.
|
| + * Assume: sources are all satisfied.
|
| + */
|
| +Planner.prototype.makePlan = function (sources) {
|
| + var mark = this.newMark();
|
| + var plan = new Plan();
|
| + var todo = sources;
|
| + while (todo.size() > 0) {
|
| + var c = todo.removeFirst();
|
| + if (c.output().mark != mark && c.inputsKnown(mark)) {
|
| + plan.addConstraint(c);
|
| + c.output().mark = mark;
|
| + this.addConstraintsConsumingTo(c.output(), todo);
|
| + }
|
| + }
|
| + return plan;
|
| +}
|
| +
|
| +/**
|
| + * Extract a plan for resatisfying starting from the output of the
|
| + * given constraints, usually a set of input constraints.
|
| + */
|
| +Planner.prototype.extractPlanFromConstraints = function (constraints) {
|
| + var sources = new OrderedCollection();
|
| + for (var i = 0; i < constraints.size(); i++) {
|
| + var c = constraints.at(i);
|
| + if (c.isInput() && c.isSatisfied())
|
| + // not in plan already and eligible for inclusion
|
| + sources.add(c);
|
| + }
|
| + return this.makePlan(sources);
|
| +}
|
| +
|
| +/**
|
| + * Recompute the walkabout strengths and stay flags of all variables
|
| + * downstream of the given constraint and recompute the actual
|
| + * values of all variables whose stay flag is true. If a cycle is
|
| + * detected, remove the given constraint and answer
|
| + * false. Otherwise, answer true.
|
| + * Details: Cycles are detected when a marked variable is
|
| + * encountered downstream of the given constraint. The sender is
|
| + * assumed to have marked the inputs of the given constraint with
|
| + * the given mark. Thus, encountering a marked node downstream of
|
| + * the output constraint means that there is a path from the
|
| + * constraint's output to one of its inputs.
|
| + */
|
| +Planner.prototype.addPropagate = function (c, mark) {
|
| + var todo = new OrderedCollection();
|
| + todo.add(c);
|
| + while (todo.size() > 0) {
|
| + var d = todo.removeFirst();
|
| + if (d.output().mark == mark) {
|
| + this.incrementalRemove(c);
|
| + return false;
|
| + }
|
| + d.recalculate();
|
| + this.addConstraintsConsumingTo(d.output(), todo);
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +
|
| +/**
|
| + * Update the walkabout strengths and stay flags of all variables
|
| + * downstream of the given constraint. Answer a collection of
|
| + * unsatisfied constraints sorted in order of decreasing strength.
|
| + */
|
| +Planner.prototype.removePropagateFrom = function (out) {
|
| + out.determinedBy = null;
|
| + out.walkStrength = Strength.WEAKEST;
|
| + out.stay = true;
|
| + var unsatisfied = new OrderedCollection();
|
| + var todo = new OrderedCollection();
|
| + todo.add(out);
|
| + while (todo.size() > 0) {
|
| + var v = todo.removeFirst();
|
| + for (var i = 0; i < v.constraints.size(); i++) {
|
| + var c = v.constraints.at(i);
|
| + if (!c.isSatisfied())
|
| + unsatisfied.add(c);
|
| + }
|
| + var determining = v.determinedBy;
|
| + for (var i = 0; i < v.constraints.size(); i++) {
|
| + var next = v.constraints.at(i);
|
| + if (next != determining && next.isSatisfied()) {
|
| + next.recalculate();
|
| + todo.add(next.output());
|
| + }
|
| + }
|
| + }
|
| + return unsatisfied;
|
| +}
|
| +
|
| +Planner.prototype.addConstraintsConsumingTo = function (v, coll) {
|
| + var determining = v.determinedBy;
|
| + var cc = v.constraints;
|
| + for (var i = 0; i < cc.size(); i++) {
|
| + var c = cc.at(i);
|
| + if (c != determining && c.isSatisfied())
|
| + coll.add(c);
|
| + }
|
| +}
|
| +
|
| +/* --- *
|
| + * P l a n
|
| + * --- */
|
| +
|
| +/**
|
| + * A Plan is an ordered list of constraints to be executed in sequence
|
| + * to resatisfy all currently satisfiable constraints in the face of
|
| + * one or more changing inputs.
|
| + */
|
| +function Plan() {
|
| + this.v = new OrderedCollection();
|
| +}
|
| +
|
| +Plan.prototype.addConstraint = function (c) {
|
| + this.v.add(c);
|
| +}
|
| +
|
| +Plan.prototype.size = function () {
|
| + return this.v.size();
|
| +}
|
| +
|
| +Plan.prototype.constraintAt = function (index) {
|
| + return this.v.at(index);
|
| +}
|
| +
|
| +Plan.prototype.execute = function () {
|
| + for (var i = 0; i < this.size(); i++) {
|
| + var c = this.constraintAt(i);
|
| + c.execute();
|
| + }
|
| +}
|
| +
|
| +/* --- *
|
| + * M a i n
|
| + * --- */
|
| +
|
| +/**
|
| + * This is the standard DeltaBlue benchmark. A long chain of equality
|
| + * constraints is constructed with a stay constraint on one end. An
|
| + * edit constraint is then added to the opposite end and the time is
|
| + * measured for adding and removing this constraint, and extracting
|
| + * and executing a constraint satisfaction plan. There are two cases.
|
| + * In case 1, the added constraint is stronger than the stay
|
| + * constraint and values must propagate down the entire length of the
|
| + * chain. In case 2, the added constraint is weaker than the stay
|
| + * constraint so it cannot be accomodated. The cost in this case is,
|
| + * of course, very low. Typical situations lie somewhere between these
|
| + * two extremes.
|
| + */
|
| +function chainTest(n) {
|
| + planner = new Planner();
|
| + var prev = null, first = null, last = null;
|
| +
|
| + // Build chain of n equality constraints
|
| + for (var i = 0; i <= n; i++) {
|
| + var name = "v" + i;
|
| + var v = new Variable(name);
|
| + if (prev != null)
|
| + new EqualityConstraint(prev, v, Strength.REQUIRED);
|
| + if (i == 0) first = v;
|
| + if (i == n) last = v;
|
| + prev = v;
|
| + }
|
| +
|
| + new StayConstraint(last, Strength.STRONG_DEFAULT);
|
| + var edit = new EditConstraint(first, Strength.PREFERRED);
|
| + var edits = new OrderedCollection();
|
| + edits.add(edit);
|
| + var plan = planner.extractPlanFromConstraints(edits);
|
| + for (var i = 0; i < 100; i++) {
|
| + first.value = i;
|
| + plan.execute();
|
| + if (last.value != i)
|
| + alert("Chain test failed.");
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * This test constructs a two sets of variables related to each
|
| + * other by a simple linear transformation (scale and offset). The
|
| + * time is measured to change a variable on either side of the
|
| + * mapping and to change the scale and offset factors.
|
| + */
|
| +function projectionTest(n) {
|
| + planner = new Planner();
|
| + var scale = new Variable("scale", 10);
|
| + var offset = new Variable("offset", 1000);
|
| + var src = null, dst = null;
|
| +
|
| + var dests = new OrderedCollection();
|
| + for (var i = 0; i < n; i++) {
|
| + src = new Variable("src" + i, i);
|
| + dst = new Variable("dst" + i, i);
|
| + dests.add(dst);
|
| + new StayConstraint(src, Strength.NORMAL);
|
| + new ScaleConstraint(src, scale, offset, dst, Strength.REQUIRED);
|
| + }
|
| +
|
| + change(src, 17);
|
| + if (dst.value != 1170) alert("Projection 1 failed");
|
| + change(dst, 1050);
|
| + if (src.value != 5) alert("Projection 2 failed");
|
| + change(scale, 5);
|
| + for (var i = 0; i < n - 1; i++) {
|
| + if (dests.at(i).value != i * 5 + 1000)
|
| + alert("Projection 3 failed");
|
| + }
|
| + change(offset, 2000);
|
| + for (var i = 0; i < n - 1; i++) {
|
| + if (dests.at(i).value != i * 5 + 2000)
|
| + alert("Projection 4 failed");
|
| + }
|
| +}
|
| +
|
| +function change(v, newValue) {
|
| + var edit = new EditConstraint(v, Strength.PREFERRED);
|
| + var edits = new OrderedCollection();
|
| + edits.add(edit);
|
| + var plan = planner.extractPlanFromConstraints(edits);
|
| + for (var i = 0; i < 10; i++) {
|
| + v.value = newValue;
|
| + plan.execute();
|
| + }
|
| + edit.destroyConstraint();
|
| +}
|
| +
|
| +// Global variable holding the current planner.
|
| +var planner = null;
|
| +
|
| +window.onload = function(){ startTest("v8-deltablue", '');
|
| +
|
| +test("Constraint Solving", function deltaBlue() {
|
| + chainTest(100);
|
| + projectionTest(100);
|
| +});
|
| +
|
| +endTest(); };
|
| +</script>
|
| +</head>
|
| +<body></body>
|
| +</html>
|
|
|